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N E U R O S C I E N C E

The evolution of white matter microstructural changes 
after mild traumatic brain injury: A longitudinal DTI 
and NODDI study
E. M. Palacios1, J. P. Owen2, E. L. Yuh1,3, M. B. Wang1, M. J. Vassar3,4, A. R. Ferguson3,4,5,  
R. Diaz-Arrastia6, J. T. Giacino7,8, D. O. Okonkwo9, C. S. Robertson10, M. B. Stein11,12,  
N. Temkin13, S. Jain12, M. McCrea14, C. L. MacDonald13, H. S. Levin15, G. T. Manley3,4, 
P. Mukherjee1,3,16*, TRACK-TBI Investigators†

Neuroimaging biomarkers that can detect white matter (WM) pathology after mild traumatic brain injury (mTBI) 
and predict long-term outcome are needed to improve care and develop therapies. We used diffusion tensor im-
aging (DTI) and neurite orientation dispersion and density imaging (NODDI) to investigate WM microstructure 
cross-sectionally and longitudinally after mTBI and correlate these with neuropsychological performance. Cross- 
sectionally, early decreases of fractional anisotropy and increases of mean diffusivity corresponded to WM regions 
with elevated free water fraction on NODDI. This elevated free water was more extensive in the patient subgroup 
reporting more early postconcussive symptoms. The longer-term longitudinal WM changes consisted of declining 
neurite density on NODDI, suggesting axonal degeneration from diffuse axonal injury for which NODDI is more 
sensitive than DTI. Therefore, NODDI is a more sensitive and specific biomarker than DTI for WM microstructural 
changes due to mTBI that merits further study for mTBI diagnosis, prognosis, and treatment monitoring.

INTRODUCTION
Despite increasing evidence from preclinical and human studies that 
mild traumatic brain injury (mTBI) causes axonal shearing injury 
of white matter (WM) microstructure that can affect the long-term 
cognitive, neuropsychiatric, and social domains of function, the lack 
of reliable objective tools to measure this pathology is a barrier to 
clinical translation (1–4). The common assumption, even among 
health care professionals, that patients with mTBI will return to 
premorbid levels of function shortly after the traumatic event often 
results in these patients not receiving appropriate follow-up care 
after the acute injury.

Diffusion tensor imaging (DTI) is the most extensively used tech-
nique worldwide to study the microstructural properties of WM of 
the central nervous system (CNS) in vivo (5–7). DTI studies of 
mTBI have shown microstructural WM disruption that can lead to 
neurocognitive and behavioral deficits after mTBI (8–10). However, 
traditional DTI metrics such as mean diffusivity (MD) and fractional 

anisotropy (FA) represent basic statistical descriptions of diffusion 
that do not directly correspond to biophysically meaningful param-
eters of the underlying tissue. Furthermore, DTI assumes Gaussian 
diffusion within a single microstructural compartment and is there-
fore insensitive to the complexity of WM microstructure, which 
requires a non-Gaussian model with multiple compartments (11). 
Perhaps as a result, prior DTI studies have produced conflicting re-
sults, with some papers reporting abnormally reduced WM FA in 
mTBI and others reporting elevations or no change in FA (12). Other 
contributing factors to this discordance in the literature include 
small effect sizes of DTI changes due to mTBI, cross-sectional studies 
with small sample sizes (<40 patients), and the dynamic nature of 
microstructural WM alterations after mTBI.

In this investigation, we overcome the limitations of DTI by app-
lying a more advanced multicompartment diffusion model known 
as neurite orientation dispersion and density imaging (NODDI) 
(13, 14). NODDI leverages recent progress in high-performance 
magnetic field gradients for magnetic resonance imaging (MRI) 
scanners that can achieve diffusion-weighting factors much higher 
than the standard b = 1000 s/mm2 for DTI and therefore probe more 
complex non-Gaussian properties of WM diffusion. The NODDI 
biophysical model uses this richer diffusion imaging data to measure 
properties of three microstructural environments: intracellular, 
extracellular, and free water. One such metric is the intracellular 
volume fraction, referred to as the neurite density index (NDI), 
which primarily represents axonal density within WM. Another is 
orientation dispersion index (ODI) of neurites, which is higher in 
loosely organized WM and lower in tracts with largely parallel fiber 
bundles such as the corpus callosum (CC). The volume fraction of 
the isotropic diffusion compartment (FISO) represents the free water 
content within the tissue (13). “Free water” refers to the unhindered 
and unrestricted diffusion of water molecules such as would be found 
in cerebrospinal fluid and in extracellular tissue edema. These NODDI 
parameters have been validated in histopathological studies of animal 
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and human brains (15, 16) and have been used to study brain devel-
opment (17, 18) and to detect subtle brain damage in other dis-
orders (19–23).

To translate newly discovered scientific results to clinical settings, 
replication and generalization are essential (24). Therefore, neuro-
imaging findings must be reproducible in an independent dataset, 
preferably one acquired under different real-world conditions—
such as scanner manufacturer, diffusion acquisition sequence, and 
diffusion MRI acquisition parameters—to demonstrate robustness 
to this variation that occurs across imaging centers. Moreover, in 
contrast to previous mostly cross-sectional studies, we present here 
a longitudinal study of two independent cohorts of 40 patients each 
to address the aforementioned reproducibility.

