
UC San Diego
UC San Diego Previously Published Works

Title
Schwann cell interactions with axons and microvessels in diabetic neuropathy

Permalink
https://escholarship.org/uc/item/3909400s

Journal
Nature Reviews Neurology, 13(3)

ISSN
1759-4758

Authors
Gonçalves, Nádia P
Vægter, Christian B
Andersen, Henning
et al.

Publication Date
2017-03-01

DOI
10.1038/nrneurol.2016.201
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3909400s
https://escholarship.org/uc/item/3909400s#author
https://escholarship.org
http://www.cdlib.org/


Schwann cell interactions with axons and microvessels in 
diabetic neuropathy

Nádia P. Gonçalves1, Christian B. Vægter2, Henning Andersen3, Leif Østergaard4, Nigel A. 
Calcutt5, Troels S. Jensen3

1The International Diabetic Neuropathy Consortium (IDNC), Aarhus University, Nørrebrogade, 
8000 Aarhus C, Denmark.

2Danish Research Institute of Translational Neuroscience DANDRITE, Nordic-EMBL Partnership, 
Department of Biomedicine, Aarhus University, Ole Worms Alle 3, 8000 Aarhus C, Denmark.

3Department of Neurology, Danish Pain Research Center and IDNC, Aarhus University Hospital, 
Nørrebrogade, 8000 Aarhus C, Denmark.

4Department of Neuroradiology and Center for Functionally Integrative Neuroscience, Aarhus 
University Hospital, Nørrebrogade, 8000 Aarhus C, Denmark.

5Department of Pathology, University of California San Diego, Gilman Drive, La Jolla, California 
92093, USA.

Abstract

The prevalence of diabetes worldwide is at pandemic levels, with the number of patients 

increasing by 5% annually. The most common complication of diabetes is peripheral neuropathy, 

which has a prevalence as high as 50% and is characterized by damage to neurons, Schwann cells 

and blood vessels within the nerve. The pathogenic mechanisms of diabetic neuropathy remain 

poorly understood, impeding the development of targeted therapies to treat nerve degeneration and 

its most disruptive consequences of sensory loss and neuropathic pain. Involvement of Schwann 

cells has long been proposed, and new research techniques are beginning to unravel a complex 

interplay between these cells, axons and microvessels that is compromised during the development 

of diabetic neuropathy. In this Review, we discuss the evolving concept of Schwannopathy as an 

integral factor in the pathogenesis of diabetic neuropathy, and how disruption of the interactions 

between Schwann cells, axons and microvessels contribute to the disease.

The incidence of diabetes mellitus has increased dramatically over the past two to three 

decades. According to the International Diabetes Federation Diabetes Atlas, 415 million 

people worldwide had diabetes in 2015, and this number is expected to grow by 5% 

annually, predominantly as a result of increasing prevalence of type 2 diabetes. Furthermore, 
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an estimated 100 million Europeans and 80 million Americans have impaired glucose 

tolerance or prediabetes. Few people die from acute diabetes in countries with 

comprehensive health care systems, but the disease is inflicting a huge medical, social and 

economic burden on society owing to the need for lifelong treatment of its systemic 

consequences and the insidious development of multi-organ damage.

Peripheral neuropathy (BOXES 1,2) is a common but often neglected complication of long-

term diabetes, and the lack of treatment options reflects an incomplete understanding of the 

pathogenic mechanisms. Hyperglycaemia is generally accepted as the primary pathogenic 

insult in type 1 and type 2 diabetic neuropathy, although roles are emerging for other factors, 

such as impaired insulin signalling, hypertension and dyslipidaemia (particularly for type 2 

diabetes), which might precede overt hyperglycaemia1. Many preclinical studies, and 

occasional clinical studies, have indicated that diabetic neuropathy — like diabetic 

nephropathy and retinopathy — results from microvascular disease, with a focus on axonal 

degeneration as a consequence of ischaemia and/or hypoxia. This mechanism, however, is 

likely to be only one aspect of a more complex pathogenesis.

The earliest descriptions of pathology in diabetic neuropathy indicated that Schwannopathy 

accompanied axonal degeneration. The majority of clinical and basic research in diabetic 

neuropathy since then has focused on the effects on neurons. However, accumulating data 

from research into the development and regeneration of the PNS has identified Schwann 

cells as equally indispensable components that maintain neuronal structure and function, 

nourish axons, and promote survival and growth upon injury. The early reports from 1979 

that demonstrated morphological changes in Schwann cells in human diabetic neuropathy2 

are now supported by an increased awareness of molecular alterations in Schwann cells 

during diabetes3. Schwann cells express a wide range of receptors and, when they sense 

insults or danger signals, they upregulate synthesis and secretion of factors that stimulate 

neuroprotection, regrowth and remyelination, or factors that aggravate disease phenotypes4. 

The most recent studies have demonstrated that Schwann cells regulate many aspects of 

axonal function, so that disruption of their metabolism by diabetes results in the 

accumulation of neurotoxic intermediates and compromises production of neuronal support 

factors, contributing to axonal degeneration, endothelial dysfunction and diabetic 

neuropathy.

Here, we review the interactions between Schwann cells, axons and microvessels that are 

known to contribute to the pathogenesis of diabetic neuropathy, with an emphasis on the 

mechanisms by which Schwannopathy might make axons and vessels vulnerable to injury.

Schwann cells and their interactions

Schwann cells are the most abundant cells in the PNS, and include two broad categories: 

myelinating and nonmyelinating Schwann cells. Together, the two types ensheath all axons 

of peripheral nerves. Myelinating Schwann cells individually wrap large-calibre axons (>1 

μm diameter), leaving unmyelinated gaps (nodes of Ranvier) between adjacent Schwann 

cells that facilitate saltatory axonal conduction. Schwann cell myelin comprises various 

lipids and proteins compacted into a multilayer structure that provides electrical insulation. 
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Nonmyelinating Schwann cells do not wrap axons, but small sensory axons (<1 μm 

diameter) are embedded in grooves in their membranes. Several small nociceptive axons can 

be embedded into the same Schwann cell, forming a Remak bundle3.

Schwann cells derive from neural crest cells that first develop into Schwann cell precursors 

(SCPs) that associate with the first compact columns of peripheral axons. These proto-

nerves are devoid of all other structural elements that characterize mature nerves, such as 

connective tissue and blood supply, and the SCPs connect with each other to envelop large 

numbers of axons5. During embryonic development, Schwann cells facilitate neuronal 

survival via neurotrophin secretion; to migrate and form myelin. Schwann cells require 

axonal secretion of neurotrophins and must express neurotrophin receptors6,7. Schwann cell 

proliferation is stimulated by secretion of vascular endothelial growth factor (VEGF) from 

ganglion neurons, which also stimulates axonal outgrowth and formation of microvessels8. 

