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Abstract

Traditional methods for assessing the resource adequacy (RA) of a power system are becom-
ing obsolete due to emerging trends such as the increasing deployment of variable renewable
energy and storage. Consequently, analysts are recommending that RA be assessed using a
Monte Carlo simulation approach that models chronological power system operations over
many instances of possible operating conditions. However, this approach is necessarily more
complex and computationally demanding, which is an obstacle to real-world implementation.
In this study, we investigate which operational details of power systems are important to
capture in order to accurately evaluate a system’s RA, versus details that add complexity but
do not meaningfully affect RA results. To do so, we develop a probabilistic RA assessment
framework by adapting an existing production cost model and apply it to a case study based
on the IEEE Reliability Test System. Our results indicate that multi-year data, storage
dispatch, and transmission limits are key details to incorporate. Accurate RA results can
be obtained using non-economic dispatch strategies as long as they are coordinated with
detailed operational strategies. We also demonstrate how popular expectation-based RA
metrics can mask important differences in the characteristics of loss of load events.

Keywords: resource adequacy, long-term planning, probabilistic analysis, reliability, power
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1. Introduction

1.1. Background on resource adequacy assessment

One formal definition of resource adequacy (RA) is provided by the North American
Electric Reliability Corporation (NERC) [1], which defines RA as “the ability of the electric-
ity system to supply the aggregate electric power and energy requirements of the electricity
consumers at all times, taking into account scheduled and expected unscheduled outages of
system components.” The National Renewable Energy Laboratory (NREL) offers a more pre-
cise definition in the documentation of its Probabilistic Resource Adequacy Suite (PRAS).
“An electrical power system is considered resource adequate if it has procured sufficient
resources (including supply, transmission, and responsive demand) such that it runs a suffi-
ciently low risk of invoking emergency measures (such as involuntary load shedding) due to
resource unavailability or deliverability constraints” [2]. This definition acknowledges that
shortfalls may occur and suggests that achieving RA means keeping the risk of potential
shortfalls within tolerable limits.

RA is only one dimension of power system reliability. The RA concept is employed for
long-term planning and focuses on the balance between supply and demand over large areas.
Reliability threats that are within the scope of RA include uncertainties to which probabilities
can be assigned, such as variations in loads and variable renewable energy (VRE) generation
as well as thermal generator outages. By contrast, low-probability, high-impact events such
as natural disasters are typically considered through the lens of resilience rather than RA.
While power deliverability via the transmission network is part of RA, transmission line
outages are usually omitted from RA analysis (they are omitted in this study; [3] is one
counterexample that includes them) and distribution line outages are always omitted. In
this sense, RA always encompasses reliability threats in hierarchical level 1 (generation) of
the power system according to the classification of Billinton and Allan [4, 5], but rarely
threats in hierarchical level 2 (transmission) and never threats in level 3 (distribution).
NERC explicitly distinguishes RA from operating reliability, which refers to reliability risks
that are more granular in space and time [1]. Many of these more granular threats, such as
short circuits or transformer overloads, are subsumed under power system security but not
under RA [6].

Traditionally, RA has been assessed using simple methods and metrics [7]. Traditional
RA analysis focuses on the peak load hour and develops a load forecast for some future year.
Installed generation capacities are summed, perhaps weighted by coefficients less than one
to reflect imperfect availability. As long as the anticipated capacity exceeds the projected
load by more than some percentage, known as the planning reserve margin (PRM), then the
system is deemed resource adequate. A slightly more complex yet still traditional approach
is the convolution method. This probabilistic form of RA assessment assigns probabilities to
power plant outage events, which are considered independent. By combining the resulting
outage probability table with a load forecast, it is possible to estimate the probability that
the system will have sufficient available capacity to serve the load [7, 8, 9].

Several emerging trends in power systems are making these traditional RA assessment
methods obsolete. Many dispatchable generators are retiring and being replaced by VRE
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resources such as wind turbines and solar panels. VRE outputs during hours when the grid
is stressed are highly uncertain and exhibit correlations among themselves and with loads
that are not usually associated with thermal plants. Additionally, in systems with high VRE
penetration, the peak load hour may no longer be the time when reliability is most at risk,
since net loads (load minus VRE generation) could be highest during different seasons and
hours that are hard to pinpoint in advance. Significant energy storage (e.g. batteries) may
be added to power systems in the coming years and assessing its contributions to RA is
difficult. In order for storage to contribute to satisfying the load in one hour, it must charge
in the preceding hours and maintain sufficient energy until it is needed.

As a result of these trends and the problems they pose for traditional RA assessment
methods, organizations such as the Energy Systems Integration Group (ESIG) have called for
the development and implementation of more sophisticated approaches [7]. These approaches
should model chronological power system operations, spanning the entire year and updating
the state of the system (e.g. energy in storage) from one hour to the next. RA assessment
should be probabilistic, with system operations simulated over many scenarios with different
realizations of loads, VRE outputs, and generator outages. This Monte Carlo simulation
enables analysts to compute probabilistic RA metrics that more intuitively correspond to
notions of a reliable power system than a deterministic metric like the PRM. Common
examples of probabilistic RA metrics include loss of load expectation (LOLE), loss of load
probability (LOLP), loss of load hours (LOLH), loss of load events (LOLEV), and expected
unserved energy (EUE) (see [10] for definitions of these metrics).

1.2. Motivation and contributions

In a Monte Carlo-style probabilistic RA assessment, there is an obvious tradeoff con-
cerning the level of detail used in modeling power system operations. On the one hand,
incorporating greater detail should allow the model to more closely resemble real-world op-
erations and hence lead to more accurate estimates of RA metrics such as LOLE and EUE.
Operational details that the model could incorporate include unit commitment and eco-
nomic dispatch of thermal generators, storage dispatch, transmission limits, and day-ahead
forecast errors (for loads and VRE outputs). On the other hand, representing power sys-
tem operations in greater detail increases the complexity and computational burden of the
RA assessment, especially because the power system operational model needs to be solved
hundreds or thousands of times in a Monte Carlo analysis. High complexity and computa-
tional burden would be formidable obstacles to real-world implementation of probabilistic
RA assessments, as traditional approaches are much simpler. The research gap that we
address in this paper is that little is currently known about which operational details of
power systems are critical to capture in RA assessments, as opposed to details that are not
influential enough to justify their additional complexity. By providing evidence that certain
operational details can be omitted without any notable effect on RA assessment accuracy,
we help reduce barriers to real-world adoption of probabilistic RA assessment methods.

Our contributions in this paper are summarized as follows:

1. We vary choices about how to represent (or omit) certain operational details of the
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power system and evaluate how much influence each one exerts on the outcomes of a
probabilistic RA assessment.

2. We find that multi-year data, storage dispatch, and transmission limits are key features
to incorporate into an RA assessment.

3. On the other hand, economic dispatch appears to be less necessary to represent. Ac-
curate RA results can be obtained using non-economic dispatch as long as resources
are dispatched according to detailed operational strategies.

4. We propose and calculate new RA metrics that reflect additional properties of shortfall
events that are obscured by the most common expectation-based metrics, such as the
number of shortfalls and their average magnitude.

