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ABSTRACT OF THE DISSERTATION 
 

A Multivariate Perspective on the 
Impacts of Anthropogenic Climate Change on Hydroclimatic Extremes 

 
by 

Felicia Chiang 

Doctor of Philosophy in Civil and Environmental Engineering 

University of California, Irvine, 2020 

Professor Amir AghaKouchak, Chair 

 

Hydroclimatic extreme events such as droughts and heatwaves can produce significant 

impacts on environmental, socioeconomic, and public health sectors. Evidence shows that 

extreme events are becoming more common, severe, and costly as a result of anthropogenic 

climate change; therefore, the study of hydroclimatic extremes is necessary to combat the rising 

costs associated with these extremes. In general, previous studies of climate extremes have 

focused on one variable or feature at a time. In this dissertation, we provide novel investigations 

of the interactions between different climatic extremes and different features of extremes. Here, 

we present observational and model-based evidence that climate change has influenced 1) 

temperature shifts conditioned on drought conditions, 2) changes in the likelihood and magnitude 

of drought duration, frequency, and severity, and 3) changes in the likelihood of concurrent 

warm and dry events in response to anthropogenic warming.  

Chapter 1 first provides a broad overview of the literature framing this dissertation and 

identifies key research opportunities that following chapters pursue. Chapter 2 presents a 

conditional perspective of how droughts have been warming in the 20th century and how they are 

projected to change in a warming climate. This chapter concluded that temperatures during dry 
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meteorological conditions are warming faster than average climate conditions, which have strong 

implications for future risks of concurrent warm and dry extremes under changes in background 

climate. This chapter also investigates the physical mechanisms causing substantial warming of 

droughts.  Chapter 3 examines the influence of anthropogenic forcing on general drought 

characteristics, including drought frequency, duration, and intensity, to illustrate the contribution 

of human activities to our current hydroclimatic state. Using model simulations with and without 

anthropogenic forcing, this study found substantial regional shifts in drought frequency, 

maximum drought duration, and maximum drought intensity, especially in the wetter regions of 

the globe. Chapter 4 presents a study of the impacts of anthropogenic climate change on 

compound warm and dry extremes. Previous attribution studies have ignored dependencies 

between climate variables. Thus, in this chapter, we focus on attribution of changes in compound 

water and dry extremes in response to anthropogenic emissions. This study showed that most of 

the global land area has experienced significant increases in meteorological warm and dry 

months that can be attributed to human activities. We also introduce a new conditional indicator 

that demonstrates the impact of climate change on high temperature exceedances under dry 

conditions (conditional warm spells). 

The research presented in this dissertation provides insight into the drivers and feedback 

mechanisms that influence warm and dry conditions and quantify how climate change has 

impacted the nature of hydroclimatic extremes. From the results of these studies, we have 

provided a novel perspective on temperature change conditioned on droughts and created a 

foundation for understanding the impacts of climate change on droughts and concurrent warm 

and dry events. By better understanding these hydroclimatic extremes, local and national 

decision-makers can better prepare for future extreme events in the near and distant future.  
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1.1 Introduction 
 
 In the literature, the term “climate extreme” is generally defined as the occurrence of a 

climate variable at the upper or lower tails of the observed distribution (Karl et al., 2008; 

Seneviratne et al., 2012). Due to the vast number of climate variables that describe the physical 

conditions here on Earth, climate extremes can manifest in many ways. Climate extremes range 

from the fast-paced oppression of a heatwave to the slow onset and, sometimes ambiguous, 

departure of a drought event. In addition, some climate events may not be statistically rare, such 

as the occurrence of a tropical storm or cyclone, but can still cause extreme impacts (Seneviratne 

et al., 2012). Due to the strong, significant impacts that climate extremes can have on existing 

environmental and ecological conditions, the built infrastructure of human settlements, and 

socioeconomic and public health, climate extremes are a critical field of study (Karl et al., 2008). 

The study of climate extremes is crucial to gain a better understanding of their drivers, 

probability of occurrence, and corresponding impacts.  

 In general, climate extremes occur due to natural interannual and interdecadal climate 

variability (Seneviratne et al., 2012). Therefore, for any given climate variable, we can generate 

distributions that represent the probability of occurrence of observable values driven by natural 

climate variability. However, under the influence of anthropogenic climate change, many 

atmospheric variables have undergone significant changes that cannot be attributed to natural 

variability (Bindoff et al., 2013; IPCC, 2013). For example, if we examine the distribution of 

daily air temperature values, we can see historically observed changes in the mean and variance 

of the distribution (IPCC, 2013). The lower and upper ends or “tails” of the temperature 

distribution can be sensitive to small changes in the mean and variance, which can translate into 

large, significant increases/decreases in hot and cold extremes (IPCC, 2013). Rising average 
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global temperatures have already been shown to translate to more frequent and severe heatwaves 

in many regions across the globe (Fischer & Knutti, 2015; IPCC, 2013; Mazdiyasni & 

AghaKouchak, 2015). In addition, rising temperatures have also been linked to changes in the 

global water cycle, increasing heavy precipitation events and even the nature of tropical storms 

(Easterling et al., 2000; Fischer & Knutti, 2015; IPCC, 2013).   

Although the field of climate extremes has advanced substantially in recent decades, 

there are still many challenges that researchers face when studying climate extremes in detail 

(Karl et al., 2008). Recent papers are still improving on the definition of climate extremes and 

the identification and understanding of the drivers behind these extreme events (for example, the 

recognition of anthropogenic drought (AghaKouchak et al., 2015). The consideration of human 

activities (outside of anthropogenic emissions) in contributing to extremes has just begun to 

emerge as a field, and there are still many research gaps and opportunities when considering 

human influences on hydroclimatic conditions. In addition, since extreme events are, by 

definition, rare events, many datasets are still not long enough to adequately understand the risk 

and likelihood of these rare events (Smolka, 2006).  

 In this chapter, we review the existing literature related to climate extremes, with special 

attention to droughts and concurrent warm and dry events. We also review literature related to 

concurrent climate hazards, which is an emerging subfield of interest, especially in the context of 

climate change. In addition, we review the existing literature related to the detection and 

attribution of anthropogenic climate change and highlight the research opportunities that are 

present in the detection and attribution field. Overall, this chapter provides the general 

background of the literature framing this dissertation and identifies key research gaps that the 

following chapters address.  
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1.2 Progress in Climate Extremes Literature 
 
Across the globe, climate extremes have been significantly impacting human civilization 

since the beginning of recorded history (Heim, 2015). Due to anthropogenic climate change, the 

likelihood of many climate extremes has increased as average global temperatures have risen 

(AghaKouchak et al., 2013; Easterling et al., 2000). In the past four decades, the occurrence of 

climate extreme events have cost the United States over 1.7 trillion US dollars and nearly ten 

thousand lives, with more and more costs incurred in recent years (Smith & NOAA National 

Centers For Environmental Information, 2020). Due to the projected impacts that climate 

extremes are anticipated to incur in the near and distant future, it is critical that the field of 

climate science moves toward a better understanding of the drivers and triggers of extreme 

events and improves our capacity to predict and project climate extremes and their associated 

impacts. 

 

1.2.1 Droughts 
 
 The phenomenon of drought has been defined many times over, with many different 

drought indices currently serving to represent different aspects of water availability and many 

indices still being introduced to better encompass the extreme event (Dracup et al., 1980; 

Gumbel, 1963; IPCC, 2013; Palmer W, 1965; Van Loon et al., 2016). The most traditional 

drought classification schemes include: meteorological, agricultural, and hydrological drought, 

which correspond to precipitation, soil moisture, and surface runoff/groundwater deficits 

(Wehner et al., 2017; Wilhite, 2000). In recent years, new terms, such as “socioeconomic 

drought” have been introduced into the literature to acknowledge the significant role that human 
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factors and actions play in determining water availability (Van Loon et al., 2016; Wilhite et al., 

2007). 

As the effects of anthropogenic climate change grow more apparent, research efforts in 

recent decades have shifted towards characterizing and understanding droughts in a warming 

world (IPCC, 2013). Many studies show observed changes in regional precipitation rates and 

predict a redistribution of global precipitation, which may have serious implications for 

transitional regions sensitive to changes in soil moisture (IPCC, 2013; Seneviratne et al., 2006; 

K. Trenberth, 2011). Due to changes in global climate patterns, there is evidence that these 

transitional zones will be shifting, resulting in changes in the influence of land surface moisture 

on local drought events (Seneviratne et al., 2006). As new transitional zones emerge, regional 

studies will be crucial for understanding how localized feedbacks and processes respond to 

changes in surface moisture.  

Due to differences in observational datasets and methods accounting for natural climate 

patterns such as the El Niño-Southern Oscillation, global studies have not reached a consensus 

regarding how droughts have changed in response to climate change. For instance, Dai (2013) 

concluded that droughts have experienced an 8% increase in global land area between the 1980s 

and the 2000s, while Sheffield et al. (2012) could not find an observable global drought trend in 

recent history. This uncertainty highlights the need for more consistency among drought indices 

and observational data for independent studies to arrive at similar conclusions (Dai, 2013; IPCC, 

2013; Sheffield et al., 2012; K. E. Trenberth et al., 2014).  

Furthermore, the relative contributions of natural variability and anthropogenic warming 

are still not well defined. Therefore, studies improving our understanding of natural variations in 

drought would increase our understanding of historical and projected drought trends (IPCC, 
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2013). We must also broaden our efforts to characterize the effects of human activities (such as 

agriculture, deforestation, and increasing human water use) on the occurrence and severity of 

drought events (Mehran et al., 2015). AghaKouchak et al. highlighted the lack of studies 

researching the impacts of human activities (beyond anthropogenic emissions) on water stress 

and emphasized the importance of understanding the roles that human activities play in 

determining water availability (AghaKouchak et al., 2015). Van Loon et al. also called attention 

to the need to incorporate the role of humans in exacerbating (as well as alleviating) drought 

conditions (Van Loon et al., 2016). To improve regional and global drought management, we 

must improve our understanding of the relative contributions of human activities, natural 

variability, and anthropogenic climate change on droughts. 

Using a global multi-model ensemble, Sheffield and Wood predicted that soil moisture 

drought events will become more common and more severe and will cover twice as much land 

area under moderate and high emissions scenarios at the end of the twenty-first century relative 

to the twentieth century (Sheffield & Wood, 2008). Global aridity (i.e., precipitation minus 

potential evapotranspiration) is expected to increase by 3.4% per degree Celsius increase in 

temperature over land, which will have negative ramifications on water availability as we move 

to a drier land state (Fu & Feng, 2014). Under a warming climate, we also anticipate a 10-23% 

expansion of global drylands between 1961-1990 and 2071-2100, increasing total dryland 

coverage to 50-56% of the global land surface (Huang et al., 2016). Increasing aridity and 

expanding drylands are projected to significantly increase the number of communities living in 

prolonged water stress (Huang et al., 2016). Projected increases in aridity and drought-prone 

regions will likely increase the occurrence of dust events (Prospero & Lamb, 2003), which can 

exacerbate human health issues and modify the hydrology of nearby and remote regions. 
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The projected increase in global aridity and dryland coverage is influenced by land-

atmosphere and biosphere-atmosphere feedbacks. Berg et al. highlighted the projected 

contribution of land-atmosphere interactions to the expected doubling of aridity by isolating the 

influence of long-term soil moisture trends on precipitation, relative humidity, and temperature 

under a warming climate (Berg et al., 2016). In addition, increased dryland coverage and drought 

occurrences will degrade the ability of soils and vegetation to store carbon, feeding back to 

increase atmospheric concentrations of CO2 and leading to further desertification (Huang et al., 

2016). Large-scale deforestation, especially in tropical regions, may also influence the 

occurrence and severity of remote droughts (Spracklen et al., 2012). 

While global models offer information regarding possible future climate scenarios, 

comparisons of historical and historical natural-only climate scenarios (historical simulations 

with and without the influence of anthropogenic emissions, respectively) have also improved our 

understanding of how anthropogenic climate change has contributed to changes in the water 

cycle (Fischer & Knutti, 2015). However, we lack attribution studies focused on drought events 

and stand to benefit from studying the impact of anthropogenic climate change on drought to 

reframe how we interpret historical observations and improve future modeling efforts.  

Projected changes in droughts will also translate to changes in the vulnerability of human 

communities to droughts. Future drought events may challenge sectors that are dependent on 

water availability, such as the energy sector (for example, impacting hydropower energy 

portfolios and powerplant operations) (Tarroja et al., 2018). We need more studies on the range 

and magnitude of impacts that drought events will have in the future (for example, on the 

agricultural industry and food security), as well as the feedbacks that will occur on local and 

global scales to better prepare vulnerable populations for future events.  
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1.2.2 Multivariate Extremes 
 
 Although univariate climate hazards can cause severe impacts on an individual basis, the 

interconnected nature of our climate system suggests that the occurrence of one climate hazard 

can influence and even trigger the occurrence of one or more associated climate hazards. The 

concurrence of two or more interdependent climate hazards occurring simultaneously can be 

classified as an “extreme” or rare event with significant impacts on environmental, 

socioeconomic, and public health sectors, even if the climate hazards do not produce significant 

impacts independently (Seneviratne et al., 2012). 

Traditionally, when studying the risk of climate extremes, we evaluate the occurrence of 

extreme events from a univariate perspective (AghaKouchak et al., 2014). Since traditional risk 

assessment frameworks fail to acknowledge additional risks that may arise from the joint 

occurrence of multiple climate hazards (AghaKouchak et al., 2014; Gräler et al., 2013), recent 

research efforts have introduced new multivariate risk assessments to more accurately represent 

the likelihood and associated impacts of concurrent climate events. In the past decade, formal 

frameworks for identifying and studying concurrent and compound events have rapidly 

developed, from the first discussion in the IPCC Report on Managing the Risks of Climate 

Extremes (Field et al., 2012), to Leonard et al.’s more detailed compound event framework 

(Leonard et al., 2014), to the more recent perspective put forth by Zscheischler et al. 

