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INTRODUCTION

Dramatic increases in interest rate levels and volatility since the
early 1970s have motivated the creation of hedging instruments and
immunization models. The creation of interest rate futures markets has
enriched the hedging opportunities of participants in the debt instruments
markets. The hedger’s objective is the optimal control of inherent risk due
to adverse interest rates changes. The hedger’s problem is straightforward: a
methodological choice of the hedging instruments and the optimal hedge ratio.
In this paper methods using interest rates futures for controlling risk and

return are proposed and demonstrated empirically.

The concept of duration, introduced for the first time by Macaulay
(1938) has proven to be a useful measure of bond exposure to interest
rate risk and consequently has been widely employed in immunization models.
Originally, duration was defined as a weighted average of the payment
periods where the weights are related to the present values of the payments
of each period. The role of duration as a proxy for interest rate risk was
originally proposed by Hicks (1939), and was rediscovered later by other
authors. Fisher and Weil (1971) demonstrate that in the absence of default
and taxes, an investor can immunize a bond portfolio against parallel
interest rates changes by matching duration with holding period.
Immunization is defined as obtaining a realized yield for a given period
that is at least equal to the promised yield to maturity. Bierwag (1979) and
Bierwag and Kaufman (1979) develop portfolio immunization policies for

interest rates following multiplicative random shock stochastic processes.



Fong and Vasicek(1984) find sufficient conditions related to the magnitude of
term structure change, for which lower bounds of the terminal portfolio value
can be defined. Motivated by the inability of traditional specification of
duration to provide a perfect proxy for basis risk in a realistic environment,
Cox, Ingersoll and Ross(1979) propose a "stochastic duration”. While
stochastic duration better characterizes bond sensitivity to interest rates
governed by mean-reverting elastic diffusion processes, its applicability is

complicated by estimation and computation problems.

Traditional immunization techniques attempt to protect bond portfolios
against a particular type of interest rate change by matching duration with
the planning horizon. The achievement of duration target values is pursued by
rebalancing the asset mix of the portfolio by selling bonds of undesirable
duration and purchasing those of desired duration. This strategy often
appears to be expensive due to relatively large transaction costs. Usually
the target duration value changes before it is reached. Also, rebalancing a
portfolio to achieve a desired duration is difficult in thin secondary

markets.

The presence of interest rate futures contracts reduces the expense of
duration rebalancing. Use of futures enables hedgers to substantially reduce
or in some cases even eliminate the risk inherent in interest rate shifts.
Traded for the first time in 1975 on the Chicago Board of Trade (CBOT) in the
form of GNMA futures, interest rate futures contracts have proliferated and

currently enjoy wide application as instruments for hedging interest rate



risk. The primary problem of the current futures markets is that contract

maturities only extend two years into the future.

The literature on hedging interest rate risk with futures is still
developing. Ederington (1979) derived a mean-variance model to minimize
variability of returns. Kolb and Chiang(1982), Gay and Kolb(1982) and Gay et
al.(1983) extend the notion of duration from spot instruments to futures
contracts. They define the duration of a interest rate futures contract as
the duration of the underlying deliverable instrument. Much of the theory
pertaining to the capacity of duration to measure the sensitivity to interest
rates changes can be applied with some modifications to futures contracts.

The duration approach proposed in the work by Kolb, Gay, and Chiang represents
a promising methodology. Using the Kolb model as a starting point,
Hillard(1984) constructs minimum variance hedge ratios for a portfolio of
futures rather than one single contract. He derives necessary and sufficient
conditions for the existence of zero variance hedges in a one-period

framework.

The futures hedging models developed so far in the literature assume
either deterministic interest rates changes or rate changes dependent on a
single state variable. The model developed in the present paper takes into
consideration the sensitivity of both spot and futures positions to changes of
their implied yield. This allows measurement of the hedging performance of a

given instrument with respect to a particular portfolio.



An important question any fixed income hedger faces is the specific
contract to be used for risk control. Typically, there are mno futures
markets for the particular spot instrument to be hedged, so cross hedging is
necessary. Often cross hedging is assumed to be the reason for all residual
return variance. However, even if futures markets existed for all the
instruments to be hedged, variations of futures prices are not perfectly
correlated with spot prices. The basis (difference between the futures
price and spot price) varies and is a source of uncertainty which also must
be controlled. Contract choice is also important to the minimization of this

basis risk.

Many futures hedging strategies developed to date are set in a one-period
framework. However, for the practitioner, hedging is not a one-period task.
The asset mix of the portfolio and the maturity structure change with time,
and thus hedge ratios need to be readjusted. Rollover of positions in the
futures markets is also necessary because of the inavailability of contracts
with settlement dates further than two years into the future. This paper
demonstrates continuously adjusted hedging strategies where these sources of

risk (and return) are controlled using available instruments.