In this study, we aimed to (i) investigate the evolution of WM 
changes after mTBI over time by using DTI and NODDI, (ii) explore 
the prognostic significance of these WM microstructural changes 
for symptomatic and cognitive outcome after mTBI, and (iii) repli-
cate the longitudinal arm of the study with a separate validation 
dataset acquired under different conditions to demonstrate repro-
ducibility and generalizability of the results. Comparing DTI to 
NODDI serially after mTBI, we hypothesize that the early micro-
structural WM changes of mTBI would be driven by increases in free 
water due to vasogenic edema, whereas longer-term degenerative 
changes would be reflected by decreases in axonal density.

MATERIALS AND METHODS
All participants were enrolled at Zuckerberg San Francisco General 
Hospital and Trauma Center as part of the prospective Transforming 
Research and Clinical Knowledge in Traumatic Brain Injury project 
(TRACK-TBI) (25). A total sample of 40 patients with mTBI (age: 
x ̅ = 30.35 years, SD ± 7.50; education: x ̅ = 15 years, SD ± 2.68; sex: 
9 females/31 males) was included within 24 hours after injury upon 
meeting the American Congress of Rehabilitation Medicine (26) 
criteria for mTBI in which the patient has to exhibit a traumatically 
induced physiological disruption of brain function as manifested by 
(i) any period of loss of consciousness (LOC), (ii) any loss of memory 
for events immediately before or after the accident, (iii) any alter-
ation of mental state at the time of the accident (feeling dazed, dis-
oriented, and/or confused), or (iv) focal neurologic deficits that may 
or may not be permanent. Other inclusion criteria were age between 
18 and 55 years, brain computed tomography (CT) as part of clinical 
care within 24 hours of injury, no substantial polytrauma that would 
interfere with the follow-up and outcome assessment, and no MRI 
contraindication. Fifteen patients reported history of anxiety or de-
pression, but none had a history of major psychiatric or neurological 
disorders. Visual acuity and hearing adequate for outcomes testing, 
fluency in English, and ability to give informed consent were required. 
Galveston Orientation and Amnesia Test score assessed at the time 
of informed consent was normal (x̅ = 98.63, SD ± 2.18). A second 
longitudinal matched cohort of 40 patients with mTBI (age: x ̅ = 
34.38 years, SD ± 11; education: x ̅ = 15.6 years, SD ± 2.1; sex: 
11 females /28 males) was included for replication and generaliza-
tion purposes from the same TRACK-TBI project and recruitment 
criteria. Of the initial cohort of patients with mTBI, 9 of 40 reported 
having a previous mTBI. From the replication cohort, 12 of 40 pa-
tients reported a previous mTBI.

Fourteen orthopedic trauma control subjects (“trauma controls”) 
matched by age (x̅ = 31.71 years, SD ± 10.14), education (x̅ = 15.5 years, 

SD ± 2.17), and sex (six females/ eight males) were also recruited 
from the emergency department. Orthopedic injury causes in-
cluded falls, pedestrian run overs, and bike accidents. All subjects 
presented with lower extremity fractures except for one with an up-
per extremity fracture. Orthopedic controls were ruled out for the 
current study if the emergency room physician required CT scan for 
suspicion of head trauma; if, by interviewing medical services or 
subjects, participants reported clinical information such as LOC, 
amnesia, previous TBI, psychiatric, or neurological prevalent pa-
thology; and if, according to the abbreviated injury scale, this study 
would be counterproductive for their sustained systemic injuries. In 
addition, however, we also recruited a group of 19 healthy controls 
without systemic injuries (x̅ = 36.33 years, SD ± 13.5), matched for 
education (x ̅ = 16.11 years, SD ± 2.13), and sex (6 females/13 males) 
to be compared to the initial mTBI cohort. This group was recruited 
from friends and family relatives of the patients and will be referred 
as “friend controls.”

These two control groups, trauma controls and friend controls, 
serve to ensure that any differences with the patient cohort are 
reproducible and generalizable across participants without recent 
trauma history and also those with recent trauma not related to the 
brain. All eligible subjects who voluntarily agreed to participate gave 
written informed consent. All study protocols were approved by the 
University of California, San Francisco Institutional Review Board.

Neuropsychological assessment
Commonly affected neuropsychological domains after mTBI were 
assessed using self-report and performance-based cognitive measures 
at 2 weeks and 6 month after injury: (i) The Rivermead Postconcussion 
Symptoms Questionnaire (RPQ), a self-reported questionnaire con-
sisting of 16 physical and psychosocial symptoms frequently reported 
after mTBI; (ii) the Rey Auditory Verbal Learning Test (RAVLT) to 
evaluate learning short- and long-term memory; (iii) Trail Making 
Tests A (TMTA) and B (TMTB) to evaluate attention, processing 
speed, and cognitive flexibility to switch tasks (TMTB-A); and (iv) 
the Wechsler Adult Intelligence Scale (WAIS) coding and symbol 
search subscales for processing speed and visuo-perceptive associa-
tion learning (27). All measures were the raw scores.