1.3. Literature review

Several recent publications have criticized traditional RA assessment methods and of-
fered guidelines for modern approaches that are better equipped to handle emerging trends
in power systems. [7] and [11] contend that RA analysis should model power system opera-
tions chronologically, simulating hour-by-hour operations for an entire year. This is necessary
to investigate all hours with potential adequacy risks and capture the RA contributions of
energy-limited resources such as storage. They also recommend stochastic analysis that sim-
ulates operations over many years of hourly VRE output and load data as well as random
plant outages. However, they acknowledge that it is difficult to generate credible time series
data that reflect inter-annual variability and correlations among variables because histori-
cal records are limited [12]. Furthermore, due to climate change and technology adoption
(e.g. electric vehicles), future conditions may differ considerably from historically observed
patterns. [11] acknowledges that RA assessment methods that conform to its recommen-
dations will necessarily be more complex and challenging to implement. In this paper, we
seek to distinguish power system operational details that are important to represent in RA
assessments from those details that can be safely omitted.

RA metrics are a common theme in the literature on RA. The high-level publications [7]
and [11] point out that individual RA metrics measure different characteristics of shortfalls.
For example, LOLE measures the frequency of shortfalls, LOLH measures their total dura-
tion, and EUE combines aspects of frequency and duration to measure the total magnitude
of unserved energy (in MWh) over the year. In [13], Fazio and Hua conduct a probabilistic
RA assessment of the Pacific Northwest power system and compute the LOLEV, LOLH,
and normalized EUE metrics. They find that the value of one metric does not uniquely
determine the values of the others. Since each metric captures a different dimension of RA
risk, they suggest that power system planners specify independent thresholds for all three
metrics to ensure acceptable overall RA performance. One limitation of all of these “ex-
pected value” RA metrics is that they are averages. According to [11], it is important that
planners look beyond these expected value metrics to understand the timing, frequencies,
magnitudes, and durations of the individual shortfall events that may occur so that they can
choose the most appropriate mitigation strategies. In this paper, we calculate several of the
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most common RA metrics, investigate the characteristics of individual shortfall events, and
summarize them using some new metrics that we develop.

In addition to [13], several other papers in the literature conduct probabilistic RA as-
sessments using power system operation models, as we do in this study. In [14], Simoglou et
al. developed the Long-Term Scheduling (LTS) tool that determines the hourly unit com-
mitment and energy injection decisions that minimize total operating costs. They simulated
the operations of the Greek power system from 2018-2027 under 12 scenarios with different
loads, natural gas prices, CO2 prices, and thermal unit retirements. On the basis of their
computed values of LOLE and EUE, they conclude that thermal plant retirements pose con-
siderable RA risks, especially from 2025 onwards. Simoglou and Biskas [15] use an extended
version of the LTS platform to analyze the effects of Greece’s National Energy and Climate
Plan, which will shift the resource mix further toward renewables, on RA. Results show
that LOLE and EUE generally remain within acceptable ranges in all scenarios, but that
the planned retirement of a lignite unit by 2028 would cause a notable increase in LOLE.
The European Resource Adequacy Assessments performed by ENTSO-E provide examples
of state-of-the-art probabilistic RA assessments occurring in industry [3]. ENTSO-E em-
ploys a pan-European power system model and a Monte Carlo-style simulation, with many
scenarios of VRE outputs, demand profiles, forced outages, and other uncertain parameters,
in order to estimate the LOLE for each European country. In the Central Reference Scenario
Without Capacity Mechanism, their assessment finds LOLE values above 20 hours/year in
Germany and Luxembourg by 2030, much higher than in most other nations. ENTSO-E
acknowledges that its analysis requires “computationally heavy models” and “thousands of
computing hours,” even without representing the details of each country’s power system [3].

The most similar paper in the literature to our own is [16], in that Sun et al. system-
atically explored the impacts of various operational details on probabilistic RA assessment
results. They considered different dispatch objectives and day-ahead forecast errors, as we
do in this study. Sun et al. examined the impacts of certain details that we do not inves-
tigate, such as solving a unit commitment problem at the day-ahead stage. Meanwhile, we
consider the effects of additional modeling choices that were not examined in [16], such as
transmission limits and a variety of non-economic dispatch strategies for thermal generators
and storage. We also propose and calculate new RA metrics that capture additional features
of shortfall events that are obscured by popular metrics such as LOLE and EUE. [16] adds
to the motivation for our work because they found that representations of operational details
can strongly affect RA outcomes, with RA performance generally declining as the system is
represented in more detail. They acknowledged that their results are specific to their case
study based on the Electric Reliability Council of Texas (ERCOT) grid. Our IEEE Reliabil-
ity Test System case study is based on the Southwestern United States, and thus it provides
an opportunity to see whether some of the findings from [16] hold in a different context.

The remainder of this paper is organized as follows. Section 2 describes our methodology
and Section 3 explains how we develop the data for our case study. In Section 4, we out-
line our scenarios that reflect different representations of power system operations for RA
assessment. Section 5 presents and discusses our results. We conclude in Section 6 with a
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summary of our key findings and directions for future work.

2. Methodology

Our methodology adapts the open-source production cost model Prescient to the applica-
tion of probabilistic RA assessment. Prescient is developed by Sandia National Laboratories
to simulate electric grid operations [17]. Note that we choose to streamline a production cost
model to run faster, many times within a Monte Carlo simulation, rather than begin with an
existing probabilistic RA assessment tool and augment it with a sophisticated representation
of economic dispatch. The latter is already available in Prescient, so we choose to modify it
for our purposes and embed it within a Monte Carlo simulation.

Prescient simulates the power system’s economic dispatch by developing a day-ahead and
real-time simulation cycle framework that combines commitment optimization and dispatch
optimization. The day-ahead simulation is implemented as a single unit commitment opti-
mization that determines the daily system operations with respect to the forecasted load and
renewable generation. After that, the real-time simulation consists of a series of chronological
hourly economic dispatch problems that re-optimize the daily system operations subjected
to actual load, actual renewable generation, and the commitment status determined by the
day-ahead unit commitment solution. Each hourly simulation uses the system state after the
previous hour as its initial condition to simulate the inter-temporal dispatch constraints. We
make several modifications to Prescient to make it suitable for probabilistic RA assessment.

2.1. Overall framework

The formulation of the unit commitment problem would introduce numerous binary
decision variables to represent the chronological availability status of each thermal generator,
which significantly increases the computational time required to solve the daily dispatch
problem. Though it can be incorporated into reliability analysis [18], a unit commitment
model is too computationally burdensome to be solved many times within a large-scale Monte
Carlo simulation. In our framework, we simplify the commitment problem by replacing it
with the linearized merit order model. The unit commitment and linearized merit order
models both determine the optimal generation schedule to minimize the costs of power
dispatch, subject to device and operational constraints such as production limits and ramp
rates, but the merit order model can yield slightly different dispatch decisions and may
underestimate the system’s reliability [19]. Though we replace the unit commitment problem
with the merit order model in the day-ahead stage, we keep the two-stage framework with
day-ahead and real-time simulations. The day-ahead solution is used to set state of charge
targets for storage in the real-time problem but is based on an imperfect forecast of operating
conditions and does not anticipate thermal generator failures. For transmission, we apply a
simplified transportation model to represent power flows between zones in order to maintain
computational tractability.
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2.2. Storage operations

