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ABSTRACT

A boundary value problem of gquasi-static deformation of physically non-
linear viscoelastic solids is discussged in the context of providing a scheme
for characterization of material response in a manner compatible with an
algorithm for numerical solution of boundary value problems. An illustrative
example involving axial deformation of a statically indeterminate nonlinear

viscoelastic rod is included.



1. INTRODUCTION

Numerical solution of boundary value problems in the mechanies of non-
linear deformable solids depends intimately upon two factors: characteri-
zation of the mechanical properties of the solid (representation of the
constitutive response functional) and development of an algorithm leading
to a gsolution scheme for the nonlinesr differential (or integral) mechanical
field equations appropriate to the problem. Unfortunately, from an engi-
neering viewpoint, these two areas have often been studied almost independently
by workers in widely separated disciplines. As a result progress in the area
of engineering analysis of nonlinear solids has been slower than either of
the underlying areas of mechanical constitutive theory or numericsl analysis.
The present paper is concerned with this difficulty~--the questions of mechanical
characterization and numerical soiution are considered simultaneously so that
the experiméntation required for mechanical characterization of a particular
solid forms an integral part of the computational algorithm for a particular
boundary value problem. This is accomplished by examining the response of
the solid in the neighborhood of a (prescribed) reference state, a technique
which has been discussed previously in a different context by Pipkin {1},
among olthers.

The details of this method of characterization are presented in Section 2,
following some preliminaries. In Section 3 is presented a solution algorithm
for a class of boundary value problems associated with quasi-static defor-
mation of physically nonlinear viscoelastic solids. The algorithm is deduced
from & finite element approximation of a stationary value problem for a
functional. In Section It a simple example is presented to illustrate the
method., The problem considered is that of a statically indeterminate non-

linear viscoelastic rod subjected to time-dependent axial forces.



2. MECHANICAL CHARACTERIZATION AT A PRESCRIBED REFERENCE STATE

To place emphasis on the characﬁerization problem and its subseQﬁent
interaction with a solution algorithm for boundary value problems, we limit
discussion to nonlinesr viscoelastic (or elastic) solids undergoing quasi-
static deformations for which linear kinematic assumptions are adequate.

We call these materials physically unonlinear and adopt as mechanical field
variables the small strain tensor g and stress tensor ¢, both referred to
a fixed curvilinear coordinate system‘% We suppose that the temperatiure
of the body, as well as all other non-mechanical fields, remains constant.
We may then define a physically nonlinear viscoelastic solid by the con-

stitutive equation
g=t
9,(3&5 t) = _,g [E(ff:x 3)5 Xs t] (2*1)

St

The mechanical response functional £ agsigns to each strain history at’the
place X the value of the stress tensor at the current time. The appesarance
of the arguments (£; t) in the functional allows for the qualities bf non=
homogeneity and'aging in the mechanical resgponse of the solid.  Although
this symbolic staxement is logically explicit, it is clear that a specific
mathematical. form mist be ageribed Lo the representation if calculétions
are to be performed. This is precisely the point at which the crux of the
nonlinear boundarxy value problem lieg~-the tendency has been to incorporate
a highly over~-simplified "mechanical model” of the solid, without regard to

its limits of applicability, in order to obtain a tractable bvoundary value

* B > ' X3
Direct notation will be employed; i.e., symbols underlined with a

tilde are tensors of order indicated by the context. See [2] for a dis-

cussion of this notation.



problem: on the other hand, in rational mechanics the response functional
is often regarded as "defined" by expressions such as (2.1). We will

adopt an intermediate position with the specific inptention of providing a
representation of the solid suitable for use in solving problems. To this
end we suppose that a reference history'g(s) is specified.  The collection
of reference histories for all points in the gsolid will be called a
reference state. Assuming that the solid is initially quiescent, from (2.1)
we have at any point%

g=t
5(6) = £ [&(s)] (2.2)

=0
We will further suppose that the value of the functional f for the history

e(s) can be determined experimentally. This means that the multisxial
stress state corresponding to a multiaxial deformation history can be
measured, (Clearly, in some instances there may be limitations imposed by
current experimental technology.) We now consider the response resulting
from a small change in the input strain history; i.e., replace g by & + g in
(2.2), where the history g(s) is assumed to be small. T Using a Fréchet

expansion of the functional [3], we can write

s=t s=t t s=t 3
P CORYONENFI c O RN cO RS EPCE LN G )Y
s= 5=0 0 g=0

where the colon denctes doubly contracted composition of the fourth rank

*
In the sequel we will assume that the solid is non-aging.