The development of peripheral nerves, therefore, depends on signalling between Schwann 

cells, the axon and microvessels in a complex temporal and spatial manner.

During Schwann cell maturation and alignment, multiple receptors, ligands and adhesion 

molecules orchestrate neuronal sprouting and targeting. Among these factors, the 

neurotrophins β-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), 

NT-3 and NT-4/5 signal via two structurally unrelated types of receptors: the low-affinity 

neurotrophin receptor p75NTR and the tropomyosin-related kinase receptors TrkA, TrkB 

and TrkC. In the PNS, neurotrophins and their receptors are expressed by both Schwann 

cells and sensory neurons. Activation of the two receptor types can elicit opposing effects— 

survival and differentiation via Trks, or apoptosis via p75NTR9,10. Adding to the 

complexity, TrkA and TrkC can act as dependence receptors that elicit apoptosis when 

unstimulated11, and the biological effect of secreted proneurotrophins might depend on the 

expression ratio of Trk receptors and p75NTR12,13 and on expression of p75NTR co-

receptors14,15.

Physical or metabolic damage to adult peripheral nerves induces rapid and robust changes in 

the synthesis of neurotrophins in neurons and Schwann cells to guide and support 

regeneration16,17. For example, hypoxia upregulates VEGF production after nerve injury, 

initiating migration of Schwann cells18. VEGF also stimulates formation of endoneurial 

blood vessels into hypoxic areas, directing Schwann cells to bridge the gap between the 

proximal and distal nerve stumps18. However, studies have shown that diabetes reduces 

expression of the Schwann-cell-derived neurotrophic factors ciliary neuronotrophic factor 

(CNTF)19 and sonic hedgehog20, which act on neurons and endothelial cells, respectively. 

Moreover, Schwann cells that have been removed from mice with diabetes and maintained 

under hyperglycaemic conditions in vitro to model nerve injury also exhibit impaired 

production of NGF and NT-3 (REF. 21). The fact that Schwann cells ensheath the vast 

majority of axonal plasma membranes means that changes in their production of signalling 

molecules are likely to influence axons. Schwann cells are also in close contact with the 

basal lamina and the endoneurium, and receptor-mediated interactions between Schwann 

cells and these structures are known to affect several Schwann cell functions, including 

radial sorting and myelination22. Overall, these complex molecular interactions suggest that 
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disruption of Schwann cell functions, including those triggered by diabetes, could have 

widespread consequences for peripheral nerve structure and function.

Schwann cells in diabetic neuropathy

Morphological changes.

Nerve biopsy samples from patients with diabetes reveal overall fibre loss; degenerating 

fibres and clusters of regenerating axons are both present. Reduced axonal diameters, which 

suggest impaired maturation or atrophy, are frequently reported in rat models of diabetes, 

but are not a notable feature in many mouse models or humans with diabetes23,24. Whether 

axonopathy or Schwannopathy develops first in diabetic neuropathy25 has long been 

debated, and a single nerve biopsy sample is not sufficient to determine whether Schwann 

cells undergo independent structural damage during diabetes or are responding to axonal 

degeneration. However, teased fibre sural nerve preparations from humans, cats and rodents 

with diabetes indicate morphological changes in the myelin sheath — ranging from thin 

myelin that suggests cycles of demyelination and remyelination, to full segmental 

demyelination — in the presence of an apparently normal axon, indicating that 

Schwannopathy can develop independently of axonopathy2,3,26–28 (FIG. 1). Teased fibres 

from the same nerves can, however, exhibit predominantly axonal pathology, indicating that 

diabetes affects both cell types independently, as well as disrupting their interactions. 

Degenerative changes in nerve fibres are accompanied by the presence of enlarged 

mitochondria with effaced cristae and numerous vacuoles in the Schwann cells29, an 

observation that is consistent with emerging evidence of mitochondrial dysfunction and 

damage in axons and Schwann cells in animal models of diabetes30. Other diverse 

pathological markers, ranging from nonspecific signs of cellular stress through to overt 

cellular degeneration, are also present in Schwann cells from both animal models of diabetes 

and human nerve biopsy samples. Nonspecific Schwann cell changes include glycogen 

inclusions, lysosomal inclusions, accumulation of lipid droplets in the cytoplasm, 

cytoplasmic expansion, and an increased number of plasmalemmal vesicles3,31. The 

Schwann cell basal lamina also reduplicates and thickens3,31. In one study in a rat model of 

type 1 diabetes, levels of heparan sulfate in the basement membranes of Schwann cells in the 

dorsal root ganglia gradually decreased with increasing disease duration, with a reciprocal 

increase in deposited laminin. The authors of that study speculated that the early increase in 

heparan sulfate can exacerbate propagation of pain, whereas in advanced stages of the 

disease, basement membrane composition is maintained by overproduction of laminin in the 

Schwann cells, thereby blocking pain transmission and thermal neuronal stimuli; this 

hypothesis helps to explain the bimodal pain profile in diabetic neuropathy32.

Polyol pathway flux and aldose reductase.

Over the past 50 years, circumstantial33 and experimental34 evidence has established 

hyperglycaemia-driven increases in flux through the polyol pathway as the best-understood 

pathogenic mechanism of diabetic neuropathy. Numerous preclinical studies have 

demonstrated that inhibition of aldose reductase (the first enzyme in the polyol pathway) 

prevents almost all manifestations of neuropathy. Studies in which expression of enzymes 

involved in the polyol pathway has been manipulated have placed a particular focus on the 
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metabolic consequences of excessive metabolism of glucose to sorbitol owing to high 

activity of aldose reductase35–38.