An accurate representation of storage status and operations could be particularly impor-
tant for RA assessment. If storage operations are neglected or oversimplified, such as by
treating storage as a firm resource that can always provide maximum power, then system
reliability would likely be overestimated since the actual energy in storage is not being mon-
itored. This would not capture energy limitations, which are identified as being increasingly
relevant for RA [11]. By contrast, assuming overly rigid storage operations, such as fixing
the charging/discharging behavior of storage in advance, would likely lead to underestimated
system reliability due to not considering the flexibility of storage to help a system prepare for
and cope with peak net load events. To model storage operations, we employ the Prescient
logic for the two-stage simulation framework that uses the day-ahead forecast to optimize the
actual evolution of the storage level. Specifically, we model the storage operations problem
of each unit as a linear program without introducing the complementary binary variables
[20], and embed it into the dispatch framework. At the beginning of each day, we implement
a single day’s dispatch problem as the day-ahead simulation to determine the state of charge
(SoC) of storage units, while the unit commitment decisions in Prescient are ignored. After
that, we run a series of hourly chronological dispatch problems to simulate the actual system
operations, where the SoC targets of storage units at each hour have already been deter-
mined in the day-ahead simulation. Failing to meet the predetermined SoC targets induces
a penalty cost in the objective and thus the model will follow the predetermined targets
unless unexpected challenges arise during real-time operations (e.g., a large plant outage).
See Appendix A for mathematical details about how SoC deviations are penalized in the
objective and how storage operations are constrained.

With these settings, real-time storage dispatch will be somewhat suboptimal, to the
extent that real-time operating conditions diverge from the conditions that were expected
when the SoC targets were computed in the day-ahead stage. The model will prefer to
charge a storage unit when its real-time SoC is below the target, and try to discharge it
when the real-time SoC is above the target. Note that we do not incorporate the operations
of long-duration storage – including reservoir hydropower and pumped storage – into our
framework, as they are not relevant to our specific case study. However, incorporating
long-duration storage operations may be essential for conducting RA assessments of regions
with high shares of hydro resources (e.g., U.S. Pacific Northwest), as they need to address
potential energy adequacy issues and have some ability to shift energy inter-seasonally.

2.3. Model objective functions

Power systems in the real world are dispatched economically with the goal of minimizing
operational costs. However, RA assessments have often not modeled dispatch at all, and
when they have, the system is generally represented with RA as its sole objective (instead
of cost minimization), so that the system will satisfy demand as long as it is technically
possible to do so, regardless of the cost. Incorporating economic dispatch into RA assessment
modeling is appealing because this is how power systems are operated in practice and hence
the state of the system in a given hour is better described by its economic dispatch decisions.
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However, economic dispatch is more computationally demanding than alternative dispatch
assumptions, which has generally led to RA assessments neglecting economic dispatch. In
our analysis, we assess RA using economic and various non-economic dispatch schemes in
order to investigate whether the dispatch formulation meaningfully affects RA results.

Our formulation of economic dispatch does not include constraints requiring that all
loads be satisfied. Rather, a penalty term in the objective function assigns a cost to any
unmet load, with the cost established by the value of lost load (VoLL) parameter. The
system is thus free to decide whether to incur the costs of supplying enough electricity to
satisfy the loads or to allow a shortfall and incur the VoLL-based penalty. As long as the
VoLL is set high enough, then the system will satisfy all loads that it can feasibly meet in
the course of operations, which is indeed the case in our scenarios (with the VoLL set at
$30,000/MWh). We complement our economic dispatch implementation with several non-
economic dispatch schemes that are either inspired by other RA models [2] or designed with
strong RA performance as the goal. These non-economic formulations dispatch power based
on the following descending priority rules in both the day-ahead and real-time simulations.
Their objective functions are entirely penalty-based with penalty terms reflecting outcomes
that the system would like to avoid. The non-economic dispatch rules developed for this
work are described as follows:

• Minimize shortfalls: The model will first optimize dispatch decisions in order to prevent
any loss of load events. A high penalty is assigned to each MW of load that cannot be
satisfied.

• Minimize renewable curtailment: Renewable generation in our framework is repre-
sented as having no variable costs and thus should be efficiently used. The model
will try to charge storage units or ramp down thermal generators in order to prevent
renewable curtailment.

• Minimize storage SoC deviation: In the real-time stage, each storage unit is dispatched
according to its SoC levels that were determined in the day-ahead stage. It will try
to charge when its SoC is lower than the target and discharge when its SoC is higher
than the target.

• Minimize expected power reduction due to thermal generator failures: In the merit
order model, thermal generation is dispatched according to the marginal generation
cost of each thermal generator. In this version of our framework, we dispatch thermal
generation according to each generator’s reliability. In other words, the more reliable
generator with a lower forced outage rate (FOR) will be dispatched first.

The four priority rules outlined above are integrated into a single objective function by
assigning properly scaled penalty coefficients, as seen in Appendix A. We will compare
scenarios based on these non-economic dispatch schemes to other scenarios in which the
system is economically dispatched. Our scenarios are described in detail in Section 4.
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Figure 1: Zones and transmission network in our case study based on the IEEE RTS

3. Data preparation

We develop our case study based on the IEEE Reliability Test System - Grid Moderniza-
tion Laboratory Consortium (RTS-GMLC) [21]. The IEEE RTS region covers desert areas
of Southern California, Nevada, and Arizona. It is intended to serve as a platform for ana-
lyzing power system operation strategies and issues, with given power system topology, load
obligations, and generation resources. We make some modifications to the raw RTS data in
order to produce a tractable case study that leads to an interesting RA assessment.

3.1. System configuration

IEEE RTS is a test power system with 73 buses, 158 generators, and 120 lines. In order
to keep our case study computationally tractable, we simplify the default system topology.
We cluster the 73 buses in IEEE RTS and concentrate adjacent buses into 23 zones. We
then identify the lines that link these zones and aggregate them to produce a simplified
transmission network with 35 lines. The zones and the simplified transmission network are
depicted in Figure 1.

IEEE RTS represents a power system with strong RA performance. Computing RA
metrics for this system would not clearly reveal the potential differences in RA assessment
outcomes stemming from different modeling choices because shortfall events are so limited. In
order to produce a more enlightening analysis of how modeling choices affect RA assessment,
we make several adjustments to the generation resources to create a test power system that
is less resource adequate. Specifically, all oil plants, a nuclear plant, and two 350 MW coal
plants are treated as retired, which reduces the total thermal capacity from 8.08 GW to 6.65
GW. Furthermore, we remove all hydro resources with a total nameplate capacity of 1.0 GW
from the system. In addition, we resdesign the system’s short-term storage resources. One
battery storage unit with a power capacity of 40 MW, a duration of 4 hours, and a round-
trip efficiency of 85% is added in each zone, which adds a total of 920 MW to the system.
Overall, the simplified system has 1.7 GW of coal plants, 5.0 GW of gas plants, and solar
and wind resources with total nameplate capacities of 2.9 GW and 2.5 GW respectively.
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Before proceeding, it should be emphasized that the simplified test power system does
not represent any real-world system. Resource portfolios with similar properties should
not really exist in reality due to their low reliability levels. By contrast, the test power
system after adjustments is more likely to represent a prototypical portfolio that a utility is
considering, which features the retirements of several thermal plants but does not yet include
investments in new resources to replace them. Therefore, our case study does not aim to
study the RA status of an existing power system. Instead, our case study is developed to
elucidate the effects of RA modeling choices on estimated RA outcomes, and in doing so, to
provide high-level and conceptual insights to regulators and planners on what power system
operational details are important to include in a model-based RA assessment. However, we
encourage readers to be cautious about extrapolating our conclusions to power systems and
regions that differ in significant ways from our case study. Our probabilistic RA metrics
computed via numerical simulation must be interpreted as specific to the IEEE RTS with
our modifications outlined above.

