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Chapter 1

Introduction

1.1 Description of a Concrete Column

Consider a cylindrical concrete column similar to those commonly used to
support modern highway bridges in areas with seismic activity (Figure 1.1).
The column is reinforced along its length by steel longitudinal bars. Around
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Figure 1.1: Typical seismic resistant cylindrical reinforced concrete column

these longitudinal bars is wound a steel spiral at a spacing, A\. The con-
crete within the spiral is referred to as the core and the concrete outside of
the spiral is referred to as the cover. Combined seismic and gravity loads
concentrate deformations in an inelastic hinge zone at the column’s base
(Figure 1.2).
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Figure 1.2: Column under the combined action of gravity and seismic forces

1.2 Observed Phenomenon

In the most common laboratory test for theses columns the following load-
ings are applied: (1) The column is loaded with a constant axial load to
represent gravity. (2) In order to simulate the action of an earthquake, the
column is deformed side-to-side by the action of lateral forces. The hinge
zone experiences the following sequence of events:

1. The cover spalls to a height of 2-3 column diameters before the longi-
tudinal bar buckling is observed. (Figure 1.3a)

2. The longitudinal bar buckles. As the buckled bar emerges from the con-
crete, the buckle is observed to have a length from 3-6 spiral spacings.
Note that this is much less than the spalling length. (Figure 1.3b)

3. The emergence of the buckle seems to be an immediate precursor to
the fracture of the buckled bar. As the column is deformed in the other
direction, the buckled bar is put into a state of tension. Due to the
damage incurred during buckling, the bar fractures. This signals the
end of the columns ability to safely support gravity loads. (Figure 1.3c)

1.3 Overview

The nature of the phenomenon is that two states of deformation are known:
the initial state and a finitely deformed state. The initial state is observed
when the column is constructed. It is seen that a straight bar is installed.
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Figure 1.3: Observed phenomenon

Next, the bar is observed in a buckled configuration as it emerges from the
concrete cover. The buckling is seen to occur over multiple spiral spacings
but not over the entire spalling length.

Since the intermediate levels of deformation are hidden, the objective is
to explain how the deformed state is reached from the initial state. To make
matters interesting, the deformation observed cannot be scaled-up from a
small deformation theory. It will be shown that the buckling must begin
over a single spacing. However, when finite levels of deformation are taken
into account, the buckling mode can make a transition from the single spacing
mode to a multiple spacing mode similar to that observed in the laboratory.

Linear Elastic Stress—Strain Relation

It is the object of this paper to consider the behavior of a concrete reinforcing
bar as it buckles with finite amplitude. The reader should be forewarned that
reinforcing bars of typical dimensions buckle in the plastic range of material
response. Allow me to set aside this material non-linearity, and consider
only the kinematic non-linearity of large deformation. In order to do this, a
reinforcing bar of typical dimensions cannot be considered. Instead, consider
a much more slender bar made of a very high strength steel. As a result the
new bar buckles elastically.

The assumption is made that the state of stress in the bar is a linear
function of only the state of strain. Working with the Green—St.Venant strain
tensor denoted, E, and the Second Piola—Kirchhoff stress tensor denoted, S.
The relation between them is written using the fourth rank tensor, C.

S=C-E C, a matrix of constants



Organization of the Report

chapter 2 The model and coordinate system are described.

chapter 3 The equilibrium equation based on the Principle of Minimum
Potential Energy is presented.

chapter 4 The equation for potential energy is derived.

chapter 5 Equilibrium is considered for a deformation characterized by the
amplitude of the buckle alone. The equilibrium equation is used to
solve for the axial load on the bar. The analysis is carried our first for
the small deformation case and then for the finite deformation case.

Section 6 A finite element analysis is performed for the finite deformation
case.



Chapter 2

Model Description

Consider a simplified model of one longitudinal bar (Figure 2.1). The bar
contacts the core over continuous intervals on one side and contacts the spiral
at discrete points on the other side. The spiral spacing is A. The contact
surfaces convey only normal tractions to the bar. When the bar is straight,
its axis is aligned with the z-axis. When the bar is deformed, it is assumed
to deform only in the z, z plane.

2.1 States of Deformation

w [}
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a) REFERENCE STATE b) COMPRESSED STATE (c) BUCKLED STATE

Figure 2.1: States of deformation

Three equilibrium states are shown in Figure 4. In the remainder of this
work they will be referred to as defined below.



Reference State — This is the unstressed configuration. The bar is straight
with length, H.

Compressed State — The straight bar compressed uniformly with infinites-
imal axial strain, €¢,. There is no transverse displacement.

Buckled State — The bar with a buckle of arbitrary shape.

2.2 Material and Spatial Coordinates

Consider again Figure 2.1. Let S be the set of material points lying on the
centerline of the bar. The points are identified by their z-coordinate in the
reference state so that S = [0, H].

Consider a point s € S as the bar deforms. In the compressed state, the
bar is uniformly compressed with infinitesimal axial strain ¢,, so s lies on the
z-axis with spatial coordinates {z(s), z(s)} = {s(1 +¢,),0}.

In the buckled state, the point will be moved an amount u(s) in the
z-direction and an amount w(s) in the z-direction. So that the spatial coor-
dinates will be {z(s), 2(s)} = {s + u(s),w(s)}.



Chapter 3

General Equilibrium Statement

Q: How will we determine the behavior of the bar as it
buckles and after it buckles?

In order to answer that question, the question is reformulated to an equivalent
one:

Q’: What buckled configurations satisfy equilibrium?

The Principal of Minimum Potential Energy is used to consider the equi-
librium of the buckled configuration characterized by the deformation func-
tions u(s) and w(s). The Principle of Minimum Potential Energy states that
among all the configurations satisfying the prescribed geometric constraints,
the state of equilibrium causes the potential energy to be stationary [1]. This
1s written

oU=0. (3.1)

Where the the potential energy of the system is denoted, U. And the vari-
ation of the potential energy, 6U, is the change in the value of U when an
infinitesimal displacement is imposed that satisfies the prescribed geomet-
ric constraints. This infinitesimal displacement is known as an admissible
variation, denoted

[u(s), w(s)] = [u(s) + du(s), w(s) + dw(s)] .

10



Chapter 4

Potential Energy

There are three separate force systems acting on the bar. Each is derived
from its own potential energy function. The three potential energy functions
are: (1) the potential of the axial load, Ujseq; (2) the potential of the strain
energy, Usirain; and (3) the potential of the spiral, Uspirq. The potential
energy of the system can be written as the sum of these terms,

U = Uload + Ustrain + Usp'iral . (41)

In the following sections, the terms of the potential energy equation are
shown to be a functionals of the centerline deformations, u(s) and w(s).
Therefore, each term of the potential energy equation will be quantifiable
for any deformation u(s) and w(s). The three potential functionals will be
denoted with a superscript carrot, ().