On the basis of the involvement of the polyol pathway, the perception of diabetic neuropathy 

as a microvascular complication of diabetes has been underpinned by immunocytochemical 

studies that showed localization of aldose reductase to the endothelial cells of epineurial and 

dorsal root ganglion blood vessels and to perivascular sympathetic axons39–41. Indeed, 

recent data implicates aldose reductase activity in the production of endothelial 

proinflammatory and prothrombotic signals42, a pathogenic cascade that is currently 

receiving close attention in the context of diabetic neuropathy42 and is discussed in detail 

below (see the section ‘Microvascular changes in Schwann cells’). However, within the 

endoneurium, aldose reductase is restricted to the myelinating Schwann cells of somatic 

nerves and to satellite glial cells in the dorsal root ganglia39–41 (BOX 3). This localization 

implies that aldose reductase dysfunction does not only alter vascular function, although this 

observation has led to something of a conundrum with regard to the pathogenic role of the 

enzyme: demyelination can be a feature of human diabetic neuropathy28,43, but diabetic 

rodents rarely exhibit marked Schwann cell pathology or demyelination in peripheral nerves 

until long after nerve dysfunction is detected44,45, unless neuropathy is accompanied by 

other stressors, such as hypertension46. Nevertheless, many rodent models of diabetes 

exhibit indicators of Schwann cell dysfunction, including reduced expression of myelin-

associated proteins47 and Schwann cell-derived trophic factors, such as CNTF19 and desert 

hedgehog20,48. These perturbations have the potential to affect both neuronal49 and 

vascular48 function, and changes in CNTF expression are prevented by aldose reductase 

inhibition50. In addition, studies in cultured Schwann cells have suggested that increased 

flux through the polyol pathway drives Schwann cells towards an immature phenotype51. 

Furthermore, galactose intoxication, which increases polyol pathway activity52, can produce 

Schwann cell pathology that parallels the pathology seen in human diabetic neuropathy29,53, 

and can be prevented by inhibition of aldose reductase. This observation illustrates the 

cytotoxic capacity of increased flux through the aldose reductase component of the polyol 

pathway, and the fact that extreme stress is required to damage Schwann cells but does not 

necessarily evoke demyelination. Hyperglycaemia-induced increases in polyol pathway flux 

in Schwann cells might, therefore, be a primary pathogenic mechanism that impairs their 

structural, metabolic and trophic support of axons and blood vessels before (or without) 

precipitating frank demyelination (FIG. 2). Despite being highly controversial as a model for 

diabetic neuropathy, galactose intoxication elicits extreme osmotic forces and oedema, 

thereby leading to compression of the microvasculature and highlighting the importance of 

endoneurial hypoxia54.

Aldose reductase inhibitors (ARIs) are highly effective in animal models of diabetic 

neuropathy55,56, but their clinical development as a therapy in humans has largely stalled as 

a result of multiple inconclusive or negative studies57. Poor trial design and choices of end 

points, and limited drug potency have all been suggested as contributing factors in this 

translational failure58. Nevertheless, the regulatory approval of the ARI epalrestat in Japan 

remains the only example of a drug being licensed to treat diabetic neuropathy, and a recent 

trial of an ARI in people with mild to moderate neuropathy has re-emphasized earlier 

findings59 that this therapeutic approach can mitigate against some manifestations of 
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diabetic neuropathy60. In the section ‘Microvascular changes and Schwann cell function’ 

below, we discuss polyol pathway activity and ARIs from the perspective of substrate 

availability for nerve energy metabolism.

Oxidative stress and mitochondrial dysfunction.

A contribution of oxidative stress and mitochondrial disorders in Schwann cells to neuronal 

dysfunction during diabetes is becoming increasingly evident. Chronic hyperglycaemia is 

widely accepted as a trigger of excessive production of reactive oxygen species (ROS) in all 

cells, as is the fact that this toxic process is exacerbated by a concomitant reduction in 

endogenous antioxidant defences61. For example, genetic variations and polymorphisms in 

endogenous antioxidant enzymes have been associated with an increased susceptibility to 

diabetic neuropathy62. Potential sources of ROS in peripheral nerves include the polyol 

pathway, the mitochondrial electron transport chain, RAGE (receptor for advanced 

glycosylation end products) signalling, and NADPH oxidases and nitric oxide 

synthases63–65. Schwann cells are increasingly being recognized as an important site of ROS 

production, which, in this context, affects Schwann cell function and their interactions with 

other cell types within the nerve trunk.

Several lines of evidence indicate that oxidative stress in Schwann cells contributes to nerve 

damage in diabetic neuropathy. Reports that ARI treatment prevents oxidative damage to 

lipids and DNA in nerves of rats with diabetes66,67 indicate that increased flux through the 

polyol pathway contributes to oxidative stress, and implicates Schwann cells in causing this 

oxidative stress, as they express aldose reductase. Moreover, increased flux through the 

polyol pathway depletes cytosolic NADPH and subsequently reduces levels of glutathione 

(an important antioxidant), leaving neurons and Schwann cells vulnerable to toxic oxygen 

free radicals and peroxides61. Altered RAGE signalling in Schwann cells is another 

proposed mechanism of hyperglycaemia-induced free radical-mediated nerve damage. 

Excess formation of advanced glycation end-products (AGE) as a result of excess glucose 

activates RAGE and precipitates ROS formation68 (FIG. 2). Sural nerve biopsy samples 

from patients with diabetes have revealed overexpression of RAGE in Schwann cells69, and 

RAGE signalling has been implicated in several complications of diabetes70. Furthermore, 

AGE-induced modifications to key proteins (such as collagen), lipids and nucleic acids have 

the potential to alter the structure and function of Schwann cells, with detrimental effects on 

the axons they ensheath, leading to potentiation of diabetic neuropathy71. Finally, Schwann 

cells have been identified as the focus of injury induced by free radicals and oxidants and 

mediated by activation of poly(ADP-ribose) polymerase, a downstream effector of oxidative 

and nitrosative stress that also contributes to formation of superoxide anion radicals and 

peroxynitrite in diabetic peripheral nerves72. Hyperglycaemia can increase production of 

peroxynitrite in all nerve cells, and preoxynitrite in turn nitrates tyrosine residues to produce 

3-nitrotyrosine, a fingerprint of nitrosative stress; levels of 3-nitrotyrosine and inducible 

nitric oxide synthase have been shown to be increased in Schwann cells73–75.

Impaired mitochondrial function has been implicated in many complications of diabetes. 

