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Abstract Our study focuses on gravity-driven, particle-laden flows which are pertinent to a wide
range of industrial and geophysical settings in which transport of suspensions occur. In the present
study we employ a previously derived model by Murisic et al. (Physica D: Nonlinear Phenomena,
240, 2011) which uses the lubrication approximation to describe particle-laden films on an incline.
The model consists of a coupled system of hyperbolic conservation laws for the interface position
and the particle concentration. While it has been shown that the model compares well quantitatively
with experiments, it lacks analysis. The objectives of this paper focus on the study of the Riemann
problem for this system of conservation laws and how the results relate to experiments. We investigate
the governing system analytically and numerically; the equations exhibit rich mathematical structures
including double-shock wave solutions, rarefaction waves and singular shocks.
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1 Introduction

Thin films occur in fluid flows over a vast range of length scales and are pertinent to many engineering
applications (such as microfluidics, coating flows, heat transfer processes) as well as geophysics (such as
mud slides, debris flows, oil and gas applications). Further, many areas of biophysics and medical physics
have advanced through thin films, such as in tear-film rupture and surfactant replacement therapy in
neonates. Due to their wide range of applications, thin films have received substantial attention in the
literature in the past few decades [1–4]. Mixtures of fluid and particles, though extremely relevant in
geophysical applications both in small and large scales, have received far less attention. The presence
of solid particles in slurries and their efficient handling is central to many of the above-mentioned
applications which renders the understanding of the dynamics of these flows extremely important. The
flow of a viscous fluid laden with small, spherical particles and flowing down an incline under the action
of gravity will be the subject of the present work.

While the behavior of a single particle in Stokes flow is well understood, the settling and resuspension
of large volumes of particles in a slurry is not; consequently, one resorts to empirical or semi-empirical
correlations to model such processes. Some of the earliest work on the subject investigated gravitational
settling/sedimentation of a uniform suspension of particles in a quiescent bulk fluid [5–7]. Richardson
and Zaki [6] carried out a series of experiments to suggest an expression for the drag force; this
expression showed good agreement with theory. In the current study, the interest lies in the gravitational
transport of particles within a thin film of viscous oil. It has been shown experimentally that particle-
laden, thin-film slurries falling under gravity develop three distinct regimes in the presence of contact
lines [8]; these are shown in Fig. 1.

(a) (b) (c)

Fig. 1 Flow regime patterns emerging from a fixed volume of silicon oil laden with small (∼ 300µm), negatively
buoyant glass beads. The experimental apparatus consists of a rectangular plane, which is 90 cm long by 14 cm wide
and, in the pictures shown here, it is inclined at an angle of 30o. In (a)-(c), the particle volume fraction is set as 0.25,
0.35 and 0.5 corresponding to the ‘settled’, ‘well-mixed’ and ‘ridged’ regime, respectively. In the ‘settled’ regime, clear
fluid flows over the particle-rich fluid while in the ‘ridged’ regime, the particles accumulate at the front indicated by
the darker yellow color in panel (c). The middle panel shows an intermediate regime where the particles remain well
mixed in the fluid. The images show the patterns at their fully developed state captured at 2, 4 and 20 minutes after
the onset of the experiment in panels (a)-(c), respectively. The experiments were run in the Applied Mathematics
Laboratory at University California, Los Angeles (UCLA) (see [9, 10] for more details on the experiments).
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At low concentrations and angles of inclination, the particles tend to settle rapidly thus allowing clear
fluid to flow over them. The clear fluid front then undergoes a fingering instability as expected from
previous work on the stability of single, particle-free layers [11, 12]. At large particle concentrations
and angles, the particles advance towards the front of the flow and accumulate to form a particle-rich
ridge which suppresses the fingering. A transient regime exists at intermediate concentrations and
angles wherein the particles appear to remain well mixed within the slurry while the front is seen to be
unstable to fingering formation. Following the work of Murisic et al. [9] we henceforth refer to the three
regimes as ‘settled’ [see Fig. 1(a)], ‘well-mixed’ [see Fig. 1(b)] and ‘ridged’ [see Fig. 1(c)]. While the
study of gravity-driven, clear, thin films is rather straightforward, the addition of particles in the fluid
complicates matters through the actions of particles settling due to gravity, and their resuspension,
the latter induced by shear. These processes are further complicated by the different time scales they
act upon; various system parameters such as the plane angle of inclination, particle size and density
affect these and need to be accounted, for the accurate prediction of the flow dynamics.

Existing models [8, 13] use the lubrication approximation to simplify the three-dimensional particle
transport, continuity and Stokes equations to derive a coupled system of equations to describe the
evolution of the free surface and particle concentration. It is noted that the Stokes equations are
modified to account for the effect of the particles on the slurry density and viscosity. The model
employed in [8, 13] accounts for the effects of gravity, capillarity and hindered settling. The solutions
were found to approach the ‘ridged’ regime behavior but failed to capture the separation between
the particle-free and particle-rich regions observed in the ‘settled’ regime. In the subsequent studies of
Cook [14] and Cook et al. [15], it was suggested that shear-induced migration phenomena are important
and should be included in the dominant physics of the problem. The lubrication models derived in the
above-mentioned studies assume that transport due to shear or settling occurs rapidly in the normal
direction such that these processes depend solely on the axial flow direction and time. The most
recent model [9,10] reviews the important flow dynamics and the time scales within which they occur.
It employs the so-called ‘equilibrium’ theory whereby it is assumed that the fluxes accounting for
gravitational settling and resuspension due to shear-induced migration are balanced. This leads to a
coupled system of ODEs which confirms the existence of two separate regimes - one wherein all the
particles settle to the substrate and a second one wherein the particles are distributed throughout the
film thus reaching the free surface. The ODE solutions indicate that there exists an unstable state
which corresponds to the transient regime observed at intermediate particle concentrations and angles.
Further, due to the small thickness of the film, any particle motion in the normal direction, is said
to occur fast compared to the flow direction. Extensive experimental work has been done in [9] which
shows excellent agreement with the equilibrium theory employed in the model. In the studies by Murisic
et al. [9, 10], the evolution equations are solved numerically and compared with physical experiments
in the settled regime.

Motivated by the good agreement between theory and experiments, we focus our analysis on the model
derived in [9, 10]. The model consists of two coupled, hyperbolic conservation laws which describe the
evolution of the position of the interface and the particle volume fraction. This paper presents a detailed
analysis of the Riemann problem where we identify several types of solutions that emerge, including
classical shock solutions, rarefaction waves and singular shocks. Such solutions have been shown to exist
for other fluid systems in the literature such as the flow of clear, thin films down an incline [12, 16].
One-dimensional solutions show that the flow develops a traveling-wave solution given by a compressive
shock, which moves with constant velocity; the latter is given by a characteristic speed which satisfies
the Rankine-Hugoniot jump condition. Bertozzi et al. [17] investigated the flow of a fluid climbing up
an inclined plane along surface tension gradients, created by an imposed temperature gradient along
the interface and against the action of gravity. In the presence of both gravitational and surface tension
gradient effects, the authors conclude that there exist several traveling-wave solutions depending on
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the initial thickness of the film. These include solitary compressive shocks and double-shock waves
comprised of compressive and undercompressive solutions. A further increase of the film thickness
showed that the flow does not develop traveling-wave solutions; instead, undercompressive-rarefaction
waves form at the interface. Similar dynamics are observed in particle-laden flows where, as one might
expect, the complexity between the various competing forces increases substantially.

