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Abstract—We present a new multi-objective optimization ap-
proach for synthesizing interpretations that “explain” the be-
havior of black-box machine learning models. Constructing
human-understandable interpretations for black-box models often
requires balancing conflicting objectives. A simple interpretation
may be easier to understand for humans while being less precise
in its predictions vis-a-vis a complex interpretation. Existing
methods for synthesizing interpretations use a single objective
function and are often optimized for a single class of interpreta-
tions. In contrast, we provide a more general and multi-objective
synthesis framework that allows users to choose (1) the class of
syntactic templates from which an interpretation should be syn-
thesized, and (2) quantitative measures on both the correctness
and explainability of an interpretation. For a given black-box,
our approach yields a set of Pareto-optimal interpretations with
respect to the correctness and explainability measures. We show
that the underlying multi-objective optimization problem can be
solved via a reduction to quantitative constraint solving, such as
weighted maximum satisfiability. To demonstrate the benefits of
our approach, we have applied it to synthesize interpretations
for black-box neural-network classifiers. Our experiments show
that there often exists a rich and varied set of choices for
interpretations that are missed by existing approaches.

I. INTRODUCTION

Machine learning (ML) components, especially deep neu-
ral networks (DNNs), are increasingly being deployed in
domains where trustworthiness and accountability are major
concerns. Such domains include health care [5], automotive
systems [28], finance [21], loans and mortgages [25], [33], and
cyber-security [10] among others. For a system to be consid-
ered accountable and trustworthy, it is necessary to provide un-
derstandable explanations to (possibly expert) humans of why
the system took specific actions/decisions in response to inputs
of concern. This requires the availability of models that are
human-understandable, and that also predict the outcome of
different components of the system with reasonable accuracy.
Laws and regulations, such as the General Data Protection
Regulation (GDPR) in Europe [1], are already emerging with
requirements on explainability of ML components in such
systems. Unfortunately, the working of ML components like
DNNs can be extremely complex to comprehend, and more
so when the components are used as black boxes. Therefore,
there is an urgent need for automated techniques that generate
“easy-to-understand” and “targeted” interpretations of black-
box ML components, with formal guarantees about tradeoffs
between correctness and explainability.

Synthesizing a “good” interpretation of a black-box ML
component often requires striking the right balance between
correctness or accuracy of the interpretation (measured in
terms of fidelity, misclassification rate of predictions etc.) and
explainability or understandability (approximated by the size
of the ML model – e.g., depth of decision tree/list/diagram,
number and nature of predicates used, etc.). In most cases, the
correctness and explainability measures are in direct conflict
with each other. Thus, a simple interpretation that is easily
understood by humans may disagree in its predictions with the
output of a black-box ML component for many input instances,
whereas an interpretation that correctly predicts the output for
most input instances may be too large and unwieldy for human
comprehension. This is not surprising since components like
DNNs are often used to learn highly non-trivial functions for
which simple models are not available. Therefore, synthesis
of interpretations for black-box ML components is inherently
a multi-objective optimization problem with conflicting objec-
tives, and Pareto optimality is the best we can hope for when
synthesizing such interpretations.

The literature contains a rich collection of techniques for
synthesis of interpretations for black-box ML components
(see, for example, recent surveys by [2] and [13]). Most of
these approaches optimize a single correctness measure (e.g.
misclassification rate on a set of samples) while systemati-
cally constraining some explainability measure (e.g. number
of nodes or depth of a decision tree). Examples of such
techniques include [19] wherein sparse logical formulae are
synthesized, and also recent approaches to learning optimal
decision trees using constraint programming [35]–[37], item-
set/rulelist mining [3] and SAT-based techniques [6], [18],
[27], among others. These approaches often allow efficient
generation of a single interpretation with high correctness mea-
sure and satisfying user-provided explainability constraints.
However, no formal guarantees of Pareto-optimality (w.r.t.
correctness and explainability) are provided. Furthermore,
these techniques do not compute the set of all Pareto-optimal
interpretations, thereby constraining the choice of which in-
terpretation to use for a given application.

In this paper, we present a novel multi-objective opti-
mization approach for synthesizing Pareto-optimal interpre-
tations of black-box ML components, using an off-the-shelf
quantitative constraint solver (weighted MaxSAT solver in
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our case). For each problem instance, our approach yields
a set of interpretations that correspond to all Pareto-optimal
combinations of correctness and explainability measures. This
contrasts sharply with earlier approaches such as [3], [6],
[18], [19], [27], [35]–[37] that always yield a single inter-
pretation, leaving the user with no choice of exploring the
trade-off between correctness and explainability of alternative
interpretations. Similar to existing work, we use syntactic
constraints to restrict the class of interpretations over which
to search. Unlike earlier approaches, however, we do not
combine quantitative correctness and explainability measures
into a single optimization objective. Any such mapping of
an inherently multi-dimensional optimization problem to the
uni-dimensional case results in exclusion of some Pareto-
optimal solutions in general. Given that quantitative explain-
ability measures are often just approximations of subjective
preferences of the end-user, we believe it is important to
present the entire set of Pareto-optimal interpretations, and
leave the choice of the “best” interpretation to the user. As our
experiments show, there is significant diversity among Pareto-
optimal interpretations, and a user aware of this diversity can
make an informed choice for a specific application.

The syntactic constraints considered in this paper restrict the
space of interpretations to decision diagrams (a generalization
of decision trees) with specified bounds on the number of
nodes, predicates and branching factors. For simplicity, we let
the set of predicates be pre-determined but potentially large,
and with possibly different relative preferences for different
predicates. We focus on the setting where the black-box ML
model can only be treated as an input-output oracle, i.e., given
an input, we can observe its output and nothing else. Addi-
tionally, we do not have access to training or test data used
to create the black-box component. Our correctness measure
is therefore based on querying the black-box component with
random samples chosen from its input space, where the sample
set size is carefully chosen to provide statistical guarantees of
near-optimality. Our explainability measure takes into account
user preferences of predicates and also size of the interpre-
tation, prefering smaller interpretations over larger ones. The
overall framework is, however, general enough to admit other
syntactic classes (beyond decision diagrams), and also other
correctness and explainability measures.