3.2. Time series data expansion

IEEE RTS only includes a single year time series for loads and VRE generation. This is
insufficient for conducting a probabilistic RA assessment, which requires simulating system
operations over many years of data with different operating conditions that may arise. To
address this shortcoming, we expand the one year of raw data into five years of load and
renewable generation time series data in order to capture inter-annual variability.

Many methods have been proposed to capture the correlation among electricity time series
[22, 12] and generate synthetic electricity data [23, 24]. In this study, we apply traditional
decomposition time series methods to generate synthetic data for load and solar generation.
A decomposition method usually deconstructs a time series into three distinct parts: trend,
seasonality, and residual. The trend represents the long-term progression of the time series,
while the seasonality component defines the repeating short-term interval cycle of the series.
At last, the residual contains all non-systematic components remaining for further analysis.
We apply additive decomposition for the time series using the formula

Xt = Tt +Wt +Dt +Rt,

where Xt represents the triplet of raw load time series across three RTS regions, Tt represents
the trend, Wt represents the weekly periodicity, Dt represents the daily periodicity, and Rt

represents the residual. The residual is assumed to be a multivariate stationary time series,
and we deploy the Probabilistic AutoRegressive model to generate synthetic residuals [25]:

R̂t = PAR(Rt).

The synthetic load time series are then recovered via

X̂t = Tt +Wt +Dt + R̂t.
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We apply the above procedure to each four-week period of raw load data to capture
differences in profiles throughout the year while maintaining a sufficiently large training
dataset. A sample of synthetic load that we generate for one region is shown in Figure 2.
The procedure for synthetic solar generation is similar to that for the load but does not
account for weekly periodicity and does not capture correlation between solar output and
load. By deploying this method, we expand the load and solar generation time series from
one year to five years.

Figure 2: Synthetic load sample

By contrast, we do not observe significant trend and seasonality in the raw wind data.
Therefore, the above decomposition method is not suitable for synthetic wind data creation.
Given that the drivers of wind generation are approximately stable over time and we have
historical data on wind from the IEEE RTS region, we base our wind time series closely on
historical wind data. We obtain the wind capacity factors from the dataset developed by the
Wind Integration National Dataset (WIND) Toolkit [26]. Specifically, we select four wind
farms from the dataset to represent the four wind plants in IEEE RTS according to their
geographical locations and average capacity factors. We download the power generation of
those four wind farms from 2010 to 2013 and re-scale them as the multi-year wind data in
our case study. These four historical wind time series, plus the one-year time series included
in the RTS dataset, combine to give us five yearly profiles of wind generation. Samples from
two of the wind generation profiles, the RTS profile and one empirical profile, are shown in
Figure 3. Compared to load and solar, the five-year wind time series include more day-to-
day variations due to changing weather patterns and their large impacts on wind generation.
Note that our wind time series are created independently from the load and solar profiles,
and thus there is no consideration of common underlying weather drivers.

We conclude the data preparation by constructing a Monte Carlo simulation set that
consists of 500 instances. Each instance is constructed by a random draw of a single year
time series from the five years of solar, wind, and load data and a unique stochastic sequence
that represents all random outage events in this year for all thermal generators. While it
would be ideal for accuracy to include even more than 500 instances, this number strikes
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Figure 3: Samples from two wind generation time series, one from the RTS and one based on the WIND
Toolkit data

a balance between the desire to obtain accurate results and the time required to solve our
more complex dispatch formulations many times.

4. Scenarios

We first investigate how the dispatch scheme (economic or non-economic) affects the
outcomes of an RA assessment. In the economic dispatch scenario, we keep the produc-
tion costs of thermal generators in the model and dispatch the system to minimize costs,
reflecting real-world operating principles. The production cost only includes the variable
production cost, which is a convex increasing function of the power generated by the unit.
In addition, we calculate the shortfall cost by multiplying the quantity of unserved energy by
the assumed VoLL of $30,000/MWh. The system’s total cost (objective value to minimize)
is then calculated as the sum of the production cost and shortfall cost.

By contrast, the non-economic dispatch scenarios do not consider dollar values at all
and simply dispatch units based on various prioritization rules. While real-world power
systems are economically dispatched, these non-economic dispatch schemes are much less
computationally burdensome to include in a probabilistic RA assessment based on a large
Monte Carlo simulation. Therefore, we intend to determine whether using non-economic
dispatch formulations actually results in less accurate estimates of system RA performance
than modeling economic dispatch. We construct non-economic dispatch scenarios according
to the following three strategies for thermal dispatch and four strategies for storage dispatch:

• Thermal dispatch

– Random-priority strategy: Thermal generators will be dispatched at random pri-
ority when available.

– Reliability-focused strategy: Thermal generators will be dispatched based on their
reliability, i.e., a more reliable generator with a lower FOR will be dispatched first.
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– Economic strategy: Thermal generators will be dispatched based on their convex
production costs, i.e., generators with lower marginal production costs will be
dispatched with higher priority.

• Storage dispatch

– Passive strategy: Each storage unit will be dispatched to meet its predetermined
SoC target at that time. The target is given as an exogenous constant (50%
charged).

– Active strategy: Each storage unit will be dispatched to meet its predetermined
SoC target at that time. The target is determined by the optimal values derived
in the day-ahead problem.

– Cost-free resource strategy: Storage units will only charge when there is excess
renewable generation and discharge as much as possible if there is a thermal
generator that is able to ramp down.

– Reserve strategy: Storage units will operate as reserves. They will only discharge
when the load exceeds available generation capacity and charge as much as pos-
sible if there is a thermal generator that is able to ramp up.1

The first set of scenarios that we formally define is designed primarily to investigate
how the dispatch scheme (e.g., economic vs. non-economic dispatch) affects estimates of
RA metrics (see Table 1). The RADp-4 scenario is based on the most detailed formulation
of non-economic dispatch that we consider. Hence, RADp-4 acts as a benchmark for the
remaining scenarios and will be included in subsequent sets of scenarios to explore how other
power system modeling choices influence RA outcomes.

The four scenarios in this first set are formally defined as follows:

• RADp-4 : Non-economic dispatch. In this scenario, thermal generators will be dis-
patched based on the reliability-focused strategy and storage units will be dispatched
based on the active strategy, both of which were described above.

• EcDp: Economic dispatch. In this scenario, thermal generators will be dispatched
based on the economic strategy and storage units will continue to be dispatched based
on the active strategy.

• AgDp: Aggressive dispatch. In this scenario, thermal generators will be dispatched ac-
cording to the economic strategy, as in EcDp. However, storage units will be dispatched
according to the cost-free resource strategy.