This paper is organized as follows: in Section 2, we outline the details of the theoretical model em-
ploying the assumptions based on the disparity of time scales of the various physical processes and
the competition between the forces acting on the slurry as a result of the dominant physical effects
present in the experimental setting. In Section 3, we discuss the shock dynamics theory as applied
to the hyperbolic system of PDEs which describe the spatio-temporal evolution of the slurry flow.
Numerical solutions are presented and the effect of the most important system parameters is outlined.
Further, we discuss the nature of the shocks and wave solutions found numerically and their relevance
to physical observations. Finally, concluding remarks are given in Section 4.

2 Theoretical model

2.1 Two-phase equations

In this subsection, we review the model derived in the work of Murisic et al. [9, 10]. We consider the
spreading of a thin fluid laden with spherical, mono-disperse particles of volumetric concentration φ.
The fluid is assumed to be incompressible of density ρ

L
and viscosity µ

L
while the particles are assumed

to be rigid, noncolloidal and negatively buoyant. The density of the particles is denoted by ρ
P
. The

subscripts ‘P ’ and ‘L’ refer to ‘particle’ and ‘liquid’ properties, respectively. The slurry, composed of a
well-mixed mixture of fluid and particles, flows down a rectangular incline, under the action of gravity.
The incline has been prewetted by a thin, particle-free fluid of uniform thickness, h+. The equations
governing the fluid dynamics are given by the three-dimensional continuity and Stokes equations [see
Eqs. (1) and (2)] for an incompressible fluid [18].

∇ · u = 0, (1)

∇p−∇ ·
[

µ(φ)
(

∇u+∇u
T
)]

= ρ(φ)g; (2)

where ρ(φ) = [ρ
P
φ + ρ

L
(1 − φ)] and u = (u, v, w), where u, v and w represent the axial, transverse

and normal components of the slurry mixture velocity, respectively. The effective viscosity is modelled
using the Krieger-Dougherty relation [19, 20] given as µ(φ) = µ

L
(1− φ/φmax)

−2. In order to take
into account the presence of particles, the Stokes equations are modelled using the so-called effective
suspension density, ρ(φ) and viscosity, µ(φ). It is noted that the viscous forces in this setting are
dominant compared to inertial forces, hence any contributions due to inertia are ignored. For the
particle volume fraction, we use a transient, particle transport equation [see Eq. (3)] which takes into
account the flow of particles due to advection and flux gradients; the latter being a result due to the
combined effect of contributions due to particle collisions and changes in the effective density and
viscosity.

φt + u · ∇φ+∇ · J = 0, (3)

with
J = Jgrav + Jcoll + Jvisc; (4)
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where J represents the total flux of particles comprised of flux due to gravity, Jgrav, shear-induced
migration as a result of particle collisions, Jcoll and viscosity gradients, Jvisc, given by Eqs. (5) below;

Jgrav =
d2φ(ρ

P
− ρ

L
)

18µ
L

fs(φ)g,

Jcoll = −
Kcd

2

4
(φ∇γ̇ + φγ̇∇φ) , (5)

Jvisc = −
Kvd

2

4µ
φ2γ̇µφ∇φ.

In Eqs. (5), d denotes the particle diameter, γ̇ is the shear rate, fs(φ) describes hindered particle
settling due to gravity, defined later by Eq. (11), while Kc and Kv are empirical constants associated
with the shear-induced migration arising from changes in the particle volume fraction and the effective
suspension viscosity; these are taken as Kc = 0.41 and Kv = 0.62 [9, 21]. Equations (1)-(3) are
solved subject to boundary conditions applied at the wall, located at z = 0 and at the free surface,
z = h(x, y, t). These correspond to the no-slip and no-penetration boundary condition at the wall and
the tangential and normal stress balances at the free surface. The motion of the fluid at the free surface
is described through the kinematic boundary condition given by

D

Dt

[

z − h(x, y, t)
]

= 0, (6)

where D/Dt represents the material derivative. Finally, we impose no-flux boundary conditions at the
wall and free surface for the particles

J · n = 0, (7)

where n is the outward normal unit vector. We note that, through Eq. (7), we state that no mechanism
is employed to allow the particles to adsorb at the interface.

2.2 Equilibrium model

For the purposes of the current paper, we assume that the plane is of infinite width such that any
changes in the flow in the transverse (y-direction) are negligible. Hence, we consider the dynamics in
the axial and normal directions only, such that ∇ = (∂x, 0, ∂z) and u = (u, 0, w).

The governing equations are rendered dimensionless through the following scalings,

(x, y) = L(x̃, ỹ), (z, h) = H(z̃, h̃),

(u, v) = U(ũ, ṽ), w = (ǫU)w̃, t = (L/U)t̃, p = P p̃, (8)

γ̇ = (U/H)˜̇γ, φ = Φφ̃,

where the quantities shown with a tilde are dimensionless; L and H are the typical length scales for the
length of the plane (in the x-direction) and the thickness of the film (in the z-direction), respectively,
ǫ ≡ H/L is the lubrication parameter while U and P are the characteristic scales for the velocity
and pressure, respectively. The dominant mechanism driving the flow is attributed to gravity, hence, a
balance between gravity and the deviatoric stress terms yields the velocity scale as U ≡ ρ

L
g sinαH2/µ

L

while, for negligible inertia flows, the appropriate scaling for the pressure is P ≡ µ
L
UL/H2. It is noted

that, in the lubrication approximation, the shear rate, γ̇ scales as ∼ ∂u
∂z

hence the choice of the U/H
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scale in Eqs. (8). Finally, Φ denotes a typical particle volume concentration which, for simplicity, is
taken to be equal to unity.

We introduce the aforementioned scalings (8) into the governing equations and boundary conditions
given by Eqs. (1)-(7) which yield a set of dimensionless, leading order equations. In the lubrication
approximation, the flow of the fluid is described by

σz = −(1 + ρsφ), (9)

where ρs = (ρ
P
− ρ

L
)/ρ

L
and we have used σ = µ(φ)uz. Next, we nondimensionalize Eq. (3) through

the scalings (8) which yields the following dimensionless particle transport equation,

φt + uφx + wφz = −
d2ρs
18H2

[

(φfs(φ))x + ǫ−1 (φfs(φ) cotα)z

]

+
Kcd

2

4H2

[

ǫ
(

φ2γ̇x + φγ̇φx

)

x
+ ǫ−1

(

φ2γ̇z + φγ̇φz

)

z

]

(10)

+
Kvd

2

4H2

[

ǫ

(

φ2

µ(φ)
γ̇
dµ

dφ
φx

)

x

+ ǫ−1

(

φ2

µ(φ)
γ̇
dµ

dφ
φz

)

z

]

,

where, following Murisic et al. [9,10], the dimensionless hindrance settling function implemented in the
model is defined as

fs(φ) = (1− φ)/µ(φ). (11)

We define the ratio between the particle diameter, d, and the typical height of the film, H, as η ≡ d/H.
Here, we note that, while η may range from 0 (as d → 0) to 1 (as d → H), due to the assumptions made
in deriving our theoretical model, we demand that the value of η does not approach the two extrema.
For very small d, the particle distribution approaches that of a colloid dispersed in a fluid whose
dynamics cannot be captured with the particle transport equation employed. The other extreme, i.e.
as d approaches the height of the slurry thickness is considered impractical as it renders the continuum
assumption to break down. The latter allows for the particle properties to be defined continuously,
from one point to the next as opposed to considering each particle individually. To ensure that η is
defined within these physically realizable limits, we demand that the square of the ratio, η2 remains
within ǫ << η2 << 1. As used in the derivation of the model in the work of Murisic et al. [10] we
introduce the following scaling in the particle transport equation

