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Abstract 
HVAC systems are the major energy consumers in commercial buildings in the United States. These 
systems are operated to provide comfortable thermal conditions for building occupants. The common 
practice of defining operational settings for HVAC systems is to use fixed set points, which assume 
occupants have static comfort requirements. However, thermal comfort has been shown to vary from 
person to person and also change over time due to climatic variations or acclimation. In this paper, we 
introduce an online learning approach for modeling and quantifying personalized thermal comfort. In 
this approach, we fit a probability distribution to each comfort condition (i.e., uncomfortably warm, 
comfortable, and uncomfortably cool) data set and define the overall comfort of an individual through 
combing these distributions in a Bayesian network. In order to identify comfort variations over time, 
Kolmogorov–Smirnov test is used on the joint probability distributions. In order to identify comfortable 
environmental conditions, a Bayesian optimal classifier is trained using online learning. In order to 
validate the approach, we collected data from 33 subjects, and an average accuracy of 70.14% and 
specificity of 76.74% were achieved. In practice, this approach could transform the comfort objectives to 
constrain functions and prevents pareto optimality problems. 

Keywords: ​Thermal Comfort; Probabilistic Modeling; Online Learning; Adaptive Stochastic Modeling; 
Personalized Comfort; Commercial Buildings  
 

1 INTRODUCTION 

Commercial buildings are one of the largest energy consumers (18.9% of the total energy consumption), 
and greenhouse emission sources (18.89% of the CO​2​ emissions, and 19.59% of the total greenhouse gas 
emissions) in the United States [1, 2]. Heating, Ventilation, and Air Conditioning (HVAC) systems 
account for the largest share of the energy usage and gas emissions (43% of the commercial building 
energy consumption [1, 2]).  HVAC systems are primarily responsible for providing satisfactory thermal 
conditions and indoor air quality for building occupants. They are often operated based on the 
recommendations​ provided by the s​tandards (e.g., ASHRAE Standard 55 (Thermal Environmental 
Conditions for Human Occupancy) [3] and ASHRAE Standard 62.1 (Ventilation for Acceptable Indoor Air 
Quality) [4]). S​tandards for thermal comfort conditions provide models, which estimate occupants’ 
thermal sensations based on a few selected parameters (e.g., indoor air temperature, air humidity, 
clothing, etc.), which are measured through controlled experiments. ​Although more recent models (e.g., 
adaptive models) consider weather variations for estimating occupants’ thermal sensations, they do not 
usually account for contextual factors (e.g., age, race, gender, etc.) that influence individuals’ thermal 
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comfort preferences. Thermal preferences vary from person to person, which suggests that a systematic 
procedure to quantify personalized preferences is needed [5]. In addition, many dynamic environmental 
and human related variables affect thermal comfort [6, 7], and hence, individuals’ thermal comfort 
ranges may change over time. This phenomenon requires models for personalized comfort models to be 
updated when new evidence is available (e.g., an occupant’s perception of comfort or discomfort at a 
certain ambient condition is changed). Moreover, prior research proves that people perceive comfort in 
a range of environmental thermal conditions [8], which might provide an opportunity to save energy in 
buildings. Small thermal comfort related adjustments (e.g., adjusting the temperature set point by 1°C) 
might have considerable impacts on the overall energy consumption [6]. ​In addition, it has been 
demonstrated ​that thermal comfort is the dominant factor influencing the overall satisfaction with 
indoor environments [9, 10]. Therefore, context dependent approaches to model and estimate 
individuals’ thermal comfort preferences that enable more efficient HVAC operations can potentially 
help energy conservation strategies. ​Reducing energy consumption and gas emissions through more 
efficient HVAC (eHVAC) systems and building automation and control systems (BACS) is emphasized 
in the recent report by Mitigation of Climate Change group at the Intergovernmental Panel on Climate 
Change (IPCC) [11].  These systems require understanding occupants’ behavioral patterns as well as their 
personal needs.  

