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A high-resolution map of human evolutionary constraint using 
29 mammals

A full list of authors and affiliations appears at the end of the article.

Abstract

Comparison of related genomes has emerged as a powerful lens for genome interpretation. Here, 

we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at 

least 5.5% of the human genome has undergone purifying selection, and report constrained 

elements covering ~4.2% of the genome. We use evolutionary signatures and comparison with 

experimental datasets to suggest candidate functions for ~60% of constrained bases. These 

elements reveal a small number of new coding exons, candidate stop codon readthrough events, 

and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We 

find 220 candidate RNA structural families, and nearly a million elements overlapping potential 

promoter, enhancer and insulator regions. We report specific amino acid residues that have 

undergone positive selection, 280,000 non-coding elements exapted from mobile elements, and 

~1,000 primate- and human-accelerated elements. Overlap with disease-associated variants 

suggests our findings will be relevant for studies of human biology and health.

Introduction

A key goal in understanding the human genome is to discover and interpret all functional 

elements encoded within its sequence. While only ~1.5% of the human genome encodes 

protein sequence1, comparative analysis with the mouse2, rat3 and dog4 genomes showed 
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that at least 5% is under purifying selection and thus likely functional, of which ~3.5% 

consists of non-coding elements with likely regulatory roles. Detecting and interpreting 

these elements is particularly relevant to medicine, as loci identified in genome-wide 

association studies (GWAS) frequently lie in non-coding sequence5.

Whereas initial comparative mammalian studies could estimate the overall proportion of the 

genome under evolutionary constraint, they had little power to detect most of the 

constrained elements – especially the smaller ones. Thus, they focused only on the top 5% of 

constrained sequence, corresponding to less than ~0.2% of the genome4,6. In 2005, we 

began an effort to generate sequence from a large collection of mammalian genomes with 

the specific goal of identifying and interpreting functional elements in the human genome 

based on their evolutionary signatures7-8. Here, we report our results to systematically 

characterize mammalian constraint, using 29 eutherian (placental) genomes. We identify 

4.2% of the genome as constrained and ascribe potential function to ~60% of these bases 

using diverse lines of evidence for protein-coding, RNA, regulatory and chromatin roles, 

and we present evidence of exaptation and accelerated evolution. All datasets described here 

are publicly available in a comprehensive set at Broad Institute and UCSC (see below for 

links).

Sequencing, assembly and alignment

We generated genome sequence assemblies for 29 mammalian species selected to achieve 

maximum divergence across the four major mammalian clades (Figure 1a, Text S1 and 

Table S1). For nine species, we used genome assemblies based on ~7-fold coverage shotgun 

sequence, and for 20 species we generated ~2-fold coverage (2X), to maximize the number 

of species sequenced with available resources on capillary machines. Twenty genomes are 

first reported here, and nine were previously described (See supplement). 0

The power to detect constrained elements depends largely on the total branch length of the 

phylogenetic tree connecting the species9. The 29 mammals correspond to a total effective 

branch length of ~4.5 substitutions per site, compared to ~0.68 for human-mouse-rat-dog 

(HMRD), and thus should offer greater power to detect evolutionary constraint: the 

probability that a genomic sequence not under purifying selection will remain fixed across 

all 29 species is P1<0.02 for single bases and P12<10−25 for 12-mers, compared to P1~0.50 

and P12~10−3 for HMRD.

For 2x mammals, our assisted assembly approach10 resulted in a typical contig size N50C of 

2.8 kb and a typical scaffold size N50S of 51.8 kb (Text S2 and Table S1) and high sequence 

accuracy (96% of bases had a <1% error rate = Q20)11. Compared to high-quality sequence 

across the 30 Mb of the ENCODE pilot project12, we estimated average error rates of 1-3 

miscalled bases per kilobase11, which is ~50-fold lower than the typical nucleotide sequence 

difference between the species, enabling high-confidence detection of evolutionary 

constraint (Text S3).

We based our analysis on whole-genome alignments by MultiZ (Text S4). The average 

number of aligned species was 20.9 at protein-coding positions in the human genome and 

23.9 at the top 5% HMRD-conserved non-coding positions, with an average branch length 
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of 4.3 substitutions per base in these regions (Figure S1, S2). By contrast, whole-genome 

average alignment depth is only 17.1 species with 2.9 substitutions per site, likely due to 

large deletions in non-functional regions4. The depth at ancestral repeats is 11.4 (Figure S1a) 

consistent with repeats being largely non-functional2,4.