We have implemented our approach in a prototype tool and
applied it to synthesize Pareto-optimal interpretations for some
black-box neural network classifiers. Our results exhibit the
richness of choices available to the end-user in each case,
none of which would be exposed by existing methods that
generate only a single optimal interpretation. Indeed, we find
that significant improvements in explainability can sometimes
be achieved by only a marginal reduction of accuracy.

Our primary contributions can be summarized as follows:

1) We formulate the Pareto-optimal interpretation synthesis
problem for black-box ML components.

2) We show that finding a single Pareto-optimal inter-
pretation can be formulated as a weighted MaxSAT

problem, for some meaningful choices of correctness
and explainability scores.

3) We present a divide-and-conquer algorithm for synthe-
sizing interpretations for all Pareto-optimal combina-
tions of correctness and explainability scores.

4) We provide formal guarantees of soundness, complete-
ness and universality of our algorithm, and also statisti-
cal guarantees of near-optimality when only a subset of
behaviors of a black-box component is sampled.

5) We build a prototype tool and apply it to a collection of
black-box neural network classifiers: our results show
that significant diversity exists among Pareto-optimal
interpretations which earlier tools fail to discover.

II. MOTIVATING EXAMPLE

We start with an example, adapted from [11], that illustrates
the diversity that exists among Pareto-optimal interpretations
of black-box ML models. Consider a scenario where an
airplane uses a neural network to autonomously taxi along
a runway, relying on a camera sensor. Suppose the plane is
expected to follow the runway centerline within a tolerance
of 2.5 meters. The airplane is equipped with monitoring mod-
ules that decide under what circumstances certain learning-
enabled components can be trusted to behave correctly. One
of these monitoring modules decides under what conditions the
camera-based perception module, that determines the distance
to the centerline, can be trusted to deliver the right values.
For example, the monitoring module may use the weather
condition, time of day, and initial positioning of the airplane
to decide whether the perception module’s output is reliable.
We wish to reason about this black-box monitoring module,
and hence need an understandable interpretation for it.

Given a set of user-defined predicates (viz. clouds, time
of day, and initial position of the plane), the user may favor
certain predicates over others, and also favor concise inter-
pretations. By giving favorability weights to each predicate,
we can define an explainability score that is related to the
number of nodes in the interpretation and also to the predicates
used (this is detailed later). The prediction accuracy of an
interpretation is measured w.r.t a set of examples sampled from
the black box, and is represented by a correctness score. Our
approach explores the space of interpretations, searching for
concise interpretations that use more favored predicates and
also have high accuracy. Clearly, to find a “good” interpreta-
tion that meets these conflicting goals, one must explore all
Pareto-optimal interpretations w.r.t. the criteria above.

Figure 1 shows three of the many Pareto-optimal interpreta-
tions our approach synthesized for the monitoring black-box.
Each of these has its own pros and cons, and is incomparable
with the others. The user can now choose the interpretation
that best suits the user’s purpose. For example, if interpretation
size is not of concern but accuracy is, then Figure 1(b) is
the best choice. However, if the user wants concise models
with favored predicates (related to time of day and initial
position), then Figure 1(a) is the best choice. The user may
also choose the interpretation in Figure 1(c), which is only
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(b) Pareto-optimal interpretation with correctness mea-
sure c = 0.94, explainability measure e = 0.71
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(c) Pareto-optimal interpretation with correct-
ness measure c = 0.90 and explainability
measure e = 0.89

Fig. 1. Pareto-optimal decision diagram interpretations for the black-box monitoring component that decides based on time of day, cloud types, and initial
position of an airplane whether to trust a perception module to help the plane track the centerline of a runway. The correctness score is given by the prediction
accuracy w.r.t. to the used sample set. The explainability score is the normalized sum of weights of used predicates and unused nodes.

slightly less accurate than that in Figure 1(b), but has a higher
explainability score. In fact, Figure 1(c) represents a healthy
balance between accuracy and explainability. According to it,
the perception module can be trusted only during morning
hours if the plane starts no more than 2.5m from the centerline,
or at any time if the plane starts within 0.5m of the centerline.

Tools that use a single-objective function to synthesize
interpretations can only find one of these Pareto-optimal inter-
pretations, depending on the relative weights given to accuracy
and explainability. The rich diversity among Pareto-optimal
interpretations is completely missed by such tools, effectively
restricting the user’s choice of a “good” interpretation.

III. PARETO-OPTIMAL INTERPRETATION SYNTHESIS

In this section, we formalize the Pareto-optimal interpre-
tation synthesis problem and present a solution (for specific
choices of correctness and explainability scores) using a quan-
titative constraint satisfaction engine. In our case, this engine
is an off-the-shelf weighted maximum satisfiability solver. The
key idea is that the user sets syntactic restrictions on the class
of considered interpretations as well as quantitative objectives
for evaluating the interpretations. The quantitative objectives
are defined using two inherently incomparable measures –
the explainability measure and the correctness measure. The
explainability measure relates to “ease” of understanding of
the interpretation by an end-user, while the correctness mea-
sure relates to how precisely the interpretation explains the
behavior of the black-box model on a given set of sam-
ples. Examples of quantitative correctness measures include
accuracy, recall, precision, F1-score [34], while examples of
explainability measures include those that reward usage of
concise interpretations and less complex predicates.

Since our access to the black-box model is only via in-
put/output samples, the correctness measure referred to above
is defined with respect to a set of samples, and not with respect
to the black-box model in its entirety. While this may appear
ad-hoc at first sight, we show in Section IV that rigorous
statistical guarantees can indeed be provided with sufficiently
many samples.