(Zscheischler et al., 2018). Zscheischler et al. highlighted that since many drivers and hazards are 

interdependent, the study of compound events is valuable for accurately assessing the risk of 

these extremes (Zscheischler et al., 2018). 
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Compound events may become more common in a warming climate, which makes the 

study of compound events even more vital for preparing for future climate extremes 

(AghaKouchak et al., 2014). Recent studies documented that concurrent droughts and heatwaves 

have become more frequent in the twentieth century (Diffenbaugh et al., 2015; Mazdiyasni & 

AghaKouchak, 2015). In California, Diffenbaugh et al. attributed an increased risk of concurrent 

warm and dry events to anthropogenic warming and projected that the increased risk of extreme 

warm and dry concurrences will continue throughout the twenty-first century (Diffenbaugh et al., 

2015). One key mechanism responsible for compound drought and heat waves is land-

atmosphere interactions. Moisture deficit during droughts limits land evaporation, which in turn 

increases the sensible heat to latent heat ratio, leading to a warming of the local area (Fischer et 

al., 2007; Hirschi et al., 2011; Mueller & Seneviratne, 2012).  

Although progress has been made in the study and understanding of concurrent and 

compound extreme events, there are still many knowledge gaps in the present literature. The 

physical interactions between co-occurring climate hazards is still not well defined for many 

compound events, and gaining a better understanding of the key physical drivers of concurrent 

and compounding climate events is crucial to improve estimations of risks and impacts. In 

addition, the impact of anthropogenic forcing (i.e. anthropogenic emissions of greenhouse gases 

and aerosols) on the occurrence of concurrent and compound extreme events has not been 

examined in detail. The simple increase of global temperatures will redefine many distributions 

of univariate climate variables, and we expect to see significant changes in distributions of 

concurrent and compound events as well.  

A cascading hazard is a special type of compound event where events occur in direct 

sequence and result in major socioeconomic and environmental impacts. Due to evidence that 
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suggests that climate hazards can promote or even trigger one or more related climate hazards, 

the study and understanding of cascading hazards is a major research gap in climate extremes 

literature. We provide a recent example of a cascading hazard that occurred in Southern 

California, where dry conditions, subsequent rain and fuel growth, followed by hot and dry fire 

weather conditions and fires, culminated in a deadly debris flow triggered by rainfall (Fig. 1.1). 

 
Fig. 1.1. Cascading hazard in Southern California. The consecutive events shown above resulted in 
significant human health and economic impacts in Southern California: a prolonged extreme drought 
from 2012 to 2016; heavy rainfall during the winter of 2017, which promoted the growth of fire fuels; a 
very dry, warm spring and summer, which aided in drying existing vegetation; followed by extreme fires 
and rainfall over the burned area in January 2018, leading to a deadly debris flow event. 
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1.3 Progress in Detection and Attribution Literature 
 
 With regards to anthropogenic climate change, the detection of change is currently 

defined as the study of determining that the climate system (represented by one or more climate 

variables) or associated systems that interact with the climate system have experienced a 

quantifiable change (Easterling et al., 2016; Hegerl et al., 2010; Stott et al., 2010). The 

attribution of the detected change is defined as the study of the identification and relative 

importance of the drivers behind this change (Hegerl et al., 2010; Stott et al., 2010). The 

detection of change and subsequent attribution of change to anthropogenic activities (such as the 

emission of greenhouse gas since the start of the Industrial Revolution) serves to deepen our 

understanding of how humans have externally forced changes in our climate (IPCC, 2013).  

Detection and attribution studies present evidence of the physical consequences of 

anthropogenic forcings which allow us to characterize and quantify the many impacts of climate 

change. Many detection and attribution studies examine modeled realizations of our historical 

climate with and without anthropogenic forcings, which allow us to identify whether our 

observed climate states are due to natural variability, anthropogenic activities, or a combination 

of the two (Easterling et al., 2016; Stott et al., 2010). These studies also allow us to better 

interpret climate conditions (ranging from little to no change to significant changes in climate 

variables) that have occurred since the Industrial Revolution (Stone et al., 2009). Detection and 

attribution studies can lead to improvements of short-term predictions of climate states and long-

term model projections of future climate scenarios (Easterling et al., 2016). Ideally, detection and 

attribution studies contribute to regional and global climate change mitigation and adaptation 

efforts (Stott et al., 2010). 
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In the early stages of the field, detection and attribution studies mainly examined mean 

changes in climate variables (Bindoff et al., 2013; Hegerl et al., 2006; Houghton, 1996). The 

earliest detection and attribution studies focused on attributing global temperature change to 

anthropogenic emissions (Allen et al., 1994; Barnett & Schlesinger, 1987; Hegerl et al., 1996, 

2006; Santer et al., 1994, 1995; Stone et al., 2009; Stott, 2003; Tett et al., 1999; X. Zhang et al., 

2006). Changes in mean precipitation and streamflow have also been detected and attributed to 

anthropogenic activities (Hidalgo et al., 2009; Lambert et al., 2004; Sarojini et al., 2012). Many 

of these attribution studies used traditional optimal fingerprinting (linear filter) to detect a 

climate change driven signal amidst the noise of natural climate variability (Hasselmann, 1993). 

In recent years, the detection and attribution field has begun to seriously investigate 

changes in climate extremes (Christidis et al., 2005; Easterling et al., 2016; Fischer & Knutti, 

2014, 2015; Meehl et al., 2007; Min et al., 2011, 2013). With respect to climate extremes, 

detection and attribution studies generally take one of two approaches: 1) statistically examining 

how anthropogenic activities have caused changes in the likelihood of an extreme event 

exceeding a specified threshold or 2) mechanistically examining how human changes in climate 

factors have impacted the severity of an extreme event (Easterling et al., 2016). In 2003, Allen 

first introduced the statistical approach of climate change attribution and Stott et al. subsequently 

applied this approach to the 2003 heatwave in Europe (Allen, 2003; Stott et al., 2004). The 

alternative, mechanistic approach disentangles mesoscale, synoptic, and planetary-scale 

meteorological phenomena contributing to the magnitude of extreme events (Easterling et al., 

2016). Hoerling et al. more recently conducted a mechanistic examination of the physical drivers 

behind the 2011 Midwestern drought and heatwave extreme event (Hoerling et al., 2012). 
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Although significant progress has been made in the field of climate change-centric 

detection and attribution, there are still many research gaps and opportunities in the literature. 

Extreme event attribution is becoming a hot topic in the field, but many types of extreme events 

have thus far been ignored in detection and attribution literature. For example, although extreme 

precipitation has been examined on regional and global scales, there are few studies focusing on 

drought events (Fischer & Knutti, 2014, 2015; Marvel et al., 2019; Min et al., 2011). Drought 

events are complicated to examine due to the various ways that drought is defined and 

characterized in current literature. Traditional drought studies use observations to calculate 

parametrically based indices such as the Standardized Precipitation Index (SPI), the Standardized 

Precipitation-Evapotranspiration Index (SPEI), and the Palmer Drought Severity Index (PDSI) 

(Easterling et al., 2016). With different climate scenarios (e.g. historical climate with or without 

anthropogenic emissions), calculating equivalent numerical values of drought indices through 

traditional probability distribution fitting poses a computational challenge. Thus, the formal 

detection and attribution of changes in drought events is an existing research gap and should be 

filled to better prepare for future changes in drought events due to climate change. In addition, to 

our knowledge, compound events have not been formally studied in detection and attribution 

literature. Since compound events have already been associated with many substantial impacts 

and are already showing significant changes in present-day observations (Mazdiyasni & 

AghaKouchak, 2015; Zscheischler et al., 2018), we argue this is also a critical research gap that 

deserves attention in the literature.  
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1.4 Research Gaps and Opportunities 
 

The definition, identification, and analysis of extreme events is difficult due to the rare 

nature of these events; however, much progress has been made in the past couple of decades, 

especially with regards to the developing field of compound climate extremes. Since the study of 

climate extremes is still a developing field, there are many research gaps and opportunities. In 

the following chapters, we present three studies that address critical research gaps in climate 

extremes literature:  

 

1. In the 20th century, average annual temperatures in the United States have risen 0.7oC 

(Wuebbles et al., 2017). In chapter 2, we studied long-term shifts in temperatures 

occurring during dry months to explore the effect of climate change on interactions 

between surface moisture and temperature conditions. Since there are established land 

surface-atmosphere feedbacks that connect drying and warming conditions, we explored 

whether observations and model simulations showed shifts in temperatures under 

droughts and whether conditional temperature shifts are also projected for the future. 

 

2. Although current detection and attribution literature has examined the impacts of 

anthropogenic forcing on mean and extreme precipitation, to our knowledge, the long-

term impacts of anthropogenic forcing on drought characteristics have not been 

explored. In chapter 3, we used historical (including anthropogenic forcing) and 

historical natural-only Coupled Model Intercomparison Project Phase 5 (CMIP5) model 

simulations to quantify the impact of anthropogenic forcing on meteorological drought 

characteristics.  
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3. Current detection and attribution studies generally evaluate the impacts of anthropogenic 

forcing on mean or extreme changes in individual climate variables and ignore 

dependencies between variables. Due to evidence that climate change has significantly 

impacted observed compound events, we used historical and historical natural-only 

CMIP5 model simulations to characterize the impact of anthropogenic forcing on 

concurrent warm and dry events. Chapter 4 presents the results and discussion of this 

study.  
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Chapter 2 
 
Amplified Warming of Droughts in the United 
States in Observations and Model Simulations 
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Citation: Chiang, F., Mazdiyasni, O., and AghaKouchak A., 2018. “Amplified Warming of 
Droughts in Southern United States in Observations and Model Simulations.” Science Advances, 
4(8), eaat2380.
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2.1 Introduction 
 

The concurrence of drought and heatwave events have caused severe ecosystem and 

societal stresses as witnessed during 2014 in California and 2003 in Europe (AghaKouchak et al., 

2014; Asner et al., 2015). Land surface and atmosphere interactions have been identified as a 

major driver in the occurrence of these concurrent extremes. During dry soil moisture conditions, 

we expect to see associated surface warming as the available energy will be expressed as 

sensible heat instead of being evaporated as latent heat, causing the concurrence of these 

conditions (Fischer et al., 2007; Seneviratne et al., 2006; Su et al., 2014). For example, in the 

European heatwave event, precipitation deficits in the Mediterranean region were noted to 

precede major heatwaves in neighboring regions (Vautard et al., 2007). 

These short-term temperature changes are dependent on the negative and positive 

feedbacks between the local land surface condition and the atmosphere above (Chang & 

Wallace, 1987; Dirmeyer et al., 2013; Jin Huang & van den Dool, 1993; Livneh & Hoerling, 

2016; Walsh et al., 1985). In addition to temperature changes, low soil moisture in mid-

continental areas can alter planetary boundary layer dynamics which influence precipitation 

(Stéfanon et al., 2014). In contrast, coastal areas experience a thermal contrast between the land 

and the sea, which is magnified during periods of dry soil, resulting in increased transport of 

moist air from oceans (Stéfanon et al., 2014). Through many studies, land surface and 

atmosphere interactions have been established as major climate drivers, especially in transitional 

climate zones (Fischer et al., 2007; Seneviratne et al., 2006; Su et al., 2014). However, we still 

do not understand the feedbacks and interactions between all the existing components of the land 
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surface and the atmosphere. Moreover, we still do not completely understand the full spectrum of 

changes that will accompany the simple increase in greenhouse gases. 

In this chapter, we examined long-term shifts in temperatures occurring during dry 

months to further explore the effect of climate change on feedbacks between surface moisture 

and temperature conditions. Drawing from established interactions between drying and warming 

conditions, we examined whether temperatures during droughts have experienced changes in the 

20th century and whether shifts in dry temperatures are projected to occur in the 21st century. 

Due to projections showing droughts and high temperatures intensifying over the next century, 

the main objective of the chapter was to understand whether temperatures are projected to 

experience different rates of intensification when coupled with dry conditions. This chapter 

evaluated whether conditional temperature shifts under droughts are occurring while 

acknowledging the possible drivers of land surface-atmosphere interactions and feedbacks under 

climate change. In this chapter, we also examined changes in atmospheric moisture to evaluate 

concurrent shifts in the climate system.  

For this study, we evaluated temperatures during different drought severities in two 

observed periods [1902-1951 and 1965-2014] and two modeled periods [1951-2000 and 2050-

2099] in the contiguous United States. With the observations, we compared the late and early 

20th century to quantify temperature changes that have already occurred. With the multi-model 

ensemble, we compared the late 21th and late 20th century periods to investigate future conditions 

relative to the recent historical past. To evaluate coincident changes in atmospheric moisture 

conditions, we used relative humidity and vapor pressure deficit (VPD) as quantitative measures 

of available moisture in the atmosphere. 
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2.2 Methodology 
 

For observations, we used monthly temperature, precipitation, and vapor pressure data 

available from the Climatic Research Unit, CRU TS3.23, which is a gridded time-series climate 

dataset (30). The data coverage included all areas of the contiguous United States at a 0.5 degree 

resolution. Estimates for saturated vapor pressure (es) were derived using the 2008 WMO CIMO 

Guide conversion equation: 

𝑒" = 6.112× exp ,,.-./
,0,..,1/

     (2.1) 

where t is the temperature at a given grid point at a given time. 

Relative humidity was derived with the standard equation from saturated and actual vapor 

pressure (ea):  

   𝑅𝐻 =	 56
57
×100%	      (2.2) 

For the model ensembles, we used the bias-corrected spatially disaggregated (BCSD) 

downscaled CMIP5 multi-model ensembles under representative concentration pathway (RCP) 

8.5 at a 0.125 degree resolution available from the U.S. Bureau of Reclamation website (Edwin 

P. Maurer et al., 2007). The BCSD method is a statistical downscaling method that uses the 

probability density functions of model output mapped onto observations and then spatially 

aggregates the results to the desired scale (E. P. Maurer & Hidalgo, 2008). We took an average 

of the models listed in the Table 2.1 to form the model ensemble. 

We used the standardized precipitation index (SPI) as a measure of the relative 

meteorological dryness of each pixel in the spatial area of interest. For our study, we employed a 
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non-parametric implementation of SPI to retain the spatial and temporal consistency of the 

original data, while describing precipitation in the context of the local climatology (Farahmand 

& AghaKouchak, 2015). We used the empirical Gringorten plotting position: 

𝑝 𝑥< = <=>.--
?1>.@,

        (2.3)  

where n is the sample size, i is the rank of non-zero precipitation data from smallest to largest, 

and p(xi) is the empirical probability for each data point (Farahmand & AghaKouchak, 2015). 

We standardized the probabilities, p, from Eq. (2.1) using the standard normal distribution 

function, f : 

𝑆𝐼 = 	𝜙=@(𝑝)       (2.4) 

(18). Although drought can be characterized by many timescales, we chose to use a 6-month 

timescale to capture intra-annual seasons without including overly brief wet or dry periods. 

