UC Berkeley

Research Reports

Title

A General Framework for Verification, Simulation and Implementation of Real-Time Control
Algorithms

Permalink
https://escholarship.org/uc/item/38z7n5v4
Author

Eskafi, Farokh H.

Publication Date
1999-05-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/38z7n5vz
https://escholarship.org
http://www.cdlib.org/

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

A General Framework for Verification,
Simulation and I mplementation of
Real Time Control Algorithms

Farokh H. Eskafi

California PATH Research Report
UCB-ITSPRR-99-15

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This

report does not constitute a standard, specification, or regulation.

Report for MOU 333

May 1999
ISSN 1055-1425

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

Final Report
MOU 333
A General Framework for Verification, Simulation, and
Implementation of Real Time Control Algorithms

Farokh H. Eskafi
farokh@eecs.berkeley.edu

October 13, 1998

1 Executive Summary

We have proposed, investigated, and implemented a general framework for the simulation,
verification, and prototyping of control algorithms for intelligent vehicles and highways. The
immediate use of such framework will be in fault management project (MOU 288). Prior
to this project the protocols and control algorithms developed under MOU 288 should have
been manually verified, translated to a simulation language for simulation, and then modified
for the QNX real-time operating system for porting to the vehicle’s computer. This manual
translation process is error prone at every stage. Our framework performs the translations
automatically, and therefore, removes the possibility of the translation errors.

The proposed framework uses a coherent set of tools that model the system at hand; it takes
a control design and verifies and simulates it; it generates code that can be executed on a target
real-time software platform in the physical system. The specification of the control algorithms
is performed in the SHIFT specification language. An existing verification platform is used
to carry out the correctness proofs of the control algorithms. The QNX real-time operating
system, which is currently in use at PATH in automated vehicles, is used as the target platform
for the generated code.

To create the general framework, the following three tasks has been performed. In task 1,
we specified the restrictions on the SHIFT specification that allows automatic verification and
code generation for the real time software. In task 2 we have generated a parser that converts
the SHIFT specification to an already available verification software tool. As part of this task
we selected KRONOS from VERIMAG based on its suitability and availability of support. In
task 3 we have generated a parser and code-generator from SHIFT to the QNX platform.

The short term goal of this proposal was to embed the SHIFT language in a general frame-
work that from a single specification simulates, verifies, and generates real-time codes with
minimal interventions from the user. The long term goal which will be followed in another
funded proposal is to do the above with no intervention.

In the new proposal, the fault management control algorithms developed by MOU 288 is
used to validate the framework. These algorithms are simulated and verified in the framework
and experiments will be run on vehicles with the generated code.

Our research and implementation effort is presented in the forms of a conference article, a re-
search paper, users manuals, and release of the software implementations under the SmartAHS
software release.

2 Introduction

Large engineering systems, such as automated highway systems (AHS), autonomous vehicle
systems (AVS), material handling systems, and air traffic management systems (ATMS) face
the challenge of providing reliable services using scarce resources. Clients of such systems
demand performance, safety, comfort, and efficiency.

The problem is often compounded by physical resources that are saturated, inefficiently
utilized, or technologically outdated. In many industries, failure to improve the performance
of such systems results in significant financial or social costs.

Due to the heterogeneity of the system elements and the large system size, the planning and
control of such systems cannot always be done in a mathematical framework. Experimentation
with the actual physical system is often not feasible; in many cases the physical system is not
vet built. Furthermore, most real systems have an abundance of unstructured information, too
many superfluous details, no well-defined observation and control mechanisms, and no single
access location due to their distributed nature.

Complex software applications are needed to specify, simulate, evaluate, and manage the
behavior of such large scale systems. Currently there are no coherent software tools that
can facilitate large scale system development from concept inception to actual deployment.
There is a gap between the specification and implementation constructs required to build such
systems on the one hand, and the interfaces provided by software design tools and programming
languages on the other hand.

In this report we describe a general framework for the modeling, design, simulation, veri-
fication , and prototyping of large scale systems. The framework uses a coherent set of tools
that model the system at hand, analyze, verify and simulate a control design, and generate
code that can be run in a target real-time software platform in the physical system.

The general framework as well as the tools that implement it have evolved at PATH (Part-
ners for Advanced Transit and Highways) over the last seven years as large number of re-
searchers have worked on Intelligent Transportation Systems, AHS and AVS.