A. Formal problem definition

We now give a formal definition of the Pareto-optimal
interpretation synthesis problem. An interpretation is simply a
syntactic structure, viz. decision tree, decision diagram, linear
model, etc. We will fix a class of interpretations E over an
input domain I and output domain O. For an interpretation
E ∈ E , we define fE ∈ (I → O) to be the semantic function
that is computed by E. Note that different interpretations may
compute the same semantic function.

Every interpretation E ∈ E is associated with a pair of real-
valued measures (c, e), where c is the correctness measure and
e is the explainability measure of E. We define a partial order
� on such pairs as: (c, e) � (c′, e′) iff c ≤ c′ and e ≤ e′.
Given a set X of (c, e) pairs, we define max� X to be the
set of �-maximal pairs in X . An interpretation E with the
pair of measures (c, e) is said to be Pareto-optimal if (c, e) is
maximal over pairs of measures of all interpretations.

Definition 1 (Pareto-optimal interpretation synthesis): Let
E be a syntactic class of interpretations over inputs I and
outputs O. Further, let S ⊆ I × O be a set of samples,
∆C : (I → O)×2(I×O) → R≥0 be a correctness measure, and
∆E : E → R≥0 an explainability measure. The Pareto-optimal
interpretation synthesis problem 〈E ,S,∆C ,∆E〉 is the multi-
objective problem of finding a Pareto-optimal interpretation
E ∈ arg max�E′∈ E (∆C(fE′ ,S),∆E(E

′)).
We interpret ∆C(fE ,S) as a measure of closeness between

the semantic function fE of interpretation E and the semantic
constraints defined by a set S of samples. An optimally correct
interpretation is one with maximal closeness. An example of
such a measure is the prediction accuracy |{(i,o)∈S|fE(i)=o}|

|S| .
The problem can also be defined in terms of the “distance”
between an interpretation and the semantic constraints defined
by S, in which case, the optimization problem is one of
minimization. An example of such a measure is the misclas-
sification rate, which is one minus the prediction accuracy.
Similarly, for ∆E(·), we choose to define it as a reward
function that we want to maximize, but it can also be dually
defined as a cost function we want to minimize.
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For each �-maximal pair of measures, there can be multiple
corresponding interpretations realizing the measures. We don’t
distinguish between them for purposes of this paper. The
following definition is therefore relevant.

Definition 2 (Minimal representative set): A set Γ
of Pareto-optimal interpretations is a minimal represen-
tative set for 〈E ,S,∆C ,∆E〉 if for every (c, e) ∈
max�E∈E(∆C(fE ,S),∆E(E)), there is exactly one interpre-
tation E′ ∈ Γ such that (∆C(fE′ ,S),∆E(E

′)) = (c, e).
Our goal can therefore be stated as one of finding a minimal
representative set of interpretations for a black-box model.

B. Synthesis via weighted maximum satisfiability

We now discuss how to synthesize one (of possibly many)
Pareto-optimal interpretation for specific choices of E , ∆C and
∆E , by encoding the synthesis problem as a weighted maxi-
mum satisfiability problem (weighted MAXSAT). For purposes
of our discussion, we choose E to be the class of bounded
multi-valued decision diagrams, i.e., decision diagrams with
multiple branching at each node, where the branching is gov-
erned by decision predicates, and with a bound on the number
of decision nodes (see, e.g., diamond nodes in Figure 1). We
use prediction accuracy as the correctness measure, and define
the explainability measure with weights (denoting preferences)
on the predicates and on the number of used nodes. The
encoding for several other classes of interpretations, such as
decision trees, decision rules, etc. and for other explainability
and correctness measures can be done similarly.

We start by recalling the weighted MAXSAT problem. A
Boolean formula ϕ over variables in a set X is said to be in
conjunctive normal form (CNF) if ϕ is of the form C1 ∧C2 ∧
· · ·Cm, where each Ci is a disjunction of literals (i.e. variables
or negations of variables). An assignment σ : X → {0, 1} is an
assignment of truth values to variables. If a clause Ci evaluates
to 1 under σ, we say σ satisfies Ci, denoted by σ |= Ci.

Definition 3 (Weighted Maximum Satisfiability): Given a
Boolean formula ϕ =

∧m
i=1 Ci in CNF and a weight function

w : {C1, . . . Cm} → R≥0 that assigns a non-negative real
weight to each clause, the weighted MAXSAT problem is to
find an assignment σ which maximizes

∑
{Ci| σ|=Ci} w(Ci).

In a variant of the above definition, the clauses in ϕ are
partitioned into hard and soft clauses. The problem now is
to find an assignment σ that satisfies all hard clauses and
maximizes the sum of weights of satisfied soft clauses. We
use this variant for encoding our problem.

At a high level, for an instance 〈E ,S,∆C ,∆E〉 of the
Pareto-optimal interpretation synthesis problem, we define
its encoding as a conjunction of four formulae. Specifically,
φ〈E,S,∆C,∆E〉 = φE∧φS∧φ∆C∧φ∆E where, (i) φE encodes the
syntactic restrictions, i.e., bounded multi-valued decision dia-
grams with the permitted predicates (features and branchings)
and labels; (ii) φS encodes the semantic constraints, i.e., the
relation between the samples in S and an interpretation satisfy-
ing φE ; (iii) φ∆C encodes the correctness measure, e.g., in case
of prediction accuracy it encodes whether an interpretation
agrees on a sample; and finally (iv) φ∆E defines constraints

that encode certain structural aspects of an interpretation, e.g.,
what predicates were chosen and whether a node was used.
We discuss some details of these formulas below, leaving the
full encoding to the long version of this paper at [31].