4.1 Axial Load Potential, Uj,,q

By assumption the axial load, P, does not depend on the deformation — it
is an externally applied force of constant magnitude. Therefore, if P moves
downward through a distance AH (Figure 4.1) the change of potential is
—P AH. Where both P and AH are positive quantities. Identifying the
reference state with Ujyeq = 0, write

Usoas = —P AH . (4.2)

The quantity AH is the amount that the two ends of the bar approach
each other,

aH=- [ " (s)ds. (4.3)
11



Figure 4.1: Potential energy of axial load

Combining this with (4.2), we can write the axial load, Useq, as a functional
of the displacement: R
Uload =—-PAH [U'(S)] (44)

4.2 Strain Energy of the Bar, Ugiain

If the stresses in a body, S, are only a function of the strains, E, the strain
energy employed in deforming in a body, B, can be written

1
Ustrain - 5 //B S-EdV. (45)
where:

S, Second Piola — Kirchhoff stress tensor;
E, Green — St. Venant strain tensor;

The material of the bar is assumed to remain linearly elastic. Using the
elasticity tensor, C:

S=C-E C, a matrix of constants

Then equation (4.5) becomes

Usran =5 [[[ (C - B) - Bav. (4.6)

The bar is assumed to be an Euler-Bernoulli beam. Based on the kinematic
assumptions of the theory, the only non-vanishing strain component is E,;.
This is shown in Appendix A. Equation (4.6) reduces to

Uurain = 5 [ Cex B2V (4.7)
12



Cys is the constant relating F,, and its work conjugate S,,. Impose the usual
assumption that allows an Euler-Bernoulli beam to satisfy zero-traction
boundary conditions along its length, S,, = S,, = 0. This implies a state of
plane stress so that, C, is the uniaxial elastic modulus, E.

Ustrain = 5 B J[[ Bzav (4.8)

Also in Appendix A, E,, is derived as a function of the displacements u'(s),
u”(s), w'(s) and w"(s).

B = B [u(s),u"(s),w'(s), w"(s)]

[1+u (5))* + w(s) — 1]
w"(s)[1 + u'(s)] — w'(s) v”(s)
VL + ()2 + w(s)

L1 [w"(s)u +(s)] - w'(s) u"(s)r

2 [1+u'(s)]? + w(s)

N = tq,

(4.9)

z is the material coordinate of the bar through its thickness. This integrates
into the section properties, and does not appear when Usrqin is evaluated.
Therefore, based on the kinematic assumptions of Euler-Bernoulli beams
(4.9), we can write Usgyqin (4.8) as a functional of the displacement functions
u'(s) and w'(s) and their derivatives.

Ustrain = Astrain [u’(s),u"(s),w’(s),w"(s)] (410)

13



4.3 Spiral Energy, Ugpiral

Figure 4.2: Configuration of displaced spiral

Say we have m spirals spacings over the length of our bar. Let s; be the
coordinate of the ith spiral spacing in the reference state. As the bar deforms
with transverse displacement w(s), each spiral spacing displaces an amount
w; (Figure 4.2), where:

w; = w(s;) i, an integer between 1 and m (4.11)

Let the amount of potential energy stored in deforming one spiral spacing
be Usne spirai (w;). Then the potential energy stored in deforming the entire

spiral:
m

Uspiral = Z Uone spiral (wz) (412)
=1

In order to determine Uppe spira; @s a function of the displacement w;,
the kinematics and equilibrium of the system are investigated. Consider the
concrete column under load. As a concrete column compresses, its cross-
section dilates; this is known as the Poisson Effect. For a spirally reinforced
column, the dilation has the effect of tensioning the spiral. This tension can
be sufficiently high to yield the spiral. The Deformation Theory of Plasticity
will be employed to consider this behavior [1]. For monotonic deformations
we can “replace” the mechanical work done in deforming a plastic material
by a strain energy. Thereby, a plastic material is treated as a non-linear

elastic material.
Assume that immediately before the onset of buckling, the column has
dilated from its original radius, R,, an amount AR to have a radius R. As a

14



result, the spiral goes from its unstressed state to having a uniform tension,
T. (Figure 4.3) We will consider the spiral to be rigid-perfectly-plastic so

Area of Detail

SPIRAL
CIRCUMF.
= 27R

Figure 4.3: Cross section before buckling

that T' will be the yield force for the spiral, T' = AgpiraFy, and will not be a
function of the displacement. !

s Area of Detail
Sy

N

TS SPIRAL % i
O BNCIRCUMF. T F -

= 2R+ AC

Figure 4.4: Cross section after buckling

Consider what happens at the onset of buckling (Figure 4.4). When the
bar moves away from the core a distance, w;, it exerts a force on the spiral.
We make the assumption that as the bar buckles, it moves monotonically
away from the core at all points along its length. Based on this assumption

1This assumption is not required. The spiral could be modeled as elasto-plastic without
affecting the nature of the final result. However, in the interest of simplicity, this model
is used.

15



we can identify the work done by the bar on the spiral, Wr, with a gain of
potential of the spiral.

Uone spiral(wi) = WT(wz) (413)
The displacement w;, increases the circumference of the spiral an amount
AC(w;) through the constant force, T. Therefore the work done by the bar
on the spiral is
WT(’U),’) =T AC(wz) .
Combining this with (4.13) yields
Uone spiral (wz) =T AC(’LU,) .
Putting this together with equation (4.12) gives
Uspiral =T ZAC(IU,) . (4.14)
i=1
Now the function AC(w;) will be approximated by assuming the deformed
shape of the spiral, r4(w;) (Figure 4.4b):

2
7‘¢('LU1;) =R+ w; (27—?) ¢ € [07 g]

The change in circumference as a function of w; becomes

AC(w;) = 2 /O %\ r2(w;) + [ (wz)rd¢ — 7R

9 *

bl 2
2 / : {R + w; ( ¢>
0 \ T
Because it will be useful for considering the small deformation case, ex-
pand (4.15) in w; and retain up to terms of the second order.

64w ¢?

+ d¢ — mR.(4.15)

AC(w;) = 2 / ( 2w’+327f];”"2 + 0(w$)> d$ — 7R
8
= 3 ,+ﬁw + O(w ) (4.16)

Taken together, equations (4.11), (4.14) and (4.15) give us the ability
to write the energy employed in deforming the spiral as a functional of the
transverse displacement.?

A~

Uspiral = Uspiral [’IU(S)] (417)

2Equation (4.16) will be used in place of (4.15) whenever w; is assumed small.

16



Chapter 5

Equilibrium Based on Variation
of One Parameter

Equation (1) describes an exact statement of equilibrium. However, in order
to solve for the exact solution we must consider all possible deformations of
the system that satisfy the geometric constraints. For complicated systems
it is generally impossible to consider all possible deformations. The best that
can be done is an approximation of the deformation.

We proceed by guessing a form of the displacement that can be char-
acterized by finitely many parameters. Then we vary the parameters in-
finitesimally in the potential energy functional. In this approximate form,
The Principle of Stationary Potential Energy defines equilibrium states as a
set of parameters for which infinitesimal variations cause no change in the
potential energy.

Taking the simplest case, we consider variations in one deformation pa-
rameter, the amplitude, a. We define an equilibrium state as a state for which
the potential energy, U, is stationary for infinitesimal changes, o — a + da.
For this, the variation of the potential energy becomes the differential, !

0

Since da # 0 we get a 1-dimensional equilibrium equation which is simply a
partial derivative of the potential energy with respect to a,

0

52U =0. (5.1)

1This is the linear part, terms of higher order in da are neglected since da is infinitesi-
mal.

17



In the rest of this chapter, this equilibrium equation will allow us to determine
the axial load, P, that when applied to the system equilibrates a buckle of
amplitude, a.

5.1 Assumed Deformation

S

%m QL
7

T3>

Figure 5.1: Assumed deformation

We assume that for any buckling length, n, the deformation of the bar can
be parameterized by the amplitude of the buckle, . (Figure 5.1) In order
to do this, the lateral displacement is assumed sinusoidal over the buckled
length and zero everywhere else.

2ms

L 1,o02ms)
w(a,n,s) = o (2 2 COS ,\n) if s < /\n (5.2)
0 otherwise

Taking the derivative with respect to s, we get w'(s) and w”(s).