Our simulation tools have been evolving through the years. Since the systems we were work-
ing on were inherently complex the need for simulation was obvious and we have developed C
and C++ based simulation frameworks to evaluate PATH’s and other organizations’ proposals
for highway automation [1, 2]. In parallel to our AHS work, we were involved with several
other projects, such as ATMS, power transmission and distribution systems, and network man-
agement systems. In system engineering, we have observed a general shift towards hierarchical
control of large systems that combined classical continuous feedback systems, with more re-
cent discrete event based control algorithms and protocol specifications. This hybrid systems
paradigm has proven ideal for the specification, control, and verification of such complex, large,
dynamical systems.

Our experience with a multitude of such systems resulted in a set of requirements for
frameworks for the design, specification, control, simulation, and evaluation of large systems.
No language, product, or tool in the market nor in academia came close to satisfying all
requirements. Many simulation frameworks are available that consist of a set of class libraries
developed in a programming language such as C++. These frameworks impose semantic

notions such as inputs, outputs, events, differential equations etc. onto the C+4 syntax and
expect the user to follow framework rules for using the class libraries. This approach does
not provide the user with any syntactic support for large scale system development. Several
discrete event simulation tools exist. However, these tools do not provide enough support for
continuous evolution. Block-diagram based simulation tools are easy to use, but do not provide
the necessary expressive power to represent dynamic interaction patterns among the simulated
objects.

The design and implementation of a language that addressed all the requirements required
expertise from several disciplines including computer science, electrical engineering, and me-
chanical engineering. Such a multi-disciplinary team was assembled at PATH/UC Berkeley
and a new programming language, SHIFT, was born.

The SHIFT formalism [3, 4] which we briefly discuss in Section 4.1 is the first programming
language with well defined simulation semantics that addressed our requirements. It com-
bines system-theoretic concepts into one consistent and uniform programming language with
object-oriented features. SHIFT is ideal for the design, specification, simulation, control, and
evaluation of large dynamical systems that consist of multiple interacting agents whose be-
havior are described by state machines and ordinary differential equations. SHIFT’s strength
lies in the ability of instantiating agents and evolving the interaction network among them at
run-time as part of the simulation.

Our work on the general framework has been more recent. As the control designs for
automated vehicles matured we started in-vehicle prototype experiments. At this stage it
became essential to streamline the translation of the control law specifications that had been
simulated and verified into in-vehicle real-time control instructions.

This report is organized as follows. In Section 3 we discuss the framework and the general
methodology for large scale system development. In Section 3 we summarize requirements
for simulation frameworks and describe the SHIFT language that is used as the specification
and simulation language of the overall framework. In Section 4 we describe our approach to
the interface between the SHIFT specification language and KRONOS, a software tool for
verification of hybrid automata. In Section 5 we describe the real-time code generation from
SHIFT specification. Section 6 has the conclusions.

3 General Framework for Large Scale System Design

The overall methodology we use for large scale system design, prototype, and deployment is
depicted in Figure 1.

Large scale system development goes through several stages. The first stage typically con-
sists of feasibility studies that lead to models and designs on paper. The second stage broadens
the scope with prototype experiments.

3.1 Stage One

Any large scale system design task requires the specification of an overall architecture within
which controllers can be designed to coordinate the system. The architecture design decom-
poses the control design problem into the control of sub-systems.

The highway automation architecture of PATH is discussed in [5, 6]. An architecture for Air
Traffic Control is proposed in [7], and an architecture for Autonomous Underwater Vehicles is
proposed in [8].

INPUT FRAME WORK OUTPUT

Problem

Definition

Control/Algorithm — System Architecture
Designers Design
Model / Develop
Control / Algorithm
A 'IFOF"S:S. i Control Design
et aon Algorithm specification
Feasibility analysis
Automatic Translation
Run Time Code environment
) prototyping Control Design
Test Engineers —— 1easqi?1 —— Prototype
9 Run Time Code

Figure 1: A General Framework for System Development

Analysis, simulation, and verification tools are needed within which these tasks can be
carried out. Verification tools provide guarantee conditions for specific designs. In general,
verification is possible only with very high level abstractions or very isolated subsystems.
Analysis tools are useful for high level models for which closed form solutions can be obtained.
Simulation is needed to see the detailed performance of a design.

These tools are used in successive iterations until the first stage starts delivering satisfactory
architecture and control designs.

3.2 Stage Two

As the confidence in the system architecture and control designs grows the second stage starts
which involves physical prototype experiments.

At this stage it is essential to leverage the control specifications of the earlier stage into
actual code that can be used in physical experiments. This requires the implementation of a
real-time control environment in the actual devices that can execute control instructions. Such
a run-time environment must provide the necessary abstractions to interface with sensory and
communication inputs and outputs to actuators.

Once a real-time control environment is implemented, it becomes possible to automati-

cally translate specifications from the design stage into the target physical prototype system.
Such automatic translation increases efliciency of experiments and prevents loss of information
between the two stages.