Human Centered thermal Comfort Identification (HCCI) approaches aim to address the challenges of 
context dependency in thermal comfort by differentiating individuals and independently addressing 
individuals’ states of comfort. These efforts could be divided into two categories: (1) survey based 
approaches; and (2) physiological measurement based approaches. Survey based approaches aim to 
understand the state of mind for thermal comfort by asking humans to fill a questionnaire, while 
physiological measurements based approaches aim to understand the state of humans’ body for 
thermal comfort through certain physiological measurements (e.g., heart rate, skin temperature, etc. 
[12-18]). Thus, real-time monitoring of building occupants’ thermal comfort through HCCI approaches 
requires continuous data acquisition. However, continuous data acquisition from building occupants is a 
challenging task, and therefore, is not widely used in daily building operations. In order to address this 
challenge, Human Centered thermal Comfort Modeling (HCCM) approaches correlate instant comfort 
levels (HCCI outputs) with some other variables, such as environmental related variables (e.g., indoor air 
temperatures, clothing levels) [17, 18]. Thus, instead of continuous interactions with occupants (e.g., 
asking them to fill out a survey, taking physiological measurements), the selected correlated variables 
are used to estimate occupants’ thermal comfort levels. Due to the difficulties and expense of 
monitoring all influential variables through a sensor network, and in order to achieve certainty in 
decision making, these models account for two categories of uncertainties [19]: (1) short-term comfort 
related uncertainties, caused by influence of variables, which cannot be monitored in real time on an 
individuals’ comfort level, such as food intake, internal organs’ health; and (2) long-term comfort related 
variations, caused by changes in weather or acclimation. From statistical point of view, short-term 
uncertainties result in a noise around a mean value, while long term uncertainties result in a shift in the 
mean value. Stochastic modeling, in contrast with deterministic modeling, integrates the 
above-mentioned uncertainties by defining degrees of beliefs (probabilities of occurrence) over the 
range of values that a decision should be made.  The models used in standards (e.g., ASHRAE 55 -- 
thermal environmental conditions for human occupancy) [3]) cannot be categorized as HCCM 
approaches as they were built for a group of test subjects in a specific context (like in controlled 
experiments) and they are recommended to be used for occupants in other contexts. For example, PMV 
(predicted mean vote), as one of the most well-known models, is a statistical model that was created 
based on the results of the experiments conducted by Fanger in 60s [20]. The model maps few 
environment related parameters (e.g., indoor air temperature, indoor air humidity, etc.) to the PMV 
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value of a group of occupants in an indoor environment [20].​ In addition, the recently developed adaptive 
thermal comfort models [8, 21] are also built based on correlation analyses between seasonal variations of 
environmental conditions and subjects’ thermal responses, and they are not considered as personalized 
adaptive models. 

In this paper, we introduce an adaptive stochastic modeling approach for modeling personalized thermal 
comfort of building occupants. Our adaptive model enables determination and quantification of both the 
short-term and long-term comfort uncertainties. Our stochastic models are probability distributions in a 
Bayesian network that feeds into a binary Bayesian optimal classifier. In order to detect long-term 
variations, we implemented a sliding window based algorithm that detects significant statistical 
differences in comfort votes. We compared our model with other standard classification techniques by 
applying these techniques (including ours) on the thermal comfort data collected from 33 test subjects in 
regular office environments. Individuals’ thermal comfort levels were collected through a participatory 
sensing (survey based) approach described in [22]. 

We describe our approach and its validation in this paper. In Section 2, a review of recent studies on the 
Human Centered thermal Comfort Identification (HCCI) and Human Centered thermal Comfort Modeling 
(HCCM) is presented. In Section 3, we introduce our stochastic approach for modeling personalized 
thermal comfort, as well as the model update procedures. In Section 4, the test bed buildings and 
experimental design are explained. In Section 5, we present the results for stochastic model validation for 
short-term effects, and long-term comfort variations. Section 6 demonstrates the i​mplementation of our 
approach in compliance with ASHRAE 55 (thermal environmental conditions for human occupancy) [3]​. 
In Section 7, a discussion on implementation requirements and future work are provided. Section 8 
summarizes the findings and concludes the paper.  

