
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Efficient Acceleration of Computation Using Associative In-memory Processing

Permalink
https://escholarship.org/uc/item/3939f48b

Author
YANTIR, Hasan Erdem

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3939f48b
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Efficient Acceleration of Computation Using Associative In-memory Processing

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Hasan Erdem Yantır

Dissertation Committee:
Professor Fadi J. Kurdahi, Chair

Professor Ahmed M. Eltawil
Professor Rainer Dömer

2018

c© 2018 Hasan Erdem Yantır

DEDICATION

I would like to dedicate this dissertation to my family

for their invaluable support and unconditional love

throughout my life.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 4

1.2.1 Computation Types . 4
1.2.2 Non-volatile memories . 7

1.3 Contributions . 9
1.4 Thesis Overview . 11

2 Associative Processor 12
2.1 Introduction . 12
2.2 Architecture . 15

2.2.1 SRAM Associative Processor (SAP) 17
2.2.2 Resistive Associative Processor (RAP) 20

2.3 Instructions . 23
2.3.1 Logical Instructions . 23
2.3.2 Arithmetic Instructions . 26

2.4 System Architectures . 34
2.5 Simulator . 40

3 Tradeoffs in APs 42
3.1 Introduction . 42
3.2 Performance . 43
3.3 Energy . 46
3.4 Reliability . 47

3.4.1 Write Endurance . 47

iii

3.4.2 Process Variations . 50
3.5 Conclusions . 59

4 Approximate In-Memory Computing 60
4.1 Approximate Computing . 60
4.2 Approximate Memristive In-memory Computing 64

4.2.1 Bit Trimming . 64
4.2.2 Memristance Scaling . 66
4.2.3 Experimentation . 68

4.3 A Hybrid Approach . 77
4.3.1 Motivation . 77
4.3.2 Design Flow . 80
4.3.3 Dynamic Approximation . 81
4.3.4 Experimentation . 83

4.4 Conclusion . 89

5 Methods for Low-power APs 92
5.1 Low-Power SAP . 92

5.1.1 Motivation . 93
5.1.2 Low-Power Methodologies . 96
5.1.3 Experimentation . 101

5.2 Multi-compare for RAPs . 108
5.2.1 Motivation . 108
5.2.2 Methodology . 111
5.2.3 Evaluation . 112

5.3 Conclusion . 114

6 Two-dimensional AP 115
6.1 Introduction . 115

6.1.1 Motivation . 116
6.2 Proposed Architecture (2D AP) . 118
6.3 Evaluation . 122
6.4 Experimentation . 124

6.4.1 Simulation Framework . 124
6.4.2 Energy & Performance . 127
6.4.3 Figure of Merit . 131

6.5 Conclusion . 132

7 Conclusion & Future Work 133

Bibliography 136

iv

LIST OF FIGURES

Page

1.1 Computation types with respect to the memory organization 5

2.1 General architecture of an associative processor 17
2.2 CAM cell implementations . 18
2.3 Architecture of an SRAM-based Associative Processor (SAP) 19
2.4 Typical evaluation phases of a SAP cell for the match (a), mismatch (b), and

don’t care (c) states. 20
2.5 Architecture of an ReRAM-based Associative Processor (RAP) 21
2.6 Typical evaluation phases of a RAP cell for the match (a), mismatch (b), and

don’t care (c) states. 22
2.7 AND operation on the AP . 24
2.8 Spice simulation of two consecutive cycles in SAP and RAP respectively cor-

responding to the AND operation in Figure 2.7 25
2.9 Vector Add Operation. The sequence of compare and write operations are

shown for a complete vector addition. 28
2.10 Vector subtraction operation on 4-bit four number pairs. The sequence of

compare and write operations are shown for a complete vector subtraction. . 29
2.11 Signed multiplication methods on the AP . 33
2.12 Vector multiplication operation. The sequence of compare and write opera-

tions are shown for a complete unsigned vector multiplication. 35
2.13 System-level AP Architectures . 35
2.14 Interconnection matrix between the two CAMs 36
2.15 The simulation framework . 40

3.1 The comparison of CPU, GPU, and AP architectures 43
3.2 The comparison of operations on the AP . 45
3.3 The comparison of a sequential processor with some AP operations on 16-bit

operands . 45
3.4 Column write density of the fundamental operations on the AP 47
3.5 Effect of process variation on Vc . 51
3.6 The distributions for Rres and Rset tolerances 52
3.7 Kernel densities with respect to tolerances and obtained Vths (red vertical line) 53
3.8 The cumulative distribution functions (CDFs) of deviation in the results. (The

red line corresponds to untrained results and the blue one is the trained results) 55
3.9 JPEG Block Diagram . 57

v

3.10 Comparison of JPEG results for TRset = 0.01 and TRres = 0.5 58

4.1 Full (a) and approximate (b) compressed images where PSNRs are 31.74 and
31.52 respectively . 61

4.2 Full (a) and approximate (b) outputs of the sobel filter algorithm on a image
where PSNR is 33.17 for the approximate image 62

4.3 Bit trimming in the MAP . 64
4.4 Number of trimmed bits vs. accuracy & speedup for the addition and multi-

plication operations in the RAP . 65
4.5 An example case showing memristance-energy and memristance-time relations

for switching the memristor in [114] between Roff (100 kΩ) and Ron (100 Ω) 67
4.6 Variability sources and variations in RAP . 70
4.7 Data movement vs. computation percentage for the benchmarks where left

and right bars correspond to energy and time respectively for each benchmark 71
4.8 Comparison of approximation methods on RAP, ASIC, CPU, and GPU plat-

forms with different benchmarks with 10% maximum quality degradation . . 74
4.9 Area comparison of RAP+BT & Axilog[180] 76
4.10 The effect of bit trimming and cell scaling on SAPs and RAPs 78
4.11 Hybrid approximate computing in associative processors (APs) 79
4.12 The design flow for approximate AP systems 80
4.13 Dynamic cell scaling in APS . 81
4.14 Dynamic approximate computing in SAPs 83
4.15 Comparison of approximation methods on SAP, RAP, ASIC, CPU, and GPU

platforms with different benchmarks with 10% maximum quality degradation 90

5.1 Waveform of single-bit subtraction which corresponds to the second row of
Figure 2.10 . 94

5.2 Unnecessary (wasted) cycle percentages of the fundamental arithmetic oper-
ations in the AP. 95

5.3 Selective pre-charge (a) and evaluate (b) mechanisms for low-power AP. . . . 97
5.4 Waveform of single-bit addition which corresponds to the second row of Figure

2.10 when selective pre-charge (a) and evaluate (b) mechanisms enabled. . . 99
5.5 Energy reduction in arithmetic operations when selective compare and modi-

fied LUTs are enabled. 103
5.6 The performance overhead in 2’s complement and multiplication due to the

modified LUTs. 103
5.7 Normalized energy consumption of the benchmarks when selective compare

and modified LUTs are enabled. 105
5.8 Energy consumption during the FFT benchmark runs of all three cases. . . . 105
5.9 Area overhead of the benchmarks when selective compare and modified LUTs

are enabled. 106
5.10 The cases for the worst case match/mismatch and their corresponding waveform109
5.11 The waveform for the noise margin of the three cases during a compare cycles 111
5.12 Noise margins for each case and the maximum number of compared columns 112

vi

5.13 The normalized performance and energy results of the benchmarks for 2-
column and 1-column compare cases . 113

6.1 Overall system architecture with AP accelerator 116
6.2 1D AP with Adder Tree . 116
6.3 Proposed 2D associative processor (AP) architecture 118
6.4 n×n matrix multiplication on 2D AP, 1D AP w/o adder tree 121
6.5 Spice simulation of two consecutive write and compare cycles in H and V

mode respectively in 2D AP . 125
6.6 2D SAP and 2D RAP performance improvement and energy savings vs. 1D

SAP and 1D RAP, respectively . 128
6.7 Comparing FOMs for different architectures 131

vii

LIST OF TABLES

Page

1.1 ITRS report for emerging memory technologies [66] and their comparison with
traditional memories based on recent literature [45, 171, 70, 106]. 8

2.1 Logical operations and their LUTs . 25
2.2 LUT for addition and subtraction . 27
2.3 LUT for multiplication . 32
2.4 LUT for 2’s complement . 32
2.5 LUT for absolute value . 32
2.6 Reduction tree and switching matrix comparison 39

3.1 Running time and area evaluation of primitive AP operations/instructions . 44
3.2 Energy consumption results for both SAP and RAP cells 47
3.3 Optimized Vth values in volts . 55
3.4 Tag Prediction Accuracies and Improvement Percentage for TRres = 0.5 . . . 56

4.1 The evaluated benchmarks, their platforms, and quality metrics from [179] . 72
4.2 Cases for memristance scaling and their corresponding energy and timing results 73
4.3 The evaluated benchmarks, their platforms, and quality metrics from [179] . 84
4.4 Cell scaling in AP for both SAP and RAP 85
4.5 Comparison of approximation methods on SAP (a) and RAP (b) with different

benchmarks with 10% maximum quality degradation 87

5.1 Modified LUT for the multiplication . 100
5.2 LUT for Absolute Value . 100
5.3 Percentage of covered compare cycles in SC and ML 101
5.4 Average energy and power results of the SAP 102
5.5 The evaluated benchmarks and their input sizes 104
5.6 Comparison with other sub-65nm ASIC implementations of FFT 106
5.7 Cases for ReRAM scaling and their corresponding energy and timing results 110

6.1 Theoretical complexity of various kernels where complexity order between the
cells is green < blue < red. 122

6.2 Average energy and power results of the 2D AP (ReRAM & SRAM) where
each segment is 32-bit . 126

6.3 The evaluated benchmarks, their features, and the provided input 127

viii

ACKNOWLEDGMENTS

All praise be to Allah, Lord of the worlds.

This dissertation would not have been possible without the help of so many people in so
many ways. It is the product of my educational, professional, and personal attainments
through my discussions with people.

I would like to express my deepest gratitude to my advisor, Professor Fadi J. Kurdahi, who
provided me with the guidance and support in all aspects of my research at UC Irvine and
even after UC Irvine. I learned a lot from his guidance and valuable suggestions. His support
and courage in the worth of this research especially during the many difficult times were an
invaluable motivation source for me.

I would also like to thank my Co-advisor Prof. Ahmed M. Eltawil. The insightful discus-
sions with him opened several prospects to me and enriched my research contributions from
different fields. He always promoted my work and encouraged me in going further cordially.

I would like to thank Prof. Rainer Doemer for being in my committee. Even though I could
not find an opportunity to conduct research with him, my observations on his professional
as well as friendly academic life will be a good guider on my overall academic life.

I would like to thank Prof. Smail Niar for directing me in the hard paths of the academic
life as like an academic coach.

I would also acknowledge the support from my research colleagues, especially Mohammed
Fouda, Dr. Wael Mahmoud Elsharkasy, Ayoub Neggaz, Dr. Ahmed Nassar, and Dr. Ihsen
Alouani.

I would also like to thank all my other colleagues and friends, especially Rasul Torun, Dr.
Enver Adas, Dr. Volkan Gunes, Atila Ucar, Dr. Ahmet Tekin, Yasir Ak, and Mert Bayer
for making all those years at Irvine a great and enjoyable experience while away from the
family.

I would like to thank IEEE and ACM for granting me the permission to use my own publi-
cations as part of this dissertation.

Finally, and most importantly, I would like to express my deepest gratitude to my parents
and my wife, who gave me encouragement and supported me cordially with their best wishes.
Their guidance and constant support have always helped me to overcome the challenges that
I have faced throughout my life. Therefore, I can never thank them enough for all they have
done for me.

ix

CURRICULUM VITAE

Hasan Erdem Yantır

EDUCATION

Ph.D. in Electrical and Computer Engineering 2018
University of California, Irvine Irvine, CA

M.Sc. in Computer Engineering 2014

Boğaziçi University İstanbul, Turkey

B.Sc. Minor in Electrical and Electronics Engineering 2011

Yeditepe University İstanbul, Turkey

B.Sc. in Computer Engineering 2011

Yeditepe University İstanbul, Turkey

RESEARCH EXPERIENCE

Graduate Research Assistant 2014–2018
University of California, Irvine Irvine, CA

Graduate Research Assistant 2011–2014

Boğaziçi University İstanbul, Turkey

TEACHING EXPERIENCE

Teaching Assistant 2015–2018
University of California, Irvine Irvine, California

EECS 113 - Processor Hardware/Software Interfaces
EECS 152B - Digital Signal Processing Design and Laboratory
EECS 22 - Advanced C Programming
EECS 20 - Assembly Language and C Programming
EECS 12 - Introduction to Programming

x

REFEREED JOURNAL PUBLICATIONS

Hasan Erdem Yantır, Ahmed M Eltawil, and Fadi J Kurdahi. “A two-dimensional associative
processor.” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018

Hasan Erdem Yantır, Ahmed M Eltawil, and Fadi J Kurdahi. “Approximate memris-
tive in-memory computing.” ACM Transactions on Embedded Computing Systems (TECS),
16(5s):129, 2017

Hasan Erdem Yantır, Ahmed M Eltawil, and Fadi J Kurdahi. “A hybrid approximate
computing approach for associative in-memory processors.” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 2018 (Under Review)

Hasan Erdem Yantır, Ahmed M Eltawil, Smail Niar, and Fadi J Kurdahi. “Power optimiza-
tion techniques for associative processors.” Journal of Systems Architecture, Elsevier, 2018
(Under Revision)

Rana A Abdelaal, Hasan Erdem Yantır, Ahmed M Eltawil, and Fadi J Kurdahi. “Optimizing
energy through adaptive bit width adjustment on resistive associative processors.” IEEE
Transactions on Circuits and Systems I: Regular Papers, 2018 (Under Review)

Hasan Erdem Yantır, Ahmed M Eltawil, and Fadi J Kurdahi. “A 1K In-memory Fast Fourier
Transform Processor.” IEEE Design & Test, 2018 (Under Preparation)

Bashar Romanous, Hasan Erdem Yantir, Walid Najjar, Ahmed M. Eltawil, ad Fadi J. Kur-
dahi. “Accelerating Convolutional Neural Networks (CNNs) using Associate In-memory
Processor. ACM TACO, 2018 (Under Preparation)

REFEREED CONFERENCE PUBLICATIONS

Mohamed Ayoub Neggaz, Hasan Erdem Yantır, Smail Niar, Ahmed M Eltawil, and Fadi J
Kurdahi. “Rapid in-memory matrix multiplication using associative processor.” In Design,
Automation Test in Europe Conference Exhibition (DATE), 2018, March 2018

Wael M Elsharkasy, Hasan Erdem Yantır, Amin Khajeh, Ahmed M Eltawil, and Fadi J Kur-
dahi. “Efficient pulsed-latch implementation for multiport register files: work-in-progress.”
In Proceedings of the 2017 International Conference on Compilers, Architectures and Syn-
thesis for Embedded Systems Companion, page 5. ACM, 2017

Hasan Erdem Yantır, Mohammed E Fouda, Ahmed M Eltawil, and Fadi J Kurdahi. “Process
variations-aware resistive associative processor design.” In Computer Design (ICCD), 2016
IEEE 34th International Conference on, pages 49-55. IEEE, 2016

Hasan Erdem Yantır and Arda Yurdakul. “An efficient heterogeneous register file implemen-
tation for fpgas.” In Parallel & Distributed Processing Symposium Workshops (IPDPSW),
2014 IEEE International, pages 293-298. IEEE, 2014

xi

Gorker Alp Malazgirt, Hasan Erdem Yantır, Arda Yurdakul, and Smail Niar. “Applica-
tion specific multi-port memory customization in fpgas.” In Field Programmable Logic and
Applications (FPL), 2014 24th International Conference on, pages 1-4. IEEE, 2014

Hasan Erdem Yantır, Salih Bayar, and Arda Yurdakul. “Efficient implementations of multi-
pumped multi-port register files in fpgas.” In Digital System Design (DSD), 2013 Euromicro
Conference on, pages 185-192. IEEE, 2013

Hasan Erdem Yantır, Ahmed M Eltawil, and Fadi J Kurdahi. “A Systematic Approach
for Low-Power & High Endurance Resistive Associative Processor Design.” ASP-DAC, 2019
(Under Preparation)

Hasan Erdem Yantr, Ahmed M Eltawil, and Fadi J Kurdahi. “APSim: An Open-Source As-
sociative Processor Simulator with Benchmark Suite” ASP-DAC, 2019 (Under Preparation)

SOFTWARE

APSim https://github.com/hasaney/APSim

A cycle-accurate Associative Processor Simulator

xii

https://github.com/hasaney/APSim

ABSTRACT OF THE DISSERTATION

Efficient Acceleration of Computation Using Associative In-memory Processing

By

Hasan Erdem Yantır

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2018

Professor Fadi J. Kurdahi, Chair

The complexity of the computational problems is rising faster than the computational plat-

forms’ capabilities. This forces researchers to find alternative paradigms and methods for

efficient computing. One promising paradigm is accelerating compute-intensive kernels us-

ing in-memory computing accelerators since memory is the major bottleneck that limits

the amount of parallelism and performance of a system and dominates energy consump-

tion in computation. Leveraging the memory intensive nature of big data applications,

an in-memory-based computation system can be presented where logic can be replaced by

memory structures, virtually eliminating the need for memory load/store operations during

computation. The massive parallelism enabled by such a paradigm results in highly scalable

structures.

The present thesis is studied against this background. The objective is to conduct a broad

perspective research on in-memory computing. For this purpose, associative computing ar-

chitectures (i.e., Associative Processors, or AP) are built by both traditional (SRAM) and

emerging (ReRAM) memory technologies together with their corresponding software frame-

works. For ReRAM-based APs, the reliability concerns coming with the emerging memories

are resolved. Architectural innovations are developed to increase the energy efficiency. Fur-

thermore, approximate computing approach is introduced for APs to perform efficient/low-

xiii

power approximate in-memory computing for the tasks which can tolerate some accuracy

lost. The works also propose a novel two-dimensional in-memory computing architecture to

cope with the existing deficiencies of the traditional one-dimensional AP architectures.

xiv

Chapter 1

Introduction

1.1 Motivation

The explosive growth of the Internet coupled with readily available powerful computing plat-

forms has created the perfect conditions for wide-spread adoption. It is widely recognized

that the most significant obstacle to the transformative vision of ubiquitous access to com-

puting resources is the power/energy consumption barrier, limiting the extent, scope and

longevity of billions of computing devices. Over the last decade, there has seen a sharp

increase in the need for ultra-efficient computation platforms that necessitates robust, low-

power processing cores. This need becomes more urgent due to the increased need for scaling

computation to tackle key computations such as deep learning, artificial intelligence and their

tremendous requirement of efficient big data processing. A key enabler to such vision is the

availability of computing power that can process vast amounts of information rapidly, reli-

ably, and at a low power budget. On the other hand, the research community speculates

that CMOS scaling could end in around 2024 [68], making it unlikely that further area, per-

formance, and energy improvements would be purely based on fabrication technology. There

1

is a general consensus of the researchers that computing based on traditional architectures

is approaching its limits in terms of scalability and power consumption [67, 68]. For these

reasons, researchers have begun to develop alternative computing methods. To cope with

these standing barriers facing the future of computing, one must look into other means of

improving the efficiency of computation by increasing parallelism rather than depending on

transistor feature reduction [13]. Heterogeneous computing has been adopted as a mean

to cope with the increased need for performance and power efficiency, whereby specialized

engines are entrusted with domain-specific (e.g., video) or function specific tasks (e.g., vec-

tor/matrix processing) relying on GPUs, FPGAs, etc. However, this approach becomes

insufficient if processing elements cannot be fed by the memory at the desired processing

rate, leading to a significantly degraded overall performance despite the advancement in the

process technology and parallelism. The requirements for these devices, which are necessary

to support the future computing needs, such as small area, low power and high performance

are in conflict with the realities of high performance computing systems using traditional ar-

chitectures. Unfortunately, current processor solutions have not been adopted because they

are significantly less efficient than ASICs in terms of power and area (or GOPS/W/mm2).

Perhaps the two most formidable barriers are (1) the gap between processing and memory

speed, and (2) the power consumption barrier for a given performance target, limiting the

extent, scope, size, weight, and longevity of the computing systems.

Clearly a radical shift from current approaches is needed to meet the demands of future

computing systems at both the architecture and the device levels. In fact, it is well recognized

that the lower limits of system power consumption are orders of magnitude below state-of-

the-art low power realizations. Consider a case-in-point where a study to simulate one second

of the human brain activity required 82,944 processors running for 40 minutes [96]. This is

especially intriguing when one realizes that the brain consumes approximately 10 watts while

performing an estimated 1012 - 1014 operations per second. The problem is exacerbated when

considering mobile devices where power and area are crucial enablers. Modern multicore

2

processor chips rely extensively on very large cache hierarchies (L1, L2 and L3). In fact,

these account for over 80% of the chip area and an even larger percentage of the energy

budget [72]. To address these processing requirements of the ever-increasing amount of

information, new computing paradigms started to emerge that focus more on the memory

bottleneck problem together with the emerging semiconductor technologies. Broadly, these

architectures aim to perform operations directly in the memory or near the memory to

eliminate the data movement costs. This allows the creation of the new architectures on

which von Neuman bottleneck has a minimal effect.

Theoretically and intuitively, the most memory efficient computing paradigm is in-memory

computation where all computations are performed inside the memory without moving the

data. Associative processors (AP) are excellent in-memory computational platforms for mas-

sively parallel (Single Instruction Multiple Data) computing that combine the memory and

the processor in the same location [32]. In associative computing, the operations are carried

out on the rows of a memory simultaneously. This feature inherently solves the memory-

wall problem of traditional processor architectures since the memory and the processor are

integrated. Even though numerous associative processors (AP) architectures were proposed

in 1970’s and 1980’s [32, 142], their adoption was limited due to the unmanageable area

and power requirements [32]. This reality has been changing with the availability of new

semiconductor technologies (such as ReRAM [154], STT-RAM [4], and MRAM [140]), ma-

terials, and ultra scaling in transistors that allow for extremely dense memory structures.

As described later in this section, Table 1.1 shows a summary of the emerging nonvolatile

memory technologies [66] to point out this reality. As shown in the table, these devices pro-

vide ultra-high density when compared with traditional memory technologies such as SRAM

together with non-volatility.

As a consequence, the improvements in the semiconductor industry lead to a resurrection of

the AP approach in the research community [176, 42], and even in the commercial semicon-

3

ductor industry as an end product [38, 33, 61, 123]. In-memory based accelerators where logic

can be replaced by memory structures, virtually eliminating the processor-memory traffic can

achieve at least an order of magnitude more energy-efficiencies per area (GOPS/W/mm2),

when compared to existing systems. In this dissertation, the main focus is on the archi-

tectures of associative processors ranging from low-power computing to reliable in-memory

processing and approximate in-memory computing. The approaches presented in this dis-

sertation contribute to the design of in-memory processors/accelerators based on associative

processing.

1.2 Background

1.2.1 Computation Types

There are many categorization of computation types such as with respect to the number

of concurrent instruction and the data streams processed on the architecture (i.e., Flynn’s

taxonomy [31]), the degree of the parallelism (i.e., Feng’s classification [11]), or pipelining

and parallelism (i.e., Handlers Classification [7]). Irregardless of these classifications and

processing features of the architecture, another categorization type is the organization of the

processor with respect to the memory. From this perspective, there are three computation

types which are defined by the relative placement of the memory and the processor. Refer-

encing this classification, any computing system can be fall into one of these three classes;

traditional(out-memory), near-memory, or in-memory. The following three subsections de-

tails this classification.

4

A
LU

Memory
Processor

53

14

67
67

+

(a) Traditional
A

LU

Processor & Memory (same chip)

53

14

67
67

+

(b) Near-memory

Memory

53

14

67

+ X / -

(c) In-memory

Figure 1.1: Computation types with respect to the memory organization

Traditional (Out-memory)

As the traditional and most commonly used computational method, out-memory architec-

tures place the memory and processor in separate chips. During the computation, the data

stored in the memory is fetched to the processor. The processors performs the operations

by the arithmetic logic unit (ALU) and the results are sent back to the memory. The

communication between processor and memory is handled through high-speed buses. The

von Neuman (Princeton) [162] and Harward architectures are the examples of out-memory

computation and they differ in terms of where the instructions and the data are stored [47].

Near-memory

As the von Neuman architecture faces the memory bottleneck problems, the researchers

have come up with the idea of placing both memory and processor inside the same chip in

order to enable higher bandwidth between them, thus to obtain the faster communication and

computation. In this organization, the data read from the memory can reach to the processor

much faster (and vice versa) than a traditional architecture since they are in the same chip.

The study of intelligent RAM (IRAM) [93] is one example for near-memory computation

where DRAM is integrated with the processor by eliminating the memory cache to optimize

5

the cost and performance trade-off [92].

In-memory

In-memory computation aims to perform the operation directly inside the memory (i.e.,

not inside the same memory chip as in near-memory computation). There are different

realizations of in-memory computing architectures. The most basic one is placing a small

arithmetic logic units within the memory to perform some operations on a group of data [43].

In some cases, the operations are performed by using the analog or digital processing capa-

bility of emerging technologies such as memristor [46, 104]. As another method, associative

processing described in the next chapter (Chapter 2) performs the in-memory computation

by using look-up tables of the arithmetic and logical operations. Unlike the von Neuman or

near-memory computation in which the data sent to processor for computation, associative

processors sent the functionality or operation over data without moving it.

In here, it is worth to mention that associative processing term is commonly used for the

architectures employing associative memories (i.e., CAM) for computing. For example, even

though associative computing architectures proposed in [69, 43, 52, 54, 51] uses a CAM

structure, the operation is not done inside the CAM or memory. The CAM is only used for

associative search and the search results are processed either using a small, basic processor

near the memory (inside the same chip) or the main processor. On the other hand, the asso-

ciative processor referenced in this thesis perform the processing within the memory directly.

In other worlds, the computation is done inside the CAM without using any additional pro-

cessor. Therefore, there are differences between the two processor types. Unfortunately,

associative computing terms are used for both architectures since they are based on the

associativity of the memory. In reality, their computation methods are totally different.

6

1.2.2 Non-volatile memories

There are many alternatives in the memory design and each alternative has its own ff. For

in-memory computing, the memory structure in which computation is done also plays an

important role. Traditionally, designers depended on a hierarchical memory structure to bal-

ance the requirements of speed, power and area across the various layers. However, emerging

memory technologies are providing alternative means to flatten the hierarchy, while main-

taining or surpassing the best features of current state of the art architectures. Table 1.1

shows a detailed comparison between traditional (current) and emerging memory technolo-

gies [72]. In the case of traditional memories, there exists a clear trade-off between speed

and density, where SRAM provides the highest speed with low density. On the other hand,

Flash memories are very dense but much slower. Emerging technologies provide means to

avoid this tradeoff. Three of the four main emerging technologies are resistive based mem-

ories (ReRAMs), namely Phase Change Memory (PCM), Spin-Transfer Torque (STT), and

memristors based on the REDOX phenomenon. From an architecture point of view, the

three technologies are quite similar; nevertheless, memristor seem to be the most promising,

since it provide the highest density among all the emerging technologies and the lowest ac-

cess latency [72]. Moreover,memristors can scale much easier than STT-RAMs, offer better

read times and generally better or comparable write times and energy per bit. When com-

pared to PCM-RAMs, memristors use much less energy per bit, and are better on almost

all other metrics such as density, read and write times [49]. However, there are many chal-

lenges that need to be addressed before Resistive memories can genuinely replace current

memory technologies. Among these challenges are manufacturability, variability, and as will

become clear later, power density. Some of these challenges are being addressed in industry

and academia. Recently, Intel and Micro Technologies announced their 3D Xpoint Memory

technology bearing many of the characteristics of memristors such as density, speed, and

crossbar architecture, and claiming to be 10x denser than DRAM and 1000x faster than

7

NAND flash. These memories have started to be packaged into Non Volatile-DIMMs and

Solid State Drives [165, 64].

Table 1.1: ITRS report for emerging memory technologies [66] and their comparison with
traditional memories based on recent literature [45, 171, 70, 106].

Traditional Memories Emerging Memories

SRAM DRAM
NAND
FLash

NOR
Flash

FeRAM STT-RAM PCM ReRAM

Cell Element 6T 1T1C 1T 1T 1T1C 1(2)T1R 1D1R 1R

Feature Size (nm) 45 36-65 45 16 180 65 45 5

Density (Gbit/cm2) 0.4 0.8-13 4.9 97.6 0.14 1.2 12 1000

Read time (ns) 0.2 2-10 15 105 45 35 12 -

Write time (ns) 0.2 2-10 103 105 65 35 100 < 1

Nonvolatile No No Yes Yes Yes Yes Yes Yes

Endurance [45] >1e16 >1e16 1e15 1e15 1e14 >1e12 1e9 1e15

Retention Time - <<seconds Years Years Years Years Years Years

* The abbreviations used are: T-transistor, C-capacitor, R-resistor, and D-diode. The bold font indicates
the best value per row.

The Memristor (memory resistor) is a nonlinear passive device that changes its state ac-

cording to the net charge passing through its two terminals, and maintains its state after

the electrical bias is removed. The Memristor is widely considered as the fourth basic two

terminal passive element, alongside with resistor, capacitor, and inductor. The existence

of such a device was postulated since 1970s [19, 20], however it was not until 2008 when a

fabricated device was related to the theory [154]. While the memristive phenomenon has

been observed for quite some time [131], recent fabrication advances [167, 172, 82, 37, 89, 75]

make it very appealing where the resistance of the [8] device represents a memory state

[17, 26, 87, 184, 48, 163]. In addition to memory systems, memristors find many appli-

cations such as programmable analog circuits [148, 127, 21], logic and arithmetic circuits

[34, 136, 113, 35, 101, 166], neural networks [1, 74, 85, 126, 62, 81, 99], electronic oscillators

[24, 185, 186, 156, 157, 22], filters [23], and cryptography [108]. Several behavioral, circuit,

and physical models have been introduced in order to facilitate the emerging technology

[5, 132, 12, 164, 160, 71].

8

1.3 Contributions

The objective of this thesis is to explore the design space, system architecture, software and

micro-architecture, enabling low-power in-memory accelerators for large-scale data intensive

applications. The primary contributions of this study can be summarized as follows:

• Architecture and Trade-offs of Associative Processors: The understanding of

the associative processing and processors are described in detail together with the

newly defined operations and system-wide configuration schemes. The proposed sys-

tem architectures allow reprogrammability in memory-based computation and they are

uniquely suited for vector based operations, while fully benefiting from the extreme

parallelism. It is shown that emerging memory technologies make it possible to build

CAMs that deliver one to three orders of higher GOPS/W/mm2 than current parallel

architectures. The architectural innovations are proposed that reduce or eliminate the

need for any supporting logic, thus addressing the two main barriers to adoption and

making AP based on CAMs an excellent candidate for the development of in-memory

accelerators. The statement are supported by the trade-off analysis in terms of energy,

performance and reliability.

• Approximate In-memory Computing: For the first time, approximate in-memory

computing is introduced for the APs. For ReRAM-based APs, two approximate com-

puting methodologies are proposed; bit trimming and memristance scaling. It is em-

phasized that the two methods are naturally supported by the APs as dynamic and

tunable. Later, these concepts are extended for the SRAM-based APs where bit trim-

ming and cell voltage scaling is applied. Furthermore, the hybrid approximate comput-

ing is introduced for both AP architectures in which bit trimming and voltage scaling

(in SRAM)/cell scaling (in ReRAM) are combined and a design flow is proposed to

optimize the system efficiency with a minimum impact on the accuracy.

9

• Low-power Associative Processor: A low-power SRAM-based AP implementation

is suggested by proposing novel architectural improvements to decrease the switching

activity. Furthermore, some traditional operations are modified to allow better energy

efficiency. For ReRAM-based APs, a considerable energy reduction is provided by

multi-compare architectures where ReRAM switching range is scaled without sacrific-

ing the reliability constraints.

• Software Framework for Associative Processors: A cycle accurate simulator for

Associative Processors is delivered along with the broad range of benchmarks such as

large-scale data mining, signal processing, and deep learning. The simulator is highly

configurable with more than 50 parameters and can facilitate circuit-level simulation as

well as system-level simulations. The simulator works as fully automated in which the

cooperation between the system-level simulator (Matlab) and circuit-level simulator

(HSpice) is coordinated seamlessly.

• Two-dimensional Associative Processor: Even though traditional in-memory pro-

cessor architectures together with emerging semiconductor technologies show promise

for improving the efficiency of parallel computing, they lack some vital requirements

such as flexibility and sequential execution. For this reason, a novel two-dimensional

in-memory computing architecture is proposed. The proposed Associative Processing

(AP) architecture is implemented by both CMOS/SRAM and ReRAM technologies

and employed as an accelerator. The proposed architecture facilitates very efficient

in-memory parallel computing together with a high degree of flexibility that results in

faster running time in fundamental benchmarks. Furhermore, the developed architec-

tural innovations reduce or eliminate the need for any supporting logic, thus addressing

the barriers to adoption for more benchmarks.