Image acquisition
All mTBI subjects of the initial cohort were scanned on a 3T GE 
MR750 equipped with an 8-channel phased array head radiofrequency 
coil (GE Healthcare, Waukesha, WI) at 2 weeks (x ̅ = 13.30 days, 
SD ± 2.10) and 6 months (x ̅ = 184 days, SD ± 8.86) after injury. 
Whole-brain diffusion MRI was performed with a multislice single- 
shot spin-echo echoplanar pulse sequence (echo time [TE] = 81 ms 
and repetition time [TR] = 9 s) using 64 diffusion-encoding direc-
tions, isotropically distributed over the surface of a sphere with 
electrostatic repulsion, acquired at b = 1300 s/mm2, another 64 di-
rections at b = 3000 s/mm2, and eight acquisitions at b = 0 s/mm2 
for each set of 64 diffusion-weighted directions, each slice with a 
thickness of 2.7 mm with no gap between slices, a 128 × 128 matrix, 
and a field of view (FOV) of 350 mm by 350 mm, resulting in 2.7-mm 
isotropic voxels. Sagittal three-dimensional (3D) inversion recovery 
fast spoiled gradient recalled echo T1-weighted images (inversion 
time [TI] = 400 ms and flip angle = 11°) were acquired with 256-mm 
FOV and 200 contiguous partitions (1.2 mm) at 256 × 256 matrix. 
Sagittal 3D gradient echo T2*-weighted images (TE = 250 ms, TR = 
500 ms, and flip angle = 10°) were acquired with 256-mm FOV and 
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130 contiguous slices (1.6 mm) at 192 × 192 matrix. Sagittal 3D 
T2-weighted fluid-attenuated inversion recovery images (FLAIR; 
TE = 102 ms, TR = 5750 ms, and TI = 1630 ms) were acquired with 
256-mm FOV and 184 contiguous slices (1.2 mm) at 256 × 256 
matrix. The control group scans were acquired with the same pa-
rameters of acquisition as the mTBI patients, with data available for 
this study at the 2-week time point after orthopedic injury for the 
trauma control group.

The replication patient dataset, consisting of the second longi-
tudinal mTBI cohort, was acquired on a 3T Siemens Magnetom Skyra 
scanner equipped with a 32-channel phased array head radiofrequency 
coil. Whole-brain diffusion MRI was performed with single-shot 
spin-echo EPI (echo-planar imaging) images at a multiband factor 
of 3 (TE = 94 ms and TR = 2.9 s) using 64 diffusion-encoding di-
rections acquired at b = 1000 s/mm2 and another 64 directions 
at b = 3000 s/mm2, each slice with a thickness of 2.4 mm with no 
gap between slices, a 96 × 96 matrix, and a FOV of 230 × 230 mm. 
The diffusion MRI sequence also included both forward and reverse 
phase encoding for eight b = 0 s/mm2 image volumes for each of the 
two diffusion-weighted shells. Differences in scanner manufac-
turer, diffusion acquisition sequence, and diffusion acquisition pa-
rameters from the first mTBI patient cohort serve to ensure that any 
results are robust to variation in these factors that can differ across 
institutions.

MRI image processing and analysis
See Fig. 1 for overview of imaging methods. This study included (i) 
cross-sectional group comparison analysis of the initial cohort of 
patients with mTBI versus the group of orthopedic trauma controls 
(N = 14), (ii) cross-sectional group comparison analysis of the ini-
tial cohort of patients with mTBI versus the group of friend controls 
(N = 19), (iii) longitudinal comparison analysis at 2 weeks versus 
6 months after injury of initial cohort patients with mTBI (N = 40), 
(iv) longitudinal comparison at 2 weeks versus 6 months after injury 
of replication cohort patients with mTBI (N = 40), and (v) machine 
learning analysis of cognitive/behavioral recovery in both longi-
tudinal mTBI cohorts and in relation with the imaging at 2 weeks 
versus 6 months after injury.

Radiological findings
Structural MRI images were interpreted by a board-certified neuro-
radiologist (E.L.Y) who was blinded to the initial presentation and 
subject group designation using the National Institutes of Health 
(NIH) Common Data Elements (CDEs) for TBI pathoanatomic 
classification (28). Table S1 summarizes the neuroradiological 
findings on structural 3T MRI for both cohorts of patients with 
mTBI. The MRI scans for the control group had no findings spe-
cific for TBI.

Diffusion tensor imaging
The diffusion MRI data were verified to be free of major image arti-
facts or excessive patient movement, defined as more than 2 mm of 
translation and/or rotation. DTI preprocessing and analysis were 
performed using tools from the Oxford Centre for Functional MRI of 
the Brain (FMRIB) software library, abbreviated as FSL (version 5.0.7). 
First, images were corrected for eddy distortions and motion using 
an average of the eight b = 0 s/mm2 volumes for each diffusion- 
weighted shell as a reference. The registered images were skull-
stripped using the Brain Extraction Tool (29). All the resulting brain 

masks were visually inspected for anatomic fidelity. DTI parameters 
maps were calculated using the FSL Diffusion Toolbox.