a) Encoding of the interpretation class (φE ): We start by
discussing the encoding for our interpretation class of bounded
multi-valued decision diagrams over inputs I and outputs
O. These diagrams are restricted by a finite set of decision
predicates, denoted by P . For example, in Figure 1(a), the
initial node uses the “time of day” predicate with branchings:
{[8am-12pm], [12pm-8am]}. Let L be a set of output labels,
e.g., in Figure 1, we have two labels, “alert” and “no alert”. An
interpretation E ∈ E is a multi-valued decision diagram over
a finite set of nodes N , where each internal node corresponds
to a decision predicate p ∈ P and each leaf to an output label
` ∈ L. Outgoing transitions of a node are labelled according to
the branchings of the predicate corresponding to the node. We
remark that features are distinct from inputs to the black-box.
For example, in the decision diagrams in Figure 1 the feature
“pos” uses the latitude and longitude inputs to compute the
initial position of the plane. Furthermore, the same predicate
may appear on different nodes in the decision diagram, but not
more than once along a path. For a given P , L, and a bound
n on the number of nodes N in the decision diagram, the
formula φE encodes an acyclic decision diagram of at most
n-nodes over a set P of predicates, with leaves labeled by
elements of L.

b) Encoding of the samples: The formula φS encodes
the relation between the samples and the interpretation φE . It
uses an auxiliary variable m(i,o) for each sample (i, o) in the
set S. Logically, m(i,o) is set to true iff the interpretation given
by a satisfying assignment of φE produces the output label o
when fed the input i. For decision diagrams, this is encoded
by symbolically matching the input i to a decision path in the
diagram, and by comparing the value of o with that of the
label reached at the end of the decision path. Note that the
number of these auxiliary variables grows linearly with the
size of the sample set.

c) Encoding the correctness measure (φ∆C ): To encode
∆C , we add a unit soft clause (i.e., a clause with only one
literal) m(i,o) for each sample (i, o). By assigning appropriate
weights to these unit clauses and by maximizing the sum of
weights of satisfied clauses (see Definition 3), we obtain an
interpretation that maximizes ∆C with respect to the sample
set S. E.g., if ∆C represents the prediction accuracy, then
assigning a weight of 1 to each unit clause m(i,o) gives us
an interpretation that agrees on a maximal number of samples
in S. If the user is interested in interpretations that agree on
certain types of samples, then higher weights should be given
to these samples. More precisely, to define such measures ∆C ,
the user can provide a function w : I × O → R, that defines
these weights. For example, in the case of prediction accuracy,
w is the constant function 1.

d) Encoding the explainability measure (φ∆E ): To en-
code ∆E , we add a unit clause uγ for each syntactic structure γ
of an interpretation in E and give it a weight according to how
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important γ is. For example, in the case of decision diagrams,
using some predicates may be more favorable than others. To
encode this, we add unit clauses u(i,p) that are set to true iff
predicate p is used in node i, and assign higher weights for
clauses representing favorable predicates. Moreover, predicates
with fewer branches can be favored by using soft clauses
with appropriate weights. To further reward the synthesis of
decision diagrams with fewer nodes, we can also add unit soft
clauses ui for each node i that is set to true iff node i is not
reachable from the root node in an interpretation satisfying φE ,
and give them positive weights. In this case, by maximizing
the satisfaction of these clauses, we reward the synthesis of
small decision diagrams.

In our weighted MAXSAT formulation, we require that all
clauses resulting from a Tseitin encoding (i.e., a transformation
into CNF) of the formula φ〈E,S,∆C,∆E〉, except the unit soft
clauses mentioned above, be hard clauses. On feeding the
above formula to a MAXSAT solver, it returns a satisfying
assignment giving a concrete instantiation of the decision
diagram template that maximizes the sum of weights of m(i,o)

and uγ clauses.
The encoding described above is specific to a particular

choice of E , ∆C and ∆E . However, similar encoding can
be done for a much wider class of interpretations, and ex-
plainability and correctness measures. In fact, most types
of interpretation classes used in the literature, viz. decision
trees, decision diagrams, decision lists and sets of bounded
depth/size admit encoding as Boolean formulas. In addition,
if the computation of explainability and correctness measures
can be encoded using arithmetic circuits of bounded bit-
width, the Pareto-optimal intepretation synthesis problem can
be reduced to weighted MAXSAT by assigning appropriate
weights to bits in the bit-vector representing the measures.
The following theorem applies to our encoding, and to all
other similar encodings referred to above.

Theorem 1 (Pareto-optimality): Every solution of the
weighted MAXSAT problem φ〈E,S,∆C,∆E〉 gives a solu-
tion for the Pareto-optimal interpretation synthesis problem
〈E ,S,∆C ,∆E〉.

C. Exploring the set of Pareto-optimal interpretations

We now present an algorithm for computing a minimal
representative set of Pareto-optimal interpretations. The algo-
rithm is based on the key observation that every Pareto-optimal
measure (c, e) splits the space of measures into four regions,
depicted in Figure 2(a), (1) a region Rc,e1 of measures for
which there exists no solution, namely, all measures (c′, e′) 6=
(c, e) with c′ ≥ c and e′ ≥ e, otherwise (c, e) would not
be Pareto-optimal, (2) a region Rc,e2 of measures that are not
Pareto-optimal, namely, all points (c′, e′) 6= (c, e) with c′ ≤ c
and e′ ≤ e, (3) a region Rc,e3 with measures of potential Pareto-
optimal interpretations with better correctness measures, i.e.,
those with measures (c′, e′) with c′ > c and e′ < e, and lastly
(4) a region Rc,e4 with measures of potential Pareto-optimal
interpretations with better explainability measures, i.e., points
(c′, e′) with c′ < c and e′ > e. By synthesizing a first Pareto-

optimal interpretation using the procedure from last section,
and then dividing the search space into corresponding regions
(1)-(4), our algorithm proceeds by searching for further Pareto-
optimal interpretations with better correctness in region (3) and
better explainability in region (4). This process is repeated for
every Pareto-optimal interpretation found by our algorithm,
thus, directing the search into smaller and smaller regions until
no new Pareto-optimal interpretation can be found.