10

1.4 Thesis Overview

After this brief introduction on the fundamentals, contributions, and previous works, the

rest of the thesis is organized as follows. The thesis is divided into seven chapters; Architec-

ture and trade-offs (Chapters 1-2), power optimization techniques for APs (Chapters 3-4),

and architectural extension and future work (Chapters 6-7). Chapter 2 gives the detailed

information on the architecture and operation of the APs in detail which is the fundamen-

tal background referenced through the thesis for in-memory computation. The chapter gives

information for both SRAM-based and ReRAM-based designs. In Chapter 3, the APs imple-

mentations are compared with each other and with other processors to exhibit the trade-offs.

The section also presents some studies to escalate the reliability issues. Next, Chapter 3 fo-

cuses on the energy efficient AP architectures and proposes some methods and modifications

to decrease the power consumption and increase the efficiency of APs. The Chapter 4 also

introduces the approximate in-memory computing. Then, Chapter 6 proposes a novel two-

dimensional AP architecture which is capable of performing parallel operations on both

horizontal and vertical directions. Finally, Chapter 7 concludes the thesis with a summary

and starts a discussion on the potential directions as venues for future investigations.

11

Chapter 2

Associative Processor

In this chapter, the overall architecture of an associative processor implemented by ReRAM-

based and SRAM-based CAM cells are described. The chapter aims to comprehend the

understanding of the traditional APs by including the new materials such as newly defined

operations and their corresponding look-up tables. The chapter also includes the proposed

in-house simulator for associative processors.

2.1 Introduction

An associative processor can be considered as a variant of the single-instruction multiple-

data processor (SIMD) that combines storage and processing in the same device. In APs, a

key is matched by all the rows in memory, and bits are modified depending on (1) the key

mask and (2) whether or not a match occurred. By correctly sequencing matching steps,

vector based arithmetic operations can be performed in place. In this way, it performs the

SIMD processing inside the memory directly.

The idea of Associative processors has its roots back in the 1970s and 1980s with the work of

12

Scherson, Elgin, Foster, and many others [144, 32, 147, 143]. In these studies, basic addition

algorithms were derived and other operations studied for integer and floating point opera-

tions. One of the earliest commercial APs was STARAN [138] in the 1970s by Goodyear

Aerospace Corporation. STARAN was interfaced with a conventional general purpose com-

puter. STARAN’s main component was the ”main frame” memory which enables associative

addressing and parallel processing capabilities for array arithmetic operations. An associative

programming language (APPLE stands for Associative Processor Programming LanguagE

[138]) as well as software for the standalone processing mode of STARAN [9] were devel-

oped. Further enhancements to STARAN include multi-dimensional memory access [9] to

enable bit-slice and word-slice accesses. Applications such as FFT, Sonar post-processing

and string search were accelerated on STARAN [9]. Since then, numerous studies of AP

architectures [129, 32] have demonstrated their out performance of traditional processors

on various applications ranging from searching and sorting, to FFT, matrix multiplication

and sparse linear algebra [141, 143, 177, 178] as well as signal, image, and video processing

[139, 6, 147, 3]. Algorithms for the acceleration of spares matrix multiplication using AP are

described in [178] where four algorithms were studied, covering fully associative sparse ma-

trix multiplication and a hybrid of AP and CPU computations reducing the computational

complexity of such multiplication on AP to O(m). In [177] the authors proposed replacing

the on-chip last-level cache with an AP that would work as both memory as well as massively

parallel SIMD accelerator.

All of the former APs rely on traditional old CMOS technology which limited the widespread

adoption of APs due to large chip area and high power consumption which in turn limited the

maximum parallelism practically achievable. The other drawback was the limited scope of

compute operations that could benefit from existing CAM structures. This reality has been

changing with the availability of new semiconductor technologies (such as ReRAM [154],

STT-RAM [4], and MRAM [140]), materials, and ultra scaling in transistors that allow for

13

extremely dense memory structures (sub-16 nm). Memristor (ReRAM) 1 is a new device

technology, which is a nonlinear passive component that changes its state according to the net

charge passing through its two terminals, and maintains its state after the electrical bias is

removed [19]. Therefore, It is possible to use memristor with two resistance levels to represent

a single bit. Memristors technology has revolutionized memory manufacturing by enabling

the accommodation of large memory sizes on small chip area with low power consumption.

They offer a way out of the status quo due to their suitability to implement CAM structures

and crossbar connections that are crucial components for Associative Processors. With the

advent of emerging memory technologies, research efforts were geared towards harnessing the

advantages of these technologies to make CAMs and APs more attractive. A resistive ternary

CAM (TCAM) accelerator based on PCM, and using 3T3R cells (three transistors three

resistors per cell) was designed as a DDR3-compatible DIMM [40]. The design allowed the

resistive TCAM to work with a general purpose CPU as both content addressable memory as

well as conventional address-based RAM memory. AC-DIMM, a further enhancement to this

design [42, 41] uses STT-MRAM with 2T1R cells to extend its functionality to associative

search and in-memory processing. More recent work on Associative Processors include [42],

using STT-RAMs, and [176], using bipolar resistive RAM, to build CAM-based APs. In

[176] a resistive AP using diodes is proposed with an area and power intensive CMOS-

based reduction tree for population count and reduction operations. The study in [119]

provides a matrix multiplication on ReRAM-based AP in O(m) complexity for the traditional

matrices. As another application from machine learning, the study in [77] proposes in-

memory acceleration for K-means and K-nearest neighbors tasks.

In addition to APs, numerous significant contributions are made in CAM structures which is

the principal component of an AP having the ability to perform a search on a large collection

of words in a single step or cycle. An energy efficient TCAM, Multiple-Access Single-Charge

1In this thesis, the terms ReRAM and memristor are used interchangeably since memristor is referenced
for AP implementation as the emerging memory technology.

14

(MASC), was proposed in [55, 54]. The proposed TCAM saves energy by using a search

operation scheme that is contrary to the one used in traditional CAMs. By having the

mismatched rows maintain the precharge voltage while the matching row discharge theirs.The

voltage from mismatched rows is used to precharge the match rows again. This allows

for additional search operations to be performed while skipping a precharge cycle. Search

results are produced by the TCAM within 1-2 bit Hamming distances of the exact value.

This TCAM doesn’t have any processing capabilities on its own. It can be used as an

accelerator along side a GPU. TCAM can be used to skip performing frequent floating point

(FP) operations, such as addition, multiplication and square root by fetching FP operation

results from TCAM instead of utilizing the FP unit.This is done by caching frequent patterns

of operands and the results of those operations in the TCAM. Profiling is needed for each

application in order to detect those frequent computational patterns used in FP operations.

A low energy Resistive Multi-stage Associative Memory (ReMAM) was proposed by [53].

Energy saving are achieved by dividing searches in the TCAM onto smaller searches and

performing searches in several stages. However, both MASC and ReMAM can only function

as associative memory which provides storage and content-based search, requiring other

computational blocks to perform near-memory computing.

2.2 Architecture

The idea of associative processing is based on a content addressable memory (CAM) which

is a special type of memory used in computer systems that requires fast data searching

operations [122]. As the building blocks of APs, CAMs have the ability to perform a search on

a large collection of words in a single step or cycle. Unlike the traditional computer memories

like random-access memory (RAM) where the data is located with a a memory address, the

CAM memories search the content (data word) inside the memory to decide on its existence

15

and the location (address). Shortly, the RAM is optimized for address based access and

the CAM is optimized for content/data-based access. For this reason, even though a search

operation inside the traditional computer memory takesO(n) complexity, the CAMs decrease

it to O(1). Since an associative processor requires to process the data inside the memory by

using these fast data searching operations, the main component forming the architecture of

an associative processor is the CAM. While CAMs have been studied and used, on a very

small scale, for decades, their implementation in traditional technologies (e.g. CMOS) is

very onerous in area and power. New device technologies however, such as Phase Change

Memory (PCM), Spin-Transfer Magnetic RAM (STT-MRAM), and Memristors, offer the

possibility of building large-scale memories that are much smaller in area and require less

energy per bit, and are non-volatile; features that offer transformational potential in how

CAMs can be used.

The architecture of an associative processor (AP) is presented in Figure 2.1. The AP consists

of a content addressable memory (CAM), controller, instruction cache, specific registers, and

an optional interconnection circuit. In the processor, instruction cache holds the instructions

that are performed on the CAM. The controller generates the required mask and key values

for the corresponding instruction. The key register is used to store the value that is written or

compared against. Mask register indicates which bit or bits are activated during comparison

or write. The rows matched by the compare operation are marked in the tag field. The rows

tagged with logic-1 means that the corresponding CAM row has been matched with the given

key and mask value. For example, if we use key 100 and mask 101 to the CAM, the tag

bits of the corresponding rows whose first and third bits are logic-0 and logic-1 respectively

becomes logic-1 as shown in the figure.

In order to process data inside the CAM, APs must have masked search and parallel column

write operations. These requirements can be fulfilled by various CAM cells built using the

gated memory cells. Figure 2.2 shows the two possible implementations of a CAM cell

16

Content Addressable
Memory

TAG

Instruction Cache

Controller
KEY

Interconnection
Matrix

MASK

0 01

0 11

1 01
1 11
0 01

1
0
1

Figure 2.1: General architecture of an associative processor

which are SRAM-based and ReRAM-based CAM cells. When a CAM is implemented by

resistive memory technology, it is named as Resistive CAM (RCAM) and the AP composed of

RCAMs is named as ReRAM-based AP or Resistive AP (RAP) as opposed to the traditional

CMOS/SRAM-based CAMs, which we refer to in this thesis as SRAM CAM, or SCAM, and

the corresponding AP as SRAM-based AP, or SAP, while the terms CAM and AP refer to the

generic content-addressable memory and associative processing architectures, respectively.

The following two subsections explains the SAP and RAP architectures in detail.

2.2.1 SRAM Associative Processor (SAP)

In SAP, the CAM is consists of the SRAM-based CAM cells in which the storage is achieved

through the SRAM-cells [91, 15]. As the traditional way, an SRAM-based cell can be used

to store one-bit together with an additional logic for masked search and write operations

(Figure 2.2a) [122]. In this cell, the one-bit data is stored by a coupled inverter where each

inverter supports to other to keep its logical value. For this reason, the cell consumes the

17

BitBit
Match

Line

Write
Enable

Write
Mask

(a) SRAM-based CAM Cell

Match
Line

BitBit

(b) ReRAM-based CAM Cell

Figure 2.2: CAM cell implementations

static energy as well as the dynamic energy. The data of the cell can be accessed through the

outer circuitry. Figure 2.3 shows the detailed architecture of a SAP. For the sake of a better

demonstration, the inverters which output logic-1 is shown as grayed and the ones output

logic-0 is shown as white. As the fundamental operations of the associative processing, the

compare and write operations on the CAM are performed as follows:

Compare: During the compare, a matching circuit attached to each row distinguishes the

rows that matched with the combination of given key and mask values from the mismatched

ones [176]. Basically, this circuit uses two phases to differentiate the matched and mis-

matched rows; pre-charge and evaluate. In the pre-charge phase, the capacitors at each row

(row capacitors) of the CAM are pre-charged. During the evaluate, a search word is applied

to the columns. Only rows carrying matching data will retain charge because their transis-

tors switched off on the leakage path and the other rows leaks their charges since transistors

conduct. On the other hand, the rows matched by a compare operation retain the charge

on the capacitor. As seen in Figure 2.3, the key is masked and then applied with its reverse.

In this case, to look for logic-1, ”01” is sent to the columns and for logic-0, ”10” is sent. To

exclude the columns from the match operation, simply ”00” (don’t care) is applied. For both

cell types, these data are applied to the matching transistors. Figure 2.4 shows these tree

18

SCAM

Kn

VDD

VDD

Φ’ R0

R1
Φ’

 MASK M0

K0 KEY

logic-1

Mn

+ +

- -

+++ +++
--- ---

SA

SA

One
Bit

Vc0

Vc1

TA
G

CONTROLLER

Mpc0

Mpc1

Mc0

Φ’

Mc1

Φ’

T1

T0

Wre0

.

Crossbar

I-Cache

Wm0Wmn

Wre1 logic-0

Figure 2.3: Architecture of an SRAM-based Associative Processor (SAP)

cases explicitly for the SRAM-based CAM (SCAM) cell. In the SCAM cell, if the stored bit

is the reverse of the searched bit, the matching transistors (on the top of the coupled inverter

in Figure 2.2a) forms a short path to the ground and the charge across the capacitor leaks

on this path. If they are same, the path becomes closed and only a small amount of charge

can leak. The figure indicates the paths of the closed transistors as black and the closed

paths as gray. The charges on a row capacitance leak from the mismatched cell, where the

both series transistor are of open state creating a path to the ground, as shown in Figure

2.4b. On the other hand, Figure 2.4a shows the state of the SAP cell in case of a match.

In the figure, the CAM-cell stores a logic-1 value and the ”01” pattern is applied to the

cell to look for logic-1. Since this a match case, the inverter feeding to the right matching

circuit closes the transistor while other one opens. On the other hand, ”01” pattern closes

the left matching transistor and opens the right one where no path to the ground is avail-

able through the matching transistors. SRAM-based cell cannot provide a don’t care state.

On the other hand, the cell can be excluded from the compare operation as shown in 2.4c

where the columns are excluded from the compare operation. This provides a mechanism to

19

perform don’t care as column-wise. Following the evaluate phase, a sense amplifier existing

at each row senses the residual charge across the capacitor and compares it with a given

reference voltage (Vth). As a result of comparison, it generates a logical correspondences of

match and mismatch cases as logic-1 and logic-0 respectively. For example, if we set the key

to 100 and mask to 110, the tag bits of the corresponding rows whose third and second bits

are logic-1 and logic-0 respectively becomes logic-1 and the rest is logic-0.

VDD

(a) Match

VDD

(b) Mismatch (c) Don’t care

Figure 2.4: Typical evaluation phases of a SAP cell for the match (a), mismatch (b), and
don’t care (c) states.

Write: After a compare operation, the sense amplifier connected to the output of the

matching circuit differentiate the matched and mismatched rows by tagging them either as

logic-1 or logic-0 respectively. The rows matched by a compare operation are marked in

the tag field, that is, the rows tagged with logic-1 means that the corresponding CAM rows

have been matched with the given key and mask value. Following a compare operations,

the associative processor needs to write to the specific columns of the tagged rws. In order

to write to the specified columns of the matched SCAM rows, both write enable and write

mask inputs of the cell is asserted. Then, the value and its reverse are applied to bit and bit

columns respectively.

2.2.2 Resistive Associative Processor (RAP)

SRAM-based CAMs are traditional and well studied in the past. However, the cells are

area inefficient since a single cell consists of 12 transistors. Fortunately, with the advent of

20

RCAM

Kn

VDD

VDD

Φ’ R0

R1
Φ’

 MASK M0

K0 KEY

RON

ROFF

Mn

+ +

- -

+++ +++
--- ---

SA

SA

One
Bit

Vc0

Vc1

TA
G

CONTROLLER

Mpc0

Mpc1

Mc0

Φ’

Mc1

Φ’

T1

T0

Wre0

VWR

Wre1

VWR

.

K1

M1

K2

M2

Crossbar

I-Cache

Figure 2.5: Architecture of an ReRAM-based Associative Processor (RAP)

new semiconductor materials, one of the most promising candidates for a basic CAM cell is

presented in [103], which is made of two memristors (ReRAM) and two transistors (Figure

2.2b). This cell complies with the requirements of the associative computing and exists as a

commercial product [33], [61], [123]. In this cell, binary data is stored in the form of ”Low”

(Ron) and ”High” (Roff) resistances (i.e., they correspond to logic-1 and logic-0 respectively)

in a complementary mode. Therefore, the device can work as a storage element and a switch

at the same time, as in the SRAM cell. Unlike the SRAM cell which stores the data as

binary, the ReRAM-based CAM cell stores the data as ternary since there are two ReRAMs

inside a cell. In this case, a binary value is coded by exploiting these two ReRAMs. If the

right and left ReRAMs are set as high and low respectively, the cell corresponds to logic-1.

In the reverse case, the cell stores the logic-0. This cell also supports the ternary CAM

operations where the cell can be excluded from a search operation on the corresponding

column be setting the two memristors as both high (Roff).

Compare: Similar to the SRAM-cells, the compare operation in the RAPs is achieved by

21

VDD

(a) Match

VDD

(b) Mismatch (c) Don’t care

Figure 2.6: Typical evaluation phases of a RAP cell for the match (a), mismatch (b), and
don’t care (c) states.

pre-charging the capacitors on all the rows of the array, and then applying a search word

(i.e., key) to the columns. However, in here, the charges on a row capacitance leaks the

mismatched cell, where the memristor and the series transistor are of low resistance creating

a path to the ground, as shown in Figure 2.6b. The data is stored in a ”2T2M” cell in a

complimentary mode, since the high resistance device will not leak charges to the ground

even in case of mismatch, however its complement device will do so. Figure 2.6a shows the

state of the CAM cell in case of a match, where no path to ground is available. In this case,

the both columns of the cell form a high resistance path through either the closed transistor

or the memristor with high resistance state (Roff). A ”Dont care” state can be stored on the

cell by setting its two memristors to High resistance, where no path is created to the ground

independent of the search bit, as shown in Figure 2.6c.

Write: In ReRAMs, the write operations is performed by changing the resistance of ReRAMs

either from Ron to Roff or Roff to Ron. If the used memristor has a threshold for the writing

[105], the value of the ReRAMs can be set by applying a proper voltage across the mem-

ristor. The amount of the voltage should be higher than the write threshold voltage of the

memristor and the polarity must be set according to the written memristance (high or low).

Writing to RCAM-cell in an RAP system is performed using a one column at a time scheme.

However, this is translated into two writing steps, since a complimentary data column is

electively made of two columns of the CAM array. The bits to write are loaded to the match

22

lines of the rows, with a search word of logic-0 or logic-1 at the column of interest and ”Dont

Care” elsewhere is written to the columns to activate the column of interest. This eliminates

the need for any modification to the column driving circuitry used for compare.

2.3 Instructions

An instruction/operation on AP consists of consecutive compare and write phases. During

the compare phase, the matched rows are selected and in the write phase, the corresponding

masked key values are written onto tagged CAM words. Depending on the desired arithmetic

operation, the controller sets the mask and key values by referencing a lookup table (LUT).

In the compare phase, the key and mask fields are set and compared with CAM content, while

in the write phase, tagged rows are changed with the key. In other words, the truth table

of the function is applied (in an ordered sequence) to the CAM to implement the required

function. Utilizing consecutive compare and write cycles with a corresponding truth table,

any function that can be performed on a sequential processor can be implemented on the

AP as a parallelized operation. In the following subsections, the basic logical and arithmetic

operations performed on the AP are detailed.

2.3.1 Logical Instructions

As stated in the previous section, the operations are performed on the AP by utilizing their

corresponding LUT tables irrespective of whether it is a SAP or RAP. As an example of

a basic operation on the AP circuit, Figure 2.7 shows how a parallel AND (R = A&B)

operation is performed on the AP where the first and second columns corresponds to the

A and B respectively and the last column is R (initially all 0). The LUT operation in the

CAM can be simply performed by looking for ”11” in the A and B columns of the CAM and

23

0

VDD

VDD

Φ R0

R1
Φ

0

0 KEY

MASK

SA

SA

Vc0

Vc1

CONTROLLER

Φ

Φ

0

0

0

1

VDD

RnΦ

SA
Vcn

Φ

0
TA

GWre0

VWR

VWR

Wren

VWR

0

0

1

Wre1

00 0

1

---- ----
++++ ++++

0

0

0

CAM

---- ----
++++ ++++

---- ----
++++ ++++

ABR

(a) Precharge

0

VDD

VDD

Φ R0

R1
Φ

1

1 KEY

MASK

-- --

SA

SA

Vc0

Vc1

CONTROLLER

Φ

Φ

0

1

1

1

VDD

RnΦ

+ +

- -

SA
Vcn

Φ

0

++ ++

TA
GWre0

VWR

VWR

Wren

VWR

0

0

1

Wre1

00 0

1

---- ----
++++ ++++

0

0

1

CAM

ABR

(b) Evaluate

0

VDD

VDD

Φ R0

R1
Φ

0

0 KEY

MASK

SA

SA

Vc0

Vc1

CONTROLLER

Φ

Φ

0

1

0

1

VDD

RnΦ

SA
Vcn

Φ

0

TA
GWre0

VWR

VWR

Wren

VWR

0

0

1

Wre1

00 0

1 0

1

0

CAM

ABR

(c) Write

Figure 2.7: AND operation on the AP

writing logic-1 to the result column of the matched rows as indicated by the AND. Since

the other combinations of A and B have no effect on the R (i.e., already logic-0 as default),

there is no need to look for them in the CAM. During the operation, firstly, all rows of the

CAM is pre-charged (Figure 2.7a) to perform the subsequent evaluate operation. Then the

LUT of AND operation is applied to the CAM where CAM is searched for ”11” in the input

columns (A and B) (Figure 2.7b). The second and third rows leak the charge stored across

the capacitor, so only second row matches with the given key and mask values. Finally,

”1” is written to the result column (R) of the tagged row in Figure 2.7c. Figure 2.8 shows

the voltage and the memristance changes on a SCAM row (Figure 2.8a) and a RCAM row

(Figure 2.8b) during the of AND. In both figures, the red line shows the voltage change on

the input of the sense amplifier (i.e., the voltage change across the capacitor of the first row)

where there is a match at the end of the evaluate cycle, that is, (Vc) voltage is bigger than

the threshold (Vth). After the compare phase, the write operations are performed where

the new data is written into the cell. In SCAM (Figure 2.8a), this operation takes one

cycle and simply logical value of the coupled inverter changes. In RCAM (Figure 2.8b), the

write operation is performed in two cycles where two complementary ReRAMs change their

memristances from Roff to Ron and vice versa. The right vertical axis of Figure 2.8b shows

24

the memristance values of the left and right ReRAMs respectively.

In a similar way to the AND operation, other logical operations are performed on the CAM

in a bit-serial, row-parallel manner by using their corresponding LUTs. Table 2.1) shows the

LUTs of primitive logical operations on the AP which are NOT, AND, OR, and XOR. The

other logical operations can also be performed on the AP easily by using their corresponding

LUT tables. For the bit shifting operations, the location of the key column which points to

the first bit of a value can be shifted to right or left simply, thus APs inherently support the

bit shifting operations.

(a) SAP (b) RAP

Figure 2.8: Spice simulation of two consecutive cycles in SAP and RAP respectively corre-
sponding to the AND operation in Figure 2.7

Table 2.1: Logical operations and their LUTs

(a) NOT

A R Comment

0 1 1stPass
1 0 NC

(b) AND

B A R Comment

0 0 0 NC
0 1 0 NC
1 0 0 NC
1 1 1 1stPass

(c) OR

B A R Comment

0 0 0 NC
0 1 1 1stPass
1 0 1 2ndPass
1 1 1 3rdPass

(d) XOR

B A R Comment

0 0 0 NC
0 1 1 1stPass
1 0 1 2ndPass
1 1 0 NC

25

2.3.2 Arithmetic Instructions

Addition and Subtraction

In traditional computer arithmetic, 2’s complement is the most widely accepted representa-

tion in signed arithmetic operations. For this reason, APs use this notation while storing the

numbers. In the implementation of addition or subtraction, the result can be written into

one of two locations; replace one of the inputs or a new location. The former one is referred

to as in-place and later one is out-of-place.

Table 2.2a illustrates the look-up table (LUT) for both in-place and out-of-place additions.

In all tables, R and Cr represent result and carry respectively. A and B indicate the inputs.

Depending on the operation, the controller sets the mask and key values by referencing the

corresponding LUT. In the compare phase, the key and mask fields are set and compared

with CAM content according to the left side of the table. In the write phase, the mask

and key values are set similarly by observing the right side of the table. However, in this

cycle, values in the tagged rows are changed. The comment column in the table specifies

the run order of this key combination where a NC (no change) means that the given input

combination does not alter any content in the CAM. To ensure correct operation, entries

must be appropriately ordered while applying the truth table, to avoid corrupting the values.

For example, the operation order and truth table order for in-place addition is not the same.

The fourth entry is run before the second entry. This is because that if ”001” is searched first

for Cr, B, A respectively, and B values of tagged rows changed to logic-1, then when ”011”

is searched as second, the same rows are tagged again and changed twice. Such situations

cause erroneous results and can be avoided by correct sequencing.

The operations on the AP are performed by applying the truth table of the function in an

ordered sequence to the CAM. To illustrate a complete operation on the AP, Algorithm

26

Table 2.2: LUT for addition and subtraction

(a) LUT for addition

In-place Out-of-place
Cr B A Cr B Comment Cr R Comment

0 0 0 0 0 NC 0 0 NC
0 0 1 0 1 2ndPass 0 1 1stPass
0 1 0 0 1 NC 0 1 2ndPass
0 1 1 1 0 1stPass 1 0 5thPass
1 0 0 0 1 3rdPass 0 1 3rdPass
1 0 1 1 0 NC 1 0 NC
1 1 0 1 0 4thPass 1 0 NC
1 1 1 1 1 NC 1 1 4thPass

(b) LUT for subtraction

In-place Out-of-place
Br B A Br B Comment Br R Comment

0 0 0 0 0 NC 0 0 NC
0 0 1 1 1 1stPass 1 1 1stPass
0 1 0 0 1 NC 0 1 2ndPass
0 1 1 0 0 2ndPass 0 0 NC
1 0 0 1 1 4thPass 1 1 3rdPass
1 0 1 1 0 NC 1 0 NC
1 1 0 0 0 3rdPass 0 0 4thPass
1 1 1 1 1 NC 1 1 5thPass

2.1 shows the control flow for an in-place addition of two vectors (A and B) in the AP.

The algorithm accepts the LSB and MSB locations of the vectors together with the carry

location (C) as inputs and applies the LUT for the in-place addition of these vectors. Figure

2.9 illustrates the corresponding complete flow for the in-place addition of two, 1×4, 4-bit

vectors (i.e., B[i]← B[i] +A[i], i = 0, ..., 3) when the algorithm is applied on the A and B

vectors. To perform the operation, AdditionIP(8, 7, 4, 3, 0) instruction is executed where

A and B vectors are between the columns of 3-0 and 4-7 in the CAM and C is in the 8th

column. Initially, A contains (i.e., bits 3-0) the values of [6; 4; -5; -1] and B (i.e., bits 7-

4) contains the values of [-8; 3; -3; 2] as shown in the upper-left (initial) CAM as binary.

The four tables at the top correspond to the LUT for in-place addition (i.e., LUT AddIP)

where the shaded entry indicates the applied LUT entry. The truth tables consist of two

parts; compare and write. The compare part shows the key value that is searched in the

specified/masked columns of the CAM and the write part shows the value that is written into

the specified/masked columns of the matched rows after the preceding compare operation.

Other tables of the figure show the progress in the CAM content together with the key/mask

values (in red and green boxes respectively) and the tag status. During the addition, the

mask register is set to point the current bit locations on which the addition is performed

and the key register is set to the corresponding LUT entry respectively. Then the compare

operations are performed by the key value in the columns specified by the mask value. Lastly,

27

the write operations are performed on the matched rows of the CAM where the value in the

write columns of the LUT replaces the old value. To illustrate, in the first CAM, ”011”

value is searched in the first bits of A and B together with C (carry bit) respectively where

there is a match in the third row. In the following write phase, B and carry are changed as

logic-0 and logic-1 respectively according to the truth table. This operation corresponds to

the single-bit addition of A, B, and carry if A and B are logic-1 and the carry bit is logic-0.

As a result of this addition (1+1+0 for A, B, and carry respectively), the C (carry) bit

becomes 1 and B (result) becomes 0. In the figure, each row corresponds to the single-bit

addition which is completed by applying all entries of the LUT on a masked column. The

arrows indicate the flow of the operation where the masked column is shifted to left after

each LUT pass. After finishing the operation on the fourth bit (columns 3 for A and 7 for

B), the last CAM (i.e., lower-rightmost) shows the result where B becomes [-2, 7, -8, 1].

Cr B A
0
0
0
0
1
1
1
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

Cr B Comments
0
0
0
1
0
1
1
1

0 NC
1 2nd Pass
1 NC
0 1st Pass
1 3rd Pass
0 NC
0 4th Pass
1 NC

Compare Write

Cr B A
1 0 0 0 1 0 0 0 1

0
0
1
0

0 1 0 0 0 0 1 1 0
0

0->1
0

0 0 1 1 0 1 0 0
1 1 0 1->0 1 0 1 1
0 0 1 0 1 1 1 1

0 0 0 0 1 0 0 0 1

7 6 5 4 3 2 1 0
Tag

Cr B A
0
0
0
0
1
1
1
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

Cr B Comments
0
0
0
1
0
1
1
1

0 NC
1 2nd Pass
1 NC
0 1st Pass
1 3rd Pass
0 NC
0 4th Pass
1 NC

Compare Write

Cr B A
1 0 0 0 1 0 0 0 1

0
0
0
1

0 1 0 0 0 0 1 1 0
0
1
0

0 0 1 1 0 1 0 0
1 1 0 0 1 0 1 1
0 0 1 0->1 1 1 1 1

0 0 0 0 0 0 0 0 1

7 6 5 4 3 2 1 0
Tag

Cr B A
0
0
0
0
1
1
1
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

Cr B Comments
0
0
0
1
0
1
1
1

0 NC
1 2nd Pass
1 NC
0 1st Pass
1 3rd Pass
0 NC
0 4th Pass
1 NC

Compare Write

Cr B A
1 0 0 0 1 0 0 0 1

0
0
0
0

0 1 0 0 0 0 1 1 0
0
1
0

0 0 1 1 0 1 0 0
1 1 0 0 1 0 1 1
0 0 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag

Cr B A
0
0
0
0
1
1
1
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

Cr B Comments
0
0
0
1
0
1
1
1

0 NC
1 2nd Pass
1 NC
0 1st Pass
1 3rd Pass
0 NC
0 4th Pass
1 NC

Compare Write

Cr B A

1 0 0 0 1 0 0 0 1

0

0

0

0

0 1 0 0 0 0 1 1 0

0

1

0

0 0 1 1 0 1 0 0

1 1 0 0 1 0 1 1

0 0 1 1 1 1 1 1

1 0 0 0 1 0 0 0 0

7 6 5 4 3 2 1 0
Tag

Cr B A
1 0 0 1 0 0 0 1 0

0
0
0
1

0 1 0 0 0 0 1 1 0
0
1

0->1

0 0 1 1 0 1 0 0
1 1 0 0 1 0 1 1
0 0 1->0 1 1 1 1 1

0 0 0 1 0 0 0 1 0

7 6 5 4 3 2 1 0
Tag

Cr B A
1 0 1 0 0 0 1 0 0

0
0
0
0

0 1 0 1 0 0 1 1 0
0
1
1

0 0 1 1 0 1 0 0
1 1 0 0 1 0 1 1
0 0 0 1 1 1 1 1

0 0 1 0 0 0 1 0 0

7 6 5 4 3 2 1 0
Tag

Cr B A
1 1 0 0 0 1 0 0 0

0
0
0
0

0 1 1 1 0 0 1 1 0
0
1
1

0 1 1 1 0 1 0 0
1 0 0 0 1 0 1 1
0 0 0 1 1 1 1 1

0 1 0 0 0 1 0 0 0

7 6 5 4 3 2 1 0
Tag

Cr B A
1 0 0 1 0 0 0 1 0

1
0
0
0

0 1 0 0->1 0 0 1 1 0
0
1
1

0 0 1 1 0 1 0 0
1 1 0 0 1 0 1 1
0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 1 0

7 6 5 4 3 2 1 0
Tag Cr B A

1 0 0 1 0 0 0 1 0

0
0
0
0

0 1 0 1 0 0 0 0 0
0
1
1

0 0 1 1 0 0 0 0
1 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1

1 0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag Cr B A

1 0 0 1 0 0 0 1 0

0

0

0

0

0 1 0 1 0 0 1 1 0

0

1

1

0 0 1 1 0 1 0 0

1 1 0 0 1 0 1 1

0 0 0 1 1 1 1 1

1 0 0 1 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag

1
1
0
0

0 1 0->1 1 1 0 1 1 0
0
1
1

0 0->1 1 0 0 1 0 0
1 1 0 1 1 0 1 1
0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 0 0

7 6 5 4 3 2 1 0
TagCr B A

1 0 1 0 0 0 1 0 0
Cr B A
1 0 1 0 0 0 1 0 0

0
0
0
0

0 1 1 1 1 0 1 1 0
0
1
1

0 1 1 0 0 1 0 0
1 1 0 1 1 0 1 1
0 0 0 1 1 1 1 1

1 0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag Cr B A

1 0 1 0 0 0 1 0 0

0

0

1

0

0 1 1 1 0 0 1 1 0

0

1

1

0 1 1 1 0 1 0 0

1 1->0 0 0 1 0 1 1

0 0 0 1 1 1 1 1

1 0 1 0 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag

Cr B A
1 1 0 0 0 1 0 0 0

0 1 1 1 0 0 1 1 0

0

1

1

0 1 1 1 0 1 0 0

1 0 0 0 1 0 1 1

0 0 0 1 1 1 1 1

0 0 0 0 0 1 0 0 0

7 6 5 4 3 2 1 0
Tag Cr B A

1 1 0 0 0 1 0 0 0

0 1 1 1 0 0 1 1 0
0
1
1

0 1 1 1 0 1 0 0
1 0 0 0 1 0 1 1
0 0 0 1 1 1 1 1

1 0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag Cr B A

1 1 0 0 0 1 0 0 0

0

0

0

0

0 1 1 1 0 0 1 1 0

0

1

1

0 1 1 1 0 1 0 0

1 0 0 0 1 0 1 1

0 0 0 1 1 1 1 1

1 1 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag

0
0
0
0

0
0
0
0

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Figure 2.9: Vector Add Operation. The sequence of compare and write operations are shown
for a complete vector addition.

