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The Role of Diet in Cancer Prevention and Chemotherapy 
Efficacy

Steven D. Mittelman
Division of Pediatric Endocrinology, UCLA Children’s Discovery and Innovation Institute, David 
Geffen School of Medicine UCLA, Los Angeles, CA

Abstract

Despite great strides that have been made in treatments, cancer remains a leading cause of death 

in much of the world. Diet is known to have large impacts on health in general, and caloric 

restriction and fasting have putative benefits for many diseases and even to prolong life. There 

are strong epidemiological associations between obesity and cancer, and healthy diets have been 

shown to reduce cancer risk. However, less is known about how diet might impact cancer once it 

has already been diagnosed, and particularly how diet can impact cancer treatment. In the present 

review, we will discuss the preclinical and epidemiological links between obesity, diet, and cancer. 

We will explore potential mechanisms by which diet can improve cancer treatment outcome, 

including hormonal, metabolic, and immune/inflammatory effects of diet, and present the limited 

clinical research that has been published in this arena. Despite the paucity of data, diet intervention 

may offer multiple benefits to cancer patients, including reduced toxicity, improved chemotherapy 

efficacy, and lower risk of long term complications. Thus, it is important that we understand the 

state of the science of dietary intervention to improve cancer treatment outcome, and expand our 

studies evaluating this important but complex adjunctive treatment strategy.
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Let food be thy medicine and medicine be thy food

--Hippocrates

Cancer treatment has improved tremendously over the past century. Childhood acute 

lymphoblastic leukemia has changed from a nearly uniformly fatal disease to one with a 

~90% cure rate. The five year survival rate from all cancers has increased from 49% in 

1975 to 70% in 2011 (2), and there have been paradigm-shifting advances that are greatly 

improving treatment outcomes of many cancers, such as chronic myelogenous leukemia, 

metastatic melanoma, and Her2-positive breast cancer. Despite these advances, cancer 

remains a most feared diagnoses, driving many to seek out alternative treatments.
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We have long known that diet plays an important role in our health. It stands to reason 

that people would look to diet to provide for a sliver of hope for cancer patients. While it 

is well-established that obesity is associated with cancer incidence and mortality, the data 

linking specific nutrients and food items to cancer are sparse. Even more elusive are studies 

examining how diet can affect the treatment outcome of cancer once it has already been 

diagnosed.

In the present review, we will examine the evidence from preclinical and clinical studies 

on how diet can affect cancer outcome. Dietary restriction interventions target many of the 

hormones and pathways affected by obesity, and so understanding how obesity can worsen 

cancer treatment may yield clues as to how diet can help. We will discuss the role of diet in 

cancer incidence and progression, but focus primarily on the state of the science evaluating 

treatment efficacy.

Epidemiology

Cancer Incidence

In 2003, Eugenia Calle and colleagues published a landmark study confirming the strong 

links between obesity and cancer mortality (27). In a prospective cohort of over 900,000 

men and women in the U.S., the authors found that obesity increased the risk of dying 

from cancer of the esophagus, colon, liver, gallbladder, pancreas, and kidney, along with 

non-Hodgkin’s lymphoma and multiple myeloma. They estimated that overweight and 

obesity were responsibly for ~14% of cancer deaths in men and 20% of cancer deaths 

in women in the U.S. Many studies have confirmed these findings, in the U.S. and 

worldwide (139, 140). The World Cancer Research Fund and American Institute of Cancer 

Research’s (WCRF/AICR) Continuous Update Project most recently concluded that there 

was convincing evidence that body fatness, variably defined by body mass index (BMI), 

waist circumference, or waist-to-hip ratio, increases the risk of esophageal, pancreatic, liver, 

colorectal, postmenopausal breast, endometrial, and kidney cancer (1). They also concluded 

a probable increased risk of fatness contributing to oropharyngeal, stomach, gallbladder, 

ovarian, and advanced prostate cancers.

Obesity is defined by a BMI ≥30 kg/m2 (≥95th percentile in youth), while overweight is a 

BMI ≥25 kg/m2 (≥85th percentile in youth). While most epidemiological studies examining 

cancer incidence and mortality have focused on obesity based on this anthropomorphic 

definition, others have examined its physiologic aspects. The metabolic syndrome describes 

the aggregation of obesity, dyslipidemia, and insulin resistance which tend to cluster in the 

obese, particularly those with visceral obesity. In contrast, the term “metabolically healthy 

obese” or sometimes colloquially, “fat fit”, was coined to describe those who are physically 

obese, but show none of the metabolic sequelae. A prospective study of over 20,000 

participants showed that metabolic health was the main contributor to cancer risk, and 

overweight and obesity per se did not increase the risk of cancer mortality in metabolically 

healthy individuals (4). Surprisingly, in metabolically unhealthy individuals, overweight and 

obesity appeared to offer somewhat of a protective effect.
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Diabetes has also been associated with risk of cancer incidence and mortality, though there 

is heterogeneity in the literature (31, 175). The vast majority of diabetes worldwide is type 

2 diabetes, which is caused by a combination of insulin resistance and beta cell failure. 

Type 2 diabetes is strongly associated with obesity, which likely explains much of this 

correlation. However, some studies that adjust for BMI report an independent association 

between diabetes and cancer (10, 191).

Diet itself has been linked to cancer incidence, both in specific dietary components and 

overall calories. Hursting et al showed that leukemia incidence worldwide was strongly 

correlated with caloric intake (71). In a case-control study, caloric intake (from food 

frequency questionnaires) more than 20% below that expected from metabolic rate and 

activity estimates, reduced the risk of breast cancer in premenopausal (OR 0.36, p<0.001), 

but not postmenopausal women (98). Levine and colleagues found that high protein intake 

in people 50–65 years old was associated with a four-fold increased risk of cancer mortality 

(96). Red meat intake itself may be linked to breast cancer risk (183). However, meta

analyses have failed to identify negative impact of high protein intake on prostate, ovarian, 

colorectal, or renal cell cancer (89, 95, 106, 129).