This is detailed in Algorithm 1 and the exploration process
it implements is illustrated in Figure 2. For E ,S,∆C , and
∆E , Algorithm 1 returns a minimal representative set Γ of
interpretations for all Pareto-optimal measures. To synthesize
a Pareto-optimal interpretation within a given region of mea-
sures, Algorithm 1 relies on the procedure QUINTSYNT which
given E ,S,∆C , and ∆E , in addition to a lower-bound δlE
and upper-bound δuE on the explainability measure, returns a
Pareto-optimal interpretation E with explainability measure
e such that δlE ≤ e ≤ δuE . QUINTSYNT effectively solves an
extension of the weighted MaxSAT instance defined in the last
section, in which we additionally require the explainability
measure to satisfy the constraints given by the lower-bound
δlE and upper-bound δuE . This can be done by extending the
formula φ in the last section with a fifth conjunct φδlE ,δuE .
This conjunct is satisfied if the sum of weights of the used
syntactic structures (e.g. in the case of decision diagrams, this
will be sum of weights of the satisfied clauses u(i,p) and
ui) lies within the given bounds. We leave details of this
encoding to [31], but intuitively, we encode a binary adder
that sums up the weights of satisfied u(i,p) and ui clauses and
compare the results to binary encodings of the bounds. To
fix the number of bits to encode both the adder and bounds,
we normalize the weights to values between 0 and 1 up to a
certain floating-point precision k. Now let us go further into
Algorithm 1 while elaborating on why it suffices to only bound
the explainability measure when exploring regions (3) and (4)
depicted in Figure 2(a).

Initially, Algorithm 1 explores the entire set of Pareto-
optimal solution space. To this end, the exploration set W
is initialized with the point (0, 1, 0) (line 2) defining a lower
bound on the explainability measure, an upper-bound on the
explainability measure, and a lower-bound on the correctness
measure, respectively. For every point (δlE , δ

u
E , δC) in W ,

QUINTSYNT synthesizes a Pareto-optimal region within the
explainability measure bounds defined by δlE and δuE (line 5).
If an interpretation E is found with measures c and e, i.e.,
E 6= ⊥ (line 6), the algorithm further divides the search space
based on the following case distinction:
• if c > δC , then a new Pareto-optimal interpretation with

measures (c, e) is found and the regions Rc,e3 and Rc,e4

defined by the points (δlE , ↓e, c) and (↑e, δuE , δC), respec-
tively, are added to W (lines 9 and 10). The operators ↓
and ↑define the predecessor and successor value of the
value e (we assume that the values are discrete and hence
the predecessor and successor exist). For example, if the
interpretation synthesized by QUINTSYNT is one with
measures c′, e′ as depicted in Figure 2(b), then the region
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3 . A new Pareto-optimal interpretation
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(↑e′, ↓e, c) to W .
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4 . Optimal interpretation had correctness
measure c′′ < c. Exclude region Rc,e′′

1 and add new region
defined by (↑e′, ↓e′′, c) to W . For another Pareto-optimal point
(c′′′, e′′′), no solution found when exploring its region Rc′′′,e′′′

3 .

Fig. 2. An illustration of Algorithm 1.

Algorithm 1 EXPLOREPOI
Input: E , S, ∆C , ∆E
Output: Minimal representative set Γ for 〈E , S , ∆C , ∆E〉

1: Γ := ∅
2: W := {(0, 1, 0)}
3: while W 6= ∅ do
4: (δlE , δ

u
E , δC) := pop(W )

5: (E, (c, e)) = QUINTSYNT(E ,S,∆C ,∆E , δlE , δuE )
6: if E 6= ⊥ then
7: if c > δC then
8: Γ := Γ ∪ {(E, (c, e)}
9: push(W, (δlE , ↓e, c))

10: push(W, (↑e, δuE , δC))
11: else
12: push(W, (δlE , ↓e, δC))
13: end if
14: end if
15: end while
16: return Γ

Rc
′,e′

4 is be captured by the point (↑ (e′), ↓ (e), c). The
region Rc

′,e′

3 is captured by (0, ↓(e′), c′). Notice that we
do not need to include an upper bound on the correctness
measure as it is already implicitly defined by the Rc,e1

region of any Pareto-optimal point (c, e). For example,
in Figure 2(b) the upper bound on the correctness for
region Rc

′,e′

4 is already captured through the fact that no
Pareto-optimal solutions exist in Rc

′,e′

1 .
• if c ≤ δC , then (c, e) cannot be Pareto-optimal, be-

cause we already know that there is a Pareto-optimal
interpretation with measures (δC , ↑δuE ). In this case, we
can exclude the search in the region RδC,e1 , because if
there was any Pareto-optimal interpretation with measures
(ĉ, ê) in RδC,e1 , then QUINTSYNT would have found
this interpretation. Thus, Algorithm 1 further prunes the
search region to a smaller region defined by (δlE , ↓e, δC)
(line 12). For example, if Algorithm 1 used QUINTSYNT

to synthesize an interpretation from Rc
′,e′

4 , and returned a
solution with measures (c′′, e′′) as depicted in Figure 2(c),
then we can exclude the search in region Rc,e

′′

1 and add
the region Rc,e

′′

3 to W .
Lastly, if QUINTSYNT returns no interpretation, then we

can immediately exclude the searched region from further
exploration and thus no new points are added to W in this
case. For example, as shown in Figure 2(c), if QUINTSYNT

found no Pareto-optimal interpretations in Rc
′′′,e′′′

3 , then this
region is excluded from the search and Algorithm 1 continues
with the next available point in W .