Detection of constrained sequence

Our analysis did not substantially change the estimate of the proportion of genome under 

selection. By comparing genome-wide conservation to that of ancestral repeats, we 

estimated the overall fraction of the genome under evolutionary constraint to be 5.36% at 

50-bp windows (5.44% at 12-bp windows), using the SiPhy-ω statistic13, a measure of 

overall substitution rate (Figure S3), consistent with previous similar estimates2,4,14. 

However, alternative methods15-16 and different ways of correcting for the varying 

alignment depths give higher estimates (see Text S5 for details).

The additional species had a dramatic effect on our ability to identify the specific elements 

under constraint. With 29 mammals, we identify 3.6 million elements spanning 4.2% of the 

genome, at a finer resolution of 12 bp (Figure 1b, Text S6, Figure S4, Table S2, S3), 

compared to <0.1% of the genome for HMRD 12-bp elements and 2.0% for HMRD 50-bp 

elements4. Elements previously detected using five vertebrates17 also detect a larger fraction 

of the genome (~4.1%), but only cover 45% of the mammalian elements detected here, 

suggesting a large fraction of our elements are mammalian-specific. The mean element size 

(36bp) is considerably shorter than both previously-detected HMRD elements (123bp) and 

five-vertebrate elements (104bp)17. For example, it is now possible to detect individual 

binding sites for the neuron-restrictive silencer factor (NRSF) in the promoter of the NPAS4 

gene, which are beyond detection power in previous datasets (Figure 2, Figure S5). We 

found a similar regional distribution of 12-bp elements (including the 2.6 million newly-

detected constrained elements) to previously-detected HMRD elements (r = 0.94, Figure 

S6),. Similar results were obtained with the PhastCons17 statistic (see Text S6).

Using a new method, SiPhy-π, sensitive not just to the substitution rate but also to biases in 

the substitution pattern (e.g. Figure S7), we detected an additional 1.3% of the human 

genome in constrained elements (see Table S2, S3). Most of the newly-detected constrained 

nucleotides extend elements found by rate-based methods, but 22% consist of new elements 

(average length 17 bp), and are enriched in noncoding regions.

Constraint within the human population—We observed that the evolutionary 

constraint acting on the 29 mammals is correlated with constraint within the human 

population, as assessed from human polymorphism data (Text S7) and consistent with 

previous studies18. Mammalian constrained elements show a depletion in single-nucleotide 

polymorphisms (SNPs)19, and more constrained elements show even greater depletion. For 

example, in the top 1% most-strongly-conserved non-coding regions, SNPs occur at a 1.9-

fold lower rate than the genome average, and the derived alleles have a lower frequency, 

consistent with purifying selection at many of these sites in the human genome.

Moreover, at positions with biased substitution patterns across mammals, the observed 

human SNPs show a similar bias to the one observed across mammals (Figure S7). Thus, not 
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only are constrained regions less likely to exhibit polymorphism in humans, but when such 

polymorphisms are observed, the derived alleles in humans tend to match the alleles present 

in non-human mammals, indicating a preference for the same alleles across both mammalian 

and human evolution.

Functional annotation of constraint

We first studied the overlap of the 3.6 million evolutionarily constrained elements (ω<0.8 

with P<10−15) with known gene annotations (Figure 1b). Roughly 30% of constrained 

elements were associated with protein-coding transcripts: ~25.3% overlap mature mRNAs 

(including 19.6% in coding exons, 1.2% in 5′-UTRs, and 4.4% in 3′-UTRs), and an 

additional 4.4% reside within 2 kb of transcriptional start sites (1.2% of which is within 200 

bases).

The majority of constrained elements however reside in intronic and intergenic regions 

(29.7% and 38.6%, respectively). To study their biological roles and provide potential 

starting points to understand these large and mostly uncharted territories, we next studied 

their overlap with evolutionary signatures7-8,20-21 characteristic of specific types of features 

and a growing collection of public large-scale experimental data.