The American Cancer Society and the WCRF/AICR have published dietary guidelines 

to prevent cancer (1, 84). Both sets of guidelines promote maintaining a healthy weight, 

being physically active, consuming fruits and vegetables, and limiting red meat and alcohol 

consumption. The WCRF/AICR guidelines further recommend decreasing intake of energy 

dense foods and salt and supporting breastfeeding. A recent meta-analysis including 10 large 

prospective cohorts showed that high adherence to either of these dietary guidelines was 

associated with a lower risk of overall, breast, colorectal, and endometrial cancer, compared 

to subjects with the lowest adherence (84). Since avoiding obesity is an inherent part of 

these guidelines, it is not clear from these studies whether diet per se can modulate the risk 

of developing cancer.

While obesity increases the incidence of many cancers, there is emerging evidence that 

weight loss can modulate this risk. Self-reported weight loss in postmenopausal women 

enrolled in the Women’s Health Initiative was associated with a ~29% decreased risk of 

endometrial cancer (100). Bariatric surgery has been associated with a reduction in cancer 

incidence; a recent meta-analysis confirmed that bariatric surgery reduced the risk of cancer 

in morbidly obese people, though cautioned regarding the significant heterogeneity existing 

between studies (29).

Cancer Outcome

Most of the association between obesity and cancer mortality is based on the higher risk of 

being diagnosed with cancer. There is also evidence that obese patients, once diagnosed with 

cancer, have a poorer outcome than nonobese. Poorer outcome and increased mortality have 

been observed in obese patients following diagnosis of breast (34), colon (162), prostate 

(6), pancreatic (190), ovarian (187), and hematologic (127) cancers. While many reports 

support this conclusion, a recent systematic review concluded that few studies were designed 

to examine this relationship, and so warned caution in interpreting these results (131). 

Interestingly, obesity is associated with an improved outcome in patients with metastatic 
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melanoma treated with targeted therapy or immunotherapy (112); no significant effect was 

observed in patients treated with chemotherapy. Thus, obesity generally increases one’s risk 

of both developing cancer and not surviving after diagnosis for most, but not all cancers.

Potential mechanisms linking obesity to cancer outcome

Obesity is not a simple phenotype, but is associated with a number of physical, genetic, 

physiological, socioeconomic, and behavioral variables, many of which could contribute 

to these associations with cancer. Animal models provide evidence that the observed 

associations between obesity and cancer in humans is likely based in biology, and not 

exclusively behavioral, environmental, or genetic. Obesity increases the rate of cancer 

development and growth in most preclinical models of genetic cancer predisposition (60, 

69, 192), carcinogen (69, 159, 196) and cancer implantation (45, 185, 193). However, fewer 

studies have looked at how obesity can impair cancer treatment in preclinical models (14, 

52, 74). Uncovering the biologic mechanisms linking obesity to cancer may provide some 

clues to how to reverse these links.

Pharmacokinetics (PK)

One clear dilemma that oncologists face when treating obese patients is how much 

chemotherapy to use. Obesity can affect both the volume of distribution and clearance 

of chemotherapies, and yet few studies evaluate PK of drugs in obese subjects. We have 

recently shown that adipocytes metabolize and inactivate the chemotherapy, daunorubicin 

(155), which could especially impair treatment in patients with excess adipose tissue. 

The dosing of some drugs, such as vincristine, is arbitrarily capped, which could 

disproportionately affect obese patients. Clinicians may be reticent to prescribe large doses 

of chemotherapies by actual body weight, particularly in obese patients who may already 

be at higher risk of toxicities. Despite the paucity of data, the American Society of Clinical 

Oncology developed guidelines stating that chemotherapy should be dosed in obese adult 

patients based on actual weight (62).

Inflammation

Inflammation has long been known as a driver of cancer incidence, and indeed is considered 

a hallmark of cancer (66). Obesity itself is a state of subclinical inflammation. Though the 

mechanisms driving this state are not fully understood, they are likely driven in part by 

adipose tissue inflammation. A number of immune cells, including macrophages, B and T 

lymphocytes, natural killer (NK), and natural killer T (NKT) cells normally infiltrate adipose 

tissue. As obesity develops, these immune cells accumulate and take on proinflammatory 

states. Macrophages increase expression of TNFα and other proinflammatory cytokines 

(sometimes simplistically referred to as an “M1” state). They tend to accumulate around 

necrotic adipocytes, sometimes forming a “crown-like” structure. T lymphocyte numbers 

increase, particularly CD8+ T cells, along with B cells, mast cells, and NKT cells (8). 

Together, the interaction between these immune cells and the obese adipocytes contributes to 

local and systemic increases in a number of pro-inflammatory cytokines, including TNFα, 

IL-6, IL-1β, and plasminogen activator inhibitor-1 (15). At the same time, levels of the 
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anti-inflammatory signal, adiponectin are lower in the obese. Together this inflammatory 

milieu could contribute to increased carcinogenesis and/or impaired anti-cancer immunity.

In addition to systemic signals, local adipose tissue inflammation may promote the incidence 

of some cancers, as well as contribute to their aggressiveness and treatment resistance. 

Adipose tissue macrophages and crown-like structures in breast adipose tissue have been 

linked with breast cancer (117). Expansion of breast and colon cancer into adjacent adipose 

tissue is associated with local adipose tissue inflammation (86, 198) and potentially a poorer 

outcome (86). Whether this is a response to the tumor expansion, or a precursor is not clear, 

but clearly interactions between the inflamed adipose tissue and tumor cells can promote 

further infiltration and treatment resistance.

Hormones

Estrogen: Estrogens have long been known to increase cancer risk, particularly that 

of estrogen-sensitive tissues, such as breast and endometrium. Adipose tissue is a major 

source of estrogen, which it converts from circulating androgens via high expression of 

the aromatase enzyme, and thus obesity is associated with increased circulating estrogen 

concentrations. Interestingly, obesity is associated with a lower risk of premenopausal 

breast cancer and a higher risk of postmenopausal breast cancer. This could potentially 

be explained by the fact that estrogen levels after menopause would be more significantly 

higher in obese individuals than before menopause, when ovarian secretion dominates 

systemic levels.