Next we show some important properties of Algorithm 1.
Lemma 1 (Soundness): For an instance 〈E ,S,∆C ,∆E〉

of the Pareto-optimal interpretation synthesis problem, if
(E, (c, e)) ∈ EXPLOREPOI(E ,S,∆C ,∆E), then (c, e) ∈
max
E′∈E

�(∆C(fE′ ,S),∆E(E
′)).

In the rest of this section, we assume that each of the
explainability measures has finitely many discrete values, as
they are defined as floating points up to a certain precision.
Thus, we obtain that the range of ∆E is finite, which allows
us to obtain the following results.

Lemma 2 (Completeness): For an instance 〈E ,S,∆C ,∆E〉
of the Pareto-optimal interpretation synthesis problem, if
(c, e) ∈ max

E′∈E
�(∆C(fE′ ,S),∆E(E

′)), then there is an in-

terpretation E with measures (c, e) such that (E, (c, e)) ∈
EXPLOREPOI(E ,S,∆C ,∆E).

We summarize the correctness result next which follows
immediately from Lemmas 1 and 2.

Theorem 2 (Correctness of Algorithm 1): For a class of
interpretations E , a finite set of samples S, and measures ∆C
and ∆E , the algorithm EXPLOREPOI terminates and returns
a minimal representative set for (E ,S,∆C ,∆E).

Algorithm EXPLOREPOI solves the interpretation synthesis
problem as a multi-objective optimization problem. If we were
to solve the same problem using single-objective optimization,
it would be necessary to combine the accuracy and explainabil-
ity measures for every interpretation to yield a single hybrid
measure. Let λ : R×R→ R be a function that yields such a
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measure. Since higher values of c and e always increase the
desirability of an interpretation, we require λ to be strictly
increasing, i.e., (c, e) ≺ (c′, e′) =⇒ λ(c, e) < λ(c′, e′).
For example, λ(c, e) = w1 · c+ w2 · e is a strictly increasing
function for every w1, w2 > 0. Then, for any (c, e) pair that
is maximal wrt such a function λ, our algorithm can find an
interpretation with this measure pair. Formally,

Theorem 3 (Universality): For every strictly increasing
function λ : R × R → R and every 〈E ,S,∆C ,∆E〉 if E ∈
arg max

E′∈E
(λ(∆C(fE′ ,S),∆E(E

′))), then there exists an inter-

pretation E? ∈ E such that (i) ∆C(fE ,S) = ∆C(fE? ,S), (ii)
∆E(E) = ∆E(E

?), and (iii) (E?, (∆C(fE? ,S),∆E(E
?))) ∈

EXPLOREPOI(E ,S,∆C ,∆E).
We conclude the section with some remarks on Algorithm 1.
Remark 1: Algorithm 1 can also be applied interactively

as a conversation between synthesizer and user. Given a
Pareto-optimal interpretation, the user may guide the search to
interpretations that are more explainable or to those with more
accuracy, until the user has found an optimal interpretation.

Remark 2: Note that there might be multiple interpretations
with the same pair (c, e). In this case, Algorithm 1 will add
only one of them as a representative interpretation, since the
others are indistinguishable wrt correctness and explainability.

Finally, we can also search for Pareto-optimal solutions
based on regions solely bounded on the correctness measure.
We choose to use bounds on the explainability measure,
because the sample sets tend to be large and will result in
much larger encodings.

IV. STATISTICAL GUARANTEES FOR BLACK-BOX MODELS

In Section III, the correctness of an interpretation E, defined
using a measure ∆C , was determined with respect to a set
of samples S obtained from the black-box model B. Our ap-
proach guarantees that E is optimal for S and the measure ∆C .
Our ultimate goal, however, is to synthesize an interpretation
E that is optimal with respect to the entire black-box model B,
i.e., w.r.t. the set SB = {(i, o) | fB(i) = o, i ∈ I}. Obtaining
an exhaustive set of samples from a black-box model is often
not practical. The question that we, therefore, raise in this
section is: how large must S be such that it is not misleading,
i.e., optimal interpretations synthesized by our approach for S
do not overfit the set, and thus the guarantees obtained over
S can be adopted for SB?

The answer to the above question lies in the theory of
Probably Approximately Correct (PAC) Learnability [32]. The
notion of a loss function, `, that must be minimized to obtain
an optimal interpretation, is central to this discussion. For
our purposes, the loss function may be viewed as 1 − ∆C ,
where the range of the (normalized) correctness measure ∆C
is assumed to be [0, 1]. Thus for every (i, o) ∈ I × O, and
f ∈ I → O, we define `(f, (i, o)) = 1 − ∆C(f, {(i, o)}).
For technical reasons, we also assume that for every set S
of (i, o) samples, we have ∆C(f,S) =

∑
(i,o)∈S ∆C(f,{(i,o)})

|S| .
This is true, for example, if ∆C is the prediction accuracy (the
loss function being the misprediction rate in this case). Note

that in this case, the loss function for the sample set S is given
by

∑
(i,o)∈S `(f,(i,o))

|S| = 1−∆C(f,S).
A class of interpretations (or hypotheses) E over inputs I

and outputs O is said to be PAC-learnable with respect to the
set Z = I ×O and a loss function ` : (I → O)×Z → [0, 1],
if there exists a function mE : (0, 1)2 → N and a learning
algorithm with the following property: For every ε, δ ∈ (0, 1)
and for every distribution D over Z, when running the learning
algorithm on m ≥ mE(ε, δ) i.i.d. samples generated by D, the
algorithm returns a hypothesis E such that, with probability
(confidence) of at least 1− δ, LD(fE)− min

E′∈ E
LD(fE′) ≤ ε,

where LD(fE) = Ez∼D[`(fE , z)]. Furthermore, choosing an
interpretation E ∈ E that minimizes

∑
z∈S `(fE ,z)

|S| suffices for
the learning algorithm in the above definition [32].