28

Algorithm 2.1: In-place addition (B = B + A) in the AP

1 func t i on AdditionIP (C, B.MSB, B. LSB, A.MSB, A. LSB)

2 f o r i = A.LSB to A.MSB

3 f o r pass = 1 to 4

4 SetMask (C, B. i , A. i) ;

5 SetKey (LUT AddIP(pass) , C, B. i , A. i)) ;

6 Compare (Mask , Key) ;

7 Write (LUT AddIP(pass) , B. i , C) ;

8 end

9 end

10 end

Br B A
0
0
0
0
1
1
1
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

Br B Comments
0
1
0
0
1
1
0
1

0 NC
1 1st Pass
1 NC
0 2nd Pass
1 4th Pass
0 NC
0 3rd Pass
1 NC

Compare Write

Br B A
1 0 0 0 1 0 0 0 1

1
0
0
1

0->1 1 0 0 0->1 1 1 0 1
0
0

0->1

0 0 0 1 0 1 1 1
0 1 0 1 1 1 1 0
0 1 1 0->1 0 0 0 1

0 0 0 0 0 0 0 0 1

7 6 5 4 3 2 1 0
Tag Br B A

1 0 0 0 1 0 0 0 1

0
1
0
0

1 1 0 0 1 1 1 0 1
0
0
1

0 0 0 1->0 0 1 1 1
0 1 0 1 1 1 1 0
0 1 1 1 0 0 0 1

0 0 0 0 1 0 0 0 1

7 6 5 4 3 2 1 0
Tag Br B A

1 0 0 0 1 0 0 0 1

0
0
0
0

1 1 0 0 1 1 1 0 1
0
0
1

0 0 0 0 0 1 1 1
0 1 0 1 1 1 1 0
0 1 1 1 0 0 0 1

1 0 0 0 1 0 0 0 0

7 6 5 4 3 2 1 0
Tag Br B A

1 0 0 0 1 0 0 0 1

0
0
0
0

1 1 0 0 1 1 1 0 1
0
0
1

0 0 0 0 0 1 1 1
0 1 0 1 1 1 1 0
0 1 1 1 0 0 0 1

1 0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag

Br B A
1 0 0 1 0 0 0 1 0

0
1
1
0

1 1 0 0 1 1 1 0 1
0->1
0->1

1

0 0 0->1 0 0 1 1 1
0 1 0->1 1 1 1 1 0
0 1 1 1 0 0 0 1

0 0 0 0 0 0 0 1 0

7 6 5 4 3 2 1 0
Tag

Br B A
1 0 1 0 0 0 1 0 0

0
0
0
0

1 1 0 1 1 1 1 0 1
1
1
0

0 0 1 0 0 1 1 1
0 1 1 1 1 1 1 0
0 1 0 1 0 0 0 1

0 0 0 0 0 0 1 0 0

7 6 5 4 3 2 1 0
Tag

Br B A
1 1 0 0 0 1 0 0 0

0
0
0
0

1 1 0 1 1 1 1 0 1
1
1
0

0 0 1 0 0 1 1 1
0 1 1 1 1 1 1 0
0 1 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0

7 6 5 4 3 2 1 0
Tag

Br B A
1 0 0 1 0 0 0 1 0

0
0
0
0

1 1 0 0 1 1 1 0 1
1
1
1

0 0 1 0 0 1 1 1
0 1 1 1 1 1 1 0
0 1 1 1 0 0 0 1

0 0 0 1 0 0 0 1 0

7 6 5 4 3 2 1 0
Tag Br B A

1 0 0 1 0 0 0 1 0

0
0
0
1

1 1 0 0 1 1 1 0 1
1
1

1->0

0 0 1 0 0 1 1 1
0 1 1 1 1 1 1 0
0 1 1->0 1 0 0 0 1

1 0 0 1 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag Br B A

1 0 0 1 0 0 0 1 0

1
0
0
0

1 1 0 0->1 1 1 1 0 1
1
1
0

0 0 1 0 0 1 1 1
0 1 1 1 1 1 1 0
0 1 0 1 0 0 0 1

1 0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag

0
0
0
0

1 1 0 1 1 1 1 0 1
1
1
0

0 0 1 0 0 1 1 1
0 1 1 1 1 1 1 0
0 1 0 1 0 0 0 1

0 0 1 0 0 0 1 0 0

7 6 5 4 3 2 1 0
TagBr B A

1 0 1 0 0 0 1 0 0
Br B A
1 0 1 0 0 0 1 0 0

0
0
0
1

1 1 0 1 1 1 1 0 1
1
1
0

0 0 1 0 0 1 1 1
0 1 1 1 1 1 1 0
0 1 0 1 0 0 0 1

1 0 1 0 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag Br B A

1 0 1 0 0 0 1 0 0

0
0
0
0

1 1 0 1 1 1 1 0 1
1
1
0

0 0 1 0 0 1 1 1
0 1 1 1 1 1 1 0
0 1 0 1 0 0 0 1

1 0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag

Br B A
1 1 0 0 0 1 0 0 0

1 1 0 1 1 1 1 0 1
1
1
0

0 0 1 0 0 1 1 1
0 1 1 1 1 1 1 0
0 1 0 1 0 0 0 1

0 1 0 0 0 1 0 0 0

7 6 5 4 3 2 1 0
Tag Br B A

1 1 0 0 0 1 0 0 0

1 1 0 1 1 1 1 0 1
1
1
0

0 0 1 0 0 1 1 1
0 1 1 1 1 1 1 0
0 1 0 1 0 0 0 1

1 1 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag Br B A

1 1 0 0 0 1 0 0 0

0
1
0
0

1 1 0 1 1 1 1 0 1
1
1
0

0->1 0 1 0 0 1 1 1
0 1 1 1 1 1 1 0
0 1 0 1 0 0 0 1

1 0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
Tag

0
0
0
0

0
0
0
0

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Br B A
0
0
0
0
1
1
1
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

Br B Comments
0
1
0
0
1
1
0
1

0 NC
1 1st Pass
1 NC
0 2nd Pass
1 4th Pass
0 NC
0 3rd Pass
1 NC

Compare Write
Br B A
0
0
0
0
1
1
1
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

Br B Comments
0
1
0
0
1
1
0
1

0 NC
1 1st Pass
1 NC
0 2nd Pass
1 4th Pass
0 NC
0 3rd Pass
1 NC

WriteCompare
Br B A
0
0
0
0
1
1
1
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

Br B Comments
0
1
0
0
1
1
0
1

0 NC
1 1st Pass
1 NC
0 2nd Pass
1 4th Pass
0 NC
0 3rd Pass
1 NC

WriteCompare

Figure 2.10: Vector subtraction operation on 4-bit four number pairs. The sequence of
compare and write operations are shown for a complete vector subtraction.

In out-of-place addition, the sum of the inputs A, B are written into R. Before the addition,

all bits of R are assumed to be logic-0 to minimize the number of cycles, by avoiding NC rows

in the truth table. Due to the reuse of the B location in in-place addition, it requires fewer

cycles than out-of-place addition. In both methods, the controller unit of the AP applies the

truth table on each bit of the inputs and carry in order.

29

For the subtraction, Table 2.2b shows the LUT for in-place and out-of-place subtraction

(B = B − A) in the same manner as addition, but, in this case, the borrow bit (Br) is

used instead of the carry bit. Alternatively, subtraction can also be implemented by using

addition in 2’s complement representation; the complement of the subtrahend is added to

minuend. However, this method comes with an additional area and time cost as detailed in

the following section.

After that, the values specified in the Write columns of the LUT is written to the indicated

columns of the matched rows. For example, in the first step, 001 is searched in the Br and

the first bits of A and B (column 8, 4, and 0 respectively). There is a match in the first and

fourth rows, so the B and Cr values of these rows are changed as logic-1 in the following

write phase.

Similarly to Figure 2.9, Figure 2.10 shows the step by step execution of in-place subtraction

(B = B− A) of two 1× 4 4-bit vectors, A and B, i.e. B[i]← B[i]−A[i], i = 0...3. The LUT

for in-place subtraction has four entries in a specific order required to perform the operation

correctly and mainly performs the single bit full subtraction. To perform the operation,

SubtractionIP(8, 7, 4, 3, 0) instruction is executed where A and B vectors are between the

columns of 3-0 and 4-7 in the CAM and Br (borrow) is in the 8th column. Initially, A

contains (i.e., bits 3-0) the values of [-3; 7; -2; 1] and B (i.e., bits 7-4) contains the values of

[-8; 1; 5; 6] as shown in the upper-left (initial) CAM. The subtraction is done in a bit-serial,

world parallel mode, that is, a bit-wise subtraction is performed on each row of Figure 2.10.

The mask locations are shifted left (except Br) at each row. This process is repeated for

every bit position and for every LUT entry. Since there are four LUT entries and four bits,

the total operation takes 16 steps. Finally, the value stored in B becomes [-5; -6; 7; 5] which

is equal to B-A (i.e., [-8-(-3); 1-(7); 5-(-2); 6-(1)]).

The addition and subtraction operations take a total of 16 cycles irrespective of the number

of A-B pairs. For the in-place addition and subtraction, m steps are needed, where m is the

30

number of bits per pass with a total of 4 passes per step. In the out-of-place addition or

subtraction, m steps of five passes each is needed.

Absolute Value and 2’s Complement

Absolute value and two’s complement operations are very fundamental operations for FFT

and many other algorithms. To find the 2’s complement of a number, Table 2.4 is used. In

the table, F stands for the flag and is stored in the CAM as a temporary value similar to carry

and borrow in addition and subtraction.2’s complement operation must be out-of-place; thus

the result must be written to another place. During the operation, F becomes logic-1 at the

first logic-1 bit of the input number (A) and after that, the truth table complements the A’s

remaining bits. This operation takes m steps of 3 passes.

The LUT in Table 2.5 shows the truth table for absolute value operation. This table is the

revised version of the absolute value’s LUT where the table does not perform 2’s complement

operations if the number is positive. In the table, S stands for sign bit and represent the sign

of the number i.e. its most significant bit. If the sign is positive (logic-0), this truth table

has no effect and simply copies the content of input A to result R. On the other hand, if the

sign is negative (logic-1), truth table performs the 2’s complement operation. This operation

takes m steps where each step consists of 4 passes as shown in the table. Additionally, this

absolute value truth table can also be used to revert a number to its original sign. For this

operation, the original sign of the number is stored in a location and during the absolute

value operation, this sign can be given as sign value instead of the real sign (last bit) of the

number. This type of usage is exploited in signed multiplication of the numbers as detailed

in the next section.

31

Table 2.3: LUT for multiplication

Cr R B A Cr R Comment

0 0 0 0 0 0 NC
0 0 0 1 0 0 NC
0 0 1 0 0 0 NC
0 0 1 1 0 1 2ndPass
0 1 0 0 0 1 NC
0 1 0 1 0 1 NC
0 1 1 0 0 1 NC
0 1 1 1 1 0 1stPass
1 0 0 0 0 1 NP
1 0 0 1 0 1 3rdPass
1 0 1 0 0 1 NP
1 0 1 1 1 0 NC
1 1 0 0 1 0 NP
1 1 0 1 1 0 4thPass
1 1 1 0 1 0 NP
1 1 1 1 1 1 NC

Table 2.4: LUT for 2’s complement

F A F R Comment

0 0 0 0 NC
0 1 1 1 3thPass
1 0 1 1 1stPass
1 1 1 0 2ndPass

Table 2.5: LUT for absolute value

F S A F R Comment

0 0 0 0 0 NC
0 0 1 0 1 1stPass
0 1 0 0 0 NC
0 1 1 1 1 4thPass
1 0 0 0 1 NP
1 0 1 1 0 NP
1 1 0 1 1 2ndPass
1 1 1 1 0 3rdPass

Multiplication

In unsigned multiplication (R = A×B), the LUT shown in Table 2.3 is applied to CAM for

each combination of input bits. In other words, LUT is applied to all bits of B for each bit

of A. Indeed, this table performs the addition operation between B and R if the A’s bit is

logic-1. In the table, NP indicates the combinations that are not possible and they are also

disregarded like NCs. By contrast to linear operations such as addition and absolute value,

the multiplication operation is a quadratic operation. As an example, Figure 2.12 illustrates

the complete flow for the unsigned multiplication of two 1× 4 2-bit vectors, A and B, i.e.

B[i]← B[i]×A[i], i = 0...3. The pseudo-code in Algorithm 2.2 shows the controller flow for

the unsigned multiplication operation. For each bit of A, position of the carry is changed in

accordance with current partial addition. While outer loop scans each bit of A, inner loop

scans bits of B and performs partial addition. To perform the operation, Multiplication(R,

B, A) instruction is executed where the parameters corresponds to the column numbers of

the corresponding vectors (e.g., A is columns between 1-0). Initially, A contains (i.e., bits

1-0) the values of [3; 3; 2; 0] and B (i.e., bits 3-2) contains the values of [2; 3; 1; 2] as shown in

32

the upper-left (initial) CAM. Each row of the figure shows a partial multiplication operation

between the single bits of A and B, and the partial addition of the result (e.g., the second

row shows the multiplication between the second bits of A and the first bits of B together

with its addition with the previous result came from the first row). The process is repeated

for all the passes in the prescribed order shown in Figure 2.12. Finally, the value stored in R

becomes [6; 9; 2; 0] which is equal to B×A (i.e., [2×3; 3×3; 1×2; 2×0]). Thus multiplying

two vectors that are 2-bit wide takes 16 steps (4m compares and 6m writes), independently

of the vector size.

Algorithm 2.2: Unsigned multiplication (R = B×A) in the AP

1 func t i on M u l t i p l i c a t i o n (R, B, A)

2 f o r i = B.LSB to B.MSB

3 Set Cr

4 f o r j = A. LSB to A.MSB

5 Set R. k

6 f o r pass = 1 to 4

7 SetMask (Cr , R, B. i , A. j) ;

8 SetKey (LUT Mult (pass) , Cr , R. k , B. i , A. j) ;

9 Compare (Mask , Key) ;

10 Write (LUT Mult (pass) , Cr , R. k) ;

11 end

12 end

13 end

14 end

Additionally, Multiply and accumulate operation (R = A × B + B) can be performed by

performing an in-place addition following the multiplication. However, in this case, the R

must be initialized as B before the operation starts.

(a) Sign extension (b) Sign conversion

Figure 2.11: Signed multiplication methods on the AP

33

For signed multiplication, two ways can be used in APs. The first one is sign extension

method. In this method, sign bits of the inputs are extended to the number of bits in

the result and then these numbers are multiplied. After, the most significant digits of

the multiplication are discarded, the remaining ones become the product. Figure 2.11a

exemplifies the sign extension method in multiplication. In the second method (see Figure

2.11b), firstly, absolute values of two inputs are computed.This operation can be performed

as out-of-place by using Table 2.5. After that, the absolute values are multiplied by the

unsigned multiplication function. This result is the absolute value of the real product. At

the end, the absolute value of the result is converted to its original value by using the same

absolute value function. During the conversion, sign bit is taken as the XOR of sign bits of

inputs A and B. If the result is positive, the converted number remains the same, otherwise

it is complemented.

The most commonly used operations in many applications are multiplication, addition, and

subtraction. For this reason, we omitted the detailed description of the division algorithm,

which can be easily derived from successive subtraction and mask shift. The expected

complexity of such operation is O(m2).

2.4 System Architectures

Ideally, the researchers would like to consider general purpose architectures where the whole

memory and permanent storage are combined in very large Resistive Random Access Memory

(ReRAMs) structures without having to rely on SRAM, DRAM or Flash storage. This

however will not be possible in the near future, therefore AP technology can be considered

for accelerators. Accelerators do not exist in vacuum. They need to interface to CPUs and

traditional memory and storage structures. The modality and structures of these interfaces

are driven, to a very large degree, by a set of target applications. To that effect various

34

R B A
0
1
0
1

1 1
1 1
0 1
0 1

Cr R Order
0
1
0
1

1 2nd Pass
0
1
0

1st Pass
3rd Pass
4th Pass

Compare Write

B A
0 1 0 1 0 1 0 1

0
0
0
0

0 0 0 0 1 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0

0 0 0 1 0 1 0 1

7 6 5 4 0 1 1 0
TagR

Cr
0
0
1
1

R B A
0
1
0
1

1 1
1 1
0 1
0 1

Cr R Order
0
1
0
1

1 2nd Pass
0
1
0

1st Pass
3rd Pass
4th Pass

Compare Write

B A
0 1 0 1 0 1 0 1

0
1
0
0

0 0 0 0 1 0 1 1
0 0 0 0->1 1 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 1

7 6 5 4 0 1 1 0
TagR

Cr
0
0
1
1

R B A
0
1
0
1

1 1
1 1
0 1
0 1

Cr R Order
0
1
0
1

1 2nd Pass
0
1
0

1st Pass
3rd Pass
4th Pass

Compare Write

B A
0 1 0 1 0 1 0 1

0
0
0
0

0 0 0 0 1 0 1 1
0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1

7 6 5 4 0 1 1 0
TagR

Cr
0
0
1
1

R B A
0
1
0
1

1 1
1 1
0 1
0 1

Cr R Order
0
1
0
1

1 2nd Pass
0
1
0

1st Pass
3rd Pass
4th Pass

Compare Write

B A
0 1 0 1 0 1 0 1

0
0
0
0

0 0 0 0 1 0 1 1
0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1

7 6 5 4 0 1 1 0
TagR

Cr
0
0
1
1

B A
0 1 1 0 0 1 1 0

0
0
0
0

0 0 0 0 1 0 1 1
0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0

0 0 1 0 0 1 1 0

7 6 5 4 0 1 1 0
TagR B A

0 1 1 0 0 1 1 0

0
1
1
0

0 0 0 0 1 0 1 1
0 0 0->1 1 1 1 1 1
0 0 0->1 0 0 1 1 0
0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0

7 6 5 4 0 1 1 0
TagR B A

0 1 1 0 0 1 1 0

0
0
0
0

0 0 0 0 1 0 1 1
0 0 1 1 1 1 1 1
0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0

7 6 5 4 0 1 1 0
TagR B A

0 1 1 0 0 1 1 0

0
0
0
0

0 0 0 0 1 0 1 1
0 0 1 1 1 1 1 1
0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0

0 1 1 0 0 0 1 0

7 6 5 4 0 1 1 0
TagR

B A
1 0 1 0 0 1 0 1

0
1
0
0

0 0 0 0 1 0 1 1
0->1 0 1->0 1 1 1 1 1
0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0

0 0 1 0 0 1 0 1

7 6 5 4 0 1 1 0
TagR B A

1 0 1 0 0 1 0 1

1
0
0
0

0 0 0->1 0 1 0 1 1
1 0 0 1 1 1 1 1
0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 1

7 6 5 4 0 1 1 0
TagR B A

1 0 1 0 1 0 0 1

0
0
0
0

0 0 1 0 1 0 1 1
1 0 0 1 1 1 1 1
0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 1

7 6 5 4 0 1 1 0
TagR B A

1 0 1 0 1 0 0 1

0
0
0
0

0 0 1 0 1 0 1 1
1 0 0 1 1 1 1 1
0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1

7 6 5 4 0 1 1 0
TagR

B A
1 1 0 0 1 0 1 0

0
0
0
0

0 0 1 0 1 0 1 1
1 0 0 1 1 1 1 1
0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0

0 1 0 0 1 0 1 0

7 6 5 4 0 1 1 0
TagR B A

1 1 0 0 1 0 1 0

1
0
0
0

0 0->1 1 0 1 0 1 1
1 0 0 1 1 1 1 1
0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0

0 0 0 0 1 0 1 0

7 6 5 4 0 1 1 0
TagR B A

1 1 0 0 1 0 1 0

0
0
0
0

0 1 1 0 1 0 1 1
1 0 0 1 1 1 1 1
0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0

7 6 5 4 0 1 1 0
TagR B A

1 1 0 0 1 0 1 0

0
0
0
0

0 1 1 0 1 0 1 1
1 0 0 1 1 1 1 1
0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0

1 1 0 0 0 0 1 0

7 6 5 4 0 1 1 0
TagR

Figure 2.12: Vector multiplication operation. The sequence of compare and write operations
are shown for a complete unsigned vector multiplication.

(a) Feedback (b) Hardwired Pipeline (c) Reconfigurable Pipeline

Figure 2.13: System-level AP Architectures

heterogeneous in-memory accelerator architectures must be designed and evaluated. This

evaluation must focus on the achievable throughput as well as the energy and power. Equally

important is the programmability of these architectures: the ease of creating compilation

tools that can be used by application developers

On its own, associative processors are very efficient in terms of parallel processing. However,

today’s many performance demanding task requires a quite degree of communication through

the processing. As an example, FFT requires a very good parallelism while performing the

35

butterfly operation in a stage. On the other hand, a communication and data exchange are

required before the next butterfly stage. Therefore, APs must be connected to each other to

provide an efficient communication not to harm the obtained gain from the parallelism. Fur-

thermore, this communication must be configurable if the processor supports different kinds

of tasks having different communication patterns. Reconfigurable associative processing is

achieved via a combination of interleaved sets of programmable CAMs and programmable

or fixed crossbar arrays (interconnection matrix/switch) as building blocks.

CAMCAM CAMCAM

Memory

(a) Reconfigurable
ReRAM switch

(b) Fixed
switch

(c) Reconfigurable
CMOS switch

Figure 2.14: Interconnection matrix between the two CAMs

For the implementation of crossbar arrays, Figure 2.14 depicts the three different kinds of

implementation for the interconnection matrix where the two APs are connected to each

other as row-wise through the interconnection matrix. For the fixed type of connection

(see Figure 2.14b), simply a wire connection exists at the cross point that connects a row

of the left CAM to another row of the right CAM. For the reconfigurable switch, the two

methods can be followed. In the traditional method, the output of an memory cell controls

the gate of an transistor which is used to either allow or block the communication at a

cross point [84]. This methodology is very widespread in the modern FPGAs where the

FPGA bit-stream includes the configuration data of the switching matrix [135, 182, 30]. A

36

logic-0 stored in the cell corresponds to the open communication between the column and

the row crossed at that point, and a logic-1 corresponds to the closed path where the two

rows are connected to each other. Since this switching matrix requires a single memory

element at each cross point, it becomes unfeasible for the huge CAMs. For an N-row APs,

the cost of the switching matrix becomes N2. In addition to area and energy costs of a

such big matrix, its configuration requires lots of configuration bits which is very costly to

control. For example, to maintain a full connection flexibility between 2 CAMs with 512-

rows, a 512x512 switching matrix is required which occupies more area than the CAM itself

generally. Therefore, in practice, a group of rows are connected to another group through the

interconnection switch and thus provides a partial/limited connection flexibility. An example

is the interconnection fabric inside the FPGAs which provides connection only towards to

the neighbor logic blocks [65, 97]. The invention of the memristor has been provided a

low cost alternative for interconnection matrix as it was in the implementation of CAM

arrays [169, 26, 86]. The cross-bar nature of ReRAM arrays makes it possible to implement

very cheap cross-bar switching enabling extreme flexibility in interconnecting ReRAM CAMs

together to realize more complex functions. For the memristor based high-density crossbar

implementation, interconnection matrix are built by replicating the memristor memory cell

as described in Figure 2.14b in two dimensions, forming a programmable crossbar array.

This cells are named as gateless cells where each memory cell is a single memory device

located at the intersection of two lines as shown in the figure, provide the highest density.

A logic-0 (Roff) at an intersection point closes the connection while a logic-1 (Ron) opens

it. Once programmed, the crossbar will retain the routing patterns until re-programmed

unlike the CMOS-based interconnection switch. By programming the crossbar arrays it is

possible to realize different connection schemes between the RCAMs or the same RCAM. A

control processor programs the RCAMs and crossbar switches, and provides the sequencing

of the operations performed on the RCAMs, as well as managing the data I/O. One of the

drawbacks of this architecture is the abundant availability of paths for sneak currents that

37

flow through the memory cells parallel to the desired one and significantly impact the readout

operation. This problem is resolved by establishing only one connection per row/column.

The crossbar settings of each AP are determined by the controller that also determines the

sequencing of the operations performed on the CAMs and manages the data I/O. To demand

all of these necessities, three different kind of system-level AP architecture are envisioned as

seen in 2.13 and detailed as follows:

• Feedback Pipeline Architecture: (Figure 2.13a) In this system, the architecture consists

of an AP connected to itself via a programmable crossbar. This configuration is suitable

for applications that consist in compute/shuffle/compute sequences and where area

constraints are more important than performance targets.

• Hardwire Pipelined Architecture: (Figure 2.13b) is suitable for tasks of high recurrence

and a fixed number of inputs (e.g. FFT, CNN, etc.). In these cases, a configurable

crossbar is unnecessary since there is a fixed connection between the APs exists. This

architecture supports high throughput at the cost of reduced flexibility.

• Reconfigurable Pipeline Architecture: (Figure 2.13c) provides both flexibility and per-

formance albeit with higher area and energy costs. It supports the dynamic reconfig-

uration of the pipeline by changing the interconnection patterns at runtime.

All these system architectures exhibits different characteristics and have a trade-off between

them. If area and resources are a constraint, then implementation (a) is a possible choice

as it uses only one stage implementation with feedback. If a task is of high recurrence

with a fixed number of inputs (e.g. FFT) is considered, then implementation (b) is most

appropriate, where each stage in the hardwired pipeline performs a butterfly and the data

is transposed by wiring to the next stage. If flexibility and performance are more important

than the area constraint then implementation (c) would be best as it allows for the change

of interconnection patterns efficiently and reconfiguring the pipeline dynamically as needed.

38

Table 2.6: Reduction tree and switching matrix comparison

The proposed [40] [42] [176]

Type Switching Matrix
(Memristor)

Reduction Tree
(CMOS)

Reduction Tree
(CMOS)

Reduction Tree
(CMOS)

Functional Capa-
bility

Arithmetic Op-
erations, Priority
Selection, and
Population Count

Only Population
Count and Prior-
ity Selection

Only Population
Count, Priority
Selection, and
Addition

Only Addition
(including Popula-
tion Count)

CPopulationCount O(log2
2 n) O(log2 n) O(log2 n) O(log2 n)

CArrayAddiition O(log2 n) NP O(log2 n) O(log2 n)

CArrayMultiplication O(log2 n) NP NP NP

CMatrixMultiplication O(n log2 n) NP NP NP

A key consideration in the proposed architectures is the use of flexible memristor interconnec-

tion crossbar arrays instead of conventional CMOS-based reduction tree as in [176, 177, 43],

thus improving both the utility of the AP and the area to performance and power metrics.

In these system architectures the switching matrices can perform the functionalities of both

reduction trees and interconnection network. In previously proposed architectures, the re-

duction tree implemented in traditional CMOS is detrimental for area to performance and

power metrics. Table 2.6 compares the switching matrix (our study) and reduction tree ex-

ploited in previous studies. As shown, the memristor based switching matrix provides better

functionality since reduction trees do not allow for intercommunication between the AP rows.

Due to the rigid structure of reduction trees, certain operations cannot be implemented on

traditional structures and are denoted by Not Possible (NP). This is not an issue for the

proposed AP architectures due to the flexibility of the switching matrix. The switching

matrix enables the reordering of data inside the CAM (reconfigurable feedback) or between

the CAMs. Even though the switching matrix is implemented by memristors in this study,

the same approach could be applied to [40] by using STT-MRAM for the interconnection

matrix and it would provide similar advantages for both functionality and area.

39

AP
Simulator
(MATLAB)

HSPICE
(RAPSim)

Variability
Distributions

Transistors
Models

Components
Subcircuits

Results for Cycle i

Results
Statistics

Error check
etc.

Results

HSPICE
(SAPSim)

AP
Compiler

(C#)

Source code

Dependency
Graph

Instructions (scheduled)
CAM spects

Memristor
Models

Transistors
Models

Figure 2.15: The simulation framework

2.5 Simulator

Figure 2.15 shows the realized simulator framework for the proposed AP architectures. A

simulation on the AP starts with coding the required task by specific AP instructions. The

source code is compiled by a basic compiler written in C#. During the compilation, the

source code is scheduled and converted to a description that Matlab simulator can interpret.

The compiler also determines the results for the CAM specifications such as size, length etc.

At the same time, the compiler is capable of supporting visualization of the source code by

generating dependency graphs. After compilation, the Matlab simulator can perform the

simulation individually for both RAP and SAP architectures. The user has the option to

choose the referenced architecture and technologies. After that, the simulator can perform

both system-level and circuit-level simulations at the same time in the MATLAB and the

HSPICE respectively. As parameters, the circuit level simulator accepts circuit models

(i.e., transistor, memristor), sub-circuits (e.g., sense amplifiers), CAM features (width and

40

height), sweep parameters, initial data, and the instructions. Then the MATLAB part of

the simulator creates netlists that iteratively drive the HSPICE simulators. In here, the

simulation for the RAP is performed as cycle accurate and temporal results between the

cycles can be evaluated. On the other hand, for the SAP, a single netlist file is generated that

corresponds to the whole simulation period. This is because that the SAP circuit consists of

volatile memories, that is, if the simulation is disrupted before finishing, all temporal status

of the CAM cells are lost.

41

Chapter 3

Tradeoffs in APs

In this chapter, tradeoffs of APs are discussed in detail to form the basis of a new class of

in-memory accelerator. The performance, energy, and reliability aspects of the associative

processors are inspected. Furthermore, solutions are proposed for the vulnerable points such

as memristor variability and reliability issues.

Even though, this chapter provides the introductory information about the tradeoffs, the

other chapters provides much more detailed information and comparison in the aforemen-

tioned aspects.

3.1 Introduction

The research on in-memory computing paradigms aims to overcome the barrier of mem-

ory bottleneck by processing the data inside the memory without moving it back and fort

between the memory and the processor. The paradigm proposes replacing the logic with

memory structures, virtually eliminating the need for memory load/store operations during

computation as discussed in Chapter 2. To this point, Associative processing (AP) seems as

42

Control

Cache

ALU

ALU

ALU

ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

CPU GPU AP Latency

T
h
ro
u
g
h
p
u
t

CPU

GPU

AP

Figure 3.1: The comparison of CPU, GPU, and AP architectures

a very promising computational paradigm for in-memory computing. However, an in-depth

analysis of associative processing paradigm must be evaluated to find its optimal usage areas.

3.2 Performance

In terms of performance, the APs requires high amount of data to outperform the traditional

processors. For this reason, their best usage is in the computational benchmarks that has

an inherent SIMD computational pattern. In an analogy, APs can be considered as a next

step on the path of the CPU (central processing unit) to GPU (graphical processing unit)

transformation. When compared with CPUs, GPUs have simpler processing cores, however,

they are throughput optimized on the contrary of CPUs which are latency optimized. When

compared GPUs, APs have much simpler cores (i.e., a single memory row), so its throughput

becomes more than GPUs since more cores can be placed in a chip. On the other hand, its

overall controller is very small and simpler that includes the LUTs for the operations and a

basic logic that applies these LUTs to the key and mask registers in order. As an example,

for an FFT operation on 1K input, the controller of the circuit corresponds to less than 2%

of the overall AP area. Figure 3.1 illustrates the architectural comparison of these three

processors. Figure 3.1 illustrates the architectural comparison of these three processors.

Table 3.1 shows the runtime (total number of passes), area usage per CAM row (in terms of

bits), and algorithmic complexities of each arithmetic and logical operations in the AP. As

43

Table 3.1: Running time and area evaluation of primitive AP operations/instructions

Function Runtime Area/Row Complexity

NOT 2m 2m O(m)
AND 2m 3m O(m)

OR 6m 3m O(m)
XOR 6m 3m O(m)

Addition (IP, S/U) 10m 2m+ 1 O(m)
Addition (OOP, S/U) 11m 3m+ 1 O(m)

Subtraction (IP, S/U) 10m 2m+ 1 O(m)
Subtraction (OOP, S/U) 11m 3m+ 1 O(m)

2’s Complement 6m 2m+ 1 O(m)
Absolute Value 8m 2m+ 1 O(m)

Multiplication (U) 10m2 4m O(m2)
MAC (U) 10m2 + 10m 4m O(m2)

Multiplication (S) 10m2 + 4m− 14 8m+ 4 O(m2)

* IP:in-place, OOP:out-of-place, S:signed, U:unsigned, m:bitwidth.

stated in the table, the runtime of a vectorial operation on m-bit n numbers depends only

on the number of bits (m), not on the number of vectors (n). To exemplify, if the number

of vectors in Figure 2.9 from Chapter 2 was 1024 instead of 4, the total run time would be

the same.

Figure 3.2 shows the performance results of the all operations separately in AP when the

compare and write times are assumed as single cycle. The figure shows the total number of

execution cycles with respect to the bit width of the operands. As inferred from Table 3.1,

the multiplication operations are more sensitive to the bit width since its complexity is

squared. Figure 3.3 compares the some 16-bit AP operations with a sequential processor.