Insulin: Obesity is strongly associated with insulin resistance, which leads to compensatory 

hyperinsulinemia. Insulin resistance primarily impacts the glucoregulatory effects of 

insulin, while its growth-promoting effects on protein synthesis and cell proliferation are 

relatively spared and therefore enhanced in the hyperinsulinemic state. Insulin receptor 

signaling involves several pathways implicated in cancer, including phosphoinositide 3

kinase/protein kinase B (PI3K/AKT), mitogen-activated protein kinase (MAPK), signal 

transducer and activator of transcription (STAT), and extracellular signal-regulated kinase 

(ERK). Activation of these pathways can increase proliferation, prevent apoptosis, and are 

often associated with chemotherapy resistance. In addition, insulin inhibits the synthesis of 

sex hormone binding globulin, leading to an increased proportion of free, active estrogen in 

the circulation. Insulin also increases the production of insulin-like growth factor 1 (IGF-1; 

see below) Thus it is likely that insulin contributes to increased cancer incidence and poorer 

prognosis in obese individuals through a number of direct and indirect mechanisms.

IGF-1: IGF-1 is considered a major link between obesity and cancer. As its name implies, 

IGF-1 has similar effects on cells as insulin, stimulating PI3K/AKT and MAPK pathways. 

While total IGF-1 concentrations can be low or normal in obese, the free, active form of 

the hormone is generally elevated. IGF-1 has been shown to increases proliferation rate 

and cause chemotherapy resistance in a number of cancers (65, 97). People with Laron 

Syndrome have extremely low IGF-1 levels, and are protected from cancer (91), as are 

animal models of low IGF-1 (134, 138).
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Leptin: Leptin is secreted by adipocytes in proportion to obesity and whole-body adiposity 

(35). Despite this strong correlation with obesity, epidemiological studies have not found 

consistent links between leptin and cancer incidence (64, 188). The leptin receptor signals 

through Jak/Stat, and indirectly increases PI3K, mTOR, and AKT signaling, all of which 

could contribute to cancer cell progression. However, the data addressing this issue is mixed. 

Leptin receptor expression has been associated with improved outcome in leukemia (85, 99). 

However, leptin signaling, particularly through the Notch pathway, may be important for 

cancer stem cells, and blocking this pathway appears to improve outcome in in vivo models 

of pancreatic (67) and breast cancer (179).

Adiponectin: Adiponectin circulates at very high concentrations in blood, in inverse 

proportion to adiposity, and has overall positive effects on metabolism and inflammation. 

Adiponectin signals through the AMPK pathway, which can promote apoptosis in cancer 

cells (93), decrease angiogenesis, and limit tumor growth in animal models (see (36)). Thus, 

the lower circulating adiponectin level seen in obesity likely plays a permissive role in 

tumorigenesis and cancer treatment resistance.

Metabolic Fuels

Obesity is simplistically a disorder of increased nutrient availability, and thus is associated 

with a surfeit of stored and circulating fuels. As the metabolic syndrome develops into 

frank diabetes, systemic levels of glucose, triglycerides, and some amino acids increase. The 

three branched chain amino acids (BCAA), valine, leucine, and isoleucine, play an integral 

role in obesity and the metabolic syndrome. Since cancer cells have increased metabolic 

demands and altered metabolism, it is possible that increased availability of some of these 

fuels contributes to the risk and outcome of cancer in obesity.

Microbiome

Over the past two decades we have become more aware of how the microbiome affects 

nearly all aspects of our health. In particular, our microbiome can have large effects on 

our immunity and metabolome, both locally and systemically. Microbiota in the gut can 

produce butyrate, which has beneficial effects to reduce inflammation, as well as secondary 

bile acids, which can be carcinogenic (125); the balance of these types of beneficial and 

detrimental pathways can contribute to cancer risk. Obesity is associated with predictable 

changes in the intestinal microbiome, namely increased representation by firmicutes and 

lower prevalence of bacteroides, though this is oversimplification does not do justice to 

the vast and complex literature on this topic (see (109) for a recent review). There is 

some evidence that these microbiome changes are causal or at least reinforcing for the 

development or persistence of the obese state. With respect to cancer, there is evidence 

linking the obesity-associated microbiome and colorectal (125) and liver (189) cancers, 

though the data are not yet conclusive (61). The microbiome likely represents an important 

link between obesity and cancer, but the complexity of both obesity and the microbiome 

make teasing apart these effects difficult.
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Covariates

In addition to these mechanistic links, there are a host of covariates that undoubtedly 

contribute to the observed associations between obesity and cancer. It is not unreasonable 

to hypothesize that there may be genetic polymorphisms that can predispose to both obesity 

and cancer. While there are few specific polymorphisms that can explain a significant 

portion of obesity, FTO gene polymorphisms are fairly common, and in the ~16% of 

people who are homozygous for the risk allele there is a 1.67 odds ratio of adult 

obesity (57). Recently, FTO polymorphisms have been linked to increased cancer risk, 

particularly leukemias and glioblastomas (41). There are likely a number of other genetic 

polymorphisms which contribute to obesity, and may also directly or indirectly increase the 

risk of cancer.

Given the higher prevalence of obesity in people of lower socioeconomic status (SES) and 

ethnic and racial minorities, it is important to consider the influence of these factors on 

cancer incidence and mortality. Lower SES plays a clear role in contributing to cancer 

mortality, such that poverty has been called a carcinogen (23). Lower SES can contribute to 

increased cancer risk and worse cancer outcome in a number of ways, including less access 

to preventive medicine and screening, increased risk behaviors, later presentation of disease, 

barriers to optimal treatment (181).

Race and ethnicity can also predispose to both obesity and cancer incidence/poor outcome, 

some of which is mediated by lower SES. Hispanics in the U.S. are at a much higher 

risk of obesity and type 2 diabetes. Overall, Hispanics tend to have a lower incidence of 

most cancers compared to non-Hispanic whites. However, stomach, gall bladder, liver, and 

cervical cancers are striking exceptions, with much higher incidence in Hispanics (113). 