The plan of the paper is as follows. Section II presents a continuous
time, stochastic model which leads to a description of the value of a
spot-plus-futures bond portfolio. Section III presents strategies for
controlling interest rate trend and volatility, respectively. Section IV
presents an empirical performance test of the proposed strategy. In Section

V, we give some brief concluding remarks.



IT. THE MODEL

let B denote a bond with a continuous cash flow schedule
c:(0,T)--->R + . The 1implied rate of return at time t equates the net
present value of the generated cash flow to its market price P(t). It is the

solution rg to the implicit equation:

M

P(t) = tf e -rB(t)(s-t) cB(s)ds (L

While the payment rate schedule c¢ is defined at the time the bond is issued,
and typically remains unchanged throughout the 1life of the security, the
market price, P(t), varies to accommodate for changes of the implied yield
which in equilibrium must equal the market yield for the remaining time to

maturity.

The yield to maturity rpg(t), is assumed to follow a diffusion process of

the type:
drg(t) = fp(r)dt + opdz; (2)

where the drift term fp(r) and op represent the instantaneous drift and
volatility of the process, and dz represents drawings from a normal density

function with mean zero and variance dt.

This is similar to Cox, Ingersoll and Ross (CIR),(1985), who develop a

general equilibrium framework for the term structure of interest rates and



show the spot rate to follow a mean-reverting diffusion process. The drift

term fp(r) is of the form:
fp(x) = k(6 - 1) (3)

and defines an elastic random walk. For k,f > 0 the interest rates dynamics
correspond to a continuous time first order autoregressive process where
the randomly moving interest rate is elastically pulled toward a central

location §. The parameter k defines the speed of adjustment.

As the rate rp changes, so does the price of the security, and the
holder of the bond incurs a price risk due to interest rate volatility. This
paper describes the nature of the stochastic process followed by the value of
a spot bond portfolio to which interest rates futures positions have been
added. Hedging is done by controlling the parameters which define the

stochastic evolution of the portfolio value.

Denote by F. T the price of the futures contract at time t, with a
’
settlement date T, and denote by ni the number of contracts at time t. A
positive n. indicates a long position in the contract, while a negative

corresponds to a short position.

The contractual yield implied by the future’s price is the solution,
rp(t), to the equation:

M

eT " Tf e-rF(t)(s-T)cF(s)ds (4)

F



This implied yield rp(t) of the futures underlying instrument can be
viewed as the future yield expected to prevail at time T for the deliverable
bond. For a long time it was thought that in the absence of arbitrage
opportunities for an equivalent period of time futures rates must equal
forward rates implied in the term structure of interest rates. CIR, et al
(1983) showed that whenever interest rates are stochastic, and non-parallel
rate shifts occur along the term structure, forward and futures price will
differ. However, Rendleman and Carabini (1979) and Cornell and Reinganum
(1981) conclude that arbitrage opportunities based on empirical differences in
forward and futures rates are not readily available, as the two rates are

nearly equal.

More important is the relation between the yield to maturity on a bond
and on a related future. While rg is not equal to rp, variations of the two
rates are highly correlated. We assume that rp follows a diffusion process

of the same nature as rp but with parameters of its own.

drp(t) = fp(rp)dt + opdzy (5)

From (2) it follows that the variances of the instantaneous spot rate

and that of the futures implied yield are:

Var(drp) = Var(fpdt + opdz1) = o2pdt (6)
Var (drp) = o?pdt, (7)
respectively.



The correlation coefficient of the bond rate variation and contractual
implied rate variation is assumed to be constant in time:

_ Cov(drB, drF) (8)

P
BF
aBath

The coefficient ppp describes the extent to which the implied yield to
maturity on the bond is correlated with implied yield to maturity on the
futures contract. The greater the value of this coefficient the better the
capability of the specific futures contract to control risk. The correlation
coefficient can be estimated based on historical data. Making the

notational substitution :

9BF = PBF 9BIF (9
it follows that the covariance of implied rate variations can be written as:
Cov(drB, drF) = OBth (10)

Given the stochastic differential equation (2) governing the evolution
of the rate rp, the partial differential equation satisfied by the value, P,

of the bond can be derived. Apply Ito's lemma to the function:
P(t) = P(rp(t),t)

and obtain

ar(t) = % ar + %% gr 412 9°F (dry)? (11)

it arB or



It follows immediately that

;2 = ey (6) + T (E)B(E) (12)

The above expression states that, ceteris paribus, time variation induces a
bond price decrease proportional to the cash flow rate and price increase over

any time interval proportional to the promised rate of return.

Calculating the other partial derivatives involved in equation (11), we

obtain:

M
op = 3 (f e B (o)as) -
ar ar t

B B
(13)
" rp(t) (s-t)
- ) -rg -
. J (t-s) e cy(s)ds
The continuous time equivalent of Macaulay'’s duration is defined as:
M
f(s-t) e-rB(t)(s-t)c (s)ds
Dr(t) t B (14)
B P(t)
Substitution of (14) into (13) yields:
dP(t)
drg = -Dp(t)«P(t) (15)

Equation (18) states that variations of the bond price induced by
instantaneous rate changes are proportional to the bond duration and of
opposite sign. This result is consistent with the view of duration as a
measure of price sensitivity to interest rates changes as described by CIR

(1979).