η2 = ǫβ, with 0 < β < 1. (12)

Substituting Eqs. (11) and (12) in Eq. (10) and, given that 0 < β < 1, the leading order terms are of
O(ǫβ−1); therefore, in leading order, the particle transport equation is given by

0 =
ρs cotα

18φ2
max

d

dz

[

φ(1− φ)(φmax − φ)2
]

+
Kc

4

d

dz

[

φ
d

dz

(

φ
du

dz

)

]

+
Kv

2

d

dz

[

(

φ2

φmax − φ

)

du

dz

dφ

dz

]

; (13)

where we have substituted γ̇ = du/dz, which is true in leading order. We note that the terms associated
with temporal evolution and advection are of higher order, and do not appear in Eq. (13); thus, the
latter represents an ordinary differential equation which can be integrated with respect to z. Upon
integrating and employing zero-flux boundary conditions at z = 0, the particle transport equation is
expressed as

0 = σφ′

(

1 +
φ

φmax − φ
C1

)

− φ(C2 + 1) + C2 − ρsφ
2; (14)
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note we have used Eq. (9) to eliminate σz while, C1 = 2(Kv −Kc)/Kc and C2 = 2ρs cotα/9Kc.

The model imposes a separation of time scales, emerging from the physics of the flow in the axial
and normal directions. Attributed to the small thickness of the film, the flow dynamics in the normal
direction is considered to be fast compared to the flow in the axial direction. This allows for an order-
by-order analysis wherein the solutions to the leading order equations describe the shear stress and
concentration distribution in the z-direction which, in turn, yield information on the velocity profile.
The system of ODEs derived in Subsec. 2.2 given by Eqs. (9) and (14) are henceforth referred to
as the ‘equilibrium equations’. As shown in the literature [9, 10, 14], the ODE solutions constitute a
family of curves parametrized by the total volume of particles present within the fluid film, φ0 (defined
below). Before proceeding, since the equilibrium equations are explicitly independent of the axial flow
direction and time, it is also convenient to remove their implicit dependence [present through h(x, t)],
by rescaling the normal direction, z. We introduce a new variable z∗ which allows the normalization
of z by h, defined as z∗ = z/h. The equilibrium equations are rewritten as follows

σ̃′ = −(1 + ρsφ̃), (15)

φ̃′ =
φ̃(1 + C2) + ρsφ̃

2 − C2

σ̃
(

1 + C1
φ̃

φmax−φ̃

) ; (16)

where the primes denote differentiation with respect to z∗. Here, we use the tilde decoration to indicate
that the quantities employ the z∗ scaling. The z-averaged particle volume fraction is given by φ0 =
∫ 1

0
φ̃ dz∗ defined within 0 ≤ φ0 ≤ φmax.

The system of ODEs is solved numerically subject to appropriate boundary conditions (refer to [9,10] for
details on the numerical method employed). Figure 2(a) shows that the ODE solutions are represented
by a family of curves parametrized by φ0. The value of φ0 is critical in dictating whether the particle
concentration favors settling such that, as z∗ → 1, φ → 0 or, whether the particles will remain
suspended in the fluid such that, as z∗ → 1, φ → φmax, where φmax denotes particle maximum
packing. This behavior is clearly depicted in Fig. 2(a) where the bottom part of the graph represents
the ‘settling’ behavior while the top part represents a different regime which, for reasons evident
through our experimental and numerical simulations, we refer to as ‘ridged’ or ‘particle-rich’ regime.
The bottom part of the figure indicates that for low φ0, the particles settle up to a certain height in the
slurry which is lower than its thickness thus the top part of the fluid film remains particle-free. This is
contrasted with the solutions shown in the upper part of the figure, which demonstrate that for high
enough φ0, there exist particle-rich regions throughout the fluid film. These ODE solutions suggest
that there exists an unstable, flat state between the two regimes which is independent of variations
in z∗ i.e. when φ′ = 0. It is possible to calculate the critical particle volume fraction, φc [shown with
a black, horizontal line in Fig. 2(a)] which represents this unstable flat state, through the system of
ODEs yielding a relationship between φc and system constants C2 and ρs,

φc =
−(1 + C2) +

√

(1 + C2)2 + 4ρsC2

2ρs
. (17)

The velocity profile may then be numerically constructed through the definition of the shear stress
which rearranged yields ũ(z∗) =

∫

1

0
(σ̃/µ̃)dz∗. We obtain the velocity distribution as a function of z∗

by applying the no-slip condition at z∗ = 0. This is shown in Fig. 2(b) for a φ0 value equal to the
critical point of transition, corresponding to the flat, horizontal line in the same figure in panel (a). We
observe that the velocity distribution approaches a parabolic profile, as expected from particle-free,
thin-film flow dynamics and satisfies the no-slip and no-shear conditions at the wall and free surface,
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respectively. We note that the exact shape of the profile depends on the initial particle concentration
and the relation employed to describe the effective viscosity of the slurry.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

z∗

φ̃

(a)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

z∗

ũ

(b)

Fig. 2 (a) Family of curves parametrized by φ0 representing solutions to the system of ODEs given by Eqs. (15)

and (16). The solutions depict the relationship of the particle volume fraction φ̃ as a function of the rescaled normal
direction z∗. They are obtained using a fourth-order, Runge-Kutta numerical scheme satisfying no-shear at the free
surface; the latter is ensured through shooting method. The thick, horizontal line represents the unstable flat state
solution which may be obtained analytically using Eq. (17) for given C2 and ρs; here, it has been calculated as
φc = 0.459. (b) Velocity distribution for the critical particle concentration value, φc = 0.459.

3 Hyperbolic system of PDEs

In the work of Murisic et al. [10], the authors focus on the numerical solution of the transport equation
for low particle concentrations for which the evolution of the slurry is characterized by the ‘settled’
regime. As mentioned in Subsec. 2.2 , the ODE solutions prescribe the distribution of the particle
concentration and ultimately the velocity profile of the slurry in the normal direction as a result of the
balanced settling and resuspension forces. Using the kinematic boundary condition (6), and by moving
on to the next order in the particle transport equation, we obtain a system of conservation laws in
terms of the dependent, conserved variables, U = (h, hφ0):

Ut + Fx = 0; (18)

where F = (F,G) denotes the flux vector; F and G denote the fluxes of the film and particle equation,
respectively, defined as

F = h3

∫

1

0

ũ dz∗ = h3f(φ0); (19)

G = h3

∫

1

0

ũφ̃ dz∗ = h3g(φ0). (20)

Note that through the z∗ scaling, it is possible to write down the fluxes as the product of a function
of h and a function of φ0; this is useful as the latter function bears no explicit dependence on h. The

8 of 26



reader is referred to the work by Murisic et al. [10] for a more detailed discussion on the properties of
the suspension and particle volume fluxes, f and g.