The incidence of childhood acute lymphoblastic leukemia has been increasing over the past 

decade, which has been attributed to an increased prevalence in older Hispanic children 

(11). This association is compounded by the fact that Hispanic children have a worse 

survival from hematologic malignancies (80). The mechanisms behind these associations 

are as yet unknown, but could be mediated in part by dietary differences, predilection for 

obesity and insulin resistance, genetic polymorphisms, SES, or other cultural behavioral 

differences. Because the Hispanic ethnicity encompasses a wide range of people who appear 

to have differing susceptibilities to obesity, diabetes, and cancer, studies to tease apart these 

associations should consider and account for this variability.

Blacks males in the U.S. are at a higher risk of developing cancer and have a higher cancer 

mortality than non-Hispanic whites (158). Black women have been at a lower risk of breast 

cancer incidence, but when diagnosed are more likely to have more aggressive forms and 

worse outcomes (120). While much of this discrepancy appears to be due to presenting at a 

more advanced stage of disease, disparate health care, and higher health burden from other 

illnesses, even after adjusting for these there appears to be a modest cancer-specific survival 

difference (9). More work is needed to tease out the cultural, genetic, and SES differences in 

order to identify potential mechanisms behind these associations.

Finally, a number of behaviors could contribute to the relationships between obesity and 

cancer. Obese individuals may be more likely to be heavy drinkers (150), consume more 
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red meat (145), and live near large roadways exposing them to air pollution (110), while 

eating less fiber (163) and foods containing antioxidants (70). Obese patients appear to be 

less likely to be screened for some cancers (13, 152), for a variety of reasons including 

physicians’ discomfort in performing screening exams (55); this could result in obese 

patients presenting with cancer at a later stage.

Specific Cancers

In addition to the systemic and overarching influences described above, obesity has specific 

effects on many organs that can predispose them to cancer development and/or limit cancer 

treatment. Lipid accumulation in the liver, or nonalcoholic fatty liver disease (NAFLD), 

is common in obesity, particularly in the Hispanic population. NAFLD can progress to 

steatohepatitis (NASH), with an increasing degree of liver inflammation that develops. This 

likely explains the strong association between obesity and hepatocellular carcinoma (HCC); 

obese men were ~4.5 times more likely to die from liver cancer than controls (27). Given 

the higher prevalence of both obesity and obesity-related liver disease in Hispanics, it is not 

surprising that Hispanic ethnicity is associated with an increased risk of developing HCC.

Esophageal carcinoma is known to be related to chronic gastroesophageal reflux. Reflux 

of the acidic stomach contents can cause irritation and inflammation in the inferior 

esophagus, eventually leading to metaplasia and premalignant changes, termed Barrett’s 

esophagus. Obese individuals are at a higher risk of suffering from reflux (OR 1.73), 

Barrett’s esophagus (OR 1.24), and esophageal adenocarcinoma (OR 2.45; see (142)). These 

associations are likely primarily due to increased abdominal pressure, though confounding 

effects of specific dietary components have not been ruled out.

Obese individuals are about twice as likely as to die from pancreatic cancer compared to 

lean (27). Since mortality from pancreatic cancer so high, this association is undoubtedly 

driven by increased incidence, though BMI at diagnosis also predicts survival (190). Obesity 

is a strong risk factor for pancreatitis, mediated in part by increased prevalence of diabetes, 

gallstones, and hypertriglyceridemia (81), and pancreatitis is itself a major risk factor 

for pancreatic cancer. However, chronic pancreatitis accounts for only a few percent of 

pancreatic cancer patients (48), and so obesity much have additional effects independent of 

pancreatitis.

Cancer Metabolism

To understand how diet can affect cancer treatment and prognosis, it is important to 

understand some of the unique aspects of cancer metabolism. In 1925, Otto Warburg 

observed that cancerous tumors take up more glucose than other tissues, and metabolize 

it without relying on oxidative phosphorylation, called the Warburg effect (180). Although 

aerobic glycolysis does not provide as much ATP as oxidative phosphorylation, it is 

believed to better support cancer cell metabolism for a number of reasons. First, tumors 

can grow rapidly, sometimes outpacing their blood supply, leading to a relatively hypoxic 

environment. Second, the metabolic machinery needed to perform glycolysis is much 

less extensive than oxidative phosphorylation, being independent of mitochondria. Third, 
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carbon atoms from glucose can be used to synthesize amino acids, nucleic acids, and other 

metabolic intermediates in a process of anapleurosis.

Our understanding of the Warburg effect has significantly evolved over the last century. 

It was shown that many cancer cells do have high respiratory rates, arguing against their 

reliance on aerobic metabolism (184). The Lisanti group demonstrated that cancer cells 

induce stromal cells in their microenvironment to shift to aerobic metabolism, inducing them 

to release lactate and pyruvate which are used by the cancer cells for oxidative metabolism 

(132). This “Reverse Warburg Effect” could result in overall increased glucose uptake and 

aerobic metabolism in a tumor, but mostly due to the stromal cells.

In addition to increased glucose utilization, cancer cells often exhibit a dependence on free 

fatty acids (FFA). FFA provide the acyl chains of phospholipids, the primary component 

of cell and organelle lipid bilayer membranes. Since a dividing cell duplicates its plasma 

membranes with every division, a large investment in FFA is required for a cancer cell to 

proliferate. FFA synthesis is energetically expensive, utilizing 14 NADPH and 7 ATP to 

synthesize one molecule of palmitate. Increased de novo FFA synthesis and exogenous FFA 

uptake have both been associated with cancer aggressiveness and survival (87, 121, 126, 

149). On the other hand, FFA can provide a large amount of energy, and are often abundant 

in tumor microenvironments, particularly those in proximity to adipocytes. Thus, cancer 

cells in adipocyte-rich environments have been shown to rely heavily on FFA oxidation 

(122, 168).