The second order derivative in equation (11) is

M t t
o°p = J (s-0)” e B0 (5)as (16)

2
arB

One alternate specification for duration proposed by Cooper(1979) second
order effects is:

M
Hy(e) = (J (s-0)7 e BT (s)ds)/p(e) an

Cooper finds duration H to be a meaningful measure of interest rate
sensitivity when term structure changes differ substantially from parallel
shifts. Duration H describing the second order interest rate effect is

related to volatility of rate changes. Substituting (17) into (16),

8°P = Hp(t)P(t) (18)

arBz

A relationship analogous to equation (11) holds true for the value

variation induced by implied yield changes in the futures market. For each

contract held long the future’s price variation is:

aF dF a F 2

dF(t) = . dt + __ drp + 1/2 . (dr ) (19)
at arF or F
where
ogF(e) _ ¢ Me TG (6yas =0 (20)
T F
at at

10



Equation (20) states that, ceteris paribus, the passage of time does not
change the quote price of the contract since all factors affecting the
contract price pertain to time past the delivery date T and thus

remain unchanged.

oF_ 8 (Je TR D (s)ds) (21)
6rF dr

F

In a continuous time framework the futures contract duration (see Kolb and
Chiang (1980), Gay and Kolb (1983) and Kolb (1985)), calculated at the

contractual implied yield is:

M

(fTe-rF(t)(s-T)cF (s)ds)
DF(C) = (22)
F(O)
SOC
aF(t) _ Dy () F(t) (23)
arF

The second derivative of the futures contract quote price with respect to the

rate rp is

2
aF H(t) F(t) (24)

)
arF

where Hp(t) represents the Cooper duration of the futures deliverable

instrument. Now we have all the elements necessary to compute the variation

11



of the hedge portfolio composed of bond B and positions in the futures
contract F. While no investment is made in the futures market at time the
position is assumed, price variations in that market induce wvalue
changes of the spot and futures portfolio. Denote by dV the value variation

of the spot-futures portfolio. Then,
dV=dP + n. dF (25)

where n. represents the number of contracts bought or sold. After
substituting (11) and (19) into (25), the spot-futures portfolio price

variation satisfies the following stochastic differential equation:

dV = [-Cg(t) + rg(t)P(t) - DR(t)P(t)fp(t) - nDp(t)F(t)fp(t)
+ 1/2 Hg(£)P(t)oy + 1/2 ngHp(€)F(t)or] de (26)

-Dp(t)P(t)opdz] - nDp(t)F(t)opdz,

The portfolio variation dV has a deterministic and a random component.
The deterministic part varies linearly with a drift factor and the length of
the time variation dt. The random component, depends on the variations dzj
and dzp. Given that the random terms dzj and dzp are normally distributed
with mean zero and variance dt, the instantaneous variance of the random part

of equation (26) can be calculated as follows:

Var(DB(t)P(t)adel + ntDF(t)F(t)f’Fdz2) =
D;(t)Pz(t)a;dt + niD;(t)Fz(t)agdt + (27)

2D (t)Dp(t)P(t)F(t)ogop Cov(dzy, dzj)

12



It can be easily shown that Cov(drp, drp) = opgoyp Cov(dzy, dzp) and Cov(dzy,

dzy) = pppdt.

It is convenient to write the stochastic differential equation (26) in
terms of portfolio instantaneous return, namely:

- dv + c_(t)dt
B (28)
Rp(de) = P(t)

The instantaneous rate of return of the portfolio is equal to the ratio of the
total capital gain on the portfolio (spot and futures position) plus
interest cash flow to the value of the portfolio. The market value of the
spot-futures portfolio is equal to the market value of the bond since no
capital outlay is required to take a position in the futures contract.
Substituting (28) and (27) into (29) it follows that the instantaneous return
Rp(dt) over an infinitesimal time interval dt can be written in the form of a

stochastic differential equation as follows:

Rp(dt) = pp(t, n.) dt + %p dz, (29)
where the drift term pp(t, ng) represents the instantaneous expected rate of
return, the term ap(t, ng) represents the volatility of the instantaneous rate

of return and dz3 is a random variable distributed N(0,dt). The specification

of the expected instantaneous return and volatility are as follows:

13



F(t)

pp(t, ng) = rg(t) - D(E)fp(t) - neDp(t) - £p(t) (30)
P(t)
2 E(8) 2
+ 1/2 HB(t)aB+ 1/2 ntHF(t) P (t) aF
and
2
2 2 2 2.2 F (t) 2
o (t, n ) =D _(t)o, + n, D o (31)
P t B B tF Pz(t) F
F(t)
+ 2 D_(£)D_(t) n g
B F tP(t) BF

The following section analyzes the hedger’s ability to control the
expected instantaneous portfolio return and volatility of instantaneous

portfolio return.