Physical experiments may require further refinement of the control designs or the overall
architecture.

4 Simulation Framework

Frameworks shield their users from software implementation details and allow them to concen-
trate on their particular specification or evaluation task. In [9] the requirements for simulation
frameworks were discussed in detail.

These frameworks must address the needs of several categories of users who use it in succes-
sive stages. System engineers develop automation architectures, control and communication
engineers design, implement, and test individual control algorithms; system analysts test and
evaluate the overall system; and system planners select the automation strategy for deployment
based on evaluation results.

In addition to traditional software engineering requirements, these frameworks must allow
the designers to use a specification language that fits their domain, in this case differential
equations and finite state machines; they must provide a structured specification, simulation,
and evaluation environment with formal semantics; they must represent dynamic interaction
dependencies among components in the system; and last but not least they must provide
models of entities that are particular to the application domain.

Our experience with generations of simulation frameworks that we have implemented [1, 2]
lead us to the conclusion that simulation frameworks are best implemented in a programming
language with explicit simulation syntax and semantics.

Simulation frameworks developed in a language like C or C4++ impose semantic notions
such as inputs, outputs, events, differential equations etc. onto the C++ syntax and expect
the user to follow framework rules for using the class libraries. This approach does not provide
the user with any syntactic support for large scale system development. Block-diagram based
simulation tools are easy to use, but do not provide the necessary expressive power to represent
dynamic interaction patterns among the simulated objects.

To address these shortcomings we have developed the SHIFT language.

4.1 SHIFT Programming Language

SHIFT is a special-purpose object-oriented programming language designed to simulate large
dynamical systems. It bridges the gap between system and control theory, formal methods,
and programming languages for a focused yet large class of applications [3, 4].

SHIFT users define types (classes) with continuous and discrete behavior. A simulation
starts with an initial set of components that are instantiations of these types. The world-
evolution is derived from the behavior of these components.

The world evolves in a sequence of phases. During each phase, time flows while the config-
uration of the world remains fixed. In the transition between phases, time stops and the set
of components in the world and their configurations are allowed to change.

The data model of a type consists of numerical variables, link variables, a set of discrete
states, and a set of event labels. The variables are grouped into input, internal (state), and
output variables. A type has read only access to its input variables and read/write access to

its internal and output variables. Types can access other types through their link variables.
Such access is limited to write only access for inputs and to read only access for outputs.

In SHIFT, write access to a variable constitutes the ability to define the evolution of that
variable. Read access constitutes the ability to use that variable in specifying the evolution of
variables.

The data model supports inheritance. A subtype inherits the input and output variables
and event labels of its parents. It may add new variables and event labels.

The behavior model is hybrid, i.e., the model has both continuous and discrete behaviors.
Each discrete state has a set of differential equations and algebraic definitions that govern the
continuous evolution of numeric state and output variables. These equations are based on all
numeric variables of this type and outputs of other types accessible through link variables.
The algebraic definitions cannot have cyclic dependencies.

The discrete behavior is given by a set of transitions among the discrete states. A tran-
sition is given by a from state, to state, a set of events, a guard, and reset actions. Events
consist of event labels of this type (local events), and event labels on types accessible through
link variables (external events). External events create a connection (synchronization) between
transitions in different components and require concurrent execution of such transitions. Tran-
sitions are executed when guard conditions on variables and synchronization requirements on
events hold. When a transition is executed numerical and link variable values may be changed
and new components can be created as part of the reset actions.

A type can establish input output connections among variables of types accessible through
its link variables. Alternatively, a type can provide algebraic or constant definitions for other
types’ inputs.

At this time the behavior model does not support inheritance.

Components evolve in time according to their continuous behavior rules until a discrete
transition becomes possible. At that point the discrete transition is executed in zero time.
Several transitions can be executed before time passage resumes.

Under the current implementation SHIFT programs are translated into C code and linked
with SHIFT run-time libraries to create an executable. SHIFT programs can link in C func-
tions. The run-time executable supports programmatic, command-line, and graphical inter-
faces for user interaction. For further information, we refer the interested parties to [11].

5 Verification Framework

Undoubtly, safety is the most important factor in developing software and hardware for critical
systems such as automated highways and vehicles. The controllers used to execute commands
and maneuvers (such as lane changes, merging, and exiting) must be completely reliable, since
errors could lead to lethal accidents. Though other factors, such as performance and efficiency,
can be measured quite accurately by analysing some typical behaviors of the system, ensuring
safety requires all the possible trajectories to be studied.

In general, the task of showing that the system meets the safety criteria cannot be achieved
by simulation, and we have to use formal verification methods. These methods provide means
to verify that a mathematical model of the system has some formally stated property.