Adipocytes can also be a source of amino acids. We have shown that adipocyte release 

of glutamine and asparagine can particularly interfere with acute lymphoblastic leukemia 

treatment with L-asparaginase (52). Glutamine is also extremely important for other 

cancer cells, where it contributes to the synthesis of nucleotides, amino acids, and TCA 

cycle intermediates (195). Cancer cells use BCAAs for protein synthesis and energy 

metabolism, and often overexpress branched chain aminotransferase enzymes needed for 

BCAA metabolism (7). Thus, cancer cells exhibit unique metabolic needs which may be met 

in obese, adipose rich environments.

Weight changes during cancer treatment

During the development of cancer, and over the course of its treatment, the body can exhibit 

dramatic changes in weight and composition. Many cancers are associated with cachexia, 

which encompasses weight loss disproportionately affecting lean body mass. Cachexia 

is generally attributed to inflammatory cytokines associated with cancer burden, such as 

TNFα, IL-6, and IL-1α; however, anorexia can be exacerbated by pain, depression, and 

nausea associated with the diagnosis of cancer and its treatments. Weight loss associated 

with cachexia is generally considered a poor prognostic sign. Cancer cachexia could be a 

marker of a more aggressive or advanced cancer, or a more toxic response to treatment. 

Alternatively (or additionally), the unhealthy weight loss associated with cachexia could 

somehow impair cancer treatment outcome.
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On the other hand, significant weight gain can occur over the course of some cancers. 

Cancers that are treated with high doses of glucocorticoids, particularly hematologic 

cancers, are associated with an increase in adiposity due to the adipogenic effects of 

these agents. We showed that BMI was not an accurate measure of obesity in adolescents 

during treatment for high-risk acute lymphoblastic leukemia (ALL); over the first month 

of treatment, subjects gained ~1.5 kg of body fat and lost 6 kg of lean mass, resulting 

in a substantially higher body fat percentage (128). Thus, weight and BMI were not 

helpful in distinguishing these changes in body fat, such that even those who lost weight 

generally developed “sarcopenic obesity”. This risk for excess adiposity and obesity persists 

throughout treatment for ALL, and indeed childhood cancer survivors are at more than a 

4 fold risk of metabolic syndrome (54), including obesity, hypertension, dyslipidemia, and 

insulin resistance (124).

The bone marrow environment also undergoes drastic changes during chemotherapy 

treatment. Most chemotherapeutic agents are toxic to hematopoietic cells, leading to a 

drastic reduction in marrow space filled by hematopoietic cells. Much of this space becomes 

occupied by adipocytes, through unclear mechanisms. Steroid treatments used in some 

cancers exacerbate this, and the bone marrow in the iliac crest and long bones can be 

transformed into predominantly fat tissue. These fat cells may play a role in supporting 

hematologic and other cancers which reside in or metastasize to the marrow.

Diet interventions

Given the associations between obesity and poor cancer outcomes, the observation that 

cancer cells are excessive users of metabolic fuels such as glucose, amino acids, and fats, 

and the strong desire of patients, families, and practitioners to offer further hope, it is not 

surprising that dietary intervention has been a popular topic of discussion in the cancer 

treatment world. If proven beneficial to therapeutic efficacy, dietary interventions could lead 

to improved outcomes with little or no additional toxicity. Indeed, some data show that 

diet interventions could potential reduce chemotherapy side effects. Unfortunately, the vast 

majority of the discourse has been based on opinion and anecdotal evidence, and there is a 

paucity of scientifically validated diet interventions to offer cancer patients. We summarize 

below the preclinical and clinical evidence related to the most common diet interventions 

proposed for cancer patients.

Fasting

Fasting has been touted for its health benefits for decades. Epidemiological studies show 

improved lifespan, and reduced incidence of cancer and cardiovascular disease in people 

who practice intermittent fasting for religious or personal reasons. Fasting has been tested 

in several preclinical models of cancer initiation/progression, with mixed results. Generally, 

studies have used intermittent fasting, which describes one or more fasting sessions that 

last for 24 or more hours. A meta-analysis evaluating the literature between 1994 and 2014 

identified eight preclinical studies of intermittent fasting and cancer, five of which identified 

a benefit of intermittent fasting and three of which did not (102). Studies which have 

looked at the impact of fasting on the growth of implanted cancer cells in mice have found 
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beneficial effects in some models (17, 26, 94, 99, 107, 148, 166), but not others (24, 39, 88, 

94, 99, 137, 170), some even finding beneficial effects on one cancer but not another (94, 

99) indicating that fasting could potentially have cancer-specific effects. About two thirds 

of these cancer models using immunocompetent mice identified beneficial effects of fasting 

(9 out of 14), while only half using immunocompromised models concluded a positive 

effect (4 of 8). This variability might imply that the beneficial effects of fasting on cancer 

progression/treatment efficacy require an intact immune system. Indeed, fasting has been 

shown to prevent and reduce autoimmunity (32). One study showed that fasting reduced the 

accumulation of tumor associated macrophages (TAMs), consistent with an immune system 

mediated benefit (166). A few studies have examined the effects of fasting on spontaneous 

tumor onset/progression of cancer in either genetic or carcinogenic models of cancer, with 

most identifying a beneficial effect of fasting on tumor incidence (16, 51, 143, 172).

Whether fasting can improve cancer treatment outcome has also been tested in several 

preclinical studies (Table 1). Most studied found synergistic effects of fasting on anticancer 

therapy, including radiation and chemotherapies, though there were several exceptions to 

this. In addition to cancer progression and treatment efficacy, there may be a role of fasting 

to reduce treatment toxicities. Fasting has been shown to protect mice from toxicity induced 

by etoposide (137), irinotecan (78), doxorubicin (22), and abdominal radiation (39).