1Note that our Reserve storage dispatch strategy mirrors the strategy implemented in NREL’s PRAS
[2], in which “resources are dispatched conservatively so as to approximately minimize unserved energy over
the full simulation horizon, charging from the grid whenever surplus generating capacity is available, and
discharging only when needed to avoid or mitigate unserved energy.”
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Table 1: Scenarios designed to investigate the effects of dispatch schemes on RA metrics

Scenario Model objective Thermal dispatch Storage dispatch

RADp-4 Minimize total shortfalls
(MWh)

Reliability-focused Active

EcDp Minimize total
operational costs ($)

Economic Active

AgDp Minimize total
operational costs ($)

Economic Cost-free resource

CsDp Minimize total shortfalls
(MWh)

Reliability-focused Reserve

• CsDp: Conservative dispatch. In this scenario, thermal generators will be dispatched
according to the reliability-focused strategy, as in RADp-4. However, storage units will
be dispatched based on the reserve strategy.

In scenarios EcDp and AgDp, the objective function of the model is to minimize the sys-
tem’s operational cost. In scenarios RADp-4 and CsDp, the objective function of the model
is to minimize total shortfalls, which is an RA-oriented objective. The total operational
costs in these two scenarios are recalculated post-solve after the dispatch decisions have
been determined in order to calculate the additional cost that the model incurs in pursuit
of an RA-focused objective rather than an economic objective. Scenario EcDp simulates
the way that real-world power systems generally operate, and scenarios AgDp and CsDp
show two extreme cases that focus exclusively on system economics and system reliability,
respectively. Note that the Sequential Monte Carlo simulation option in the existing PRAS
software [2], which is its most detailed option for modeling system operations, essentially
follows the logic of our CsDp scenario in that it dispatches generators and storage solely
to maximize system reliability. Therefore, by comparing results from our CsDp scenario to
those from EcDp, we will observe how important it is for RA outcomes to model economic
instead of reliability-focused dispatch logic.

As explained above, the RADp-4 scenario represents a relatively sophisticated formula-
tion of non-economic dispatch, with day-ahead and real-time decision-making stages, reliability-
focused thermal plant dispatch, and active storage dispatch. With our next set of non-
economic dispatch scenarios defined in Table 2, we experiment with making various sim-
plifications to the dispatch scheme to determine whether we can reduce the computational
complexity of the model without sacrificing much accuracy in terms of the RA metrics we
estimate. These additional non-economic dispatch scenarios include the traditional convolu-
tion method (Conv) and RA dispatch models that are simpler versions of RADp-4 (RADp-1,
RADp-2, RADp-3 ). Summaries of these scenarios and qualitative indications of their com-
putational complexity are provided in Table 2.
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Table 2: Scenarios designed to investigate whether less complex implementations of non-economic dispatch
lead to a significant loss of accuracy when estimating RA metrics

Scenario Stages Thermal
dispatch

Storage
dispatch

Complexity

Conv N/A N/A N/A Easy

RADp-1 Real-time Random-
priority

N/A Moderate

RADp-2 Real-time Random-
priority

Passive Moderate

RADp-3 Real-time Reliability-
focused

Passive Moderate

RADp-4 Day-ahead and
real-time

Reliability-
focused

Active Difficult

The Conv scenario is constructed according to [9]. It is based on a simple convolution
method that only considers the net load duration curve and thermal generator forced outages,
with no explicit modeling of the power network or chronological system operations. Specifi-
cally, the Conv and RADp-1 scenarios do not incorporate storage operations, and they treat
storage units as firm resources with certain capacities. We run each of these scenarios twice
as two sub-scenarios: the first sub-scenario run treats storage units as generators with null
capacity (sub-scenario denoted “-N”), while the second sub-scenario run treats storage units
as generators with equivalent full nameplate capacities (sub-scenario denoted “-F”).

In addition to the strategies implemented for power dispatch, other choices about how to
represent different aspects of the power system may also affect the results of RA assessments.
For the purposes of our analysis, we choose to explore the effects of two modeling choices
that are easy to implement in our modeling framework and relevant to system operators:
accuracy of day-ahead forecasts and consideration of transmission adequacy. We develop the
following two system sensitivity scenarios to examine the impacts of these other factors:

• PfDF : Perfect day-ahead forecast. In this scenario, the day-ahead forecast for load
and VRE generation is assumed to be a perfect forecast. In other words, the day-
ahead time series are the same as the real-time time series. This differs from all of the
scenarios introduced up to this point, in which the day-ahead forecasts include errors.2

• TxFr : Transmission free. In this scenario, all transmission limits are omitted. This
scenario has reduced fidelity compared to a scenario in which limits are enforced, but

2Day-ahead forecast errors in all scenarios other than PfDf are included in the IEEE RTS data and
incorporated directly. The RTS data include day-ahead forecasts of hourly generation as well as actual
generation profiles with 5-minute resolution, as described in [21, 27, 28].
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Table 3: System sensitivity scenarios designed to investigate how omitting day-ahead forecast errors or
transmission limits affects estimates of RA metrics

Scenario Day-ahead forecast errors Transmission limits

RADp-4 Included Included

PfDF Excluded Included

TxFr Included Excluded

does represent a prevalent practice to ignore the transmission system when assessing
adequacy in a regional power system. Consequently, by comparing it to the other sce-
narios in which transmission adequacy is considered, we can determine how important
it is to account for potential transmission limits when assessing system RA.

Table 3 summarizes how the two system sensitivity scenarios described above differ from
the benchmark scenario RADp-4.

All scenarios except for Conv are developed based on our probabilistic RA assessment
framework and thus are simulated using the constructed Monte Carlo simulation set. We
record a series of contiguous hours when demand cannot be met as a shortfall. Small shortfall
events with load shedding of less than 0.1% of hourly demand are screened and discarded,
as we assume that they can be eliminated by demand-side management actions.

Before presenting our results, we conclude this section by summarizing the three scenario
sets that we run, and the primary questions they are designed to investigate, in Table 4.

Table 4: Summary of our three sets of scenarios and the primary questions they are designed to investigate.
Note that RADp-4 appears in multiple scenario sets as a benchmark scenario.

Questions What is the impact
of using economic vs.
non-economic dispatch
strategies to assess the
RA of a system?

How do less complex
implementations of
non-economic dispatch
affect outcomes of RA
assessments?

How does omitting
day-ahead forecast
errors or transmission
limits affect outcomes
of RA assessments?

Scenarios RADp-4
EcDp
AgDp
CsDp

Conv
RADp-1
RADp-2
RADp-3
RADp-4

RADp-4
PfDF
TxFr

5. Simulation results and anaylsis

5.1. Dispatch schemes, RA metrics, and costs

In this subsection, we examine the results of the four scenarios from Table 1, which were
designed to help us investigate how the dispatch scheme implemented in the model (e.g.,
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Table 5: Reliability and production cost outcomes for economic and reliability-focused dispatch schemes

Scenario LOLE
(days/year)

LOLP LOLEV
(events/year)

EUE
(MWh/year)

Production
Cost
(M$/year)

RADp-4 0.286 24.6% 0.288 41.92 96.3

EcDp 0.294 25.2% 0.296 43.25 76.9

AgDp 15.500 100% 17.762 5889.58 85.0

CsDp 0.250 22.6% 0.250 35.97 105.62

economic vs. non-economic) affects the resulting estimates of RA metrics. In addition to
reporting the RA metrics themselves, we also report the total production costs that the
model incurs in each scenario (not including penalty costs for unmet load). This provides
information on how costly it is to operate the power system in a reliability-focused mode,
and how much additional reliability is obtained from it.