IIT RISK-RETURN CONTROL

Expression (30) portrays the instantaneous expected rate of return of a
spot-futures portfolio as a function of the number of contracts assumed. The
expected rate of return depends on the implied promised rate of return. The
higher this promised rate of return, the higher the instantaneous rate on the
portfolio. On the other hand, expected return is also dependent on the
interest rate drift. In an increasing rates environment, the position in the
spot market will induce a decrease in portfolio return. If interest rates
display a tendency to rise, (fp(t)>0), the value of the hedge portfolio tends
to decrease and thus reduce its expected rate of return. This explains why the
factor multiplying the interest rates trend factor fp(t) in equation (30) has
a negative sign. The contribution of the bond drift to the hedge portfolio’s
expected return is proportional to the bond sensitivity to rate changes as

measured by the Macaulay duration.
14



A similar remark applies for the position in the interest rates futures
market, Here however, the contribution of contractual implied rate trend
depends on the futures contract duration Dg(t), on the ratio of contract value
to bond market value, and position size in the futures market. A long
position coupled with a positive interest rates trends (fg(t)>0) will
contribute to a decrease in expected rate of return on the portfolio, while, a
short position will decrease the trend effect induced by the long spot

position.

The expected return variation induced by interest rate trend is:

D ()£, () - n D (6) « E ¢ (o) (32)
P(t)
Based on (32) a hedge ratio to reduce the effects of interest rate trend

changes on portfolio instantaneous return can be derived.

i DB(t)P(t)fB(t) (33)
DF(t)F(t)fF(t)

Holding this number of futures contracts controls the hedge portfolio’s
instantaneous expected return. Assuming that the trend factor in the spot
market equals the trend of the futures implied rate of return (fg = fy), the

hedge ratio (33) becomes:

« _ Dy(®P(®) (36)
DF(t)F(t)

If applied in a one-period framework, the hedge ratio of (34) is compatible
with the duration-based ratio proposed by Kolb(1985). However, we can see

this is not the ratio which minimizes portfolio risk.

15



The sensitivity of expected portfolio return to interest rate volatility
is measured by the Cooper duration, H. As interest rate volatility
increases, so does the expected return for holding the portfolio to compensate
the investor for bearing additional risk. The extent by which the expected
return is increased is proportional to the Cooper duration H, and the position
in the futures market ny. The change in expected instantaneous return induced

by interest rate volatility is:

o
t F P(0) F

1/2H (t)o%, + 1/2n H () (B ;2 (35)

The volatility of the instantaneous rate of return of the spot-futures
portfolio as measured by its variance is indicated in (31). It depends on the
volatility of the spot and futures implied yields, namely and op and op, and
is a function of the spot and futures duration, and of the position in the
futures market. Note that the drift terms, fg and fy, defining the stochastic
differential equations for the two rates cancels from the expression for the
portfolio’s instantaneous rate volatility. Thus, portfolio rate volatility
depends on interest rate volatility, but does not depend on interest rate

drift.

Equation (31) is used to construct a hedge strategy for minimization of

instantaneous rate of return volatility.

2 2 2
8o (tn) _ oy ey FOOO L opp F (0@ (36)
2t p(t) —— %F PF F
6nt P(t) Pz(t)

16



s e . . 2
To minimize the return variance, set aop /dn. equal to zero and solve for ng.

This gives the minimum instantaneous return variance hedge ratio:

D_(t)P(t) o
nt* - B . EF (37)
DL(DF(E)  of

* Kk
The hedge ratios n, and n differ by an adjustment factor which takes into
consideration the covariance and volatility of the spot and futures implied

rate. Using (8), the minimum variance hedge ratio of (37) becomes:

*% * %8
B¢ 7 D¢ Ppr T —
g

F

(38)

which means that the minimum variance hedge ratio can be obtained from the
ratio for controlling interest rate trend by multiplying it with an adjustment
factor. The adjustment factor is proportional to the correlation between spot
and futures rates. If no correlation exists between the two rates, the
adjustment factor is zero, and the instrument is not suitable for risk
control. On the other hand, the higher the correlation between the two rates,
the greater the hedge ratio. The adjusted hedge ratio is also dependent on the
variability of the spot rate. The greater the volatility, op, of the spot
rate, the greater the hedging needs, and thus the higher the adjustment
factor. The volatility of the futures implied rate is also important. If the
futures contract has little volatility, then more contracts will be required
for the hedge. This can be seen from the adjustment factor, where the
parameter op appears as the denominator. Performance of this hedge ratio is

tested empirically in the next section of the paper.