Upon expanding the flux terms, Eq. (18) is rewritten as

Ut + J(U)Ux = 0, (21)

where J(U) is the Jacobian matrix of the fluxes given by the column vector F . The system of con-
servation laws given by Eq. (21) is hyperbolic if J(U) has 2 real eigenvalues, λ1, λ2 and it is strictly

hyperbolic if they are distinct such that λ1 < λ2. The Jacobian matrix is defined as in Murisic et

al. [10]

J(U) = h2

(

3f − φ0f
′ f ′

3g − φ0g
′ g′

)

, (22)

where the primes denote differentiation with respect to φ0. It is noted that the Jacobian matrix in (21)
is obtained in terms of the conserved variables and then reconstructed in (22) in terms of the primitive
variables, h and φ0. The equations describing the transport system for our physical problem are found
to be hyperbolic within the entire range of physically realistic values for φ0, i.e. 0 ≤ φ0 ≤ φmax, as
indicated in [10].

We now look at the Riemann problem for the 2× 2 system of conservation laws, namely the solution
corresponding to initial conditions separated by a jump discontinuity at x = 0:

U(x, 0) =

{

U
−

if x < 0,
U

+
if x > 0,

(23)

where U
−

and U
+

are given constants and represent the left and right states of U , respectively. A
schematic represenation showing the initial conditions for the film height is shown in Fig. 7.

3.1 Shocks and rarefaction waves theory

A shock solution must satisfy the Rankine-Hugoniot jump condition, defined in [22] for the scalar
conservation law as:

s(ū+ − ū−) = f̄+ − f̄−, (24)

where s is the shock speed and f̄ is some nonlinear function of ū. For systems, Eq. (24) is expressed
as:

s =
F

−

− F
+

h
−

− h
+

, s =
G

−

−G
+

(hφ0)
−

− (hφ0)+
; (25)

note that the left and right states have been switched from Eq. (24) to represent the direction of the
flow. In Eq. (25), F

−

, G
−

represent the fluxes evaluated at h
−

and (hφ0)
−

and, similarly, F
+
, G

+
denote

the fluxes evaluated at h
+
and (hφ0)+ . Equations (25) must be satisfied across any discontinuity that

exists between arbitrary upstream and downstream states. Note that with specified left and right states,
in general, (25) is over-determined and will not have a solution. For a 2×2 system of conservation laws,
we look for a two-wave solution comprised of either rarefactions or shocks. We focus on the shocks case
first.

We follow the analysis carried out by Cook et al. [13] to identify all the possible shock wave connections
to the system of equations presented in the current paper. Note that the theoretical model used in [13]
was different to the one used in this paper. The Cook model employed a closed form for the fluxes,
without incorporating all the relevant physics and it did not give quantitative agreement with the
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experiments. The current model is more challenging as it does not have closed formulae for the fluxes.
Let us assume we fix the left states h

−

and (hφ0)
−

; there must exist certain right states h
+
and (hφ0)+

for which the two relations in (25) are equal. The shock speed may be eliminated in Eqs. (25) to give

(F
−

− F+)[(hφ0)
−

− (hφ0)+ ]− (G
−

−G
+
)(h

−

− h
+
) = 0; (26)

now, from (26), we are left with one degree of freedom which allows us to choose one of the unknown
states, e.g. h

+
, and solve for the second one, e.g. (hφ0)+ . The corresponding value of the unknown right

state ensures that the jump conditions are satisfied yielding a possible solution to the problem posed.
Repeating the calculation for a range of right states for one of the variables gives a one-parameter family
of solutions, henceforth referred to as the ‘Rankine-Hugoniot locus’ on the (h, hφ0) plane showing the
possible right states, that satisfy (26), given a set of known left states. Figure 3 shows the locus for the
case where one set of the fixed states in Eq. (23) are chosen as h

−

= 1 and (hφ0)
−

= 0.3; for practicality,
the locus is shown on the (h, φ0) plane. We note that throughout this subsection, we choose (1,0.3)
as one of the fixed states. In physical experiments, the value of φ0 = 0.3 results in flow patterns that
predominantly fall in the ‘settled’ regime for which the shock connections are particularly relevant.
The locus shows all possible shock connections that can be connected to arbitrary U through the fixed
state (1,0.3) via both 1-shock connections, if (1,0.3) is an upstream state or, 2-shock connections, if
(1,0.3) is a downstream state.
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Fig. 3 Phase diagram showing the Rankine-Hugoniot locus calculated using Eq. (26). The locus shows all possible
1-shock (thick line) and 2-shock (thin line) connections from the fixed state chosen as h

−

= 1 and (φ0)
−

= 0.3 (the
fixed states are indicated by the square marker).

We investigate what connections, if any, exist for given left and right states. This is achieved by plotting
the Rankine-Hugoniot locus for two sets of fixed states, one representing the upstream states and a
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Fig. 4 The Rankine-Hugoniot locus calculated using Eq. (26) showing 1-shock (thick, solid lines) and 2-shock (thin,
solid lines) connections from an upstream state (h

−

, (φ0)
−

) = (1, 0.3) (�) and 1-shock (thick, dashed lines) and 2-shock
(thin, dashed lines) connections from a precursor state (h

+
, (φ0)+ ) = (0.1, 0.3) (△). The intersections points show

the possible intermediate states which are calculated as (h
i
, (φ0)i ) = (0.56, 0.065) (�) and (h

i
, (φ0)i ) = (0.23, 0.53)

(©).

second representing the downstream states. If the connection curves generated from each given set
of fixed states intersect, then a shock connection exists between the left and the right states via an
intermediate state indicated by the point of intersection; this is shown in Figs. 4 and 5. Figure 4
shows all possible connections from an upstream state (solid lines) and a downstream state (dashed
lines) including the points of intersection. Figure 5 shows all possible connections from an upstream
state (solid line) and 2-shock connections yielding intersecting points with two downstream states. It
is possible that the Rankine-Hugoniot locus exhibits multiple points of intersection - see, for example,
Fig. 4. In such cases the solution is obviously not unique; in numerical simulations however we observe
that the initial profiles evolve into a double-shock where a unique set of intermediate states connect the
preset left and right states (see, for example, Fig. 8). We therefore need to use an additional condition
to identify whether the shock connections given by the Rankine-Hugoniot locus are in fact admissible.
Admissible solutions to systems like Eq. (18) are unique, weak solutions and are said to satisfy the
following entropy conditions [22] for the k-characteristics:

λk(U
−

) > sk > λk(U+
), λk−1(U

−

) < sk < λk+1(U+
); (27)

where 1 ≤ k ≤ 2 and λ denotes the eigenvalue of the Jacobian matrix defined by Eq. (22). Here,
the subscripts ‘−’ and ‘+’ refer to upstream and downstream states, respectively. For k = 1, we are
interested in the first shock or ‘1-shock’ connecting the upstream (left) state to the intermediate state
moving with speed s1 while for k = 2, we are concerned with the second shock or ‘2-shock’ connecting
the intermediate state to the downstream (right) state, moving with speed s2. We accept the solution
for which Eqs. (25) and the entropy condition (27) are satisfied as being the admissible solution out of
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Fig. 5 The Rankine-Hugoniot locus calculated using Eq. (26) showing all shock connections (solid lines) from an
upstream state (h

−

, (φ0)
−

) = (1, 0.3) (N) and two precursor states: (h
+
, (φ0)+ ) = (0.1, 0.3) and (h

+
, (φ0)+ ) =

(0.01, 0.3), both shown with a hollow triangle marker. The dashed and dot-dashed lines represent 2-shock connections
from (h

+
, (φ0)+ ) = (0.1, 0.3) and (h

+
, (φ0)+ ) = (0.01, 0.3), respectively. The intersection points show the possible

intermediate states with the upstream state, calculated as (h
i
, (φ0)i ) = (0.56, 0.065) and (h

i
, (φ0)i ) = (0.46, 6.7 ×

10−4), both shown with a hollow round marker.

all possible solutions satisfying the Rankine-Hugoniot relations. The entropy or admissibility condition
is therefore required to select physically relevant solutions.