Table 5 reports reliability and production cost outcomes for scenarios RADp-4, EcDp,
AgDp, and CsDp. We observe that AgDp underestimates system reliability (relative to the
EcDp baseline) and it also fails to reduce the production costs due to the lack of robustness
against unforeseen thermal generator failures. RA performance in the AgDp scenario is very
poor because it dispatches storage as a cost-free resource, meaning that there tends to be
little energy in storage to cope with hours when load exceeds available generation capacity.
By contrast, CsDp slightly overestimates system reliability as a result of operating storage
units only during critical RA hours and not contributing to power dispatch during normal
periods. However, CsDp is not well aligned with the economic reality since storage assets will
be operated to earn profits for their owners instead of simply waiting to be called upon to
avert shortfalls. This becomes evident when comparing production costs. CsDp operational
costs are more than 50% higher than those of the economic dispatch scenario (EcDp), a
premium that operators may not be willing to pay for a 10% improvement in LOLP or to
serve 8 MWh of additional demand.

The comparison between RADp-4 and EcDp reveals subtle differences in RA performance
between reliability-focused and least-cost operations of power systems when the storage units
are operated according to the predetermined SoC targets. The reliability-focused dispatch,
which tries to minimize the impacts of thermal generator failures instead of total production
costs, overestimates system reliability by reducing the LOLE by 2.7% and the EUE by 3.1%,
compared to the least-cost dispatch, which reflects the dispatch logic applied in real-world
power system operations. However, these improvements are small and do not indicate a
significant difference in RA assessment accuracy. Therefore, we find that the non-economic
dispatch model, which only focuses on system reliability and ignores operational costs, can
lead to fairly accurate RA assessments when coordinated with detailed operational strategies.

We further investigate the effects of the dispatch scheme on RA assessments by analyzing
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a sample instance in the Monte Carlo simulation set. Figure 4 shows the production cost
and shortfall cost in scenarios RADp-4 and EcDp, by month. The shortfall cost is calculated
by multiplying the shortfall in MWh by the VoLL as described earlier. We observe that
significant production cost differences between the two scenarios occur in July and August,
when the net load reaches its maximum and the impacts of different dispatch strategies
become more pronounced. During this period, the threat of a shortfall is higher and thus
the reliability-focused dispatch RADp-4 tends to underestimate reliability compared to the
economic dispatch EcDp, which better reflects the operation of real-world power systems.
However, the economic impacts of operations become more significant, since thermal gener-
ators are usually running at their maximum capacities with high marginal production costs.

Figure 4: Production and shortfall costs in the RADp-4 and EcDp scenarios, by month, in one simulation
instance

5.2. Non-economic dispatch strategies

We analyze the impacts of different non-economic power dispatch strategies on RA as-
sessments using the scenarios defined in Table 2. Our goal with this scenario analysis is
to explore whether making simplifications to the non-economic dispatch scheme is able to
reduce computational complexity without sacrificing accuracy when estimating RA metrics.
Compared to the RADp-4 benchmark scenario for non-economic dispatch (and especially the
EcDp scenario for economic dispatch), these other non-economic dispatch scenarios represent
power system operations in less detail.

Table 6 reports the RA outcomes of these non-economic dispatch scenarios as well as
a few benchmarks. The standard errors for the Monte Carlo estimates are also presented.
We can observe that both Conv sub-scenarios, which represent the traditional convolution
RA method with both extreme assumptions about storage capacity credit, fail to accurately
assess the system’s RA status. Results for both Conv-N – which ignores storage capacity
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Table 6: RA outcomes across non-economic dispatch strategies and several benchmarks

Scenario LOLE (days/year) LOLP EUE (MWh/year)

Conv-N 13.03 100% 2593.2

Conv-F 0.043 4.3% 6.3

RADp-1-N 18.378 ± 0.199 100 ± 0.0% 6819.11 ± 128.12

RADp-1-F 0.368 ± 0.027 31.2 ± 2.1% 59.48 ± 6.10

RADp-2 0.458 ± 0.030 37.6 ± 2.2% 134.34 ± 12.75

RADp-3 0.416 ± 0.029 34.6 ± 2.1% 126.06 ± 12.38

RADp-4 0.286 ± 0.024 24.6 ± 1.9% 41.92 ± 4.84

EcDp 0.294 ± 0.025 25.2 ± 1.9% 43.25 ± 5.02

contributions – and Conv-F – which assumes a capacity credit for storage equal to its total
discharge capacity – deviate significantly from the RA outcomes of RADp-1-F.3 This result
highlights the importance of making educated assumptions about the real-time availability
of short-duration storage. Therefore, including a storage dispatch model that tracks the
system’s real-time state is evidently crucial for RA assessments of modern power systems.

The dispatch model in RADp-1, which omits the operations of storage units, provides
limited information on the system’s RA status due to the exaggerated differences between its
sub-scenarios that model storage units as firm generators with different equivalent capacities.
This result suggests that as energy storage becomes more widespread, tracking the real-time
status of storage units has substantial impacts on RA assessment results, and embedding
the storage operation problem into dispatch models is necessary to reflect a system’s real-
time status. A dispatch model that represents the chronological operations of both thermal
generators and storage units is required to accurately measure RA as the electricity sector
evolves to incorporate more intermittent resources and storage.

The comparison among scenarios RADp-2, RADp-3, and RADp-4 shows that more so-
phisticated non-economic dispatch strategies could improve the accuracy of the system’s
RA assessment. The comparison between RADp-3 and RADp-2 shows that utilizing the
reliability-focused thermal dispatch strategy in RADp-3 leads to 15 fewer occurrences of
shortfalls in the 500 instances in the Monte Carlo simulation set. These results still underes-
timate the system’s reliability – as compared against RADp-4 – but improve the assessment
to some degree. Furthermore, the omission of active storage dispatch with optimized day-
ahead SoC targets in RADp-3 results in considerable increases from RADp-4 in all three
RA metrics: +0.132 days/year LOLE, +10% LOLP, and +84.74 MWh/year EUE. These

3See [29, 30, 31] for references on calculating storage capacity credit and the implications of representing
storage’s contributions to RA via its capacity credit.
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changes are likely significant enough to affect the judgement about whether a power system
is resource adequate. We find that a reliability-focused thermal dispatch yields minor im-
provements over a random-priority dispatch, but that a more accurate characterization of
short-duration storage dispatch is essential to accurately evaluate the system’s RA status.

Histograms of shortfall magnitudes observed in RADp-2 and RADp-4 are presented in
Figure 5. The RADp-2 scenario produces shortfalls with magnitudes higher than 400 MWh
that do not appear in RADp-4 when a more sophisticated storage dispatch strategy is used.
This comparison indicates that the active dispatch strategy using the day-ahead forecast
(featured in RADp-4 ) is close to the theoretical optimal for RA purposes, where a storage
unit can discharge its maximum power during critical hours.

Figure 5: Shortfall magnitude histograms for RADp-2 and RADp-4 over the whole simulation set

Figure 6 shows the total number of shortfall hours observed in each month for the RADp-
2, RADp-3, and RADp-4 scenarios, over the whole simulation set. Loss of load events in the
case study system occur exclusively in summer when the demand is significantly higher than
in the other seasons. Though they have different LOLH in the simulation, the three scenarios
show consistent temporal shortfall patterns that span the same range of days and hours. This
suggests that even though models with simplistic operations fail to assess the system’s RA
status accurately, they may still be useful for screening simulation periods, identifying critical
hours, or providing bounds for target RA metrics due to their low computational complexity.
This possible application is particularly useful for renewable effective load carrying capability
(ELCC) studies in power systems without fuel- or energy-constrained resources, since it can
make it more efficient to carry out the multi-round simulation process to find the equivalent
amount of incremental load.