We first calculated the average temperature shift associated with each dryness threshold 

for each pixel. To find the temperature shift between periods, we calculated the difference 

between the temperature average associated with each period. We used the United States 

Drought Monitor (USDM) classification scheme (D0, D1, D2, etc.) to define the drought severity 

thresholds. D0 begins with an SPI of -0.5, D1 begins with an SPI of -0.8, and D2 begins with an 

SPI of -1.3. For instance, for the D0 threshold, we isolated months that had an SPI value of -0.5 

or lower and found the corresponding temperature average. We then summarized the temperature 

shifts within seven climatically consistent regions in the contiguous U.S. For average shifts of 

relative humidity and VPD between time periods, we used the same dryness thresholds for all 

pixels. 
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We used the two-sample Kolmogorov-Smirnov non-parametric test: 

𝐷∗ = HIJ
K 	( 𝐹@ 𝑥 − 𝐹, 𝑥 )      (2.5) 

where 𝐹@(𝑥) is the proportion of values in the first distribution less than or equal to x and 𝐹, 𝑥  

is the proportion of values in the second distribution less than or equal to x (Massey, 1951), 

and Student’s two-sample t-test: 

𝑡 = K=O

7PQ

R 1
7SQ

T

        (2.6) 

where 𝑥 and 𝑦 are the sample means, 𝑠K	and 𝑠O are the sample standard deviations, and n and m 

are the sample sizes for the two data samples (McDonald, 2009), to determine whether regional 

shifts under the drier conditions were significant in comparison to the average temperature 

change experienced in the area (a = 0.05).  
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Table 2.1 CMIP5 climate models used for chapter 2. 

Modeling Center Institute ID Model Name 
Commonwealth Scientific and Industrial Research 
Organization (CSIRO) and Bureau of Meteorology 
(BOM), Australia 

CSIRO-BOM ACCESS1.0 
ACCESS1.3 

Beijing Climate Center, China Meteorological 
Administration 

BCC BCC-CSM1.1 
BCC-CSM1.1(m) 

Canadian Centre for Climate Modeling and Analysis CCCMA CanESM2 
 

National Center for Atmospheric Research NCAR CCSM4  
Community Earth System Model Contributors NSF-DOE-NCAR CESM1(BGC) 

CESM1(CAM5) 
Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC CMCC-CM 
Centre National de Recherches Météorologiques / Centre 
Européen de Recherche et Formation Avancée en Calcul 
Scientifique 

CNRM-
CERFACS 

CNRM-CM5 

Commonwealth Scientific and Industrial Research 
Organization in collaboration with Queensland Climate 
Change Centre of Excellence 

CSIRO-QCCCE CSIRO-Mk3.6.0 

LASG, Institute of Atmospheric Physics, Chinese 
Academy of Sciences and CESS, Tsinghua University 

LASG-CESS FGOALS-g2 

The First Institute of Oceanography, SOA, China FIO FIO-ESM 
NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-CM3 

GFDL-ESM2G 
GFDL-ESM2M 

NASA Goddard Institute for Space Studies NASA GISS GISS-E2-R 
National Institute of Meteorological Research/Korea 
Meteorological Administration 

NIMR/KMA HadGEM2-AO 

Met Office Hadley Centre (additional HadGEM2-ES 
realizations contributed by Instituto Nacional de 
Pesquisas Espacials) 

MOHC (additional 
realizations by 
INPE) 

HadGEM2-CC 
HadGEM2-ES 

Institute for Numerical Mathematics INM INM-CM4 
Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR 

IPSL-CM5A-MR 
IPSL-CM5B-LR 

Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The 
University of Tokyo), and National Institute for 
Environmental Studies 

MIROC MIROC-ESM 
MIROC-ESM-
CHEM 

Atmosphere and Ocean Research Institute (The 
University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for Marine-
Earth Science and Technology 

MIROC MIROC5 

Max-Planck Institut für Meteorologie (Max Planck 
Institute for Meteorology) 

MPI-M MPI-ESM-LR 
MPI-ESM-MR 

Meteorological Research Institute MRI MRI-CGCM3 
Norwegian Climate Centre NCC NorESM1-M 

NorESM1-ME 
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2.3 Results 

 
Between the early and late 20th century observations from the Climatic Research Unit 

(CRU), the southern and northeastern U.S. experienced higher temperature shifts under dry 

conditions than the average climate (Fig. 2.1a).  

Fig. 2.1. Temperature shift associated with each dryness condition. Average temperature shift relating 
to each condition (including all wet and dry conditions, at or under the D0 threshold, at or under the D1 
threshold). (A) We compare the period 1965-2014 relative to a baseline period of 1902-1951 with the 
observed CRU data. (B) We compare the future period 2050-2099 relative to the historical baseline of 
1950-1999 with the CMIP5 model average ensemble. 

The southern states experienced a similar pattern of change in the downscaled Coupled Model 

Intercomparison Project Phase 5 (CMIP5) multi-model ensemble (Fig. 2.1b). In the observations, 

the regions associated with amplified temperature change under the D0 and D1 thresholds 

contrasted with the warming regions highlighted in the average temperature change panel, 

indicating that the observed pattern was not purely an amplification of the temperature change 

observed under average climate conditions. The accelerated warming under dry conditions also 

does not correspond with regions commonly identified as semi-arid or arid. For example, the 

southern United States experiences a dry climate in the west and a humid climate in the east; 

however, all southern states experience similar accelerations in warming under dry conditions.  
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 Around the globe, increasing aridity has been attributed to a more rapid increase in 

evaporative demand relative to precipitation supply (Berg et al., 2016; Fasullo, 2010; Ficklin & 

Novick, 2017). This increase in aridity has been expressed in the decreasing relative humidity 

and increasing vapor pressure deficit that is observable in Fig. 2.2a and 2.2b (Berg et al., 2016; 

Byrne & O’Gorman, 2016; Ficklin & Novick, 2017). Under the D0 and D1 thresholds, we 

observed concurrent increases and decreases in temperature, relative humidity, and VPD (Fig. 

2.1a, 2.2a, 2.2b). In regions where temperature shifts under droughts have outpaced temperature 

changes in the average climate, relative humidity has decreased and VPD has increased. For 

example, the Northeastern region in Fig. 2.1a, 2.2a, and 2.2b shows positive temperature shifts 

corresponding with decreases in relative humidity and increases in VPD.  

 

Fig. 2.2. Moisture shift associated with each dryness condition. Average shift between 1965-2014 
relative to 1902-1951 associated with each dryness condition used in Fig. 1. (A) Observed average shift in 
relative humidity associated with each condition. (B) Observed average shift in VPD associated with each 
condition.  

We also observed corresponding increases in moisture in regions where temperature 

shifts under the average climate have outpaced shifts under drought. For instance, in the upper 

Midwestern region, negative temperature shifts relate to increases in relative humidity and 

decreases in VPD (Fig. 1a, 2a, 2b). McHugh et al. recently established that non-rainfall water 
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sources – such as atmospheric moisture – can act as a significant source of moisture in drylands 

during periods when the relative humidity in the soil is lower than the relative humidity of the air 

above (McHugh et al., 2015). This finding explains the mechanism behind stagnant or cooling 

temperature shifts under drought conditions with respect to average temperatures. The effect of 

water vapor on soil moisture (and by proxy, land surface warming) highlights the importance of 

the general dryness or wetness of the area, which cannot be attributed to a single variable. In all 

regions, we hypothesize that during periods of drought, the concurrent shift in atmospheric 

moisture is contributing to the amplification of temperature changes relative to the average 

climate. It is important to note that when considering all months – wet or dry, this concurrence 

does not occur between the variables (see first column for Fig. 2.1a, 2.2a, 2.2b). This highlights 

the importance of meteorological drought in strengthening the correlation between changes in 

atmospheric moisture and temperature (Farahmand & AghaKouchak, 2015).  

With regards to the spatial pattern of temperature, relative humidity, and VPD changes, 

we attach the decreasing availability of regional moisture relative to evaporative demand. 

Changes in relative humidity and VPD are the physical manifestations of the limits on land 

evaporation (Ficklin & Novick, 2017). The limit on land evaporation will increase the amount of 

local sensible heat, subsequently leading to a relative warming of the land surface. As shown in 

the results of this chapter, this is amplified during periods of drought. Although increases in 

temperature due to climate change have increased the upper limit of saturation vapor pressure, 

actual vapor pressure is limited by the relative lack of available moisture, especially during 

droughts (Byrne & O’Gorman, 2016; Ficklin & Novick, 2017).  

We hypothesize that increases in drought frequencies due to the behavior of the Pacific 

Decadal Oscillation and the Southern Oscillation Index may have shaped the southern and 
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eastern patterns in the observed shift (Kam et al., 2014). Changes in atmospheric circulation 

patterns and vertical transport of moisture due to climate change may have contributed to the 

spatial patterns in the shift (IPCC, 2013). In addition, regional changes in human activities may 

have resulted in changes in soil moisture and temperature (Feng & Liu, 2015). Dampened 

summer temperature highs have been associated with intensifying irrigation in the upper 

Midwestern region (N. D. Mueller et al., 2016). These agriculturally-influenced climate trends 

relate directly to the Midwestern cooling signal shown in Fig. 2.1a. In contrast, since the 1960s, 

annual snow-cover extent has shrunken ten percent (Dore, 2005). The occurrence of snow cover 

significantly influences local temperatures due to albedo and emissivity properties of snow (T. 

Zhang, 2005). Snowmelt also acts as a latent heat sink, increasing soil moisture levels and 

regulating local temperatures (T. Zhang, 2005). Thus, a decrease in snow-cover extent could be 

associated with an increase in surface temperature, corresponding with the amplified temperature 

shifts along the East Coast in Fig. 2.1a.  

As shown in Fig. 2.1b, the spatial pattern of temperature change does not coincide with 

the north to south gradient of latitudinal heating predicted under the RCP 8.5 scenario. Instead of 

the north experiencing greater shifts in comparison to the south, our results display the opposite 

pattern. The spatial patterns where amplified shifts in temperature are projected to occur can also 

be seen in the patterns in relative humidity and VPD. CMIP5 ensembles have predicted changes 

in water vapor concentrations and changes throughout the hydrologic cycle due to projected 

climate change, causing shifts in the distributions of precipitation and evaporation around the 

globe (Zhou et al., 2014). Significant decreases in the difference between precipitation and 

surface evaporation are projected to occur in the southern regions across all seasons (Sheffield et 

al., 2014), corresponding to the temperature conditions displayed in Fig. 2.1b.  
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Regional delineations in Fig. 2.3a and 2.3b highlight the differences between the 

historical observations and model projections. Historically, the northeastern region of the U.S. 

shows the amplified drought-associated temperature shift, while CMIP5 models predict a 

smaller, more muted future shift in temperature with respect to the average climate in the entire 

upper half of the U.S., including the Northeast. CRU observations show that the median dry 

temperature shifts 0.81 degrees higher than the average climate when we isolate regions with 

amplified temperature shifts. In the CMIP5 projections, the median dry temperature shifts 0.30 

degrees higher than the average climate in the regions with amplified temperature change. The 

shifts quantified in the observations and models shows the influence of dry periods on the 

increasing intensity of climate conditions in the southern U.S. These changes occurred for VPD 

and relative humidity as well. 
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Fig. 2.3a. Regional temperature shift boxplots for observations. Regional boxplots displaying 
the temperature shifts corresponding to each dryness condition for the CRU observations [1965-
2014 relative to 1902-1951]. 

 

 
Fig. 2.3b. Regional temperature shift boxplots for model ensemble. Regional boxplots 
displaying the temperature shifts corresponding to each dryness condition for the CMIP5 model 
ensemble [2050-2099 relative to 1950-1999]. 
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We also plotted cumulative distribution functions of the temperature shifts under 

different dryness conditions to illustrate distributional changes between the periods. Fig. 2.4a 

shows that observed temperatures in the southeastern U.S. shift to the right under D0 drought 

conditions. A shift to the right represents more severe temperature conditions. Fig. 2.4b also 

shows the modeled temperature distribution under the D0 condition increasing the emphasis on 

warmer months in comparison to the average climate. Distributional plots for the remaining 

regions reflect the results from the box plot figures (Fig. 2.5a, 2.5b).  

 
Fig. 2.4. Distributional shift associated with the southeastern U.S. Distributional plots 
comparing the shifts between the D0 condition and the average climate for the southeastern 
region of the U.S. (A) We compare the period 1965-2014 relative to a baseline period of 1902-
1951 with the observed CRU data. (B) We compare the future period 2050-2099 relative to the 
historical baseline of 1950-1999 with the CMIP5 model average ensemble. 
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Fig. 2.5a. Distributional shifts for observed U.S. Distributional plots comparing the observed 
shifts between the D0 condition and the average climate for all regions using the CRU 
observations [1965-2014 relative to 1902-1951].  

 

Fig. 2.5b. Distributional shifts for projected U.S. Distributional plots comparing the projected 
shifts between the D0 condition and the average climate for all regions using the CMIP5 
ensemble [2050-2099 relative to 1950-1999]. 
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The Kolmogorov-Smirnov and Student’s t tests revealed statistically significant 

differences between the shifts seen from average temperatures and the shifts seen under the D0 

threshold in the two observational periods in all regions. The K-S test also showed statistically 

significant differences between the average temperature and D0 threshold shifts in comparing the 

future projections relative to the modeled past. T-testing showed that all regions except the 

Northwest show statistical differences between the dry and average temperature shifts. The 

statistical tests highlight that the differences between the amplified temperature shifts recorded in 

the observations and models are statistically significant. 
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2.4 Discussion and Conclusion 

 
The observed and projected amplifications in temperature change in the southern U.S. 

will have severe ramifications in environmental and social sectors. Droughts alone have had 

severe urban, agricultural, and ecological impacts in recent years, directly and indirectly 

reducing water availability (Rosenzweig & Urban Climate Change Research Network, 2011). 

Warm periods have also impacted many of the same sectors by stressing vulnerable populations, 

food resources, energy, and transportation systems (Mazdiyasni & AghaKouchak, 2015; 

Rosenzweig & Urban Climate Change Research Network, 2011). Under our future projections of 

amplified drought-conditioned temperature shifts in the southern U.S., the occurrence of 

concurrent extremes will likely increase and exacerbate the impacts anticipated from individual 

extremes. This is exceedingly important as dry lands are becoming more widespread under 

climate change, which will widen the documented temperature impact (Fu & Feng, 2014). Future 

studies should focus on the ramifications of these temperature shifts to quantify projected risks 

on population health, food supply, and infrastructure.  