The entropy conditions assert that a shock solution is formed when the characteristics carry infor-
mation towards the shock. Figure 4 shows that the curves showing the connections generated from
the upstream state, (h

−

, (φ0)
−

) = (1, 0.3) and the downstream state, (h
+
, (φ0)+) = (0.1, 0.3) intersect

at two distinct points. The latter are intermediate locations which are connected through a shock
to the left state upstream and to the precursor states downstream. We are interested in determining
how the characteristics at the leftmost and rightmost points compare to the speeds of the 1-shock
and 2-shock waves, using the entropy conditions given by (27). Table 1 shows the computed 1- and
2-characteristics for the left (λ1−, λ2−) and right (λ1+, λ2+) states shown in Fig. 4. The intermediate
1- and 2-characteristics are also tabulated for each intersection point; the subscript ‘a’ in (λ1i)a, (λ2i)a
refers to the point (0.56, 0.065), indicated by a hollow, square marker in Fig. 4, while the subscript
‘b’ in (λ1i)b, (λ2i)b refers to the point (0.23, 0.53), indicated by a round, hollow marker in the same
figure. The 1- and 2-shock speeds are determined using any of the two relations in Eqs. (25); for the
intermediate state ‘a’, the speeds are calculated as (s1)a = 0.05 and (s2)a = 0.08 for the 1-shock
and 2-shock while for the second intermediate state, ‘b’, the speeds are computed as (s1)b = 0.07 and
(s2)b = 7.6× 10−4.
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Table 1 1- and 2- characteristics for the fixed states shown in Fig. 4

λ1− (λ1i)a (λ1i)b λ1+ λ2− (λ2i)a (λ2i)b λ2+

0.07 7.4× 10−3 7.0× 10−4 7.2× 10−4 0.19 2× 10−3 1.9× 10−3 1.9× 10−3

For a 2× 2 system, the entropy conditions in (27) are expressed as follows; for the 1-shock,

λ1(U−) > s1 > λ1(Ui
); (28)

s1 < λ2(Ui
),

and, for the 2-shock,

λ2(Ui
) > s2 > λ2(U+); (29)

λ1(Ui
) < s2.

The characteristics at the three states (refer to Table 1) and the shock speeds associated with each
intermediate state show that both entropy conditions (28) and (29) are satisfied for (h

i
, (φ0)i) =

(0.56,0.065) indicating that the solution is admissible. For the second intersection point, (h
i
, (φ0)i) =

(0.23,0.53), while the 1-shock condition [Eq. (28)] is satisfied, the 2-shock condition [Eq. (29)] is
violated. The admissible solution obtained as a result of the connection curves matches our observations
in numerical simulations where, for certain system parameters, we observe that the initial profiles for
h and φ0 evolve into a two-shock solution where the fixed states at the left and right boundaries are
connected through an intermediate flat state.

In the above-mentioned examples, the fixed states for h were chosen such that h− > h+ where we
showed, through the Rankine-Hugoniot relations, that shock connections exist for the particular set
of left and right states. Like scalar conversation laws, it is possible to obtain smooth solutions of the
PDE system which take the form U(x, t) = V (x/t); these are known as rarefaction waves. For a 2× 2
system, depending on the values of the fixed, boundary states, the solution may be represented by
combinations of shock and rarefaction waves. In what follows we show that, for situations wherein
the values of the right states are higher than the left states, the solution is described by shocks
and rarefaction waves connected through intermediate states. Phase diagrams showing information on
shocks (given by the Rankine-Hugoniot loci) and rarefactions (given by rarefaction integral curves)
may be used to deduce interactions between shock-rarefaction solutions. In order to mathematically
define the nature of rarefaction waves, we discuss the scale invariance of the problem. Under the
transformation (x, t) → (θx, θt) (for any θ > 0), we look for a self-similar solution V (ξ) where ξ = x/t.
Given Eqs. (21) and (23), the self-similar solution should satisfy the following ordinary differential
equation

− ξV ′ + f(V )′ = 0, (30)

and the boundary conditions,
V (−∞) = V−, V (+∞) = V+; (31)

where the primes in Eq. (30) denote differentiation with respect to ξ. Rarefaction waves are constructed
from self-similar solutions of the ODE (30) by solving

V
′(ξ)[J(V )− ξI] = 0. (32)

In Eq. (32), ξ is an eigenvalue of J(V ) and V
′(ξ) is the corresponding eigenfunction. Next, we obtain

rarefaction wave curves in the h-φ0 phase space (as previously carried out for the construction of
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the shock wave curves shown in Figs. 3-5) by solving the above-mentioned eigenvalue problem. For a
given initial condition, the objective is to start at the leftmost eigenvalue, obtain solutions to the ODE
system such that a solution exists until ξ is equal to the rightmost eigenvalue. Such solutions, known as
integral curves, give all the points V which can be connected to a set of fixed states, say V−, through
rarefaction wave curves.

From Eq. (32), we can write down the conditions for a rarefaction wave solution as follows,
(

λi − h2(3f − φ0f
′) −h2f ′

−h2(3g − φ0g
′) λi − h2g′

)(

hξ

(hφ0)ξ

)

=

(

0
0

)

; (33)

where we have used the Jacobian matrix given by Eq. (22) and λi denotes the eigenvalue with i = 1
for the leftmost and i = 2 for the rightmost eigenvalue. Equation (33) yields two coupled ODEs for
the system of conservation laws; however, since λi is an eigenvalue of the system only one of the two
equations is required to obtain the eigenfunction. Using the first equation, the resulting ODE gives a
relationship between hξ and (hφ0)ξ

[λi − h2(3f − φ0f
′)]hξ − h2f ′(hφ0)ξ = 0, (34)

which ultimately yields,
dh

d(hφ0)
=

h2f ′

λi − h2(3f − φ0f ′)
. (35)

Now, Eq. (35) may be integrated subject to a single initial condition, say h = h− at hφ0 = (hφ0)−
to obtain solutions in the h− hφ0 phase plane; again, we opt to show these connections in the h− φ0

as the primitive variables represent the physical meaning more clearly. Further, we note that, if a
solution exists, the leftmost eigenvalue yields all points V which connect to the left states through a
1-rarefaction wave while the rightmost eigenvalue similarly gives us solutions which connect to the left
state through a 2-rarefaction wave.