5.3. System representation sensitivities

The results in the preceding subsections showed that the strategies used to dispatch
thermal generators and storage units have a strong influence on RA metric values. In this
subsection, we turn to studying how several other choices about how to model power system
operations may affect the outcomes of RA assessments. Table 7 summarizes the impacts
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Figure 6: Number of shortfall hours in each month over the whole simulation set

Table 7: Effects of ignoring day-ahead forecast errors or transmission limits on RA outcomes

Scenario LOLE (days/year) LOLP EUE (MWh/year)

RADp-4 0.286 ± 0.024 24.6 ± 1.9% 41.92 ± 4.84

PfDF 0.286 ± 0.024 24.6 ± 1.9% 41.92 ± 4.84

TxFr 0.220 ± 0.022 19.0 ± 1.7% 36.49 ± 4.87

of two specific modeling assumptions on RA assessment results. PfDF assumes perfect
day-ahead foresight instead of the default day-ahead forecast errors, while TxFr ignores
transmission limits. Our goal is to understand how important it is to consider day-ahead
forecast errors and transmission limits when attempting to determine a system’s RA status.

Results show that the computed RA metrics in PfDF are the same as those from the
benchmark scenario RADp-4. It suggests that day-ahead forecast errors have limited impacts
on the accuracy of RA assessments, although we acknowledge that this outcome could be
different if unit commitment is fully represented.

Investigating the effects of neglecting transmission constraints is relevant because many
current RA assessments do not represent them. It follows that measuring the impact of this
assumption within our model can shed light on the potential consequences of this common
simplification. We find that relaxing the transmission limits in TxFr leads to a 23% underes-
timation of LOLE and LOLP, but only a 13% underestimation of EUE. These results suggest
that incorporating transmission adequacy into RA assessments has a substantial impact on
measuring shortfall frequency, but a weaker impact on estimating shortfall magnitudes. We
will examine the effects of representing transmission constraints on more detailed character-
istics of shortfalls in the following subsection.
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5.4. Shortfall characteristics and additional RA metrics

We have demonstrated that different modeling assumptions can lead to substantial changes
in RA assessment results. However, the effects of different modeling choices may not be fully
captured by traditional expectation-based RA metrics like LOLE and EUE. As discussed
in Section 1.3, researchers have suggested that a combination of metrics may be needed to
properly capture the frequencies, durations, and magnitudes of shortfalls. In addition, it is
possible that new metrics may need to be used as supplements to traditional metrics.

We use the simulation results of the benchmark scenario RADp-4 to diagnose whether
traditional metrics are sufficient to describe the RA status of a power system. Figure 7 shows
the distribution of hourly EUE over 100 random thermal generator failure instances for each
of the five weather patterns in scenario RADp-4. We find that most shortfalls happen be-
tween 16:00 (4pm) and 20:00 (8pm) in the summer, when PV generation is declining and the
load is increasing. In addition, the whole year’s aggregated EUE is similar across weather
patterns. However, the specific hourly distribution of shortfalls is significantly different.
The critical hours (with an EUE above the 90th percentile EUE across simulations) occur
on different days across the five weather patterns, and the hour with the highest EUE in one
weather pattern may not have a shortfall in another weather pattern. This finding has two
implications. First, it shows that using a single year’s simulation may not necessarily lead to
a significant bias in assessing the aggregate shortfall magnitude. Second, it shows that the
timing of shortfalls will differ and none of the traditional expectation-based metrics will iden-
tify this difference. Understanding the times and durations of shortfalls could be important
for identifying appropriate RA enhancement strategies (e.g., solar PV will contribute more
to daytime RA than nighttime RA) and because the costs of power interruptions depend on
their timing and are not necessarily proportional to their duration. Our analysis highlights
the relevance of considering multiple probabilistic RA metrics, or even the full distributions
of outcomes instead of just their descriptive statistics, in RA assessments to describe those
differentiated shortfall characteristics.

Figure 7: Heat map of hourly EUE in scenario RADp-4 for each of the five weather patterns
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We now explore whether additional RA metrics can better capture the nuanced effects
of power system modeling choices on RA outcomes. Table 8 reports several RA statistics
based on the shortfall records in the system sensitivity scenarios, evaluated using the al-
ternative metrics suggested in [32] that capture the magnitudes and durations of shortfalls.
These metrics provide more information about individual shortfall events, including the max-
imum all-hour and peak-hour magnitude, maximum duration, and total number of shortfalls.
These metrics provide some insights on the shape of the shortfall distribution, as opposed to
traditional aggregate metrics that focus on the mean or expected value of the distribution.
The outcomes in PfDF are still the same as those in RADp-4, which is consistent with the
previous finding that day-ahead forecast errors are unlikely to be a key operational detail to
accurately evaluate RA, at least when unit commitment is not considered.

Table 8: Additional RA metrics for the RADp-4, PfDF, and TxFr scenarios

Metric (Unit) RADp-4 PfDF TxFr

Number of shortfalls 144 144 111

Maximum shortfall magnitude (MWh) 877.25 877.25 877.25

Average shortfall magnitude (MWh) 145.55 145.55 164.36

Maximum shortfall peak-hour load
shedding (MW)

603.34 603.34 603.34

Average shortfall peak-hour load
shedding (MW)

137.45 137.45 153.41

Maximum shortfall duration (hours) 2 2 2

Average shortfall duration (hours) 1.076 1.076 1.108

The comparison between scenarios RADp-4 and TxFr shows that ignoring transmission
constraints results in the underestimation of LOLE and EUE but does not lead to inaccura-
cies in the magnitude of peak-hour load shedding. This is because when the bulk system is
modeled as a single zone without the transmission network, the spatial imbalance between
the zones with large net load requirements and zones that have excess generation is elimi-
nated. In other words, transmission limits can create smaller shortfalls that are “hidden”
when these limits are neglected. These smaller shortfalls reduce the average MWh magni-
tude, as the ones remaining when limits are not enforced are larger. The reduced number
and higher average duration of shortfalls in TxFr compared to RADp-4 are evidence of this
explanation. Choices about whether and how to model the transmission network will affect
RA assessments by not only determining whether the power can be delivered to the load
points, but also changing the dispatch logic of thermal generators and storage units that are
geographically scattered across the represented region.
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6. Conclusions

Traditional RA assessments that do not model chronological power system operations
have become obsolete for evaluating the reliability performance of modern power systems
due to several rapid changes in the electricity industry. In this analysis, we created a technical
framework for probabilistic RA assessment and used it to study how key choices about how
to model power system operations affect the values that are obtained for RA metrics. As
summarized in Table 9, the results helped us distinguish operational details that are critical
to include in any accurate RA assessment from details that are computationally burdensome
but do not significantly affect the evaluation of RA.

Table 9: Impacts of operational details on RA assessments

Operational or
simulation characteristic

Impacts on RA
assessment accuracy

Level of effort to
represent in models

Multi-year data High Medium

Transmission limits High Medium

Storage dispatch High Medium (short duration)
High (long duration)

Non-economic thermal
dispatch

Medium Low

Operational cost Medium High

Day-ahead forecast error Low High

Several high-level findings emerged from the case study explored using our probabilistic
RA assessment framework:

• Non-economic dispatch schemes that ignore economic objectives can lead to fairly
accurate RA assessments when coordinated with detailed operational strategies.