Initial studies in cultured endothelial cells indicated that hyperglycaemia increased flux 

through the electron transport chain, leading to ROS formation76, but these observations 
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have been superseded by descriptions of impaired mitochondrial activity and bioenergetics 

in cultures of adult sensory neurons and in animal models of chronic diabetic neuropathy77 

and nephropathy78. Mitochondria do not seem to be a source of excess ROS in peripheral 

axons79, but several findings have shifted the focus to Schwann cell mitochondria and their 

impact on axonal function. Exposure of Schwann cells to high glucose levels in vitro causes 

oxidative stress that is accompanied by overactivation of caspase-9 and apoptosis regulator 

BAX, and decreased levels of apoptosis regulator Bcl-2 (REF. 80), changes that indicate 

mitochondrial internal stress. In an important study published in 2011, targeted disruption of 

Schwann cell mitochondria in a transgenic mouse model critically affected neuronal survival 

and produced a peripheral neuropathy resembling that caused by diabetes81. Subsequent 

work demonstrated that mitochondrial deficits activated a maladaptive stress response 

mediated by haem-regulated inhibitor kinase, and that acylcarnitines that were released from 

Schwann cells on mitochondrial disruption induced axonal degeneration82, emphasizing the 

importance of Schwann cell mitochondrial homeostasis in axon–glia interactions83.

Hyperglycaemia has also been shown to drive remodelling of the Schwann cell 

mitochondrial proteome that leads to increased expression of the α and β subunits of ATP 

synthase, and to cause suboptimal respiratory capacity by increasing the overall rate of 

oxygen consumption, suggesting that high glucose levels contribute to mitochondrial 

dysfunction and decrease the efficiency of oxidative phosphorylation in Schwann cells84. In 

a study published in 2016, mitochondrial damage, with upregulation of multiple subunits of 

complexes I, III, IV, V and of mitochondrial Rho GTPase 1, was described in a rodent model 

of type 1 diabetes85. These changes were observed only in peripheral nerves and not in the 

sensory or trigeminal ganglia, suggesting that they reflect disrupted Schwann cell 

metabolism.

Lipid metabolism and inflammation.

Diabetes is associated with alterations in lipid levels in the circulation and nerves, and 

Schwann cell dysfunction has been linked to altered lipid metabolism and downstream 

inflammatory consequences. Accumulation of triglycerides, cholesterol and free fatty acids 

in blood plasma in diabetes seems to drive lipid-mediated neuropathology via mechanisms 

that are incompletely understood but might involve oxidative and inflammatory pathways in 

Schwann cells86. In rodents, a high-fat diet causes accumulation of oxidized lipids and 

activation of lipoxygenases in peripheral nerves, suggestive of a prediabetic condition24. 

Moreover, accumulation of oxidized LDLs in peripheral nerves promotes oxidative stress 

that has been associated with a low nerve conduction velocity and sensory deficits87. Cell 

culture studies suggest that Schwann cells are susceptible to lipotoxicity from free fatty 

acids, possibly as a result of lysosomal dysfunction88,89. Furthermore, evidence from a 

mouse model of peripheral neuropathy secondary to Schwann cell mitochondrial 

dysfunction suggests that disruption of Schwann cell mitochondria causes lipid metabolism 

to shift away from fatty acid synthesis toward lipid oxidation, resulting in early depletion of 

myelin lipid components and accumulation of acylcarnitine lipid intermediates, leading to 

axonal degeneration and neuropathy83. Perturbation of lipid metabolism has also been found 

in the peripheral nerves of mice with streptozotocin (STZ)-induced diabetes; these 

perturbations include a reduction in short-chain triacylglycerols, changes in major structural 
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and/or membrane lipids, and diminished levels of palmitic, stearic and eicosanoic fatty 

acids85,90. Exposure of human Schwann cells to high extracellular glucose levels reduced 

their synthesis of phospholipids, and this effect was counteracted by an ARI, implicating 

high rates of glucose metabolism via the polyol pathway in dysregulation of Schwann cell 

lipid metabolism91.

In diabetes, lipoproteins circulating in the plasma are exposed to an oxidizing environment 

and can be modified by consequent glycation. Schwann cells express several Toll-like 

receptors (TLRs) and RAGE92,93, to which the modified LDLs can bind and drive an 

inflammatory response94. After an injury, such as those triggered by hyperglycaemia or 

modified LDLs, intracellular cascades can be activated in Schwann cells, including nuclear 

translocation of NF-κB and consequent expression of various cytokines and chemokines, 

similar to the scenario after traumatic nerve damage. These events contribute to Wallerian 

degeneration and emphasize the potential involvement of Schwann cells in the sub-clinical 

inflammation that is observed in patients with type 2 diabetes and is detectable as increased 

circulating levels of C-reactive protein and IL-6, which are consistently associated with 

polyneuropathy95. Furthermore, via production of cytokines and chemokines, Schwann cells 

might contribute to immune cell recruitment4,96 and nerve inflammation in diabetes.

Macrophage infiltration and proliferation have been observed in nerves from mouse models 

of diabetes97,98, and upregulation of proinflammatory genes during activation of 

inflammatory pathways in the PNS99–101 further implicates involvement of RAGE-mediated 

Schwann cell involvement in the inflammatory response. One upregulated gene encodes the 

S100 calcium binding protein A8/A9 (REF. 101), which is overexpressed in patients with 

type 2 diabetes102. This protein has been shown to stimulate a local inflammatory response 

via interaction with RAGE103, leading to activation of mitogen-activated protein kinases 

(MAPKs), NF-κB and apoptosis104,105. Similarly, MAPKs (such as p38 MAPK, MAPK1, 

MAPK3, MAPK8 and MAPK10) are activated by high glucose levels in human Schwann 

cell cultures106; p38 is of particular interest, as it is a negative regulator of Schwann cell 

differentiation and myelination107.

Some evidence also suggests that Schwann cells and T cells have reciprocal effects on each 

other in diabetes. A study published in 2013 suggested that recruitment of T cells into the 

nerves of patients with diabetic neuropathy is induced by production of the chemokines 

CXCL-9, CXCL-10 and CXCL-11 by glucose-stimulated Schwann cells108. Conversely, 

infiltrating CD8+ T cells have been shown to mediate Schwann cell cytotoxicity by 

activating apoptosis, thus contributing to progression of neuropathy108. Furthermore, as T 

cells found in diabetic nerves express high levels of CXCR3, the authors of this study 

suggest that this receptor is important for migration of CD8+ T cells into the peripheral 

nerve and, thus, offer a novel potential target for therapy.

Additional factors in diabetes that promote immune cell infiltration of nerves and activation 

of Schwann cells are accumulation of AGE and the modification of myelin antigenicity via 

glycosylation of myelin proteins. Activation of Schwann cells in turn promotes their 

secretion of proinflammatory cytokines, thereby producing a positive feedback mechanism 

that perpetuates injury109,110. Inflammatory cytokines such as IL-1, tumour necrosis factor 
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(TNF) and IL-17 can be produced by many cell types, including Schwann cells, and these 

factors sensitize Aδ-fibres and C-fibres, triggering neuropathic pain111–113. Indeed, blocking 

the TNF signalling pathway with a recombinant human TNF receptor–antibody fusion 

protein has been shown to be beneficial in animal models of diabetic neuropathy, leading to 

recovery of nerve conduction velocity and increased expression of myelin basic protein109.