T i 2TS 3
' _ ) af-sin g if s < An
w'(a,n, 5) = { 0 otherwise (5-3)
22 2rs
" _ | appEcos 5T if s<An 5.4
w'a,n, s) { 0 otherwise (5.4)

In order to make the potential energy a function of o and n, we will need
to make u' and u” functions of a and n. To do this, we assume that the arc

18



length does not change between the compressed state and the buckled state 2

1+ € = /[1 +(s)]2 + w?(a, n, 5) (5.5)

Recall from Section 2 that ¢, is the infinitesimal axial strain in the straight
compressed bar,
P
E Abar

Solving (5.5) for u’ as a function of ¢,, o and s,

€ = Apar , cross-sectional area of bar .

v (€, @, m, 8) = \/(1 + €)% — w?(a,n,s) — 1 (5.6)
Taking the derivative with respect to s gives u"(s)
w'(a,n,s) w"(a,n,s)
\/(1 + €)% —w?(a,m, s)
The deformations (5.2), (5.3), (5.4), (5.6) and (5.7) are used to compose

the functionals of the last chapter (4.4), (4.10) and (4.17). In this way, the
functionals become functions of €¢,, o, n and s. These functions will be

denoted with a superscript tilde, (7).

u" (€, a,m,8) = — (5.7)

Uwasa = —P AH(e,,o,n) = —P AH[W(s)] o v/(e, 1, S)
Ustrain - 0strain (fo, «, n) = ﬁstrain [ul(s)y u,’(3)7 ’LU,(S), w”(s)]
o{u'(€p, ,m, 8),u" (€0, 0, m,8), ¢ (5.8)
w'(a,n,s), w"(a,n,s)}

~ A~

Uspiral = Uspiral (aa 'I‘I,) = Uspiral [’LU(S)] o w(a, n, S)

J

5.2 Why the Shape of the Buckle Cannot Be
Explained By a Small Deformation Solu-
tion

In this section it will be shown that the buckle begins over one spacing.
In order to do this all of the terms of the equilibrium are evaluated for a

2Since we will consider finite deformation from the compressed state, the assumption
that arc length doesn’t change between these two states may seem implausible. However,
finite element analysis presented in chapter 6 verifies the validity of the assumption that
the end load on the bar completely determines its arclength.

19



deformation where ¢, and o are assumed small.
le,] <1 o<kl

Equations (5.8) are expanded in ¢, and «. Terms up to linear in ¢, and
up to o? are retained in the expansion. Note that all of the potential energy
functions vanish at ¢, = a =0,

p [Aﬁ (€0, a,n)]eo:a=0 = [Ustrain(fo, a’n)]eo=a=0 = [0spiral (a,n)] =0 0.

The other terms of the expansion are,

Uiada =~ —Pe, [gAH(eo,a, n)]eo:m___0 — Pa [%-AH(eo,a, n)] co—a=0
_ 1_8% — Pa? [l 22AH
Pag, [2 a5 AH (e,, n)]eo:a=0 Po [2 sz AH (e, 0, n)Lo:a:O
Ustrain ~ €o [‘5E‘O'Ustrain(6m a, n’)]e —a=0 + «a [%Us"ain(eo’ @, n)]e =a=0 (
o—Lt—= o=
1 92 gl 1 6 7
=+ e, [5 mUstrain (6oa a, n)] €o=0=0 +ta [5 TU train (60’ @, n)]e =a=0
o= o=
_ 5 192
Uspi'ral ~ (0% [%Uspzral (a’ n)] a=0 + [2 82%a U "‘al(a, n)] a=0 /

(5.9)
The terms in equations (5.9) are evaluated in the following sections. We will
proceed one equation at a time.

5.2.1 AH For Small Deformations

Substituting the assumed deformation (5.6) into (4.3) gives an expression for
AH.

AH(ep,0,n) = H — /OH \/(1 + €)% — w?(a,n, s)ds (5.10)

Where w'(a, n, s) is given by equation (5.3). Consider the first term of (5.9a)
noting that w'(a,n,s) — 0 as @ — 0. So that

[a%AH(eo, o, n)] - - !

co=a=0

(1+e) ds
\/(1 +&) —w(oym,s)| _

H
—/ ds=—H. (5.11)
0

20
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The second and third terms of (5.9a) are trivial since w'(a,n,s) — 0 as
a— 0.

- H | w'(a,n,s) Zw
[—a—AH(eo,a, n)] = / (@1, 5) pg®' (0,7, 9) ds
O €o=0=0 0 \/(1 + €)% — w?(a,n,s)
€o=a=0
=0
2 H|(1+¢)w(a,n,s) 2w (a,n,s

[ 0 H(Co,a,n)] — / ( + ) ( )Ba ( . ) ds

Oa 860 €o=a=0 0 [(1 + 60)2 - wl2(a’ n, 8)]5 eo=a=0
=0

The fourth term of (5.9a) is determined by taking the second derivative of the
integrand of (5.10) with respect to a. Only terms where w'(a,n, s) doesn’t
appear in the numerator survive:

2
l—a—AH(eo,a, n)]

"(a, n, s)] + w'(a, n, s) %w’(a, n,s)
2 0% ~2 /

V(1 +6)? — w2(a,n,s)

eo=a=0

w'(a,n, s) [Zu'(a,n,5)] .
S
(1 + €)= w(an,8)]? |

3 [ [ ()

T
i (5.12)

5.2.2  Ugirain For Small Deformations

Recall the expression for Usirain (4.8).

Ustrain = E / / / Eiz dv

Substituting the assumed deformations v’ and u” (5.6, 5.7) into the ex-
pression for E,, (4.9) yields

Em(w’,w”,eo) — Ezz(u','u", w',w”) o (u/, ul/)

"(1 R 1 2 112
= gt i z2v(te) +—[ s ].(5.13)
2 \/(1+€o)2—w’2 2[(1+e€) —w?

21
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|

In preparation for the evaluation of the terms of Equation 5.9b, now note
the following relations that will prove useful. Since w'(a,n,s) — 0 and
w"(a,m,s) = 0 as @ — 0 from (5.13) we can conclude,

[sz]€o=a=0 =0 ) [iEzm] =0 , [—a—Ezz] = -2 i’LU

9¢, eo=a=0 da Oa
In light of these facts, the first three terms appearing in (5.9b) vanish.

-é%ﬁstrain(éo,a, n) = E///B [Ezz a_z;E”]e V.= 0

J e°=a=0 o:a:O

i lwanenan) = B [ff [Ba 2 m] W =0

23a3

LG uinlenom) = 32 /l], {[ ” dade, 3 ]

=a=0

deo=a=

deo=a=0 o=a=0

+ EEM iEM dV =0
oo O¢€, om0

The derivative appearing in the fourth term becomes,

samlntenan)| = 35 [ e D

eo=a=0 eo=a=0

9 2
+ [5—01- Em] } av

eo=a=0

SYE [ﬁw am] av .

Integrating over the cross section and substituting the assumed deformation
(5.4) yields,

162
2802

1 H 2
Ustram(fo,a n)] §EI/0 [%w"(a,n,s)} ds

€o=a=0
4 ,rAn 2
- 2E1<;—n) /O cos? /\mds
T El
= . 5.14

Where I is the second moment of area,

I=//22 dA.
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5.2.3 Ugpiral For Small Deformations

In Section 4.3, we began the analysis of Uspirq for small deformations. Mak-
ing use of those results we can get an approximate expression for Uspirq by
substituting equation (4.16) into equation (4.14):

o 8
Uspirat = T —w; + —w?
spiral ; 3w + 3ﬂ_sz
Since the spiral spacings are spaced evenly over the length of the buckle,

11 AT
w.:{a(2 2cos—n) ifi<n
1

otherwise .