Our interpretations of the findings are limited by the accuracy of our observations and 

model projections. In some areas, the CMIP5 models may have inconsistent physical 

interpretations since representations of land-surface and atmospheric interactions vary across 

models. Although the models capture large-scale temperature patterns, extreme precipitation 

events are still not adequately represented (IPCC, 2013; Sheffield et al., 2014). The capture of 

extreme precipitation events has the potential to affect the timing of dry and wet periods in the 

models. Projections of ENSO timing and variability also suffer from model biases (IPCC, 2013). 

In addition, the CMIP5 projections have trouble with warm and cool sea surface temperature 
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biases in the Pacific and Atlantic oceans (Fu & Feng, 2014), which influence teleconnected 

climate variables such as precipitation. The known errors in the CMIP5 output prevent us from 

drawing concrete conclusions from the differences between the observations and the projections. 

Our results show that droughts have been experiencing amplified temperature shifts 

relative to the average climate in the southern and northeastern regions of the United States. The 

spatial pattern of the drought conditioned temperature shift can largely be associated with 

observed shifts in atmospheric moisture content such as relative humidity and VPD. Although 

we cannot define which variable is the driver at this temporal scale, both temperature and 

moisture shifts are interacting and amplifying under drought conditions. Projections show that 

droughts will be significantly warmer than average conditions across the southern region of the 

U.S., and are also associated with modeled shifts in relative humidity and VPD. This study 

highlights the importance of atmospheric moisture in the absence of precipitation in driving 

changes in the energy and hydrologic cycles. 
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Chapter 3 
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3.1 Introduction 

 
As we have previously expressed, droughts have severe direct and indirect impacts on 

ecological, agricultural, and economic sectors, such as damaging natural ecosystems and 

crippling crop yields (Vicente-Serrano et al., 2013; Wilhite et al., 2007). Relatively low water 

availability (i.e. droughts) can also have strong ramifications on solar thermal, geothermal, and 

hydropower generation (Forrest et al., 2018; Tarroja et al., 2018). In addition, drought events can 

influence the occurrence of dependent hazards, such as heatwaves, which we will explore in 

greater detail in the following chapter (Fischer et al., 2007). In recent historical observations, 

changes in meteorological drought frequency, duration, and intensity have been noted across the 

globe with Global Precipitation Climatology Center observations (Spinoni et al., 2014). In 

addition, Climatic Research Unit observations have also shown a significant positive trend in the 

percentage of land areas under meteorological drought (Nasrollahi et al., 2015). Since future 

climate projections suggest increases in drought frequency and severity will occur in the 

Americas, Europe, Asia, and Africa, the characterization of drought features is an important and 

relevant area of study in the field of hydrology (Herrera-Estrada et al., 2017; Hirabayashi et al., 

2008; Martin, 2018; Spinoni et al., 2018). 

Previous detection and attribution studies have used observations and model simulations 

to attribute increasing trends of mean and extreme temperature and precipitation occurrences to 

climate change (Easterling et al., 2016; Fischer & Knutti, 2014, 2015; Peter A. Stott et al., 2004; 

Williams et al., 2015; X. Zhang et al., 2007a). Using a fractional risk measure (referred to as 

‘fraction of attributable risk’), Fischer and Knutti (2015) found that 18% of moderate daily 

precipitation extremes can be attributed to the present-day 0.85 oC temperature increase. In 

addition, Fischer and Knutti attributed 75% of the moderate daily hot extremes to the present-day 
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temperature increase (Fischer & Knutti, 2015). Zhang et al. also detected an observable change 

in the latitudinal distribution of precipitation, which they argued could not be explained by 

natural variability (X. Zhang et al., 2007a).  

Although there have been many detection and attribution studies on hydroclimatic 

variables in the literature (T. P. Barnett et al., 2008; Fischer & Knutti, 2015; Hidalgo et al., 2009; 

Peter A. Stott et al., 2010; X. Zhang et al., 2007b), the global influence of anthropogenic climate 

change on different drought characteristics (e.g., duration, frequency, severity) has not been 

explicitly quantified. Previously, Wehner et al. reviewed the changes that have occurred in 

different drought types in the United States (Wehner et al., 2017). So far, historical changes in 

meteorological drought conditions in the United States have not been formally attributed to 

anthropogenic forcing (Wehner et al., 2017). On the other hand, hydrological drought conditions 

in the Western U.S. have been attributed to anthropogenic forcing, since they are dependent on 

snowfall accumulation and eventual snowmelt, which are strongly influenced by temperature 

conditions (Hidalgo et al., 2009).  

In 2019, Marvel et al. used tree ring records to present evidence of the influence of 

human activity on global agricultural (soil moisture) drought trends since the start of the 20th 

century (Marvel et al., 2019). With the Palmer Drought Severity Index (PDSI), Marvel et al. 

(2019) detected an overall increasing signal of human activity in the global drought atlas region, 

with a decreasing trend during 1950-1975 that may have resulted from anthropogenic aerosol 

emissions during the time period. On the whole, previous studies have shown that the influence 

of anthropogenic forcing on drought events is complicated, due to the variety of ways that 

drought can be characterized (meteorological, agricultural, hydrological).   
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The objective of this chapter is to present a global examination of the influence of 

anthropogenic forcing on meteorological drought characteristics. We focus our attention on 

meteorological droughts to isolate the impact of emissions on the lower tail of the precipitation 

distribution without the direct influence of temperature. We used historical and historical natural-

only CMIP5 climate model simulations to attribute differences in meteorological drought 

characteristics to anthropogenic forcing. We quantified the drought frequency, maximum 

drought duration, and maximum drought intensity of both historical and natural-only climate 

scenarios to examine the impact of anthropogenic emissions on drought features (see Methods 

Section for more detail). Traditionally, drought indices are parametrically calculated, however, 

creating comparable drought indices from different model simulations with this approach can be 

complicated and computationally costly. In this chapter, we introduce the use of a generalized 

framework to compare droughts under different modeled climate scenarios in a consistent 

manner. 

To directly quantify the impact of anthropogenic forcing on drought events, we estimated 

the probability of drought occurrences that can be attributed to anthropogenic climate change. 

We employed the probability ratio concept used in Fischer and Knutti (2015) to quantify the 

likelihood of drought months occurring in the historical model world relative to the historical 

natural-only model world in the late 20th century. By examining the global distribution of 

drought risk, we could identify regions of greater sensitivity to anthropogenic climate change 

from a meteorological drought perspective.  

Separately, we examined the historical and historical natural-only zonal distributions of 

the three characteristics (frequency, maximum duration, maximum intensity) in the late 20th 

century and the spatial distributions of how the characteristics were modeled to change between 
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the late 19th and late 20th centuries. We also investigated if differences between anthropogenic 

and natural-only scenarios could be associated with specific climate regimes. To address this 

question, we aggregated shifts in drought features from dry, average, and wet land area pixels 

defined by annual precipitation data from the historical natural-only climate scenario. We also 

investigated the differences between drought features in the historical and the historical natural-

only scenarios by aggregating all ‘agricultural’ pixels (see Methods for more detail) and 

aggregating all land pixels from both historical and historical natural-only conditions. By 

examining specific regional and global aggregations of drought features, we could better assess 

the influence of anthropogenic forcing on dry extremes. Understanding the contribution of 

anthropogenic climate change to present-day drought features (i.e. frequency, duration, and 

intensity) are important in our interpretation of historically observed drought shifts, and can also 

improve future climate projections. By exploring these drought features separately, we can better 

understand the sensitivities of the individual features to anthropogenic climate change. 
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3.2 Methodology 

 
For our study, we used monthly precipitation data from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) historical and historical natural-only model 

simulations (see Table 3.1 for the list of models used for this study) (Taylor et al., 2011). To 

create a multi-model ensemble, we regridded the model output to a common 1 degree grid using 

nearest-neighbor interpolation and then calculated the multi-model median of each pixel. We 

included all land area within 60oS and 60oN in our analysis. 

We used the non-parametric standardized precipitation index (SPI) to represent the 

relative meteorological dryness of each pixel in our study area (Farahmand & AghaKouchak, 

2015). To quantify the features in the late 20th century (1956-2005) and feature shifts between 

the late 19th and 20th centuries (1851-1900 and 1956-2005), we generated 6-month SPI values for 

each month in each time period. The value corresponding to the month of June would include 

precipitation information from the 6-month period from January to June by first summing all 

monthly precipitation values. To create comparable SPI values in the historical and historical 

natural-only scenarios, we then ranked each month’s precipitation sum by using the historical 

natural-only climatology of the corresponding pixel and month. We included a zero in our 

historical natural-only climatology to account for the minimum possible 6-month precipitation 

sum that could occur in either climate scenario. By basing the reference climatology on the 

historical natural-only data, we could ensure equivalent drought definitions even under differing 

climate forcings. More details on calculating SPI non-parametrically can be found in Farahmand 

and AghaKouchak (2015).  

We defined drought frequency as the number of non-consecutive events below the 

drought threshold of SPI = -1.5, drought duration as the number of consecutive months 
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associated with each drought event, and drought intensity as the cumulative sum of SPI values 

associated with the months under drought for each event. Maximum duration and maximum 

intensity refer to the maximum value for each pixel in each period.  

To evaluate how anthropogenic warming has impacted drought features in different 

climate regimes, we classified percentiles of annual precipitation into 3 classes, ranging from the 

driest (0-33th percentile) to wettest (67-100th percentile) land areas. We extracted the 

corresponding pixel values to compare the spatial distributions of drought feature change in each 

class. To assess anthropogenic impacts on the agricultural sector, we also explicitly examined 

drought features in pixels where more than 50 percent of the land area could be classified as 

cropland, using global agricultural data from Ramankutty et al. 2008 (Ramankutty et al., 2008). 

We estimated spatial distributions by fitting kernel density estimates to our extracted data points 

(Michael Waskom et al., 2016). We also conducted two-tailed two-sample t-tests on each 

historical and historical natural-only pair for pixels falling under each climate regime category 

(dry, average, wet land areas) as well as for cropland and global land area pixels. 

 Using the most recent 50 years of our model ensemble dataset (1956-2005), we also 

calculated the probability ratio (PR) concept to demonstrate the impact of anthropogenic climate 

change on drought occurrences. The PR of each pixel can be represented by a simple ratio: 

     𝑃𝑅 = 𝑃@/𝑃>      (3.1) 

where P0 represents the probability of a drought occurring in historical natural-only conditions 

and P1 represents the probability of a drought occurring in historical conditions (Fischer & 

Knutti, 2015). 
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Table 3.1. CMIP5 climate models used in chapter 3 

Modeling Center Institute ID Model Name 
Commonwealth Scientific and Industrial 
Research Organization (CSIRO) and 
Bureau of Meteorology (BOM), 
Australia 

CSIRO-BOM ACCESS1.3 
 

Beijing Normal University (BNU) BNU BNU-ESM 
 

Canadian Centre for Climate Modeling 
and Analysis 

CCCMA CanESM2 
 

National Center for Atmospheric 
Research 

NCAR CCSM4  

Centre National de Recherches 
Météorologiques / Centre Européen de 
Recherche et Formation Avancée en 
Calcul Scientifique 

CNRM-CERFACS CNRM-CM5 

Commonwealth Scientific and Industrial 
Research Organization in collaboration 
with Queensland Climate Change Centre 
of Excellence 

CSIRO-QCCCE CSIRO-Mk3-6-0 

LASG, Institute of Atmospheric 
Physics, Chinese Academy of Sciences 
and CESS, Tsinghua University 

LASG-CESS FGOALS-g2 

NASA Goddard Institute for Space 
Studies 

NASA GISS GISS-E2-H 
GISS-E2-R 

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR 
IPSL-CM5A-MR 

Japan Agency for Marine-Earth Science 
and Technology, Atmosphere and Ocean 
Research Institute (The University of 
Tokyo), and National Institute for 
Environmental Studies 

MIROC MIROC-ESM 
MIROC-ESM-
CHEM 

Meteorological Research Institute MRI MRI-CGCM3 
 

Norwegian Climate Centre NCC NorESM1-M 
 

  



	

42	

	

3.3 Results 
 

First, we can examine global patterns of historical natural-only and historical drought 

frequency, maximum drought duration, and maximum drought intensity from 1956-2005 (Figure 

3.1). Figures 3.1a, b, and c, which represent a) drought frequency, b) maximum drought duration, 

and c) maximum drought intensity under historical natural-only conditions, show relatively 

uniform values across the global land area. As our definition of the drought threshold is based on 

the historical natural-only climatology from 1850-2005, our results correspond well with our 

expectation that only relatively small differences would occur from natural variations in 

meteorological conditions (between 1956-2005 and 1850-2005). In contrast, Figure 3.1d, which 

shows the number of drought events occurring under historical conditions, show substantial 

hotspots of drought occurrences in tropical regions as well as extratropical regions of Southern 

Europe, South America, and Africa. Figures 3.1e and 3.1f depict the presence of similar hotspots 

of e) maximum drought duration and f) maximum drought intensity. From our comparison of the 

historical spatial patterns of drought features to their historical natural-only analogs, we can 

highlight the recent impact of anthropogenic forcing on meteorological droughts. 
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Figure 3.1. Global distribution of drought features. a) Drought frequency from the CMIP5 historical 
natural-only multi-model ensemble median. The value expressed in each pixel represents the number of 
droughts that occurred between 1956-2005. b) Maximum drought duration (number of months associated 
with the longest drought from 1956-2005) from the historical natural-only models. c) Maximum drought 
intensity (the cumulative SPI value from the most intense drought from 1956-2005) from the historical 
natural-only models. d) Drought frequency from the historical model median. e) Maximum drought 
duration from historical models. f) Maximum drought intensity from historical models. 
 

  We can also examine how drought frequency, duration, and intensity have evolved over 

our study period. Figures 3.2a, b, and c show that historical natural-only drought frequency, 

maximum drought duration, and maximum drought intensity have experienced minimal 

increases and decreases from the late 19th to the late 20th centuries. From a global perspective, 

the three features have shifted towards a slightly wetter profile. Figure 3.2d, e, and f allow us to 

examine historical shifts in our drought characteristics. Figure 3.2 shows a strong resemblance to 

Figure 3.1, with increases in drought frequency, maximum drought duration, and maximum 

drought intensity in the same hotspot regions shown in the previous figure. In general, the 

modeled changes in drought characteristics between the two time periods reflect trends in 
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observed drought frequency, duration, and severity that have been documented in Spinoni et al. 