There are few clinical studies testing fasting on therapeutic outcome. A case series by 

Safdie et al. demonstrated that complete fasting, from 36-140 hours before and 8-56 

hours after chemotherapy is feasible in adult patients with solid tumors (147). These 

were complete fasts, with the exception of water and sometimes vitamins, and were 

associated with subjective reduction in chemotherapy side effects and no clear evidence 

of impaired chemotherapy efficacy. Short term fasting was tested in a randomized study of 

13 patients receiving neo-adjuvant treatment for breast cancer. Fasting for 24 hours before 

and after chemotherapy was well-tolerated in the seven patients randomized to fast, and 

subjects exhibited higher red cell and white cell counts after chemotherapy compared to 

the nonfasted groups (38). Further confirming the feasibility of fasting in cancer patients, 

Dorff et al. prescribed escalating “doses” of fasting in consecutive subgroups, increasing 

from 24 hours before treatment to 48 hours before and 24 hours after treatment (46). 

Twenty subjects with a variety of cancers being treated with platinum-based therapies were 

enrolled. Of these, 13 were considered compliant with the intervention, consuming <200 

kCal/day. Fasting-related symptoms were generally mild, and there were no grade 3 or 4 

fasting-related toxicities. In another study, 34 patients being treated for breast or ovarian 

cancer were randomized in a crossover design to receive short term fasting during the first or 

second half of their planned chemotherapies, versus ad lib diet during the other half. Fasting 

lasted 60 hours total (36 hours before and 24 hours after chemotherapy), and showed some 

efficacy in improving quality of life and reducing fatigue, though effect on chemotherapy 

efficacy was not evaluated (12).

Calorie restriction

While periods of complete fasting are likely to induce the most drastic metabolic shifts, 

this might not be feasible or acceptable to all patients, and so alternative approaches have 
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been explored. Caloric restriction may provide some of the same benefits as fasting through 

similar mechanisms. Caloric restriction can also be imposed for longer periods of time, and 

thus could conceivably provide more sustained benefits. There have been many preclinical 

studies evaluating the effects of caloric restriction on cancer initiation and progression, again 

with a high degree of variability between cancer models, diet interventions, and outcomes 

evaluated. A majority of studies limit calories by reduction of carbohydrates, though some 

include protein limitation or proportional limitation of all nutrients. When diet is imposed 

as a chronic condition, animals are generally provided between 60% and 85% of what an 

ad libitum (AL) control would consume. Intermittent strategies involve more severe caloric 

restriction, generally 50-67% of AL for 1-3 week discrete periods. These restriction periods 

alternate with periods of either full AL consumption, or consumption matched to an AL 

group (to prevent compensatory overeating during nonfasting periods). Thus, it can be 

difficult to compare studies that use different calorie restriction regimens.

Despite the variability in regimens, there is convincing evidence that calorie restriction can 

delay cancer in spontaneous and carcinogenesis models (16, 19–21, 28, 33, 42, 44, 47, 

50, 53, 59, 63, 72, 73, 75, 76, 90, 92, 104, 105, 114–116, 135, 144, 156, 165, 167, 171, 

173, 178, 186) as well as transplant in syngeneic (25, 40, 49, 68, 123, 133, 153, 154, 177) 

and xenograft models (58, 77, 92, 103). Only a minority of studies found no effect or a 

negative effect of caloric restriction (18, 22, 79, 88, 111, 130, 169, 174). A handful of 

studies have tested whether calorie restriction can improve treatment efficacy (Table 2). Our 

group showed that switching mice from a high-fat to a low-fat diet improved the treatment 

efficacy of vincristine against syngeneic B-cell ALL; however, we observed no synergy with 

dexamethasone or L-asparaginase (176).

Carbohydrate restriction/ketogenic diet

There has been great interest in using a ketogenic diet as an alternative to fasting and 

caloric restriction. A ketogenic diet could be better tolerated in some patients, and it has a 

long safety record as a treatment for epilepsy. A recent meta-analysis identified 12 studies 

which tested unrestricted ketogenic diet against standard diet in murine cancer models, 

and concluded an overall growth delay with the ketogenic diet (83). A few studies have 

evaluated a ketogenic diet during anti-cancer treatment, reporting synergy in most cases with 

irradiation, metformin, and chemotherapy (Table 3).

A recent systematic review identified six articles describing clinical intervention with a 

ketogenic diet in pediatric or adult patients with glioma, together including 39 subjects, 

along with 12 ongoing trials (108). While none of the published studies were randomized 

control trials, the results showed that a ketogenic diet could be well-tolerated with few 

adverse effects, and may confer some benefit to overall and progression free survival, though 

the case-series study designs without comparisons to control groups preclude more definitive 

conclusions.

Other diet interventions

There have been a number of diets that don’t fit into the above categories that may provide 

beneficial effects on cancer risk and outcome. Strict adherence to a Mediterranean diet has 
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been associated with reduced all-cause cancer mortality, as well as mortality from breast, 

colorectal, head and neck, gastric, prostate, liver, respiratory and pancreatic cancers (151). 

Olive oil, a major component of the Mediterranean diet, contains high concentrations of 

MUFA, antioxidants, and other potentially beneficial components. People in the highest 

category of olive oil consumption exhibited a lower odds of overall cancer, as well as 

breast and gastrointestinal cancers (136). Protein restriction can reduce the growth of 

human xenograft breast and prostate cancer (56), though low animal protein intake was 

not associated with cancer mortality in prospective cohorts (164). A meta-analysis including 

96 cohort and cross-sectional studies concluded that vegetarian and vegan diets reduced the 

incidence of cancer, by ~8% and 15% respectively (43). Further, higher intake of vegetable 

vs. animal fats after diagnosis of prostate cancer was associated with an improved survival 

(141). In a meta-analysis, increased soy intake was associated with a decrease risk of 

breast mortality and recurrence (157). There have been numerous studies evaluating specific 

dietary components for anti-cancer effects in vitro and preclinical models (for example 

(114), (51)). However, there are no studies to our knowledge examining whether any of these 

diets or dietary components can improve chemotherapy treatment outcomes.