2 HUMAN CENTERED THERMAL COMFORT IDENTIFICATION AND MODELING  

Human Centered thermal Comfort Identification (HCCI) has recently gained more attention due to (1) 
the inability of existing thermal comfort models to accurately estimate individuals’ dynamic thermal 
preferences; and (2) the decreased cost of sensing infrastructure. HCCI approaches aim to understand 
individuals’ states of comfort through direct measurements. These measurements record humans’ 
perceptions or physiological responses to their thermal environments. Accordingly, two distinct 
categories of data acquisition approaches are used in literature: (1) survey based approaches, which try 
to quantify the perceptions; and (2) physiological measurement based approaches, which try to 
understand preferences based on physiological responses [17].  Survey based approaches require 
individuals to fill questionnaires about their thermal comfort levels. There are various questionnaire 
designs in literature with different scales, such as (1) the ASHRAE scale [3]; (2) the Bedford scale [23]; (3) 
the comfortable-uncomfortable scale [24]; (4) the Human Building Interaction framework for Thermal 
Comfort (HBI-TC) scale [25]. Due to their distinct designs, and subjective human understanding, scales 
should be carefully chosen and used based on the required application (e.g., Bedford scale unlike 
ASHRAE scale extracts information regarding thermal acceptability) [24, 26]. Physiological measurement 
based approaches [12-17] are built upon the principle that physiological responses can be correlated 
with thermal discomfort. Therefore, monitoring the correlated measurements helps understanding 
when a subject is uncomfortable. If there was no evidence of thermal discomfort, these approaches 
reject the hypothesis that the subject is in a discomfort condition. However, there could be 
uncomfortable conditions (which is a state of mind [3]) that are not necessarily reflected in human 
physiological conditions [27]. Evidently, survey based approaches understand actual comfort levels more 
accurately than physiological approaches as they try to directly extract the state of mind of a person. In 
addition, the physiological measurement based approaches require extensive sensing of human body, 
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which makes their applicability difficult in practice. The major challenge with both kinds of HCCI 
techniques is that they require continuous interactions with building occupants, which maybe intrusive 
over time. 

To address the need for continuous monitoring of thermal comfort, Human Centered thermal Comfort 
Modeling (HCCM) approaches try to build statistical models through correlation analyses between the 
selected environmental parameters, occupant related parameters, and instant state of comfort (HCCI 
outputs). A data driven modeling technique that combines personalized coefficients with a general 
model of human body heat balance was introduced in [28]. The coefficients were estimated via 
minimizing a least square error function of the coefficients based on occupants’ comfort votes. The 
authors argued that the data communicated by the occupants on a daily basis account for the adaptive 
changes in the model. In [29], a deep artificial neural network (ANN) learning technique was used for 
classifying environmental conditions into comfortable, uncomfortably warm, and uncomfortably cool. 
The ANN algorithm had 4 input layers (i.e., air temperature, radiant temperature, air flow, air humidity) 
and 5 hidden layers. The algorithm was trained with comfort votes from test subjects under controlled 
experiments. However, the time dependent variations of thermal comfort were not considered in the 
study. The authors in [30] developed an exergy-based approach that relates an individual’s body exergy 
consumption rate with their assessed thermal sensations. Their results suggested that minimum body 
exergy consumption rate is associated with the sensation close to the thermal neutrality. In addition, 
they found that considering both convective and radiative heat exchange between a human body and 
the environment, indoor operative temperature is an appropriate measure for estimating the body 
exergy consumption rate. Time dependent variations were assumed to be inherently integrated in the 
exergy. An adaptive thermal comfort modeling technique, which uses the PMV model as a prior model, 
was introduced in [31]. The model calculated an adaptation coefficient, which decreases or increases the 
estimated PMV values. The adaptation coefficient was driven based on a field study that took into 
account local climate, culture, and social backgrounds. In [32], the authors developed an adaptive 
fuzzy-logic based algorithm that learns on-line using individuals’ actions on thermostats and 
environmental conditions. The fuzzy sets were aligned with the desired changes to a thermostat. A 
multiple regression model that takes mean skin temperature and its time differential as input and 
predicts transient thermal sensations was introduced in [12]. Their results showed strong correlation 
(correlation coefficient of 0.839) for the proposed technique for predicting the sensations. Another 
detailed study [13] was completed on various points on human test subjects’ skin to find the points, 
which are correlated with thermal sensations. The results showed that skin temperature gradients were 
more consistent with the thermal comfort condition than actual skin temperatures. In addition, wrist 
skin temperature was found to be a point that has the highest correlations with overall thermal comfort. 
In [15], the authors investigated the applicability of using individuals’ heart rate as a representation of 
thermal sensation. In their study, the authors argued that heart rate was directly correlated with 
metabolic rate, and therefore it was correlated with thermal comfort. Their results showed statistically 
significant correlation between heart rate and thermal sensation for male test subjects with high Body 
Mass Index (BMI).  