Combining the above two expressions yields

Tr = 2mi 2T ' 2mi\
Uspiral = a—= > <1 — cos T) + azﬁ > (1 — cos —n—) . (5.15)

=1 i=1

These are the first two terms of the expansion of Uspire: in c.

5.2.4 Equilibrium in Small Deformation

By substituting (5.11), (5.12), (5.14) and (5.15), equations (5.9) are rewrit-
ten,

~ 2 w2 \
Uload ~ PHEO - Pa fm

~ 2m4EI
Ustrain = « ZrAn)s ’

. -\ 2
~ Tr n—1 _ 2 2 2T n—1 _ 2mi
Uspiraa = o7 305 (1 cos <& ) + a3 E Y (1 cos <& ) )

(5.16)
The growth properties of Usirgin and Uspir; Will be of central importance
in considering equilibrium for the small deformation case. Notice that the
lowest order term in Usirqin is a square term in o, whereas, Uspirq cOntains a
linear term. Therefore, when « is small, the energy employed in deforming
the spiral will dominate the energy employed in deforming the bar.
For the special case when n = 1 the dominance of Uypirq no longer holds.
" Notice that when n = 1 the summations appearing in the expression for
Uspiras vanish. This case corresponds to buckling over a single spiral spacing,
which leaves the spiral undeformed.
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With these points in mind lets precede with determining the load, P,
which will hold the slightly deformed bar in equilibrium. Substituting equa-
tions (5.16) into the potential energy equation (4.1) yields,

U ~ PHe, - Po*h + o?5E (5,17
N\ 2 .
+ oZr Yo} (1 — cos 2’”) +a? 2yl (1 — cos -2;?)
Making use of the one-parameter equilibrium equation (5.1),
2U ~ —Pa2,\n + 2(7;1;})331 + Ty ( — cos 27’”-)
N2
+ ail Yt (1 — cos %’fl) =0

Solving for P,

4r?EI 1 Thn = 2mi 4T n =2 2mi\ 2
= 22NN (e —cos ¢ .
(An)? + a 3m ;( R ) * TR ; (1 R ) (5.18)

The critical load, P,, is the minimum value of P in the limit as oo — 0 for
all possible choices of n .

P.. = min (lim P)
n>1 \a—0

Considering equation (5.18), notice that it is a sum of positive terms. The
first term is the resistance to the axial force due to the strain energy. The
second and third terms are the resistance to the axial force generated by the
spiral. The second term becomes large for small values of a. So for small
values of the buckling amplitude, the force generated by the spiral will be
large. However, in the case that the buckling mode is over a single spacing,
n = 1, the summations vanish, the spiral is undisplaced by the buckle.

As a result the single spacing buckling mode will always furnish the crit-
ical load.

Am’ET
)2

This is the Euler buckling load for a fixed-fixed column with a length of
one spiral spacing.

In addition, equation (5.18) suggests that for larger values of «, this
may not be the case. As.a becomes finite, the second term may no longer
dominate and other buckling modes may be possible. However, to consider
this we can no longer make assumptions about the magnitude of .. This will
lead us into Section 5.3.

P, = (5.19)
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5.2.5 Results Hold for Plastic Material

Before moving onto the finite deformation case, briefly consider the bar de-
forming as described above but in the plastic range of material response.
A famous experimental observation was made by F.R. Shanely [2] concern-
ing inelastic buckling of rods. He observed that during the initial stages of
inelastic buckling, all fibers of the bar load monotonically in compression.

This gives us the right to identify the mechanical work done in deform-
ing a fiber of the bar with the area under the stress-strain diagram, Wp,;.
Figure 5.2.

(f) A ’f
8] E /
L ELASTIC\jy"' _—Ustrain [
= | PLasTIC ~fll
,f”” N
Wplas &
- STRAIN

Figure 5.2: Mechanical work and elastic strain energy

In order to consider the plastic small-deformation case, we need only re-
place the elastic strain energy, Ustrqin With Wyes. Note that Wy, is bounded
above by Usrgin. Consider our result in equation 5.18. Only the first term
is due to Ustrain. When the plastic response is considered this term can-
not be any greater than the result from elasticity. The other two terms are
independent of Ugiyqin SO they remain the same.

So, for the plastic case the result remains intact. The spiral terms pre-
clude buckling for all modes except n = 1. And for the case of n = 1 the
summations vanish and we have a critical load that is bounded above by the
elastic case. Therefore, the conclusion is drawn that even for the plastic case,
the buckling begins over a single spacing.

We now return to the linear elastic material and proceed to consider finite
deformation.
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5.3 Finite Deformation Buckling of a Slender
Elastic Bar Using One-Parameter Equi-
librium

The objective of this section is to investigate what happens as the size of the
buckle becomes finite. In the last section, it was shown that for an initially
straight bar, the buckle will always begin over one spiral spacing. In this
section it will be shown that as the buckle grows in amplitude, buckling over
more spacings can become favorable.

Kinematic Assumption — Near Inextensibility

Although no assumption is made about the size of the amplitude, o, we can
still make an assumption about the size of €¢,. Recall that ¢, is the strain in
the bar when it is straight and loaded with axial load P. Since the bar is
slender, ¢, < 1.

Reexamine equations (5.8) where the terms in the potential energy equa-
tion are functions of €¢,, @ and n. Now we expand in ¢,, keeping only linear
terms. Equations (5.8) become, 3

Uload ~ —P [AFI(GO’ a, n)] €0o=0 - P €o [%AFI(EO’ @, n)] €0=0

o a 7
Ustrain ~ [Ustrain (60, «, n)] + 6 [_Beo Ustrain (60, a, n)] =0
o=

€o=0
Uspira,l = Uspiral(a, TL)
. . _ P .
Substituting €, = — 55— y o

Uesd =~ —-P [AI:I(eO,a,n)] + P?2_1L [%Aﬁ(eo,a,n)] )

€o=0 E Abar €o=0

~ 7 1 3 17
Ustrain ~ [Ustrain (eo, «, n)]€o=0 - P E Apar [EUstrain (em a, n)] =0 ¢

Uspiral = Uspiral(aa ’I’L)

(5.20)

3Us,,,~m, (a,n) is unaffected by the expansion since it is not a function of ¢,
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The functions (5.20) can now be put into the potential energy equation
(4.1),

U ~ -P [Aﬁ(eo,a,n)] + P2 [iAI:I(eO,a,n)]

€0=0 E Apar | 9€ €0=0
~ 1 P
+ [Ustrain (607 a, n)] €0=0 - P E Apor [ge_oUstrain (607 «, Tl)] €0=0

+ 0spiral (a, TL)
Again making use of the one-parameter equilibrium equation (5.1),

B U ~ P2 Ejb‘" 30 _AH(eo, a,n)]%zo

- P {5% [A.EI(CO’ a, n)]eo=0 + ﬁbar% [azo U strain (60, @ n)] fo:o}

+ % [0strain(6m a,n)] + 5%0spiral(a7 n) =0

€o=0
(5.21)
Equation 5.21 is quadratic in P. In the range of deformation we are

concerned with it has only one positive root, 4

—B(a,n) + /B(a, n)2 + 4 A(a,n) C(a, n)

P e (5.22)
Where:
Alayn) = —% jhm aaa la(z,,AH(f‘”“ n)] €0=0
B(a,n) = % [AH (e, 0, n)]eo_o E/liba, aaa [66,,[}8"“’”(6‘”0 ") €o=0
Clann) = 68 [~stmm(€ma n)]e,,=o + %Uspiral(a, n)

41t is shown in Appendix 2 that the functions A(a,n), B(a,n) and C(a,n) are strictly
positive functions when a < %)\ n. So we can be sure that there is only one positive root
to the quadratic as long as the buckling amplitude is less than one-seventh of the buckling
length.
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Figure 5.3: Force-displacement curves