Protein-coding genes and exons—Despite intense efforts to annotate protein-coding 

genes over the past decade20,22-24, we detected 3,788 candidate new exons (a 2% increase) 

using evolutionary signatures characteristic of protein-coding exons25. Of these, 54% reside 

outside protein-coding genes, 19% within introns, and 13% in UTRs of known coding genes 

(Text S8, Table S4, S5). Our methods recovered 92% of known coding exons that were >10 

codons and that fall in syntenic regions, the remainder showing non-consensus splice sites, 

unusual features, or poor conservation.

The majority of new exon candidates (>58%) are supported by evidence of transcription 

measured in 16 human tissues26 (Figure S8a) or similarity to known Pfam protein domains. 

31% of intronic and 13% of intergenic predictions extend known transcripts, and 5% and 

11% respectively reside in new transcript models. The newly detected exons are more 

tissue-specific than known exons (mean of 3 tissues, vs. 12) and are expressed at 5-fold 

lower levels. Directed experiments and manual curation will be required to complete the 

annotation of the few hundred protein-coding genes that likely remain unannotated27.

We found apparent stop codon readthrough28 of four genes based on continued protein-

coding constraint after an initial conserved stop codon29 and until a subsequent stop codon 

(Text S9, Figure S8b). Readthrough in SACM1L could be triggered by an 80-base conserved 

RNA stem loop predicted by RNAz30, lying four bases downstream of the readthrough stop 

codon.

We also detected coding regions with a very low synonymous substitution rate, indicating 

additional sequence constraints beyond the amino acid level (Text S9). We found >10,000 

such synonymous constraint elements (SCEs) in more than one-quarter of all human 

genes31. Initial analysis suggests potential roles in splicing regulation (34% span an exon-

exon junction), A-to-I editing, microRNA (miRNA) targeting, and developmental 
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regulation. Hox genes contain several top candidates (Figure 3a), including two previously-

validated developmental enhancers32-33.

RNA structures and families of structural elements—We next used evolutionary 

signatures characteristic of conserved RNA secondary structures34 to reveal 37,381 

candidate structural elements (Text S10, Figure S9a), covering ~1% of constrained regions. 

For example, the XIST lincRNA, known to bind chromatin and enable X-inactivation35, 

contains a newly-predicted structure in its 5′ end (Figure S9bc), distinct from other known 

structures36, that seems to be the source of chromatin-associated short RNAs37.

Sequence- and structure-based clustering of predictions outside protein-coding exons 

revealed 1,192 novel families of structural RNAs (Text S10). We focused on a high-scoring 

subset consisting of 220 families with 725 instances, which also showed the highest 

thermodynamic stability30 (Figure S9a, S10), DNase hypersensitivity, expression pattern 

correlation across tissues and intergenic expression enrichment (Figure S9a). We also 

expanded both known and novel families by including additional members detected by 

homology to existing members.

Noteworthy examples include: a glycyl-tRNA family, including a new member in POP1, 

involved in tRNA maturation, and likely involved in feedback regulation of POP1; three 

intronic families of long hairpins in ion-channel genes known to undergo A-to-I RNA 

editing and possibly involved in regulation of the editing event; an additional member of a 

family of 5′UTR hairpins overlapping the start codon of collagen genes and potential new 

miRNA genes that extend existing families37.

Two of the largest novel families consist of short AU-rich hairpins of 6-7 bp that share the 

same strong consensus motif in their stem. These occur in the 3′UTRs of genes in several 

inflammatory response pathways, whose post-transcriptional regulation often involves 

structural AU-rich elements (AREs). Indeed, two homologous hairpins in TNF and CSF3 

correspond to known mRNA-destabilization elements, suggesting roles in mRNA stability 

for the two families37.

Lastly, a family of six conserved hairpin structures (Figure S9d) was found in the 3′UTR of 

the MAT2A gene37, which is involved in the synthesis of S-adenosyl-methionine (SAM), the 

primary methyl donor in human cells. All six hairpins consist of a 12-18 bp-stem and a 14-

bp loop region with a deeply-conserved sequence motif (Figure S9), and may be involved in 

sensing SAM concentrations, which are known to affect MAT2A mRNA stability38.