Multicompartment biophysical modeling of diffusion  
MR imaging
NODDI metrics were derived using the NODDI toolbox v0.9 (www.
nitrc.org/projects/noddi_toolbox). We averaged the corresponding 
eight b = 0 s/mm2 images for each diffusion weighting. The NODDI 
code was modified to account for the slightly differing minimum TE 
between images acquired at b = 1300 s/mm2 versus b = 3000 s/mm2 
by fitting the NODDI model to the normalized diffusion-weighted 
images instead of the raw images (30). As per the developers’ recom-
mendation, the diffusion-weighted images at each b value were 
normalized by the mean b = 0 s/mm2 images acquired with the same 
minimal TE scan parameter, generating images with TE-independent 
signal intensity, as we have described previously (17, 30). NODDI 
fitting was performed with the NODDI MATLAB Toolbox using 
the default settings (www.nitrc.org/projects/noddi_toolbox, v0.9). 
Maps of NDI, ODI, and FISO were generated.

Statistics
Tract-based spatial statistics WM voxelwise analysis
After calculation of the FA map, a voxelwise statistical analysis of 
the FA data was performed using tract-based spatial statistics (TBSS). 
FA data were aligned into the common FMRIB58 FA template, 
which is in MNI152 (Montreal Neurological Institute) standard 
space, using the nonlinear registration algorithm FNIRT (31). Next, 
a mean FA image was created from the images for all the subject’s 
serial scans in this common space and thinned to generate a mean 
FA WM skeleton that represented the center of all tracts common 
to the entire group of scans and thresholded at > 0.2. The aligned 
FA volume was then projected onto the skeleton by filling the skel-
eton with FA values from the nearest relevant tract center. Output 
images and the 0.2 thresholded skeleton were visually inspected 
for accuracy.
TBSS WM regions-of-interest–based analysis
Twelve main fasciculi were studied using masks obtained from the 
Johns Hopkins University (JHU) white-matter tractography atlas, 
mapped onto the standard MNI152 space, and resampled to 1-mm 
resolution. Binary mask images from the fasciculi of interest were 
used to mask the individual skeletonized maps previously registered 
to the MNI standard space using the nonlinear tools in the TBSS 
procedure. Mean FA, MD, ODI, NDI, and FISO values were obtained 
from each subject’s WM skeleton and each of the skeletonized re-
gions of interest. Right and left tracts were averaged into one single 
measurement.

We compared between subjects using a voxelwise general linear 
model (GLM) analysis with permutation testing to correct for multi-
ple comparisons (32) using threshold-free cluster enhancement 
(TFCE), familywise error (FWE) corrected at P ≤ 0.05. An unpaired 
t test was used to cross-sectionally compare the group of patients 
and controls in the voxelwise analysis at 2 weeks. A paired t test was 
used to compare differences among DTI and NODDI measures 
within the patient group between 2 weeks and 6 months.
Machine learning analysis
Many patients with mTBI remain functionally impaired long-term 
after injury (33). In an attempt to distinguish these patients in our 
cohort, we used unsupervised machine learning to derive a metric 
of cognitive and symptom improvement and link it to the imaging 

http://www.nitrc.org/projects/noddi_toolbox
http://www.nitrc.org/projects/noddi_toolbox
http://www.nitrc.org/projects/


Palacios et al., Sci. Adv. 2020; 6 : eaaz6892     7 August 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 11

biomarkers. First, to obtain and define a global improvement mea-
sure (GIM) that best reflects their outcomes, we first subtracted 
the 2-week scores from the 6-month scores for each of the nine 
self- reported and cognitive measures described in table S2 for each 
subject and then used a Z score transformation to normalize the values. 
Because each individual test could be noisy, we sought to combine 
them together into a single composite metric that we defined as the 
GIM. We approached this task through an unsupervised k-means 
clustering analysis with 2 clusters and 30 replicates in MATLAB 
2012b (The MathWorks Inc., Natick, MA, USA). We then calculated 
a hyperplane to separate these two clusters equidistantly, and each 
subject’s GIM was defined as the signed (positive/negative) distance 
between the subject’s recovery status and this hyperplane. This 
distance can also be expressed as a weighted average of the various 
symptomatic and cognitive metrics (Fig. 2A). Intuitively, this rep-
resents a data-driven method to combine the various self-reported 
and cognitive performance-based metrics to provide a wide degree 
of discrimination between patient outcome groups. We used two 
clusters because we were interested in distinguishing the patients 
with the best improvement from those who did not improve. While 
one cluster represents patients whose testing trend indicates overall 
improvement between 2 weeks and 6 months, the other cluster rep-
resents patients whose overall testing indicates a lack of improve-
ment or, in some cases, a regression of testing performance. Last, we 
performed the voxelwise comparison among clusters determined 

by the GIM measure with the DTI and NODDI metrics using ran-
domize, the nonparametric permutation analysis tool in FSL, with 
TFCE correction for multiple comparisons at P < 0.05.

RESULTS
Neuropsychological assessment of patients with mTBI
Table S2 (A and B) displays results for the longitudinal self-report 
and performance-based cognitive measures at 2 weeks and 6 months 
after injury for the initial and replication mTBI cohorts. Three of the 
subjects from the replication cohort were excluded for not having 
completed the full neuropsychological battery. Overall, patients self- 
reported a significant reduction in postconcussive symptoms on the 
RPQ and in disability on the GOSE, but a subset of subjects showed 
persistent self-reported symptomatology and disability at the 6-month 
time point. Moreover, patients manifested improved performance 
in processing speed (TMT) and visuo-perceptive association learning 
(WAIS coding and symbol) over the 6-month period.