Force Displacement Curves

For any value of o and n the integrals A(a,n), B(a,n) and C(a,n) can be
computed numerically. Therefore, for any amplitude and buckling length,
Equation(5.22) computes the axial load, P, that maintains equilibrium for
the system. Once we have determined P and, thus ¢, (recall ¢, = — ﬁ;ﬂ ,
we can evaluate AH numerically using Equation(5.10).
. This procedure was carried out for a system with the parameters shown in
Table 5.1. A plot of P vs. AH is shown in Figure 5.3. Each curve represents
the locus of solutions for a buckling length, n. The solid line through the
origin represents the straight, compressed solution. The axes are normalized
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Parameter Value

Bar Height, H 10 inches
Bar Diameter, dpar 0.1 inches
Spiral Spacing, A 1.25 inches
Spiral Diameter, dspirar | 0.025 inches
Column Radius, Ry 12 inches
Elastic Modulus, E 2910 psi
Spiral Yield Force, T 150 pounds

Table 5.1: Model parameters

with the buckling load over one spacing, P,..;;, and the displacement of the

straight bar compressed under critical load, AH,,;; = %ﬁfﬁ.

MULTIPLE SPACING

LOAD

STRAIGHT

//r\smcu-: SPACING
Pcr

7

\\ LOCAL MAXIMUM

DISPLACEMENT

Figure 5.4: Snap buckling phenomenon

The plots reveal a snap buckling behavior [4]. Notice that as we start
to compress the bar, the solution will move along the straight solution until
it approaches the critical load. Then the bar will begin to buckle over one
spacing. Shortly after beginning to buckle, the solution encounters a local
maximum for AH. Figure 5.4. As AH is increased further snapping occurs
because no nearby equilibrium state can be found. The solution snaps to
the multiple spacing mode that has the smallest corresponding value for the
axial load. Figure 5.3 reveals that buckling modes n = 4 to n = 6 become
favorable.
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Chapter 6

Finite Element Analysis

In this chapter, the deformation is no longer assumed to be sinusoidal. In-
stead we allow the deformation to have a more general form. Whereas in
Chapter 5 the deformation was determined by «,n and, €, it will now be
determined by arbitrarily many degrees of freedom. Equilibrium states are
solved using a straight—forward non-linear finite element procedure. The
results of the finite element analysis are presented first in Section 6.1. In
Section 6.2, a full description of the finite element formulation is given.

6.1 Simulated Test Procedure and Results

A computer simulation of the bar buckling was performed. In order to force
the bar to buckle the top of the bar was incrementally displaced downwards.
The prescribed axial displacement will be denoted AH. This is similar to
a “displacement controlled” test that would be performed in a laboratory.
By prescribing the displacement, we can be assured that a solution exists for
each step. On the other hand, if the procedure was to increment the end
load, P, we would be unable to solve for equilibrium points on decreasing
portions of the force-displacement curve.

In order to keep the bar from remaining straight a small perturbation
force is applied transversely at midspan of the bar. The magnitude of the
perturbation force was small ~ 107¢P,,;;. Using symmetry, only half of the
bar was modeled, this constrained the bar to buckle over an odd number of
spacings. The model of half of the bar was descetized into 8 elements.

The “test specimen” had the same parameters as were used to generate
the force-displacement curve in Section 5.3. (Table 5.1) Figure 6.1 shows
the displaced shape of the model at several levels of axial displacement. The
axial displacement is scaled by the displacement of the straight bar under
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Figure 6.1: Displaced shape from finite element analysis

the critical load, AH.;; = ’—’%’ﬁﬂ.

Figure 6.1(a) : No Axial Displacement

Figure 6.1(a) shows the the bar under the action of the perturbation force
alone. The transverse displacement is negligible with a maximum of about
1078 inches.

Figure 6.1(b) : Before The Onset of Buckling

As the top of the bar is moved downward the transverse displacement in-
creases gradually, at first. When the axial displacement reaches 0.5 AH.;;
the transverse displacement has only reached a maximum of ~ 3-107% inches.

Figure 6.1(c) : The Onset of Buckling - Single Spacing Mode

At 0.75 AH_.; the bar has buckled over a single spacing. The transverse
displacement has increased 100 times to ~ 3 - 10™* inches. The reason why
the bar does not buckle at AH,.; is due to the imperfections in the model
caused by the perturbation force and the contact model. (The contact model
is discussed in the next section)

Figure 6.1(d) : Transition to 5-Spacing Mode
When the axial displacement is incremented slightly more to 0.8 AH,,; the
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buckling mode changes to the 5 spacing mode. The transverse displacement
increases over one thousand times to &~ 0.5 inches.

Figure 6.1(e) : Bar Remains in 5-Spacing Mode

As the axial displacement is incremented further the buckling mode remains
at 5 spacings and the transverse displacement increases gradually. Even
though the axial displacement has increased from 0.8 AH.; to 1.3 AHp
the lateral displacement has only increased to =~ 0.65 inches.
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Figure 6.2: Axial reaction, P vs. prescribed axial displacement AH

Force vs. Displacement

Figure 6.2 shows a plot of axial reaction, P, versus axial prescribed axial
displacement for the test just discussed. The data from the finite element
analysis is plotted as points over the force versus displacement curves gener-
ated in Section 5.3. We see that for small loadings the solution travels along
the solution for the straight bar. When the displacement nears the critical
level, the bar buckles. (Because of the sensitivity of the buckling load to per-
turbation, P never reaches P,.;.) Since the interval where the bar buckles
in the single spacing mode is very short it does not appear demonstratively
on the plot. However, the plot does reveal good agreement when the the bar
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has buckled in the multiple spacing mode, even for displacements that are
quite large.

Change in Arc Length vs. Axial Reaction

Recall the claim made in Section 5.1. We assumed that the arc length of

the deformed bar was the same as the straight bar under the same load. In

Figure 6.3, the change in arc length of each solution is plotted against the

axial reaction. This is compared with the axial shortening of a straight bar,
AL = PEHZ’ plotted on Figure 6.3 as well. Notice the agreement.

0.2

0.175¢

0.15¢

0.125

3 0.1

0.075

0.05

0.025

0.2 0.4 0.6 0.8 1 1.2 1.4
P

Figure 6.3: Change in arc length, AL vs. axial reaction, P

6.2 Finite Element Formulation

A full discussion of the finite element formulation follows in this section.

6.2.1 Penetration of the Bar Into the Core

In Section 5, we considered only buckling shapes that did not penetrate into
the core. In this section it is inconvenient to make such a restriction on our
displacements. Instead, we will model the penetration of the bar into the
concrete core similarly to the classical “beam on and elastic foundation”. In
the classical problem the energy associated with the beam penetrating into
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the elastic foundation is [3],

H
Ufound = g/o w2(3) ds

Where ( is called the modulus of foundation and has units of force divided
by the square of length. This model assumes that the foundation acts in
both directions. In order to have the core act in only one direction a contact
function, C, is introduced,

Ucore = —'g—/OHC [—w(s)] w?(s) ds (6.1)

The function C, is like a step function except that it is smoothed to be differ-
entiable. A sketch of C versus its argument, p, is shown in Figure 6.4. The

3

/STEP FUNCTION

1 @

CONTACT FUNCTION

p

()

Figure 6.4: Contact function, C

reason why a differentiable function is preferable to the discontinuous step
function is that a discontinuous function causes problems when integrated
numerically.!