2014 (Spinoni et al., 2014). From our global analysis, we observe that the aforementioned 

‘hotspot’ regions have also experienced increases in drought frequency, maximum drought 

duration, and maximum drought intensity under historical conditions that were not experienced 

under historical natural-only conditions. 

 
Figure 3.2. Global shifts in drought features. a) Difference in drought frequency between 
1956-2005 and 1851-1900 from the CMIP5 historical natural-only multi-model ensemble 
median. b) Difference in maximum drought duration in historical natural-only models. c) 
Difference in maximum drought intensity in historical natural-only models. d) Difference in 
drought frequency under historical conditions. e) Difference in maximum drought duration under 
historical conditions. f) Difference in maximum drought intensity under historical conditions. 
 

Regions such as the Eastern United States show very similar conditions in the historical 

and historical natural-only simulations. The Eastern U.S. is an example of a region where natural 

variability may still be dominating over human contributions to changes in climate. However, 

many of the regions where drought features have developed a stronger presence in historical 
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conditions are regions that experienced a slight weakening of drought features in historical 

natural-only conditions. This highlights the importance of accurately capturing natural variability 

in the models to understand the contribution of present-day and future anthropogenic climate 

change to drought features. When only examining observational data, we cannot fully understand 

how anthropogenic forcing have impacted shifts or trends in our historical climate. 

 When we take the latitudinal median of the global information from Figure 3.1, we can 

clearly see distinct distributions of drought frequency, maximum drought duration, and 

maximum drought intensity for historical natural-only (blue) and historical (red) simulations 

(Figures 3.3a, b, and c). In 1956-2005, drought frequency, maximum drought duration, and 

maximum drought intensity all exhibit strong differences in historical simulations relative to 

historical natural-only simulations, emphasizing the impact that anthropogenic emissions have 

had on drought features, especially between 0-40oN. Historical conditions also clearly experience 

greater variability across many of the latitudinal bands in comparison to natural-only conditions. 

Figures 3.3d, e, and f summarize the global information from Figure 3.2, depicting how drought 

frequency, duration, and intensity have shifted from the late 19th century to the late 20th century. 

In addition to strongly resembling the distributions of drought features from the late 20th century, 

the patterns in Figure 3.3d, e, and f correspond well with the latitudinal pattern of precipitation 

change shown in 20th century observations (X. Zhang et al., 2007a). Within 10o latitude bands, 

Zhang et al. (2007) highlighted detectable decreasing trends in mean annual precipitation 

between 0-30oN as well as increasing trends between 0-30oS and 50-70oN. From our results, we 

show that latitudes with decreasing precipitation trends relate to stronger drought frequency, 

duration, and intensity values in historical relative to historical natural-only conditions, while 
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latitudes with increasing precipitation trends exhibit relatively smaller differences between 

historical and natural-only drought conditions. 

Figure 3.3. Zonal distribution of drought features. a) Latitudinal distribution of drought 
frequency in 1956-2005. b) Latitudinal distribution of maximum drought duration. c) Latitudinal 
distribution of maximum drought intensity. d) Latitudinal distribution of drought frequency 
change between the late 20th and late 19th century. Positive values represent increases in the 
number of droughts in 1956-2005 relative to 1851-1900. e) Latitudinal distribution of maximum 
drought duration change. Positive values represent increases in the maximum drought duration in 
1956-2005 relative to 1851-1900. f) Latitudinal distribution of maximum drought intensity 
change. Negative values depict increases in the maximum drought intensity in 1956-2005 
relative to 1851-1900. 
 

To better understand in which regions drought features are more sensitive to the presence 

of anthropogenic forcing, we divided global land area into three terciles (Figure 3.4). In Figure 

3.5, we present how drought features have shifted in the driest (left) and wettest (right) regions 

based on the median of annual precipitation. The subplots depict shifts for each drought 

characteristic, with a shift to the right indicating increases in drought frequency, duration, and 

intensity in the late 20th century relative to the late 19th century. We observe that wetter regions 

experienced larger shifts in drought features in historical simulations relative to natural-only 
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simulations. For example, 26.6% of the land area in the driest tercile exceeds the corresponding 

90th percentile of the historical natural-only change in drought frequency. In contrast, 44.7% of 

the land area in the wettest tercile exceeds the 90th percentile of the historical natural-only 

change in drought frequency. However, all drought feature distributions from historical and 

historical natural-only conditions were significantly different under two-tailed, two-sample t-

testing (Table 3.2). Areas with relatively low annual precipitation may have a lower capacity to 

experience change in drought characteristics. However, it is interesting to note the consistency in 

differences between historical and historical natural-only land area distributions in drought 

frequency (largest), intensity (average), and duration (smallest). This pattern may be due to the 

general sensitivity of the three drought features.  

 

Figure 3.4: Land regions categorized by median annual precipitation percentiles. The 
tercile thresholds were defined using historical natural-only data. Each tercile represents a third 
of the land area covering 60oS to 60oN.  
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Table 3.2: Results from two-tailed two-sample t-test on historical and historical natural-
only spatial distributions from dry, moderate, and wet land regions. 

 0-33th percentile* 34-66th percentile 67-100th percentile 
p-value t-value, degrees 

of freedom 
(DOF) 

p-value t-value, DOF p-value t-value, DOF 

Drought 
frequency 

2.97E-11 6.658, 5744 1.42E-41 13.590, 5663 5.98E-214 32.222, 5367 

Maximum 
drought 
duration 

1.29E-05 4.365, 7438 9.87E-22 9.608, 7261 2.53E-109 22.571, 7076 

Maximum 
drought 
intensity 

6.22E-05 -4.007, 7243 1.25E-36 -12.709, 6977 3.19E-151 -26.782, 6769 

*based on median annual precipitation from the historical natural-only dataset 

 

To highlight the impact of regional changes on the agricultural sector, we show the 

distributions of drought features in regions with more than 50% of the land area classified as 

cropland (left) and in land area from 60oS to 60oN (right) in Figure 3.5 (Table 3.3). As an 

example, 64% of the land area in cropland regions exceeds the corresponding 90th percentile of 

drought frequency from historical natural-only conditions, while only 51% of the global land 

area exceeds the corresponding 90th percentile from natural-only conditions. As croplands are 

generally located in regions with ample precipitation, these results correspond well with our 

previous figure. However, they emphasize that regions across the world have experienced 

disparate sensitivities to anthropogenic forcing. In the context of meteorological drought 

conditions, agricultural regions (Figure 3.6; left panels) are relatively more sensitive to 

anthropogenic forcing in comparison to global land area (Figure 3.6; right panels). With rising 

populations and increased use of agricultural resources (for food and fuel), more intense droughts 

will have greater societal and environmental impacts.  
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Table 3.3: Results from two-tailed two-sample t-test on historical and historical natural-
only spatial distributions from cropland and global land area. 

 Cropland Global land 
p-value t-value, DOF p-value t-value, DOF 

Drought 
frequency 

1.72E-182 31.508, 1531 0 69.882, 15005 

Maximum drought 
duration 

1.27E-60 16.902, 1945 0 38.591, 18857 

Maximum drought 
intensity 

5.36E-150 -28.064, 1803 0 -73.290, 17080 
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Figure 3.5. Shifts in drought features (1956-2005 relative to 1851-1900) for the driest (a, b, 
c) and wettest (d, e, f) land regions. Each PDF represents the distribution of shifts experienced 
by pixels within the specified land area. A shift to the right indicates relatively more frequent, 
longer, or more intense drought conditions in the more recent time period. 
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Figure 3.6. Cropland (a, b, c) versus global (d, e, f) land distributions of drought features 
(1956-2005). Each probability density function represents the distribution of drought features 
from pixels within the specified land area. Cropland pixels were pixels where more than 50% of 
the land area was classified for cropland use from Ramankutty et al. 2008. 
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From Figure 3.7, we can visualize the probability ratio (PR) of drought months occurring 

between 1956-2005. We calculated PR values for each land pixel using 6-month SPI values to 

understand climate change impacts on the frequency of drought events classified as SPI < -1.5. 

The resulting global PR pattern reflects the spatial shifts exhibited in Figures 3.1 and 3.2. Figure 

3.7 also mirrors previous observations by Fischer and Knutti regarding the contribution of 

climate change to the global risk of extreme precipitation events (Fischer & Knutti, 2015). In 

their 2015 study, Fischer and Knutti observe smaller probabilities of extreme precipitation 

occurring in similar regions where we observe increases in the probability of drought events, 

such as Central America, Southern Europe and Northern Africa, and Eastern China (Fischer & 

Knutti, 2015). This indicates that these regions may be experiencing shifts at both tails of their 

distributions due to anthropogenic forcing.  

 
Figure 3.7. Probability Ratio (PR) of drought months during 1956-2005. The PR of each 
pixel is calculated from 6-month SPI values, where we defined historical natural-only SPI < -1.5 
as the drought threshold. Values above 1 indicate a higher likelihood of drought events in 
historical conditions, while values below 1 indicate a lower likelihood in historical conditions. 
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3.4 Discussion and Conclusion 
 

The main objective of this chapter was to examine the impact that anthropogenic forcing 

has had on the lower tail of the precipitation distribution with gridded data from climate model 

simulations. Overall, our results paint a global picture of how shifts in droughts would have been 

distributed under natural climate variability and how shifts in droughts have been impacted by 

the presence of anthropogenic forcing. Our results agree with Wehner et al.’s conclusion that the 

influence of anthropogenic forcing on regional North American meteorological droughts is not 

significant thus far (Wehner et al., 2017) In our earlier introduction of the literature, we also 

noted that Marvel et al. presented evidence of the influence of human activity on global soil 

moisture drought trends since the start of the 20th century (Marvel et al., 2019). Marvel et al. 

found evidence of increased drying in North America and Europe and wetting in South Asia and 

coastal East Asia (Marvel et al., 2019). Our spatial results for Europe and South and coastal East 

Asia generally agree with Marvel et al.’s conclusions. However, we found no substantial 

difference between North America’s meteorological drought characteristics in historical and 

historical natural-only conditions. This may be due to differences in how precipitation and soil 

moisture have responded to anthropogenic forcing, or more directly, due to the fact that the PDSI 

drought index incorporates temperature information, which has already been documented to have 

strong responses to anthropogenic emissions (Stott et al., 2001). 

 We acknowledge the inherent limitations associated with our model-based detection 

study. Drying trends from Nasrollahi et al. showed that the majority of CMIP5 models mirror 

trends of areas under drought observed from Climatic Research Unit (CRU) data (Nasrollahi et 

al., 2015). However, there are still regional disparities that exist between CRU observations and 

model simulations regarding drying and wetting trends (Nasrollahi et al., 2015). As we lack a 
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good understanding of aerosol feedbacks, CMIP5 models are not able to reproduce real-world 

changes in drought features that may be influenced by anthropogenic aerosol emissions (Marvel 

et al., 2019). CMIP5 models also tend to overestimate the spread of Southern Hemisphere 

droughts and most models have trouble replicating regional precipitation trends when compared 

to ground-based observations (Nasrollahi et al., 2015). Most CMIP5 models also simulate a false 

double intertropical convergence zone in the Southern Tropics (Hirota et al., 2011; Hwang & 

Frierson, 2013; Li & Xie, 2013; Lin, 2007), which can have strong impacts on global 

precipitation, and consequentially, drought estimation. Due to these model biases, we 

acknowledge that there is a degree of error with regards to our results. However, since we 

compared differences between model experiments, the impacts of these model biases are 

reduced. As we examined temporal shifts between large time periods, we also reduced the 

influence of short-term interdecadal internal variability on our results.  

Under anthropogenic forcing, we conclude that many regions have experienced notable 

increases in drought frequency, maximum drought duration, and maximum drought intensity. 

More specifically, we found that regions with higher annual precipitation were more sensitive to 

the presence of anthropogenic impacts. This study also highlights that if future changes in 

drought characteristics will continue in a manner consistent with our modeled shifts, there will 

be strong implications on water availability for agriculture and other socioeconomically 

important sectors dependent on water resources. The attribution of changes in drought 

characteristics and drought occurrences to anthropogenic climate change are important to aid in 

understanding our historically observed trends and shifts, and can contribute to the prediction of 

changes to come.  
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Chapter 4 
 
The Impact of Anthropogenic Forcing on 
Concurrent Warm and Dry Extremes 
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of Anthropogenic Forcing on Concurrent Temperature and Precipitation Extremes.”  



	

56	

	

4.1 Introduction 
 

Recent climate research has shifted towards characterizing and understanding the 

changing risks of compound events, which can be defined as the concurrence of two or more 

natural hazards (Zscheischler et al., 2018). During the 2014 California drought, AghaKouchak et 

al. (2014) highlighted that the risk of concurrent extreme events has been increasing due to rising 

global temperatures (AghaKouchak et al., 2014). For example, in many regions of the United 

States, concurrent droughts and heatwaves have increased dramatically since the late 20th century 

(Mazdiyasni & AghaKouchak, 2015). In addition, Hao et al. (2013) conducted a global study on 

compound precipitation and temperature anomalies, and found that observations both show 

increases in joint dry and warm events from the mid to the late 20th century (Hao et al., 2013). 

Hao et al. (2013) also noted that the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

climate model output broadly agrees with these observations.  

In recent decades, there have been many detection and attribution studies attributing 

changes in mean or extreme temperature or precipitation events to climate change (Balan 

Sarojini et al., 2012; Bindoff et al., 2013; Christidis et al., 2005; Fischer & Knutti, 2015; Hegerl 

et al., 2006; P. A. Stott et al., 2001). Bindoff et al. (2013) summarized that the majority of the 

1951-2010 increase in global mean temperatures can be attributed to the anthropogenic 

contribution to the atmosphere’s greenhouse gases (Bindoff et al., 2013). In addition, Fischer and 

Knutti (2015) attributed changes in hot extremes and heavy precipitation to anthropogenic 

forcing (Fischer & Knutti, 2015). Although attribution studies have thoroughly examined the 

impact of climate change from a univariate perspective, current detection and attribution indices 

ignore dependencies between climate variables. Due to this, we still lack a strong understanding 

of the impacts of climate change on these interrelated variables.  
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To address this research gap, this study examined the influence of climate change on the 

concurrence of hydroclimatic extremes. For this study, we chose to examine low precipitation 

(dry) and high temperatures (warm) as a proxy for meteorological drought and warm spell 

conditions, as these extremes are especially impactful and relevant across many sectors (e.g. 

agriculture, energy, public and ecosystem health) (Ciais et al., 2005; De Bono et al., 2004).  