In our framework, the language SHIFT is the formalism used for describing system models.
SHIFT has a formally defined semantics, that is, to every SHIFT program corresponds a math-
ematical object that characterizes all the possible behaviors of the program. More precisely,
such object is a network of hybrid automata [12].

The verification problem is too hard to be solved in a fully automatic way, decision and
semi-decision algorithms have been devised for useful subclasses of hybrid automata. The
development of algorithms have been followed by the implementation of verification tools.

KRONOS [13] is one such tool. !

5.1 The verification tool

KRONOS is a software tool developed at VERIMAG in Grenoble, France. One major design
objective of KRONOS is to provide a verification engine that can be integrated into mod-
eling frameworks of the real-time systems in a wide range of application areas. Real-time
communication protocols, timed asynchronous circuits, and hybrid systems are domains where
KRONOS is currently being used.

The mathematical foundations of KRONOS come from the theory of timed automata. This
formalism is a special case of hybrid automata where the behavior of a continuous variable z
is defined by the simple differential equation 2’ = 1. Such variables, called clocks, are used
to measure the time elapsed between events. Timing constraints such as propagation delays,
execution times and response times, are expressed as predicates on the values of the clocks.

The state-space defined by a timed automaton is infinite because clocks are real-valued
variables. However, the state-space can be symbolically characterized by a finite disjunction of
linear inequalities on the clocks. This exact symbolic characterization of the state-space is the
most important property of the formalism. It makes the verification problem to be tractable
not only in theory, but also in practice.

5.2 Verification methods

The verification methods provided by KRONOS can be classified in two general categories
according to the strategy applied to explore the state-space: backward analysis and forward
analysis.

Backward-analysis methods are based on algorithms that perform a backward search of the
reachability graph of the model to compute the set of predecessors of a given set of states.
Given the set of unsafe states (e.g., those characterizing a rear-end collision), these algorithms
compute the initial conditions that potentially lead to such an undesired situation. A state not
in the computed set is guaranteed to never reach an unsafe condition. Thus, these methods
can be used to synthesize initial conditions that are proved to maintain safety.

Forward-analysis methods rely on algorithms that construct the set of successors by perform-
ing a forward exploration of the reachability graph. These algorithms analyze all the possible
evolutions of the system starting at a given set of initial conditions. The safety requirement
is violated if an unsafe state is encountered during the search; otherwise, it is fulfilled. When
safety is not verified, these algorithms generate examples of violating evolutions which can be
used to modify the original model.

5.3 Verification of SHIFT programs

In order to verify a SHIFT program with KRONOS, we translate it into the KRONOS input
format. For this purpose, the latter has been extended to simplify the translation procedure
between the two formalisms.

'KRONOS is freely distributed through the web for academic non-profit use. Please refer to the KRO-
NOS home page http://www.imag.fr/VERIMAG/PEOPLE/Sergio.Yovine/kronos/kronos.html. to download
the package or to know more about KRONOS.

The syntactic translation from one format to the other is a completely automatic procedure.
However, not every SHIFT program can be automatically verified since the verification problem
for general hybrid automata has been proven to be undecidable. Some restrictions need to be
placed and some abstractions need to be envisaged.

5.3.1 Restrictions

For the time being, we restrict the verification to those SHIFT programs not involving the
dynamic creation of objects and the use of SHIFT built-in primitives to deal with sets of
objects. Ideally, the SHIFT program should consist of an initial object that creates, once and
forall, all the objects of the system.

The main reason for preventing objects to be created while the system evolves is that the
number of objects in the system may then grow without bound. KRONOS only supports
verification of systems made up of a fixed number of components. Verification of systems
consisting of an unbounded number of process is a very active area of research today, so we
expect these restrictions could be removed in the future.

5.3.2 Abstractions

SHIFT programs may contain continuous variables with very complex dynamics. In general, an
analytical (symbolic) solution of a differential equation cannot be computed by an algorithm.
The analysis can be simplified by finding a tube of trajectories such that the solution of the
differential equation lies inside the tube. For instance, it is possible to approximate a non-
linear trajectory in the plane by the area defined by two piecewise linear trajectories lying
below and above it. Such an approximation is safe, i.e., if no state in the tube is found to be
unsafe, then the original trajectory satisfies the safety criteria. However, if a state in the tube
is unsafe, it doesn’t mean that the original trajectory is unsafe, it might be the case that the
approximation is just too rough and needs to be reviewed.