Like shock connections, rarefaction solutions are also quite relevant for conservation laws. For this
problem in particular, they arise as the leading part of a composite wave formed from constant volume
initial data as shown in [10]. In Fig. 6, we show admissible Rankine-Hugoniot loci from two boundary
states: (1,0.3) shown by a square marker, and (0.1,0.1) shown by a hollow, triangle marker; 1-shock
connections from (1,0.3) are represented by solid, black lines (here, 2-shock connections are inadmis-
sible and therefore not shown). Furthermore, 1- and 2-shock connections are plotted from (0.1,0.1)
represented by black, dashed lines. Figure 6 also depicts 1- and 2- rarefaction wave curves from (1,0.3),
represented by thick, gray, dot-dashed lines. We note that the 1-shock and 1-rarefaction curves from
(1,0.3) completely overlap. Additionally, we mark two intersection points (shown by solid circle and
solid triangle markers) on the plot both of which represent possible solutions depending whether the
above-mentioned fixed points represent upstream or downstream states. We start with the case wherein
(1,0.3) is an upstream state where we observe that the 1-shock/1-rarefaction curve from the upstream
state intersects with the 2-shock curve from the downstream state at (0.49,0.02), indicated by the solid,
triangle marker. We now discuss the case wherein (1,0.3) is a downstream boundary point. The curves
which intersect are the 1-shock connections from the upstream and the 2-rarefaction curve from the
downstream state. Thus, the solution is expected to be represented by a 1-shock, 2-rarefaction wave
connected through an intermediate state at (0.2,0.4), indicated by a solid, circle marker. We note that
we have repeated the analysis with fixed states other than (1,0.3); we find that admissible intersec-
tion points in the Rankine-Hugoniot loci coincide with the intermediate states shown in numerical
simulations, see for example, Fig. 10(b), where the left state is fixed at (1,0.5).

In the next section, we discuss the numerical solutions obtained for the slurry thickness and particle
volume fraction. Further, we indicate how the results from the shock and rarefaction analysis compare
to the numerical simulations and physical experiments.
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Fig. 6 Shock and rarefaction curves for the system. Here, the Rankine-Hugoniot locus calculated using Eq. (26)
shows 1-shock connections (solid lines) from the fixed state (1, 0.3) (�) and shock connections (dashed lines) from a
second fixed state (0.1, 0.1) (△). 1- and 2-rarefaction integral curves at (1, 0.3) are shown by thick, dot-dashed, gray
lines. We mark two intersection points: one given by the shock-shock connections (shown with a N) and another given
by the shock-rarefaction connections (shown with a  ). We note that the 1-shock and 1-rarefaction curves for the
state (1, 0.3) overlap. Numerical simulations show that, starting with (1, 0.3) as the upstream state give a shock-shock
solution (see Fig. 8 for a representation of the numerical solution) while, starting with (1, 0.3) as the downstream state
the solution is described by a 1-shock, 2-rarefaction wave (see Fig. 14). The intersection points given by the markers
N and  match the flat states shown in the numerical simulations in Figs 8 and 14, respectively.

3.2 Numerical solutions

The film thickness and particle concentration equations are solved numerically in MATLAB using
an up-wind scheme. We first formulate the initial-boundary-value problem. The latter consists of the
system given by Eq. (21) and a set of initial and boundary conditions for the two dependent variables.
We use two sets of initial conditions for h and φ (note that we denote the particle concentration by φ
instead of φ0 henceforth), both simulating a constant flux of particles and fluid onto the plane. Both
sets of initial conditions assume a step-like profile for the initial height given as

h(x, 0) = (h− − h+)uc(−x) + h+, (36)

where uc is the unit step function. Equation (36) holds true at t = 0 for all values of x. Physical
experiments undertaken in the Applied Mathematics laboratory at UCLA simulate a constant volume
scenario, where a finite volume of particles and oil are deposited on the plane and allowed to flow
under gravity. The objectives of the current paper are devoted on the Riemann initial data for h for
which the conservation laws are solved using initial constant piecewise data with a single discontinuity
between the left and right boundaries. We choose to tackle the Riemann problem for situations wherein
h− > h+ and h− < h+ in Eq. (36), representing a step-down and step-up function, respectively. This
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is shown in Fig. 7; the first Riemann problem is shown on the right of the dotted line where h− > h+

while the second Riemann problem is represented by h− < h+, shown on the left. We note that the
local Riemann problems combined simulate the initialization of the physical experiments best. In what
follows, the numerical simulations are solved either with a step-down or a step-up function. The left
and right boundary states for h satisfy h−, h+ > 0; this is done to overcome the modeling difficulties
associated with the behavior of the front at the contact line, when h = 0. The no-slip condition imposed
in our model implies that when the slurry-air interface meets the solid boundary, the contact angle does
not move. As this is physically incorrect, we require that h 6= 0 anywhere along the axial direction. We
consider two scenarios to initialize the particle volume fraction equation: in the first one, φ is chosen
to be uniform across all x [see Eq. (37)] while in the second one, a step-like profile is chosen for φ [see
Eq. (38)]:

φ(x, 0) = φ−, (37)

φ(x, 0) = (φ− − φ+)uc(−x) + φ+; (38)

in both Eqs. (37) and (38), φ− represents a fixed upstream concentration representing the initial
particle volume fraction. Similarly to Eq. (36), the fixed states in Eq. (38) can lie within φ− > φ+

........ ....

Riemann 
problem 1

Riemann 
problem 2

α

Fig. 7 Initialization of numerical simulations. We tackle two Riemann problems to identify all shock and rarefaction
connections for the 2× 2 system of conservation laws. In ‘Riemann Problem 1’ h− > h+ while in ‘Riemann Problem
2’, h− < h+. The initial conditions for the particle volume concentration vary from a uniform concentration along all
x to a step-up or step-down function similar to the two Riemann problems shown in this figure.

or φ− < φ+. For the step function given by (38), we note that, for φ− > φ+, the initial condition
simulates a physical setting more closely, wherein the majority of the particles are found to be well
mixed within the fluid behind the shock, while downstream of the shock, where the film is very thin,
the distribution of particles is expected to be sparse. This is achieved via a step function where the
precursor simulates a particle-free film as φ+ → 0. Finally, at the left boundary, i.e. at x = x−, we
demand that the left states for h and φ are satisfied for all time t,

h(x−, t) = h− and φ(x−, t) = φ0. (39)

We note that we obtain numerical solutions for the conserved variables h and hφ but, for clarity,
we choose to present the results separately for the fluid interface and particle volume fraction in all
figures in this section. In all the numerical simulations presented in this paper, we fix the plane angle of
inclination at α = 30o. Further, in order to simulate best the experiments carried out in our laboratory,
we choose a relative density equal to ρs = 1.5, which is calculated using the densities of negatively
buoyant glass beads and silicon oil. The constants C1 and C2 defined earlier are calculated as 1.02 and
1.45, respectively.
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It has been shown [9, 10] that the numerical simulation of the system of equations presented in the
current paper generates different types of solutions depending on the choice of system parameters.
The latter refer to the left and right states for h and φ, corresponding to a fixed, constant in-flux
and out-flux of fluid and particles, respectively. Additionally, the plane angle of inclination, α may be
adjusted, which in turn affects the velocity distribution within the slurry. It is noted that the initial
particle volume fraction is set by the upstream or left state imposed on φ. For low initial particle
concentrations i.e. φ− < φc and low inclination angles, the particles settle rapidly allowing clear fluid
to flow over them. As previously mentioned, this is referred to as the ‘settled’ regime which has been
observed in monodisperse, particle-laden flow experiments. Figure 8 shows the evolution of h and φ
starting from Eq. (36) for h and, from Eq. (37) [panel (a)] and Eq. (38) [panel (b)] for φ. For low
initial concentrations, i.e. φ− < φc the solution in both h and φ is described by a shock connecting
the preset left and right states through intermediate states, as shown in Fig. 8; it is noted that initial
concentrations within φ− < φc correspond to the lower part of the phase diagram in Fig. 2(a). The
intermediate state observed in the simulations in Fig. 8 match the shock-shock intersections shown in
the phase plots in Fig. 5 [for panel (a)] and Fig. 6 [for panel (b)]. A pictorial evolution of the flow
regime is shown in Fig. 9 showing the separation of particle-rich and particle-free regions.
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Fig. 8 Numerical solution of the film thickness (solid line) and the particle volume fraction (dashed line) at t = 2000.
In both panels, the left and right states are chosen as h− = 1 and h+ = 0.1, respectively and the left state for φ is
0.3. In panel (a) the initial condition for φ is given by Eq. (37) and in (b), we use Eq. (38) with φ+ = 0.1. Here, the
domain length is L = 220 and the mesh size used is dx = 0.1.