Many previous studies have established that soil moisture plays an important role in 

connecting precipitation and temperature (Alexander, 2011; Hirschi et al., 2011; Koster et al., 

2009; B. Mueller & Seneviratne, 2012; Seneviratne et al., 2010). Existing precipitation deficits 

can translate to low soil moisture conditions, which can increase the ratio of sensible to latent 

heat flux, thereby increasing the temperature of the local area (Seneviratne et al., 2010). Multiple 

studies using observations and model simulations have supported this physical coupling between 

precipitation and temperature. Mueller and Seneviratne (2012) conducted a global study 

investigating the impact of precipitation conditions on the subsequent occurrence of hot 

extremes, and identified several areas with strong couplings between precipitation deficits and 

hot extremes, especially in North and South America and Europe (B. Mueller & Seneviratne, 

2012). Mueller and Seneviratne established that hot day occurrences were more likely to occur 

after higher precipitation deficits in comparison to lower precipitation deficits (B. Mueller & 

Seneviratne, 2012). Zscheischler and Seneviratne also quantified changes in the dependence 

between temperature and precipitation on a global scale (Zscheischler & Seneviratne, 2017). 

Zscheischler and Seneviratne showed that regions with more correlated temperature and 

precipitation experience more frequent concurrent hot and dry summers (Zscheischler & 

Seneviratne, 2017). Based on CMIP5 projections, Zscheischler and Seneviratne also found that 

changes in the negative relationship between temperature and precipitation are predicted to 
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translate to significant increases in dry and hot summers (Zscheischler & Seneviratne, 2017). 

Therefore, we assert it is important to examine the impact of historical climate change on the 

concurrence of extremes as our climate continues to warm.  

In addition to observed and modeled changes in joint events, the second chapter of this 

dissertation also highlighted that changes in one variable may be dependent on the conditions of 

another. This conditional amplification of temperature increases over time is extremely relevant 

in the concurrence of extremes such as droughts and heatwaves, and thus, conditional analyses of 

this nature are important to better fully understand the changes associated with a warming 

climate.  

In this chapter, we present the first formal concurrent precipitation and temperature 

detection and attribution study, examining climate model output representing 19th and 20th 

century historical climate with and without the influence of anthropogenic forcing. We asked two 

main research questions:  

1. What is the anthropogenic impact on joint high temperature (warm) and low 

precipitation (dry) events?   

2. What is the anthropogenic impact on exceedance probabilities of extreme 

temperatures (e.g. values above 90 percent), given specific drought conditions?  

With these research questions, we evaluated how climate change has influenced the 

likelihood of joint warm and dry events as well as the likelihood of temperature exceedances 

conditioned on specified drought conditions. With this study, we also introduce the use of 

conditional exceedance probabilities in detection and attribution literature. In addressing these 

research questions, we can gain a better understanding of the changing risks of joint and 

conditional extremes, which can serve to strengthen future vulnerability and exposure studies. 
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4.2 Methodology 
 
4.2.1 Data 
 

For this study, we used an ensemble of the CMIP5 historical and historical natural-only 

model output of monthly precipitation and temperature from a total of 15 climate models (see 

Table 4.1 for the list of models used) (Taylor et al., 2011). The CMIP5 historical experiment 

imposes anthropogenic and natural conditions that reflect what have been documented in 

observations (Taylor et al., 2011). The historical natural-only experiment attempts to represent 

natural trends and variability with fixed pre-industrial concentrations of greenhouse gases and 

aerosols to represent our historical climate without any anthropogenic forcing (Taylor et al., 

2011). Both the historical and historical natural-only experiments were initialized with the same 

preindustrial-Control data (Taylor et al., 2011). For a uniform multi-model analysis, we 

regridded all models to 1 degree resolution using nearest-neighbor interpolation.  

Since the original time series is subject to seasonal effects, we standardized the historical 

and historical natural-only data from each pixel by using the pixel’s historical natural-only data 

from 1850-2005. We followed the non-parametric standardization methodology introduced in 

Farahmand and AghaKouchak (2015) to generate each pixel’s 3-month standardized 

precipitation index (SPI) and standardized temperature conditions on the last month of the SPI 

time window (Farahmand & AghaKouchak, 2015). With our non-parametric standardization 

approach, we can easily and consistently compare dry and warm conditions across regions. For 

standardizing both historical and historical natural-only data, we included a zero (representing 

the minimum possible precipitation over the course of the 3-month period) in the historical 

natural-only reference data to ensure that values present in the historical data and not present in 

the historical natural-only data would still be ranked accordingly.  
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Table 4.1. CMIP5 climate models used in chapter 4 

Modeling Center Institute ID Model Name 

Commonwealth Scientific and Industrial 
Research Organization (CSIRO) and Bureau of 
Meteorology (BOM), Australia 

CSIRO-BOM ACCESS1.3 

 

Beijing Normal University (BNU) BNU BNU-ESM 

 

Canadian Centre for Climate Modeling and 
Analysis 

CCCMA CanESM2 

 

National Center for Atmospheric Research NCAR CCSM4  

Centre National de Recherches Météorologiques 
/ Centre Européen de Recherche et Formation 
Avancée en Calcul Scientifique 

CNRM-CERFACS CNRM-CM5 

Commonwealth Scientific and Industrial 
Research Organization in collaboration with 
Queensland Climate Change Centre of 
Excellence 

CSIRO-QCCCE CSIRO-Mk3-6-0 

LASG, Institute of Atmospheric Physics, 
Chinese Academy of Sciences and CESS, 
Tsinghua University 

LASG-CESS FGOALS-g2 

NASA Goddard Institute for Space Studies NASA GISS GISS-E2-H 

GISS-E2-R 

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR 

IPSL-CM5A-MR 

Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean Research 
Institute (The University of Tokyo), and 
National Institute for Environmental Studies 

MIROC MIROC-ESM 

MIROC-ESM-
CHEM 

Meteorological Research Institute MRI MRI-CGCM3 

 

Norwegian Climate Centre NCC NorESM1-M 
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4.2.2 Empirical Analysis 
 

To examine the anthropogenic impact on joint warm and dry events, we used our 

standardized indices to empirically evaluate the number of individual warm and dry occurrences 

of ‘critical events’ across the globe. For each pixel, we defined critical events to be months 

below the 10th percentile of the 3-month SPI and months above the 90th percentile of the 

temperature index. We based the thresholds on percentiles calculated from each pixel’s 1850-

2005 historical natural-only time series. We then evaluated how individual occurrences of these 

critical events have been changing over time. For each pixel, we examined the median of the 

multi-model shift (or difference) in the number of dry months in 1931-2005 relative to 1850-

1924 and the number of warm months for both historical and natural-only simulations.  

Following this, we conducted a pixel by pixel evaluation of the empirical concurrence of 

low precipitation and high temperature events, finding the median multi-model shift in the 

number of concurrent dry and warm months in 1931-2005 relative to 1850-1924. To examine 

how concurrent events have been changing over time, we also generated a 30-year moving 

window time series of concurrences for all global land area from 60oS to 60oN. Starting at 1850 

and shifting the window one year over at a time, we calculated the number of historical and 

historical natural-only concurrent months occurring in each 30-year window. We also examined 

the likelihood of events in the historical over the likelihood of events in the historical natural 

with the probability ratio concept (Fischer & Knutti, 2015). In essence, we generated the ratio of 

historical over historical natural-only concurrences during the 1931-2005 time period for all 

pixels. By using probability ratios, we could quantify the influence of anthropogenic forcing on 

joint occurrences of warm and dry events.   
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In addition, we studied the temporal evolution of warm and dry events on a regional basis 

by separating the global land area into regions established by the fifth Intergovernmental Panel 

on Climate Change (IPCC) report (AR5), which we will refer to as IPCC AR5 regions (IPCC, 

2013). We used each regional median time series to generate 30-year moving window time series 

for dry occurrences, warm occurrences, and dry and warm concurrences.  

 

4.2.3 Copula-based conditional analysis 

Recently, copulas have become a popular tool to represent multivariate relationships in 

climate science. Copulas are multivariate distribution functions, which can model the 

dependence structure of two or more variables and aid in evaluating compound extremes, that by 

definition, occur infrequently (Nelsen, 2006; Zscheischler & Seneviratne, 2017). Copula theory 

allows us to examine features such as the joint and conditional behavior of extreme values, 

which otherwise may be difficult to study (Nelsen, 2006). Using copula theory, we can express 

the joint probability distribution of precipitation (X) and temperature (Y),  

𝐹YZ(𝑥, 𝑦) = 	𝐂 𝐹Y 𝑥 , 𝐹Z 𝑦      (4.1) 

where F(x,y) represents the cumulative joint probability, C is the copula cumulative distribution 

function, and FX(x) and FY(y) represent the marginal probability distribution functions (PDF) of 

precipitation and temperature, respectively (SKLAR, 1959). For each pixel, we transformed the 

negative standardized precipitation and standardized temperature data into their uniform 

marginals, and then isolated the copula family that best represents the bivariate data. To 

transform the bivariate data into their uniform marginals, we employed this transformation for 

each pair of datapoints (𝑥<, 𝑦<): 
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where 𝑖 represents the pair number, 𝑛, the total number of pairs, and 𝑅(𝑥<), the rank of 𝑥<. 

We determined the best-fit copula family by using the BiCopSelect function in the R package, 

VineCopula, employing the Bayesian Information Criteria to select the family (Nagler et al., 

2019). We then confirmed the goodness of fit of the best-fit copula family with VineCopula’s 

BiCopGofTest function using White’s information matrix equality (Nagler et al., 2019). 

 Since the copula fit and goodness of fit evaluation process is more mathematically and 

computationally involved than the empirical analysis, we simplified our analysis by using 

regional median raw precipitation and temperature time series from IPCC AR5 regions to create 

the standardized indices. To minimize strong autocorrelation, we used 3-month SPI and 

corresponding temperature index data from specific months to create seasonal (February, May, 

August, November) time series. Since seasonality can influence the nature of the relationship 

between temperature and precipitation, we also created boreal winter (February) and boreal 

summer (August) time series for each region. With the best-fit copula family for each region of 

interest, we calculated the probability of joint exceedance, p, at a given joint threshold (e.g. 

exceeding the 90th percentile (u) of temperature (U) AND the 90th percentile (v) of negative 

precipitation (V) under historical natural-only conditions) for each subsampled time series, 

represented by this equation (Serinaldi, 2015):  

𝑝 = 𝑃 𝑈 > 𝑢 ∩ 𝑉 > 𝑣 = 1 − 𝑢 − 𝑣 + 𝑪(𝑢, 𝑣)   (4.3) 

To represent the difference between the historical and historical natural-only conditions, we 

calculated the ratio of the joint probability of exceeding the 90th percentile threshold in historical 
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conditions over the joint exceedance probability in historical natural-only conditions. We refer to 

this ratio as the ‘joint probability ratio,’ which we abbreviate as JPR.  

We also selected the 10th percentile of precipitation from the historical natural-only 

scenario and generated conditional probability density functions (PDFs) of monthly temperature. 

From the conditional temperature PDFs, we extracted the probability of temperature exceedances 

conditioned on the 10th percentile of precipitation. In other words, we determined the conditional 

probability of temperature, Y, exceeding a threshold, y, at a given precipitation condition (x), 

from the conditional marginal PDF: 

𝑓 𝑋 = 𝑥 = 	𝑐 𝐹Y 𝑥 , 𝐹Z 𝑦 𝑓Z(𝑦)    (4.4) 

where c is the copula PDF and fY(y) is the density function of the temperature marginal 

distribution (Madadgar & Moradkhani, 2013; Mazdiyasni et al., 2017). To examine the impact of 

anthropogenic forcing from a conditional perspective, we examined the probability of exceeding 

a set temperature threshold (e.g. the 90th percentile of temperature from the historical natural-

only scenario) for the defined precipitation condition. We compared conditional exceedance 

probabilities generated from historical and historical natural-only model outputs in a ‘conditional 

probability ratio,’ which we abbreviate as CPR, to represent the difference between the two 

scenarios.   
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4.3 Results 
 
4.3.1 Univariate dry and warm hotspots and shifts 

 
To understand concurrent changes in dry and warm months, we first examined univariate 

dry occurrences and warm occurrences on a global scale. Figure 4.1a shows relatively uniform 

occurrences across the global land area of study in the historical natural-only scenario. Since our 

definition of dry events is based on the 10th percentile of historical natural-only data from 1850-

2005, this subplot shows that the second half of the time series is generally reflective of the 

entire time period. In addition, Figure 4.1b shows that very little change can be attributed to 

natural variability between the two time periods. On the other hand, Figure 4.1c depicts that 

under historical conditions, strong hotspots of dry months occur in tropical regions and parts of 

Europe and Asia. In addition, when examining shifts between 1931-2005 and 1850-1924, we see 

that dry months have increased in the corresponding regions (Figure 4.1d). Other parts of the 

globe have experienced decreases in dry occurrences, such as parts of North and South America, 

as well as Central Asia. In general, our historical scenario results generally match 1950-2010 

drought frequency trends observed from the Global Precipitation Climatology Center 

precipitation dataset (Spinoni et al., 2014).  
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Figure 4.1. Dry month occurrences (1931-2005) and percent change in occurrences (1931-2005 
relative to 1850-1924). A) Dry month occurrences from the CMIP5 historical natural-only multi-model 
ensemble median. The value expressed in each pixel represents the number of months with a 3-month SPI 
value lower than the 10th percentile of the pixel’s historical natural-only climatology. B) Percent change 
in dry month occurrences from the historical natural-only data. C) Dry month occurrences from the 
historical ensemble median. D) Percent change in dry month occurrences from the historical data. 

 
As our definition of high temperature occurrences is based on the 90th percentile of 

historical natural-only data from 1850-2005, Figure 4.2a shows that the historical natural-only 

warm occurrences from the 1931-2005 period is also reflective of the entire time period. Figure 

4.2b also shows that very little naturally driven change occurs between the two time periods. In 

contrast, in the historical scenario, hotspots of warm occurrences are much more widespread 

across the globe, especially in the tropical regions (Figure 4.2c). In addition, we see a similar 

global pattern when examining the change in warm occurrences from 1931-2005 relative to 

1850-1924 (Figure 4.2d). This mirrors results from previous studies that also examined CMIP5 

simulations. For example, Fischer and Knutti (2015) found that tropical regions had much higher 

probability ratios of hot extremes (defined as the 99th percentile of pre-industrial model 

conditions) at present-day (0.85oC) levels of warming (Fischer & Knutti, 2015). In addition, 

Perkins-Kirkpatrick and Gibson (2017) showed that related indicators such as number of 
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heatwave days are projected to experience similar spatial changes in the 21st century (Perkins-

Kirkpatrick & Gibson, 2017). This indicates that the tropical regions may be experiencing a 

greater shift in the upper tail of the temperature distribution relative to higher latitudes. 