17



To find the minimum return volatility substitute the hedge ratio of (38)

into (31) and using (8), it follows that:
. 2 2, *% 2 2
mln(ap) = ap(nt ) = DB(t)aB (1-pBF) (39)

This shows that the correlation between the bond and the future are a

measure of hedging adequacy. = 1 is a well known necessary and sufficient

PRF
condition for existence of a perfect hedge (ie zero instantaneous portfolio
rate variance). The coefficient PR is a measure of the quality of the
"cross" hedge provided by a certain futures contract with respect to a
particular bond or bond portfolio. The closer to 1 the coefficient ceey
the lower the instantaneous return volatility. For instance when a Treasury
Bill is hedged with a T-Bill futures contract, this coefficient is expected to
be close to 1. However, differences between the spot yield and futures yield
do exist which make the coefficient close to, but different from 1. This
difference accounts for a portion of the "unhedgeable" risk, the remainder

being the basis variation as the futures contracts are rolled over. The next

section empirically documents the achievable control over risk and return.

IV EMPIRICAL EVIDENCE

To test the properties of the proposed hedging strategies, an empirical
study was conducted. The hedge of a long term government bond with a coupon
of 4.5% annual interest payable semiannually has been simulated for the period

1/30/80 thru 4/30/85. The bond used for illustration was issued in June 1960

18



and expired in August, 1985. The bond data were provided by the Center for
Research In Security Prices (CRSP), University of Chicago, while the quotes
for interest rates futures contracts were extracted from a Chicago Board of

Trade (CBOT) tape.

Four risk-return control strategies are compared: 1) unhedged bond, 2)
dynamic control of interest rates trend, 3) dynamic control of interest rate

volatility, and 4) fixed hedge ratio strategy.

Because of the long term maturity of the bond it is expected that
futures written on long term debt instruments will provide a higher rate
correlation. Consequently, T-Bond futures contracts have been selected for
the hedging strategies. The T-Bond futures contract is traded on the CBOT
exchange. Contracts are available for delivery months March, June, September
and December and the quoted price is for a 15 year 8% coupon T-Bond. There
are at all times 12 contracts corresponding to settlement dates for the next

two years.

No single contract covered the entire period under study. Consequently,
three contracts which differ in their settlement dates have been used as
follows: contract F 1 deliverable in June of 1982 for hedging from 01/31/80
thru 03/31/80, contract F 2 deliverable in December of 1982 for period
03/31/80 thru 09/30/82 and contract F 3 deliverable in June of 1985 for the

period 09/30/82 thru 03/29/85.

19



The studied period has been divided into 63 monthly subperiods at which
times the market value has been assessed based on the quoted bond price.
Column 2 of Table I lists the quote dates for each period. Bond market value

and interest paid are listed in columns 3 and 4 of the same table.

Annualized promised rates of return for the bond held to maturity have
been calculated at the beginning of each period based on market price and
coupon schedule. The results are listed in column 5 of Table I which indicate
the evolution in time of rate rp, while Figure 1 represents it graphically.
As one can easily see the covered period displays a large volatility, rates
ranging from 9.48% to 16.33%. The actual rates of return of the unhedged
bond (column 6 of Table I) were calculated based on expected market prices and
interest paid each month as:

i Py B+ I
R = ' i=1,...N (40)
u Pi

where P;, Pj,1 represent market prices of the bond at times i and i+l
respectively, and I; represents the interest payment during period i. Actual
annualized returns of the unhedged bond are listed in column 6 of Table 1.

The deviations of actual returns from promised returns calculated as:
R =R -r =, i=1,...N (41)
are tabulated in column 7 of the same table. The bubbles in Figure 2

represent graphically the actual annualized returns while the continuous line

represents the evolution of the promised rate rp. As one can see, actual

20



annualized returns differ from promised returns and therefore hedging appears

to be warranted.

Two continuously balanced hedging strategies are simulated, both using
the same contracts but differing in the specification of their hedge ratio.
One strategy rebalances the spot-futures portfolio on a monthly basis using
control of dynamic portfolio trend as in (34), and a second strategy uses
dynamic control of portfolio volatility as in (37). The performance of the
two strategies are compared with each other and with the unhedged and fixed

ratio strategies.

The parameters op, op, opp and pgp have been estimated as described

below. The implied rate variations:

i i+l i .
ArB = rB - rB. i=1,...N (42)
and
SR o B O SR (43)
F F F, - P

Estimation of the volatilities op and op are based on equations (6) and
(7). Classical inference techniques have been used to derive the parameters

op, O, ppfp and Adj with the following properties:

21



2 2
Var(Arp) = oBAt Cov(Arp,Ary) = aBFAt

Var (Arg) = olat = Cov r(Arp,Arp) (44)

F PRF

AdJ = PBfF * ©

s

Table 2 indicates the estimated values of the parameters needed for
definition of the hedge ratios. Column 6 of Table 2 tabulated the correlation
between the bond and the future, ppp, which erodes with the passage of time.
As the bond maturity becomes shorter, bond rates and futures contract rates
become less correlated. The resulting adjustment factors for each of the

three contracts are indicated in column 7 of Table 2.