The majority of the above mentioned models lack the components for detecting time dependent 
variations (changes in time) in thermal comfort. In other words, the time dependent variations of 
personalized thermal comfort preferences were not mathematically studied in previous research efforts. 
Therefore, there is a need for a modeling technique that not only addresses the short-term comfort 
uncertainties but systematically detects long term preference changes without making any prior 
assumptions about occupant preferences. This modeling technique should be built on the data from 
occupants and the environment. Moreover, the internal knowledge base of a model should be updated 
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when a new data point (i.e., comfort vote and associated environmental condition) is communicated by 
the occupant to take into account variations in thermal comfort.  

3 MATHEMATICAL APPROACH  

In this paper, we introduce a novel HCCM technique that adjusts its parameters in response to variations 
in individuals’ thermal preferences. This modeling technique is a complementary mechanism for 
controlling HVAC systems in order to respond to occupant thermal needs [33]. We first introduce the 
mathematical approach for modeling comfort as a function of several variables (Section 3). A sample 
data point provides comfort information as a function of one or several variable(s). iIn this study, we 
incorporated temperature as the environmental factor influencing the comfort. We also provide a 
discussion on how other variables can be integrated in this approach in Section 7. The data collection 
process for this study is explained in detail in Section 4.  

3.1. Data Acquisition System  

The data acquisition system used in this study consists of a user interface (UI) for collecting occupants’ 
thermal votes and a portable temperature/humidity sensor to measure occupants’ local ambient 
conditions. The UI and sensor communicate the data to a database that can be queried any time. The 
closest temperature sensor readings ( ) to votes ( ) in time domain are selected. The data pointsT i vi  
denoted as ( ) are used for the next step, which is the development of the thermal comfort, Tvi  i  
profiles. The UI interface was developed in [22] (Figure 1). 

 

Figure 1. Components of the user interface and thermal preference scale used in data collection 

 

This interface not only enables the classification of comfort and discomfort conditions, but also allows 
the quantification of different discomfort levels. Since the first step is to identify the comfort conditions, 
we transform the data collected through the UI (Figure 1) into three categorical variables: (1) 
uncomfortably warm (5 slider positions on the left side of the “no change” position); (2) comfortable 
(“no change” position); and (3) uncomfortably cool (5 slider positions on the right side of the “no 
change” position). The associated temperature values were also combined to three sets. Figure 2 shows 
the process of combining discomfort slider positions. In sum, we reduce the number of comfort labels 
from eleven (number of slider positions) to three to facilitate and simplify the model training process, 
which explained below.  

 

Figure 2. (a) Input from the scale on the UI, (b) data transformed to three sets required by the algorithm 

 

3.2. Comfort modeling 

First, we transform the comfort/temperature data, collected through the UI into a parametric 
mathematical model. We define an Upper Limit (UL) and Lower Limit (LL) for temperatures that comfort 
can be realized and three probability distributions for uncomfortable and comfortable conditions (LD – 
Lower Distribution, MD – Middle Distribution, UD – Upper Distribution). LD, MD, and UD are the 
probability distribution functions defined on the uncomfortably cool, comfortable, and uncomfortably 
warm data points, respectively. UL for comfort temperatures is defined as the highest temperature that 
the user communicates a comfort vote. LL for comfort temperatures is defined as the lowest 
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temperature that the user communicates a comfort vote. Figure 3 illustrates the different components 
of the model. 

 

Figure 3. Segmentation of data based on Lower Limit (LL), Upper Limit (UL), Lower Distribution (LD), 
Middle Distribution (MD), and Upper Distribution (UD) 

 

Evidently, LD and UD influence the range of environmental conditions that comfort is likely to be 
perceived. The higher the variance of the LD and UD, the smaller the range of comfortable 
environmental conditions at a certain confidence interval. We integrate the effects of different thermal 
comfort conditions into a single function by defining a Bayesian network (Figure 4) to combine the 
probability distributions over the range of temperatures that evidence suggests that comfort can 
potentially be perceived [LL to UL]. Bayesian network is a probabilistic graphical model (a directed 
acyclic graph) that represents a set of random variables and their conditional dependencies [34]. In our 
approach, the network represents the probabilistic relationships between the influential probability 
distributions (LD, MD, and UD) and the overall comfort. 