Mechanisms

The above diets induce a host of metabolic effects, many of which can be beneficial for 

a patient during cancer treatment. With caloric restriction and fasting, systemic levels of 

glucose and some lipids and amino acids decrease, limiting the available fuel for cancer 

cells to grow and divide. Ketogenic diets could exert additional anti-cancer effects through 

toxicity of ketones themselves. Indeed, ketogenic diet efficacy may be reversed in tumors 

which express high levels of ketone metabolizing enzymes (194).

A primary hypothesis on how fasting, and potentially caloric restriction, work is termed 

“differential stress” (137). Upon fasting, levels of many anabolic hormones drop, including 

insulin, IGF-1, and leptin. Combined with reduced metabolic fuel availability, these changes 

reduce anabolic signaling in non-cancerous cells, leading to increased mTOR and decreased 

AKT. These signals slow cell growth and proliferation, and can induce autophagy, all of 

which would tend to make healthy cells less susceptible to chemotherapies—particularly 

those that target dividing cells. On the other hand, one of the hallmarks of cancer cells 

is growth and proliferation independent of local and systemic signals; thus, fasting may 

not alter proliferation rates of these cells, which would therefore retain susceptibility to 

chemotherapy. In addition, the decrease in availability of fuels, including glucose, lipids, and 

amino acids, can have additional detrimental effects on cancer cells, which may not exhibit 

the same metabolic flexibility of host cells. Thus, rapid proliferation in the face of fuel 

deprivation may induce oxidative stress, increasing the likelihood of DNA replication errors 

and catastrophic mitotic events. Together these effects should widen the therapeutic window 

between host and cancer cells, and allow a more targeted killing of cancer by chemotherapy.

Hormonal changes induced by diet interventions can have additional effects as well. Some 

cancer cells are sensitive to growth promoting hormones such as insulin and IGF-1, and 

may become more sensitive to chemotherapy once these signals are reduced by dietary 

intervention. This effect was demonstrated by Dunn et al., who showed that replacement of 
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IGF-1 reversed the survival benefit observed during dietary restriction (50). Alternatively, 

caloric restriction and fasting cause adiponectin levels to rise, which could theoretically 

promote apoptosis in cancer cells. Other hormonal effects might be more complicated; Lu 

et al. elegantly showed that leukemia cells in obese mice were resistant to leptin, but upon 

fasting would increase expression of leptin receptors, leading to leukemia cell differentiation 

and improved mouse survival (99).

It is likely that dietary interventions have multiple effects on the host environment which 

can impact cancer progression and sensitivity to treatment. An energy restricted diet can 

reduce inflammatory monocyte populations in overweight and obese adults within 16 weeks 

(82). A ketogenic diet was shown to enhance anti-tumor immunity, increasing CD4+ non 

T-reg tumor infiltration (101). Importantly, the beneficial effects of the diet were reversed 

with CD8+ T-cell depletion. Diet interventions have major effects on the microbiome, which 

can in turn alter inflammation, the systemic metabolome, and even potentially chemotherapy 

metabolism (146). Dietary restriction can reduce vascularization, potentially limiting tumor 

oxygen and nutrient access (171). These and other beneficial effects of diet intervention 

could potentially provide additive benefits to cancer treatment.

Which is the best diet?

While much can be learned about obesity, diet and cancer outcome from preclinical studies, 

it is important to keep in mind that mice are not humans. The most common mouse model 

of obesity, the diet-induced obese C57BL/6 mouse, gets obese on a diet consisting of 45% 

or 60% of calories from fat. This is in contradistinction to humans, whose obesity is thought 

to be more related to excess carbohydrates. Few studies have tested multiple diets in a 

head-to-head fashion, and even in those, the “winning” diet may be better simply due to 

specifics of the models chosen. For example, caloric restriction at 60% of ad libitum showed 

a better survival benefit in p53 heterozygous mice than fasting one day per week (16). 

But what if they had tested fasting two days per week, or every other day? A 60-hour 

fast was more effective than 50% caloric restriction in protecting mice from doxorubicin 

toxicity (22), but what if it was less effective in synergizing with its anti-cancer activity? 

Or with the activity of a different chemotherapy? It is difficult if not impossible to make 

“fair” diet comparisons in these types of studies because matching caloric intake does 

not necessarily match tolerability. Further, diets may act differently in different cancer 

models, varying by cancer type, stage, mutations, species, treatment regimen, etc. A recent 

meta-analysis compared the efficacy of chronic vs. intermittent caloric restriction, and found 

that intermittent calorie restriction was more effective in reducing the incidence of cancer 

in genetically engineered models, while chronic calorie restriction was better for carcinogen 

models (30). It is difficult to translate these results into clinical recommendations.

A systematic review and meta-analysis including many of the above studies compared 

the efficacy of caloric restriction, ketogenic diet, and intermittent fasting on cancer 

initiation, progression, and metastasis (102); the authors concluded that caloric restriction 

and ketogenic diet were highly effective, while the data on intermittent fasting were 

not yet conclusive. Given the paucity of data examining dietary intervention during 
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cancer treatment, particularly in patients, more work will need to be done to test which 

interventions have the best efficacy against specific cancers.

Summary/Conclusions

It is clear that our diet has a major impact on our cancer risk. The preclinical literature 

strongly supports the potential of diet intervention to improve cancer treatment outcomes. 

It is not possible to determine at this point which dietary strategy is the best, and it is 

likely that diet efficacies will vary based on patient, cancer types, and treatment regimen. 

Clinicians who care for overweight and obese patients know that sometimes the best diet is 

the one that the patient is willing and able to adhere to, and so a degree of personalization 

may be needed when instituting these strategies into the clinic. Unfortunately, this requires 

flexibility, ancillary support staff, and an understanding that a lifestyle intervention may 

have efficacy on par with cytotoxic agents.