One way of applying this approach is to partition the time line in a finite number of intervals
Io, ..., I, and replace the differential equation 2’ = f(x,t) by a set of differential inclusions
' € gp(z,t) for k = 0,...,n, such that for all k, the differential inclusion contains all the
solutions of the differential equation in the interval [;. Under some (minor) assumptions,
hybrid automata with differential inclusions of the form ' € [a, b], where @ and b are rational
constants, can be automatically analyzed with KRONOS [14].

5.4 Implementation

In order to be able to syntactically recognize those SHIFT programs that are indeed timed
systems, we have extended the syntax of SHIFT. To avoid confusion, we call this “new”
language SHIFT/KRONOS. The added features are indeed macro definitions. That is, they do
not introduce new concepts into the language as SHIFT/KRONOS can be fully and syntactically
translated into SHIFT.

The syntax SHIFT/KRONOS is the one of SHIFT, without any flow declarations and with
the following additional statements:

e kronosclocks x_1, ..., xnwhich corresponds tothe SHIFT variable declaration state
continuous number x_1, ..., xn, plus the SHIFT flow declaration x> = 1 associated
with every discrete mode.

e kronoswhen <cond> where <cond> is a condition over the set of variables declared as
kronosclocks. This statement corresponds to the SHIFT guard when <cond>. SHIFT
guards are also allowed, which amounts of taking the conjunction of the conditions stated
in the when and the kronoswhen.

e kronosinvar <cond> where <cond> is a condition over the set of variables declared as
kronosclocks. This statement corresponds to the SHIFT invariant invariant <cond>.
SHIFT invariants are also allowed, which amounts of taking the conjunction of the con-
ditions stated in the invariant and the kronosinvar.

e kronosreset { x1 := v_.1l; ...; xn := vn; }, wherev.iseither 0 or another vari-
able x_j. declared as a kronosclock. This statement corresponds to the SHIFT statement
do { x1 :=v.l; ...; xn :=vmn; }.

Appendix 7 shows an example of SHIFT/KRONOS program: the Fischer’s mutual-exclusion
protocol. Appendix 7 shows the equivalent SHIFT specification of type Fischer (the rest of
the program remains the same).

5.4.1 The compiler

Kish is the compiler that takes as input a SHIFT/KRONOS program and generates as output
the files needed for the verification. Kish is actually a modification of the SHIFT compiler Shic.
The additional work carried out by Kish with respect to Shic is the following.

e Type-checking required by the added syntactical features.
e Generation of the input files, called Timed Automata, to the verification tool KRONOS.

e Generation of C code that integrates the code generated by Shic for simulation purposes
with code needed for verification.

5.4.2 The verifier

We have developed a verification tool called Grizzly that integrates both KRoNoOs and the SHIFT
simulator. Grizzly is indeed the tool that explores all the possible behaviors of a SHIFT/KRONOS
program. KRONOS provides all data-structures and associated manipulation functions required
to store, update and check the consistency of the timing constraints. The run-time library of
the SHIFT simulator is the one in charge of manipulating the corresponding SHIFT variables
and dealing with the synchronization of transitions.

Grizzly essentially works as follows. Given a state, which is composed of a KroNos and
a SHIFT data-structures, it calls the appropriate functions of the SHIFT run-time library to
construct all the possible successors of the state (i.e., the states reachable by all the possible
outgoing transitions from the state) only taking into account the constraints imposed by the
pure SHIFT statements (i.e., without considering the timing information). Then Grizzly calls
the appropriate functions of KRONOS to check whether the transitions found in the previous
step meet the timing constraints (i.e., the condition imposed by the kronoswhen is satisfied),
in which case the transition is taken and a new state is created, otherwise the transition is not
taken. Grizzly keeps repeating this procedure until all the states have been visited.

The algorithm described above generates all the possible states in which the SHIFT/KRONOS
program may stay. We can also ask Grizzly to check whether some given state is indeed
reachable from the initial state.

5.4.3 Example

We illustrate here using the example in Appendix A. a typical verification session. The shell-
script called kshift should be used to generate the C code, the KRONOS timed automata and
to compile and link all the files together with Grizzly. The result is an executable binary file
named as the input file with the extension .grz. This file is the one to be executed to perform
the verification.