As shown in the figure, the AP outperforms the single processor after a threshold value

of vector size. Moreover, the data moving costs (e.g. data access, cache misses) imposes

additional overhead to single and vector processors for which AP is cost-free and they are

not taken into account for the sequential processors. On the other hand, all data in the AP

are processed in-place so that there is no need for data moving operations.

44

Not
AND
OR
XOR
Addition (IP)
Addition (OOP)
Subtraction (IP)
Subtraction (OOP)
2's Complement
Absolute Value
Multiplication (U)
MAC (U)
Multiplication (S)

Figure 3.2: The comparison of operations on the AP

OR, 16-bit
Addition (OOP), 16-bit
Multiplication (S), 16-bit
Sequential CPU

Figure 3.3: The comparison of a sequential processor with some AP operations on 16-bit
operands

45

3.3 Energy

Energy consumption on the APs highly dependent on the technology and parameters refer-

enced in the circuit design. As an example, SRAM technology used in the CAM cell imple-

mentations are quietly different from the memristor technology and these difference has a

big impact on the energy consumption. For this reason, in this subsection, the comparison

between the SAP and RAP implementations are performed by using the nominal circuit

parameters and keeping the other circuit parameters as constant for both. In the table,

the actual energy consumption for compare operation is also depends on the residual charge

coming from the previous cycle. For this reason, the reported consumption corresponds to

the maximum consumption where there is no initial charge across the capacitor.

The two archtectures also differs in terms of nonvolatility which has a significant effect in

terms of energy. When the system is powered down traditional SRAMs require refresh to

load program data or to backup contents. This is eliminated in memristors allowing for finer

grain power shutdown and/or voltage scaling. When not accessed, a ReRAM bank can be

powered off. This is particularly attractive when a large memory space is banked as leakage

power can be significantly reduced compared to SRAMs.

A distinct advantage of APs is that the architecture can almost seamlessly evolve from

today’s SRAM and ReRAM implementations to tomorrow’s emerging storage technologies,

possible more energy efficient ReRAM implementations by simply transplanting the memory

cells to achieve higher scalability and performance while maintaining the same top level

system architecture and the corresponding investment in software. The detailed comparison

with other architectures (i.e., state of the art processors) are also provided in the following

subsequent chapters.

46

(a) SAP cell

Vcdd Pstatic Twrite Ewrite Ecompare

0.7 V 0.52 µW 0.5 ns 0.24 fJ 5.425 fJ

(b) RAP cell

Ron (Ω) Roff (Ω) Twrite Ewrite Ecompare

100 100 k 2 ns 21.7 pJ 4.908 fJ

Table 3.2: Energy consumption results for both SAP and RAP cells

Figure 3.4: Column write density of the fundamental operations on the AP

3.4 Reliability

3.4.1 Write Endurance

The most important drawback of the newly proposed memristors was the switching en-

durance which negatively affects the applicability of this technology into the applications

that requires frequent writing to the memory (e.g. meromorphic computing) [158]. Even

though, the first memristor devices exhibit an endurance of around 106 [16], later the two

studies on the TaOx-based memristances in [172] by HP and in [100] from Samsung demon-

strated endurances of 1010 and 1012 respectively. The desired endurance of the memristor

47

devices is 1015 which is the order of endurance of the traditional memories (Table 1.1) [98].

Even though this is a problem that needs to be addressed in the device level [95], there

are many studies proposed by the researchers to compensate the endurance deficiency of

the memristors [88, 16, 130] which positively improves the endurance. In addition to these

studies, in this section, the endurance of the memristors specifically under the associative

computing is evaluated and some methods are proposed for reliability improvement.

The associative processing requires consecutive compare and write cycles to process data

inside the CAM, thus requires nearly a write cycle after every compare cycle. Even though

all rows participate to the compare (read) operation, the only rows who matched during the

compare are written. This situation decreases the number of writes considerably because

only a sub portion of the cells are written. For example, the probability of an LUT entry of

in-place addition (Table 2.2a) is matched with the content of the row is 0.125 if the data is

assumed as random. As a result, only 1/8 of the cells are written. This ratio decreases to

1/16 in the multiplication operation. In addition, after the iteration of a LUT, the location

of the result bit is changed so the number of the writes on the RCAM cells are distributed.

On the other hand, some bit locations such as carry bit in the addition can come over

more writes than the others. In such cases, the columns that are written relatively more

frequently than the others can be analyzed and a load balancing between the RCAM rows

can be applied to diminish the effect of write endurance.

Figure 3.4 shows the column write density as the results of some logical and arithmetic

operations on the RCAM. To obtain the results, the corresponding operations are performed

on 1M (220) 16-bit operands or pair of operands which are randomly generated. The total

number of writes to each column is profiled. The figures shows the column numbers in

the x-axis (from MSB to LSB) and the total number of writes in the y-axis (in terms of

millions). In the figure, it is explicit that the some bits are exposed to more writes than the

others. In XOR and absolute value, the write density seems as equally distributed. Only

48

15th bit in the absolute value has no write applied since it is the sign bit which is already

logic-0 since the resulted number is positive. On the other hand, in addition, subtraction

and 2’s complement, more write operations are performed on some specific bits than the

others. These bits correspond to the carry and borrow bits for addition and subtraction

respectively, and flag bit in 2’s complement. The multiplication operations shows a different

pattern than the others where the bits in the middle faces with more writes than the others

and the distribution exhibits a pattern like Gaussian.

In associative processing, the operations are performed as bitwise where the data does not

have to be stored adjacently. For example, a 16-bit number is stored in columns 0-15 while

carry bit can be stored in another column rather than column 16. Unlike the number

representations in traditional memory where the data is stored in a row or group of adjacent

rows, the numbers are represented as vectorial as a combination of columns. This situation

provides flexibility to address even bits of the vectorial data. As a result, if the density of

the operations is known as a priori, a smart algorithm can extend the life-time of an AP

by equally balancing the write density through the columns. As an example case study, the

endurance of the APs performing out of place addition operation can be inspected. During

the addition, the average writes per the results bit are 0.25 writes/cell (see Figure 3.4).

On the other hand, this number becomes 3.75 writes/cell for the carry bit, so it poses a

thread for the reliability of the RCAM. If endurance of memristor is taken as 1015 (as stated

in [45, 28]), the carry (i.e., that is, overall AP operation) bit fails after 1.96 years. If the

carry bit is relocated to balance the write density through the result bits, the lifetime of the

AP increases to 7.94 years without using any additional extra columns. This corresponds

to a more than 3x increase in the life time. In a similar manner, the same methodology

can be applied to other arithmetic operations regarding their write density patters and a

considerable advantage in the life time can be obtained.

49

3.4.2 Process Variations

The resistance of a memristor depends on the history of current flux that had previously

flowed through it. Electrical characteristics of memristors are mainly determined by the

material characteristics of what they are made of and the fabrication processes by which they

are made. Like any other nanodevices, memristors also suffer from process imperfections

[27]. Due to the fabrication processes, memristors can have a large variance in their low

resistance state (LRS, Rres, or Ron) and high resistance state (HRS or Rset, or Roff) due

to the random motions of particles and the variations in the writing and reading voltage

[36]. Depending on the application, these variations might result in the malfunction of the

whole system, some studies therefore have been conducted previously on this issue. In [120],

the impact of geometry variations (one of the results of process variation) on the electrical

characteristic of the memristor is studied. In [102], an RRAM SPICE model that can capture

main device characteristics including variations is developed and this model is used to design

variation-aware RRAMs. In [134], variance in the lower memristance state is compensated

for by using the redundancy technique. The effect of memristor state resistance change on a

memristor-based tunable amplifiers are studied in [153]. The study in [111] touches on the

non-uniformity in memristor-based memory cells due to the placing and tries to minimize

it by changing the data mapping. In [110], the design considerations for variation tolerant

multi-level CMOS/Nano memristor memory is studied. The study states that between the

different layers, there can be 10x difference in memristor resistances which is demonstrated

experimentally as well in [39]. In all of the published papers so far, the focus has been on

studying the impact of process variation on the memristor as an individual device or its

evaluation in a different context. However, the impact of memristor process variation at

the system level is very crucial when used in a RAP architecture which is a very promising

emplacement field for memristors [176] [69].

Any variation on the memristor devices affects the level of the capacitor voltage after a

50

compare operation. As an example, if the memristance value becomes lower than the normal

value due to the process variation, the voltage level after a match case could be lower than the

expected and the result can be misinterpreted as mismatch. At this point, the optimization

of sense amplifier voltage threshold is an important goal to obtain the least error with the

highest accuracy for compare operations in associative processing utilizing memristors. For

this purpose, an adaptive threshold finding technique can be used by following the machine

learning practices. To achieve this; first system is trained to obtain the optimum threshold

voltages and then, these values are tested.

(a) Without variability (b) With variability

Figure 3.5: Effect of process variation on Vc

Process Variations and Effects

Figure 3.5 shows the row capacitor voltages (Vc)s of the first three cycles during the compare

phase of a RAP circuit for in-place addition operation. Under ideal conditions for memristors

without any variability, the response of the circuit should be as shown in 3.5a. After the

compare phase, Vc voltages have only some values that depend on the number of mismatched

cells and the circuit works error-free at a defined threshold voltage of 0.3V. However, as stated

in the previous section, due to the process imperfections and other reasons, memristor values

are prone to vary during the circuit operations. Taken from experimental measurements of

51

the fabricated HP memristor [88], memristance variability can be approximated as a normal

distribution which is conceivable considering the random nature of a resistance where σ can

be changed depending on the process. When this variability is taken into consideration with

the real sigma and mu values obtained after performing distribution fitting in MATLAB on

these data, the real implementation of the same circuit behaves as shown in 3.5b on the same

data set. In this case, the defined threshold may sometimes cause errors since within a given

time, the discharging current depends on the total resistance connected to the capacitor,

and these resistances vary. At this point, it becomes crucial to select a reasonable Vth (i.e.,

sense amplifier reference voltage) for the sense amplifiers based on the variability.

0 200 400 600 800 1000

Rres

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
D

F

TRres Distributions

0.01
0.05
0.1
0.2
0.5

0 2 4 6 8 10

log(Rset)

0

1

2

3

4

5

6

7

P
D

F

TRset Distributions

0.01
0.05
0.1
0.15
0.2

Figure 3.6: The distributions for Rres and Rset tolerances

Methodology

In order to find the best Vth values with respect to a process variation, the methodology

involves first observing the system, using the observations to apply a learning method to

classify the two regions with the highest accuracy, and finally testing it on a new set of

data to prove success. The simulation results are divided by the rule of thumb in machine

learning (50:25:25) [112]. The first 50% of the results are separated for the learning phase

52

0 0.2 0.4

5

10

15

20

T
R
se

t
=

0:
01

TRres = 0:01

0 0.2 0.4

5
10
15
20
25

TRres = 0:05

0 0.2 0.4

5

10

15

20

TRres = 0:1

0 0.2 0.4

5

10

15

20

TRres = 0:2

0 0.2 0.4

5

10

15

20

TRres = 0:5

0 0.2 0.4 0.6

5

10

15

T
R
se

t
=

0:
05

0 0.2 0.4 0.6

5

10

15

0 0.2 0.4 0.6

5

10

15

0 0.2 0.4 0.6

5

10

15

20

0 0.2 0.4 0.6

5

10

15

0 0.2 0.4 0.6

5

10

15

T
R
se

t
=

0:
1

0 0.2 0.4 0.6

5

10

15

20

0 0.2 0.4 0.6

5
10
15
20
25

0 0.2 0.4 0.6

5

10

15

20

0 0.2 0.4 0.6

5

10

15

20

25

0 0.2 0.4 0.6

5

10

15

20

T
R
se

t
=

0:
15

0 0.2 0.4 0.6

5
10
15
20
25

0 0.2 0.4 0.6

5

10

15

0 0.2 0.4 0.6

5

10

15

20

0 0.2 0.4 0.6

5

10

15

0 0.2 0.4 0.6

5

10

15

20

25

T
R
se

t
=

0:
2

0 0.2 0.4 0.6

5
10
15
20
25

0 0.2 0.4 0.6

10

20

30

0 0.2 0.4 0.6

10

20

30

0 0.2 0.4 0.6

5
10
15
20
25

Figure 3.7: Kernel densities with respect to tolerances and obtained Vths (red vertical line)

(adaptive threshold finding), the other 25% is used for cross-validation, and the remaining

25% is separated for evaluation (testing). In the learning phase, the adaptive threshold

finding method based on the brute force method is employed since design space is relatively

simple.

To prove the concept, the methodology is tested on an experimental platform on the simulator

described in Section 2.5. For the transistors, Predictive Technology Models (PTM) is used

to simulate high-density memories with sub 20nm feature sizes [159]. For the memristor

element, the platform allows plugging in any model for any two terminal resistive devices

and we adopt the device mode l presented in [25]. In the circuit, we use 0.9 volt voltage

source (Vdd). For distributions of memristance values, the mean of the memristance is kept

as constant (obtained from the HP study [88]) and the sigma is changed depending on the

tolerance. Equation 3.1 shows the formula of the normal distribution.

P (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(3.1)

53

Equation 3.2 presents the relationship between tolerance and sigma.

Tolerance =
σ

µ
(3.2)

For the tolerance range, the tolerance is swept between 0.01 and 0.5 for Rres and between

0.01 and 0.2 for Rset as shown in Figure 3.6.

Learning (Adaptive Threshold Finding)

For the learning phase, a 512x48-bit RAP is run with different set of key and mask values

for 128 cycles that generates 65,636 Vc values (sense amplifier inputs) for each distribution

with its corresponding tags. The content of the CAM is generated randomly. For the mask,

the maximum mask width is taken as 4 bits since the widest LUT is 4-bit length [32] (e.g.,

multiplication uses 4-bit masks, addition uses 3-bit masks). Figure 3.7 shows kernel density

functions of Vc values of randomly generated compare operations on the training set with

different tolerance values for all Rres (Ron) and Rset (Roff) combinations. For example, the

resulting plot at the second row and third column corresponds to the kernel density of Vc

voltage values for tolerance 0.02 and 0.1 for Rset and Rres respectively. For Rset tolerances

of 0.01 and 0.02, the match and mismatch areas are totally separable with a wide margin

for TRset = 0.01 and a very narrow margin for TRset = 0.05. However, as tolerance for Rres

increases, error-free design becomes unfeasible. As seen in the figure, the kernel densities

are nearly the same for different tolerance values (0.01 to 0.5) in Rres and changes by the

tolerance of Rset considerably.

In order to find the best Vth value for each process variation combinations, the brute force

approach is utilized. Briefly, the best accuracy point is sought by scanning the values between

0 and 0.6 volts which is the voltage range that Vc voltage can take. We assume that precision

of the sense amplifier can be 10 mV and select this value as a step size, so it scans the range

54

Table 3.3: Optimized Vth values in volts

TRres

TRset 0.01 0.02 0.1 0.15 0.2

0.01 0.21 0.21 0.21 0.21 0.21
0.02 0.14 0.14 0.14 0.14 0.14
0.1 0.13 0.13 0.13 0.13 0.13
0.2 0.13 0.13 0.13 0.13 0.13
0.5 0.13 0.13 0.13 0.13 0.13

0 2 4 6 8

#104

0

20

40

60

80

100

T
R
re

s
=

0:
5

TRset = 0:01

0 2 4 6 8

#104

0

20

40

60

80

100
TRset = 0:05

0 2 4 6 8

#104

0

20

40

60

80

100
TRset = 0:1

0 2 4 6 8

#104

0

20

40

60

80

100
TRset = 0:15

0 2 4 6 8

#104

0

20

40

60

80

100
TRset = 0:2

(a) In-place Addition

0 2000 4000 6000
0

20

40

60

80

100

T
R
re

s
=

0:
5

TRset = 0:01

0 2000 4000 6000
0

20

40

60

80

100
TRset = 0:05

0 2000 4000 6000
0

20

40

60

80

100
TRset = 0:1

0 2000 4000 6000
0

20

40

60

80

100
TRset = 0:15

0 2000 4000 6000
0

20

40

60

80

100
TRset = 0:2

(b) Unsigned Multiplication

Figure 3.8: The cumulative distribution functions (CDFs) of deviation in the results. (The
red line corresponds to untrained results and the blue one is the trained results)

by increasing by 0.01 V. The algorithm can scan all possible combinations in a matter of

milliseconds for 65,536 data points, so it is preferred since it gives the optimum results and

does not constitute an overload for such design space. The resultant points are close to the

intersection points on kernel density plots as shown in Figure 3.7. If there is no intersection

between two regions (e.g., the kernel density function of the first row and the first column),

in other words, an error-free selection is possible, then the middle point is selected to provide

the highest margin to the sense amplifier. Table 3.3 shows the extracted Vth values in volts

for each tolerance combination. Additionally, percentage of getting logic-1 instead of logic-0

in the tag field because of the variation in Rres is zero. For this reason, we continue to test

55

the system by regarding highest Rres tolerance (TRres = 0.5) and changing Rset tolerances

between the provided range.

Validating

In the validation phase, obtained Vth’ values are inserted in the circuit, and the accuracy

of the design is measured on a different set of data whose size is half of the training set

data (25% of the total data). Broadly speaking, in associative processing, the number of

mismatched rows is almost more than the number of matched rows; in other words, the

compare operation is logic-0 biased. If the sense amplifier is set to always predict logic-0

after the compare phase (setting Vth to a large value out of the possible Vc range e.g., 1

V), the accuracy of the system becomes 87%. For this reason, in reporting results, the

performance (accuracy) of the system is only measured for match cases, and mismatch cases

are ignored.

Table 3.4 presents results of the validation phase. Table second column shows the results for

the case in which the threshold voltage is set to a single value (0.3 V) without considering the

variability. The third column shows the results for the case in which the threshold voltages

are set according to the process variations by taking the variability into the account (i.e.,

as presented in table 3.3). According to the results, adaptive Vth selecting by the process

variations provides significant improvement in RAP operations.

Table 3.4: Tag Prediction Accuracies and Improvement Percentage for TRres = 0.5

TRset Vth = 0.3 V Adaptive Vths Improvement %

0.01 0.99 1 0.72
0.05 0.92 1 8.40
0.1 0.78 0.98 25.42
0.15 0.67 0.92 37.84
0.20 0.60 0.88 45.77

56

Evaluation

For the evaluation, the new set of simulations are run with both configurations and the results

are compared. Instead of running random compare operations as done in the previous section,

the real applications are used to evaluate the proposed method. For the simple arithmetic

operations, the in-place addition and unsigned multiplication are tested.

Figure 3.8a shows the comparison of the cumulative distribution functions (CDFs) of tra-

ditional (untrained) and trained systems for in-place addition on 512x12-bit number pairs.

These figures simply represent the probability that the difference between the actual and

computed results of the addition operation takes a value less than or equal to the value on

the x axis. The adaptive selecting of Vths provides an error-free system implementation,

especially for TRset = 0.05. Figure 3.8b shows the same results for unsigned multiplication

of 64x8-bit number pairs.

In order to witness the effect of adaptive threshold selecting,2D DCT block of the Joint

Photographic Experts Group (JPEG) algorithm [125] is replaced with its RAP counter-

part. JPEG is a commonly used method for lossly compression of digital images. Figure

3.9 demonstrates the block diagram of the algorithm. To describe basically, the algorithm

partitions the input image into 8x8 pixel blocks and centers these pixel values around 0 by

subtracting 127 from each pixel. After that, 2D DCT transform is performed on each block

to calculate the frequency components, both horizontally and vertically. If the image is con-

centrated in fewer coefficients of the DCT, the compression becomes more efficient. In the

third step, quantization is performed in which a range of values is compressed into a single

Forward Discrete
Cosine Transform

Quantization
Entropy

Encoding

Figure 3.9: JPEG Block Diagram

57

(a) Adaptive Vth (PSNR = 43.09) (b) Single Vth (PSNR = 13.73)

Figure 3.10: Comparison of JPEG results for TRset = 0.01 and TRres = 0.5

value. Lastly, the output of the quantization step is encoded by Huffman coding algorithm

[50].

Discrete Cosine Transform (DCT) [2] is a technique for converting a signal or image into the

summation of a series of cosine waves oscillating at different frequencies (Equation 3.3).

C(k) = w(k)
N−1∑
n=0

x(n) cos

(
πk

2N
(2n+ 1)

)
(3.3)

DCT is correlated to Fast Fourier Transform (FFT); they are both used to convert date

from spatial-domain into frequency domain, but DCT uses only cosine functions and real

coefficients. This method is called Fast Cosine Transform [109]. Equation 3.4 shows the

implementation of 1D DCT by using FFT operations.

y(n) =
{ x(2n), n = 0, 1, ..., N/2− 1

x(2N − 1− n), n = N/2, ..., N − 1

C(k) = Re
{
e−jπ

k
2N FFT {y (n)}

}
(3.4)

To implement the complete system, we firstly implemented Fast Fourier Transform (FFT)

58

on RAP and then we implemented 2D DCT by exploiting the existing FFT. In the imple-

mentation, we store the values in two different ways. For pixel values (generally grater than

1), we used 13 bits for integer part and 2 bits for fractional part. For complex coefficients

(eg. twiddle factors in FFT and scaling factors in DCT), we used 2 bit for integer part just

keep the sign and 8 bits for fractional part. Therefore, the designed RAP is capable of pro-

cessing 19-bit precision for pixel values and 10-bit precision for complex coefficients. During

the compression, addition, subtraction, absolute value, 2’s complement, and multiplication

operations required to perform 2D DCT are run on the RAP.

Figure 3.10 shows the output images of the compression. As seen in figure 3.10b, the variabil-

ity in memristor values along with unconstrained Vth selection lead to unacceptable results

in image quality. On the same image, selecting a Vth adaptively depending on the variations

provides enough result is in the acceptable range of taste of human perception. For the PSNR

results, the output images of the RAP-based JPEG compression are compared against the

output of the unmodified JPEG i.e. Matlab dct2 function that runs the 2D DCT with full

computer precision (64-bit floating point). While the adaptive Vth provides a PSNR rate of

43.09, the single Vth (0.3 Volt) gives 13.73 which is another indicator of high noise level.

3.5 Conclusions

In this chapter, APs are inspected by presenting its trade-offs in terms of performance, en-

ergy reduction, and reliability. For the performance, AP is compared shallowly with the

traditional processors and a significant advantage on vectorial operations (SIMD processors)

are proven. Then, the energy consumption of RAPs and SAPs are compared. Finally, the re-

liability concerns related with the memristor-based APs (RAPs) are inspected together, and

the possible solutions are proposed for the vulnerable points such as memristor variability,

reliability, and retention issues .

59

Chapter 4

Approximate In-Memory Computing

Associative processors are a promising candidate for in-memory computation, however the

existing implementations have been deemed power hungry as touched in Chapters 2 and

3 . Approximate computing is another promising approach for energy-efficient digital sys-

tem designs where it sacrifices the accuracy for the sake of energy reduction and speedup

in error-resilient applications. In this chapter, approximate in-memory computing is intro-

duced on both RAP and SAP architectures. Two approximate computing methodologies are

proposed; bit trimming and CAM-cell scaling. In addition, a hybrid approximation method-

ology is proposed for both architectures together with a design flow to optimize the degree

of approximation.

4.1 Approximate Computing

Approximate computing is a computing paradigm that aims to increase the energy efficiency

of the computing systems by relaxing the correctness constraints [116] and best suited for

intrinsically error resilient applications such as image vision, multimedia, signal processing,

60

etc. As an example, the approximate computing can be employed in image processing and

the results may not harm the taste of vision since human perception system is limited. To

illustrate, Figure 4.1 shows two outputs from the JPEG algorithm where the cameraman

image is compressed. Figure 4.1a shows the result of the compression when all pixels are

represented in their full range (i.e., 8 bits integer). On the other hand, Figure 4.1b shows

the result of the JPEG algorithm that applies on the same input image approximately where

the pixels are approximated by trimming their last three bits so that each computation is

performed on 5-bit. The peak signal-to-noise ratios (PSNR) of two images are 31.74 dB

and 31.52 dB respectively, where around 0.7% difference exists between them. As another

example for the error-resilient Sobel Filter application which is an edge detecting algorithm.

Figure 4.2 shows two output images. Figure 4.2a shows the result of the filtered image

when all pixels are represented in their full range (i.e., 8 bits integer). On the other hand,

Figure 4.2b shows the result of the same algorithm where the pixels of the same input image

is approximated by trimming their last two least significant bits (i.e., each computation is

performed on 6-bit). The figure shows that the approximately processed image exhibits a

PSNR of 33.17 dB with an average error of 6.20%. It can be visually inferred that those two

figures are almost indistinguishable. However, the approximate system allows the utilization

(a) (b)

Figure 4.1: Full (a) and approximate (b) compressed images where PSNRs are 31.74 and
31.52 respectively

61

(a) Full (b) Approximate

Figure 4.2: Full (a) and approximate (b) outputs of the sobel filter algorithm on a image
where PSNR is 33.17 for the approximate image

of approximate adders and multipliers which performs the operations on fewer bits, therefore

provides energy reduction and performance improvement.

Inside a system, approximate computing can be introduced at two different levels; logic-

circuit and algorithm-architecture levels[137]. At the circuit level, the most common method

is designing functionally approximate circuits that utilize less components than the fully ac-

curate counterparts [180]. Other ways of hardware approximations are over-scaling the circuit

timing and/or voltage [117] and approximation in memory [78]. In this level, approximate

computing can be realized by the design tools that support synthesizing the approximate

correspondence of the implemented circuits [161]. For example, a VLSI design software can

include the approximate versions of the some arithmetic circuits addition to accurate ones

and these approximate circuits can be used in the error resilient parts of the chip as de-

termined by the system level simulations. At the algorithm-architecture level, significant

components (significant, implies impacting a metric of interest) in the overall system are fa-

vored over less significant components while satisfying the target metric (e.g., performance,

energy budget, area) [115]. For example, while compiling a source code for an algorithm, the

corresponding binary code selectively ignores some insignificant computations and/or skip

some less important memory accesses.

62

Approximate computing can also be applied to memristor-based digital systems. In [133], an

architectural extension to GPUs are proposed to avoid the frequent re-executions by recalling

their results directly from a cache-like resistive CAM and memory structure tied to the every

FPUs in the GPU. The RCAM structure facilitates approximate matching, therefore provides

energy consumption with the expense of acceptable decrease in quality. The same idea is

improved in [59] and [56] by enabling different degree of approximation for the rows and bit

columns and adding single-charge multiple-access RCAMs respectively. In [56], the resistive

CAM accelerator approach is proposed for tunable CPU approximation. The paper proposes

an architectural extension to GPUs to avoid the frequent re-executions by recalling their

results directly from a cache-like RCAM-based structure tied to every FPUs. The RCAM

structure provides an approximate matching up to 1-HD or 2-HD, therefore provides energy

consumption with the expense of acceptable decrease in PSNR. However, this method does

not pay attention to the bit locations (whether it is MSB or LSB) and inserts arbitrary errors

to the system and requires a training phase. In [155], an approximate in-memory hamming

distance calculation is proposed based on a memristive associative memory. The study in [90]

performs the two important subtasks of a visual recognition system as approximate inside the

memory to get an advantage in energy and performance. In [183], the approximate storage

of images in STT-RAM by writing the data approximately and then managing the memory

access adaptively with respect to write mode (approximate vs precise). In all these studies,

the computation is done inside the memory partially and the remaining parts are done

outside. On the their hand, AP performs the every operation inside the memory without

any interference with the other resources, so a new approximation methodology implemented

inside the AP is required for approximate in-memory computing .

63

4.2 Approximate Memristive In-memory Computing

In this section, for the performance/energy management strategy through approximate com-

puting in RAPs, we introduce the two methodologies. One can be applied in system level

(bit trimming), and other can be applied in circuit level (memristance scaling). In Section

4.2.3, the effect of this approximation in the state of the art applications are inspected.

0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1

Integer Fractional

6.6521
(a) Full value

0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1

Integer Fractional

6.6484
(b) Approximate value

Figure 4.3: Bit trimming in the MAP

4.2.1 Bit Trimming

In associative computing, an arithmetic operation are normally performed by starting with

Least Significant Bit (LSB) and progressing bit by bit to the Most Significant Bit (MSB). If

one wishes to involve fewer bits in the operation, say to discard the k least significant bits,

for example, then this can be accomplished by simply skipping those k LSBs and starting

the operation at bit k + 1. For this reason, associative computing provides an inherent

support for bit-scale approximate computing. In this way, the stored value in the RAP is

approximated by throwing its some less significant bits. As an example, Figure 4.3a shows

a fixed point representation of a real number (6.6521) in the RAP in big-endian notation.

During an operation, if the last 4-bits of this number is trimmed, 0.06% percent accuracy of

the number is lost. For such a number representation (fixed-point with 4-bit integer, 12-bit

fractional parts), the numerical accuracy loss is limited by at most ±0.0037 when all trimmed

bits (i.e., the last four bits) correspond to a value (logic 1). As seen in Table 3.1, the cost of

an operation in MAPs depends on the number of bits (m) rather than the vector sizes (n).

For this reason, this loss in precision as a result of smaller m provides savings in run time

64

(i.e., number of cycles). Since a cycle in the RAP corresponds to either compare or write

operations, the total number of compare and write operations decreases as well and these

results in energy savings at the same time. For example, if the instruction that performs

the vector add operation in Figure 2.9 was called as AdditionIP(8, 7, 5, 3, 1), the controller

would skip the LSB of A and B and perform the same operation as approximate where the

operation works 25% faster and consumes less energy.

(a) Addition

(b) Multiplication

Figure 4.4: Number of trimmed bits vs. accuracy & speedup for the addition and multipli-
cation operations in the RAP

Figure 4.4 shows the effects of bit trimming (value approximation) on speedup and accuracy

for addition and multiplication operations on 1000, 16-bit random numbers. The Matlab-

65

based RAP Simulator detailed in Section 2.5 is used to obtain these results. The figure shows

the number of trimmed bits from these 16-bit numbers versus accuracy and speedup. As

presented in the figure, until about 9-10 bits of precision, the approximation still provides

relatively enough accuracy (i.e., the accuracy within some error resilient system require-

ments) together with considerable speedup advantages. To illustrate, even though half of

the numbers are trimmed, the accuracies are still more than 97% and the system provides

more than 2x speedup for addition, and thus positively influences the energy consumption

as well. The speedup and reduction in energy consumption in multiplication is expected

to be much more since its runtime (and also energy consumption) is quadratic (see Table

3.1). Moreover, since the starting point of the operations can be modified in software by

a controller, this approximation method in the RAPs is also tunable, so that anytime the

system can increase the accuracy by shifting the starting bit of the operations to the right

bits (LSBs) at the expense of performance and energy or vice versa. Depending on the char-

acteristics, resiliency, tolerance, and environmental conditions of the application, the system

accuracy can be set by tuning the number of bits included into the computation.

4.2.2 Memristance Scaling

As stated in Chapters 1 and 2, memristors are switched between the full range in the logical

usage, so that Ron takes the minimum and Roff the maximum memristance values corre-

sponding to logic-1 and logic-0 respectively. However, setting the memristor exactly to these

values could be costly. For instance, Figure 4.5 shows the writing energy consumption and

time results of a memristor in [114] with respect to memristance while it is switching from

Ron to Roff and vice versa. As seen in the figure, the memristor consumes more energy when

it becomes close to the Ron value (100 ohm). This is intuitively meaningful since the current

increases more if memristance value gets smaller for a fixed voltage. On the other hand,

the memristor switching rate decreases when it becomes closer to Ron as well. Overall, this

66

(a) Ron to Roff switching

(b) Roff to Ron switching

Figure 4.5: An example case showing memristance-energy and memristance-time relations
for switching the memristor in [114] between Roff (100 kΩ) and Ron (100 Ω)

region causes most of the energy consumption. In addition to energy consumption, switching

the memristor between the full range of Ron and Roff increases the timing and affects the

performance negatively. For this reason, avoiding costly writing operations could provide

considerable amount of energy saving and performance benefits in the MAP.

Memristance scaling is a method for switching the memristors state within a subrange of the

attainable minimum and maximum memristance values [45, 28]. This can be performed by

67

the scaling both the memristance write voltage and write time. Even though the RAP stores,

represents and processes the data as digital, the compare operation in the RAP is based on

an analog matching circuit (see Figure 2.5), with the sense amplifiers converting the output

of this analog circuit back to the digital domain. In the proposed approximate computing

method based on memristance scaling, the range of memristor values can be shrunk to allow

approximation as a result of compare operations. This shrinking in the range provides less

write energy and shorter write time in the writing operations. However, this idea comes

with some problems; first of all, like any other nanodevices, memristors has also variations

due to the process imperfections [27]. When all bits in the RAP are scaled aggressively, any

variability can cause the wrong computation and the situation becomes even more serious

if it occurs in the MSBs. For this reason, to ensure the accuracy vs approximation trade

offs, the memristors that correspond to the LSBs can be scaled more aggressively than the

memristors in the MSBs, so that the MSBs become more error resilient and even error free.

In this way, the accuracy can be guaranteed at the loss of some degree of quality. The bit

trimming can be considered as a kind of memristance scaling where memristors are scaled

so that every compare operations results a mismatch, so there is no need to perform the

compare operations.