Conservation patterns in promoters—As different types of conservation in promoters 

may imply distinct biological functions39, we classified the patterns of conservation within 

core promoters into three categories: those with uniformly ‘high’ constraint (7,635 genes, 

13,996 transcripts), uniformly ‘low’ constraint (2,879 genes, 4,135 transcripts), and 

‘intermittent’ constraint, consisting of alternating peaks and troughs of conservation (14,271 

genes and 29,814 transcripts) (Figure S11a). ‘High’ and ‘intermittent’ constraint promoters 

are both associated with CpG islands (~66%), while ‘low’ constraint promoters have 
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significantly lower overlap (~41%), and all three classes show similar overlap with 

functional TATA boxes (2-3%, see Text S11).

These groups show distinct Gene Ontology enrichments (Figure S11b), with high-constraint 

promoters involved in development (Pbonf<10−30), intermittent-constraint in basic cellular 

functions (Pbonf.<5×10−4), and low-constraint promoters in immunity, reproduction and 

perception, functions expected to be under positive selection and lineage-specific 

adaptation2.

High constraint may reflect cooperative binding of many densely-binding factors, as 

previously suggested for developmental genes6. Intermittent constraint promoters, whose 

peak-spacing distribution was suggestive of the periodicity of the DNA helix turns, may 

reflect loosely-interacting factors (Figure S11cd). Low constraint may reflect rapid motif 

turnover, under neutral drift or positive selection.

Identifying specific instances of regulatory motifs—Data from just four species 

(HMRD) was sufficient to create a catalog of known and novel motifs with many conserved 

instances across the genome21. The power to discover such motifs was high, because one 

can aggregate data across hundreds of motif instances. Not surprisingly, the additional 

genomes therefore had little effect on the ability to discover new motifs (known motifs 

showed 99% correlation in genome-wide motif conservation scores, Figure S12 and S13).

In contrast, the 29 mammalian genomes dramatically improved our ability to detect 

individual motif instances, making it possible to predict specific target sites for 688 

regulatory motifs corresponding to 345 transcription factors (Figure S14). We chose to 

identify motif instances at a false discovery rate (FDR) of 60%, representing a reasonable 

compromise between specificity and sensitivity given the available discovery power (Text 

S12), and matching the experimental specificity of Chromatin Immunoprecipitation (ChIP) 

experiments for identifying biologically-significant targets40. Higher levels of stringency 

could be obtained by sequencing additional species.

We identified 2.7 million conserved instances (Table S6), enabling the construction of a 

regulatory network linking 375 motifs to predicted targets, with a median of 21 predicted 

regulators per target gene (25th percentile: 10; 75th: 39). The number of target sites (average: 

4277; 25th percentile: 1407; 75th: 10,782) are comparable to those found in ChIP 

experiments, and have the advantage that they are detected at nucleotide resolution, enabling 

us to use them to interpret disease-associated variants for potential regulatory functions. 

However, some motifs never reached high confidence values, and others did so at very few 

instances.

The motif-based targets show strong agreement with experimentally-defined binding sites 

from ChIP experiments (Table S7). For long and distinct motifs, such as CTCF and NRSF, 

the fraction of instances overlapping experimentally observed binding matches the fraction 

predicted by the confidence score (e.g. at 80% confidence 70% of NRSF motif instances 

overlapped bound sites, and at ~50% confidence 40% overlapped), despite potential 

confounding aspects such as condition-specific binding, overlapping motifs between factors, 
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or non-specific binding. Moreover, increasing confidence levels showed increasing overlap 

with experimental binding (Figure S14-16). For example, YY1 enrichment for bound sites 

increased from 42-fold to 168-fold by focusing on conserved instances. Lastly, combining 

motif conservation and experimental binding led to increased enrichment for candidate 

tissue-specific enhancers, suggesting the two provide complementary information. Within 

bound regions, the evolutionary signal reveals specific motif instances with high precision 

(e.g., Figure 2, Figure 4, Figure S17).

Chromatin signatures—To suggest potential functions for the ~68% of ‘unexplained’ 

constrained elements outside coding regions, UTRs, or proximal promoters, we used 

chromatin state maps from CD4 T-cells41 (Figure S18) and nine diverse cell types42 (Text 

S13, Figure S19). In T-cells, constrained elements were most enriched for promoter-

associated states (up to 5-fold), an insulator state and a specific repressed state (2.2-fold), 

and numerous enhancer states (1.5-2-fold), together covering 7.1% of the unexplained 

elements at 2.1-fold enrichment. In the nine cell types, enriched promoter, enhancer and 

insulator states, cover 36% of unexplained elements at ~1.75-fold enrichment, with locations 

active in multiple cell types showing even stronger enrichment (Figure S20).