 

Figure 4. Graphical representation of the Bayesian network 

Overall comfort defines probability of comfort (C) and its negation (~comfort) is discomfort (DC). 
Following the Bayes rule, at any temperature in time , the sum of .T )( t (Discomfort|T )P (T )t = 1 − P t  

 can be derived using the following equation:P (T )t  

P (C |T )t = P (MD|T )t
ω .P (T )+ω .P (T )+ω .P (UD|T )1 t 2 t 3 t

 Eq. 1  

 

Where,  stands for comfort.  stands for temperature at time t. , ,  are the probabilityC T t DL DM DU  
distributions described above. ,  represents the prior probabilities associated with ,ωi i∈[1, , ] 2 3 DL  

, . Bayes rule states that if  (in other words: ), comfort has aDM DU P (C |T )t > 0 P (C |T )t > P (DC |T )t  
stochastic dominance over discomfort and that temperature  can be classified as comfortable.T t  
Accordingly, the following Bayes optimal classifier solves overall comfort in the Bayesian network in 
Figure 4: 

(y |T ) P = w t  Eq. 2  

Where, C stands for comfort and DC stands for discomfort.  

The challenge is to train the model as  is also a function of prior knowledge about theP (C |T )t  
distribution weights. Training the model in its current form (Eq. 1) is a difficult task, because we need to 
estimate not only  , and , but also  , ,  -- the weights of parent nodes(T )t (MD|T )P t P (T )t ω1 ω2 ω3  
(LD, MD, UD) probability distributions that generate a child node (overall comfort). The weights are prior 
probabilities in the Naïve Bayes formulation of Bayesian networks. In order to reduce the need for 
having a high number of data points for training, we slightly modify the formulation of the problem by 
assuming , which states that all probability distributions influence the overall comfort withω1 = ω2 = ω3  
equal weights. In order to compensate for the assumption of equal prior distributions, we define a new 
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hyper parameter, the Probability threshold ( ), which is used as a decision boundary to classifyP T  
comfort and discomfort conditions. Accordingly, through the implementation of an online learning 
technique on an individual data set, the probability threshold that best classifies each person’s 
comfort/discomfort votes can be selected (Figure 5). This modeling (classification) technique can be 
categorized as a Bayesian optimal classifier. The only difference to standard formulation of Bayesian 
optimal classifiers is that we combine the weights of parent distribution and presented it in terms of a 
probability threshold. 

 

Figure 5. Probability threshold ( ) as a hard constraint for comfort vs. discomfort conditionsP T  

 

3.3.Model fitting and parameter estimation 

In the current problem formulation, there are two variables (LL, UL), and three probability distributions 
(LD, MD, UD) that together describe the raw data and one threshold value ( ), which allows theP T  
combination of the variables. As explained earlier, we define the LL and UL to be the lowest and the 
highest temperatures a comfort vote gets communicated, respectively. For modeling LD, we must 
consider the following conditions: (1) we know the the probability of discomfort is 1 at LT and eventually 
reaches 0 (the limit is 0), if a user has not communicated any comfort vote below LT; and (2) the 
derivation of the probability distribution function at temperatures around the initial and end points 
should approach 0 to represent consistency of the distribution, as small changes on the end points do 
not influence the distribution. Therefore, we chose half normal distribution to fit to the data as its 
mathematical formulation inherently maintains the requirements explained above.. Other continuous 
probability distributions such as gamma, beta, and exponential distributions can also be used if they 
meet the above-mentioned criteria after the training process. The model (Eq. 3) requires a starting point 
(i.e., LT) and a standard deviation. 

xp (− )        xf (x; )σ = √2
σ√π exp e x2

2σ2 > 0  Eq. 3  

 

Where  is the random variable and  is the standard deviation of the distribution.x σ  

Given a fixed set of data and an underlying probability distribution (i.e., half normal distribution), the 
method of maximum likelihood maximizes the probability of the observed data under the half normal 
distribution assumption. Maximum-likelihood estimation selects the set of values of the model 
parameters that maximizes the likelihood function and gives a well-defined estimation approach in case 
of normal distribution [19, 35]. Therefore, we use the method of maximum likelihood to estimate the 
parameter  of the model. The standard deviation is driven as follows:σ  

 σ̂LD = √ 1
nx ≥LL,y ∈UCi i

∑
nx ≥LL,y ∈UCi i

j=1
(x L)j − L 2  Eq. 4  

 

Where  represents the number of data points that the temperature is above the  and isnx ≥LL,y∈UCi i
LL  

labeled as  (uncomfortably cool).  is the temperature of the data point that satisfiesCU xj  

.≥LL, ∈UCxj yj  
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Similar to the LD, UD can be modeled as a half normal distribution. The starting point is UL is in this case, 
and the standard deviation can be derived from the following equation: 