4.2.3 Experimentation

Simulation Framework

To evaluate the proposed approaches, the SPICE-based in-house simulator is utilized that

can efficiently simulate realistic RAP architectures with different functions as illustrated

in Figure 2.15 in Section 2.5. During the experimentation, the Matlab simulator does the

same operation as logical with perfect conditions as error-free. By comparing the results of

both Matlab and HSPICE, the statistics about the processor are obtained and some metrics

68

are assessed. For the transistors, Predictive Technology Models (PTM) from [159] are used

to simulate high-density memories with sub 20nm feature sizes [151]. For the memristor

element, even though there are some memristor models switching within huge memristance

values such as 125k - 125G and provides better scaling ratios, they are not practical for

RAPs since their switching speed is relatively slow (e.g., 10 ns) [107, 121]. For this reason,

a fabricated nano-second switching time memristor is adopted which has a size of 50 nm

[114] since it is best suited for such a processor targeting high-performance error-resilient

applications. In the simulations, its corresponding SPICE model in [168] is used. For the

sense amplifier, a low-power, sub-ns amplifier design in [145] is employed in the circuit.

Reliability

As stated in Section 3.4, memristors suffer from process and operational imperfections which

lead to a variance in their Ron and Roff values, Additionally, process imperfections in other

semiconductor materials (e.g., transistor, capacitor, etc.), fluctuation in voltage rails, etc.

can have effects not only on the memristor but also on the overall mechanism of the system.

In addition to all these impairments, approximate computing can be regarded as another

source of operational imperfections. In all approximate computing studies, the system is

forced to run under the abnormal operational conditions where the factors deemed safe

under normal conditions start to be effective against the correctness of the system. In this

case, taking the other reliability issues into account together with approximate computing

becomes a must.

To perform the evaluation of the overall approximate system accurately, the system is in-

spected under the presence of different sources of variations. Even though there are also

other reliability problems of memristors aside from variability such as retention time and

endurance, they are addressed in some studies [17, 28, 176, 88]. Therefore, the reliability

problems that affects the computational accuracy of approximate computing under mem-

69

(a) Ron (b) Roff

(c) Vpc and Vdd
(d) Vth

Vc

TagSA

VDD

Φ Mpc

Mc

Φ

(c)

(a) (b)

Vth

(d)

(e) Variability sources in the RAP circuit

Figure 4.6: Variability sources and variations in RAP

ristance scaling is evaluated. The method presented in [175] is used to make the processor

resilient to these overwhelming variations as much as possible. As a result of these condi-

tions, in the RAP, the functional errors occur in scenarios where, as a result of compare

70

cycle, a logic-1 is misinterpreted as logic-0 or logic-0 is misinterpreted as logic-1 in the sense

amplifier. These functional errors can be contributed by memristor and voltage variations

as well. For example, exact write to a memristor is not possible and generally resulted

memristance follows a normal distribution [88]. For this reason, while evaluating the circuit,

some variations are inserted into the circuit. Figure 4.6 shows the variability distributions

for memristances (Ron, Roff in Figure 4.6a and 4.6b), pre-charge voltage, supply voltage (Vpc

and Vdd), and threshold voltage (Vth). Since the variations in the memristance also reflects

the write voltage variations as well, an additional variation for the Vwr is not inserted into

the system. For memristance distributions, the distribution is taken from an experimental

data on the fabricated memristors by fitting it into normal distribution where Roff distribu-

tion is in the log scale [88]. For voltage sources, the sigma of variations is taken 3% [79] [79]

[80]. Figure 4.6e shows the insertion points of these variations to the RAP circuit for better

understanding.

sf bk ib conv fwht fft fir mf wt
0

50

100

P
er

ce
n
ta

ge
(%

)

Computation Data movement

Figure 4.7: Data movement vs. computation percentage for the benchmarks where left and
right bars correspond to energy and time respectively for each benchmark

Evaluation

For the evaluation of approximate computing in RAPs, energy reduction, speedup, and

energy × speedup results for 9 benchmarks are presented in Figure 4.8. For the benchmarks,

the AX-BENCH tool [179] that includes benchmarks for approximate computing is used

together with specified input sizes to evaluate the approximation methods together with

71

Table 4.1: The evaluated benchmarks, their platforms, and quality metrics from [179]

Benchmark Domain Platform Quality Metric

Sobel Filter (sf) Image Processing CPU, GPU, ASIC Image Diff.
Brent-Kung (bk) Arithmetic Computation ASIC Avg. Relative Error
FIR Signal Processing ASIC Avg. Relative Error
Wallece-tree (wt) Arithmetic Computation ASIC Avg. Relative Error
FFT Signal Processing CPU Avg. Relative Error
Image Binarization (ib) Image Processing GPU Image Diff.
Convolution (conv) Machine Learning GPU Avg. Relative Error
FastWalsh (fwht) Signal Processing GPU Image Diff.
Mean Filter (mf) Machine Vision GPU Image Diff.

the corresponding architectures. Since the RAP architecture mainly provides advantage

on vectorial benchmarks, a subset of the applications which are suitable for the RAP are

evaluated from all benchmarks as presented in Table 4.1. In the results, two approximate

methods on the RAP, namely bit trimming (RAP+BT) and memristance scaling (RAP+MS)

are compared with loop perforation (LP) [149], neural processing unit (NPU) [29, 181] on

both GPU and CPU platforms, resistive CAM accelerator [56] on CPU, and approximate

ASIC designs synthesized with Axilog HDL [180]. In the comparison, the evaluated results

from [179, 56] are compared against RAP+BT and RAP+MS results. The specifications of

GPU and CPU platforms are also described in [179, 56]. Even though all these architectures

seem non-comparable on the same basis, in reporting the results, the relative speedup and

energy reduction are presented which shows how well approximate computing achieves on

these architectures with different methodologies. In other words, the aim in here is to prove

that memristive in-memory computing has inherent advantages that make it better suited

for approximate computing, achieving higher relative improvement in all three figures of

merit (performance, energy and energy performance product).

In the simulations, a 121x512 RAP is taken which is enough to perform the most costly

(in terms of area) benchmark (i.e., FFT). The execution flow of a application in the RAP

consists of two phases; data initialization and computation. Figure 4.7 shows the computa-

tion/data movement percentages of each benchmark in terms of energy and time respectively.

In reporting results, both costs are taken into account. For computationally intensive bench-

72

marks (e.g., conv, fft, fir), the percentage of the computation is much higher than the data

movement. For lighter benchmarks (e.g., Sobel Filter, Brent-kung, image binarization), this

paradigm shifts a little towards to the data movement. Since simulation time takes days for

the successive iterations on such computationally intensive benchmarks (e.g., 10s thousand

cycles for FFT), first, the accurate execution profile (energy, time, variation, error proba-

bility, etc.) depending on the different conditions are obtained from the simulator (Figure

2.15), and later these numbers are used in the Matlab simulator to get the precise results.

Table 4.2: Cases for memristance scaling and their corresponding energy and timing results

Case Ron (Ω) Roff (Ω) Twrite Ewrite Error

Full 100 100 k 2 ns 21.7 pJ No
Normal 1.7 k 79 k 1 ns 349.6 fJ No

Approximate 3.2 k 40 k 0.5 ns 121.8 fJ Yes

For the memristance scaling based approximation (RAP+MS), memristor switching range

is scaled from both directions by shrinking the write time and voltage. Table 4.2 shows

the three different operational cases (full, normal, approximate) of a memristor used in the

experimentation. The first row gives the result when the memristor is switched within the

full range (i.e., binary range of 100 kΩ - 100 Ω). The normal case shows a scaled memristor;

however, this range still does not pose a threat to the normal operation of the processor on its

own when all presented variations are taken into the consideration. The last case presents

another scaled memristor where its switching range is the most aggressive, but consume

the least energy. This last scaled memristor write results in errors that propagate to the

digital results (i.e., flipping a bit). In the experimentations, The ”Full” write is used for the

accurate case where there is no approximation. For the approximate computing case, the

”Normal” write is used for the most significant digits and the ”Approximate” write is used

for the least significant digits which are approximated. In both the bit trimming and the

memristance scaling, the parameters (i.e. number of bits trimmed in the bit trimming case,

and bit splitting between Normal and Approximate write in the memristance scaling case)

were set so as to keep the maximum quality degradation (based on the the metric in [179])

73

sf bk ib conv fwht fft fir mf wt

100

101

102

E
n
er

gy
R

ed
u
ct

io
n

RAP+BT RAP+MS Axilog[180] CPU+LP[149] CPU+NPU[29] GPU+LP[149] GPU+NPU[181] RCA[56]

(a) Energy Reduction

sf bk ib conv fwht fft fir mf

100

101

S
p

ee
d
u
p

(b) Speedup

sf bk ib conv fwht fft fir mf wt

100

101

102

103

E
n
er

gy
R

ed
u
ct

io
n

x
S
p

ee
d
u
p

(c) Energy reduction × Speedup

Figure 4.8: Comparison of approximation methods on RAP, ASIC, CPU, and GPU platforms
with different benchmarks with 10% maximum quality degradation

74

for each benchmark less than 10%.

The relative energy reduction ratios are presented in Figure 4.8a. Since memristance scaling

allows good energy reduction in writing even for the non faulty cases (i.e., the normal-case in

Table 4.2), on the overall, memristance scaling provides a significant reduction on the energy.

The speedup of RAP+MS ranges from 42x in fir to 95x in multiplication (wallace tree) with

a geometric mean of 66x. On the other hand, the RAP+BT in some benchmarks becomes

less error resilient so that it can not allow more approximation. For example, some image

processing applications (e.g. Sobel Filter, Image Binarization) process the 8-bit inputs and

the degree of approximation becomes limited up to 1.4x.

Figure 4.8b shows the relative speedup of each approximation technique. In the figure,

Axilog’s results for the applicable benchmarks are 1 since it does not provide a speedup.

As presented in the figure, RAP+BT method outperforms the other methods in the most

of the benchmarks where speedup ranges from to 1.1x to 20.9x with a geometric mean of

2.8x. Even though RCA also performs well for Sobel Filter and FFT, these energy reduction

and speedup include the benefit coming from the acceleration as well as approximation.

Moreover, RCA, CPU+NPU, and GPU+NP require a learning phase to provide acceleration.

In here, it is worth to note that, when approximation is applied to other architectures, the

relative speedup becomes proportional to number of vectors (n). However, in the RAP, the

relative speedup becomes limited since speedup is based on bit-length of the vectors (m).

Additionally, if the amount of required computations is relatively less in some applications,

the RAP processor (aims to vectorial operations) may not provide a significant speedup

benefit (e.g., Sobel Filter, FWHT, Image Binarization require only addition and subtraction

as seen in Figure 4.7). In here, it is worth to note that while comparing with the base case

(error free), the RAP uses the as least digits as it can. To illustrate, the Sobel Filter runs

on 8-bit grayscale images.

Approximate computing provides two advantages; energy reduction and speedup. For this

75

reason, another figure of merit can be defined as the multiplication of these two ratios,

namely, energy reduction × speedup to evaluate the two metrics together. Figure 4.8c

presents these results where RAP+MS outperforms all others for all benchmarks except

wallace-tree where RAP+BT provides the best result.

In ASIC design, approximate computing can also be used for area reduction. In the same

manner, the bit trimming in the RAPs provides area reduction as well when it is used at

the design time as a static method. Figure 4.9 shows the area reduction of the comparison

between RAP+BT and Axilog. In all benchmarks except Sobel Filter, RAP+BT provides

better area scaling when the error rate is set at 10% maximum. However, if dynamic (tun-

able) approximate computing is preferred, this benefit must be sacrificed.

bk fir sf wt

100

101

A
re

a
R

ed
u
ct

io
n

RAP+BT Axilog[180]

Figure 4.9: Area comparison of RAP+BT & Axilog[180]

Overall, it can be concluded that the RAP architecture provides good approximation. This

knowledge can be important while selecting an architecture for error resilient applications.

To exemplify a use case, under a highly variable transmission medium where PSNR rate is

changing in high rate, the RAP architecture can be employed to get maximum benefits from

the approximate computing as well as the in-memory computing, so that precision of the

data stored/processed in the RAP is dynamically tuned depending on the PSNR rate.

76

4.3 A Hybrid Approach

4.3.1 Motivation

As stated in Section 4.2, approximate computing in APs can be accomplished in two ways;

bit trimming (BT) or cell scaling (CS) [174]. In bit trimming, one or more least significant

bits of a number are disregarded and the operations start from the relatively more significant

bits since the operations on the AP are done bit by bit from the least significant bit (LSB)

through the most significant bit (MSB). In this way, the accuracy of a value in the AP

is approximated by ignoring its less significant bits. This situation provides both energy

saving and the speedup since the operations require fewer cycles (both compare and write).

The second method introduced previously is the cell scaling. Although cell scaling can be

used to denote scaling of many parameters (e.g., voltage, value range, area, etc.), in here,

it corresponds to voltage scaling. This method can be applied to the ReRAM-based APs

by scaling the Ron and Roff values of the ReRAMs in the approximate RCAM columns. In

this case, the ReRAMs in the scaled columns (i.e., the approximated columns) are switched

within a narrower range rather than the full range. This method necessities low write

voltages (VWR) together with shorter write pulses. In turn, it provides both energy savings

and speedup. However, a compare operation on the columns including these approximated

columns results in less robust matching and likely errors at the output of the sense amplifier.

Similar to RAP cells, the SAP cells can be approximated by lowering their supply voltages,

thus providing energy savings. The decrease in the supply voltage results in a decrease in

the write energy and static energy. On the other hand, the cells whose supply voltage is less

than the nominal voltage can introduce error during the operation, just like the RAP case.

Figure 4.10a shows the accuracy lost in an 1K, 16-bit FFT algorithm simulated on the

environment described in Section 4.3.4. The figure shows how bit-trimming and cell scaling

affect the accuracy in both RAPs and SAPs. The x-axis of the figure shows the number of

77

(a) BT and CS errors vs approximation meth-
ods

(b) Energy reduction and speedup vs approxi-
mation methods

Figure 4.10: The effect of bit trimming and cell scaling on SAPs and RAPs

trimmed or scaled bits and the y-axis shows the resulting accuracy in percentage where left-y

axis shows the result for BT and right-y axis shows the result for cell scaling. The figure

proves that the trimming single bit introduces more error to the system than the scaling

same bit. When compared with the cell scaling (both ReRAM and SRAM scalings), the bit

trimming leads to coarser grain approximation since bit trimming discards the column totally.

On the other hand, the cell scaling still contributes to the operation somehow correctly or

incorrectly in a probabilistic manner, so it becomes a finer grain approximation than the

bit trimming. For instance, even though trimming 4-bit leads to 15% error in the result,

scaling the same bits result in 1% and 1.3% error for memristance and SAP-cell scalings

respectively. From the other point of view, given a quality expectation, the number of scaled

bits can be more than the number of trimmed bits. Figure 4.10b shows the similar figure

for energy reduction in left-y axis and speedup in right-y axis. The figure depicts that bit

trimming provides more energy reduction and speedup when compared with cell scaling. As

an example case, while trimming the LSB bit in SAP results in 15% energy savings and 12%

speedup, scaling same bit provides 1% energy reduction and 2% speedup.

From Figure 4.10a, it can be inferred that bit-trimming provides more speedup and energy at

the expense of more decrease in the accuracy. On the other hand, cell scaling exists as a more

robust approximation technique than bit trimming. In approximate computing systems, the

main goal is getting the optimum performance with the attainable highest acceptable quality.

78

For this purpose, bit-trimming in APs can be more reasonable when applied to the LSBs

which have less effect on the computational accuracy than the MSBs. On the other hand,

cell-scaling can be done to tune the degree of approximation (in a finer grain manner) in the

remaining bits after applying bit-trimming on some LSBs. Even though cell scaling provides

a finer grain approximation with much lower improvements in performance and energy, this

method can be very useful for such cases where the bit-trimming methods decrease the

overall quality lower than the expectations. As a combination of these two techniques, the

proposed hybrid approximate computing approach targets to find the optimum degree of

approximation in APs with respect to a given quality metric by efficiently exploiting both

methods.

Ct+s-1Cn Ct

Bit Trimming (t-bit)Cell Scaling (s-bit)Normal

VCSVCF

C1C1Ct-1 C0C1Ct-1 C0Ct+1

(a) Approximate computing in SAP

Ct+1Ct+s-1Cn Ct

VWEVWE

VW =

C1C1Ct-1 C0

VWF if Ci is

not scaled

VWS if Ci

is scaled

Bit Trimming (t-bit)Cell Scaling (s-bit)Normal

(b) Approximate computing in RAP

Figure 4.11: Hybrid approximate computing in associative processors (APs)

Figure 4.11 shows the proposed hybrid approximation technique on SAPs (Figure 4.11a) and

RAPs (Figure 4.11b) respectively. In both APs, the bit-trimming is done by disregarding the

LSBs from the computation. In this way, the computation in the APs starts from relatively

more significant bits. In RAPs, the trimmed bits do not cause an additional overhead since

ReRAMs are non-volatile storage. Specifically, in SAPs, the supply voltage of the trimmed

columns can also be cut off in order not to cause excessive static energy consumption.

After trimming some LSBs, the cell scaling is applied on the number of columns which has

relatively higher significance. However, cell scaling introduces less error to the system than

bit-trimming, so the system can still get more advantage from the approximate computing

still by complying with the quality metrics specific to the application. In SAPs, the scaling

is done by applying a scaled voltage (VCS) to the scaled cells that is less than the full cell

voltage (VCF), i.e., VCS < VCF. In RAPs, the scaling is performed by changing the write

79

voltage where VWF is the write voltage for the full cells and VWS is the write voltage for the

scaled cells. For example, if cell-0 (C0) is scaled, the VWS voltage is applied to write to the

corresponding memristor. Apart from the voltage levels, the pulse widths are different for

each cases since memristance scaling decreases the write time.

Benchmark

Bitwidths
Simulator

(Matlab & Hspice)

Random
Data Set

Quality
Measurement

Use satisfied
bitwidths

Relax the
bitwidths

Simulator
(Matlab & Hspice)

Quality
Measurement

Scaling

Quality
Requirement

Satisfied

Increase
the scaling

Report
the results

Satisfied
scaling

YES

NO

YES

NO

Random
Data Set

Quality
Requirement

Satisfied

Benchmark

Bit trimming Cell scaling

Figure 4.12: The design flow for approximate AP systems

4.3.2 Design Flow

Deciding on the number of trimmed bits and scaled columns is a design parameter and

depends on the application and its requirements. The design flow shown in Figure 4.12

demonstrates a process to select the optimum configuration. The main item in the flow is

an in-house simulator developed specifically for both APs (see Section 2.5). As input, the

simulator accepts the benchmark (instructions), system/circuit parameters (bit width, vari-

ations, scaling, transistor/memristor models, etc.), and input data. The simulator outputs

the energy consumption, accuracy (quality), and timing results of the simulated application.

The design flow consists of two phases; configuring the bit trimming, and configuring the cell

scaling. Since bit trimming can be considered as a coarser grain approximation when com-

pared with the scaling, the flow firstly targets to find the optimum bit width approximation

in the first phase, and then apply optimum scaling on top of bit trimming approximation in

the second phase. First, both approximation parameters (bit widths and scaling) are set to

the most relaxed case so that the system performs the operation on the full range without

any scaling. After the simulation, the quality is assessed for at least n runs on different

random input sets (we use n = 10 in our experiments). If the quality is satisfied, the bit

80

width constraint is relaxed (more bits is trimmed) and a new simulation is done with the new

constraints. This loop continues until finding a bit trimming case which does not satisfy the

quality requirements. After finding this case, the parameters set to the optimum bit widths

(the preceding one) and the second phase (cell scaling) starts. During the cell scaling, the

same flow is performed by relaxing the scaling parameters (i.e., the number of the scaled

columns). The key point in this flow is setting the quality requirement which is a config-

urable parameter depends on the application itself. After the optimum scaling parameters

found within the given degree of bit trimming, the results are reported in the last stage of

the flow. The results show a map to indicate which bits are trimmed and which ones are

scaled.

VF

VS

Vdirty

B00

B10

Bn0

B01

B11

Bn1

B1m

B0m

Bnm

.
.

.
.

.
.

.
.

.

C
o

lu
m

n
 #

m

C
o

lu
m

n
 #

1

Co
lu

m
n

#0

C
A

M

Figure 4.13: Dynamic cell scaling in APS

4.3.3 Dynamic Approximation

Both the cell scaling and the bit trimming can be done on LSBs and can be defined in

the design time by using the explained design flow. Moreover, since the starting point

of the operations can be modified on the fly by the controller, approximation of the bit-

trimming can be done dynamically. For bit-trimming, the controller simply shifts the starting

bit position of the operands. For example, to trim a single bit from the operand A in

81

Figure 2.12, the controller runs the instruction of Multiplication([7,5],[3,2],[1,1]) instead

of Multiplication([7,5],[3,2],[1,0]), that is, the operands can be changed dynamically by the

controller. Additionally, the degree of scaling can be controlled by a circuit during runtime by

using adaptive supply voltages. For example, the method in [128] proposes a fast technique

to change the voltage supplies. Figure 4.13 shows the general methodology of this technique

where each column can be supported by a different voltage source. The controller unit of

the APs decides on the cell supply voltage of the SAP cells and the write voltages of the

RAP cells for writing logic-0 and logic-1. The applied voltage pulses also differ in RAP cells.

Even though there are more than two voltage levels with different polarities for the memristor

scaling, only one voltage control circuit is required per column. Therefore, the additional

overhead is minimal and largely amortized over the thousands of rows comprising the AP.

In the figure, it is shown that while column-0 and column-1 are supplied at the scaled

voltage VS (VCS in SAPs and VWS in RAPs), the last column (i.e., the most significant

one) is supplied by full voltage VF (VCF in SAPs and VWF in RAPs). Accordingly, the

proposed hybrid approximation method in the APs is also dynamically tunable for both the

bit trimming and the cell scaling. Therefore, at any time the system can increase the accuracy

by shifting the starting bit of the operations to the right (i.e. trimming fewer LSBs) at the

expense of increased operation delay and energy. This can be partially counterbalanced by

changing the degree of cell scaling. Depending on the characteristics, resiliency, tolerance,

and environmental conditions of the application, the system accuracy can be set by tuning

these two approximation parameters dynamically.

Figure 4.14 shows an example waveform of dynamic voltage scaling by using the short-stop

technique in [128]. The figure shows the two compare cycles on four bits that belongs to the

multiplication operation in Figure 2.12. In the first cycle (0 ns - 1 ns), three of the columns

are supplied with the full voltage (VCF) and the least significant one does with scaled voltage

(VCS). As a result, the noise margin between the match and mismatch operation is resulted

as 143 mV. At some point, the system (or controller specifically) decides to change the

82

degree of approximation by increasing the accuracy of the scaled bit in the expense of more

energy consumption. During this change, the supply voltage of these columns are boosted

from 0.5 V to 0.7 V. In [58], the time required to boost voltage takes less than 5 ns. In the

second compare operation on the same bit (between 6 ns - 7 ns), the system results in a more

robust operation with a noise margin of 197 mV. At any time, this voltage can be lowered

for the sake of less power consumption. The same voltage boosting technique can be applied

to RAP systems but to change the write voltage to set the memristance range.

Figure 4.14: Dynamic approximate computing in SAPs

4.3.4 Experimentation

Experimental Setup

For the evaluation of the hybrid approximate computing in the APs, energy reduction,

speedup, and energy×speedup results for 7 benchmarks from AX-BENCH (approximate

computing benchmark) tool [179] presented in Table 4.3. The table also presents the number

of input bits of the benchmarks. In some cases, the benchmark accepts more than one input

with different bit widths. For this reason, the type of the input is specified with a letter

(e.g., d for data and e for twiddle factor in FFT). Even though the AP accepts these bit

83

Table 4.3: The evaluated benchmarks, their platforms, and quality metrics from [179]

Benchmark Domain Bit Size Quality Metric

Sobel Filter (sf) Image Processing p8 (12) Image Diff.
FIR (fir) Signal Processing d8 & c8 (17) Avg. Relative Error
FFT (fft) Signal Processing d16 & e16 (30) Avg. Relative Error
Image Binarization (ib) Image Processing p8 (9) Image Diff.
Convolution (conv) Machine Learning d24 & e16 (43) Avg. Relative Error
FastWalsh (fwht) Signal Processing p17 (35) Image Diff.
Mean Filter (mf) Machine Vision p8 & c16 (28) Image Diff.
CNN Deep Learning d8 & k8 (18) Avg. Relative Error

* d:data, p:pixel, e:twiddle factor, c:coefficient, k:kernel, (): intermediate bit width

sizes as input, during the computation the bit widths of the intermediate results can be

more (e.g., multiplication of two m-bit numbers results in a 2m-bit number). The maximum

bit widths of the intermediate results are specified within the parentheses. In the system

level and circuit level simulations, the cycle accurate simulator in [174] is used. For the

transistor in the circuit level simulation, Predictive Technology Models (PTM) from [159]

are used to simulate high-density APs with sub 20nm feature sizes [151]. In the RAPs, we

adopt a fabricated nano-second switching time memristor which has a size of 50 nm [114].

In the simulations, its corresponding SPICE model in [168] is used. For the sense amplifier,

a low-power, sub-ns amplifier design in [145] is employed in the circuit. For both APs, the

pre-charge voltage is set to 0.5v. Since the AP operation outputs more mismatches than the

matches statistically, the Vth is selected to make the mismatch error rate as low as possible

[175]. In all simulations and comparisons with other architectures, the maximum quality

degradation is set as less than 10% (based on the metric in [179]).

Approximate computing forces a system to work on the boundary conditions. Under these

conditions, the factors deemed to safe under normal conditions endanger the correctness

of the system. For example, a scaled SRAM-cell can continue normal operation without

any error in the circuit simulations. However, if the variations are taken into account, the

system becomes more vulnerable to the errors. In a similar manner, a scaled ReRAM cell can

decrease the voltage level across the capacitor under the Vth level and it is misinterpreted as

84

logic-0 even though it would be logic-1 (i.e., there is a match). Therefore, an approximate

system must be evaluated by regarding the variation sources which does not pose a threat

to the non-approximate one. For this reason, to make the results as reliable as possible,

the variations arising from the voltage sources and the memristive devices are inserted into

the system. For memristance distributions, the distribution is taken from an experimental

data [88] on the fabricated memristors by fitting it into the normal distribution. For voltage

sources (pre-charge voltage Vpc, SRAM-cell supply voltage Vcdd, write voltages Vwr, and

threshold voltage Vth), the normal distribution with a 3% sigma is assumed even though

sigma of variations are reported as 2.5% in other studies [79] [80]. Since memristor variations

is also a result of variations in the write voltage, another variation onto the ReRAM-cell write

voltage is not included. During the simulations, these variations are all modeled as different

distributions and the random circuit parameters are generated from these distributions. The

circuit simulator (HSPICE) is run several hundred thousands of cycles to obtain the metrics

under these variations. The method presented in [175] is used to make both RAP and SAP

as resilient as against these variations where Vth of the sense amplifier is set to make the

error probabilities as few as possible.

Table 4.4 shows the cases and their corresponding parameters and results for both SRAM

and ReRAM cell scalings. The last column in the table shows the probability of average error

(a) SAP cell scaling cases

Case Vcdd Pstatic Ewrite Pe(avg)

Full 0.7 V 0.52 µW 0.24 fJ 0
Approximate 0.5 V 4.66 nW 0.06 fJ 0.021

(b) RAP cell scaling cases

Case Ron (Ω) Roff (Ω) Twrite Ewrite Pe(avg)

Full 100 100 k 2 ns 21.7 pJ 0
Normal 1.7 k 79 k 1 ns 349.6 fJ 0

Approximate 3.2 k 40 k 0.5 ns 121.8 fJ 0.027

Table 4.4: Cell scaling in AP for both SAP and RAP

85

(Pe(avg)) which the corresponding case causes after a compare operation. For the scaling in

the SAP (Table 4.4a), the supply voltage of the scaled columns is decreased to 0.5V from

the nominal voltage of 0.7V. This decrease leads to a decrease in both static energy and

the write energy. On the other hand, the reliability of the cells decreases as well. During a

compare operation, in the case of a mismatch, these cells increases the resistivity through

the leaking path, and in some cases (e.g., more than one scaled columns are included in a

compare operation), the compare operation may result incorrectly. The cell scaling in RAP

is done by shrinking the write time and voltage. Table 4.4b shows the three different cases

(full, normal, approximate) for the ReRAM scaling. In order to find these cases, the design

space exploration is performed on the memristor model in [168]. The important concern in

here is that the switching between Ron and Roff must be symmetric, that is, the state of the

memristor can be switched in both directions within the same period. On the other hand,

the voltage levels and polarities can be different depending on the memristor model as usual.

In the table, the first row corresponds to the full case where the ReRAM is switched within

its binary range (100 kΩ-100 Ω). The normal case shows a not-aggressive scaled case that

does not pose a threat on its own still under the variability conditions. The last case presents

the approximate case where the ReRAMs are scaled aggressively. This case results in the

least energy and the most speedup with the expense of errors. During the experimentations,

the full case is used for the most accurate case where there is no approximation. For the

approximate computing in RAPs, the normal case is used for the most significant digits and

the approximate case is used for the least significant digits.

Evaluation

In the evaluation of the proposed hybrid approximate computing methodology, firstly, the

proposed architecture is compared with previous work which proposes the bit-trimming and

the cell-scaling individually for APs [174]. Table 4.5 shows the comparison in terms of energy

86

(a) SRAM-based associative processor (SAP)

Hybrid Bit Trimming Cell Scaling
Configuration Speedup Energy E x S Configuration Speedup Energy E x S Configuration Speedup Energy E x S

SF 10s2t 1.24 3.41 4.24 2t 1.24 1.46 1.82 12s 1.00 2.54 2.54
IB 5s3t 1.60 2.40 3.85 3t 1.60 1.83 2.93 8s 1.00 1.45 1.45
CONV 4s16t 2.74 4.61 12.64 16t 2.74 4.04 11.08 26s 1.00 2.10 2.10
FWHT 14s2t 1.13 2.72 3.08 2t 1.13 1.22 1.38 14s 1.00 2.05 2.05
FFT 17s10t 2.07 6.47 13.37 10t 2.07 2.57 5.31 24s 1.00 2.40 2.40
FIR 4s5t 1.95 4.72 9.22 5t 1.95 2.40 4.69 16s 1.00 2.41 2.41
MF 10s14t 3.29 10.15 33.34 14t 3.29 5.09 16.72 24s 1.00 3.06 3.06
CNN 6s7t 2.74 6.88 18.83 7t 2.74 4.06 11.12 16s 1.00 4.48 4.48

Average 2.10 5.17 12.32 - 2.10 2.83 6.88 - 1.00 2.56 2.56

(b) ReRAM-based associative processor (RAP)

Hybrid Bit Trimming Cell Scaling
Configuration Speedup Energy E x S Configuration Speedup Energy E x S Configuration Speedup Energy E x S

SF 10s2t 2.04 48.16 98.11 2t 1.75 37.92 66.47 12s 1.64 37.61 61.63
IB 5s3t 2.67 55.54 148.11 3t 2.29 41.02 93.77 8s 1.67 41.68 69.46
CONV 4s16t 3.95 52.48 207.34 16t 3.89 51.19 199.31 26s 1.64 22.93 37.71
FWHT 8s2t 1.71 41.27 70.49 2t 1.59 35.11 55.70 12s 1.55 36.92 57.06
FFT 9s16t 3.14 39.03 122.39 12t 2.93 35.61 104.42 20s 1.63 21.44 34.92
FIR 4s5t 2.91 49.52 144.05 5t 2.79 45.39 126.53 12s 1.67 26.65 44.41
MF 8s12t 5.24 97.46 510.62 14t 4.69 81.58 382.91 23s 1.71 35.40 60.58
CNN 6s7t 4.26 89.45 381.35 7t 3.91 73.31 286.81 15s 1.72 37.47 64.36

Average 3.24 59.11 210.31 - 2.98 50.14 164.49 - 1.65 32.51 53.77

Table 4.5: Comparison of approximation methods on SAP (a) and RAP (b) with different
benchmarks with 10% maximum quality degradation

* t: trimmed, s: scaled

reduction and speedup for SAPs (Table 4.5a) and RAPs (Table 4.5b). In addition to the

convenient AxBenchs in Table 4.3, the figure also includes the result for the convolutional

neural network (CNN). For CNN implementation on the AP, only parts of the neural network

are implemented since the whole CNN simulation (as cycle-accurate) would take months. The

table also includes the configuration information for the approximation technique obtained

from the design flow (see Figure 4.12). In the table, if bit is trimmed, the actual bit-width

becomes less than the one presented in Table 4.3. The t, s stands for the trimming and scaling

respectively and the number before these abbreviations indicate the number of trimmed and

scaled bits of the corresponding input, respectively. The number of trimmed or scaled bits

are shown over the total number of bits of the intermediate results presented in Table 4.3. In

energy reduction, when the hybrid methodology is applied to the system, it outperforms in

both SAP and RAP architectures when compared with the other methods. For example, the

hybrid approximation provides an advantage in energy reduction between 14.1% to 151%

87

for the SAPs and 2.5% to 35.4% for the RAPs over the bit trimming. As presented in

the configuration of each approximation method, this savings mainly comes from less error

contribution of the cell scaling method which in turn allows to scale more bits. Over the cell

scaling, the advantage in energy reduction becomes between 32.5% to 231.7% for SAPs and

11.8% to 175.3%. The main reason of the higher energy savings in the SAP architectures is

that the SAP architecture provides more scaling than the RAP architectures since its error

probability is less. Additionally, the cell scaling in the SAPs contributes to both compare and

write cycles as opposed to RAPs in which only write energy reduced. Furthermore, scaling

in RCAM cells increases the compare energy of RAPs since the residual charge across the

capacitor goes to a lower level than the normal case after a compare operation due to the more

leaky memristors. This was a side-effect of memristance scaling, but in overall the scaling

provides an advantage. It is worth to mention in here that hybrid approach is done on top

of the AP architecture where bit trimming is applied. In other words, after applying bit

trimming, the cell-scaling is performed to fill the remaining quality allowance to obtain more

energy reduction and performance within a 10% quality degradation limit. For the speedup

in the SAPs, the hybrid approximation has no advantage over the bit trimming method since

the scaling in the SRAM cells does not provide a speedup, on the other hand, there is an

advantage gain of average 9.3% in the RAP architectures of the hybrid approximation. If

the application allows further approximation through the cell scaling after bit trimming, the

hybrid method can get more benefit from it. As an example, in FFT, after trimming four

bits from the data, the four more bits from the remaining number can be scaled to maximize

the energy reduction and the performance. However, an error introduced at the beginning

of the in-memory computations propagates through all computations until the end. For this

reason, if the benchmark is complex and requires relatively more operations, the benefit

from the approximate computing becomes limited. For instance, a separable convolution

operation consists of 2 pipelined FFT operations and requires data to pass through many

butterfly stages. For this reason, this application allows limited approximation and its energy

88

reduction and speedup are less than the other benchmarks’.