DTI and NODDI voxelwise group comparisons
Cross-sectional analysis between the initial cohort of patients 
with mTBI versus orthopedic trauma controls and between 
initial cohort and friend controls at the 2-week time point
Compared to the trauma and healthy controls, the initial mTBI co-
hort showed lower FA and higher MD in the genu and body of the 

Fig. 1. Overview of the imaging analysis and statistical methods. 
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CC, anterior and posterior limbs of the internal capsule (ALIC and 
PLIC), anterior corona radiata (ACR), anterior thalamic radiation 
(ATR), external capsule (EC), and cingulum. FISO was found to be 
higher in patients versus controls not only for the same tracts but 
also in the superior longitudinal fasciculi (SLF), posterior corona 
radiata (PCR), and inferior fronto-occipital fasciculus (IFOF). To a 
lesser extent in the initial cohort, NDI also showed lower values 
mainly in the EC, ATR, inferior longitudinal fasciculi (ILF), fornix, 
and stria terminalis. For NDI, the statistically significant tracts are 
the same when comparing to the two control groups; however, the 
extent of significant voxels is greater when comparing to the friend 
controls (Fig. 3A). Figure 4 shows the mean values, effect sizes (Co-
hen’s d), multiple comparisons FDR corrected, and distributions of 
the sample for FA, MD, NDI, and FISO in the JHU tracts shown to 
be most affected in the initial mTBI cohort versus ortho controls and 
versus friend controls for the data-driven voxelwise TBSS analysis.
Longitudinal analysis of patients with mTBI at 2 weeks versus  
6 months in the initial and replication mTBI cohorts
Longitudinal voxelwise analysis of patients with mTBI showed de-
creases over time of NDI in ACR, PCR, posterior thalamic radiation 
(PTR), ILF, IFOF, ATR, EC, and uncinate fasciculi (Fig 3B). FISO 
showed decreases over time in the PCR (Fig 3B). NODDI measures 
were more sensitive to progressive microstructural damage in pos-
terior tracts than DTI, both in the initial and replication cohorts. 
Mean values and effect sizes, as well as the distribution, for changes of 
DTI and NODDI over time in the PTR, PCR, and sagittal stratum are 
displayed in Fig. 5. Results are corrected for multiple comparisons 
using FDR.

Machine learning analysis
Machine learning clusters among patients with mTBI and  
their GIM
Two clear clusters were obtained (table S2) dividing the group of 
patients with mTBI based on their change in self-reported measures 
(GOSE, RPQ3, and RPQ13) and cognitive-performance measures 
(WAIS symbol-coding, TMTB-A, and RAVLT). For the initial co-
hort, cluster K1 included 24 patients who had less improvement on 
the GIM metric than K2, which consisted of the 16 patients with the 
best global improvement. For the replication cohort, K1 included 

23 patients who had less improvement on the GIM metric than K2, 
which consisted of the 14 patients with the best global improvement 
(Fig. 2B). Table S2 (C and D) shows the change from 2 weeks to 
6 months after injury in the self-report and cognitive performance 
measures that comprise the GIM across the 40 initial cohort patients 
and the 37 replication cohort patients, respectively. While the effect 
sizes of the change over time appear small, these group averages 
obscure variation among patients that can be uncovered by the 
unsupervised machine learning analysis dividing the group into two 
clusters based on the GIM. It is noteworthy to mention that, because 
of this division, K1 and K2 differed in years of education only in 
the initial cohort (K1: x ̅ = 14.4 years, SD ± 2.1; K2: x ̅ = 17.7 years, 
SD ± 2.5; P = 0.002).
Self-report and cognitive measures based on machine  
learning clustering
Table S2 (C and D) shows the difference between K1 and K2 in each 
of the measures. The patients from the initial cohort of K2 were much 
more symptomatic on the RPQ than those of K1 at 2 weeks after 
injury but recover to symptom levels similar to K1 by 6 months after 
injury. Similarly, in the replication cohort, K2 patients make a better 
symptomatic recovery compared to K1 at 6 months. K1 for this rep-
lication cohort remains almost at the same level of symptoms over time.

For cognitive performance measures, in the initial cohort, K2 
group perform equivalently to K1 at 2 weeks after injury but, at the 
6-month time point, are significantly outperforming their K1 
counterparts on the RAVLT and the WAIS, particularly the WAIS 
coding subtest. K2 also trended toward better performance than K1 
on the TMTA at both time points. In contrast, for the replication 
cohort, the patients of K2, despite being more symptomatic on the 
self-reported measures at 2 weeks, perform better on cognitive test-
ing than K1, except for memory (RAVLT). At 6 months, the K2 group 
recovered memory to a good average level and overall improve perform-
ance in all cognitive areas, whereas the K1 group, despite making 
slight overall improvement, would drop on executive function 
(TMTBA) and memory (RAVLT).
Voxelwise group comparison of the DTI and NODDI parameters 
based on machine learning clustering
No significant relationship between traditional DTI metrics and 
GIM was found. However, NODDI metrics were associated with 