Schwann cells in the peripheral nerve express a variety of TLRs, including TLR4 (REF. 92), 

which might have a role in the pathogenesis of metabolic-induced retinal impairment and 

nephropathy114,115. Whether TLR4 in Schwann cells has a role in diabetic neuropathy, 

however, remains to be elucidated. Interestingly, an interrelationship between TLR4 and the 

p75NTR receptor has been demonstrated in immune cells. In lipopolysaccharide-stimulated 

dendritic cells, expression of p75NTR was increased via a TLR4-dependent mechanism. In 

TLR4-activated dendritic cells, NGF promotes secretion of cytokines, but silencing of 

p75NTR with small interfering RNA blocks this process116. These observations suggest that 

the increased expression of p75NTR in myelin sheaths around fibres that are susceptible to 

axonal degeneration in diabetic neuropathy117 might be related to TLR4 signalling.

Microvascular changes and Schwann cells.

Microvascular damage in diabetic neuropathy is likely to affect Schwann cell function by 

promoting inflammatory cascades such as those described above, and by disrupting their 

access to oxygen and glucose. The morphology and function of microvessels is altered in 

nerve biopsy samples from patients with diabetic neuropathy118,119 (FIG. 1); these 

microvascular changes are particularly severe in endoneurial capillaries, and include 

capillary basement membrane thickening, loss of pericyte coverage, and endothelial 

hyperplasia120. Furthermore, microangiopathy can precede development of diabetic 

neuropathy120,121, and the degree of microvascular changes correlates with the clinical 

severity of diabetic neuropathy119,120.

Microvascular changes have been thought to elicit nerve damage by limiting nerve blood 

supply (ischaemia), but evidence now shows that endoneurial hypoxia can be caused by 

inefficient oxygen extraction alone via capillary dysfunction122. Tissue hypoxia, in turn, can 

activate the same cellular signalling pathways that inflammation activates123. These 

pathways can be activated in all cell types that are subjected to hypoxia, including Schwann 

cells. Low tissue oxygen tension upregulates the expression of hypoxia-inducible factor 1-α 
(HIF-1α) and NF-κB123, a proinflammatory transcription factor that is present at high levels 

in peripheral nerves and dorsal root ganglia in experimental diabetic neuropathy124. HIF-1α 
causes upregulation of NADPH oxidase 2 levels125, a major source of ROS in vessel 

walls126. NADPH-derived superoxides react with the vasodilator nitric oxide to produce 

peroxynitrite127, which causes severe nitrosative tissue damage and inactivates tissue 

plasminogen activator (tPA)128, creating a highly pro-thrombotic environment. Importantly, 

elevated tPA levels increase the formation of BDNF from proBDNF, and proBDNF is 

associated with apoptosis129; this observation is consistent with reports that the levels of 

BDNF in distal muscles negatively correlate with the severity of neuropathy in diabetic 

patients130. These mechanisms suggest that microvascular changes are likely to create a 
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hypoxic endoneurial environment that exacerbates oxidative stress and inflammation, and 

leads to a loss of trophic support for Schwann cells and neurons.

Capillary dysfunction affects the uptake of glucose and oxygen into tissue131, and 

breakdown of glucose under hypoxic conditions generates far less ATP than does oxidative 

phosphorylation. When access to oxygen is impaired, therefore, Schwann cells and axons 

are likely to depend on alternative substrates or metabolic pathways to cover their metabolic 

needs. Glucose break-down via the polyol pathway — despite its detrimental long-term 

effects — is an efficient source of ATP in these conditions. As a result, aldose reductase 

inhibitors could be detrimental in nerve fibres with severely affected microvessels, as they 

will limit this alternative source of energy122.

The evidence discussed indicates that in diabetic neuropathy, capillary dysfunction disrupts 

the function of Schwann cells and axons — and vice versa — by altering the endoneurial 

microenvironment. In light of this hypothesis, creation of animal models of diabetes that 

include microvascular damage46, or use of cell culture systems that mimic the diabetic 

endoneurial micro-environment, might increase the success of translational research.

Nodal disruption and ion channels.

The tight association between Schwann cells and axons means that disturbances in Schwann 

cell function are likely to influence the excitability of large and small fibres and the 

propagation of action potentials. The resting membrane potential, depolarization and 

repolarization of axons are mediated by a series of voltage-gated sodium (NaV) channels, 

potassium (KV) channels, calcium channels and various ligand-gated channels (for example, 

transient receptor potential channels)132. In myelinated axons, the ion channels are clustered 

at the nodes of Ranvier to facilitate saltatory conduction, whereas in nonmyelinated axons, 

the channels are distributed diffusely and almost homogeneously along the axon133,134. 

Schwann cells are not excitable themselves, but do express ion channels that are involved in 

forming the nodal and paranodal regions where the neuronal ion channels are clustered, 

giving them the potential to influence axonal excitability.

The effects of Schwann cell dysfunction on neuronal ion channel function are not known 

and may be indirect. Impaired mitochondrial function and oxidative stress in Schwann cells 

(see above) could lead to changes in the distribution of NaV and KV channels at the nodes of 

Ranvier and the paranodal and juxataparanodal regions, contributing to axonal damage. 

Mitochondrial dysfunction may also be a consequence of increased intracellular calcium135. 

A detailed discussion of the role of ion channels in diabetic neuropathy is beyond the scope 

of this Review, but abnormalities such as paranodal swelling and axon–glial disjunction have 

been described in diabetic neuropathy in humans, and were proposed as a cause of nodal ion 

channel redistribution136. NaV channel expression in diabetes can be modified by various 

mechanisms, including neurotrophic factors137 and methylglyoxal, a metabolite that is 

upregulated as a result of hyperglycaemia, and has been shown to change the distribution of 

NaV1.8 (REF. 138). Together with changes in ion channel function and energy metabolism 

in the axon itself, such as impaired Na+–K+ ATPase activity in nodal regions of the axon, 

Schwann cell dysfunction could — owing to the normal function of these cells in saltatory 

conduction — contribute to the reduction in action potential propagation seen in diabetic 
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neuropathy. In a study published in 2016, mathematical modelling was used to provide 

evidence that abnormalities in the excitability of sensory and motor axons in patients with 

type 1 diabetes were the result of reduced nodal Na+ currents, reduced nodal and paranodal 

K+ conductance, and Na+–K+ ATPase dysfunction139. Evidence also suggests that altered 

expression of NaV channels, specifically NaV1.7, NaV1.8 and NaV1.9, contributes to the 

neuronal hyperexcitability and allodynia seen in experimental and clinical diabetic 

neuropathy52–55.