It is known that every finite class of interpretations is PAC-
learnable due to the uniform convergence property [32]. In
fact, the sample complexity, i.e., the function mE , can be
determined in such cases in terms of |E|, δ and ε. Under
the standard realizability assumption, i.e assuming E includes
an interpretation E such that fE implements the semantic
function fB of the black-box, mE is bounded above by
d log (|E|/δ)

ε e. This bound increases to d 2 log (2|E|/δ)
ε2 e if we do

not make the realizability assumption [32].
From the results above, if we use the mE bound for the

sample size, we get interpretations that are very close to the
optimal interpretation within the class E with high probability.
Of course, sans the realizability assumption, this does not
necessarily mean the obtained interpretation is very close
to the black-box model. The latter depends highly on the
class of interpretations. Note also that the price for the PAC
guarantee is that we may have to work with an increased size
of the sample set S, as given by mE . In general, this affects
the scalability of our synthesis procedure, since size of the
weighted MAXSAT formula increases linearly with |S|. This
can limit how small δ and ε can be in practice. Nevertheless,
as we show in Section V, we are able to use fairly small values
of δ and ε in our experiments.

V. EVALUATION

a) Benchmarks: We apply our approach to three black-
box models: a decision module for predicting the performance
of a perception module in an airplane (AP), a bank loan
predictor (BL), and a solvability predictor (TP).

The decision module predicts, based on the time of day, the
cloud types, and initial positioning of an airplane on a runway,
whether a perception module used by the plane can be trusted
to behave correctly. The decision module is an implementation
of a decision tree that was trained on data collected from 200
simulations, using the XPlane (x-plane.org) simulator.

The bank loan predictor is a deep neural network that was
trained on synthetic data that we created. The training set
included 100000 entries chosen such that majority of people
with age between 18 to 29 years, and those with age between
30 and 49 years but with income less than $6000, were denied
the loan. The network has five dense fully connected hidden
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layers with 200 ReLU’s each, in addition to a softmax layer
and the output layer comprised of two nodes.

The solvability predictor is a neural network built to predict
the solvability of first-order formulas by a theorem prover
with respect to percentage of unit clauses and average clause
length in a formula. The network had three hidden dense fully
connected layers each with 200 ReLU’s. The data used to train
the neural network can be found on the UCI machine learning
repository [8]. We used the data for heuristic H1 from [8],
thus predicting solvability for H1.

b) Experiments and setup: We conducted two types
of experiments: (1) application of our exploration algorithm
on the three benchmarks (2) performance evaluation of
QUINTSYNT. The MaxSAT engine used an implementation
of RC2 in PySAT [16], [17]. All experiments were conducted
on a 2.4GHz Quad-core machine with 8GB of RAM. For ad-
ditional details of the experiments and results, please see [31].

c) Exploring the Pareto-optimal space: We ran our ap-
proach on the three benchmarks mentioned above. We used
confidence measure δ = 0.05 and error margin ε = 0.05 to
determine the size of the sample set (as given in Table I)
under the realizability assumption referred to in Section IV.
Figures 3(a) to 3(c) show the measures of the Pareto-optimal
interpretations found by our exploration algorithm. We used
prediction accuracy for correctness (recall this satisfies the
technical assumption mentioned in Section IV), and an ex-
plainability measure that favored decision diagrams of smaller
size with predicates having a fewer number of branchings.

For all three benchmarks we found a variety of inter-
pretations with interesting tradeoffs between the correctness
and explainability measures, reflected by the blue squares in
each plot. The exploration algorithm shows that searching for
interpretations that are optimal only in size or in accuracy may
result in unfavorable solutions. For example, in Figure 3(a)
we see that the interpretation with highest accuracy has very
low explainability. However, a very small tradeoff in accuracy
resulted in significantly more explainable interpretations.

d) Performance: Table I presents our results on each
benchmark and gives the confidence value δ, error rate ε and
the number of samples |S| used for each run. The number of
Pareto-optimal points (PO), total number of points explored
(TNP) and minimum, maximum and median times to find
a Pareto-optimal interpretation are also shown. The number
shown in parenthesis next to each benchmark is the number
of predicates used. From Table I we can see that the number
of Pareto-optimal (PO) points is considerably smaller than the
total number of points explored (TNP). The minimum time
taken to find an interpretation was less than 3 seconds for all
benchmarks, but there were a few points in the Pareto-optimal
space where finding an interpretation took considerably more
time (see the maximum times). For most Pareto-optimal points
though, the time taken to the find an interpretation was less
than 20 seconds, as demonstrated by the median values. If
an interpretation did not exist for a combination of correct-
ness and explanability measures, the MaxSAT solver returned
UNSAT in less than a second in all performance runs.

TABLE I
PERFORMANCE OF QUINTSYNT: EXPLORATION OF THE ENTIRE

PARETO-OPTIMAL SPACE

Bench Explored min max median unsat
mark δ,ε |S| (PO, TNP) time (s) time (s) time (s) time (s)

Theorem 0.05, 0.05 338 4, 20 0.767 3.392 1.138 < 1
Prover (6) 0.05, 0.03 703 3, 28 2.051 18.148 3.643 < 1

Air 0.05, 0.05 333 7, 25 1.709 388.527 5.696 < 1
plane (3) 0.05, 0.03 555 5, 26 2.513 616.520 11.222 < 1

Bank 0.05, 0.05 365 7, 27 1.927 387.599 8.975 < 1
Loan (4) 0.05, 0.03 608 4, 27 2.855 1299.196 17.998 < 1

As none of the other interpretation synthesis tools in the
literature compute the set of all Pareto optimal interpretations,
we omit comparison with other tools (any such comparison
wouldn’t be fair, especially when using different notions for
explainability). However, to understand if the variation in run-
ning times is inherent to the problem, we performed a similar
experiment with MinDS, a tool for learning decision sets [38].
In MinDS, correctness and explainability are combined in
a single objective and the contribution of the explainability
measure is governed by a parameter λ. We ran MinDS for
15 values of λ and found interpretations for all these values.
We observed again (Table II) that the time taken to find
interpretations for some λ was much more than others.