e ‘
This implies that the norm of the history is small; we prefer to pro-

ceed on an intuitive bagis here.



tensor h with the second rank temsor Og/dt. Note that the kernel function
h in the linear functional appearing in (2.3) is itself a functional of
the reference strain history: if the reference history is the zero history,
(2.3) reduces to the usual hereditary integral representation of a linear
functional. Note further that the linear functional in (2.3) resembles
that of a linear, anisotropic, aging viscoelastic solid; i*e., character=-
ization at a non-zero reference state produces an effect on the material
equivalent to aging. Finally, we repeat that the accuracy of the approxi-
mation in (2.3) depends upon the magnitude of £(s) as measured by a suitable
norm. In some neighborhood of the reference history e(s), (2.3) will pro-
vide a predictive characterization of the solid. The form of the equation
suggests the pattern for an experimental program to characterize the solid
in a narrow band surrounding the reference history g(s), First conduct an
experiment using g(s) as the input, measuring g(t) appearing in (2.2) and
(2.3). The experiment is then repeated for a stréin history input

e = g + goﬂft~rk) where £ is & constant tensor, and H is the Heaviside

step function. Substituting this input into (2.3) there follows

s=t

tlel=glel+ b (els)s t-1.1: e (2.4)

' g=0

Since the two output functions g[g], g[é] are measured in the experiment
and £ is a prescribed constant tensor, (2.4) constitutes a set of

simultaneous linear equations for a trace of the components of the tensor

iy

in a two-dimensionsl time space with coordinates &, t o= rk). Note that
since e(s) is a prescribed history, the value of the kernel appearing in

(2.4) can be written



b= g.l,(t:t‘”fk) (2.5)

By repeating the experimental procedure for a sequence of values of Ty the
function h {more properly the components of the tensor-valued function g)
may be generabed by The set of its experimentally determined traces in the
time gpace. The number of experiments iequired o characterize the materisl
at a prescribed reference history (reference state) clearly will depend on
the complexity of the strain history and degree of symumetry of the solid in
its dinitial gtate. Graphical repregentation of a typical component of b,
and its experimental traces, is shown in Figure 1. Path (2) corresponding
to T, = O can be taken as a plane of symmetry without loss of generality.
For values of 7, > 0, traces defined by curves such as path (1) will result.
Note that all components of h vanish for t ~ Ty < 0 to satisfy the condis-
tion that future étrain inpuﬁs'cannaﬁ affect the currvent value of the stress.
To summarize this section on characterization, we have described a
procedure for determining "incremental’” linear viscoslastic material funections
for the purpose of‘characterizing & physically nonlinear viscoelastbic solid
at o prescribed reference state, In order to guide the choice of reference
states we must look to & solution scheme for nonlinear boundary value
problems in order to set the experimentally chosen reference states in corre-
spondenée with deformation stabe iterates in a numerical solution algorithm
for & boundary wvalue problem, In this way only those experiments actually

required to effect a solution of the problem will be called for.
3. SOLUTION ALGORITHM FOR BOUNDARY VALUE PROBLEMS

The characterization method described in the previous section has

been introduced to provide a natural interface with iterabive computational



methods for linear boundary value problems. We have previcusly defined a
physically nonlinear viscoelastic solid in terms of a constitutive response
functional, which in turn reguires experimental determination. At the same
time, the mechanical variables (stress, strain, and displacement) constitute
fields which must satisfy certain principles of mechanics: mass conser-
vation, continuity of deformation, and balance of momentum. Together with
prescribed boundary data describing external actions on the solid, a
varticular physical system can be represented by a boundary value problem.
For nonlinear solids a direct attack on the resulting differential or
integro-~differential ecustions is usually not fruitful. What we have
emphasiied in Section 2 ig a method of characterization which lends itself
to a method of numerical analysis of the field problem based upon global
balance of linear momentum. The latter balance equation is equivalent to
the condition that the virtual work venish for arbitrary admissible virtual
displacements associated with an equilibrium configuration of the solid.
Accordingly, with p designating the mass density of the solid, and b the

body force vector per unit mass, we adopt as our global balance principle

L/ﬁ [g:de - pb-dul dv —h/ﬁ Eduds =0 (3.1)
v g8

g
In (3.1) we assume that the symmetric stress tensor ¢ is given by the con-

stitutive equation (2.1) and that the strain tensor and displacement vector

satisfy the set of strain-displacement equations.
T
2e =vu + (vu) (3.2)