Adding the new term, the potential energy (4.1) becomes,

U= Uload + Ustrain + Uspiral + Ucore . (62)

One other adjustment needs to be made to consider deformation into the
core. The energy associated with deforming the spiral (4.14) needs to reflect

lw" and u" are also discontinuous functions over the length of the bar. However, we

know the points of discontinuity — the nodes. So integration is not problematic. On the
other hand, the points where the bar changes from contacted with the core to separated
from the core are not known a priori. So they must either be identified or smoothed. In
my experience, smoothing is more painless.
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that the spiral is deformed only if the bar moves away from the core.

Uit = T 3°C (w) AC(ws) (6.3)

=1

6.2.2 Variation of Load Potential, §Uj,aq, Vanishes

In Section 5, the axial load, P, played a central role in the equilibrium
equation. (Recall, we used the equilibrium equation to solve for the axial load
corresponding to the assumed buckled configuration.) In the finite element
formulation, P will play no role at all.

Consider an experimental test where the bar shown in Figure 6.5 is subject
to an axial displacement, AH. The bar is held at that axial displacement

until it reaches equilibrium.
rAH
i

Figure 6.5: Prescribed axial displacement, AH

In order to determine the equilibrium state, we will consider only defor-
mations that satisfy u(H) = AH. This is called a displacement boundary
condition. When we vary the deformation infinitesimally between any two
possible deformations, the axial displacement at the top does not move — it
is fixed at AH, so its variation vanishes for any admissible variation.?

SAH =6 (KFI‘) =0

2Recall that we defined an admissible variation as a infinitesimal displacement that
satisfies geometric constraints, such as the requirement that AH = AH.
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Therefore, the variation of the load potential also vanishes for any admissible
variation.

§(Uwed) = 6(—PAH)=—6PAH — PSAH
= 0

(Recall from Section 4, 6P =0. )

6.2.3 Equilibrium For Finite Elements

In chapter 5, we based our equilibrium on the variation of one parameter,
a. In this section, we will base it on the variation of several parameters, c.
Where a is a vector of real scalars of length p.

a={a1,a2,...,ap}

Each entry of « is called a degree of freedom and p is know as the number
of degrees of freedom. In the following sections it will be shown that the
deformation and the potential energy can be written as functions of a.. For
now we assume,

U=U(a,...).

In order to determine whether a configuration characterized by « is in
equilibrium, we vary all of the degrees of freedom infinitesimally and arbi-
trarily,

a—a+da.

The change in the potential energy is the total differential of U with respect
to da. The Principal of Minimum Potential Energy says that this must
vanish.

oUu oUu oUu
oU = 5&1"a—a—1+50267“2+’“+5ap87% =0
= 6a-V U =0

Where V,U is the gradient of U with respect to the degrees of freedom, c.
Since da is an arbitrary vector, the only way that the above equation can
be satisfied is if each term of the gradient is zero,

VaU =0.

This results in p nonlinear equations in a that must be solved to find an
equilibrium position. Applying the gradient to the terms of the potential en-
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Figure 6.6: Descretization of the bar into finite elements

ergy equation (6.2) and neglecting the gradient of Ujyeq 3 yields an expression
for equilibrium that will be of use in the following sections.

chU = vaUstrain + VaUspiral + Vachore =0 (64)

Iterative Solution Using Newton’s Method

The above equilibrium equations will be solved iteratively using Newton’s
Method: —1

Where (VqU); and (VZ{U), are the gradient and the Hessian of U evaluated
at a;.* The algorithm is halted when a tolerance, 7, is reached.

I(Val);ll <7

6.2.4 Assumed Deformation

In order to implement the finite element method, the bar is discretized into
many pieces called finite elements. See Figure 6.6. Lets say we break up the

3In Section 6.2.2, we reasoned that §(—PAH) = 0 because P = 6AH = 0. We could
have explained it making using the notation of this section. P and AH are not functions
of aso VP = VoqAH =0 and, therefore, Vo (—PAH) =0

4In the finite element literature, the gradient is often referred to as the “residual” and
the Hessian as the “tangent”.
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bar into ¢ finite elements of equal length, He:

me=4
q
The material coordinates where the elements meet are known as nodes. It
is easy to verify that there are ¢ + 1 nodes in the model. The nodes are
denoted,
§j=jHe jE{O,l,...,q}.

The deformation over the entire model is assumed to be uniquely determined
by state of deformation at the nodes. We will characterize the state of de-
formation at a node by evaluating the value of the deformation functions u
and w and their first £ derivatives. Therefore, for each deformation function
there will be k£ + 1 values for each node, referred to as the nodal displace-
ments. We make an additional assumption that the deformation within the
element is affected only by the nodal displacements of the adjacent nodes.
The deformation between nodes we will interpolated using a polynomial. It
can be verified that the 2(k + 1) nodal displacements associated with a given
element can uniquely determine the coefficients a polynomial of degree 2k+1.

In order to determine what value of k should be used, we must consider
the problem we are trying to solve. For our case, the assumed deformation
must allow the evaluation of the potential energy equation. In our expressions
for the potential energy derived in chapter 4, we encountered up to second
derivatives of u(s) and w(s). Therefore, we need to interpolate with a polyno-
mial whose second derivatives do not vanish identically. The minimum choice
for k (and therefore the most economical one) is kK = 1. So the displacements
will be interpolated using cubic functions and the nodal displacements will
be the value of the function at the node and its first derivative.

The case where k£ = 1 is know as Hermitian interpolation. Write the cubic
displacements within element j:

u;(s¢) = b+ bis®+ by ($‘3)2 + b3 (5‘3)3
= X(s°)-b 0<s°<He
(6.6)

Co+ C18% + ¢ (%)% + ¢3 (5°)°
X(s%) - ¢ 0<s*< H*

Where s, is the material coordinate along the length of the element and:
X(s?) = { 1, s¢, (s)?, (s9)° }

b = {boabl,bQ)b?:}

w;(s°)

Il

C = {00,01,62,03}
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Now we want to express the b’s and ¢’s in terms of the nodal displace-
ments. Substituting the definitions of the eight nodal displacements associ-
ated with element j:

wir = w0 , w = wlH),
o= w(0) w; = w'(HY),
'LL -1 = U(O) u; = U(He),
v = vw(0) , uw = J(H),
into equations (6.6) yields:
( uj—l ) [ 1 0 0 0 1 ¢ bo )
u; 0 1 0 0 b
-1\ 1 -
< U d 1 He (He)z (He)3 < by or u; =Ab
L w; J |0 1 2He 3(H®)® | [ b5 |
and
wj—1 ) 1 0 0 0 1(e)
w) 0 1 0 0 c
J-1 \ _ 1 C—
< w; > 1 He (He)g (He)3 gcz or w;=Ac
( w) ) |0 1 2H° 3(H®)® | \ ¢35 )
Therefore b = A~!'u; and ¢ = A~'w;. So we can rewrite equations (6.6)
as:
u(s9) = N()-u,
(6.7)
wi(s) = N(s9)-w,
where
N(s%) = X(s¢) A™!

We define an operation, elem(s), that takes a material coordinate, s, and
returns its corresponding element number. And define another operation,
node(s), that takes a material coordinate, s, and returns the node number
that immediately precedes it. We can define the displacement functions

U(S) = N(S - §node(s)) * Uelem(s)
(6.8)

N(s —

These functions are the piecewise cubic interpolating functions.

’UJ(S) = §node(s)) * Welem(s)

6.2.5 Displacement Boundary Conditions

In this section it will be noted that some of the nodal displacements are
prescribed or fixed.
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Axial Displacement Boundary Condition

In order compress the bar, we prescribe the axial displacement, AH = AH,
so that

ug=AH.
Other Displacement Boundary Conditions

In addition to the axial displacement boundary condition, we have the con-
dition that the bottom of the bar is clamped in place,

wo=wy=1up=0.