Table 4.5 proves that the hybrid approximation technique has advantage over both previ-

ous approximation techniques applicable to in-memory associative processors. On the other

hand, from the broader perspective, the indication of how APs performs in approximate

computing is another topic. Figure 4.15 demonstrates the performance results of the differ-

ent architectures and approximation techniques. In the results, hybrid approximation on the

RAP and SAP architectures are compared against loop perforation (LP) [149], neural pro-

cessing unit (NPU) [29, 181], resistive CAM accelerator [56], and Axilog HDL [180] a design

tool for approximate ASIC designs. In the comparison, the evaluated results from [179, 56]

are compared against hybrid approximation results. In reporting results, the relative energy

reduction and speedup are reported which are the ratio of non approximate case over approx-

imate case. Figure shows how hybrid approximation has a benefit over the reported other

approximations. When compared with SAP, approximation in ReRAM-based AP provides

better results in terms of energy reduction and speedup. This is because that a scaling in the

write operation of the ReRAM cells returns a huge advantage in both factors. Even though

all these have different architectures and technologies and seem as non-comparable on the

same basis, the results shows shows how well approximate computing achieves on these ar-

chitectures with different methodologies. In other words, the aim in here is to prove that

associative in-memory computing with hybrid approximation has inherent advantages that

make it better suited for approximate computing, achieving higher relative improvement in

all three figures of merit (performance, energy and energy performance product).

4.4 Conclusion

In this chapter, the two promising computing methodologies, which are approximate com-

puting and in-memory computing are combined which facilitates the approximate in-memory

89

sf ib conv fwht fft fir mf

100

101

E
n
er

gy
R

ed
u
ct

io
n

SAP RAP Axilog[180] CPU+LP[149] CPU+NPU[29] GPU+LP[149] GPU+NPU[181] RCA[56]

(a) Energy Reduction

sf ib conv fwht fft fir mf

100

100.5

E
n
er

gy
R

ed
u
ct

io
n

(b) Speedup

sf ib conv fwht fft fir mf

100

101

102

E
n
er

gy
R

ed
u
ct

io
n

(c) Energy reduction × Speedup

Figure 4.15: Comparison of approximation methods on SAP, RAP, ASIC, CPU, and GPU
platforms with different benchmarks with 10% maximum quality degradation

90

computing. Two approximate computing methodologies in APs are proposed which are cell

scaling (both SRAM and ReRAM) and bit trimming. The proposed methods are natu-

rally supported by the APs as dynamic and tunable. The reliability concerns coming with

the approximation are also inspected. The suitability, practicality, and reliability of this

methodology are investigated through the SPICE-based circuit simulations. The compe-

tency of the proposed method is proven by benchmark results. It is also proven that APs

supports approximate computing inherently and provides a better employment place than

other architectures for approximate computing since it facilitates dynamically (run time)

tunable approximation.

91

Chapter 5

Methods for Low-power APs

In this chapter, a low-power AP implementation by proposing architectural and instructional

improvements to decrease the switching activity are proposed. This chapter focuses on some

methodologies to decrease the energy consumption of for both SAPs and RAPs.

5.1 Low-Power SAP

Even though APs are a good solution for the memory bottleneck, their energy efficiency is

limited. However, there are limited studies on this problem since this approach has been

regaining importance recently. As an example, in [174], the energy savings in the APs are

obtained by approximate associative computing where some bits in the CAM are either ex-

tracted from the computation or the switching range of the memristor is shrunk. Similar to

APs, there are other low-power methods applied to other in-memory computing architectures

or CAMs used for similar purposes. For example, in [57], an architectural extension to GPUs

are proposed to avoid the frequent re-executions by recalling their results directly from a

cache-like resistive CAM (RCAM) and memory structure tied to the every FPU in the GPU.

92

The CAM structure facilitates approximate matching, therefore providing energy savings at

the expense of an acceptable decrease in quality. In [124], a low power in-memory com-

puting platform using a novel 4-terminal magnetic domain wall motion (4T-DWM) device

is proposed for in-memory computing. An approximate processing in-memory architecture

(called APIM) is proposed in [51] which uses the analog behavior of memristors in addition

and multiplication operations.

To realize the low-power associative computing methods to aid in fulfilling the limitations

of current computing paradigms, the cycle accurate behaviors of the AP operations can be

analyzed to detect the possible deficiencies which cause surplus energy consumption. Even

though APs propose a good solution for the memory bottleneck, the huge switching activity

on the rows happens during the operations poses an issue on power density. If these activity

can be diminished through the circuit or operational modifications, the power consumption

of APs can be decreased as well. The following section (Section 5.1.1) presents the main

motivation behind this idea.

5.1.1 Motivation

Figure 5.1 shows the waveform of one-bit subtraction where the operations corresponds to the

second row in the 4-bit subtraction example (see Figure 2.10). The figure shows the voltage

changes across the row capacitors (VSARX where X corresponds to the row number) together

with the reference threshold voltage (Vth). In the figure PC, E, WR labels correspond to the

pre-charge, evaluate, and write phases respectively. After an evaluate cycle, if the voltage

drops below the threshold, the sense amplifier outputs a logic-0 and logic-1 if the voltage is

above the threshold.

The figure shows that row 0 matches in the first compare phase. However, in the usual

process of APs, it is impossible to get a second match within a LUT pass. In other words, it

93

Figure 5.1: Waveform of single-bit subtraction which corresponds to the second row of Figure
2.10

is not possible to get another match for the row 0 between the interval 9 ns and 14 ns. For

this reason, the other cycles are simply wasted and the capacitor is charged and uncharged

unnecessarily during these cycles.

If the data is assumed as randomly distributed with equal probability, the equation 5.1 gives

the number of wasted cycles. In the equation, m, nr, nc, nlut represent the bit width of

the operand, the number of rows in the CAM, the number of compared columns, and the

number of entries in the LUT of the corresponding operation respectively. If the operation is

multiplication (not linear time), the m in the formula must be replaced with m2. According

to the formula, 18.75% of the compare cycles are wasted for the in-place addition operations

on m-bit, n numbers.

fw(m,nr, nc, nlut) = m ·
nlut∑
i=1

m

2nc
· (nlut − i) (5.1)

94

Figure 5.2: Unnecessary (wasted) cycle percentages of the fundamental arithmetic operations
in the AP.

Figure 5.2 shows the percentage of the wasted cycles when these operations are performed

on the AP simulator detailed in Section 2.5 on 16-bit 1024K random number pairs. The

results indicate that percentage of the wasted cycles are more than theoretical results since

LUT tables cover only the part of all cases. According to the figure, the unnecessary cycles

range from 11.43% to 77.79% with a mean of 36.45%.

In addition to them, some operations spent unnecessary cycles not within a LUT pass but

also within a group of LUT passes (i.e., in a longer period). For example, the absolute value

operation in the AP performs unnecessary pre-charge and evaluate cycles even though the

input number is positive. Similarly, the multiplication operation in the AP wastes these

cycles even if the multiplicand is 0. All these cases in the AP cause the high switching

activity on the rows and lead to more energy consumption consequently.

95

5.1.2 Low-Power Methodologies

Selective Pre-charge

As discussed in Section 5.1.1, a considerable portion of the compare cycles are spent unnec-

essarily. This is because the row capacitors are pre-charged even though it is known as a

priori that it is going to discharge definitely during the rest of the LUT pass. If a mechanism

prevents these unnecessary cycles from occuring, the wasted cycles shown in Figure 5.2 can

be eliminated for energy saving. In order to accomplish this mechanism, these rows must

be differentiated from the others by tagging them so that in the next cycle the pre-charge

operation can be done selectively only on the untagged rows. These tagging operations can

be done by using a single-bit memory cell.

Figure 5.3a shows a single row of an AP modified to facilitate this mechanism as named

selective pre-charge (SPC). For tagging purpose, a single SRAM is added to the row. Initially,

each SRAM stores the logic-0 value which means that these rows are the candidate for a

possible match. Within a LUT pass, if a row is matched, the value of SRAM is changed as

logic-1. A logic-1 value stored in the SRAM indicates that this row is matched in any of the

previous cycles within a LUT pass and it is not possible that it will match again within the

current LUT pass. At the end of each LUT pass, the SRAMs in the rows are reset to convert

the all values to logic-0. In the figure, it is shown that the circuit also has modifications in

the input of the pre-charge switch transistor (Mpc). Instead of directly controlling the switch

by Qpc signal coming from the controller, the output of the SRAM is connected to an AND

gate together with the Qpc signal so that this transistor is controlled by both signals. Even

though controller pulls the Qpc signal up to logic-1 in the beginning of a compare cycle, the

capacitor cannot be charged if SRAM holds a logic-1. In this way, wasted pre-charge cycles

are avoided.

96

VDD

Φpc

SA
VSA

Mpc

Me

Φe

T0CAM Row

RST

Vdd

WE

Q

Q

Q

Q

B

B

B

B

RST

Vdd

WE

Q

Q

B

B

SRAM

Selective Pre-charge

EN

(a) Selective pre-charge mechanism.

VDD

Φpc

SA
VSA

Mpc

Me

Φe

T0CAM Row

RST

Vdd

WE

Q

Q

Q

Q

B

B

B

B

RST

Vdd

WE

Q

Q

B

B

SRAM

Selective Pre-charge

Selective Evaluate

EN

(b) Selective evaluate mechanism.

Figure 5.3: Selective pre-charge (a) and evaluate (b) mechanisms for low-power AP.

Figure 5.4a shows the waveform of the operation previously shown in Figure 5.1 when selec-

tive pre-charge mechanism is enabled. In the figure, the voltage across the row capacitance

of the row 0 (VSAR0) is matched in the first cycle and its SRAM register is set as logic-

1. Since this register disables the pre-charging in the following cycles within a LUT pass,

this capacitor cannot be charged in the following three pre-charge phases. In this way, the

upcoming tree pre-charge cycles are avoided and the energy is saved. The same situation

applies to the second row (row 1) after the third pre-charge.

Selective Evaluate

Selective pre-charge is an effective method in avoiding unnecessary pre-charge operations.

On the other hand, the charge across the capacitor leaks in the following evaluate cycles

97

unnecessarily without preceding pre-charges. One improvement in addition to selective pre-

charge can be selective evaluate (SE) where evaluate cycles can be performed selectively as

well so that the charge across the capacitor cannot be lost and is locked in the capacitor for

the next LUT pass. The same SRAM can be used for this purpose, however, the circuit needs

another AND gate at the input of the evaluate transistor. Figure 5.3b shows the modified

architecture to enable selective evaluate together with selective pre-charge. The combination

of these two methods is called as selective compare (SC) since a compare operation consists

of pre-charge and evaluate phases.

Figure 5.4b shows the waveform of the same operation in Figure 5.1 where both selective

pre-charge and evaluate mechanism enabled. The figure demonstrates that after a match,

the following pre-charge cycles are disabled as well as the charge does not leak during the

following evaluate cycles. On the other hand, in the upcoming evaluate cycles, the preserved

charge across the capacitor is interpreted as logic-1 in the sense amplifier. In order to avoid

this situation, the sense amplifier is also disabled if SRAM stores a logic-1 by connecting

its output to the sense amplifier enable input (EN) (see Figure 5.3b). In this way, the total

energy consumption of the sense amplifiers can be decreased as well since unnecessary sensing

operations are avoided like pre-charge and evaluate phases.

Modified LUTs

The methodology of selective compare requires an SRAM cell that is able to keep the one-

moment history of the previous status. Instead of exploiting this opportunity in a LUT pass

(i.e., short-term), this history can be used for a longer period for some AP operations. In

this section, the same SRAM cell is used to lower the energy consumption further in the

multiplication and absolute value operations by modifying their LUTs. This method is called

as modified LUTs (ML).

98

(a) Selective pre-charge

(b) Selective pre-charge & evaluate

Figure 5.4: Waveform of single-bit addition which corresponds to the second row of Figure
2.10 when selective pre-charge (a) and evaluate (b) mechanisms enabled.

Multiplication: For the unsigned multiplication in the AP (R = A × B), the LUT is

applied to all bits of B for each bit of A. Indeed, this table performs the addition operation

between B and R if the A’s bit is logic-1. On the other hand, if A’s bit is logic-0, the partial

addition operation is still done even though it has no effect on the results (R = R+0) and all

99

the cycles are wasted. In here instead of enabling selective compare mechanism in fine-grain,

it can be employed in the coarse grain to get more advantage from it.

Table 5.1: Modified LUT for the multiplication

Cr R B A Cr R Comment

X X X 0 - - Once
0 0 1 1 0 1 2nd Pass
0 1 1 1 1 0 1st Pass
1 0 0 1 0 1 3rd Pass
1 1 0 1 1 0 4th Pass

Table 5.1 shows the modified LUT for the low-power multiplication. The table adds an

additional LUT entry which looks for a logic-0 in the column of A. This compare operation

is performed once at the beginning of each partial addition (i.e., at the beginning of the inner

loop). To illustrate, it is executed m times for the multiplication of two m-bit numbers where

the total number of compare cycles is 4m2. If the A’s bit is logic-0, this row is simply excluded

from the following partial addition. However, during this operation selective compare cannot

be performed as well since there is a single SRAM and it keeps the history whether A is

logic-1 or 0 (not the history through the LUT pass). Since more rows are excluded by just

checking single bit (average of 50% of the rows), it is expected to get more energy savings

when compared to selective compare.

Table 5.2: LUT for Absolute Value

(a) sign = 0

A R Comment

1 1 -

(b) sign = 1

Flag R Flag R Comment

0 1 1 1 3rd Pass
1 0 1 1 1st Pass
1 1 1 0 2nd Pass

Absolute Value: In the APs, the absolute value operation is simply performed by perform-

ing 2’s complement on negative numbers and copying positive numbers directly. However,

while performing 2’s complement, the compare cycles spent on the rows having positive

100

numbers are unnecessarily wasted. For this reason, the positive and negative numbers can

be discriminated and the separate LUTs can be defined for each of them. In this way, while

performing the operation on positive numbers (i.e., copy operation), the negative numbers

are excluded and on negative numbers (i.e., the 2’s complement operation), the positive

numbers are excluded. Table 5.2 shows the modified LUT table. During the operation, first

a logic-0 is searched on the sign bit of the numbers to exclude the negative numbers and

then, copy operation (Table 5.2a) is performed on the positive numbers. After that, a logic-1

is searched on the sign bit to exclude the positive numbers and 2’s complement operation is

performed on the negative numbers.

Since the architecture supports only single-bit history, either SC or ML methods can be

exploited in these operations, but not both. In order to decide on the better method, the

percentages of the covered cycles by each method are presented in 5.3. The table shows

that the ML method can cover more compare cycles that the selective compare method.

On the other hand, the modified LUT is adding a small number of extra compare cycles

while excluding many rows from the computation. The detailed analysis of both methods is

revealed in Section 5.1.3.

Table 5.3: Percentage of covered compare cycles in SC and ML

Selective Compare Modified LUTs

Absolute Value 33.59% 46.86%

Multiplication 10.26% 48.45%

5.1.3 Experimentation

Simulation Framework

The proposed power reduction techniques are applied to SAP architectures. For the tran-

sistor model, the Predictive Technology Models (PTM) [159] is preferred to simulate high-

101

density memories with 16 nm feature sizes [151]. Performance metrics and statistics are

obtained by cross-checking the output of both Matlab and HSpice simulations (see Section

2.5). For the sense amplifier, a low-power, sub-ns amplifier design in [145] is employed in

the circuit.

Table 5.4: Average energy and power results of the SAP

Energy Time Power

Compare (per row) 5.425 fJ 1 ns 5.425 µW

Write (per cell) 0.242 fJ 0.5 ns 0.484 µW

Static Energy (per cell) 0.002 fJ 0.5 ns 0.005 µW

Arithmetic Operations

Figure 5.5 shows the normalized energy consumption of the fundamental arithmetic oper-

ations on the low-power SAP. The results are obtained by performing the corresponding

operations on 16-bit 1 M (220) numbers (in 2’s complement and absolute value) or number

pairs (in others). The figure shows energy results of the operations where SC and ML meth-

ods are applied. The reported results are normalized with respect to the energy consumption

of each operation without any low-power methodology to fit them into the common scale.

For absolute value and multiplication, the normalized energy consumptions of ML method

are shown as well. All low-power SAP results include the energy overhead of the additional

components such as AND gates, SRAMs, extra cycles due to modified LUTs, etc.

According to the figure, the energy reductions obtained from the selective compare methods

ranging from 6.95% in multiplication to 38.92% in 2’s complement with a mean of 21.58%.

On the other hand, the modified LUTs method provides a reduction of 42.59% and 41.74%

in absolute value and multiplication even though selective compare results in 29.67% and

6.95% savings respectively. It is proven that exploiting the single-bit history in a longer-term

provides more energy saving in these operations. On the other hand, this method affects

102

Figure 5.5: Energy reduction in arithmetic operations when selective compare and modified
LUTs are enabled.

the performance since it inserts additional compare cycles during the execution. Figure 5.6

shows this overhead percentage when the bit-width of the operands ranges from 2 to 32. The

performance overhead decreases as the bit-width of the operands increases. For a traditional

bit-width of 16, the performance overheads are less than 2%. When compared with energy

reduction, this performance overhead is negligible and can be ignored for the sake of energy

savings.

Figure 5.6: The performance overhead in 2’s complement and multiplication due to the
modified LUTs.

103

Table 5.5: The evaluated benchmarks and their input sizes

Benchmark Domain Parameters & Input

Sobel Filter Image Processing 512x512 gray image
FIR Signal Processing 8-tap, 512 x 8-bit integers
FFT Signal Processing 1K 16-bit complex numbers
Image Binarization Image Processing 512x512 gray image
RGB2Gray Image Processing 384x512 color image
FastWalsh Signal Processing 256x256 gray image
Mean Filter Machine Vision 512x512 gray image

Benchmarks

For the evaluation of proposed low-power AP for the real cases, seven benchmarks from

different domains are implemented on the AP. Table 5.5 shows these benchmarks, their

inputs, and parameters during the evaluation. Both selective compare and modified LUTs

methods are evaluated on these benchmarks. During the runs, AP is configured according

to the corresponding benchmark, so in some cases, more than one AP is pipelined to each

other. For example, a 1K FFT requires 10 AP stages. Since the circuit simulation time

takes days for the successive iterations of the computationally intensive benchmarks (e.g.,

10s thousand cycles for FFT), first, the accurate execution profile (dynamic & static energy,

time, match & mismatch statistics, etc.) are obtained from the simulator (Figure 2.15), and

later these numbers are used in the Matlab simulator to get the precise results.

Figure 5.7 shows the normalized energy consumption of each benchmark for both methods.

If the benchmark includes either multiplication or absolute value, it becomes possible to

reduce the energy consumption further by modified LUTs. For example, even though the

normalized energy of the FFT is reduced by 4.16% when selective compare method is used,

a 47.77% improvement is possible when modified LUT is enabled for absolute value and

multiplication. The figure shows that exploiting modified LUTs can provide up to 45.51%

more savings on top of selective compare. The one reason for this huge saving is that at the

first stages of the FFT, the twiddle factors includes lots of zeros so the modified LUT provides

104

Figure 5.7: Normalized energy consumption of the benchmarks when selective compare and
modified LUTs are enabled.

Figure 5.8: Energy consumption during the FFT benchmark runs of all three cases.

an excessive saving on these multiplications. In other benchmarks, the energy savings range

from 14% to 40%. Figure 5.8 shows the energy trace comparison between the normal AP

and the low-power alternatives. The figure shows the trend of the FFT benchmark since it

includes nearly all instructions in Table 3.1. The reported energy is sensed at every compare

cycle. The figure shows that the ML follows a much lower energy consumption trend.

As stated in Section 5.1.2, the proposed low-power methodologies cause area overhead in the

circuit by inserting AND gates and SRAM cells. The figure 5.9 shows these overheads for

105

Figure 5.9: Area overhead of the benchmarks when selective compare and modified LUTs
are enabled.

Table 5.6: Comparison with other sub-65nm ASIC implementations of FFT

Word Effective Normalized Normalized Normalized
Technology Size Width Area Throughput Area Efficiency Power Efficiency FoM

(points) (bits) (mm2) (MS/s) (GS/s/mm2) (GS/s/W) (GS/s/W/mm2)
AP 16 nm 2048 16 0.096 268 3.74 7.84 81.35
AP+SC+ML 16 nm 2048 16 0.097 268 3.68 15.66 161.58
AP+SC+ML (VoS) 16 nm 2048 16 0.097 268 3.68 25.08 258.83
[146] 65 nm 1024 16 8.29 240 0.16 129.14 116.86
[10] 45 nm 2048 32 0.97 0.22 0.002 0.25 3.99
[170] 65 nm 2048 12 1.38 20 0.06 8.97 80.79

each benchmark when the AP architecture is configured specifically for these benchmarks.

According to the results, the area overhead is between 0.49% in FFT and 3.29% in image

binarization with an average of 1.27%. The FFT processor requires a 121x512 cell array

together with additional matching circuits in each row, so adding two AND gates and a

single SRAM cell does not cause a significant area overhead. The overhead of the image

binarization is the most because it requires relatively smaller CAM (i.e., 17 cells/row). On

the other hand, it is explicit that the energy reduction is much more than all these numbers.

106

Figure of Merit

The comparison of AP-based implementation of FFT processors with the traditional sub-65

nm approaches is shown in Table 5.6. The table includes three versions of AP implementation

of 2K 16-bit FFT where the first one corresponds to the original implementation, the second

one exploits the SC and ML together. The third one corresponds to the case where voltage

over scaling is applied to the CAM cells (i.e., core voltage is decreased 10%) and noise margin

of the compare operations is narrowed as a result. The table shows the normalized area,

power efficiency numbers and a figure of merit in terms of throughput over power density.

For a fair comparison, the respective numbers are normalized according to the equations 5.2,

5.3, and 5.4 where N corresponds to the FFT size.

Normalized

Area
=

Area(
Tech

16 nm

)2 ·
(
Wordlength

16

)
·
(
N ·log2N
11×211

) (5.2)

Normalized

Power
=

Power(
Tech

16 nm

)
·
(
Wordlength

16

)
·
(
VDD

0.7 V

)2 ·
(
N ·log2N
11×211

) (5.3)

Normalized

Throughput
=

Throughput(
16 nm
Tech

)
·
(

16
Wordlength

)
·
(
N
211

) (5.4)

As shown in the table, AP provides tremendous gain in terms of area efficiency. The gains

are shown in both the absolute area numbers as well as the normalized area efficiency as

measured in GS/s/mm2. In terms of normalized power efficiency measured in GS/s/W , the

107

low-power AP architecture increases the efficiency by 2x making it the second best where

it had been third. Finally, in terms of the Figure of Merit (FoM) chosen as the normalized

power efficiency per unit area GS/s/W/mm2 where the low-power AP outperforms all other

architectures whereas the normal one is not.

5.2 Multi-compare for RAPs

Even though high switching activity poses a threat on the power efficiency of SAPs, the

main problem of RAP architectures is the high writing energy of memristors.

5.2.1 Motivation

In associative processing, the compare operations can be done on up to four columns (i.e.,

not like the traditional CAM operations where sometimes a search operation is performed on

all columns). This is because the maximum number of searched columns is 4 for which the

four columns are searched together in the multiplication operations. On the other hand, the

minimum number of columns required in a search operation is one which is performed during

the copy operations. Depending on these informations, Figure 5.10 shows the two ultimate

compare cases for match and mismatch situations in an traditional AP. Figure 5.10aa shows

the worst case match operation where the search operations are performed on the all four

columns where some leakage occurs from the capacitor, but still sense amplifier outputs

logic-1 since this leakage is not enough to fall it below Vth. On the other hand, Figure

5.10ab shows the worst case mismatch operations where the only one cell leaks the charge

while others are in the off state and as a result, the voltage across the capacitor falls below

the Vth and leads to a logic-0 at the output of the sense amplifier. Figure 5.10b shows the

waveform corresponding to the worst match and mismatch cases during a compare operation

108

together with the noise margin between them. To guarantee a sufficient noise margin between

these two cases, the memristors must be switched between a sufficient range of on and off

values (i.e., Roff-Ron). Otherwise, the remaining charges across the the capacitor cannot be

distinguishable for the worst match and the worst mismatch cases (and even for the others)

unless the memristor is written properly.

VDD

Φ

+++ +++
--- ---

SA
Vc

Mpc

Mc

Φ’

1

Wre

VWR

VDD

Φ

SA
Vc

Mpc

Mc

Φ’

0

Wre

VWR

+ +

- -

0 1 1 0 1 0 1 0

1 00 0 0 0 0 0

Worst Case Match

Worst Case Mismatch

(a) The worst match and mismatch cases at the AP rows

(b) The waveform and the noise margin corresponding to the worst match and mismatch cases

Figure 5.10: The cases for the worst case match/mismatch and their corresponding waveform

The main contribution to the energy consumption in RAPs is the memristor write energy.

Even though a single compare cycle per row consumes an order of femto joules, switching a

109

cell within full range (Roff-Ron) which consists of two memristors takes order of pico joules.

This consumption is mainly caused due to the huge leakage current occurred at the low

resistance states of the memristor and the longer switching period when the memristance

becomes closer to the border values (see Figure 4.5). The solution of this problem can be

avoiding the low resistance states while switching the memristor within an acceptable margin.

In this way the memristor switches between R′off-R′on where R′on > Ron and R′off < Roff .

However as stated in the previous section (Section 4), this situation causes inaccuracy in the

results since some match and mismatch operations mislead to the wrong results. Table 5.7

shows the three cases for memristance scaling where the Case 0 corresponds to the full range

and the others show the scaled two cases. As stated in the table, the scaling the memristor

leads to a considerable decrease in the write energy. On the other hand, it deteriorates the

noise margin negatively. Figure 5.11 shows the difference between the worst case matched

and mismatched rows (i.e., noise margin) for the all three cases in Table 5.7.

As the summary, driving the ReRAMs within a narrower range provides a considerable

energy savings as well as a performance improvement since the required write pulse becomes

narrower as well. On the other hand, it forces the system to run in an inaccurate region

where it is not acceptable for the exact (non-approximate) computation. As a result, if one

can get benefit from the ReRAM scaling together with the acceptable noise margin, the

low power RAPs can be obtained without sacrificing the reliability of the processors. The

following section details the methodology for this purpose.

e-15

Table 5.7: Cases for ReRAM scaling and their corresponding energy and timing results

Case # Ron (Ω) Roff (Ω) Twrite Ewrite Ecompare NoiseMargin

0 100 100 k 2 ns 21.7 pJ 2.92 fJ 178 mV
1 1.7 k 79 k 1 ns 349.6 fJ 2.56 fJ 119 mV
2 3.2 k 40 k 0.5 ns 121.8 fJ 2.29 fJ 36 mV

110

Figure 5.11: The waveform for the noise margin of the three cases during a compare cycles

5.2.2 Methodology

In order to obtain the low energy consumption proposed by memristance scaling as well as

satisfactory noise margin without harming the accuracy of the computation, the proposed

method of multi-compare for resistive associative processing are evaluated. In multi-compare,

the single cycle compare operation (i.e., consists of one precharge and evaluate phases) is

divided into multiple compare cycles by decreasing the number of compared columns (i.e., <

4) during an operation. By this way, the noise margin between the worst match and mismatch

cases can still satisfy the reliability requirements of the processors. As an example, a compare

operation during the multiplication is separated into two consecutive compare operations

when the maximum number of compared columns is set as 2. After each compare, the result

of the sense amplifier is ANDed with the result of the previous cycle if they are the part of

a single compare operation. Even though increasing the number of required compare cycles

negatively affects the performance, the decrease in the write time as a result of scaling (see

Table 5.7) can compensate the performance decrease in the compare operations by increasing

the performance of the write operations.

Figure 5.12 shows the noise margins for each proposed cases and number of maximum com-

111

Figure 5.12: Noise margins for each case and the maximum number of compared columns

pared columns. As an acceptable threshold, we set a limit of 150 mV to ensure the satis-

factory gap between the two worst cases which is about 21% of the nominal Vdd of 0.7v.

In some cases, more than one maximum number of compared columns satisfy this require-

ment, however, in this case, keeping the column number as big as possible provides the

maximum performance. As an example, for case #1, 1-column and 2-column compare cases

satisfy the noise margin. On the other hand, setting it to 2-column compare provides better

performance than 1-column compare.

5.2.3 Evaluation

For the evaluation, a set of seven benchmarks from different domains are simulated on the

simulator described in Section 2.5. Figure 5.13 shows the normalized performance and energy

results which are obtained for each benchmark for the 1-column compare and 2-column

compare cases. For 1-column compare, the scaling case #2 is referenced and the case #1

is referenced for 2-column case. Even though multi-compare provides a considerable energy

savings for both compare cases, 1-column compare case sometimes provides performance

decrease in some benchmarks. On the other hand, applying 2-colum compare to a RAP

112

provides a considerable speedup and energy gain.

(a) Normalized performance

(b) Normalized energy

Figure 5.13: The normalized performance and energy results of the benchmarks for 2-column
and 1-column compare cases

113

5.3 Conclusion

In this chapter, low-power APs implementations by proposing architectural and instructional

improvements are proposed. In SAPs, a selective pre-charge and evaluate mechanism are

facilitated and the LUTs of multiplication and absolute value operations are modified to

get more benefit from architectural changes. For RAPs, the multi-cycle compare operation

are proposed to decrease the write energy consumption of ReRAMs without harming the

reliability of the system.

114

Chapter 6

Two-dimensional AP

In this chapter, a new and novel associative processing architecture is proposed to cope with

the current limitations of the traditional 1D AP architecture. The designed architecture is

implemented by both SRAM-based and ReRAM-based CAMs and can be employed as an

accelerator.

6.1 Introduction

These studies on the traditional AP architectures prove that APs can be a good candidate

for solving the problems of current computing systems when used as an accelerator near

the main processor [176, 60, 69]. In these, and other designs [118, 177], CAMs operate

on 1D vectors, and CAM-based APs are therefore limited to operate within a CAM row.

On the other hand, any 2D reduction operations across columns of data (e.g. such as

summation, product, population count, etc) must rely on circuits external to the CAM and

typically implemented in CMOS. These circuits end up being too expensive in area, power

and/or performance eliminating much of the benefits of the resistive RAM. These structures

115

significantly increase area and/or delay and power of the composite computing system and

cannot fulfill the deficiencies of the traditional architecture. In [40], these tree structures

take up over 50% of the overall area and increase the delay by over 20x. Moreover, these

architectures cannot parallelize all the steps needed to perform fundamental vector and

matrix operations in the CAM array and need an adjuvant structure, often implemented in

CMOS to perform the other operations.