Furthermore, the virtual displacement vector du vanishes on the part of

the boundary Su of the solid over which displacements are gpecified, and



the traction vector E is assigned on the part of the boundary SG, which is
the complement of Su. We now write the balance equation (3.1) for a
neighboring equilibrium state obtained by replacing g by'g + gu by E +u

and evaluating the stress ¢ using the right hand side of (2.3). Substituting
these replacements in (3.1) and noting that dg = 6y = O since e and,g are

prescribed functions of space and time, we obtain

L/N [g:dg ~ pbedu] av ~b/\ T-duds =0 (3.3)
v Sq

where the stress is given by

s=t. t os=t e
g= £ [gls)] *’fo B o[e(s); 6 - 1]: 5o an (2.3);

5=0 5=0
In the sequel O is the stress associated with the actual state of deformation
of the solid, while y and £ are respectively the incremental displacement
and strain relative to a prescribed reference state defined by the dis-
placement g and strain g relative to an undeformed initial state of the
solid. At this point it will be more convenient to employ standard re- ’
duced notation [U] to represent the tensors appearing in the field equa~
ations as véctors in a six-gpace; the components of the vectors are physical
components of the tensors referred to appropriate orthogonal curvilinear

coordinates. Proceeding in this fashion, we define the vectors
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1 = (0335 Opps Ta35 Opgs 0335 0p5)
3 = (Ell’ €505 £33 2,35 2513, 2212)

u, = (ul, Uys Ugo 0, 0, 0) o (3.4)

b, = (bl, b, b3, 0, 0, 0)

T, = (T

j. l’ :525 :535 93 O: O)

corresponding, respectively, to the stress and incremental strain tensors,
inerementsl displacement vector, body force and surface traction vectors.
A common range i =1, 2, ..., 6 is chosen to avoid complication of the

notation. The constitutive equation (2‘3)1 can now be written

o, =1, +k, €. (3.5)

where summation convention on repeated indices is understood and

B 3
k) nfo h 2 () (3.6)

hij is the symmetric* 6 x 6 matrix of the independent components of the

fourth rank tensor h. In (3.5) and (3.6) the components £, of the tensor-
valued functional f are determined experimentally for a prescribed reference
history €(s). The same holds true for the matrix hij' Accordingly, the
{symmetric) linear matrix operator kij is a functional of the reference

history. We now express the balance principle (3.3) in reduced notation.

Using (2.3).s (3.4) and (3.5) in (3.3):
1

* Y & » # - ¥ .
In general, the linear anisotropic viscoelastic relaxation modulus is

teken as symmetric [5].



fv (g + ke )08, - obéulav- [ Eouas=0  (3.7)
: S
o]

Recalling that the functions appearing in (3.7) depends on both space and
time, we treat first the spatial problem. The functional (3.7) can be
discretized (in space) foliowing the well~known Ritz or finite element
method [6]. For a particular boundary value problem the domain V is divided

into regular sub-~domains Vn and (3.7) is replaced by the sum

it
o

N
n n..n n n.n..n ey g e o )
%4+ k2 eMael - Soul & Sou,
Z {L (g liEJ) 08, #p bedu, Jav fs, t;0u.ds
n=l n Gn

(3.8)

The label n on each of the variables or prescribed functions indicates the
support of the function and is not subject to the summation convention; Vn
denotes the volume of the ''nth" sub-domain and SG the part of the surface
of V_ on which the traction veetor %? is prescrind.
Over each sub~domain the incremental displacement vector field is

approximated by a polynomial in spatial coordinates with time-dependent

coefficients;
n _.n n : '

The vector a?(t) constitutes a set of generalized kinematic coordinates
for the nth sub-domain. . These generalized coordinates are converted to

nodal point values by the transformation

a?(t) = ¢§kq§ (+) | (3.10)
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The range of the index k on the nodal point displacement vector qg for the
nth element depends upon the number of nodal points per element as well

a5 the kinematic conditions of a particular problem (i.e., plane strain,
etc.). A similar statement applies to the transformation matrix ¢?k.