Fig. 2. Machine learning clustering for GIM. (A) Two-dimensional schematic illustration of the clustering of change in cognitive and behavioral scores and the principal 
component analysis projection used to define GIM (arrows for some subjects demonstrating this distance). Participants farther from the line in the upper right direction 
have better degree of recovery (black points), and participants farther from the line in the other direction have less recovery (red points). (B) Representation of the two 
clusters based on their GIM showing cluster K1 (red; n = 24), patients with less recovery, and cluster K2 (black; n = 16), patients with more recovery for the initial cohort; 
and cluster K1 (red; n = 23), patients with less recovery, and cluster K2 (black; n = 14), patients with more recovery for the replication cohort. The triangles indicate the 
mean GIM for each cluster.
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cluster membership based on GIM in the initial cohort (Fig. 6). The 
voxelwise group comparison between K1 and K2 revealed increases 
in FISO in K2 compared to K1, but the pattern of elevated FISO 
varied between the 2-week and 6-month time points. The increased 
FISO of K2 versus K1 was posterior predominant at 2 weeks after 
injury, whereas the increased FISO of K2 versus K1 was anterior 
predominant at 6 months after injury. In contradistinction, increased 
ODI of K1 versus K2 was found, both at 2 weeks and at 6 months 
in a largely stable pattern encompassing much of the central WM 

tracts, with only the right internal capsule showing resolution of the 
elevated ODI at 6 months. We did not find significant differences 
for either DTI or NODDI measures for the replication cohort based 
on the group division by GIM.

DISCUSSION
The main findings of this study are (i) early lower FA and NDI and 
early higher MD and FISO in mTBI versus both trauma controls 

Fig. 3. Cross-sectional and longitudinal voxelwise analysis. An unpaired t test was used to compare cross-sectionally the group of patients and orthopedic trauma and 
friend controls in the voxelwise analysis at 2 weeks. A paired t test was used to compare differences among DTI and NODDI measures within the patient mTBI group 
between 2 weeks and 6 months for each the initial and replication cohorts. (A) Left: Cross-sectional voxelwise analysis comparison at 2 weeks between the initial cohort 
and trauma controls. Right: Cross-sectional voxelwise analysis comparison at 2 weeks between the initial cohort and friend controls. FA, fractional anisotropy; MD, mean 
diffusivity; ND, neurite dispersion index; FISO, volume fraction of isotropic water. yellow, parameter increased in patients relative to controls; dark/light blue, parameter 
decreased in patients relative to controls. (B) Left: Longitudinal voxelwise comparison between 2 weeks and 6 months after injury in the initial mTBI cohort. Right: Longi-
tudinal voxelwise comparison between 2 weeks and 6 months after injury in the replication mTBI cohort. In dark/light blue, parameter decreased over time. All results 
corrected for multiple comparisons using TFCE FWE at P ≤ 0.05. The number next to each image is the MNI atlas coordinate defining its plane.
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and friend controls, (ii) longitudinal WM changes of mTBI shown 
by decreases in NDI and FISO over time, (iii) reduced ODI in those 
patients with mTBI without symptomatic or cognitive improvement 
(K1) and dynamically elevated FISO in those patients with mTBI 
with symptomatic recovery and progressively improved cognitive 
function (K2), and (iv) robustness of the longitudinal results and 
the sensitivity of NODDI as a biomarker for progressive WM de-
generation due to mTBI, as shown for the results of the replication/
generalization cohort.

Traumatic brain injury involves multiple different time-varying 
pathophysiological effects, including diffuse axonal injury, diffuse 
microvascular injury, and neuroinflammation, which can lead to 
neurologic dysfunction (34). Because of this complexity, combining 
different biophysical measurements has potential for characterizing 
the underlying microarchitectural changes in the brain tissue (35). 
Our cross-sectional DTI findings at the 2-week time point showed 
lower FA and higher MD in mTBI versus both trauma controls and 
friend controls, mainly in the frontal and temporal lobes. This agrees 
with prior DTI studies of early mTBI (8, 12). In addition to these 
established DTI results, NODDI analysis revealed two additional 
findings at 2 weeks after injury. First, NDI was lower in patients with 

mTBI versus both orthopedic trauma controls and friend controls. 
Second, we found higher FISO values in the same predominantly 
anterior distribution as FA and MD. The anterior cerebrum under-
goes the most angular acceleration from rotational forces since it 
is farthest from the axis of rotation at the neck; therefore, it may 
develop the most early edema (high FISO) and axonal injury (low 
NDI). Overall, these cross-sectional results, which are replicated and 
generalized across two different control groups without and with 
non-CNS trauma, suggest that the early lower FA and higher MD 
values after mTBI is due to an increase in free water content, possibly 
reflecting neuroinflammation. The sole prior report of DTI and 
NODDI measurements in TBI, a cross-sectional study of young 
athletes, found increases in FA and increases in NDI and reduced 
ODI values (36). These results may differ from those found in our 
study due to the mechanism of injury involving repetitive sub-
concussive hits over long periods of time, thereby conflating injury 
and recovery effects, rather than a single episode of mTBI that can 
be serious enough in some cases to produce anatomic lesions on 
structural MRI.