Impact of schwannopathy on neurons

As discussed above, hyperglycaemia causes chronic Schwann cell dysfunction, and further 

evidence suggests that consequent transcriptional changes lead to persistent increases in 

glycolysis, ROS formation, cellular NADH depletion and altered DNA methylation that 

contribute to diabetic neuropathy140. This Schwann cell dysfunction has direct effects on 

neuronal function as a result of myelin disruption, demyelination, changes in axonal 

conduction, and impaired regeneration.

Myelination of nerve fibres by Schwann cells is essential for rapid saltatory conduction, and 

insults to the myelin sheath can lead to motor and sensory nerve dysfunction. Evidence 

indicates that the effects of hyperglycaemia on Schwann cells lead to disruption of the 

myelin sheath, which contributes to diabetic neuropathy. In one study, hyperglycaemia 

induced a progressive decrease of caveolin-1 in Schwann cells in culture and in STZ-

induced type 1 diabetes in mice141. Caveolin-1 is a structural protein found in specialized 

sphingolipid–cholesterol micro-domains called caveolae, which are thought to be important 

for Schwann cell physiology because cholesterol comprises ~25% of the total lipid content 

of myelin142. In this study, the reduction of caveolin-1 prolonged thekinetics of ErbB2 

phosphorylationandenhanced the mitogenic response of Schwann cells to neuregulin1-β1; 

subsequent studies have demonstrated that changes in caveolin-1 expression in Schwann 

cells co-cultured with neurons leads to neuregulin-induced demyelination, and that 

interactions between caveolin-1 and ErbB2 signalling contribute to peripheral neuropathy in 

rodents with diabetes143,144.

Studies have suggested that expression of the major myelin components myelin glycoprotein 

P0, myelin-associated glycoprotein and early growth response protein 2 in Schwann cells is 

reduced in diabetic neuropathy, and that these deficits might contribute to disorganization 

and loss of myelin145–147. In the case of P0, in vitro studies using glucose-stimulated 

primary Schwann cells showed that the reduced expression was apparently dependent on 

upregulated MAPK signalling, and was partially rescued by stimulation of Schwann cells 

with 10 nM insulin147,148. The importance of the MAPK pathway for nerve regeneration has 

been well documented149, but evidence indicates that prolonged MAPK signalling also 

maintains Schwann cells in a dedifferentiated state, as myelinating Schwann cells in 

transgenic mice did not respond to pro-differentiation signals from axons while MAPK 

activation was maintained150. Studies have also shown that the MAPK p38 is similarly 

upregulated in diabetes and, together with increased flux in the polyol pathway, contributes 

to slowing of nerve conduction and generation of pain35,151. These observations emphasize 
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the need for an appropriate signalling balance to ensure optimal cell proliferation and nerve 

fibre maintenance.

Deficits in large fibre conduction velocity are generally considered to be among the earliest 

functional markers of glucose neurotoxicity, as they typically present before decreases in 

axonal diameter or structural disruption of the myelin in rodents152. In the absence of 

structural pathology, impaired nodal biophysical properties, such as ion flux and current 

densities, that might involve Schwann cell dysfunction have been implicated152,153. A study 

of rats with STZ-induced diabetes has shown that reduced motor conduction velocity is 

associated with upregulation of the Rho–Rho-kinase signalling pathway and consequent 

misexpression and aberrant distribution of the myelin sheath adhesion molecules p120 

catenin and epithelial cadherin, which are crucial for normal myelin formation to allow rapid 

propagation of action potentials154.

Some evidence suggests that impaired Schwann cell function also affects peripheral axonal 

regeneration after injury has occurred. After traumatic injury to a nerve, reciprocal signalling 

normally occurs between the axon and glia, and this signalling is necessary for the 

reformation of the myelin–axon unit during regeneration. Compromised Schwann cell 

production of the neurotrophic factors NGF and NT-3 that are essential to nerve structure 

and function is linked to the loss of glia–axon associations and decreased neurite outgrowth, 

suggesting that reduced production of these factors by Schwann cells has an important role 

in impaired axonal regeneration21,155,156. Indeed, after experimental axotomy, Schwann cell 

growth was robust and extended into the superficial dermis in people without diabetic 

neuropathy, whereas people with injury as a result of diabetes exhibited atrophic Schwann 

tubes that were limited to the mid-dermis, and limited regenerative axonal sprouting157.

Schwann cell proliferation after physical nerve injury can be studied in culture to investigate 

discrete pathogenic mechanisms. In this context, exposure to high levels of glucose reduces 

the number of Schwann cells, and cell loss occurs by apoptosis158. The remaining cells look 

thin and short, and fail to adequately extend processes75,147, and chromatin becomes 

increasingly condensed with shrinkage of the Schwann cell cytosol158,159. When co-cultured 

with neurons, hyperglycaemia-stressed Schwann cells are dysfunctional143, and a study from 

2014 suggests that the stress causes them to produce VEGF, which subsequently impairs 

neurite outgrowth from co-cultured sensory neurons160. These observations indicate that 

impaired nerve regeneration after injury in diabetes is, at least in part, secondary to 

disruption of Schwann cell metabolism.

Several therapeutic strategies are being pursued to manipulate nerve plasticity and neurite 

outgrowth in diabetes, with the aim of encouraging axonal repair161–163. A study published 

in 2016 identified p75NTR as a novel therapeutic target in type 2 diabetes, on the basis of 

results using an adipocyte-specific conditional null mouse model shown to be resilient to 

high-fat-diet-induced obesity and insulin resistance164. p75NTR signalling increased 

adipocyte lipolysis via cyclic AMP and the protein kinase A pathway, thereby regulating 

energy balance164. The findings highlight the importance of this neurotrophin receptor for 

obesity and the metabolic syndrome. In patients with diabetes, high p75NTR expression has 

been observed in myelin sheaths around fibres that are susceptible to axonal degeneration, 
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indicating a role for this receptor in axonopathy117. Furthermore, results obtained from 

rodent models of peripheral nerve injury indicate that p75NTR is upregulated in neurons and 

Schwann cells, and can induce growth cone collapse, dependent on its interactions with 

myelin-associated proteins, or regrowth, by forming neurotrophin chemoattractant 

gradients165,166. In vitro studies have demonstrated that interactions between p75NTR and 

NGF inhibit Schwann cell apoptosis159. These observations suggest that neuronal or glial 

synthesis of p75NTR might have an important role in the progression of diabetic neuropathy, 

but further investigation is required to determine the precise role of p75NTR.