While translating these findings from mice to patients is not straightforward, it is imperative 

that we continue to explore this avenue. Diet intervention has the potential to improve cancer 

outcome without introducing additional toxicities and long-term complications. Indeed, 

most evidence points to diet intervention as reducing toxicity, and thereby facilitating more 

effective chemotherapy. Integrating this shift in paradigm into oncology will require more 

clinical trials and time.
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Table 1:

Preclinical studies examining the role of fasting on cancer outcome

Cancer (cell line) Animal Route Fasting Scheme Effect of 
fasting alone

Effect of fasting with 
treatment

Ref

Immunocompetent

Breast (67NR and 
4T1)

14 week old BALB/c Orthotopic ADF Slowed tumor 
growth

Synergy with irradiation (148)

Breast (4T1) 12 week old BALB/c 
female

SQ Two 48-60 hour 
fasting cycles

Slowed tumor 
growth

Synergy with 
cyclophosphamide

(94)

Breast (4T1) 12 week old BALB/c 
female

IV One 48 hour fast n.a. Synergy with 
cyclophosphamide to prolong 
survival

(94)

Colorectal (CT26) 6 week old female 
BALB/c

SQ Two 48 hour 
fasting cycles

Slowed tumor 
growth

Synergy with oxaliplatin (17)

Melanoma (B16) 12 week old 
C57BL/6 male & 
female

SQ 48-60 hour 
fasting cycles

Slowed tumor 
growth

Synergy with doxorubicin (94)

Melanoma (B16) 12 week old 
C57BL/6 male & 
female

IV One 48 hour fast No sustained 
benefit

Synergy with doxorubicin to 
prolong survival

(94)

Neuroblastoma 
(NXS2)

6-7 week old female 
A/J

IV One 48 hour fast No benefit Less treatment toxicity of one 
high dose of etoposide, but 
more rapid tumor progression

(137)

Neuroblastoma 
(NXS2)

6 week old female 
A/J

IV Two 48 hour 
fasting cycles

n.a. Synergy with doxorubicin to 
prolong survival

(94)

Neuroblastoma 
(Neuro 2A)

6 week old female 
A/J

IV One 48 hour fast n.a. Synergy with doxorubicin and 
cisplatin cocktail to prolong 
survival

(94)

Pancreatic (KPC) 9 week old male and 
female C57BL/6J

Orthotopic 24 hour fast No benefit Synergy with irradiation (39)

Immunocompromised

Breast (MDA
MB-231)

5-7 week old nude 
mice

SQ Four 48 hour 
fasting cycles

No sustained 
benefit

No apparent synergy with 
doxorubicin

(94)

Breast (H3122) 6-8 week old 
athymic BALB/c 
mice

SQ Three 48 hour 
fasting cycles

Slowed tumor 
growth

Synergy with crizotinib 
(tyrosine kinase inhibitor)

(26)

Colorectal 
(HCT116)

6-8 week old 
athymic BALB/c 
mice

SQ Three 48 hour 
fasting cycles

Slowed tumor 
growth

Synergy with regorafenib 
(tyrosine kinase inhibitor)

(26)

Glioma (GL26) 7 week old nude 
mice

SQ 48-60 hour 
fasting cycles

Slowed tumor 
growth

Synergy with doxorubicin (94)

Ovarian (OVCAR3) 5-7 week old nude 
mice

SQ Two 48 hour 
fasting cycles

No sustained 
benefit

No apparent synergy with 
doxorubicin

(94)

n.a. = not assessed; ADF = alternate day feeding; IV = intravenous; SQ = subcutaneous
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Table 2:

Preclinical studies examining the role of caloric restriction on cancer outcome

Cancer (cell 
line)

Animal Route Diet Scheme Effect of diet 
alone

Effect of diet with treatment Ref

B-ALL (8093) C57BL/6J Retroorbital Switch from 60% 
to 10% fat diet

No benefit Improved efficacy of vincristine, 
but no effect on dexamethasone or 
L-asparaginase

(176)

Breast (4T1) 8-14 week old 
BALB/c

Orthotopic 70% of AL Slowed tumor 
growth

Synergy with irradiation, 
cisplatin, and docetaxol

(148, 
160, 161)

Breast (4T1) 12-15 wk old 
BALB/c mice

SQ 50% of AL n.a. No synergy with cisplatin (22)

SQ = subcutaneous
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Table 3:

Preclinical trials of ketogenic diets on cancer outcome

Cancer (cell line) Animal Route Diet Scheme Effect of diet 
alone

Effect of diet with 
treatment

Ref

Breast (4T1) BALB/C 
mice

SQ 70% of AL of 2% 
CHO and 93.4% 
fat calories diet

Reduced tumor 
growth

Enhanced antitumor effect 
of metformin

(197)

Glioma (GL261 cells) Male albino 
C57BL/6 
mice

Orthotopic AL 3% CHO and 
72% fat calories 
diet

Prolonged survival Synergy with irradiation (3, 
101)

Glioma (GL261) Female 
albino 
C57BL/6

Orthotopic AL 3% CHO and 
72% fat calories 
diet

Prolonged survival Synergistic with whole 
brain irradiation

(3, 
182)

Lung (NCI-H292 and 
A549 cells)

Female 
athymic-
nu/nu mice

SQ AL 1.6% CHO 
and 90% fat 
calories diet

No effect of KD 
alone on tumor 
volume or survival

Enhanced tumor response 
and survival with irradiation 
± carboplatin

(5)

Medulloblastoma 
(cells from above 
mice)

NOD/SCID SQ AL 6:1 3.2% CHO 
and 75.1% fat 
paste diet

No effect on tumor 
growth

No effect on SMO inhibitor 
GDC-0449 antitumor 
activity

(37)

Neuroblastoma (SK
N-BE(2) and SH
SY5Y cells)

Female 
CD1-nu

SQ AL or 2/3 AL KD 
with 8% CHO and 
78% fat calories

CR KD slowed 
tumor growth and 
prolonged survival 
of both tumors. AL 
KD only slowed 
tumor growth and 
prolonged survival 
for SK-N-BE(2) 
tumors

Both diets slowed growth 
of KH-SY5Y tumors but 
not SK-N-BE(2) tumors 
during cyclophosphamide 
treatment

(118, 
119)

AL: ad libitum; CHO: carbohydrates; KD: ketogenic diet; SMO: smoothened gene, a component of the sonic hedgehog pathway.
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