Longitudinally, within the group of patients with mTBI, we 
observed decreases over time in NDI values in both initial and 

Fig. 4. JHU tracts cross-sectional comparison at 2 weeks between initial mTBI cohort versus ortho controls and friend controls. Averaged FA, MD, NDI, and free 
water fraction (FISO) values of the left/right JHU tracts for each participant and significant tract at the 2-week time point. BCC, body corpus callosum; ALIC, anterior limb 
internal capsule; PLIC, posterior limb of internal capsule; ACR, anterior corona radiata; EC, external capsule; CGC, cingulum. Patient and control comparison FDR corrected 
at P < 0.05. d, Cohen’s d effect size.
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replication mTBI cohorts, suggesting progressive axonal degenera-
tion, while there were no significant differences in the DTI param-
eters in either mTBI cohort. Hence, NDI is a more sensitive metric 
of WM axonal loss than DTI metrics such as FA or MD. The de-
creases of NDI over time in both mTBI cohorts were primarily in 
the bilateral posterior periventricular and left anterior periven-
tricular WM. It has been shown that a disproportionately high 
number of structural connectome links between gray matter areas 
traverse these regions of deep WM, which form a consistent nexus 
of network connectivity in the human brain (37, 38). In addition, 
virtual lesioning of these areas of deep periventricular WM in trac-
tography simulation experiments is particularly disruptive to the 
overall integrity of the whole-brain WM network, demonstrating 
their singular importance to the large-scale structural connectome 
(39). Abnormal posterior periventricular WM microstructure is 
also observed in sensory processing disorders (40, 17) and is the 
only consistently affected WM region in a meta-analysis of DTI 
studies of attention-deficit hyperactivity disorder (41). Further-
more, the global integrity of the structural connectome is linked to 
attention and executive function (42). This constellation of recent 
results may account for the major impairments of concussions and 
mTBI, which are sensitivity to sensory stimuli, attention deficits, 
and executive dysfunction. Future studies combining microstruc-
tural characterization of these posterior periventricular WM tracts 
with connectomic mapping may prove especially effective for ex-
plaining long-term symptomatic, cognitive, and behavioral outcomes 
after mTBI.

The original result of decreasing WM NDI over time and its 
replication in a second cohort shows the robustness of NODDI to 
scanner manufacturer (GE versus Siemens), diffusion pulse sequence 
(single-band EPI versus multiband EPI), and acquisition protocol 
(b = 1300 s/mm2 versus 1000 s/mm2 for the first shell; 2.7-mm voxel 
resolution versus 2.4-mm voxel resolution), all of which differed 
between the two longitudinal mTBI cohorts. Moreover, a prior 
history of concussions is a common characteristic of patients with 
mTBI. We think that including patients with previous concussions 
make the results more generalizable to the entire mTBI population. 
One advantage of our investigation is the longitudinal approach, 
which allows us to evaluate for changes over time of the early find-

ings and thereby attribute them to the recent episode of mTBI and 
not remote earlier ones.

Data-driven machine learning analysis of a composite GIM based 
on symptom self-report and cognitive performance measures pro-
duced two patient clusters in each of the two mTBI cohorts. One 
cluster was a higher performing subgroup (K2) with early self-reported 
symptoms that resolved over time who also improved in the informa-
tion processing speed and verbal memory domains. The other clus-
ter was a lower functioning subgroup (K1) that endorsed relatively 
few initial symptoms but still performed less well than K2 on the 
cognitive tests, especially at the 6-month time point. Although no 
significant DTI differences were seen between these two mTBI sub-
groups, NODDI showed higher ODI throughout much of the central 
WM in the K1 group at both time points in the initial mTBI cohort. 
This greater fiber orientation dispersion in the low functioning K1 
cluster may represent a premorbid characteristic influenced by their 
lower average educational level than K2, implying perhaps lower 
cognitive reserve. The less well-organized central WM may help 
explain their poorer cognitive performance compared to the higher 
functioning K2 cluster. The difference in cognitive and educational 
levels between the subgroups might also affect symptom reporting. 
Education is one of the factors that constitute the so-called cogni-
tive reserve, a protective factor associated with better TBI outcome, 
and it has been reported to be a protective factor at early stages of 
mTBI, as in the first 24 hours, and regardless of the severity of the 
TBI (43). Specifically, the greater number of symptoms reported by 
the K2 subgroup at the early time point may partly represent aware-
ness of actual cognitive decline from baseline, followed by eventual 
return to baseline in both symptoms and cognition by 6 months, at 
least at the subgroup level if not for every patient. Although the same 
pattern of symptomatic and cognitive differences was found for the K1 
and K2 clusters of the replication cohort, in which K2 reports greater 
symptoms than K1 initially but the symptom burden of K2 approaches 
K1 symptoms over time, no significant DTI or NODDI differences 
were found between the two clusters in this second cohort. This may 
be because the overall effect size of longitudinal NODDI changes 
over time was less in the replication cohort than the initial cohort 
(Fig. 4B) and also because the K2 cluster of the replication cohort 
did not show as much early cognitive impairment as that of the initial 

Fig. 5. JHU tracts longitudinal comparison at 2 weeks versus 6 months in mTBI. Averaged NDI and free water fraction (FISO) values of the left/right JHU tracts for each 
subject at 2-week versus 6-month time points, showing tracts with most significant changes over time mainly in posterior tracts on NDI not captured by the DTI parame-
ters. PTR, posterior thalamic radiation; PCR, posterior corona radiata; SS, sagittal stratum (merged inferior fronto-occipital and ILF). Comparison FDR corrected at P < 0.05. 
d, Cohen’s d effect size.
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cohort. Hence, both NODDI and the neurocognitive assessments sug-
gest an overall lesser degree of injury in the replication cohort than 
the initial cohort. In future studies with larger cohorts, separating 
function domains (i.e., self-reported measures from cognitive per-
formance) could enable more granular prediction of recovery (44).