6.1.1 Motivation

Even though AP facilitates efficient parallel in-memory computation, one of the shortcomings

of the conventional AP architecture presented in [176] (and of most similar one in [69]) is that

only row operations can be performed in parallel. This limits the scope of the architecture to

1-D vector-based operations. Additionally, any possible inter-operations between the rows

requires additional data interconnection mechanisms. For example, consider a dot product

M
ain

M

em
o

ry

A
sso

ciativ
e

P
ro

cesso
r

A
cce

le
rato

r

Addr

Data

Addr

Data

Addr

Data

Central
Processing

Unit

M
e

m
ory C

on
trolle

r

Figure 6.1: Overall system architecture with AP accelerator

FA
A

B

Cout FFFF

FFFFS
FA

FA
FA

FA

FA
FA

FA

FA
FACAM Register

Figure 6.2: 1D AP with Adder Tree

116

operation:

A ·B =
n−1∑
i=0

AiBi = A0B0 + A1B1 + · · ·+ An−1Bn−1 (6.1)

The traditional AP architecture (1D AP) can compute all the individual Ai ·Bi in parallel in

O(m2), but summing the individual product terms cannot be done on the CAM because it is

not capable of performing operations across different rows. Thus, one must either move the

individual product terms to the main processor or juxtapose a reduction tree (or adder tree)

to the 1D architecture as proposed in [176, 42, 40], allowing for a limited set of functions

(e.g., tree addition of n numbers). Figure 6.2 demonstrates the AP architecture with a

reduction tree (i.e., adder tree). In here, the reduction tree is used to perform the vectorial

operations that produce a scalar value (e.g., the sum of products) at the end. In addition

to them, this reduction tree can be used to count the number of matches or mismatches. As

architecture, the adder tree consists of the stages of the full adders (FA). The first stage of

adders performs the pairwise addition of two CAM rows (A and B) so that every two rows

feeds to one adder. The second stage sums the partial results of the first stages and so on.

After each stage, the partial sum of the results is stored in the registers (flip-flops between

the FAs) so that the reduction tree is fully pipelined. At the end, the last full adder outputs

the sum of the values in the CAM rows and writes the result to the output register.

Even though the reduction tree provides an additional functionality to the 1D AP, these

functionality is limited to the addition of all rows. However, some applications require the

local addition inside a group of CAM rows (e.g., FIR filter). Furthermore, some applications

that need parallel computing capability requires vector processing in both horizontal and

vertical dimensions (2D) (e.g., image filtering applications, 2D transformations) and this

processing can include not only addition but also other operations such as multiplication,

subtraction, etc. When the traditional 1D AP is employed for these applications, the AP

117

H(n-1) H-Key(k-1)RH-Key(k-1)L

V-Key(k-1)L

V-Key(k-1)R

Match
Line

(b) k-bit segment

(b) 2D AP architecture with nxm segments

H-Key(n-1)H-Key(n-1)
V

-K
e

y 0
V

-K
e

y 0
V

1
H2H-Key2H-Key2 H1H-Key1H-Key1 H-Key0H-Key0

V
-K

e
y 1

V
-K

e
y 1

V
2

V
-K

e
y 2

V
-K

e
y 2

V
(m

-1
)

V
-K

ey
(m

-1
)

V
-K

ey
(m

-1
)

Bitk-1

H-Key1RH-Key1L

Bit1

V-Key1L

V-Key1R

H-Key0RH-Key0L

Bit0

VDD

Φ

++ ++
- - - -

SA TAG

Φ

V-Key0L

V-Key0R

H-KeyH-Key Match
Line

H-Write
Enable

H-Write
Mask

V-Key

V-Key V-Key

V-Key

H-KeyH-KeyMatch
Line

(c) SRAM-based 2D CAM cell (d) Resistive 2D RCAM cell

V-Write
Mask

V-Write
Enable

Figure 6.3: Proposed 2D associative processor (AP) architecture

itself cannot demand the requirements of the applications and requires to handle them se-

quentially. Therefore, this issue affects the power density, speed, and flexibility of these

architectures, and limits the scope of tasks that can be efficiently executed.

6.2 Proposed Architecture (2D AP)

To compensate the aforementioned deficiencies of 1D AP, a two-dimensional (2D) AP ar-

chitecture based on 2D CAM is proposed as illustrated in Figure 6.3. The figure shows the

architecture of 2D AP hierarchically from the overall architecture (a) to the segment circuit

(b), and down to the circuit implementations of CAM cells in detail (c, d). In a 1D CAM,

a key is broadcast across the horizontal key (H-Key) broadcast lines (blue in Figure 6.3a)

such that each row in the CAM is matched against the key. Matching rows will assert their

respective match lines (solid black lines). In order to accommodate the 2D connectivity, the

1D CAM cell from Figure 2.2 is modified as shown in Figure 6.3c and Figure 6.3d. Over the

1D AP, the 2D CAM adds another set of broadcast and match lines, and another set of key

118

registers vertically (as shown in green). Therefore, in addition to the horizontal match oper-

ations described above, the architecture can now perform vertical match operations whereby

a key from the set of vertical key registers (V-Key, in green) is matched against columns of

matched lines. Thus, when a column matches the key contents, its match line (dashed blue)

is asserted. In Figure 6.3a, the dashed blue lines correspond to the horizontal select lines,

and the dashed green lines correspond to the vertical select lines. These select lines control

the transistors that connect the match lines of the segments to each other. For example, H1

select line combines the segments corresponding to H−Key0 and H−Key1 to each other

and operations can be performed on these two segments.

Figure 6.3b illustrates the architecture of a k-bit segment. In the same manner done for

1D CAM, an SRAM-based and ReRAM-based CAM cells can be employed in the 2D ar-

chitecture. For the 2D SRAM-based cell, the write and bit lines are duplicated to support

the vertical search as well as horizontal search. The 2D SRAM cell (shown in Figure 6.3c)

requires 18 transistors instead of 12 transistor correspondence for 1D SRAM cell. Only the

circuit used for the writing and matching are duplicated to support the operations in the

second dimension. The SRAM-cell (i.e., a coupled inverter) has no change and the cell still

stores the single bit, so the static power consumption is not affected. The increase in the area

can be compensated by using more area efficient SRAM structures such as 4T SRAMs [14].

Similarly, the two-transistor two-ReRAM cell circuit of 1D RAP is scaled to accommodate

2D access using four-transistors and two-ReRAM per cell in 2D RAP. In the same manner,

a single bit is stored in complementary mode inside the cell. The complementary ReRAM

can be ”sensed” from either the horizontal or the vertical key registers. For both cell types,

a mismatch from either direction will cause the cells’ output to discharge, causing either the

horizontal or vertical match lines to discharge, depending on which mode is enabled. For

ReRAM-based 2D AP (i.e., 2D RAP), the increase in the array size does not affect the overall

energy consumption since memristor is a nonvolatile element. Contrary to the SRAM-based

CAM implementations which require static energy to keep the data even though the circuit is

119

not activated. This deficiency can be overcome by using the design in [28] where an SRAM-

based CAM cell is modified as non-volatile by adding two more memristors. For any CAM

cell implementations as either ReRAM, or SRAM, or any other technology, the proposed

2D architecture is independent of the cell implementation. To illustrate, if one-day ReRAM

replaces the post CMOS technology, the architecture can be accommodated seamlessly.

In addition to vertical matching support, the 2D architecture also supports segmentation

in order to improve parallelism. Each segment can be considered as an individual tiny AP

with its own pre-charging, matching, and writing circuitries. A segment stores the smallest

meaningful data in the CAM. Depending on the AP mode, either horizontal or vertical select

lines are activated. It is also possible to activate a subset of them as well, thus, there can be

different modes in which this AP can operate. As shown in the figure, each key broadcast

either horizontally or vertically has an extra control bit (H or V). The 2D AP works as before

in horizontal mode when (H, V) = (1, 0), and vertical mode when (H, V) = (0, 1). When (H,

V) = (0, 0) the word is disconnected from match lines in both directions. Since each word

has its own write circuitry (essentially operating as a 1D, single word AP), operations can

be performed in parallel across different segments in a row or column. Using the segmented

architecture, it is possible to segment a row or column into the independent groups, each

performing the same or different operations across rows or columns simultaneously. The

segmentation also provides energy efficient architecture since it allows those segments which

are not needed to be disabled in a dynamic manner.

The choice of segment size (k) is a design space parameter. For a fixed size of 2D AP, a small

value of k allows for more parallelism across a single row and also enables finer grain power

management. Operations across wider bit widths can be accomplished by concatenating

adjacent segments, therefore making the array very flexible when handling operations of

varying bit widths. However, the overhead of the peripheral circuitry (such as the sense

amplifier, tag, precharge transistors, and write circuits) results in an increase in power/energy

120

a00 a01
a10 a11

nxn

H(n-1)

(b) 2D AP

H-Key(n-1)H-Key(n-1)
V
-K
e
y 0

V
-K
e
y 0

V
1

H1H-Key1H-Key1 H-Key0H-Key0
V
-K
e
y 1

V
-K
e
y 1

V
(n
-1
)

V
-K
e
y (

n
-1
)

V
-K
e
y (

n
-1
)

a00 b00

(a) Matrix multiplication

Register

M
U
L
T
IP
L
IC
A
T
IO
N

ADDITION

(c) 1D AP with adder tree (d) 1D AP

b00 b01
b10 b11

nxn

a00
b00

a00b00

a00
b01

a01
b10

a01
b11 a00b01

a01b10
a01b11

a00b00
a00b01

a01b10
a01b11

Figure 6.4: n×n matrix multiplication on 2D AP, 1D AP w/o adder tree

and area, and eventually degrade the overall area and energy efficiency (and potentially the

performance) of the whole system.

Going back to the dot product example in Section 6.1.1 (Equation 6.1), the product of a

vector on the 2D AP can be performed as follows:

i. First the array is set to the horizontal mode (blue lines) and the Ai · Bi product terms

are computed in parallel and stored in a column, such as, the A column, in O(m2) time.

ii. Following that, the array is switched to the V mode and the keys are now broadcast

vertically, allowing the addition of the Ai and Bi product terms. Adding n numbers can

be done in O(m log n) time and the result can be placed in a word, for example, the top

left word.

For the complexity, since m (i.e., bit width) is fixed for a given application, the time com-

plexity of the dot product operation becomes O(log2 n) in overall.

121

Table 6.1: Theoretical complexity of various kernels where complexity order between the
cells is green < blue < red.

Kernel Sequential 1D RAP [40] [69] 1D RAP * [176] 2D RAP

Vector Add, Multiply O(n) O(1) O(1) O(1)

Vector Dot Product O(n) O(n) O(log2 n) O(log2 n)

Vector-Matrix Multiply O(n2) O(n2) O(n log2 n) O(log2 n)

Matrix-Matrix Multiply O(n3) O(n3) O(n2 log2 n) O(n log2 n)

Histogram (k bins and n values) O(kn) O(k) O(k) O(k)

Frequency (k values in n values) O(kn) O(k) O(k) O(k)

Set membership O(n) O(1) O(1) O(1)

Set intersection or union O(n2) O(n) O(n) O(n)

1D FFT, IFFT, FWHT, Conv. (n) O(n log2 n) O(log2 n) O(log2 n) O(log4 n)

1D Filter (n data, m filter 1) O(n) O(1) O(1) O(1)

2D FFT (nxn) O(n2 log2 n) O(n log2 n) O(n log2 n) O(n log4 n)

2D Stencil (nxn, 5 point) O(n2) O(n) O(n) O(1)

2D Filter (nxn data, mxm filter 1) O(n2) O(n) O(n) O(1)

* includes an adder tree.
1 m is a constant.

6.3 Evaluation

Capability of processing the data on the second dimension together with the segmentation

feature provides performance improvement theoretically by decreasing the operational com-

plexities. For the evaluation of 2D AP, the theoretical performance improvements due to

two-dimensional architecture are investigated in terms of big-oh notation. As shown in Table

6.1, a wide range of applications and kernels is considered to evaluate the performance of

the 2D AP over a single 1D AP (with and without an adder tree) when they are used as an

accelerator and a sequential processor. It is assumed that the data is stored in the accelerator

since it is an in-memory accelerator. It is important to note that the table summarizes the

theoretical bounds on time complexity of various kernels where bit width (m) is constant,

and the actual performance may depend on the specific capabilities of the architectures, IO,

data size, and etc. Note that in some cases, the 2D architecture offers the same complexity

as 1D, while in others, a significant speedup can be attained. For example in FFT, 2D

122

architecture facilitates the radix-4 FFT instead of the radix-2 of 1D, and this can provide

considerable improvement in time complexity. For 2D filters, 2D AP can provide concurrent

computation on the data if data is ready inside the CAM array (i.e., that is what in-memory

accelerator does). Additionally, in 2D AP, no additional hardware is needed to perform

population count or reduction, compared to [176, 42] and [40]. Similarly, the speedup in 2D

Stencil comes from the segmented computing capability performed on 2D data as parallel

and data movement savings which requires additional interconnections in 1D AP. Further-

more, even though 1D AP with addition tree facilitates these features, 2D AP provides more

functionality apart from the addition and population count such as multiplication, subtrac-

tion, logical operations, and etc. which are very useful especially in filters. In the 2D AP,

it is also possible to perform multiple dot product operations in parallel as well, such as the

case in matrix multiplication that brings a considerable speedup. While the adder tree jux-

taposition improves computational complexity only for vector dot product, vector-matrix,

and matrix-matrix multiplication kernels (compared to 1D), the 2D architecture provides

a significant advantage in computational complexity over the 1D with adder tree for both

Vector-Matrix and Matrix-Matrix multiplication kernels and similar complexity for Vector

dot product.

Figure 6.4 shows an example case of n×n matrix multiplication (Figure 6.4a) on 2D AP, 1D

AP with and without adder tree. In the matrix multiplication, one row of the matrix A is

multiplied by the matrix B at a time. In this case, all implementations have a complexity

term of O(n) since this computation has to be done. Figure 6.4b shows the operation

on 2D AP. In 2D AP, the multiplication operation is completed in the horizontal mode

within a constant time. After that, the processor switches to the vertical mode and the

summation operation (reduction) are performed for each column in a constant time. This

reduction takes O(log2 n) complexity, so total complexity becomes O(n log2 n). For 1D AP

with adder tree (Figure 6.4b) The same data is placed as horizontally to the CAM array and

the multiplication is performed in constant time. After the multiplication, the summation

123

operation is performed within each group to form a coefficient in the result matrix. Even

though adder tree supports O(log2 n) complexity in the addition as like in 2D AP vertical

mode, in here, the reduction operation is performed n times. In total, the complexity for

the 1D AP for adder tree becomes O(n2 log2 n). In 1D AP without adder tree, the reduction

operation is also performed in linear time, so complexity becomes O(n3).

6.4 Experimentation

6.4.1 Simulation Framework

In order to assess the efficiency of 2D AP implementation experimentally rather than theo-

retical bounds, we utilize a SPICE-based in-house simulator from Section 2.5. For the tran-

sistors, Predictive Technology Models (PTM) from [159] are used to simulate high-density

CAM arrays with sub 20nm feature sizes [151]. For the memristor element, the nanosecond

switching time device model presented in [114] and its corresponding SPICE model in [168]

are adopted since it exhibits the fastest memristor device between many fabricated memris-

tor models [107] [121]. For the sense amplifier, a low-power, sub-ns amplifier design in [145]

is employed in the circuit.

In the associative processing, the number of the searched columns are limited to the number

of compare bits in the LUTs and this number is maximum four for the multiplication and

minimum one for the copy operations [32]. For this reason, we optimize each architecture

accordingly (e.g., setting the Vth) and make them resistive against the variations in the

voltage sources [79] and memristor elements [88].

Figure 6.5 shows voltage changes during two compare cycles of 2D AP architectures in H

and V modes consecutively and proves the functional correctness of the architecture where

124

the figures 6.5a and 6.5b corresponds to 2D SAP and 2D RAP correspondingly. During the

operation, first H mode is selected by asserting the H line as logic-1 and the V line as logic-0

(a) 2D-SAP

(b) 2D-RAP

Figure 6.5: Spice simulation of two consecutive write and compare cycles in H and V mode
respectively in 2D AP

125

and then the compare operations are performed as row-wise. After that, the configuration

is switched to V-mode. Despite the previously published AP architectures, we manage to

perform the precharge and write steps simultaneously to get a benefit of throughput since

these two operations are independent of each other as inferred from the Figure 2.3, Figure

2.5, and Figure 6.3b, so they can be intertwined. Figure 6.5a shows the waveform of this

architecture where write phase is combined with the precharge cycle in the 2D SAP. This

situation also provides energy reduction in 2D SAP (and in 1D SAP if applied) since the

energy consumption due to the static power decreases as the total time decreases. In 2D

RAP, the precharge step can be performed during the last write cycle since single cell write

operations consists of two consecutive write cycles, but still provides a considerable speedup

overall. Lastly, the compare operations are performed as column-wise in the V-mode.

Table 6.2: Average energy and power results of the 2D AP (ReRAM & SRAM) where each
segment is 32-bit

2D ReRAM 2D SRAM
Operation Energy Power Energy Power

Compare
(per row) 4.908 fJ 4.8908µW 5.425 fJ 5.425µW

Write
(per cell) 347.208 fJ 347.208 µW 0.242 fJ 0.484µW

Table 6.2 shows the average energy consumption and power dissipation results of 2D AP for

SRAM and ReRAM based variants for 32-bit segment size. In the table, all operations except

write in 2D RAP take 0.5 ns. In RAP, write operations takes 1 ns as the combination of two

write cycles each is 0.5 ns. Even though, SRAM-based segment outperforms the ReRAM-

based segment overwhelmingly in terms of power and energy consumptions, ReRAM-based

cell provides excellent scaling in terms of area (i.e., 4T2M vs. 18T). It is also hopeful with

the advent of new ultra-low power and high-speed memristors (e.g., a possible candidate in

[18]) and low power ReRAM-based CAM techniques [58], [60], [173], this technology can be

viable as a low power alternative.

126

Table 6.3: The evaluated benchmarks, their features, and the provided input

Benchmark Domain Description Input

FIR Signal Processing 8-tap filter 1K 8-bit data
FFT Signal Processing 12-bit 1K 12-bit complex number
FastWalsh Signal Processing 18-bit 256x256 gray image
IFFT Signal Processing 12-bit 1K 12-bit complex number
RGB2Gray Image Processing 8-bit 256x256 color image

6.4.2 Energy & Performance

For the evaluation of 2D AP, a set of benchmarks from different domains [179], [44] are run on

the simulation framework. During the evaluation, we compare the proposed 2D architecture

with its 1D correspondence. We assume that the both APs are used as an accelerator, the

outer processor has the equal fixed bandwidth, and the capacity of the architectures are

equal. The duty of the processor is just initializing the task and getting the results back,

therefore the processor does not interfere during the operation inside the APs. In porting

the applications, we used the segmentation feature of the 2D AP for FFT and inverse FFT

where multiplications of the complex twiddle factors and inputs (i.e., butterfly operation) are

performed separately. Fast Walsh Hadamard transform (FWHT) has a similar computation

flow to FFT, but less computational complexity. The segmentation feature enables parallel

execution for this benchmark as well. FIR operation is a kind of vector-matrix multiplication

where the multiplications with the filter coefficients are performed in the horizontal direction

and the summation in the vertical direction. In this benchmark, operation on the second

dimension enables the computing without moving the data or need for an adder tree. For

Energy and performance improvements for both SRAM-based and ReRAM-based 2D AP

over 1D correspondences are presented in Figure 6.6. The energy improvement mainly comes

from the data locality advantage of 2D AP together with the static power reduction because

of the faster computation. The speedup improvement is mainly due to the faster computation

that 2D AP facilitates as showed in Table 6.1.

127

fft fir

ge
om

ea
n

bi
tc

ou
nt

fw
ht

m
at

rix
m

ul
t

iff
t

rg
b2

gr
ay

100

101

102
E

n
er

gy
(%

)
2D SAP 2D RAP

(a) Energy savings

fft fir

ge
om

ea
n

bi
tc

ou
nt

fw
ht

m
at

rix
m

ul
t

iff
t

rg
b2

gr
ay

101

102

P
er

fo
rm

an
ce

(%
)

(b) Performance improvement

Figure 6.6: 2D SAP and 2D RAP performance improvement and energy savings vs. 1D SAP
and 1D RAP, respectively

Figure 6.6 shows the improvement in both speedup (performance improvement) and energy

(energy saving) as the percentage when we used an SRAM-based AP and ReRAM-based

AP for both 1D and 2D architectures. As Figure shows, the 2D architecture provides a

performance improvement between 8% and 75% for all benchmarks. This performance im-

provement comes from parallel execution because of the segmented architecture. As an

example for this case, RGB2Gray benchmark (i.e., RGB image to gray image conversion) re-

quires a computation in which all three-pixel values are multiplied with different coefficients,

and then summed to form the gray correspondence [73]. In 2D AP, these multiplication op-

erations can be done as parallel inside a row due to the segmentation. After, the summation

operation can be performed by horizontally combining the segments. In a similar manner,

128

other benchmarks get benefit from both parallelism and data locality features of 2D AP.

On the other hand, even though there is an energy improvement, it is limited up to 7% in

the 2D SAP. This is mainly due to that in SRAM-based AP, write energy is comparable with

compare energy and two-dimensionality provides mainly data movement savings and static

energy savings because of the performance improvement. On the other hand, for ReRAM-

based AP, the energy performance is more than SRAM-based one ranging up to 48% since

write energy in memristor is higher than SRAM. It gives the almost same performance

improvement as SRAM correspondence. In here it is worth to point that even though these

benchmarks include some reduction operation through their running flow (e.g., in FIR, the

summation of products, in RGB2Gray, the summation of coefficient-pixel products), these

operations are local reductions where only a subset of the rows needs to be accumulated.

For this reason, the 1D architecture without adder tree is referenced since it outperforms.

For the simpler benchmarks such as vector-matrix or matrix-matrix multiplies, using the 1D

architecture with adder three would be the more reasonable.

From the observed behavior and the results obtained in Figure 6.6 and stated operational

complexities, one can infer that in order to obtain a benefit from the 2D architecture, a

benchmark has a SIMD like computation pattern together with some degree of parallelism

inside a row. If there is a local reduction operation as in FIR, 2D AP can perform the reduc-

tion operations in the second dimension without moving the data. On the other hand, the

reduction tree requires an extra movement in 1D AP. In addition, it can support only one

reduction at a time even though 2D AP can support multiple because of the segmentation.

As a result, 1D AP with adder tree causes a decrease in the performance and increase in

the energy consumption (see Figure 6.4. Due to both segmentation and horizontal process-

ing features of 2D AP, the architecture provides an inherent advantage for the 2D signal

processing algorithms as well.

The key point in application mapping to the 2D AP is the effect of the architectural pa-

129

rameters of k, n, and m. The performance of an application is tightly dependent on these

parameters. For a given area budget of N-bit CAM, increasing k (i.e., the bit size of the

segments) decreases the degree of parallelism since it decreases n. If k is decreased, the AP

can support more parallel operations leads to increase in performance with the expense of

an increase in the power density. On the other hand, k must be big enough to perform the

unit operations inside a segment. Otherwise, two horizontal segments must be connected

to each other to create enough place for a computation which in turn causes an indirect

decrease on n, leading to decrease in horizontal parallelism. To illustrate, we can inspect

the effect of these parameters on some benchmarks. For example, if we set n=1 for an FIR

benchmark, we cannot get the benefit from parallelism that the 2D AP provides. Similarly,

setting it to more than the order of the filters is not necessary and does not provide any

speedup since maximum parallelism can be obtained by setting it to the number of taps.

If the application requires vector parallelism, the parameter m becomes important as well.

For instance, a radix-2 FFT requires parallelism to apply the butterfly on all word-pairs as

well as the parallelism within a butterfly computation. If it is set to less than the amount of

data or maximum degree of parallelism, the overall execution must be separated in chunks.

As an example case, if it is set as 512 for a FFT on 1K data pairs, a single butterfly stage

on 512 data pairs must be run two times sequentially.

In addition to those, there are some limitations posed by the circuit parameters. For ex-

ample, if k is too wide, the noise margin after a compare operation can be very small and

cause the inaccuracies in the operation. According to the our simulations on 2D-RAPs,

the noise margin between the worst case match (i.e., all 4 cells are mismatched during the

multiplication) and the worst case mismatch (i.e., only one cell is mismatched) drops below

than the 5% of the precharge voltage (Vpc) after the value of k=2048. The 2D SAPs show

better noise margin since a transistor in the off state exhibits much higher resistance than

the ReRAM. If such a limitation exists, a compare operation can be performed separately

in two or more segments and corresponding tags can be ANDed as mentioned in [42].

130

Figure 6.7: Comparing FOMs for different architectures

6.4.3 Figure of Merit

Figure 6.7 shows the GOPS/W/mm2 and W/mm2 Figures of Merit (FOM) extracted from

different accelerator realizations; Google TPU [76] (28 nm), Intel Altera Stratix 10 (16 nm),

NVidia P40 and P4 (16 nm) and a state of the art high-performance Intel processor [63]

(from Sandra arithmetic benchmarks [152]). We contrast that with the projected FOM for

the proposed architecture. The high density of the proposed architecture coupled with the

simple design and elimination of data movements results in good GOPS/W/mm2 that is

1-2 orders of magnitude higher than existing approaches. While high GOPS/W/mm2 is

desirable, the power density (W/mm2) in ReRAM-based 2D AP is is over 10x more than

some existing architectures which is a challenge that must be addressed in the future research.

This can be addressed in a variety of ways. Increasing area is an obvious choice but has

implications for performance and energy. As another choice without sacrificing area, building

memristive devices with low write energy is an active research problem [45]. System and

algorithmic approaches also have a good potential for reducing the overall system power

131

density. Over the past two decades, the research community has developed a substantial

repertoire of power-optimization techniques, many of which can be transplanted to these

architectures, eventually leading to power densities allowing this architecture to operate in a

reliable manner. On the other hand, SRAM-based 2D AP realization provides an acceptable

power density together with the best GOPS/W/mm2.

At 16 nm technology, the ternary SRAM-based CAM allows very small area (0.1126 µm2/bit

in [83]) and since all rows behave as a different processor, AP processor proves excellent

parallel operations per power per area (GOPS/W/mm2). On the other hand, this dense

area causes a power density problem.

6.5 Conclusion

In this section, the novel idea of 2D AP is introduced and implemented by both SRAM

and ReRAM CAM cells. The proposed architecture effectively eliminates the need for data

movements, saves energy, and provides flexibility for a variety of benchmarks. The efficiency

of the proposed architecture is proven by comparing it with the state of the art processors

in terms of performance, energy, power, and area.

132

Chapter 7

Conclusion & Future Work

In this dissertation, we explore efficient in-memory computation architecture through the

associative processing for data intensive applications. The perspective of the design space,

system architecture, software and micro-architecture are inspected. The primary contribu-

tions of this study can be summarized as follows:

• Architecture and Trade-offs of Associative Processors: We described the un-

derstanding of the associative processing and processors in Chapter 2 in detail. The

chapter can be handled as a fundamental source for the researchers who wants to con-

duct research on APs. The chapter also includes the newly defined operations and

system-wide configuration schemes which has not been existing in the current liter-

ature. The proposed system architectures allow reprogrammability in memory-based

computation and they are uniquely suited for vector based operations, while fully ben-

efiting from the extreme parallelism. The architectural innovations are proposed that

reduce or eliminate the need for any supporting logic, thus addressing the two main

barriers to adoption and making AP based on CAMs an excellent candidate for the

development of in-memory accelerators. The statements are supported by the trade-off

133

analysis in terms of energy, performance and reliability.

• Approximate In-memory Computing: Approximate computing for the associa-

tive processors are brought in the literature for the first time. The proposed approxi-

mate computing methodologies include the bit trimming, the CAM-cell scaling (either

ReRAM or SRAM), and combination of them. Furthermore, it is proven that these

methodologies naturally supported by AP architectures as tunable and dynamic so

that during the execution degree of approximation can be tuned with respect to the

performed task. A design flow to optimize the approximate in-memory computing is

proposed to obtain the highest efficiency with the least quality degradation.

• Low-power Associative Processor: A low-power SRAM-based AP implementation

is suggested by proposing novel architectural improvements to decrease the switching

activity. Furthermore, some traditional operations are modified to allow better energy

efficiency. For ReRAM-based APs, a considerable energy reduction is provided by

multi-compare architectures where ReRAM switching range is scaled without sacrific-

ing the reliability constraints.

• Software Framework for Associative Processors: We developed a cycle accurate

simulator for Associative Processors together with the broad range of benchmarks

from domains of machine learning, image processing, statistics, etc. The simulator is

highly configurable with more than 50 parameters, supports for ReRAM-based and

SRAM-based architectures. It can facilitate circuit-level simulation as well as system-

level simulations. The simulator works as fully automated in which the cooperation

between the system-level simulator (Matlab) and circuit-level simulator (HSpice) is

coordinated seamlessly.

• Two-dimensional Associative Processor: A novel two-dimensional AP architec-

ture are proposed to solve the deficiencies of the traditional in-memory processor archi-

tectures. The proposed architecture provide new improvements over the existing one

134

such as flexibility and sequential execution. For this reason, a novel two-dimensional

in-memory computing architecture is proposed.

For the future work, we have been planning to extend our research on the following topics:

• Acceleration of deep learning applications: Deep learning applications performs

well on parallelized processor architectures such as GPUs. From this perspective, an

efficient AP implementations can be projected. For this purpose, we aim to port some

CNN architectures (such as AlexNet [94], VGG-16 [150]) onto APs to perform in-

memory deep learning. Furthermore, since deep learning applications can be classified

as error resillient, the approximate computing methodologies can be applied in this

domain.

• Open-source simulator: To attract more research to this area, the simulator will

be released as an open-source software framework. Additionally, we are planning to

extend the capability of the current simulator by adding the feature of machine learning

based predictor to obtain faster profile information for the energy consumption. For

this purpose, a simple model for compare and write operations can be generated by

training the outcomes of the circuit simulations.

135

Bibliography

[1] A. Afifi, A. Ayatollahi, and F. Raissi. Implementation of biologically plausible spiking
neural network models on the memristor crossbar-based cmos/nano circuits. In 2009
European Conference on Circuit Theory and Design, pages 563–566, Aug 2009.

[2] N. Ahmed, T. Natarajan, and K. Rao. Discrete cosine transform. Computers, IEEE
Transactions on, C-23(1):90–93, Jan 1974.

[3] A. Akerib and R. Adar. Associative approach to real time color, motion and stereo
vision. In 1995 International Conference on Acoustics, Speech, and Signal Processing,
volume 5, pages 3291–3294 vol.5, May 1995.

[4] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis, K. Moon,
X. Luo, E. Chen, A. Ong, A. Driskill-Smith, and M. Krounbi. Spin-transfer torque mag-
netic random access memory (stt-mram). J. Emerg. Technol. Comput. Syst., 9(2):13:1–
13:35, May 2013.

[5] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff. Memristor model comparison. IEEE
Circuits and Systems Magazine, 13(2):89–105, Secondquarter 2013.

[6] S. Balam and D. Schonfeld. Associative processors for video coding applications. IEEE
Transactions on Circuits and Systems for Video Technology, 16(2):241–250, Feb 2006.

[7] B. Barney et al. Introduction to parallel computing.

[8] D. Batas and H. Fiedler. A memristor spice implementation and a new approach for
magnetic flux-controlled memristor modeling. IEEE Transactions on Nanotechnology,
10(2):250–255, March 2011.

[9] K. E. Batcher. Staran parallel processor system hardware. In Proceedings of the May
6-10, 1974, National Computer Conference and Exposition, AFIPS ’74, pages 405–410,
New York, NY, USA, 1974. ACM.

[10] A. S. Beulet Paul, S. Raju, and R. Janakiraman. Low power reconfigurable fp-fft
core with an array of folded da butterflies. EURASIP Journal on Advances in Signal
Processing, 2014(1):144, Sep 2014.

[11] M. Bhujade. Parallel Computing. New Age International (P) Limited, 1995.

136

[12] Z. Biolek, D. Biolek, and V. Biolkov. Spice model of memristor with nonlinear dopant
drift. Radioengineering, pages 210–214.

[13] S. Borkar. Exascale computing – a fact or a fiction? In Proceedings of the 2013
IEEE 27th International Symposium on Parallel and Distributed Processing, IPDPS
’13, pages 3–, Washington, DC, USA, 2013. IEEE Computer Society.

[14] R. Boumchedda, J. P. Noel, B. Giraud, K. C. Akyel, M. Brocard, D. Turgis, and
E. Beigne. High-density 4t sram bitcell in 14-nm 3-d coolcube technology exploiting
assist techniques. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
25(8):2296–2306, Aug 2017.

[15] J. Chang, Y. H. Chen, W. M. Chan, S. P. Singh, H. Cheng, H. Fujiwara, J. Y. Lin,
K. C. Lin, J. Hung, R. Lee, H. J. Liao, J. J. Liaw, Q. Li, C. Y. Lin, M. C. Chiang,
and S. Y. Wu. 12.1 a 7nm 256mb sram in high-k metal-gate finfet technology with
write-assist circuitry for low-vmin applications. In 2017 IEEE International Solid-State
Circuits Conference (ISSCC), pages 206–207, Feb 2017.

[16] M. F. Chang, C.-H. Chuang, M.-P. Chen, L.-F. Chen, H. Yamauchi, P. F. Chiu, and
S. S. Sheu. Endurance-aware circuit designs of nonvolatile logic and nonvolatile sram
using resistive memory (memristor) device. In 17th Asia and South Pacific Design
Automation Conference, pages 329–334, Jan 2012.

[17] T. Chang, S.-H. Jo, and W. Lu. Short-term memory to long-term memory transition
in a nanoscale memristor. ACS Nano, 5(9):7669–7676, 2011. PMID: 21861506.

[18] B. J. Choi, A. C. Torrezan, J. P. Strachan, P. G. Kotula, A. J. Lohn, M. J. Marinella,
Z. Li, R. S. Williams, and J. J. Yang. High-speed and low-energy nitride memristors.
Advanced Functional Materials, 26(29):5290–5296, 2016.