Overall, chromatin states suggest possible functions (at 1.74-fold enrichment) for 37.5% 

(N=987,985) of unexplained conserved elements (27% of all conserved elements), 

suggesting meaningful association for at least 16% of unexplained constrained bases. While 

current experiments only provide nucleosome-scale (~200-bp) resolution, we expect higher-

resolution experimental assays that more precisely pinpoint regulatory regions to show 

further increases in enrichment. The increase observed with additional cell types suggests 

that new cell types will help elucidate additional elements. Of course, further experimental 

tests will be required to validate the predicted functional roles.

Accounting for constrained elements—Overall, ~30% of constrained elements 

overlap protein-coding genes, ~27% specific enriched chromatin states, ~1.5% novel RNA 

structures, and ~3% conserved regulatory motif instances (Text S14). Together, ~60% of 

constrained elements overlap one of these features, with enrichments ranging from 1.75-fold 

for chromatin states (compared to unannotated regions) up to 17-fold for protein-coding 

exons (compared to the whole genome).

Implications for interpreting disease-associated variants—In the non-protein-

coding genome, SNPs associated with human diseases in genome-wide association studies 

are 1.37-fold enriched for constrained regions, relative to HapMap SNPs (Text S15, Table 

S8). This is striking, since only a small proportion of the associated SNPs are likely to be 

causative while the rest are merely in linkage disequilibrium (LD) with causative variants.

Accordingly, constrained elements should be valuable in focusing the search for causative 

variants amongst multiple variants in LD. For example, in an intergenic region between 

HOXB1 and HOXB2 associated with tooth development phenotypes43, the reported SNP 

(rs6504340) is not conserved, but a linked SNP (rs8073963) sits in a constrained element 7.1 

kb away. Moreover, rs8073963 disrupts a deeply-conserved Foxo2 motif instance within a 

predicted enhancer (Figure 4), making it a candidate mutation for further follow-up. Similar 
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examples of candidate causal variants are found for diverse phenotypes such as height or 

multiple sclerosis, and similar analyses could be applied to case-control resequencing data.

Evolution of constrained elements

We next sought to identify signatures of positive selection that may accompany functional 

adaptations of different species to diverse environments and new ecosystems. Codon-
specific selection. We used the ratio dN/dS of non-synonymous to synonymous codon 

substitutions as evidence of positive selection (>1) or negative selection (<1). While dN/dS is 

typically calculated for whole genes, the additional mammals sequenced enabled analysis at 

the codon level – simulations predicted a 250-fold gain in sensitivity compared to HMRD, 

identifying 53% of positive sites at 5% FDR (Text S16).

Applying this test to 6.05 million codons in 12,871 gene trees, we found evidence of strong 

purifying selection (dN/dS<0.5) for 84.2% of codons and positive selection (dN/dS>1.5) for 

2.4% of codons (with 94.1% of sites <1 and 5.9% >1; Table S9). At 5% FDR, we found 

15,383 positively-selected sites in 4431 proteins. The genes fall into three classes based on 

the distribution of selective constraint: 84.8% of genes show uniformly high purifying 

selection, 8.9% show distributed positive selection across their length, and 6.3% show 

localized positive selection concentrated in small clusters (Figure 3b, Figure S21, Table 

S10-11).

Genes with distributed positive selection were enriched in such functional categories as 

immune response (pBonf <10−16) and taste perception (pBonf <10−10), which are known to 

evolve rapidly, but also in some unexpected functions such as meiotic chromosome 

segregation (pBonf<10−23) and DNA-dependent regulation of transcription (pBonf<10−19, 

Table S12). Localized positive selection was enriched in core biochemical processes, 

including microtubule-based movement (pBonf<10−10), DNA topological change 

(pBonf<10−4) and telomere maintenance (pBonf<7×10−3), suggesting adaptation at important 

functional sites.