For instance, we can use fischer.grz to check whether the component mcs (an instance of
the type MonitorCS) reaches the discrete mode bad. To do so, we use the following command:

fischer.grz -REACH mcs_bad -DFS -h

The option -REACH mcs_bad indicates that we are looking whether the component mcs reaches
the discrete state bad, whereas -DFS and -h are options provided by KrRoNOsS that correspond
respectively to perform the exploration using a depth-first search and to generate a trace if the
state is reachable. The output is the following:

grizzly: Evaluating reachability: _init AND E<> _reach

grizzly: Using depth-first search with max stack size: 1000.

grizzly: Max symbolic-states set size: 1000.

grizzly: Symbolic states visited: 9

grizzly: reachability successful

f4 f3 f2 f1 mcs

idle idle idle idle good F4_X=F3_X and F4_X=F2_X and F4_X=F1_X

idle idle idle wait good F4_X<=10 and F4_X=F3_X and F4_X=F2_X and F1_X<=F4_X
idle idle wait wait good F4_X<=10 and F4_X=F3_X and F4_X=F2_X and F1_X<=F4_X
idle idle wait test good F4_X<=10 and F4_X=F3_X and F4_X=F2_X and F1_X+1<F4_X
idle idle wait cs good F4_X<=10 and F4_X=F3_X and F1_X<=F4_X and F2_X<=F1_X
idle idle test cs good F4_X<=10 and F4_X=F3_X and F2_X<=F4_X and F1_X<=F2_X
idle idle cs cs bad F4_X<=10 and F4_X=F3_X and F2_X<=F4_X and F1_X+1<F2_X

DO W NN - O

5.4.4 Practical experiments

We have used Grizzly to verify a distributed fault-diagnosis protocol. The tool has demonstrated
to be very useful, specially for finding bugs (mainly deadlocks due to synchronization problems)
in early phases of the design. The final specification of the protocol consisted of 2500 lines of
SHIFT code. We have formally verified two properties:

o bounded-time fault detection : if a fault happens, the fault is eventually detected within
some time, and

o absence of false alarms : if a fault is diagnosed, then the fault have occurred.

The verification has been carried out for a platoon consisting of 4 cars: leader, second, middle
and last, corresponding to the 4 possible modes of the protocol (i.e., extra cars in the platoon
will behave as the middle one).

6 Real-Time Code Generation

We describe here the work carried out concerning the generation of executable code from SHIFT
programs. We discuss here the main underlying ideas and the prototype implementation.

10

Controller

. Sensors)
ilo i/o
> speed, accel, .. -

|
| |
|
l 1 Comm _
| | ilo i/o
} ‘ ctrl cmd, fault mgmt, .. ~<~—
| |
| |

Figure 2: Structure of a SHIFT application.

[
S £
)

A
Y

Cinputs " outputs

shift
application

local
memory

Figure 3: Architecture of the executor.

We refer to a SHIFT application as a collection of a fixed number of SHIFT components.
The external interface of the application is defined to be the set of inputs and outputs of the
components. The components are allowed to synchronize with each other through events, but
they are only allowed to interact with the external world using the external interface. Such
an application is therefore open in the sense that its behavior depends on externally provided
inputs. (See Fig.2).

Given a SHIFT application, we are interested in generating code to be executed on a real-
time operating system (QNX, for instance). We think of a SHIFT application as a single task,
i.e., the application itself, rather than as a collection of tasks, i.e., one task per component.
With this in mind, generating code for the application consists in implementing a program
called “SHIFT executor” (Fig.3) which is going to execute the SHIFT application more or less
is the same way that the simulator does.

11

6.1 Benefits of the approach

This approach allows us to avoid directly implementing a protocol for synchronizing the SHIFT
components on top of the operating system. The synchronization between components inside
the application is ensured by the SHIFT executor using the same algorithm implemented in the
simulator. Another advantage of this approach is that the execution of the SHIFT application
on the real-time operating system will be a single thread instead of the interleaving of multiple
threads which results when implementing each component as a separate task. Besides, the
granularity of the execution time can be set up to be equal to the time increment used for
the simulation. Thus, if the executor is scheduled in time, it will reproduce the same behavior
observed during the simulation, provided that the time needed to execute the code is smaller
than the simulation time-step (in other words, if the code can be simulated in real time). This
property can be checked during the simulation.

6.2 Extension of the syntax

Typically, for the purpose of the simulation, the “external world” is also model as a collection of
SHIFT components. Such components are likely to be replaced by sensors and actuators when
moving from the specification to the implementation. In order to identify such components we
propose to extend the syntax of SHIFT. For historic reasons, we call such components real-time
components.

The main issue regarding real-time components is that we have to insure that the real
device that implements the component provides the same functionality as defined by the SHIFT
model of the component. Clearly, the actual functionality of the device may vary from one
manufacturer to another and it is impossible to forsee all the possible implementations and to
generate code for all of them.

In order to overcome this problem, we propose to add to the type declaration a section for
implementation-dependent (or device-dependent) information. This section consists in a list
of assignments. The left-hand side of the assignment is an output variable. The right-hand
side is an external function call. There must be one and only one assignment for each output.