Combining (3.9) and (3.10) gives the element displacement vector

n . pBx n..n

Recalling (3.2) and carrying out the differentiation formally, the strain

tensor can be writiten

n O ¢ n n

Before substituting these results into (3.8) it is necessary to relate the
element nodal point displacements to the nodal point displacements for the
entire domain; i.e., if we denote the incremental éisplacement vector for

the entire domain by'vb(t), where the range of p depends on the number of

nodal points in the entire domain, the vector qﬁ can be made compatible

with.vp through a localizing transformation
n el
af (8) = Ty v, () - (3.13)

If all element displacements are referred to a common reference frame the.

localizing matrix L__ is Boolean. Returning now to the equations for dis-

kp

placement and strain, we can write

ui(x, ) = AL ()00 Lt v () (3.14)

n _ on n.n
e (x, ) = By (x)0 Ly v (t) (3.15)



13

Now substituting (3.14) and {3.15) into (3.8)

N
n. n.n . n.n.n.n. n.n
LB + k.. B, .
EE}{M[; [£?B1q¢qk;kp klgqu?qukgBJr¢rlLlsvs
n=l n

(3.16)

n.nan . n Y noun
pnbiAiqéqukp:%Vn »/; B O i3S, OV, = ©
i+ ]
n

Since dvp is an arbitrary virtual displacement it follows that the expression
N

Ej {:}- must vanish for each value of p independeﬁtly. Accordingly, (3.16)
n=1

can be rewritten;
KPSVS-FP*PHP"TP“—:O S,p":l’ 25 'R (3'17)

where we have defined

N
e n.n . n.n n.nn
Kps }: ¢qukp¢rlLlsL/; BiqBjr iden

n=l 1
Ns
» can o n n.n
F E; ¢qkpkpt/; pnbiAiqun
n=l n
N (3.18)
S on.n no.
Hp EJ kaLkp v fgBiqavn
n=l no
N :
= n.n +n,.n
Tp~ Z:¢qg%$ . %ﬁg¢ﬁn
n=l ‘ Gn

Equation (3.17) constitutes the basis for a discretized solution algorithm
for the nonlinear boundary value problem. Techniques for the automatic

formation of the matrices (3.18) and the system of equations (3.17) are



1k

well=known {6], Since Kps is a linear integral matrix operalor for a
prescribed reference stéte, the solubtion of (3.17) for nodal point displace~-
ments vs(t} may be obtained by step-forward inbegration in time, solving
at each step a linear boundary value problem in space. Numerical solution
of problemé of this type, in the context of linear thefmoviscoélasticity,
has been discussed by Taylor, et al. [7].

Tt remains to discuss the details of iteration in the solution
algorithm., In {(3.17) the vectors Tp and FP are prescribed functions of
gpace and time, once the details of the sub-division of the domain V and
gselection of the approximating functions A?j(%) have been accomplished.
The vector Hﬁ and operator Kps dépend upon- the coordinate functions Agj(g)
in addition to the reference history €(x, t) selected. We may proceed as
follows: & trizal solution of the boundary value problem is assumed; for
example, i1t can be assumed that the trial solution corresponds to a linear
constitutive lﬁw, in which case Kﬁs 1§ assoclated with %33 zero reference
history and Hb vanishes. Solution of (3.17) for v, = vs(t) constitutes the
first approximation to the discretized problem. (Actusl displacements,
strains, stresses may be obtained from nodal point values through the
appropriate transformation equations.) Corresponding to the displacements
vi%%) is a new reference strain history §§;z t). Using this history £,
hij’ kij and hence K;i), Hél) can be evalusted experimentally.(z?sing the

generalized Newbon's Method [8] the second approximation for vs(t) can be

obtained by solving the system of equations.
(1).(2) , (1)
+ = :
‘Kps Ve HP 0 (3.19)

Repeating this process, we have the recurrence equation
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(i-1) (1) , (i-1) _ . '
Kps vl Hp =0 i>e2 (3.20)

When the "ith" iteration produces Héi) = 0 to the accuracy desired, the
solution has been obtained, since véi) is zero for the homogeneous boundary
value problem that appears as a result of solving a nonhomogeneous problem in
the first cycle of iteration. Note that after the first trial solution the
displacements véi) correspond to incremental displacements.  Accordingly,

the total nodal point displacemerit is obtained by addition of the iterate

and the reference displacement. Other field variables are obtained in a
similar fashion.

In view of the substantial amount of experimental and computational
effort involved in a typical problem, it should be remarked that considerable
savings is effected if the simplifie&, or chord-type, Newton's Method 8]
can be employed. Using this basis for solution, the operator Kéi} is

(1)

o depend only upon

obtained once and for all, and subsequent iterates v
the changes in pseudo body force gi).