 

Figure 4.2. Warm month occurrences (1931-2005) and percent change in occurrences (1931-2005 
relative to 1850-1924). A) Warm month occurrences from the CMIP5 historical natural-only multi-model 
median. Each pixel’s value represents the number of months with a standardized temperature value higher 
than the 90th percentile of the pixel’s historical natural-only climatology. B) CMIP5 historical natural-
only percent change in warm month occurrences. C) CMIP5 historical median warm month occurrences. 
D) CMIP5 historical median percent change in warm month occurrences. 

 

4.3.2 Joint dry and warm hotspots and shifts 

 In Figure 4.3, we can examine global hotspots of dry and warm months occurring 

simultaneously. In the historical natural-only subplots (Figures 4.3a-b), we do not see coherent 

hotspots or substantial increases in concurrent dry and warm months between the two time 

periods. This indicates that under naturally forced conditions, concurrences are not expected to 

increase or decrease significantly, which is consistent with what we observed for both dry and 

warm univariate occurrences from Figures 4.1a-b and 4.2a-b. Under historically forced 

conditions, we see substantial hotspots of dry and warm concurrences, primarily in the tropics, 

which reflect what we observed for warm occurrences under the historical scenario (Figure 4.3c). 
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Between 1931-2005 and 1850-1924, we found a similar global pattern of percent change in the 

occurrence of joint warm and dry months (Figure 4.3d). From a global perspective, it is evident 

that the general spatial pattern of warm occurrences plays a much larger role in determining the 

global pattern of joint dry and warm concurrences. This may be due to the sheer magnitude of 

change that temperature extremes have experienced relative to the change that pluvial and 

drought extremes have undergone as a result of anthropogenic forcing. 

 

Figure 4.3. Dry and warm month joint occurrences (1931-2005) and percent change in 
concurrences (1931-2005 relative to 1850-1924). A) Dry and warm month concurrences from the 
CMIP5 historical natural-only multi-model median. Each pixel’s value represents the number of months 
with a joint occurrence of standardized temperature above the pixel’s historical natural 90th percentile and 
SPI value below the pixel’s historical natural 10th percentile. B) CMIP5 historical natural-only percent 
change in concurrences. C) CMIP5 historical median concurrences. D) CMIP5 historical median percent 
change in concurrences. 

 
We can also examine the global median time series of dry and warm concurrences from 

1850-2005, which was created by counting the concurrences at the grid cell level first and then 

calculating the global land area median (Figure 4.4). On the global scale, we can see a clear 

divergence between historical and historical natural-only concurrences that begins in the early 

20th century. At the end of the 20th century, the global median of warm and dry concurrences in 
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the historical scenario is 3 times higher than concurrences in the natural-only scenario, indicating 

that anthropogenic climate change contributed to making these events more probable on a global 

scale. 

 

Figure 4.4. Global 30-year moving window time series of dry and warm concurrences. The historical 
(shown in orange) and historical natural-only (shown in blue) depicts the multi-model median and the 
interquartile range of values produced by the model ensemble. The number of concurrences represents the 
number of joint dry and warm months within the 30-year moving window. 

 
Figure 4.5 shows the joint probability ratio or ratio of the likelihood of warm/dry events 

in the historical scenario relative to the historical natural-only scenario. We observe that the 

probability ratios for joint warm and dry months possess a more widespread spatial pattern in 

comparison to the global pattern of concurrences under the historical scenario. Joint occurrences 

of extreme temperature and precipitation deficits are more likely in the historical conditions 

relative to the historical natural-only conditions for most regions across the globe, especially in 

Central and South America, Western and Central Africa, and Southeast Asia. The probability 
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ratios in the Amazon, the Western Coast of South America, Mediterranean, Sahara, and West 

Asia indicate strong differences between historical and historical natural-only scenarios, which 

are not as readily seen when only examining results from the historical models. By examining 

probability ratios, we can highlight regions with a much greater likelihood of experiencing 

warm/dry events than we would have expected under conditions driven only by natural 

variability. 

Figure 4.5. Global probability ratios of warm and dry concurrences in 1931-2005. Values above 1 
indicate a higher probability of warm/dry events in the historical multi-model ensemble, while values 
below 1 indicate a higher probability of warm/dry events in the historical natural-only models.  

 

4.3.3 Statistical significance and temporal evolution of warm and dry events 
by IPCC region 

To examine the statistical significance of anthropogenic forcing on concurrent warm/dry 

events, we used spatial distributions from IPCC regions to conduct two-sided two-sample t-tests 

to compare the mean values of the number of concurrences under historical and historical 

natural-only conditions in 1931-2005.  We found that all regions between 60oS and 60oN were 

significantly different (Table 4.2 lists the regional t-statistics, p-values, and degrees of freedom). 
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Table 4.2: Statistics from two-sided two-sample t-test comparing concurrences under historical and 
historical natural-only conditions for the last 75 years 

 T-statistic P-value Degrees of Freedom 

CNA 1.38E+01 7.20E-39 6.65E+02 

AMZ 5.53E+01 0.00E+00 8.23E+02 

CAM 2.19E+01 2.44E-74 2.59E+02 

CAS 1.20E+01 1.10E-29 4.15E+02 

CEU 1.59E+01 2.64E-50 6.32E+02 

EAF 5.36E+01 1.02E-291 8.99E+02 

EAS 2.51E+01 4.80E-117 1.11E+03 

ENA 1.37E+01 1.88E-36 3.92E+02 

MED 4.75E+01 2.31E-239 6.84E+02 

NAS 3.49E+01 4.85E-237 4.60E+03 

NAU 3.79E+01 1.99E-196 8.28E+02 

NEB 4.45E+01 1.07E-166 3.52E+02 

NEU 9.19E+00 4.87E-19 5.61E+02 

SAF 4.43E+01 2.19E-242 8.23E+02 

SAH 5.08E+01 0.00E+00 1.03E+03 

SAS 3.50E+01 3.19E-166 6.87E+02 

SAU 3.41E+01 2.12E-124 3.84E+02 

SEA 4.39E+01 5.17E-200 4.53E+02 

SSA 2.14E+01 4.95E-81 5.74E+02 

TIB 1.66E+01 1.02E-54 6.73E+02 

WAF 6.78E+01 0.00E+00 7.26E+02 

WAS 3.07E+01 6.51E-152 1.01E+03 

WNA 2.26E+01 4.24E-94 1.02E+03 

WSA 2.75E+01 2.98E-90 2.38E+02 
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To gain a better understanding of how these univariate and bivariate events evolve 

temporally, we also examined individual and joint event time series on a regional basis. For each 

IPCC region, we examined how the likelihood of dry months, warm months, and dry and warm 

concurrences have changed in both historical and historical natural-only conditions. Figures 4.6a, 

b, and c display each of the regions which experienced increases in concurrences under historical 

conditions. First, we examine the four regions depicted in Fig 4.6a (the Amazon (AMZ), Central 

America/Mexico (CAM), East Africa (EAF), and South Asia (SAS)). Both AMZ and CAM 

regions show moderate increases in the likelihood of dry months as well as very substantial 

increases in the likelihood of warm months, which translate to strong increases in the likelihood 

of concurrences. In the EAF and SAS regions, we do not see notable changes in the likelihood of 

dry months, which translate to how the likelihood of concurrences evolves in the two regions as 

well. In these regions, the difference in the likelihood of concurrent warm/dry months does not 

diverge as quickly or dramatically between historical and historical natural-only conditions. On a 

regional basis, we can see that combinations of changes in the likelihood of dry months and 

warm months ultimately reflect on the concurrence likelihood, and simple increases in the 

likelihood of warm months do not translate proportionally to increases in concurrence likelihood. 

We also see evidence of this in the other IPCC regions depicted in Figures 4.6b and c.  
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Figure 4.6a. IPCC regional time series of likelihood of dry occurrences, warm occurrences, 
concurrences. For the top three rows, the historical (shown in orange) and historical natural-only (shown 
in blue) depicts the multi-model median and the interquartile range of values within the 30-year moving 
window for each IPCC region. Regions shown in the figure are: Amazon (AMZ), Central 
America/Mexico (CAM), East Africa (EAF), and South Asia (SAS). 

	

Figure 4.6b: IPCC regional time series (con’t). East Asia (EAS), South Europe/Mediterranean (MED), 
North-East Brazil (NEB), Southern Africa(SAF), and Sahara (SAH). 
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Figure 4.6c: IPCC regional time series (con’t) South Australia/New Zealand (SAU), Southeast Asia 
(SEA), Southeastern South America (SSA), West Africa (WAF), and West Coast South America (WSA).
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4.3.4 Conditional temperature exceedances by IPCC region 

 We also examined how conditional temperature exceedances differ in historical and 

historical natural-only scenarios from a regional perspective. To examine the effect of 

seasonality on conditional temperature exceedances, we subsampled 3-month SPI values from 

the end of each season (February, May, August, and November) to create a seasonal time series 

for each IPCC region. We also examined boreal winter and boreal summer seasons by 

subsampling 3-month SPI values from all February and August months, respectively. We fitted 

copula families to the historical and historical natural-only regional data and determined the best-

fit copula families for each scenario and region (see Tables 4.3-5 for the best-fit copula families 

and goodness of fit p-values).  

Figure 4.7a, b, and c display the seasonal, boreal winter, and boreal summer temperature 

historical and historical natural-only probability density functions (PDFs) for each IPCC region 

conditioned on the 10th percentile of precipitation. For each of the figures, the top row, middle 

row, and bottom row of conditional PDFs relate to seasonal, boreal winter, and boreal summer 

subsamples. For each PDF, the area above the 90th percentile of historical natural-only 

temperature is shaded in. All regions show substantially higher probabilities of exceeding the 

90th percentile historical natural-only temperature anomaly, however there are variations 

depending on the location and seasonality of the region. Across the regions, we can see that 

temperature exceedance probabilities differ based on seasonality, which may strengthen or 

weaken the temperature and precipitation relationship. 
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Table 4.3a: Best-fit copula families for seasonal data from IPCC regions 

 Historical Natural-only Historical 

CNA Gaussian Gaussian 

AMZ Frank Clayton 

CAM Frank Survival Gumbel 

CAS Gaussian Gumbel 

CEU Clayton Survival Joe 

EAF Frank Frank 

EAS Clayton Survival Joe 

ENA Rotated Clayton 270 degrees Rotated Joe 270 degrees 

MED Gaussian Gaussian 

NAS Gaussian Gaussian 

NAU Gaussian Gaussian 

NEB Gaussian Gaussian 

NEU Rotated Gumbel 90 degrees Rotated Clayton 270 degrees 

SAF Gaussian Gaussian 

SAH Gaussian Survival Clayton 

SAS Frank Gaussian 

SAU Gumbel Frank 

SEA Rotated Clayton 90 degrees Clayton 

SSA Gaussian Frank 

TIB Gaussian Rotated Clayton 270 degrees 

WAF Joe Frank 

WAS Gaussian Frank 

WNA Survival Clayton Frank 

WSA Clayton Gumbel 
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Table 4.3b: P-values from goodness of fit test for seasonal data from IPCC regions 

 Historical Natural-only Historical 

CNA 0.57 0.38 

AMZ 0.07 0.51 

CAM 0.57 0.96969697 

CAS 0.86 0.107526882 

CEU 0.779069767 0.666666667 

EAF 0.2 0.33 

EAS 0.75308642 0.488095238 

ENA 0.426966292 0.105263158 

MED 0.71 0.58 

NAS 0.96 1 

NAU 0.11 0.81 

NEB 0.84 0.91 

NEU 0.18 0.35 

SAF 0.86 0.92 

SAH 0.73 0.57 

SAS 0.4 0.31 

SAU 0.13 0.78 

SEA 0.448275862 0.55 

SSA 0.68 0.32 

TIB 0.83 0.9 

WAF 0.333333333 0.62 

WAS 0.46 0.48 

WNA 0.65 0.97 

WSA 0.757575758 0.6 
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Table 4.4a: Best-fit copula families for North Hemisphere winter data from IPCC regions 

 Historical Natural-only Historical 

CNA Survival Gumbel Frank 

AMZ Gumbel Survival Joe 

CAM Frank Clayton 

CAS Rotated Clayton 90 degrees Rotated Joe 270 degrees 

CEU Frank Rotated Clayton 90 degrees 

EAF Gaussian Frank 

EAS Clayton Survival Joe 

ENA Rotated Joe 270 degrees Rotated Joe 270 degrees 

MED Clayton Survival Gumbel 

NAS Gaussian Rotated Gumbel 90 degrees 

NAU Survival Gumbel Gaussian 

NEB Clayton Gaussian 

NEU Rotated Gumbel 270 degrees Rotated Gumbel 90 degrees 

SAF Gaussian Survival Gumbel 

SAH Rotated Gumbel 270 degrees Gaussian 

SAS Frank Gaussian 

SAU Joe Gumbel 

SEA Frank Gaussian 

SSA Joe Frank 

TIB Rotated Clayton 270 degrees Rotated Gumbel 90 degrees 

WAF Rotated Clayton 90 degrees Rotated Joe 270 degrees 

WAS Frank Gumbel 

WNA Survival Gumbel Rotated Clayton 270 degrees 

WSA Gaussian Gaussian 
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Table 4.4b: P-values from goodness of fit test for North Hemisphere winter data from IPCC regions 

 Historical Natural-only Historical 

CNA 0.173469388 0.49 

AMZ 0.446808511 0.84 

CAM 0.25 0.65 

CAS 0.235294118 0.7125 

CEU 0.19 0.25 

EAF 0.37 0.64 

EAS 0.988636364 0.2375 

ENA 0.666666667 0.520833333 

MED 0.78125 0.177777778 

NAS 0.34 0.43 

NAU 0.4 0.55 

NEB 0.96 0.33 

NEU 0.43 0.91 

SAF 0.87 0.294736842 

SAH 0.464285714 0.8 

SAS 0.73 0.64 

SAU 0.343434343 0.434343434 

SEA 0.41 0.97 

SSA 0.727272727 0.33 

TIB 0.885245902 0.11 

WAF 0.87 0.073684211 

WAS 0.52 0.166666667 

WNA 0.847826087 0.166666667 

WSA 0.36 0.46 
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Table 4.5a: Best-fit copula families for North Hemisphere summer data from IPCC regions 