Focusing on 451 unique Pfam protein-domain annotations, we found abundant purifying 

selection, with 225 domains showing purifying selection for >75% of their sites, and 447 

domains showing negative selection for >50% of their sites (Table S13). Domains with 

substantial fractions of positively-selected sites include CRAL/TRIO involved in retinal 

binding (2.6%), proteinase-inhibitor-cystatin involved in bone remodeling (2.2%), and 

secretion-related Emp24/GOLD/p24 family (1.6%).

Exaptation of mobile elements—Mobile elements provide an elegant mechanism for 

distributing a common sequence across the genome, which can then be retained in locations 

where it confers advantageous regulatory functions to the host - a process termed exaptation. 

Our data revealed >280,000 mobile element exaptations common to mammalian genomes 

covering ~7Mb (Text S17), dramatically expanding from ~10,000 previously-recognized 

cases44. Of the ~1.1 million constrained elements that arose during the 90 million years 

between the divergence from marsupials and the eutherian radiation, we can trace >19% to 

mobile element exaptations. Often only a small fraction (median ~11%) of each mobile 

element is constrained, in some cases matching known regulatory motifs. Recent exaptations 

Lindblad-Toh et al. Page 8

Nature. Author manuscript; available in PMC 2012 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are generally found near ancestral regulatory elements, except in gene deserts which are 

abundant in ancestral elements but show few recent exaptations (p<10−300, Figure S22).

Accelerated evolution in the primate lineage—Lineage-specific rapid evolution in 

ancestrally-constrained elements previously revealed human positive selection associated 

with brain and limb development45. Applying this signature to the human and primate 

lineages, we identified 563 human-accelerated regions (HARs) and 577 primate-accelerated 

regions (PARs) at FDR<10% (Text S18, Table S14, S15), significantly expanding the 202 

previously-known HARs46. Fifty-four HARs (9.4%) and 49 PARs (8.5%) overlap enhancer-

associated chromatin marks and experimentally validated enhancers (Text S18). Substitution 

patterns in HARs suggest that GC-biased gene conversion (BGC) is not responsible for the 

accelerated evolution in the vast majority of these regions (~15% show evidence of BGC).

Genes harboring or neighboring HARs and PARs are enriched for extra-cellular signaling, 

receptor activity, immunity, axon guidance, cartilage development, and embryonic pattern 

specification (Figure S23). For example, the FGF13 locus associated with an X-linked form 

of mental retardation contains four HARs near the 5′-ends of alternatively-spliced isoforms 

of FGF13 expressed in the nervous system, epithelial tissues and tumors, suggesting human-

specific changes in isoform regulation (Figure S24).

Discussion

Comparative analysis of 29 mammalian genomes reveals a high-resolution map of >3.5 

million constrained elements that encompass ~4% of the human genome and suggest 

potential functional classes for ~60% of the constrained bases; the remaining 40% show no 

overlap and remain uncharacterized. We report previously-undetected exons and 

overlapping functional elements within protein-coding sequence, new classes of RNA 

structures, promoter conservation profiles, and predicted targets of transcriptional regulators. 

We also provide evidence of evolutionary innovation, including codon-specific positive 

selection, mobile element exaptation and accelerated evolution in the primate and human 

lineages.

By focusing our comparison on only eutherian mammals, we discover functional elements 

relevant to this clade, including recent eutherian innovations. This is especially important for 

discovering regulatory elements, which can be subject to rapid turnover47. Indeed, a 

previous comparison suggest that only 80% of 50-bp non-coding elements are shared with 

opossum, while the current 12-bp analysis shows ~64% of non-coding elements shared with 

opossum48, and only 6% with stickleback fish. Many eutherian elements are thus likely 

missing from previous maps of vertebrate constraint17.

Sequencing of additional species should enable discovery of lineage-specific elements 

within mammalian clades, and provide increased resolution for shared mammalian 

constraint. We estimate that 100-200 eutherian mammals (15-25 neutral substitutions per 

site) will enable single-nucleotide resolution. The majority of this branch length is present 

within the Laurasiatherian and Euarchontoglire branches, which also contain multiple model 

organisms. These are ideal next targets for sequencing as part of the Genome 10K effort49, 
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aiming to sequence 10,000 species from all walks of life. Within the primate clade, a branch 

length of ~1.5 could be achieved, enabling primate-specific selection studies albeit at lower 

resolution. Lastly, human-specific selection should be detectable by combining data across 

genomic regions and by comparing thousands of humans50.