At this point it is well to acknowledge the purely formal nature of
the algorithm. No claims are made for either uniQueness or convergence of
the iterated solution. In view of the complexity of these queétions for
nonlinear operators [8] it seems best to rest these questions on intuition
at the present time. ‘Finally, in passing, it should be noticed that all of
the previous remarks also apply to a norlinear elastic boundary value problem,
for which the constitutive equation for stress is a tensor-valued function
of strain rather than a fuhctional'of the gtrain history. In this case
the matrix Kps ig a2 nonlinear function of the reference strain rather than
a functiohal of the reference history. Thus, thé solution algorithm in-

volves construction of a sequence of solutions for linear time-independent

boundary.value problems,
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We turn now to a simple example to illustrate the procedure described

in the previous sections.

i, EXAMPLE: AXTAL DEFORMATION OF A STATICALLY INDETERMINATE

VISCOELASTIC ROD

To illustrate the solution algorithm for a nonlinear boundary value
problem, a simple one~dimensional example has been chosen. The system is
a nonlinezr viscoelastic rod of unit cross-sectional area clamped at each
end, as shown in the inset of Figure 3. The rod undergoes axial deformation

produced by two forces
o(t) = 4OO[H(t) - H(t-s)l, s5=1, 2, ... (4.1)

applied as shown in Figure 3. Although the example is one-dimensional in
space, the same technique is applicable to two- and three-dimensional states
of deformation at the expense of computational effort. In the absence of
experimental data for a particular material, we substitubte for our experi-~

*
mentally determined response functional (2.2) the equation

5(t) = £ [5(s)] ft{ gl - 91}
oit) = = G.+ E. exp [~k {t -~ s <= ds
e o L0750 0 3s

+ - —
f Jde_ o :
Uéfg { G+ El exp[-kl(t-sl)]exp[«kl(t~32)]exp[-kl(t~33)}§gz 5%; So dsldszds

corresponding to a "third order" nonlinear viscoelastic solid. For this

constitutive equation the kernel function h appearing in (2.3) and (2.3)l

*
Tensor notation is dropped for the one-dimensional example.
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is readily found to be

s=t
h casL-t-r3=GO+Eoem>&g;t-r)1+3%§3t)
+ 3Ei5§(t) exp [~k (t - 7))
where

e (t) = ’ ge ds
% - o Os
(L.k)

t
EE(t) nb/; exp [wkl(ﬁ -~ g)] %ﬁ ds

Proceeding with the discretization required by the solution algorithm, the
vyod is divided into three elements (four nodal points); the coordinate
functions Agj(x) in (3.9) are taken to be iinear in x and the generalized
coordinates a?(t) linear in time.

The constants describing the material in (4.2) are selected as

° * (4.5)
Gy = By = 1000
and for the nonlinear moduli

G =E =0 (0/0) |

G, = E, = 20,000 (20/20)

G, = 10,000, E, = 30,000 (20/10) (4.6)

G, = 25,000, E, = 75,000 (50/25)

G =0, E, = 100,000 (50/0)



18

The symbols (I/F) measure nonlinearity in the constitutive equation (4.2)

for the limiting values of time t = O, t » o, They are defined by

G+ K G

P 1 1
I= = gt (14_‘7)

Go * By Co

A plot of the strain-dependent relaxation modulus associated with a step
function strain input is shown in Figure 2 for the material constants given
by (k.5) and (4.6).

The formation of the matrices (3.18) using the above data and
approximation functions is straightforward. The system of equations (3.17)
was solved using the simplified (chord?type) Newton's Method employing
the matrix operator K?S evaluated for a zero reference hisgtory. For the
cases studied here iteration was completed in approximately 10-15 cycles,
depending upon the degree of nonlinearity. Further computational details
may be found in [9].

Figure 3 presents the strain history in segment 1 of the rod for
different values of material constants, From a physical standpoint it is
interesting to néte that, in addition to the effect of the ratio of initial
to final nonlinearity (I/F), the influence of "aging" due to nonlinearity
is pronocunced.  That ig, the instantaneous élastic change in strain due to
removal of the load depends upon the time at which unloading occurs, a
phenomenon observed in many engineering materials.

Figure 4 shows the stress history in segment 1 for the case of
loading only. Note that in contrast to a linear materisal stress is a function
of time, although the highly constrained support conditions of the example

preclude any large changes with time.
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