Another finding was the higher FISO of K2 versus K1 in predom-
inantly posterior WM at 2 weeks after injury versus predominantly 
anterior WM at 6 months after injury. Because the initial cohort of 
40 patients with mTBI showed elevated anterior WM free water, 
indicating vasogenic edema, at the early time point (Fig. 4A), this 
means that the K2 subgroup had more extensive early edema than 
K1 that also included posterior WM. However, the anterior WM 
edema resolved more slowly in K2 than K1, resulting in the relative 
elevation of free water in this distribution at the long-term time 
point. The greater extent of early WM edema corresponds to the 
greater symptoms reported by the K2 subgroup at that time, with 

improving edema by 6 months after injury matching their improve-
ment in self-reported and cognitive performance measures. This 
observed association between WM edema and the trajectory of symp-
tomatic and cognitive recovery after mTBI requires more study to 
determine whether there is a causal relationship or other cofactors 
contributing to this symptomatology.

The results replicated in both control groups provide support for 
our original hypotheses of elevated free water fraction early after 
injury and of serial decline in WM axonal density during the first 
6 months after trauma. The findings show that (i) dynamically in-
creased free water fraction across semiacute and chronic time points 
was associated with better recovery, suggesting a beneficial role for 
edema/neuroinflammation; and (ii) statically reduced fiber orientation 
dispersion was correlated with better long-term cognition, consist-
ent with prior studies showing more highly organized WM in those 
with better intellectual functioning in multiple domains (45–47). 
These new hypotheses from the exploratory findings need to be 
tested in larger cohorts that have better statistical power for deter-
mining imaging-cognition relationships. In the absence of cognitive 
control data, we also cannot exclude a learning component for the 
improvement across the two cognitive assessments. Another limita-
tion of the study is the small sample size of the controls, which lack 
a longitudinal component. The interpretation of change in FISO as 
vasogenic edema is the best inference we can make at the current 
time and requires confirmation. In addition, note that TBSS anal-
ysis is limited to the core of major WM pathways, and the JHU tract 
analysis of paired tracts were averages of the right and left sides, 
perhaps sacrificing information about hemispheric asymmetries to 
improve statistical power.

In summary, we found that NODDI parameters are sensitive 
imaging biomarkers for the subtle yet complex underlying WM 
microstructural pathology after mTBI, such as diffuse axonal injury 
and neuroinflammation. Our results show that the early lower FA 
and higher MD values after mTBI, which are primarily in the ante-
rior WM, correspond to WM regions of higher FISO, which may 
reflect inflammatory vasogenic edema. This elevation of free water 
is more extensive in the subgroup of patients reporting more post-
concussive symptoms early after trauma. The longer-term changes 
from 2 weeks to 6 months after mTBI are marked by declining neu-
rite density in predominantly posterior WM, suggesting axonal de-
generation from DAI for which NODDI appears more sensitive 
than any of the DTI metrics, such as FA. The affected posterior WM 
regions are known to be topologically integral to the structural 
connectome and are involved in multiple sensory and cognitive do-
mains, including attention and executive function. The observation 
of stably elevated WM fiber orientation in the mTBI subgroup with 
poorer cognitive performance may represent the sensitivity of ODI 
to premorbid intellectual functioning. Further research studies in 
larger well-phenotyped cohorts are needed to validate NODDI bio-
markers for mTBI diagnosis, for prediction of self-reported symptoms, 
cognitive performance, and for treatment monitoring. Moreover, 
NODDI has been optimized for gray matter (48). Studies combining 
NODDI measurements in WM and gray matter can be of additional 
value to better characterize patients with mTBI.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/32/eaaz6892/DC1

View/request a protocol for this paper from Bio-protocol.

Fig. 6. Voxelwise comparison of NODDI metrics between the initial cohort 
patients with mTBI subgroups K1 and K2. Voxelwise group comparison of the DTI 
and NODDI parameters based on the machine learning cluster division (A) FISO 
(volume fraction of isotropic water) increased in patients in cluster 2 (K2). FISO 
increased in posterior tracts at 2 weeks, while pattern at 6 months showed increases 
mainly in anterior tracts (B) ODI is increased in patients in cluster 1 (K1). All results 
are corrected for multiple comparisons using TFCE FWE at P ≤ 0.05. The number 
next to each image is the MNI atlas coordinate defining its plane.

http://advances.sciencemag.org/cgi/content/full/6/32/eaaz6892/DC1
http://advances.sciencemag.org/cgi/content/full/6/32/eaaz6892/DC1
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/sciadv.aaz6892
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