[19] L. Chua. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory,
18(5):507–519, Sep 1971.

[20] L. O. Chua and S. M. Kang. Memristive devices and systems. Proceedings of the IEEE,
64(2):209–223, Feb 1976.

[21] J. Cong and B. Xiao. mrfpga: A novel fpga architecture with memristor-based recon-
figuration. In 2011 IEEE/ACM International Symposium on Nanoscale Architectures,
pages 1–8, June 2011.

[22] F. Corinto and A. Ascoli. A boundary condition-based approach to the modeling of
memristor nanostructures. IEEE Transactions on Circuits and Systems I: Regular
Papers, 59(11):2713–2726, Nov 2012.

[23] F. Corinto and A. Ascoli. Memristive diode bridge with lcr filter. Electronics Letters,
48(14):824–825, July 2012.

[24] F. Corinto, A. Ascoli, and M. Gilli. Nonlinear dynamics of memristor oscillators. IEEE
Transactions on Circuits and Systems I: Regular Papers, 58(6):1323–1336, June 2011.

137

[25] Y. V. P. D. Biolek, M. Di Ventra. Reliable spice simulations of memristors, memca-
pacitors and meminductors. Radioengineering, 22(4):945–968, Dec. 2013.

[26] I. E. Ebong and P. Mazumder. Self-controlled writing and erasing in a memristor
crossbar memory. IEEE Transactions on Nanotechnology, 10(6):1454–1463, Nov 2011.

[27] A. H. Edwards, H. J. Barnaby, K. A. Campbell, M. N. Kozicki, W. Liu, and M. J.
Marinella. Reconfigurable memristive device technologies. Proceedings of the IEEE,
103(7):1004–1033, July 2015.

[28] K. Eshraghian, K. R. Cho, O. Kavehei, S. K. Kang, D. Abbott, and S. M. S. Kang.
Memristor mos content addressable memory (mcam): Hybrid architecture for future
high performance search engines. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 19(8):1407–1417, Aug 2011.

[29] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration for general-
purpose approximate programs. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-45, pages 449–460, Washing-
ton, DC, USA, 2012. IEEE Computer Society.

[30] U. Farooq, Z. Marrakchi, and H. Mehrez. FPGA Architectures: An Overview, pages
7–48. Springer New York, New York, NY, 2012.

[31] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions
on Computers, C-21(9):948–960, Sept 1972.

[32] C. C. Foster. Content Addressable Parallel Processors. John Wiley & Sons, Inc., New
York, NY, USA, 1976.

[33] Fujitsu Semiconductor Limited. 4m (512 k 8) bit spi memory reram datasheet, 12
2016.

[34] E. Gale, B. de Lacy Costello, and A. Adamatzky. Boolean logic gates from A single
memristor via low-level sequential logic. CoRR, abs/1402.4046, 2014.

[35] L. Gao, F. Alibart, and D. B. Strukov. Programmable cmos/memristor threshold logic.
IEEE Transactions on Nanotechnology, 12(2):115–119, March 2013.

[36] D. Garbin, E. Vianello, Q. Rafhay, M. Azzaz, P. Candelier, B. DeSalvo, G. Ghibaudo,
and L. Perniola. Resistive memory variability: A simplified trap-assisted tunneling
model. Solid-State Electronics, 115, Part B:126 – 132, 2016. Selected papers from the
EUROSOI-ULIS conference.

[37] N. Gergel-Hackett, J. L. Tedesco, and C. A. Richter. Memristors with flexible electronic
applications. Proceedings of the IEEE, 100(6):1971–1978, June 2012.

[38] GSI Technology. In-place associative computing, 2017.

[39] W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang. On the resistive switching mecha-
nisms of cu/zro2:cu/pt. Applied Physics Letters, 93(22), 2008.

138

[40] Q. Guo, X. Guo, Y. Bai, and E. İpek. A resistive tcam accelerator for data-intensive
computing. In Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-44, pages 339–350, New York, NY, USA, 2011. ACM.

[41] Q. Guo, X. Guo, Y. Bai, R. Patel, E. Ipek, and E. G. Friedman. Resistive ternary con-
tent addressable memory systems for data-intensive computing. IEEE Micro, 35(5):62–
71, Sept 2015.

[42] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman. Ac-dimm: Associative
computing with stt-mram. SIGARCH Comput. Archit. News, 41(3):189–200, June
2013.

[43] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman. Ac-dimm: Associative
computing with stt-mram. In Proceedings of the 40th Annual International Symposium
on Computer Architecture, ISCA ’13, pages 189–200, New York, NY, USA, 2013. ACM.

[44] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. Mibench: A free, commercially representative embedded benchmark suite. In
Proceedings of the Fourth Annual IEEE International Workshop on Workload Charac-
terization. WWC-4 (Cat. No.01EX538), pages 3–14, Dec 2001.

[45] Y. Halawani, B. Mohammad, D. Homouz, M. Al-Qutayri, and H. Saleh. Modeling
and optimization of memristor and stt-ram-based memory for low-power applications.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(3):1003–1014,
March 2016.

[46] S. Hamdioui, L. Xie, H. A. D. Nguyen, M. Taouil, K. Bertels, H. Corporaal, H. Jiao,
F. Catthoor, D. Wouters, L. Eike, and J. van Lunteren. Memristor based computation-
in-memory architecture for data-intensive applications. In 2015 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1718–1725, March 2015.

[47] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011.

[48] Y. Ho, G. M. Huang, and P. Li. Dynamical properties and design analysis for non-
volatile memristor memories. IEEE Transactions on Circuits and Systems I: Regular
Papers, 58(4):724–736, April 2011.

[49] HP. Beyond dram and flash, August 2014.

[50] D. Huffman. A method for the construction of minimum-redundancy codes. Proceedings
of the IRE, 40(9):1098–1101, Sept 1952.

[51] M. Imani, S. Gupta, and T. Rosing. Ultra-efficient processing in-memory for data in-
tensive applications. In Proceedings of the 54th Annual Design Automation Conference
2017, DAC ’17, pages 6:1–6:6, New York, NY, USA, 2017. ACM.

139

[52] M. Imani, Y. Kim, and T. Rosing. Mpim: Multi-purpose in-memory processing using
configurable resistive memory. In 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 757–763, Jan 2017.

[53] M. Imani, P. Mercati, and T. Rosing. Remam: Low energy resistive multi-stage asso-
ciative memory for energy efficient computing. In 2016 17th International Symposium
on Quality Electronic Design (ISQED), pages 101–106, March 2016.

[54] M. Imani, S. Patil, and T. Rosing. Approximate computing using multiple-access
single-charge associative memory. IEEE Transactions on Emerging Topics in Comput-
ing, PP(99):1–1, 2017.

[55] M. Imani, S. Patil, and T. S. Rosing. Masc: Ultra-low energy multiple-access single-
charge tcam for approximate computing. In 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 373–378, March 2016.

[56] M. Imani, D. Peroni, A. Rahimi, and T. Rosing. Resistive cam acceleration for tun-
able approximate computing. IEEE Transactions on Emerging Topics in Computing,
PP(99):1–1, 2017.

[57] M. Imani, D. Peroni, and T. Rosing. Nvalt: Non-volatile approximate lookup table for
gpu acceleration. IEEE Embedded Systems Letters, PP(99):1–1, 2017.

[58] M. Imani, A. Rahimi, P. Mercati, and T. Rosing. Multi-stage tunable approximate
search in resistive associative memory. IEEE Transactions on Multi-Scale Computing
Systems, PP(99):1–1, 2017.

[59] M. Imani, A. Rahimi, and T. S. Rosing. Resistive configurable associative memory
for approximate computing. In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1327–1332, March 2016.

[60] M. Imani and T. Rosing. Cap: Configurable resistive associative processor for near-
data computing. In 2017 18th International Symposium on Quality Electronic Design
(ISQED), pages 346–352, March 2017.

[61] C. Inc. 1t1r product: Picoe - embedded resistive ram, 2016.

[62] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis.
Integration of nanoscale memristor synapses in neuromorphic computing architectures.
Nanotechnology, 24(38):384010, 2013.

[63] Intel. Intel product specifications.

[64] Intel. Intel xpoint. News Release, 2015.

[65] Intel Altera. Fpga architecture white paper, July 2006.

[66] International Roadmap for Devices and Systems. Emerging research devices. Technical
report, 2011.

140

[67] International Roadmap for Devices and Systems. Beyond cmos (emerging research
devices), white paper, 2016.

[68] International Roadmap for Devices and Systems. More moore, white paper. Technical
report, IEEE, 2016.

[69] E. Ipek, Q. Guo, X. Guo, and Y. Bai. Resistive Memories in Associative Computing,
pages 201–229. Springer New York, New York, NY, 2014.

[70] H. Ishiwara, M. Okuyama, and Y. Arimoto. Ferroelectric random access memories:
fundamentals and applications, volume 93. Springer Science & Business Media, 2004.

[71] M. ITOH and L. O. CHUA. Memristor oscillators. International Journal of Bifurcation
and Chaos, 18(11):3183–3206, 2008.

[72] ITRS. ITRS Reports. Technical report, International Technology Roadmap for Semi-
conductors.

[73] ITU-R. Bt.601 : Studio encoding parameters of digital television for standard 4:3 and
wide screen 16:9 aspect ratios, Mar. 2011.

[74] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu. Nanoscale
memristor device as synapse in neuromorphic systems. Nano Letters, 10(4):1297–1301,
Apr 2010.

[75] S. H. Jo, K.-H. Kim, and W. Lu. High-density crossbar arrays based on a si memristive
system. Nano Letters, 9(2):870–874, 2009. PMID: 19206536.

[76] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell,
M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gul-
land, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,
A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacK-
ean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,
K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon. In-datacenter performance analysis of a tensor process-
ing unit. In Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, pages 1–12, New York, NY, USA, 2017. ACM.

[77] R. Kaplan, L. Yavits, and R. Ginosar. Prins: Processing-in-storage acceleration of
machine learning. IEEE Transactions on Nanotechnology, pages 1–1, 2018.

[78] G. Karakonstantis, D. Mohapatra, and K. Roy. Logic and memory design based on
unequal error protection for voltage-scalable, robust and adaptive dsp systems. J.
Signal Process. Syst., 68(3):415–431, Sept. 2012.

141

[79] U. R. Karpuzcu, N. S. Kim, and J. Torrellas. Coping with parametric variation at
near-threshold voltages. IEEE Micro, 33(4):6–14, July 2013.

[80] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas. Varius-ntv: A microarchi-
tectural model to capture the increased sensitivity of manycores to process variations
at near-threshold voltages. In Proceedings of the 2012 42Nd Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN), DSN ’12, pages
1–11, Washington, DC, USA, 2012. IEEE Computer Society.

[81] O. Kavehei, S. Al-Sarawi, K. R. Cho, N. Iannella, S. J. Kim, K. Eshraghian, and
D. Abbott. Memristor-based synaptic networks and logical operations using in-situ
computing. In 2011 Seventh International Conference on Intelligent Sensors, Sensor
Networks and Information Processing, pages 137–142, Dec 2011.

[82] O. Kavehei, K. Cho, S. Lee, S. J. Kim, S. Al-Sarawi, D. Abbott, and K. Eshraghian.
Fabrication and modeling of ag/tio2/ito memristor. In 2011 IEEE 54th International
Midwest Symposium on Circuits and Systems (MWSCAS), pages 1–4, Aug 2011.

[83] S. Khasanvis, M. Rahman, and C. A. Moritz. Heterogeneous graphenecmos
ternary content addressable memory. Journal of Parallel and Distributed Computing,
74(6):2497 – 2503, 2014. Computing with Future Nanotechnology.

[84] D. Kim, K. Lee, S. joong Lee, and H.-J. Yoo. A reconfigurable crossbar switch with
adaptive bandwidth control for networks-on-chip. In 2005 IEEE International Sympo-
sium on Circuits and Systems, pages 2369–2372 Vol. 3, May 2005.

[85] H. Kim, M. P. Sah, C. Yang, T. Roska, and L. O. Chua. Neural synaptic weighting
with a pulse-based memristor circuit. IEEE Transactions on Circuits and Systems I:
Regular Papers, 59(1):148–158, Jan 2012.

[86] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and
W. Lu. A functional hybrid memristor crossbar-array/cmos system for data storage
and neuromorphic applications. Nano letters, 12(1):389–395, 2011.

[87] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and
W. Lu. A functional hybrid memristor crossbar-array/cmos system for data storage
and neuromorphic applications. Nano Letters, 12(1):389–395, 2012. PMID: 22141918.

[88] K. M. Kim, J. J. Yang, J. P. Strachan, E. M. Grafals, N. Ge, N. D. Melendez, Z. Li, and
R. S. Williams. Voltage divider effect for the improvement of variability and endurance
of taox memristor. Scientific Reports, 6:20085 EP –, Feb 2016. Article.

[89] S. Kim, H. Y. Jeong, S. K. Kim, S.-Y. Choi, and K. J. Lee. Flexible memristive
memory array on plastic substrates. Nano Letters, 11(12):5438–5442, 2011. PMID:
22026616.

[90] Y. Kim, M. Imani, and T. Rosing. Orchard: Visual object recognition accelerator
based on approximate in-memory processing.

142

[91] P. N. V. Kiran and N. Saxena. Design and analysis of different types sram cell topolo-
gies. In 2015 2nd International Conference on Electronics and Communication Systems
(ICECS), pages 1060–1065, Feb 2015.

[92] C. E. Kozyrakis and D. A. Patterson. A new direction for computer architecture
research. Computer, 31(11):24–32, Nov 1998.

[93] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic, N. Cardwell,
R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas, N. Treuhaft, and K. Yelick.
Scalable processors in the billion-transistor era: Iram. Computer, 30(9):75–78, Sep
1997.

[94] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1097–1105. Curran Associates, Inc., 2012.

[95] S. Kumar, N. Davila, Z. Wang, X. Huang, J. P. Strachan, D. Vine, A. D. Kilcoyne,
Y. Nishi, and R. S. Williams. Spatially uniform resistance switching of low current,
high endurance titanium–niobium-oxide memristors. Nanoscale, 9(5):1793–1798, 2017.

[96] S. Kunkel, M. Schmidt, J. M. Eppler, H. E. Plesser, G. Masumoto, J. Igarashi, S. Ishii,
T. Fukai, A. Morrison, M. Diesmann, and M. Helias. Spiking network simulation code
for petascale computers. Frontiers in Neuroinformatics, 8:78, 2014.

[97] I. Kuon, R. Tessier, and J. Rose. Fpga architecture: Survey and challenges. Found.
Trends Electron. Des. Autom., 2(2):135–253, Feb. 2008.

[98] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser. The desired memristor
for circuit designers. IEEE Circuits and Systems Magazine, 13(2):17–22, Secondquarter
2013.

[99] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser. Team: Threshold
adaptive memristor model. IEEE Transactions on Circuits and Systems I: Regular
Papers, 60(1):211–221, Jan 2013.

[100] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J.
Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, and K. Kim. A fast, high-endurance
and scalable non-volatile memory device made from asymmetric ta2o5-x/tao2-x bilayer
structures. Nature Materials, 10:625 EP –, Jul 2011. Article.

[101] E. Lehtonen and M. Laiho. Stateful implication logic with memristors. In 2009
IEEE/ACM International Symposium on Nanoscale Architectures, pages 33–36, July
2009.

[102] H. Li, Z. Jiang, P. Huang, Y. Wu, H.-Y. Chen, B. Gao, X. Y. Liu, J. F. Kang, and H.-
S. P. Wong. Variation-aware, reliability-emphasized design and optimization of rram
using spice model. In Proceedings of the 2015 Design, Automation & Test in Europe

143

Conference & Exhibition, DATE ’15, pages 1425–1430, San Jose, CA, USA, 2015. EDA
Consortium.

[103] J. Li, R. K. Montoye, M. Ishii, and L. Chang. 1 mb 0.41 mm2; 2t-2r cell nonvolatile
tcam with two-bit encoding and clocked self-referenced sensing. IEEE Journal of Solid-
State Circuits, 49(4):896–907, April 2014.

[104] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie. Pinatubo: A processing-in-memory ar-
chitecture for bulk bitwise operations in emerging non-volatile memories. In 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, June 2016.

[105] J. Liu, T. Li, S. Duan, and L. Wang. Energy consumption analysis for the read and
write mode of the memristor with voltage threshold in the real-time control system.
Neurocomputing, 266:477 – 484, 2017.

[106] Z. Liu, W. Wen, L. Jiang, Y. Jin, and G. Quan. A statistical stt-ram retention model
for fast memory subsystem designs. In 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 720–725, Jan 2017.

[107] W. Lu, K. H. Kim, T. Chang, and S. Gaba. Two-terminal resistive switches (mem-
ristors) for memory and logic applications. In 16th Asia and South Pacific Design
Automation Conference (ASP-DAC 2011), pages 217–223, Jan 2011.

[108] P. Lugli, A. Mahmoud, G. Csaba, M. Algasinger, M. Stutzmann, and U. Rhrmair.
Physical unclonable functions based on crossbar arrays for cryptographic applications.
International Journal of Circuit Theory and Applications, 41(6):619–633, 2013.

[109] J. Makhoul. A fast cosine transform in one and two dimensions. Acoustics, Speech and
Signal Processing, IEEE Transactions on, 28(1):27–34, Feb 1980.

[110] H. Manem, G. S. Rose, X. He, and W. Wang. Design considerations for variation tol-
erant multilevel cmos/nano memristor memory. In Proceedings of the 20th Symposium
on Great Lakes Symposium on VLSI, GLSVLSI ’10, pages 287–292, New York, NY,
USA, 2010. ACM.

[111] N. M. Manjunath Shevgoor, Rajeev Balasubramonian. Designing a fast and reliable
memory with memristor technology. 6th Annual Non-Volatile Memories Workshop
2015, 2015.

[112] S. Marsland. Machine Learning: An Algorithmic Perspective. CRC Press, 2011.

[113] F. Merrikh-Bayat and S. B. Shouraki. Memristor-based circuits for performing basic
arithmetic operations. Procedia Computer Science, 3:128 – 132, 2011. World Confer-
ence on Information Technology.

[114] F. Miao, J. P. Strachan, J. J. Yang, M.-X. Zhang, I. Goldfarb, A. C. Torrezan, P. Es-
chbach, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams. Anatomy of a nanoscale
conduction channel reveals the mechanism of a high-performance memristor. Advanced
Materials, 23(47):5633–5640, 2011.

144

[115] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of service profil-
ing. In Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 25–34, New York, NY, USA, 2010. ACM.

[116] S. Mittal. A survey of techniques for approximate computing. ACM Comput. Surv.,
48(4):62:1–62:33, Mar. 2016.

[117] D. Mohapatra, V. Chippa, A. Raghunathan, and K. Roy. Design of voltage-scalable
meta-functions for approximate computing. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2011, pages 1–6, March 2011.

[118] A. Morad, L. Yavits, S. Kvatinsky, and R. Ginosar. Resistive gp-simd processing-in-
memory. ACM Trans. Archit. Code Optim., 12(4):57:1–57:22, Jan. 2016.

[119] M. A. Neggaz, H. E. Yantr, S. Niar, A. Eltawil, and F. Kurdahi. Rapid in-memory
matrix multiplication using associative processor. In 2018 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 985–990, March 2018.

[120] D. Niu, Y. Chen, C. Xu, and Y. Xie. Impact of process variations on emerging memris-
tor. In Design Automation Conference (DAC), 2010 47th ACM/IEEE, pages 877–882,
June 2010.

[121] A. S. Oblea, A. Timilsina, D. Moore, and K. A. Campbell. Silver chalcogenide based
memristor devices. In The 2010 International Joint Conference on Neural Networks
(IJCNN), pages 1–3, July 2010.

[122] K. Pagiamtzis and A. Sheikholeslami. Content-addressable memory (cam) circuits and
architectures: a tutorial and survey. IEEE Journal of Solid-State Circuits, 41(3):712–
727, March 2006.

[123] Panasonic Corporation. Panasonic mn101l resistive ram embedded 8-bit mcus, 12 2016.

[124] F. Parveen, S. Angizi, Z. He, and D. Fan. Low power in-memory computing based on
dual-mode sot-mram. In 2017 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), pages 1–6, July 2017.

[125] W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression Standard.
Kluwer Academic Publishers, Norwell, MA, USA, 1st edition, 1992.

[126] Y. V. Pershin and M. D. Ventra. Experimental demonstration of associative memory
with memristive neural networks. Neural Networks, 23(7):881 – 886, 2010.

[127] Y. V. Pershin and M. D. Ventra. Practical approach to programmable analog cir-
cuits with memristors. IEEE Transactions on Circuits and Systems I: Regular Papers,
57(8):1857–1864, Aug 2010.

[128] N. Pinckney, M. Fojtik, B. Giridhar, D. Sylvester, and D. Blaauw. Shortstop: An
on-chip fast supply boosting technique. In 2013 Symposium on VLSI Circuits, pages
C290–C291, June 2013.

145

[129] J. L. Potter. Associative Computing: A Programming Paradigm for Massively Parallel
Computers. Perseus Publishing, 1991.

[130] P. Pouyan, E. Amat, and A. Rubio. Statistical lifetime analysis of memristive crossbar
matrix. In 2015 10th International Conference on Design Technology of Integrated
Systems in Nanoscale Era (DTIS), pages 1–6, April 2015.

[131] T. Prodromakis, C. Toumazou, and L. Chua. Two centuries of memristors. Nature
Materials, 11:478 EP –, May 2012.

[132] A. G. Radwan, M. A. Zidan, and K. N. Salama. On the mathematical modeling of
memristors. In 2010 International Conference on Microelectronics, pages 284–287, Dec
2010.

[133] A. Rahimi, A. Ghofrani, K. T. Cheng, L. Benini, and R. K. Gupta. Approximate
associative memristive memory for energy-efficient gpus. In 2015 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1497–1502, March 2015.

[134] J. Rajendran, R. Karri, and G. S. Rose. Improving tolerance to variations in memristor-
based applications using parallel memristors. IEEE Transactions on Computers,
64(3):733–746, March 2015.

[135] M. Renovell, J. M. Portal, J. Figueras, and Y. Zorian. Testing the interconnect of
ram-based fpgas. IEEE Design Test of Computers, 15(1):45–50, Jan 1998.

[136] W. Robinett, M. Pickett, J. Borghetti, Q. Xia, G. S. Snider, G. Medeiros-Ribeiro,
and R. S. Williams. A memristor-based nonvolatile latch circuit. Nanotechnology,
21(23):235203, 2010.

[137] K. Roy. Approximate computing for energy-efficient error-resilient multimedia systems.
In Design and Diagnostics of Electronic Circuits Systems (DDECS), 2013 IEEE 16th
International Symposium on, pages 5–6, April 2013.

[138] J. A. Rudolph. A production implementation of an associative array processor: Staran.
In Proceedings of the December 5-7, 1972, Fall Joint Computer Conference, Part I,
AFIPS ’72 (Fall, part I), pages 229–241, New York, NY, USA, 1972. ACM.

[139] S. Ruhman and I. Scherson. Associative processor particularly useful for tomographic
image reconstruction, Jan. 1 1985. US Patent 4,491,932.

[140] N. Sakimura, T. Sugibayashi, T. Honda, H. Honjo, S. Saito, T. Suzuki, N. Ishiwata,
and S. Tahara. Mram cell technology for over 500-mhz soc. IEEE Journal of Solid-State
Circuits, 42(4):830–838, April 2007.

[141] I. Scherson and S. Ruhman. Multi-operand associative arithmetic. In 1983 IEEE 6th
Symposium on Computer Arithmetic (ARITH), pages 123–129, June 1983.

[142] I. D. Scherson and S. Ilgen. A reconfigurable fully parallel associative processor. J.
Parallel Distrib. Comput., 6(1):69–89, Feb. 1989.

146

[143] I. D. Scherson, D. A. Kramer, and B. D. Alleyne. Bit-parallel arithmetic in a massively-
parallel associative processor. IEEE Transactions on Computers, 41(10):1201–1210,
Oct 1992.

[144] I. D. Scherson and S. Ruhman. Multi-operand arithmetic in a partitioned associative
architecture. Journal of Parallel and Distributed Computing, 5(6):655 – 668, 1988.

[145] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, and B. Nauta. A double-
tail latch-type voltage sense amplifier with 18ps setup+hold time. In 2007 IEEE
International Solid-State Circuits Conference. Digest of Technical Papers, pages 314–
605, Feb 2007.

[146] M. Seok, D. Jeon, C. Chakrabarti, D. Blaauw, and D. Sylvester. A 0.27v 30mhz
17.7nj/transform 1024-pt complex fft core with super-pipelining. In 2011 IEEE Inter-
national Solid-State Circuits Conference, pages 342–344, Feb 2011.

[147] Y. Shain, A. Akerib, and R. Adar. Associative architecture for fast dct. In Acous-
tics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International
Conference on, volume 5, pages 3109–3112 vol.5, May 1998.

[148] S. Shin, K. Kim, and S. M. Kang. Memristor applications for programmable analog
ics. IEEE Transactions on Nanotechnology, 10(2):266–274, March 2011.

[149] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard. Managing perfor-
mance vs. accuracy trade-offs with loop perforation. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 124–134, New York, NY, USA, 2011. ACM.

[150] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[151] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao. Exploring sub-20nm finfet
design with predictive technology models. In DAC Design Automation Conference
2012, pages 283–288, June 2012.

[152] SiSoftware. Sandra benchmarking software.

[153] S. Smaili and Y. Massoud. Studying the effect of memristor state variability on the
gain of memristor-based tunable amplifiers. In 2013 IEEE 56th International Midwest
Symposium on Circuits and Systems (MWSCAS), pages 912–915, Aug 2013.

[154] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The missing memristor
found. Nature, 453(7191):80–83, May 2008.

[155] M. M. A. Taha, W. Woods, and C. Teuscher. Approximate in-memory hamming dis-
tance calculation with a memristive associative memory. In 2016 IEEE/ACM Inter-
national Symposium on Nanoscale Architectures (NANOARCH), pages 159–164, July
2016.

147

[156] A. Talukdar, A. Radwan, and K. Salama. Generalized model for memristor-based wien
family oscillators. Microelectronics Journal, 42(9):1032 – 1038, 2011.

[157] A. Talukdar, A. Radwan, and K. Salama. Non linear dynamics of memristor based
3rd order oscillatory system. Microelectronics Journal, 43(3):169 – 175, 2012.

[158] R. Tetzlaff. Memristors and memristive systems. Springer, 2013.

[159] A. S. University. Predictive technology model (ptm), 2012.

[160] J. Valsa, D. Biolek, and Z. Biolek. An analogue model of the memristor. Int. J. Numer.
Model., 24(4):400–408, July 2011.

[161] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan. Salsa:
Systematic logic synthesis of approximate circuits. In Design Automation Conference
(DAC), 2012 49th ACM/EDAC/IEEE, pages 796–801, June 2012.

[162] J. von Neumann. First draft of a report on the edvac. IEEE Ann. Hist. Comput.,
15(4):27–75, Oct. 1993.

[163] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky, and R. S.
Williams. Writing to and reading from a nano-scale crossbar memory based on mem-
ristors. Nanotechnology, 20(42):425204, 2009.

[164] D. Wang, Z. Hu, X. Yu, and J. Yu. A pwl model of memristor and its application
example. In 2009 International Conference on Communications, Circuits and Systems,
pages 932–934, July 2009.

[165] K. Wu, F. Ober, S. Hamlin, and D. Li. Early evaluation of intel optane non-volatile
memory with hpc i/o workloads. arXiv preprint arXiv:1708.02199, 2017.

[166] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J. Yang, W. Wu,
X. Li, W. M. Tong, D. B. Strukov, G. S. Snider, G. Medeiros-Ribeiro, and R. S.
Williams. Memristorcmos hybrid integrated circuits for reconfigurable logic. Nano
Letters, 9(10):3640–3645, 2009. PMID: 19722537.

[167] Q. Xia, J. J. Yang, W. Wu, X. Li, and R. S. Williams. Self-aligned memristor
cross-point arrays fabricated with one nanoimprint lithography step. Nano Letters,
10(8):2909–2914, Aug 2010.

[168] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino. Generalized mem-
ristive device spice model and its application in circuit design. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 32(8):1201–1214, Aug
2013.

[169] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino. Memristor spice model
and crossbar simulation based on devices with nanosecond switching time. In The 2013
International Joint Conference on Neural Networks (IJCNN), pages 1–7, Aug 2013.

148

[170] C. H. Yang, T. H. Yu, and D. Markovic. Power and area minimization of reconfigurable
fft processors: A 3gpp-lte example. IEEE Journal of Solid-State Circuits, 47(3):757–
768, March 2012.

[171] J. J. Yang, D. B. Strukov, and D. R. Stewart. Memristive devices for computing.
Nature nanotechnology, 8(1):13, 2013.

[172] J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley,
G. Medeiros-Ribeiro, and R. S. Williams. High switching endurance in taox mem-
ristive devices. Applied Physics Letters, 97(23):232102, 2010.

[173] Y. Yang, J. Mathew, M. Ottavi, S. Pontarelli, and D. K. Pradhan. 2t2m memristor
based tcam cell for low power applications. In 2015 10th International Conference on
Design Technology of Integrated Systems in Nanoscale Era (DTIS), pages 1–6, April
2015.

[174] H. E. Yantir, A. M. Eltawil, and F. J. Kurdahi. Approximate memristive in-memory
computing. ACM Trans. Embed. Comput. Syst., 16(5s):129:1–129:18, Sept. 2017.

[175] H. E. Yantir, M. E. Fouda, A. M. Eltawil, and F. J. Kurdahi. Process variations-aware
resistive associative processor design. In 2016 IEEE 34th International Conference on
Computer Design (ICCD), pages 49–55, Oct 2016.

[176] L. Yavits, S. Kvatinsky, A. Morad, and R. Ginosar. Resistive associative processor.
IEEE Computer Architecture Letters, 14(2):148–151, July 2015.

[177] L. Yavits, A. Morad, and R. Ginosar. Computer architecture with associative processor
replacing last-level cache and simd accelerator. IEEE Transactions on Computers,
64(2):368–381, Feb 2015.

[178] L. Yavits, A. Morad, and R. Ginosar. Sparse matrix multiplication on an associative
processor. IEEE Transactions on Parallel and Distributed Systems, 26(11):3175–3183,
Nov 2015.

[179] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran. Axbench:
A multiplatform benchmark suite for approximate computing. IEEE Design Test,
34(2):60–68, April 2017.

[180] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar, S. Sethura-
man, K. Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi, H. Esmaeilzadeh, and
K. Bazargan. Axilog: Language support for approximate hardware design. In 2015
Design, Automation Test in Europe Conference Exhibition (DATE), pages 812–817,
March 2015.

[181] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Esmaeilzadeh. Neural
acceleration for gpu throughput processors. In Proceedings of the 48th International
Symposium on Microarchitecture, MICRO-48, pages 482–493, New York, NY, USA,
2015. ACM.

149

[182] S. P. Young, K. Chaudhary, and T. J. Bauer. Fpga repeatable interconnect structure
with hierarchical interconnect lines, June 22 1999. US Patent 5,914,616.

[183] H. Zhao, L. Xue, P. Chi, and J. Zhao. Approximate image storage with multi-level cell
stt-mram main memory.

[184] M. A. Zidan, A. M. Eltawil, F. Kurdahi, H. A. H. Fahmy, and K. N. Salama. Memristor
multiport readout: A closed-form solution for sneak paths. IEEE Transactions on
Nanotechnology, 13(2):274–282, March 2014.

[185] M. A. Zidan, H. Omran, A. G. Radwan, and K. N. Salama. Memristor-based reactance-
less oscillator. Electronics Letters, 47(22):1220–1221, Oct 2011.

[186] M. A. Zidan, H. Omran, C. Smith, A. Syed, A. G. Radwan, and K. N. Salama. A
family of memristor-based reactance-less oscillators. International Journal of Circuit
Theory and Applications, 42(11):1103–1122, 2014.

150

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Motivation
	Background
	Computation Types
	Non-volatile memories

	Contributions
	Thesis Overview

	Associative Processor
	Introduction
	Architecture
	SRAM Associative Processor (SAP)
	Resistive Associative Processor (RAP)

	Instructions
	Logical Instructions
	Arithmetic Instructions

	System Architectures
	Simulator

	Tradeoffs in APs
	Introduction
	Performance
	Energy
	Reliability
	Write Endurance
	Process Variations

	Conclusions

	Approximate In-Memory Computing
	Approximate Computing
	Approximate Memristive In-memory Computing
	Bit Trimming
	Memristance Scaling
	Experimentation

	A Hybrid Approach
	Motivation
	Design Flow
	Dynamic Approximation
	Experimentation

	Conclusion

	Methods for Low-power APs
	Low-Power SAP
	Motivation
	Low-Power Methodologies
	Experimentation

	Multi-compare for RAPs
	Motivation
	Methodology
	Evaluation

	Conclusion

	Two-dimensional AP
	Introduction
	Motivation

	Proposed Architecture (2D AP)
	Evaluation
	Experimentation
	Simulation Framework
	Energy & Performance
	Figure of Merit

	Conclusion

	Conclusion & Future Work
	Bibliography