The actual hedge ratios are indicated in columns 2 of Tables 3 and 4.
The absolute value of the hedge ratio decreases as time to maturity decreases.
This can be explained by the fact that with the elapse of time, bond duration
decreases. Consequently actual bond returns become less sensitive to

interest rate changes, therefore reducing the number of contracts which need

to be sold.

Gains and losses incurred in each period are indicated in Tables 3 and
4, They have been computed based on the position assumed in the futures
market and quote price spread between the beginning and end of the period.
Actual returns for both strategies have been calculated based on bond market

prices, interest paid and gain (loss) in the futures market. Actual returns

22



and deviations from promised returns are tabulated in columns 5 and 6 of Table

3 and columns 4 and 5 of Table 4.

For this sample period, in the unhedged case, on average the actual
return was more than 4% below the promised yield to maturity. Both hedging
strategies produce an average excess return above the promised rate of return.
While the portfolio trend strategy generates an "average" excess return of
almost 4%, the portfolio volatility strategy produces an "average" excess
return of over 8%. This occurs in a sample period which covers 5 years with
interest rate trends in both directions (see Figure 1), but the overall

tendency was for a rate decline.

Both hedging strategies reduce the variance of the rate deviation.
The volatility strategy 3 reduces the variance of rate deviation by 53.61%,
while the trend strategy 2 reduces the variance of rate deviation by 49.92%.

The numbers are summarized in Table 5.

To determine how our dynamic hedging strategies compare with fixed hedge
ratio strategies we calculated the ex-post variance reduction for a set of
hedge ratios in the interval (0,-1.8). The results are represented
graphically in Figure 3. The two horizontal lines mark a better level of
variance reduction for both strategies 2 and 3 compared to the fixed hedge
ratio strategy. The maximum variance reduction for the static strategy was
below 43%. Even ex-post are we unable to find a fixed hedge ratio which

outperforms the continuously updated strategies.

23



IV CONCLUDING REMARKS

Assuming nominal spot and contractual futures implied rates to follow
elastic mean-reverting continuous time stochastic processes, the stochastic
nature of the value of a spot-futures bond portfolio is determined using Ito’s
lemma. Continuously adjusted hedge strategies for controlling portfolio risk

and return are derived and empirically analyzed.

Performance of four strategies are compared: 1) no hedge, 2) continuous
control of interest rate trend, 3) continuous control of interest rate
volatility and 4) fixed hedge ratio. We find the dynamic strategies (2 and 3)
outperform the no-hedge strategy not only with respect to risk measures, but
also in terms of average expected return for this sample period. The strategy
for control of interest rate volatility (strategy 3) outperformed the strategy
for control of interest rate trend (strategy 2) in terms of both risk and
average expected return. Both dynamic strategies clearly outperform the fixed
hedge ratio approach. No ex-post fixed hedge ratio outperformed any of the

proposed ex-ante dynamic strategies in terms of risk reduction.
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FIGURE 2
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PROMISED RETURN FOR UNEEDGED PORTFOLIO

Bond
Value

85437.50
77875.00
78750.00
88125.00
90187.50
92250.00
90062.50
85687.50
84000.00
81500.00
81187.50
82843.75
82375.00
78875.00
81000.00
77875.00
79812.50
80062.50
77125.00
75562.50
74875.00
78937.50
83468.75
30750.00
80750.00
80875.00
81437.50
83250.00
83000.00
81437.50
84312.50
87937.50
89750.00
93656.25
93343.75
94500.00
94312.50
95500.00
94437.50
96031.25
94250.00
93937.50
92250.00
92262.44
93937.50
93812.50
94000.00
93812.50
94500.00
94062.50
93437.50
93062.50
91718.75
91781.25
92812.50
93375.00
94312.50
95937.50
97062.50
97718.75
98343.75
97656.25
98093.75

TABLE 1

Strategy 1

Interest
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Implied
Rate
3

0.1146
0.1363
0.1343
0.1086
0.1035
0.0986
0.1044
0.1166
0.1220
0.1301
0.1317
0.1271
0.1292
0.1413
0.1349
0.1465
0.1405
0.1405
0.1521
0.1593
0.1633~
0.1486
0.1328
0.1437
0.1447
0.1452
0.1442
0.1381
0.1400
0.1477
0.1369
0.1235
0.1172
0.1030
0.1047
0.1007
0.1018
0.0975 -
0.1023
0.096}
0.1042
0.1062
0.1147
0.1157
0.1085
g.1101
0.1100
0.1119
0.1092
0.1126
0.1176
0.1214
0.1320
0.1335
0.1286
0.1267
0.1217
0.1112
0.1037
0.0993
0.0948~
0.1022
0.0992