Figure 10 shows the solutions for high initial particle concentrations, φc < φ− < φmax; here, we use
φ− = 0.5. In the case of uniform particle concentration along the x-axis [panel (a)], at t = 2000, the
solution is described by a sharp increase in the height profile which forms a ridge resembling a singular
shock; details for the theory behind the formation of these singular shocks can be found in the work of
Wang and Bertozzi [23]. The insert in panel (a) depicts a magnified view of the concentration profile
showing that the initial concentration increases to a value approaching that of maximum packing,
φmax = 0.61. The increase in φ corresponds to the ridge in h suggesting that a greater number of
particles accumulates at the ridge. This pattern has been associated with the so-called ‘ridged’ regime
observed experimentally [see Fig. 11 for a pictorial evolution of this regime] wherein the particles move
towards the front of the flow and aggregate at the contact line. If the simulation is initiated with the
step profile in φ however, the solution is described by intermediate states connecting the left and right
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Fig. 9 Pictorial evolution of the ‘settled’ regime showing the particles settling while clear fluid flows over the particles
resulting in the formation of fingers. The plane angle of inclination is set to 30o while the particle concentration is
chosen as 0.25. The first snapshot is shown 30 seconds after the onset of the experiment while the last one is shown
after 3 minutes. The color of the inclined plane has been darkened to clearly show the contrast between the particle-rich
region (blue-green) and the clear fluid fingers.

fixed positions in h and φ. This result is similar to the one observed in lower initial concentrations;
however in Fig. 10(b), the particle-free region is observed to be much narrower. In the case shown in
Fig. 10, the initial particle concentration exceeds the critical value, corresponding to the upper part of
the phase diagram shown in Fig. 2(a).

Figure 2(a) suggests there exists a local bifurcation at the critical φc [calculated using Eq. (17)] which
represents an unstable, flat state. Using Eq. (17) and, for the parameter values outlined in Section
2, this critical state is calculated as φc = 0.459. Next, we start the numerical simulations with an
initial particle concentration equivalent to the critical value; the solutions are shown in Fig. 12. In
panel (a), where φ is initially uniform across x, the solution does not form shock connections between
the prescribed states at the boundaries at the chosen, final simulation time of t = 2000. Instead, one
gets a single shock solution for special case φc. This critical value satisfies the overdetermined system
given by Eqs. (25). In panel (b), the initial step profiles in both variables form intermediate shocks
connecting the left and right states, as observed in Figs. 8(b) and 10(b).

It is of interest to identify whether the flat state, shown in Fig. 2(a) ‘selects’ one of the two above-
mentioned regimes, ‘settled’ or ‘ridged’, when the numerical simulation is allowed to run over a long
time. We find that for an initial concentration equal to the critical value, the interfacial solutions lack
the formation of any shocks or waves at the interface, even at long times.

It is clear from Fig. 10 that, for an initial particle volume fraction exceeding the critical value, the
existence of the singular shock depends on the initial distribution of φ along x. In Fig. 10(a) where
φ

−

= φ
+
, a singular shock develops indicating a high volume of particles at the ridge, while in Fig.

10(b), the solution indicates that the particles are mostly concentrated in the fluid region upstream
of the shock. In Fig. 13, we start the numerical simulations using Eqs. (36) and (38) with h

−

= 1,
h

+
= 0.1, φ

−

= 0.5 and, gradually increase the right state for φ from 0.40 to 0.46, in increments of
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Fig. 10 Numerical solution of the film thickness (solid line) and the particle volume fraction (dashed line) at t = 2000.
In both panels, the left and right states are chosen as h− = 1 and h+ = 0.1, respectively and the left state for φ is
0.5. In panel (a) the initial condition for φ is given by Eq. (37) and in (b), we use Eq. (38) with φ+ = 0.1. The insert
in panel (a) shows a magnified region of the concentration profile. The rest of the parameters remain unchanged from
Fig. 8.

Fig. 11 Pictorial evolution of the ‘ridged’ regime. As the slurry flows down the plane, the particles rapidly aggregate
at the contact line forming a particle-rich ridge. The plane angle of inclination is set to 30o while the particle
concentration is chosen as 0.5. The first snapshot is shown 1 minute after the onset of the experiment while the last
one is shown after 26 minutes.

0.02; this is shown in panels (a)-(d). The final time for the solutions shown in all four panels is fixed
at t = 2550. The solution in panels (a)-(c) is described by a jump between the left and right states,
connected by an intermediate state. If the jumps are shocks, then, through the Rankine-Hugoniot
locus, we can determine the connection between the two states at the left and right boundaries. It is
observed that, as φ

+
is increased, the domain over which the flat state develops, decreases [see panels
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Fig. 12 Numerical solution of the film thickness (solid line) and the particle volume fraction (dashed line) at t = 2000.
In both panels, the left and right states are chosen as h− = 1 and h+ = 0.1, respectively and the left state for φ is
0.4593, which is equivalent to the critical concentration, φc according to Eq. (17). In panel (a) the initial condition
for φ is given by Eq. (37) and in (b), we use Eq. (38) with φ+ = 0.1. Here, the domain length is L = 220 and the
mesh size used is dx = 0.1.

(a)-(c)]. As φ
+
is increased further, we observe a transition to the singular shock connecting the states

at the two boundaries. The transition occurs when the right state for φ is sufficiently close to the left
state, φ

−

= 0.5. We observe that, for high particle volume fractions and, while the solution is still
described by jumps [panels (a)-(c)], the numerical solutions exhibit notable numerical diffusion; the
error was found to be reduced with an increase in the mesh density.

In the case of singular shocks, the speed of the shock is no longer defined by the classical Rankine-
Hugoniot jump condition; the singular shock observed is described as the weaker solution to Eqs. (21),
as shown in the work of Cook et al. [24] where the authors employed a continuum model for gravity-
driven, particle-laden flows. Wang and Bertozzi [23] have shown that the formation of the singular
shock depends on the thickness of the precursor and the initial particle concentration. The authors
have specifically shown that as the precursor height is varied and while the solution is still represented
by a double-shock, the two shock speeds approach each other until they coincide (at a particular
value of h+) at the onset of the singular shock transition. Thereafter, the speed of the singular shock
is described by a formula (see [23]), derived by making use of the fact that the particles aggregate,
reaching the maximum packing fraction at the contact line.