• Representing the detailed chronological operations of thermal generators and storage
units is essential for accurate RA assessments, but simplified dispatch models could
have value as screening tools (e.g., to identify critical hours for RA) due to their low
computational complexity.

• Multi-year data is important to include to capture inter-annual variations in system
operating conditions.

• Neglecting to incorporate transmission limits into RA assessment could lead to substan-
tial underestimation of traditional “expected value” RA metrics. However, neglecting
transmission limits may not mask the largest shortfall events.
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• New RA metrics that capture event-specific shortfall characteristics should be used as
supplements to traditional metrics to better capture the impacts of different modeling
assumptions on RA outcomes, as well as better describe the ability of the system to
prevent specific high-impact shortfalls.

This study has been motivated by the consensus that current RA assessments are in-
adequate for modern power systems, and with the goal of prioritizing ways to improve
them. We believe that our findings provide several useful insights to stakeholders to support
decision-making in RA assessments. Future work can consider incorporating the operations
of energy-constrained resources (e.g., hydroelectric resources) and long-duration storage to
expand the capabilities of our technical framework. In addition, thermal generator failures
that may lead to low-probability but high-impact shortfalls can be included in the eco-
nomic dispatch model, which can potentially bring resilience analysis into RA modeling.
Finally, our framework can also be deployed alongside capacity expansion models that en-
able planners to optimize their least-cost resource portfolios while maintaining robust RA
levels. The developed power system operation model may have a promising capability to
support decision-making in planning processes, such as the capacity accreditation of variable
renewable resources or the location-sizing problem for battery storage investments.
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Appendix A. Mathematical formulations for selected model components

Nomenclature

Sets and Indices:

D, d days

H, h hours

N, n nodes

T, t transmission lines

G, g thermal generators

R, r renewable generators

X, x storage units

Parameters:
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Ig, Ir installed capacity of thermal generator g or renewable generator r

Imin
g minimum run rate for thermal generator g

λg forced outage rate for thermal generator g

cg convex production cost for thermal generator g

Ix installed power capacity for storage unit x

ηx duration for storage unit x

Icx, I
d
x charging and discharging limits for storage unit x

It transmission limit for transmission line t

ρcx, ρ
d
x, ρ

s
x charging, discharging, and storage efficiency for storage unit x

ln,d,h load at node n at a given time (day d, hour h)

kr,d,h capacity factor for renewable generator r at a given time

σg,d,h active/outage indicator ({1, 0}) for thermal generator g at a given time

Decision Variables:

Lsrv
n,d,h, L

umt
n,d,h served load and shortfall at node n at a given time

Pg,d,h power dispatch for thermal generator g at a given time

Pr,d,h, P
crt
r,d,h power dispatch and curtailment for renewable generator r at a given time

P c
x,d,h, P

d
x,d,h storage charge and discharge for storage unit x at a given time

Sx,d,h SoC for storage unit x at a given time

Ft,d,h transmission flow on line t at a given time

Other Elements:

lfctr,d,h forecast load and shortfall at node n at a given time

kfct
r,d,h forecast capacity factor for renewable generator r at a given time

Stgt
x,d,h SoC target for storage unit x at a given time

Hourly dispatch problem for day d, hour h

• Objective function

Minimize ω1

∑
n∈N

Lumt
n,d,h + ω2

∑
r∈R

P crt
r,d,h + ω3

∑
x∈X

|Sx,d,h − Stgt
x,d,h|+ ω4

∑
g∈G

λgPg,d,h

Notes about the objective function:
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– ω1, ω2, ω3, and ω4 are the penalty coefficients.

– The four terms are total shortfalls, total renewable curtailment, total storage SoC
deviation, and total expected power reduction due to thermal generator failures.

– Regarding storage dispatch strategies, Stgt
x,d,h is set to 50% for the Passive strategy,

set to 0% for the Cost-free resource strategy, set to 100% for the Reserve strategy,
and obtained from the day-ahead dispatch solution in the Active strategy.

– Regarding thermal dispatch strategies, λg is replaced by 0 in the Random-priority
strategy, and it is replaced by cg in the Economic strategy.

• Main constraints

– Satisfy the load with thermal and renewable dispatch, net storage discharge, and
net incoming power from the transmission system at each node in each hour:∑
g∈G(n)

Pg,d,h +
∑

r∈R(n)

Pr,d,h +
∑

x∈X(n)

P d
x,d,h −

∑
x∈X(n)

P c
x,d,h +

∑
ni∈T

Fni,d,h −
∑
no∈T

Fno,d,h = Lsrv
n,d,h

Lsrv
n,d,h + Lumt

n,d,h = ln,d,h,∀n ∈ N

– Renewable generation for each renewable generator in each hour:

Pr,d,h + P crt
r,d,h = kr,d,hIr,∀r ∈ R

– Thermal generation for each active thermal generator in each hour:

σg,d,hI
min
g ≤ Pg,d,h ≤ σg,d,hIg,∀g ∈ G

– Transmission limit for each transmission line:

Lt,d,h ≤ It,∀t ∈ T

– Storage operation for each storage unit in each hour (knowing Sx,d,h−1 from the
previous hour’s system state):

ηxSx,d,h−1Ix = ρsxηxSx,d,h−1Ix −
1

ρsd
P d
x,d,h + ρcxP

c
x,d,h

P d
x,d,h

Idx
+

P c
x,d,h

Icx
≤ 1,∀x ∈ X

Day-ahead forecast problem for day d

• Objective function

Minimize
∑
h∈H

(ω1

∑
n∈N

Lumt
n,d,h + ω2

∑
r∈R

P crt
r,d,h)
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• Main constraints

– Satisfy the load with thermal and renewable dispatch, net storage discharge, and
net incoming power from the transmission system at each node in each hour:∑
g∈G(n)

Pg,d,h +
∑

r∈R(n)

Pr,d,h +
∑

x∈X(n)

P d
x,d,h −

∑
x∈X(n)

P c
x,d,h +

∑
ni∈T

Fni,d,h −
∑
no∈T

Fno,d,h = Lsrv
n,d,h

Lsrv
n,d,h + Lumt

n,d,h = lfctn,d,h,∀n ∈ N, h ∈ H

– Renewable generation forecast for each renewable generator in each hour:

Pr,d,h + P crt
r,d,h = kfct

r,d,hIr,∀r ∈ R, h ∈ H

– Thermal generation forecast for each active thermal generator in each hour:

Imin
g ≤ Pg,d,h ≤ Ig,∀g ∈ G, h ∈ H

– Transmission limit for each transmission line:

Lt,d,h ≤ It,∀t ∈ T, h ∈ H

– Daily storage operation forecast for each storage unit in each hour:

ηxSx,d,h−1Ix = ρsxηxSx,d,h−1Ix −
1

ρsd
P d
x,d,h + ρcxP

c
x,d,h

P d
x,d,h

Idx
+

P c
x,d,h

Icx
≤ 1,∀x ∈ X, h ∈ H

The optimal solution {S∗
x,d,h} will serve as the predetermined SoC targets {Stgt

x,d,h} for
hourly storage dispatch with the Active strategy.
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