To define an implementation-dependent behavior, we extend SHIFT with the rtimplementation
declaration within a type descriptor. The syntax is the following:

rtimplementationdecl = rtimplementation rtimplementation®
rtimplementation = rtid { rtassign™}
rtassign n= wvar := external functioncall

The compiler checks that var is an output variable and that all and only the output variables
get assigned. The idea here is that the right-hand side is the function (external to the SHIFT
specification) that provides the value of the corresponding output variable. There can be more
than one rtimplementation declarations.

When generating code for execution, we need to distinguish which components are going
to be compiled as is and which are going to be replaced by an implementation-dependent
device. If a component is left as is, then nothing needs to be done. To generating code for
implementation-dependent components we need a mechanism that allows the programmer to
choose the adequate implementation. To do so, we extend SHIFT with the rtcreate operator
which is esentially the same as the create except that it only accepts as parameter the iden-
tifier associated with an rtimplementation declaration within the type. The rtcreate has

12

the following syntax:

rtereateexpr = rtcreate (type , riid)

where type must be the name of a type and rtid must be the name of an rtimplemenation
declaration within that type. The components created with rtcreate are called rt-components.

Appendix B. shows an example of the use of the rtimplementation and the rtcreate
mechanisms.

6.3 Extension of the SHIFT compiler and simulator

We have extended the SHIFT compiler Shic to accept the new syntactic constructs. Further-
more, we have modified the SHIFT simulator in such a way that implementation-dependent
components can be fully integrated into the simulation. This allows the designer to test and
debug the code to be executed on-board off-line. This is because in our approach, the code to
be executed and the one used for the purposes of the simulation are the same.

The modified simulator works as follows. Before each discrete-continuous step, it goes
through the list of all the rt-components and executes the code correspondingto the rtimplementation
declaration. All the output variables are updated according to the values returned by the ex-
ternal functions called. These output variables are indeed inputs to other components. Once
this step is completed, the simulator proceeds in the usual way.

The main loop of the simulator is synchronized with real time. For the system to be able
to run in real time it is required that without the timing adjustment the computations run
faster than real time. After each pass through the main loop the simulator kernel has to wait
for the timer signal to continue. The time in between the signals is used to process discrete
events which according to the model occur in zero time. For the remaining difference between
simulated and real time the simulation kernel remains in the wait state. There are major
factors which affect the accuracy of the simulation with respect to the pace of real time. One -
the simulation time step which normally advances virtual time ahead the real time in a jump-
like manner. This difference is in the order of 20-100 milliseconds, depending on the hardware
platform and the integration step setting. Another parameter is the clock granularity supported
by the computer clock. That granularity is in the order of microseconds or less. The accuracy
of the timing subroutine is achieved by recording time stamps at the beginning of execution and
adjusting the pace of virtual time to that of real time. Provided that the hardware platform
of choice has enough computing power, the accuracy of the real-time system stays within the
accuracy of the computer clock plus or minus the value of integration step.

6.4 Real Time SHIFT for Solaris and QNX operating systems

Currently the real-time SHIFT system is available for two operating systems: Solaris and QNX.

For Solaris it is a simple extension of the basic SHIFT package. It required an addition
of the Posix-4 compatibility library and otherwise relies solely on the Solaris standard library
functions and system calls.

Porting real-time SHIFT for QNX is more daunting. Since many of the support libraries
used for regular SHIFT are not readily available for the QNX environment, a working prototype
only was developed by the time of this report. This prototype includes bare bones run-time
system without debugger and garbage collection modules.

13

SHIFT/KRONOS
translator

Kish Shic . RT-Shic
(compller) (compiler) f (compiler)
Sensors
Actuators
Timed Automata C Code E
\L l/ QNX
; SHIFT f Real-Time
KRONOS - SIMULATOR System
Grizzly 5 - '
Property = veriion Simulation Execution
Verification

Figure 4: Simulation, verification and execution of SHIFT programs.

7 Conclusion and Current Status

We have presented a general framework for modeling, simulation, verification, and prototyping
of controllers in a large scale system. We have illustrated the framework for the automated
highway system application. Other similar systems that are using this approach include ATMS,
autonomous underwater vehicles, and wireless communication systems.

Fig.4 shows the tool support and the functional diagram for verification and code generation.

References

[1] Farokh H. Eskafi. “ Modeling and Simulation of the Automated Highway System”, PhD
Thesis, UC Berkeley 1996. Also Path Report UCB-ITS-PRR-96-19.

[2] Aleks O. Golli. “Object Management Systems”, PhD Thesis, UC Berkeley 1995. Also
Path Report UCB-ITS-PRR-95-19.

14

[3] A. Deshpande, A. Gélli, and L. Semenzato. “The SHIFT Programming Language and
Run-time System for Dynamic Networks of Hybrid Automata”. California PATH Techni-
cal Report UCB-ITS-PRR-97-7.