Ex Post
Rate

R,

-0.0622
0.1348
1.4286
0.2809
0.7983

-0.2846

-0.5829

~0.2363

-0.3571

~0.0460
0.8268

-0.0679

=0.5099
0.3233

~0.4630
0.2986
0.6296
~-0.4403
=0.2431

-0.1092
0.6511
0.6888
0.1752
0.0000
0.0186
0.0835
0.2671

-0.0360
0.3434
0.4236
0.5159
0.2473
0.5223

~0.0400
0.6548

-0.0238
0.1511

=0.1335
0.2025

-0.2226
0.4615

~0.2156
0.0016
0.2179

-0.0160
0.0240
0.4787
0.0879

-0.0556

-0.0797

-0.0482

-0.1733
0.5233
0.1348
0.0727
0.1205
0.2068
0.1407
0.5679
0.0768

-0.0839
0.0538
0.1032

Rate
Deviation

Ry-r3

-1.1768
-0.0015
1.2943
0.1723
0.6948
-0.3831
-0.6873
-0.3529
-0.4791
~0.1761
0.6951
-0.1950
=0.6390
0.1820
-0.5979
0.1520
0.4891
-0.5808
-0.3952
-0.2685
0.4878
0.5403
0.0424
-0.1437
-0.1261
-0.0617
0.1229
-0.1741
0.2033
0.2760
0.3790
‘0.1238
0.4050
-0.1430
0.5501
-0.1245
0.0493
-0.2310
0.1002
-0.3187
0.3573
-0.3218
=0.1131
0.1021
-0.1245
-0.0861
0.3687
~0.0240
-0.1648
-0.1924
-0.1657
-0.2947
0.3914
0.0013
-0.0558
-0.0062
0.0851
0.0295
0.4642
-0.0226
-0.1787
~0.0485
0.0040



VOLATILITY PARAMETERS OF FUTURES CONTRACTS

TABLE 2

Contract Estimation Adjust
Deliverable Period Op Of CBF PBF Factor
9/82 1/31/80-08/31/82 .03425 .020087 .000611 .88805 1.514489
12/82 03/31/80-11/30/82 .03227 .019651 .000556 .87692 1.44004
6/85 09/30/82-04/30/85 .02001 .017564 .000306 .87142 .9928

C

[o - I

of = (Var(irp))/it

= (Var(lrg))/it

implied rate.

opr = (Cov(irp, Orp)/it

Adjust factor

c
= Ogy ° EE (Volatility adjustment factor).

F

‘BF = Correlation coefficients of bond and futures contract implied rate.

Instantaneous volatility parameter for bond interest rate.

Instantaneous volatility parameter for contractual futures
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ANNUALIZED ACTUAL RETURNS

Futures
Price

76687.50
71000.00
71781.25
77281.25
78218.75
80218.75
74781.25
74562.50
72718.75
69406.25
71406.25
72968.75
70937.50
67656.25
68250.00
65281.25
68000.00
66531.25
64000.00
60250.00
57843.75
59937.50
65718.75
62531.25
61656.25
62062.50
62593.75
63718.75
63281.25
60937.50
62906.25
66687.50
71218.75
75593.75
73750.00
73750.00
70656.25
74062.50
73437.50
75906.25
72000.00
72062.50
67406.25
67312.50
70656.25
68281.25
68968.75
67656.25
68281.25
66437.50
64312.50
63000.00
58281.25
58187.50
63062.50
64156.25
66125.00
69437.50
70312.50
70343.75
72062.50
67843.75
69718.75

TABLE 3

Strategy 2

Futures
Gain
(loss)

5925.12
-706.73
-5219.39
-896.57
-1981.26
5235.36
222.72
1748.44
3120.72
-1911.12
-1465.85
1849.32
3035.00
-550.17
2739.47
-2508.93
1349.32
2358.85
3475.01
2336.53
-2095.97
-5686.72
2970.32
828.24
-384.27
-487.51
-999.89
378.46
2090.35
-1773.48
-3285.48
-3519.80
-2207.75
870.66
0.00
1504.96
-1711.18
289.05
~1107.50

2025.93
42.83
-1475.98
960.24
-~281.45
532.92
-251.15
706.71
812.66
502.08
1773.30
38.98
-1945.45
-370.36
-620.12
~958.44
-225.16
-7.84
-407.67
909.03
-411.38
-196.99

Annualized
Return
(Ry)