And the top of the bar cannot displace transversely nor rotate,

We now form a list of all of the nodal displacements with boundary con-
ditions. These will be known as the fixed nodal displacements, denoted d.

! !
d:{wo, Wy, Yo, Wq, Wy, uq}

6.2.6 The Degrees of Freedom, a

Consider a list of all the nodal degrees of freedom, d.

d= {wO) waa Uo » 'U'67 wy, wi) u, ulla"'7wq, 'll);, Ug u;}
The nodal displacements without displacement boundary conditions are
variable parameters that we will use characterize the deformation completely.
These are the degrees of freedom, a, that we used in Section 6.2.3 to formu-

late equilibrium. Now we identify a with the elements of d that are not in
d.

_ ! [ ! ! [ 1
a—{uo, wy, Wy, U, ul,...,wq_l, wq-—l’ uq_l, uq_l, uq}

6.2.7 Gradient and Hessian of Ucore; Ustrain and Ugpiral

For the solution of equilibrium equation (6.4) by Newton’s Method (6.5), the

gradient and Hessian of Ugore, Uspirar and Ustrain taken with respect to o will
be needed.
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Gradient and Hessian of Uggre

Recall equation(6.1),

Ucore = g/OHC [—w(s)] w?(s)ds.

Break up the integral into elements,
B
Uere =53 [ € l-ws(s)] wi(s*) ds*
25 Jo

By composing the integrand with the assumed element displacements (6.7),

U.core becgmes a function of the nodal displacements, d. This function is
denoted Ueore(d).

ere(d) = 25~ [ av °) ds®
core( )__2';/0 core(wj>3) S

Where
dUcore (Wj, 8°) = C [~w;(s%)] w]?(se) o N(s°) (w;)
Now take the gradient and Hessian of Ugype(d).

y B4, [H
Valare(d) = 53 / Ve [dUsore (w;, 5°)] ds® (6.9)

j=1"0

. 9. He
Vilare(d) = B [ VA [Uire (wy, )] ds*  (6.10)

257 Jo

The gradient and Hessian of dUre (W}, s°) can be taken directly with respect
to a since the elements of a appear as elements of w;. °

In order to have the integrand of (6.10) to be continuous over the length
of an element, we need the contact function, C, to have a continuous second
derivative. Require

co =0,¢Cn =1,
c'0) =0, C(n =0, (6.11)
c"0) =0, C"(n) =0
Where 7 is called the contact dimension. See Figure 6.7. In the results
presented in Section 6.1 the contact dimension was taken to be n = 1075.

5This formulation was developed specifically to be implemented in Mathematica. Sym-
bolic manipulators of this type automate the process of taking derivatives of complicated
algebraic expressions. Therefore, it is preferable to compose the integrand of the energy
symbolically in terms of the nodal displacements. Then gradients and Hessians are taken
by the the built-in subroutines. In this way, programming bugs due to “inconsistent
tangents” are eliminated. (Hessians are always the gradient of the gradient.)
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. 15 45
[T 8 17 C’(p)
C(p) Cw
-1n In 2n
IRy,
—-1n 1n 2n -1n in 2n §’7—21

Figure 6.7: Contact function C with continuous second derivative

If we fit the continuity conditions (6.11) with the coefficients of a fifth
degree polynomial then C is

0 ifp<O0
Clp) =4 m3p° —mp*+ 50" f0<p<n (6.12)
1 ifp>n

Gradient and Hessian of Ugrain

Recall form chapter 4 the definition of Ugsygin

Urain = 5 B [[[ B2V

Where

E,, = E. [u'(s),u"(s), w'(s), w"(s)]
= S [a+ ) ) -1]
_, w"(s)[1 + u'(s)] + w'(s) u'(s)
VIL+w(5)]2 + w(s)
1, [ ()L +'(s)] +w(s) u(s)]”
*3 [ 1+ ()2 + w(s) ]

(6.13)

Once again we break up the integral into elements,

Ustrain = %Eg f / /B {Bua [u (%), (s7), w)(s%), w!(s9)] }* @V
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The axial strain in element j can be written as a function of the nodal
displacements by composing (6.13) with the element displacement functions
(6.7). Therefore, Ustyqin becomes a function of the nodal displacements d.
This function will be denoted l'.vfstmin(d).

o

Ustrain(d) = %Eil ///B {Ezz [llj,Wj,se]}2 dv
j=

Where

A

Eip[uj,wj, s°] = E,. [u}(se),u;f(se),w;(se),w}'(se)]
= Epe [N'(s%) - 1), N"(s%) - u;, N'(s°) - wy;, N"(5°) - w;]

As for (jcore(d), we take the gradient and Hessian of [Ujstmm(d) with respect
to a since the elements of a appear as elements of u; and w;.

v¢:u(j,strain = E];ql ///B Ezz [11]‘, Wj, Se] Va {Em; [Uj, Wj, Se]} dV (6.14)

1Y) q A ~
V?xUstrain = Ejgl /-//B [Ea:m [uj’ Wi, 36] V?x {Ea::c [uja Wi, Se]}
+  Va®Va{Fe 1), w;, s} ] dV (6.15)

Gradient and Hessian of Ugpiral
Recall the expression for Usyirg (6.3),
Uspiral = T ZC (w,-) AC’(w,)
=1

T i_”; [Clw(s)] ACTw(s)]],_.,,

=1

Where the summation is over the spiral spacings (not over the elements),
and where s; and w; are the material coordinate and the transverse displace-
ment of the ¢th spiral spacing, respectively. Since we have not broken this
expression into elements, we compose it with the global displacements (6.8).

Denoting the composed function lj'spiml(d),

9

Upira(d) = T i{c[w(s)l AC[w(s)] o [N(5 = Snode(s)) - Wetem(s)] }

s=8;

T iC[w(s)] AC[w(s)] o [N(si — Bnode(s:)) -welem(si)]

=1
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Since the elements of o will appear as elements in Wejem(s;), We can take the
gradient and Hessian directly and evaluate the summation term-wise.

Valspira(d) =T f; Vo {Clw(s)] AC[w(s)] 0 [N(si = Snode(ss)) - Wetem(ss)) } (6.16)

=1

Velspira(d) =T i Ve {Clw(s)] AC[w(s)] © [N(si = Snode(ss)) - Wetemss)| } (6:17)

6.2.8 Summary of Finite Element Procedure

The expressions for the gradients and Hessians (6.9), (6.10), (6.14), (6.15),
(6.16), (6.17) are employed to solve the equilibrium equation (6.4) iteratively
using Newton’s method (6.5).
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Chapter 7

Conclusion

The work presented in this thesis considers only the behavior of bars which
buckle elastically. The explanation it presents for the observed buckling mode
of concrete reinforcing bars is promising but far from rigorous. In order to
truly understand this phenomenon, a more representative constitutive law
should be used. I feel that even for the plastic case, consideration should be
given to the snap buckling phenomenon presented here.
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Appendix A

Finite Deformation
Euler—Bernoulli Beam

Let P be a material point, defined by its position in the reference configura-
tion, P (Figure A.1).

7 4

Y

Figure A.1: Reference and deformed configuration

We define a Cartesian basis such that P = X e; + Y e; + Zez. Consider
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a deformation that maps P to a deformed position, p = xe; + yes + ze3.
Assume that plane sections perpendicular to the centerline of the bar before
deformation remain plane and unstretched after deformation. (Figure A.2).