We now discuss numerical results of the PDE system, which exhibit rarefaction-type solutions. In Fig.
14, we plot numerical solutions for h and φ against x [panels (a), (b)] at different times t, where the
system parameters are the same as in Fig. 8(b); however in Fig. 14, the left and right states have been
reversed. Perhaps the most distinct feature of the solutions in h and φ is the formation of a smooth
solution emerging from the rightmost state. Following the rarefaction wave theory discussed in Subsec.
3.1, we plot the evolution of the solutions in h and φ against the rescaled variable ξ = x/t in panels (c)
and (d), respectively. From panels (c) and (d), we observe the self-similarity of the h and φ profiles as
the late time solutions, collapse onto one curve showing the formation of a shock solution (1-shock) and
a rarefaction wave (2-rarefaction). The shock solution connects the left, fixed state to an intermediate
state which then connects to the right, fixed state through a rarefaction wave. The intermediate state
is extracted from the numerical solution to be (0.2,0.4) which matches the intersection of the 1-shock,
2-rarefaction curves shown in the phase diagram in Fig. 6 by a solid, circle marker.
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Fig. 13 Numerical solution of the film thickness (solid line) and the particle volume fraction (dashed line). In all
panels the solutions are shown at t = 2550 while the left and right states for h are chosen as h− = 1 and h+ = 0.1,
respectively and the left state for φ− is fixed at 0.5. In Eq. (38), φ+ is increased from 0.40 to 0.46, in 0.02 increments
in panels (a) to (d). Here, the domain length is L = 120 and the mesh size used is dx = 0.1.

Next, we examine the evolution of the film thickness and particle volume fraction, initialized with a
step-up function for h with h− = 0.1 and h+ = 1 and a high, uniform particle concentration equal to
0.5. The final time solution is shown in Fig. 15 at t = 12750, plotted against the rescaled variable ξ. The
inserts in panels (a) and (b) show a magnified region of the intermediate states in h and φ, respectively,
which in this case are lower than the preset left states. This implies a thinning of the film associated
with a low particle concentration in the vicinity of the leftmost boundary while downstream of the
intermediate state, a smooth increase is observed both in the film thickness and the concentration of the
particles. The solution in the entire ξ domain appears to be smooth; in Fig. 16 we plot the admissible
1-shock and 1-rarefaction loci from the left state (0.1,0.5) and the admissible 2-rarefaction locus from
the right state (1,0.5). We observe total overlap of the 1-shock and 1-rarefaction curves emerging from
(0.1,0.5) [also observed in Fig. 6]. The overlapped 1-shock, 1-rarefaction curves intersect with the 2-
rarefaction curve from (1,0.5), indicated by the solid, circle marker in Fig. 16. The intersection point
represents the intermediate state observed in the numerical simulation depicted in Fig. 15. It is noted
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Fig. 14 Numerical simulations showing the evolution of h [panel (a)] and φ [panel (b)] starting from Eqs. (36) and
(37) for h and φ, respectively. The left states are chosen as (0.1, 0.1) and the right states as (1, 0.3); the averaged
particle volume fraction is fixed at 0.1 at the left boundary. The final solution time is shown with a thick, solid line
at t = 2550 while the legend in panel (b) shows the times for all the soluti2ons. From left to right, the square markers
shown in the insert in panel (a) illustrate that the x-position of the upstream shock is advancing in x with time, albeit
rather slowly. Panels (c) and (d) depict plots of the film thickness and the particle volume fraction, respectively, against
the rescaled variable ξ = x/t showing the formation of a 1-shock and a 2-rarefaction wave; the latter is indicated by
the complete overlap of the late-time solutions.The different line types correspond to the legend shown in panel (b).
The leftmost insert in panel (c) depicts the formation of the intermediate state connecting the shock and rarefaction
wave where the horizontal, dotted line shows that the intermediate value for h is at h = 0.2. The intermediate state
for φ is shown in panel (d) with a horizontal, dotted line at φ = 0.4.

that the 2-shock connections from (1,0.5) failed to intersect with any connection loci from the left state,
indicating the lack of an admissible connection, and are therefore not shown in the phase diagram.
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Fig. 15 (a) Numerical solution of the film thickness at t = 12750 plotted against the rescaled variable ξ = x/t. The
solution is represented by a 1-shock (or 1-rarefaction) and 2-rarefaction wave. The left and right states are fixed at
(h

−

, φ−) = (0.1, 0.5) and (h
+
, φ+) = (1, 0.5), respectively. The horizontal dotted line represents the intermediate state

in h calculated as h
i
= 0.09. (b) The evolution of the particle volume fraction solution at the final time solution of

t = 12750 showing the formation of the intermediate state (indicated by a horizontal, dotted line). This is calculated as
φi = 0.484 then connects to the right state though a 2-rarefaction wave. Note that the values of the latter, downstream
of the intermediate state increase smoothly as the solution approaches the right boundary fixed state.

4 Concluding remarks

This paper focuses on the theoretical modeling of thin-film, particle-laden flows in the presence of
contact lines flowing under the action of gravity on an inclined plane. The model employed has been
previously derived [9, 10] using the lubrication approximation on the Stokes equations, continuity and
particle transport equation, to capture the dominant physics in this fluid flow setting. We focus on the
analysis of a system of 2 × 2 conservation laws utilizing the mathematical theory of shock solutions
and rarefaction waves. We show that, depending on the amount of particles initially mixed with the
fluid and the initial distribution profile of the particles, the solutions may be described by double
shocks, rarefaction-shock waves or singular shocks. In this study, we focus on a constant flux scenario
for the slurry in which we simulate a continuous in-flux and out-flux of fluid and particles onto the
inclined plane using Riemann initial data for h. We investigate the effect of two initial conditions
for h: a step-down function where the film is thick upstream and the precursor is kept thin or a
step-up function where the reverse is true [see Fig. 7]. The current paper focuses on identifying all
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Fig. 16 Shock and rarefaction connections for the system with fixed states (0.1,0.5) (△) and (1,0.5) (�). Admissible
shock connections from △ are shown with black, solid lines while the rarefaction curve from the same state is shown
with a thick, gray line (this completely overlaps the thin, black solid line of the aforementioned shock connection).
2-rarefaction curves from � are shown with a thick, gray, dot-dashed line. The circle marker represents the intersection
point between the overlapped 1-shock/1-rarefaction curves from △ and the 2-rarefaction curve from �); this matches
the numerical simulation result shown in Fig. 15.

possible entropy conditions by studying the two local Riemann problems. For the particle volume
concentration, we choose to initialize the simulations through (i) a uniform particle concentration
along the x-axis of the plane and (ii) a step-up or step-down profile indicating that the majority of the
particles are found in regions where the film is thick. Numerical results include compressive, double-
shock solutions connecting the left and right states through an intermediate state whose value is shown
to match the classical shock theory. The latter involves identifying admissible shock connections which
are predicted by the Rankine-Hugoniot jump relations and satisfy the entropy conditions. In numerical
simulations we observe that, with increasing total particle concentration, the solution changes from
the double-shock structure to singular shocks; these are characterized by large, local peaks in the
film height corresponding to a high particle volume fraction approaching maximum packing. Such
profiles have been observed experimentally for initially highly packed slurries where the majority
of particles accumulate at the front of the flow forming a particle-rich ridge. Further, the existence
of smooth solutions represented by rarefaction waves, was found in cases where a step-up profile is
employed as the initial condition for h and φ such that the value on the right boundaries exceed
those on the left. Self-similar solutions depict that the rarefaction waves collapse onto a single curve
with increasing simulation time. The construction of a phase diagram showing admissible shock and
rarefaction connections assert that the numerical solutions are represented by shock-rarefaction or
rarefaction-rarefaction waves.
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