-0.2300
0.0259
0.6332
0.1588
0.5347
0.3965

-0.5533
0.0085
0.0887

-0.3274
0.6101
0.2000

~0.0677
0.2396

-0.0571

-0.0881
0.8325

-0.0867
0.2976
0.2619
0.3152

-0.1757
0.6022
0.1231

~0.0385
0.0111
0.1197
0.0185
0.6456
0.1623
0.0483

-0.2330
0.2271
0.0715
0.6548
0.1673

-0.0666

-0.0972
0.0618

-0.0163
0.4579
0.0432
0.0072
0.0259
0.1067

-0.0120
0.5468
0.0558
0.0342
0.0239
0.0163
0.0554
0.5284

-0.1195
0.0248
0.0408
0.0848
0.1126
0.5670
0.0267
0.0270
0.0032
0.0791

Return
Deviation

Rj-rp

-0.3446
-0.1104
0.4990
0.0502
0.4312
0.2979
-0.6576
-0.1081
-0.0333
-0.4575
0.4784
0.0729
-0.1969
0.0983
-0.1921
-0.2346
0.6920
-0.2272
0.1454
0.1026
0.1519
-0.3242
0.4695
-0.0206
-0.1832
~0.1340
-0.0244
-0.1196
0.5056
0.0146
-0.0886
-0.3565
0.1099
-0.0315
0.5501
0.0666
-0.1685
-0.1947
-0.0405
-0.1124
0.3537
-0.0630
-0.1075
-0.0898
-0.0018
=-0.1221
0.4367
-0.0561
-0.0750
-0.0887
-0.1012
-0.0660
0.3965
-0.2531
-0.1037
-0.0859
-0.0369
0.0013
0.4633
-0.0726
-0.0678
-0.0990
-0.0201



Period
Ro.

WS RAWNEWN -

~0.67

.
(-
o

D)

D)

h
L XYY
[RVAR AR VARSIt -

SL4848488444848448448484¢8

pR22225202RRRR

.
o
[

85548884004

POOLPPLLLPPE
rprrrrLrAPALR S
- A AR A o il AR S

PO 0o00¢
pERREEEIIEE

.

L8484 44444444448444444448848448448

)
NANMNNNNNDW
oMUV N
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TABLE 4

Strategy 3
Annualitzed
Futures Return
Cain (Ry)
3880.24 -0.5172
-462.82 0.0635
~3623.57 0.8764
-622.45 0.1961
-1375.49 0.6153
3634.66 0.1882
154.63 -0.5623
1213.86 -0.0663
2166.57 -0.0476
-1326.79 -0.2414
-1017.67 0.6764
1283.90 0.1181
2107.06 -0.2029
~381.95 0.2652
190]1.88 -0.1812
~1741.83 0.0302
936.77 0.7704
1637.63 ~0.1948
2612,.53 0.1323
1622.14 0.1484
-1455.13 0.4179
=-3948.02 0.0887
2062.15 0.4717
575.01 0.0854
-266.78 =0.0211
-338.46 0.0332
-£94.17 0.1648
262.75 0.0018
1451.23 0.5532
-1231.24 0.2422
~2280.95 0.1913
-24643.63 ~0.0861
~2221.97 0.2252
876.27 0.0722
0.00 0.6548
1514.65 0.1685
-1722.20 -0.0680
290.91 -0.0970
-1114.63 0.0609
1661.60 ~0.0150
~28.38 0.4579
2038.98 0.0649
43.11 0.0072
-14685.49 0.0247
966.42 0.1075
~283.26 -0.0122
536.35 0.5472
-252.77 0.0556
711.27 0.0348
817.89 0.0246
505.32 0.0167
1784.72 0.0569
39.23 0.5285
-1957.98 ~0.1212
-372.74 0.0245
—624.11 0.0403
-964 .62 0.0840
=-226.61 0.1124
~7.89 0.5670
~410.30 0.0264
914.88 0.0277
-414.03 0.0029
-198.26 0.0790

Return
Deviation
Ry-rp

-0.6318
-0.0728
0.7421
0.0875
0.5118
0.0897
~0.6667
-0.1829
~0.1696
-0.3715
0.5447
-0.0091
=0.3321
0.1239
-0.3161
-0.1164
0.6299
-0.3353
~0.0199
-0.0109
0.2546
-0.0599
0.3389
-0.0583
-0.1657
-0.111¢
0.020¢
-0.13€:2
0.4132
0.094°
0.0544
~0.209¢
0.108C
-0.0307
0.550!
0.0679
~0.1699
-0.1945
~0.0414
-0.1111
0.3537
=0.0613
-0.1075
-0.0911
-0.001C
=0.1223
0.437]
~0.05¢3
-0.0744
-0.0880
-0.1008
«0.0646
0.3965
=0.2547
=0.1040
-0.0864
-0.0376
0.0012
0.4633
-0.0730
-0.0671
-0.0993
-0.0203



TABLE 5

HEDGING PERFORMANCE ANALYSIS

Average Variance of Variance

Rate Deviation Rate Deviation Reduction
Unhedged -4,628 .14752 0
Strategy 1 3.9577 .07387 49.92
Strategy 2 8.1911 .06843 53.61

Rate deviation is defined as ex post return - promised return.

The average and variance of rate variation is calculated for all the
periods.

Strategy l: Continuous hedge ratio using the face value/duration only
approach.

Strategy 2: Continuous hedge ratio using the face value/duration
approach adjusted for volatility.