Towards a new understanding

The fact that primary axonopathy is a major pathological feature of diabetic neuropathy is 

inescapable. Indeed, diabetic neuropathy is usually identified by clinical and 

neurophysiological examinations to detect indications of axonopathy, namely, reduced 

conduction velocity and amplitude in large fibres, and abnormal thresholds to sensory 

stimuli. The focus on axonopathy is highlighted by a growing interest in the detection of 

early degeneration of small sensory fibres by measuring intraepidermal nerve fibre density in 

skin biopsy samples or corneal nerve density by confocal microscopy167 (FIG. 1). 

Nevertheless, we have presented a case that the direct effects of diabetes on Schwann cells 

can in turn affect the vasculature and axons, and distinguishing the precise contribution of 

Schwann cell dysfunction to that of axonopathy could provide valuable new insights.

One appealing approach to separating the roles of axonopathy and schwannopathy in 

diabetic neuropathy is to identify differences in the primary pathogenic mechanisms. In 
vitro, Schwann cells are damaged by hyperglycaemia158 and, as the sole site of the polyol 

pathway in the endoneurium, are a source of glucotoxicity. Glia require relatively low energy 

under normal conditions; they derive sufficient ATP from glycolysis and supply excess 

pyruvate to axons168. Schwann cells might not, therefore, be well adapted to metabolize 

excess glucose. By contrast, neurons consume high amounts of energy and use the full 

capacity of oxidative phosphorylation, such that primary sensory neurons in culture thrive in 

conditions that mimic physiological hyperglycaemia. Consequently, hyper-glycaemia is 

perhaps less of a direct threat to axons, suggesting that axonopathy in diabetes reflects other 

primary pathogenic insults, such as loss of trophic support169.

The hypothesis that axonopathy in diabetic neuropathy results from a loss of trophic support 

is reinforced by the effects of insulin. Adult sensory neurons express insulin receptors, and 

addition of insulin or insulin-like growth factor 1 (IGF-1) to cultured adult sensory neurons 

drives a dose-dependent increase in neurite out-growth170. Similarly, direct local injections 

of insulin into the skin at concentrations that do not modulate systemic glycaemia promote 

axonal growth in the epidermis171. Moreover, in animal models of type 2 diabetes, sensory 

neurons develop impaired insulin signalling172. Thus, it is becoming increasingly recognized 

that diabetes-associated loss of trophic support from insulin, and perhaps IGF-1 and 

C‑peptide, represents a primary insult to neurons in both type 1 and type 2 diabetes173.

Differences between the effects of diabetes on mitochondria in Schwann cells and neurons 

might also provide insight into the pathogenic mechanisms. Evidence indicates that in 

Gonçalves et al. Page 13

Nat Rev Neurol. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurons, diabetes decreases the expression of mitochondrial proteins174, the inner membrane 

potential175 and the spare respiratory capacity77 of otherwise functional mitochondria as a 

result of disruption to the AMPK–PGC1 pathway, which serves as a nutrient sensor and 

mitochondrial regulator176. These effects leave the neuron energetically viable but restricted 

in its capacity to respond to the increased energy demand of regrowth after physical injury, 

and to survive disease-mediated stress. This suppression of neuronal mitochondrial function 

in diabetes is in stark contrast to the impact on Schwann cell mitochondria, in which hyper-

glycaemia increases expression of proteins involved in the tricarboxylic acid cycle and 

oxidative phosphorylation, and increases overall oxygen consumption while decreasing 

coupled respiration84. The fundamental differences between Schwann cells and neurons in 

normal glucose metabolism168 and the handling of hyper-glycaemia might underlie the 

complex pathogenesis of diabetic neuropathy.

Conclusions

Primary Schwann cell damage is a largely forgotten aspect of diabetic neuropathy, partly as 

a result of the major historical focus on microvascular disease and axonopathy. Studies 

showing that injury to Schwann cells affects both the vasculature and axons have reignited 

interest in Schwannopathy as a primary cause of diabetic neuropathy. In light of these 

findings, now is the time to rethink therapeutic strategies that account for both primary 

axonopathy and primary Schwannopathy in the setting of ongoing stress that arises from 

vascular hypoxia, hyperglycaemia, impaired trophic support, dyslipidaemia, mitochondrial 

dysfunction, oxidative stress, and activation of inflammatory pathways.

An increased mechanistic understanding of the Schwann cell response to diabetes could 

unravel novel molecular mechanisms that can ultimately be targeted to ameliorate disease. A 

particularly pertinent approach might be to expand on the recent development of conditional 

knockout mouse models to understand the specific role of genes expressed by Schwann cells 

in the pathophysiology of diabetic neuropathy, and the relative contributions of axonopathy 

and Schwannopathy. Our current understanding that a diverse range of signalling pathways 

are disrupted in diabetic neuropathy presents substantial challenges for drug development. 

Nevertheless, we believe that innovative drug delivery systems, improvements in clinical 

trial design and the generation of new biomarkers will combine to generate a multimodal 

approach that ultimately proves useful for treating diabetic neuropathy.
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Box 1 |

Diabetic neuropathy: presentation and treatment

Diabetic neuropathy classically presents as a sensory neuropathy that results from 

damage to both large and small fibres, which can cause negative symptoms, such as loss 

of sensation to touch, vibration, pinprick, hot and cold177,178, and positive symptoms, 

such as paradoxical pain and hypersensitivity179–183. Negative and positive symptoms are 

both most pronounced distally, with a characteristic stocking–glove pattern (see the 

figure). The pathology is also time-dependent: early small fibre symptoms are followed 

by impairment of larger sensory afferent fibres and motor fibres, which causes muscle 

weakness and, ultimately, paralysis. The most common form of diabetic neuropathy is a 

distal symmetrical polyneuropathy, but diabetes can affect single nerves 

(mononeuropathy), multiple individual nerves (mononeuritis multiplex), a nerve plexus 

(plexopathy) or nerve roots (radiculopathy)184–186. The autonomic nervous system can 

also be affected, leading to a diabetic autonomic neuropathy that is characterized by 

multiple organ dysfunction.