Note that unlike in our approach, running MinDS in this
manner does not guarantee that the entire Pareto-optimal space
of interpretations has been obtained. Finding all Pareto optimal
points by varying the weights of explainability and correctness
measures is also not feasible, since this requires trying out all
(infinitely many) weight combinations. While some decision
sets learned by MinDS were indeed semantically equivalent to
some of the Pareto-optimal interpretations synthesized by our
approach, some interpretations that our methods found did not
have a decision set counterpart within the range of weights we
experimented on. We emphasize that running approaches like
MinDS that combine explainability and correctness measures
into single objective function may result in the same interpre-
tation being returned for different combinations of weights.
This can be avoided using our exploration method.

TABLE II
ILLUSTRATING VARIATION IN RUNNING TIMES EVEN ON

NON-EXHAUSTIVE PARETO SEARCH WITH MINDS

Bench min max median
mark δ,ε |S| time (s) time (s) time (s)

Theorem 0.05, 0.05 338 0.707 0.813 0.719
Prover (6) 0.05, 0.03 703 0.687 0.798 0.725

Air 0.05, 0.05 333 0.771 364.456 7.603
plane (3) 0.05, 0.03 555 0.748 757.639 9.687

Bank 0.05, 0.05 365 0.744 25.819 1.165
Loan (4) 0.05, 0.03 608 0.738 52.388 0.841

VI. RELATED WORK

There is a large body of work on interpreting black-box
models, where a dominant paradigm is to generate labeled
data samples and obtain an interpretable model representation
in terms of input features, some of which were discussed in
the introduction. In some applications, the aim is to explain the
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(a) Pareto-optimal solution for airplane perception module bench-
mark. Used decision diagrams of size 7 over 3 different predicates.
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(b) Pareto-optimal solution for the bank loan predictor benchmark.
Used decision diagrams of size 7 over 4 different predicates.
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(c) Pareto-optimal solution for the theorem prover solvability bench-
mark. Used decision diagrams of size 7 over 6 different predicates.

Fig. 3. Exploring Pareto-optimal solutions for three benchmarks. The size of the sample sets used for constructing interpretations was computed based on
confidence values δ = 0.05 and error margin ε = 0.05, as well as the size of the class of interpretation in each benchmark.

output of a black-box model in the neighbourhood of a specific
input, and specialized techniques [12], [24], [29], [30], [39]
give such local and robust explanations. Other applications
use techniques like model distillation (in the form of decision
trees [7], [9], [20], [22], [23]), counterfactual explanations [26]
etc. For further information on these techniques, we refer to
reader to the excellent surveys in [2], [13].

The work in [15], [38] comes closest to ours. In [38], the
authors encode the problem of finding an interpretation as
optimal decision sets (to a weighted MAXSAT formulation).
They present two variants: (i) optimize on accuracy (100%)
while constraining the explanability (number of literals), and
(ii) directly minimize the size of decision sets at the cost of
accuracy. In [15], sparse optimal decision trees are built using
an objective function that combines misclassification rate and
number of leaves. Solution approaches like these give a single
point of the optimized function in the Pareto-optimal space
and hence a single value for the correctness and explainability
measures.

Our Pareto-optimal interpretation synthesis problem formu-
lation can also be related to Structural Risk Minimization
(SRM), which is well-studied in the literature. Like in SRM,
we have two orthogonal measures – one that depends only
on the structure/complexity of the hypothesis/interpretation,
and the other that depends on how well the hypothe-
sis/interpretation “explains” the given sample set. The SRM
formulation (e.g., see [32], Section 7.2) effectively combines
these two measures into one and treats the problem as a single-
objective optimization problem. In contrast, our Pareto-optimal
synthesis problem is inherently a multi-objective optimization
problem. As mentioned in the introduction, such a multi-
objective optimization problem cannot be reduced to a single-
objective optimization problem in general, without potentially
excluding some (possibly important) solutions.

Finally, we note that the idea of using SAT (and related)
solvers for systematically searching for all Pareto-optimal
points has been used in other settings earlier (see, for example,
systems biology applications in [4], [14]). However, their use
in finding Pareto-optimal interpretations for black-box ML
components appears not to have been explored earlier.

VII. CONCLUSION AND FUTURE WORK

We have presented a new approach to automatically generate
a complete set of Pareto-optimal interpretations for black-
box ML models, which works in the absence of training or
test data sets. Our interpretations are obtained by instanti-
ating user-provided decision diagram templates, and satisfy
optimality conditions, while also providing formal guarantees
on the tradeoff between accuracy and explainability. We have
presented an empirical evaluation demonstrating that our ap-
proach produces compact, accurate explanatory interpretations
for neural networks used for applications such as autonomous
plane taxiing, predicting bank loans and classifying theorem-
provers. The discovery of multiple Pareto-optimal interpreta-
tions, as opposed to a single one, demonstrates the value of
the multi-objective approach.

The current work focuses on finite classes of possible
interpretations, although we allow a class to be combinatorially
large. The weighted MAXSAT encoding allows us to solve
this problem symbolically by leveraging significant recent
advances in MaxSAT solving that scale to very large solution
spaces. Using a finite, yet large hypothesis class permits us
to strike a balance between generality and practical efficiency
of our approach. An interesting avenue for futurework would
be to see if our approach can be extended to interpretation
classes of infinite cardinality but finite Vapnik-Chervonenkis
(VC) dimension. While the overall problem formulation, the
notions of Pareto-optimality of explanations, and our algorithm
for finding representative sets of explanations easily adapt to
this setting, we would need to go beyond the current weighted
MAXSAT formulation to find individual Pareto-optimal in-
terpretations. Using an optimization modulo theories (OMT)
encoding is a promising direction for such a generalization.
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