The constrained elements reported here can be used to prioritize disease-associated variants 

for subsequent study, providing a powerful lens for elucidating functional elements in the 

human genome complementary to ongoing large-scale experimental endeavors such as 

ENCODE and Roadmap Epigenomics. Experimental studies require prior knowledge of the 

biochemical activity sought and reveal regions active in specific cell types and conditions. 

Comparative approaches provide an unbiased catalog of shared functional regions 

independent of biochemical activity or condition, and thus can capture experimentally-

intractable or rare activity patterns. With increasing branch length, they can provide 

information on ancestral and recent selective pressures across mammalian clades and within 

the human population. Ultimately, the combination of disease genetics, comparative and 

population genomics and biochemical studies have important implications for understanding 

human biology, health and disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Phylogeny and constrained elements from the 29 eutherian mammalian genome 
sequences
a, A phylogenetic tree of all 29 mammals used in this analysis based on the substitution rates 

in the MultiZ alignments. Organisms with finished genome sequences are indicated in blue, 

high quality drafts in green and 2X assemblies in black. Substitutions per 100 bp are given 

for each branch, and branches with ≥ 10 substitutions are colored red, while blue indicates < 

10 substitutions. b, At 10% FDR, 3.6 million constrained elements can be detected 

encompassing 4.2% of the genome, including a substantial fraction of newly detected bases 

(blue) compared to the union of the HMRD 50-bp + Siepel vertebrate elements17 (see Figure 

S4b for comparison to HMRD elements only). The largest fraction of constraint can be seen 

in coding exons, introns and intergenic regions. For unique counts, the analysis was 

performed hierarchically: coding exons, 5′-UTRs, 3′-UTRs, promoters, pseudogenes, non-
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coding RNAs, introns, intergenic. The constrained bases are particularly enriched in coding 

transcripts and their promoters (Supp Fig S4c).
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Figure 2. Identification of four NRSF-binding sites in NPAS4
a. The neurological gene NPAS4 has many constrained elements overlapping introns and the 

upstream intergenic region. The gray shaded box contained only one constrained element 

using HMRD, while analysis of 29 mammalian sequences reveals four smaller elements. b, 
These four constrained elements in the first intron correspond to binding sites for the NRSF 

transcription factor, known to regulate neuronal lineages.
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Figure 3. Examination of evolutionary signatures identifies synonymous constrained elements 
(SCEs) and evidence of positive selection
a, Two regions within the HOXA2 open reading frame are identified as Synonymous 

Constraint Elements (red), corresponding to overlapping functional elements within coding 

regions. Note that the synonymous rate reductions are not obvious from the base-wise 

conservation measure (in blue). Both elements have been characterized as enhancers driving 

Hoxa2 expression in distinct segments of the developing mouse hindbrain. The element in 

the first exon encodes Hox-Pbx binding sites and drives expression in rhombomere 433, 

while the element in the second exon contains Sox binding sites and drives expression in 

rhombomere 232. Synonymous constraint elements are also found in most other Hox genes, 

and up to a quarter of all genes. b, While ~85% of genes show only negative (purifying) 

selection and 9 % of genes show uniform positive selection, the remaining 6% of genes, 

including ABI2, show only localized regions of positively-selected sites. Each vertical bar 

covers the estimated 95% confidence interval for dN/dS at that site (with values of 0 

truncated to 0.01 to accommodate the log scaling), and bars are colored according to a 

signed version of the SLR statistic for non-neutral evolution: blue for sites under purifying 

selection, gray for neutral sites, and red for sites under positive selection.
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Figure 4. Utilizing constraint to identify candidate mutations
Conservation can help us resolve amidst multiple SNPs the ones that disrupt conserved 

functional elements and are likely to have regulatory roles. In this example, a SNP 

(rs6504340) associated with tooth development is perfectly linked to a conserved intergenic 

SNP, rs8073963, 7.1kb away, which disrupts a deeply conserved Forkhead-family motif in a 

strong enhancer. While the SNPs shown here stem from GWAs or HAPMAP data, the same 

principle should be applicable also to associated variants detected by resequencing the 

region of interest.
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