Also assume no deformation in the Y-direction. The deformation can be

1 a0 e

c(X)

Figure A.2: Cross sections remain plane, unstretched and perpendicular to
centerline

written,

y =Y,

z = w(X)+Z cosf(X).
Where u(X) and w(X) are the amounts that a point on the centerline
(Y = Z = 0) moves in the e; and es directions respectively. 6(X) is the
angle that the deformed cross—section makes with the e direction. (Fig-
ure A.2). Assume that cross—sections perpendicular to the centerline before
deformation are perpendicular to the cross section after deformation. This
requires that tangent of the deformed centerline, t(X), makes the same angle
6(X) with but respect to the e; direction (Figure A.3). Let the deformed
position of the centerline be defined by the vector ¢(X)

c(X) = [X +u(X)]e1 + w(X)es
Then the tangent to the centerline,
t(X) = [1 + ’U/(X)] e + ’UJ’(X)es

r = X+u(X)-Zsin0(X),}
(A1)
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w’(X)

Figure A.3: Relation between 6 and t(X)

So that from Figure A.3.

/
sinf(X) = w(X)
YIL+ w(X)]2 + [w(X)]2
!
cosf(X) = L+ u(X)
I+ /(X)) + [ (X)]2
w'(X)
tanG(X) ]_-FT’()()
Taking the deformation gradient of (A.1) gives,
8z 0z o
X oY 9z
F=| 3% o o
82 0z 8z
oX Y 0z
Where,
0% 1 w(X) = Z8(X) cosB(X)
ox ’
ox .
37 = —sinf(X),
9y
— =1
Y ’
92 W(X) - 26/(X)sinf(X)
0xX A
oz .
37 = sinf(X),

or oy oy _ 0
Y 0X 0z 9y
o0



The Green—St.Venant Strain,

E:—;-(FTF—I)

For convenience, the functions of X are written without showing this depen-
dence. For example, u(X) will be written as simply u. The components of
E are,

1
Exx = u'+ % [u’2 + w'2] —Z0'[(1+u')cos@ + w'sin 6] + §Z20’2

= % [+ ) +w? - 1] - ZO(1+w)? + w2 + %Z%’?

Exz = % [—sinf (1 + u') + cos fw']

1| —w'(1+4) w' (1+u)
T2 2 + 2 =0
2 Ja+uw)?+u? O +w)?+uw?

_ 1 2 29\ —
Ex; = 5(—1+s1n 0 + cos 0) =0

Exz = Eyy=Eyz=0

So Exx is the only surviving strain component. Now we express ¢’ in terms
of the other functions of X. Recall

/

sinf = d .
VA +u)? + (w)?
Taking the derivative yields,
cos 00, _ wll 3 wl [(1 + ul),ull + w’ﬂ;"]
VA+u)2+w)? [+ w)?+ (w)?)?
0[ _ wll 3 ,u)l [(1 + ul)ull + wlwII]

1+u  (I+u)[(1+uw)?+ (w)?

w”(l + u/)2 + w//(,wr)z _ w'u”(l + u/) _ (wl)zwn
(14 ) [(1+v)% + (w')?]

w”(l + u/) —w'u"

(14 )% + (w')?

Putting this together with the expression for Exx gives

Zw”(l +u) —wu 1, [w'(1+u)—wu" 2
\/(1 Fu)2+ (w2 2 (14 u)?+ (w')?

Exx = % [(1 +u)’ +w? - 1]
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Appendix B
A(a,n), B(a,n), and C(a,n) Are

. \n
Positive For o < Ton

A(a,n)

From Section 5.3,

Ala,n) = — { COAH(eO,a,n)}EFO

0

e,
22 )
{ / \/ 1—+-e1 +—60wisa n, 8)}.50:0

€o=0

Substitute the assumed deformation.

Ala,n) = EAaa/ \/1 - (a_
by

_ / 2sin 2/\"713 3

. Ea [ /\n) sin? %\Ln“’r

Note that the integrand, and therefore A(a,n), will be positive provided
An
a < e
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B(a,n)
From Section 5.3,

0 ~ 1 0 [0 -
B(a, n) N 52; [AH(GO’ & n)]eozo + EAbar 60[ [3 oUstmm(eo’ * n)] €0=0

The first term of B(a,n) becomes,

% [Af[(eo, a, n)]eo:O 5% [H _ /H \/(1 + 60)2 — w'2(oz, n, s)ds}

—-i/H \/1 - w'?(a,n, s)ds

_ /\/ a7r sin? 27rsd
= VS S

(L) s1n2 213 ds

€o=0

The integrand will be positive for o < %rﬁ

The second term of B(a, n) becomes,

1 0 |0 - . 2
EAbara_a_ [6_60Ustrain(€o’a’ n)]€o=0 - EAbar aa {060 E /// Ea::c dv]

= ol [ ]

€0=0

€0=0

Where from equation 5.13,

162 zw"(1+¢€,) 1 [ 22 w'"? ]
27 Jitey-uw? 2l(1+6) —u?

Substituting this into the second term gives,

Fioe [ Oentonn)] = age [l | g+ 2o [
3/,,,M\3 1+2(w) 4/ 1M\4 1
) [[1 - (uﬂ)?ﬁ] e [u n (w'>213]}‘”
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Integrating over the symmetric cross-section eliminates all of the terms
odd in z

1 0 0 ~ _ Ibar a9 "2 1 —3(wl)2
E Apar dax [aeoUs"‘“"(e"’”’")]EFO" Aba,/o da [(w) 1= (wyp] ©

Where I and @) are section properties,

T = [[ 244 Quar = [ 2*da

Substituting the assumed deformation and taking 5‘9&,

Ihy 82 (A—”n-)4c032 (%\"—:) 1-5 (“—’;;)2 sin? (%Ts)] ds
Aba'r /0 |

1 0 0 -
E Ay, 3_0 [a—GoUs”am(eo, * n)] eo=()—

an 3203 (l)s cos? (m

+ g f

The denominators of the integrands will be strictly positive for o < ’\—"’l The
numerator of the first integrand is positive for a < \—’)—g"; ~ %)\ n.

C(a,n)
From Section 5.3,

0 [~ 0
+ a_aUspiral(aa n)

C(a,n) = Ba [Ustrain(fm a, n)]

The first term of C(a,n) becomes,
0 1~ 1 071
a. strain\Co a |9 E2 dV]
oo [U ¢ (6 » & n)] €0=0 FE Ay, O [2 E //B e €0=0

_ 1 9 2 (w")? 3 (w")?
- A,,m.a;///B{z ] [m}

€0=0
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Integrating over the cross-section,

1 0 [~ ) _ Ibar An i "2 1- (w,)2
E A, 0o [Ustram(ﬁo, «, n)]€o=0_ Apar /0 da [(w ) [1 _ (w/)2]2 ds
Qbar An ﬂ (’LU”)4
+ Aba,./o da [4[1 — (w)?* s

Substituting the assumed deformation and taking %,

4
1 0 1~ Lo [ 80 (%) cos? (Z£2)ds
E Abar Oa [Ustrain (60, @ n)] eo=0= ZI—JI; /0 (,\ ) 2( 3 )

The integrands will be strictly positive for a < %{3

0 - 0 = bl
aaUspiral(aa n) = % T;2/O \l

The second term of C(a, n) becomes,

272
R+ w; (%) } - 2 d¢ —

4

Only w; depends on «,

= a(l 1cos2—7r—§>]
Wi = 2 27 An /s

ow; 1(1_00827rs,~>
oo 2 An

Note that %—‘fj is strictly positive.

s [R+ui(2)] (2)+ 242 ,,,

J[r+w (2] + v

U

3

o -~ m
%Uspiral(av n) = 2Tz=zl/0

This is positive since all of its terms are positive.
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