A population-based study has indicated that neuropathy develops in as many as 50% of 

all patients with type 1 or type 2 diabetes187. Neuropathic pain develops in >30% of these 

patients, meaning that approximately one in six patients with diabetes develops a painful 

neuropathy188–190. Several drugs are approved for treatment of neuropathic pain in 

diabetes, but these drugs do not address the underlying pathogenic mechanisms. The only 

accepted approach to the prevention or slowing of progression in diabetic neuropathy is 

strict maintenance of euglycaemia, but clear evidence for the efficacy of this approach 

has only been documented in type 1 diabetes, and not in the more common type 2 

diabetes1,2.
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Box 2 |

Sensory symptoms of diabetic neuropathy

Nerve fibre damage can cause positive and negative symptoms, which can coexist.

Positive symptoms

• Spontaneous pain

• Allodynia

• Hyperalgesia

• Dysaesthesia

• Paraesthesia

Negative symptoms

• Hypoaesthesia

• Anaesthesia

• Hypoalgesia

• Analgesia
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Box 3 |

Satellite glial cells

Diabetic neuropathy is generally considered to be a length-dependent phenomenon, 

meaning that the longest nerve fibres are most at risk, with the most severe damage 

occurring in the terminal regions of long axons, but with other regions of the neuraxis 

also affected. For example, in the dorsal root ganglia, neuronal cell bodies are 

individually surrounded by satellite glial cells that, together with a thin layer of 

connective tissue, form an envelope around the neurons16, and evidence over the past 

decade has established that satellite cells are important components of PNS functionality 

and post-injury responses, such as pain and nerve regeneration191,192. Like Schwann 

cells, satellite cells express aldose reductase39, and the effect of diabetes on this enzyme 

leads to altered expression of several proteins in these cells193,194. In rodent models of 

both type 1 and type 2 diabetes, expression of glial fibrillary acidic protein is increased in 

satellite glial cells that surround sensory neurons; this increased expression has been 

proposed to be a reflection of satellite cell activation, which has been implicated in the 

genesis of neuropathic pain195,196. However, the biology and function of these cells 

during diabetes is essentially unexplored, and warrants further investigation.
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Prediabetes

A condition in which blood glucose levels are higher than normal but not high enough to 

be considered as type 2 diabetes; individuals with prediabetes often develop diabetic 

neuropathy.

Dependence receptors

Proteins that mediate apoptosis by monitoring the absence of certain trophic factors.

Basal lamina

Sheets of extracellular matrix that are secreted by Schwann cells and surround a nerve.

Endoneurium

A layer of interstitial connective tissue that surrounds all axons, thereby separating 

individual nerve fibres.

Radial sorting

The process that underlies selection of one axon for myelination by a Schwann cell 

during development.

Capillary dysfunction

A state of dysregulated capillary blood flow patterns, in which oxygen, glucose and other 

diffusible molecules cannot be extracted efficiently by the tissue; uptake of these 

molecules can become critically impaired, although reduced tissue blood supply is not 

obvious.

C‑peptide

A short polypeptide that is cleaved from proinsulin in the production of insulin, and can 

be measured in the blood.

Coupled respiration

A process in which oxygen uptake is dependent on the presence of ADP and phosphate.

Gonçalves et al. Page 29

Nat Rev Neurol. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Key points

• Peripheral neuropathy is a serious but often neglected complication of 

diabetes mellitus

• Schwann cells support the structural and functional integrity of nerves, so 

their damage as a result of the metabolic consequences of diabetes adversely 

affects axons

• High polyol pathway flux, oxidative stress and inflammation are the main 

pathways activated in Schwann cells during diabetic neuropathy

• Disruption of Schwann cell metabolism by hyperglycaemia and/or 

dyslipidaemia results in accumulation of neurotoxic intermediates that confer 

axonal and vascular vulnerability to injury

• Microvascular changes within the endoneurium create a hypoxic environment 

that has the potential to disrupt Schwann cell function, promoting activation 

of inflammatory cascades that lead to neurodegeneration
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Figure 1 |. Pathogenesis of diabetic neuropathy.
Diabetic neuropathy has a complex pathogenesis involving interaction of axonopathy, 

schwannopathy and microvasculopathy. The figure shows the anatomical organization of 

myelinated and unmyelinated axons within nerve fascicles. Their nutrient supply is secured 

via endoneurial capillaries which, together with the perineurial membrane, form the blood–

nerve barrier. a | Human skin biopsy samples immunostained with PGP9.5 to show 

progression of peripheral nerves from the dermis into the epidermis, where they exist as 

small unmyelinated C-fibres (scale bar 40 μm). Left panel shows loss of fibres in a patient 

with diabetic neuropathy and right panel shows fibres in a healthy individual. b | Changes in 

axons and myelin in diabetic neuropathy, showing degeneration of Schwann cells and nerve 

fibres, culminating in nerve and intraepidermal fibre loss. c | Endoneurial capillaries from 

patients with diabetes. Top panel shows a capillary from a patient without diabetic 

neuropathy, and bottom panel shows a capillary from a patient with neuropathy, in which 

endothelial cell hyperplasia and basement membrane thickening have reduced the size of the 

capillary lumen. d | Narrowing of individual capillaries might not prevent blood from 

passing through the endoneurial capillary bed per se, but the resulting increase in velocity of 

blood through endoneurial functional shunts or epineurial arteriovenous shunts prevents 

efficient oxygen extraction, causing hypoxia. Panel a courtesy of Dr Páll Karlsson, Danish 

Pain Research Center, Department of Clinical Medicine, Aarhus University, Denmark.
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Figure 2 |. Hyperglycaemia-driven Schwann cell stress and neurodegeneration.
Hyperglycaemia and dyslipidaemia ultimately lead to reduction of neuronal support from 

Schwann cells and microvessels. In Schwann cells, RAGE (receptor for advanced 

glycosylation end products) signalling leads to increased glucose metabolism by aldose 

reductase, which generates local oxidative damage, causes inflammation and drives cells to 

an immature phenotype. It also affects mitochondrial function, which increases oxygen 

consumption, and reduces production of desert hedgehog (DHH), which affects endothelial 

cell function. Endothelial cells also express aldose reductase, and increased polyol pathway 

flux activates proinflammatory and prothrombotic pathways that reduce nerve blood flow. 

Disruption of neuronal support by Schwann cells and the vascular system contributes to 

neuropathy, in conjunction with the direct effects of diabetes on neurons themselves.
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