[4] A. Deshpande, A. G6llii, and L. Semenzato. “SHIFT Reference Manual”, California PATH
Technical Report UCB-ITS-PRR-97-8.

[6] P. Varaiya and S. Shladover. “Sketch of an IVHS systems architecture”,
Proceedings of the Vehicle Navigation and Information Systems Conferencepp. 1117-1124,
Oct. 20-23, 1991.

[6] Pravin Varaiya. “Smart Cars on Smart Roads: Problems of Control”,
IFFEE Trans. Automatic Control Vol. 38, No 2. Feb. 1993.

[7] Tak-Kuen Juhn Koo, Yi Ma, George J. Pappas and Claire Tomlin. “SmartATMS: A Sim-
ulator for Air Traffic Management Systems” Submitted to Winter Simulation Conference
1997.

[8] Joao Sousa and Aleks Gollii. “A Simulation Environment of the Coordinated Operation of
Multiple Autonomous Underwater Vehicles” Submitted to Winter Simulation Conference
1997.

[9] F. Eskafi and A. Gélli. “Simulation Requirements and Methodologies in Automated High-
way Planning”, to appear in TRANSACTIONS of the Society for Computer Simulation.

[10] A. Deshpande. “AHS components in SHIFT”, PATH technical report, 1996.
[11] SHIFT URL address: http://www.path.berkeley.edu/shift.

[12] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis and S. Yovine. The Algorithmic Analysis of Hybrid Systems. Theoretical Com-
puter Science, 138:3—4, 1995.

[13] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid Systems
I, Verification and Control, pages 208-219. Lecture Notes in Computer Science 1066,
Springer-Verlag, 1996.

[14] A. Olivero, J. Sifakis, and S. Yovine. Using abstractions for the verification of linear
hybrid systems. In D. Dill, editor, Proc. 6th Computer-Aided Verification, pages 81-94,
California, June 1994. Lecture Notes in Computer Science 818, Springer-Verlag.

Appenidx A. Fischer’s protocol in SHIFT/IKRONOS

type Fischer
{
state

number id ;
kronosclocks

X3
discrete

15

idle ,
wailt kronosinvar x<=1 ,

test ,
cs
export
closed enter_cs ;
transition
idle -> wait {}
when N = 0O
kronosreset { x:=0 ; } ;
transition
wait -> test {}
when true
do { N :=1id ; }
kronoswhen x<=1
kronosreset { x:=0 ; } ;
transition
test -> cs { enter_cs }
when N = id
kronoswhen x>1
kronosreset { x:=0 ; } ;
}
type MonitorCSs
{
state
number ¢ := 0 ;
discrete
good,
bad ;
transition
good -> good { S:enter_cs(one) }
when ¢ = 0
do {
c :=1;
s
transition
good -> bad { S:enter_cs(one) }
when ¢ = 1 ;
}
global Fischer f4 := create(Fischer, id := 4)
global Fischer f3 := create(Fischer, id := 3)
global Fischer f2 := create(Fischer, id := 2)
global Fischer f1 := create(Fischer, id := 1)
global number N := O ;
global set(Fischer) S := { f1, f2, £3, f4 } ;
global MonitorCS mcs := create(MonitorCSs) ;

16

b
b

b

Fischer’s protocol in SHIFT

type Fischer

{
state
number id ;
state
continuous number x ;
flow

kronosflow { x> =1 ; } ;
discrete

idle { kronosflow 1},
wait { kronosflow } invariant x<=1 ,
test { kronosflow 1},
cs { kronosflow };
export
closed enter_cs ;
transition
idle -> wait {}
when N = 0O
do{x:=0; 7} ;
transition
wait -> test {}
when x<=1
do { N := id ;
x := 0 ;
s
transition
test -> cs { enter_cs }
when N = id and x>1
do{x:=0; 7} ;
}

Appendix B. Implementation-dependent declarations

function xrandom() -> number
function yrandom() -> number
function xoutput(number a) -> number

type Car
{

state
Car car_in_front ;

17

output
continuous number x ;

setup
do

discrete
s1 { flow_1; } ,
s2 { flow_1; } ;

transition

s1 -> 82 { }

when x(car_in_front) = 1

do

{
X := xoutput(x) ;
x =0 ;

o,

s2 -> s1 { }
when x >= 10
do
{

r
rtimplementation

impl_1 {
X :

xrandom() ;

LR
impl_2 {
X :

yrandom() ;

s

global Car 4 :
global Car c

rtcreate(Car, impl_1) ;
create(Car, x:=0, car_in_front := d) ;

18