 Historical Natural-only Historical 

CNA Gaussian Frank 

AMZ Joe Rotated Clayton 90 degrees 

CAM Clayton Gaussian 

CAS Survival Gumbel Survival Clayton 

CEU Gumbel Clayton 

EAF Clayton Frank 

EAS Clayton Rotated Clayton 90 degrees 

ENA Survival Clayton Gumbel 

MED Gaussian Gaussian 

NAS Rotated Gumbel 270 degrees Rotated Clayton 270 degrees 

NAU Clayton Gaussian 

NEB Survival Joe Gumbel 

NEU Survival Gumbel Frank 

SAF Survival Gumbel Gumbel 

SAH Frank Survival Clayton 

SAS Frank Clayton 

SAU Gaussian Frank 

SEA Rotated Clayton 90 degrees Clayton 

SSA Clayton Frank 

TIB Gaussian Rotated Clayton 270 degrees 

WAF Gaussian Frank 

WAS Survival Gumbel Frank 

WNA Survival Clayton Survival Clayton 

WSA Clayton Joe 
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Table 4.5b: P-values from goodness of fit test for North Hemisphere summer data from IPCC 
regions 

 Historical Natural-only Historical 

CNA 0.73 0.26 

AMZ 0.967213115 0.670588235 

CAM 0.646464646 0.58 

CAS 0.869565217 0.829268293 

CEU 0.33 0.581632653 

EAF 0.704081633 0.37 

EAS 0.987341772 0.4375 

ENA 0.25 0.139534884 

MED 0.24 0.86 

NAS 0.44 0.962025316 

NAU 0.567010309 0.51 

NEB 0.87654321 0.28125 

NEU 0.242105263 1 

SAF 0.406976744 0.949494949 

SAH 0.55 0.920454545 

SAS 0.28 0.94 

SAU 0.88 0.95 

SEA 0.474358974 0.63 

SSA 0.873563218 0.59 

TIB 0.56 0.282051282 

WAF 0.93 0.71 

WAS 0.333333333 0.23 

WNA 0.91 0.69 

WSA 0.642857143 1 
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Figure 4.7a. IPCC regional conditional PDFs at the 10th percentile of precipitation. Seasonal 
conditional PDFs use quarterly data from each year, while Northern Hemisphere winter and summer 
conditional PDFs use February and August data from each year, respectively. Regions shown in the figure 
are: Amazon (AMZ), Central America/Mexico (CAM), East Africa (EAF), and South Asia (SAS). 
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Figure 4.7b: IPCC regional conditional PDFs (con’t). The regions shown in the figure are: East Asia 
(EAS), South Europe/Mediterranean (MED), North-East Brazil (NEB), Southern Africa(SAF), and 
Sahara (SAH). 

 

 

Figure 4.7c: IPCC regional conditional PDFs (con’t). The regions shown in the figure are: South 
Australia/New Zealand (SAU), Southeast Asia (SEA), Southeastern South America (SSA), West Africa 
(WAF), and West Coast South America (WSA). 
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Figure 4.8 (a, b, c) presents global maps of copula-based joint probability ratios, which 

were created with a 90th percentile threshold in mind. In general, the JPR maps correspond well 

with the empirically derived maps shown in Figures 4.3. As we outlined in the methodology of 

this chapter, we found the conditional exceedance probability ratios (CPRs) of each region based 

on the ratio of the probability of high temperature exceedances under historical conditions to the 

probability of exceedances under historical natural-only conditions (shaded regions in Figs. 4.7a, 

b, and c). Figure 4.8 (d, e, f) presents global maps of the CPR values associated with each IPCC 

region.  

From these parametrically derived subplots, we can also see that most IPCC regions 

between 60oN and 60oS have 1) a higher likelihood of experiencing a joint exceedance in the 

historical case and 2) a higher likelihood of experiencing a high temperature exceedance under 

low precipitation conditions in the historical case. In addition, we see a greater divergence 

between the likelihood of historical and historical natural-only exceedances in North America 

during boreal summer conditions. This may be due to how anthropogenic emissions have 

influenced land-atmosphere interactions in North America, which can translate to tighter 

correlations between low precipitation conditions and high temperatures over land. We also see a 

greater divergence between the likelihood of historical and natural-only exceedances in Central 

Asia during boreal summer conditions. There are also regions (e.g. the Mediterranean region of 

Europe) known to be strongly influenced by land-atmosphere feedbacks, which experienced 

greater increases in joint probability ratios across seasonal, boreal winter, and boreal summer 

conditions. Further study may be needed to understand how seasonality influences the sensitivity 

of each region to anthropogenic forcing. Overall, this figure shows that JPR and CPR may reveal 
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differences in sensitivities to anthropogenic forcing, especially when seasonal conditions are 

accounted for. 

Figure 4.8. Copula-derived joint and conditional probability ratios (JPR and CPR). a) JPR mapped 
atop each IPCC region for seasonal months (derived from regional 3-month SPI time series of each 
February, May, August, November). b) JPR for boreal winter (derived from 3-month SPI of each 
February). c) JPR for boreal summer (derived from 3-month SPI of each August). d) CPR for seasonal 
months. e) CPR for boreal winter. f) CPR for boreal summer. For all subplots, PR > 1 represents a higher 
likelihood of exceeding the defined high temperature threshold in the historical scenario and PR < 1 
represents a higher likelihood of exceeding the defined threshold in the historical natural-only scenario. 
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4.4 Discussion and Conclusion 

 
4.4.1 Discussion  

 
From our results, we established worldwide differences between historical and historical 

natural-only dry events, warm events, and dry and warm concurrences. The differences in joint 

occurrences are especially pronounced in the tropics and subtropics. From a global perspective, 

we found that joint dry and warm months are occurring 3 times more in the historical climate 

relative to the natural-only climate at the end of the 20th century relative to the mid-19th century. 

In addition, the global pattern of the probability ratio of joint warm and dry events showed that 

the globe has overwhelmingly been impacted by the presence of anthropogenic forcing. This 

highlights a clear impact of anthropogenic climate change on the joint behavior of these events. 

We also demonstrated that increases in conditional exceedance probabilities can also be 

attributed to anthropogenic emissions. These results show that anthropogenic climate change has 

impacted high temperature occurrences given a specified low precipitation anomaly. Overall, our 

findings highlight the clear impacts that anthropogenic climate change has on the joint and 

conditional behavior of warm and dry events. 

Our findings have many implications in other fields of study. We expect that water-

dependent sectors will experience strong physical ramifications from the concurrence of 

droughts and heatwaves, which may become more common under the shifts that we have 

documented. Sarhadi et al. (2018) highlighted that agricultural land areas have experienced 

substantial increases in the joint occurrence of warm/dry years (Sarhadi et al., 2018). This is 

crucial as the joint occurrence of warm/dry conditions have severe impacts on agriculture 

(Sarhadi et al., 2018; Zscheischler & Seneviratne, 2017). As we have mentioned previously, 
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droughts and high temperature events also negatively impact ecosystem conditions, in addition to 

energy production, public health, and many other sectors (Hatfield & Prueger, 2015; Mazdiyasni 

& AghaKouchak, 2015; Tarroja et al., 2018). Droughts and high temperatures can also increase 

the risk of wildfires, which can eventually trigger other hazards such as debris flows 

(AghaKouchak et al., 2018). 

 

4.4.2 Study limitations 
 

We acknowledge that there are biases associated with the exclusive use of model 

simulations, and here, we highlight the deficiencies of the model simulations that are specific to 

the study. Climate models do not consistently represent land-atmosphere feedbacks in a uniform 

fashion (Sippel et al., 2017). In addition, there has been evidence that some climate models may 

be too dry, and thus extremes are simulated to be hotter than observed (Vogel et al., 2018). 

Models also do not include recent findings, such as the impact of irrigation on hot extremes, 

which has been shown to significantly reduce the severity of local high temperatures (Lobell et 

al., 2008; N. D. Mueller et al., 2017; Thiery et al., 2017). Thus, regions that have experienced 

significant trends in irrigation, such as the upper Midwestern U.S., must be evaluated with the 

additional impact of irrigation in mind. Future studies that examine the impact of the presence 

(or absence) of irrigation on compound warm and dry events would contribute insight on how 

irrigation may influence the likelihood of these events. Overall, we acknowledge that model 

biases may contribute to a degree of error in the results presented. However, as we were 

comparing output from two model experiments for our analysis, the significance of these model 

biases was reduced. 
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4.4.3 Conclusion 
 

From our results, we gained a better understanding of the widespread impact of climate 

change on concurrent dry and warm spells. The work directly considers the influence of 

anthropogenic climate change on joint occurrences of temperature and precipitation extremes, 

which had previously not been studied in detection and attribution literature. We also 

implemented conditional exceedance probabilities as an indicator to attribute changes in 

conditional risks to anthropogenic climate change. The conditional results provide a new 

indicator in detection and attribution literature, which allows us to consider how the risk of 

extreme events of one variable has changed under defined conditions of another variable. 

Through our conditional framework, we have provided a way of accounting for underlying 

moisture conditions while assessing the impact of climate change on temperature exceedances. 

This framework can be applied to other multivariate relationships and allow us to measure 

conditional risks and attribute those risks to anthropogenic climate change. Quantifying 

conditional risks is important to better prepare for extremes that are coupled to or dependent on 

other climate variables. On a broader level, the methods and results presented here can be 

utilized in future risk assessment studies to more accurately capture socio-economic, 

environmental, and infrastructural vulnerability and exposure to extremes. Gaining a better 

understanding of regional and global changes in concurrent events and conditional extremes, and 

the underlying drivers of these changes are important for improving local management practices 

and preparedness for future extremes. Given current climate change projections, we expect a 

further increase in the concurrency of such events, which makes this crucial.  
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Chapter 5 
 
Summary and Conclusions 
 

Through our introduction and literature review (Chapter 1), we outlined research gaps 

and opportunities in climate extremes and detection and attribution literature. We found that 

most existing studies of climate extremes focus on one variable or feature at a time. In this 

dissertation, we investigated the interactions between different climatic extremes as well as 

different features of an extreme to provide novel perspectives of how extremes are changing 

under warming temperatures. In Chapters 2-4, we presented evidence based on observational and 

model-based data that anthropogenic climate change has impacted 1) temperature shifts 

conditioned on drought conditions, 2) changes in the likelihood and magnitude of drought 

events, and 3) changes in the likelihood of concurrent warm and dry events. In this final chapter, 

we summarize the main conclusions for each study presented in this dissertation and the overall 

contributions of this dissertation.  
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5.1 Amplified Warming of Droughts in the United States in 

Observations and Model Simulations 

Concurrent drought and heatwave events have been documented to cause severe 

environmental and socioeconomic impacts. These short-term events can be driven by land 

atmosphere interactions: for example, low soil moisture anomalies (characterized by antecedent 

low precipitation conditions) can increase air temperatures by impacting the local ratio of 

sensible to latent heat. Recent papers have documented that the concurrence of drought and 

heatwave events has been increasing in the United States. However, prior to this dissertation, 

existing literature had not explored historical and projected changes in temperature under 

specific climate conditions. In Chapter 2, we investigate how average U.S. temperatures 

following antecedent low precipitation anomalies have been changing in the 20th century and 

how temperatures are projected to change in model simulations. We concluded that, in many 

regions of the U.S., temperatures during dry meteorological conditions are warming faster than 

average climate conditions. Higher average temperatures under dry conditions can have strong 

implications for future risks of concurrent warm and dry extremes, especially in the context of 

climate change. 

 

5.2 The Impact of Anthropogenic Forcing on Drought 

Characteristics 

In recent years, detection and attribution studies have made substantial progress in 

understanding the impacts of anthropogenic forcing on mean and extreme climate variables. 
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However, prior to this dissertation, the long-term impacts of anthropogenic forcing on drought 

characteristics have not been explored. Chapter 3 presented an examination of the influence of 

anthropogenic forcing on drought characteristics. Using historical (with anthropogenic forcing) 

and historical natural-only climate models, we quantified the contribution of human activities to 

the likelihood, length, and magnitude of drought events. We found substantial regional shifts in 

drought frequency, maximum drought duration, and maximum drought intensity, especially in 

the wetter parts of the globe. We also found that, relative to all land pixels, agricultural land 

pixels (which are often located in relatively wet areas) exhibited increased sensitivity to 

anthropogenic climate change. 

 

5.3 The Impact of Anthropogenic Forcing on Compound Warm and 

Dry Extremes 

Recent climate research has recognized the importance of studying compound events to 

gain a more comprehensive perspective on the risks and impacts of extreme events. However, 

detection and attribution literature has generally ignored dependencies between climate 

variables. To improve our understanding of how anthropogenic climate change has affected 

historical occurrences of interrelated variables, Chapter 4 examined the impacts of climate 

change on concurrent warm and dry events. With historical and historical natural-only model 

simulations, we showed that significant increases in warm and dry months across the globe that 

can be attributed to the presence of anthropogenic forcing. We also introduced a new conditional 

indicator that quantifies the impact of anthropogenic forcing on the likelihood of high 

temperature exceedances under dry conditions. 
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5.4 Main Contributions 

The research presented in this dissertation examines how climate change has impacted 

the nature of hydroclimatic extremes. In Chapter 2, we provided a new perspective on average 

temperature change conditioned on droughts, which have important implications for future 

concurrent event risks. We argued that drought conditions can reveal connections between 

atmospheric variables that are not immediately apparent when evaluating general climate 

conditions, showing the importance of conditional analysis in the study of anthropogenic climate 

change. In Chapters 3 and 4, we examined the impacts of anthropogenic forcing on drought 

characteristics and concurrent warm/dry events. We showed that the presence of anthropogenic 

climate conditions has resulted in substantial regional shifts in drought characteristics and 

highlight that water-dependent sectors (e.g. agriculture industry) are especially sensitive to these 

anthropogenically driven shifts. We also show that anthropogenic climate conditions have 

contributed to large increases in concurrent warm and dry months, which have significant 

implications for future impacts on environmental, socioeconomic, and public health. The studies 

put forward in this dissertation contribute to our understanding of the changing nature of 

hydroclimatic extremes, which can serve to aid in future efforts to prepare for extreme events.  
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