 σ̂UD = √ 1
nx ≤UL,y ∈UWi i

∑
nx ≤UL,y ∈UWi i

i=j
(x L)j − U 2  Eq. 5  

 

Where  represents the number of data points that the temperature is above the  and isnx ≤UL,y∈UWi i
UL  

labeled as uncomfortably warm ( ).  is the temperature of the data point that satisfiesWU xj  

.≤UL, ∈UWxj yj  

A complete normal distribution is then used to describe to the middle distribution (MD). 

xp (− )        f (x; ; )μ σ = 1
σ√2π exp e 2σ2

(x−μ)2

 Eq. 6  

 

Where  is the random variable,  is the mean, and  is the standard deviation of the distribution.x μ σ  

We use the method of maximum likelihood to estimate the parameters of the normal distribution: 

μ̂C = 1
ny ∈Ci

∑
ny ∈Ci

j=1
xj  Eq. 7  

 

 

Where  is the number of data points that are labeled as comfortable (C), and  is theny∈Ci
xj  

temperature value that has been labeled as comfortable (C). 

 σ̂MD = √ 1
ny ∈Ci

∑
ny ∈Ci

j=1
(x )j − μ̂ 2  Eq. 8  

 

Where  is the number of data points that are labeled as comfortable, and  is the temperatureny∈Ci
xj  

value that has been labeled as comfortable (C),  is the mean calculated from Eq. 7.μ̂   

The probability threshold ( ) is the value of the probability that best classifies comfort votes andP T  
discomfort votes. Therefore, probability threshold is the hyper parameter of the classification algorithm 
and is determined through a search over different values (between 0 and 1) for finding a global optimal 
value each time the Bayesian Network is built on the training data. In order to implement this search, we 
discretized the range between 0 and 1 into [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]. In the training stage, 
when the Bayesian network probability distributions are generated, we combine and then use the values 
in the probability threshold vector to classify the training data set. The value that best classified the 
training data is then chosen as the probability threshold for validation. The smaller the threshold, the 
higher number of false positives are realized. The higher the threshold, the higher number of false 
negatives are realized. 
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3.4. Long term comfort variation detection 

The opportunity that the current formulation of the problem provides is the development of a single 
function that combines the effects of all input data and presentation of comfort as a probability 
distribution. Therefore, in order to detect time dependent comfort (preference) variations, we create a 
window (with a certain size) of data starting at the most recent data point and go backwards. We then 
implement the probabilistic model explained in the previous section, and implement a statistical test 
(i.e., Kolmogorov–Smirnov test) to detect if the joint probability distribution significantly differs from the 
joint probability distribution that is generated from all the data points. Kolmogorov–Smirnov test is a 
nonparametric test of the equality of continuous probability distributions. A Kolmogorov–Smirnov 
statistic quantifies a distance between the empirical distribution functions of two samples [36]. Once a 
statistical significant variation in the probability distribution is detected, the previous data points are no 
longer representative of the thermal preferences of the user. Therefore, the data from the most recent 
point, which is not combined in the first model, is disregarded (unrepresentative data points in Figure 6). 
In this case, the variable is the window size. In order to make sure we consider all possible conditions, 
we set the window size to vary from 1 to the whole data set. For small window sizes that the Bayesian 
network could not be built, we move to a larger window size, until a Bayesian network could be built. 
The diagram of this process is illustrated in Figure 6. Window* is the set of data points that the joint 
probability distribution developed from the Bayesian network is significantly different from the joint 
probability distribution developed from the whole data set. This process provides a mathematical tool 
for detecting time dependent variations.  

 

Figure 6. Process diagram for detecting unrepresentative data points 

 

4 EXPERIMENT PROCEDURE  

The data collection was completed in several offices in University of California (USC) campus buildings. 
Based on the Köppen climate classification [37], the climate of the area is defined as a dry-summer 
subtropical climate (also referred to as the Mediterranean climate). For such climates, the average 
temperature in the warm months is above 10 ​°C and in the cold months is between -3 and 18 °C [37]. 
Areas with Mediterranean climate include lands around Mediterranean Sea, much of California (U.S.), 
parts of West and South Australia, southwestern part of South Africa, and part of central Chile [37]. 
Approximately 194.4 million people lived in lands with Mediterranean climate as of 1999 [38]. 
Considering the fact these lands are favorable living places, the population have had a continuous growth. 
The total area of lands with Mediterranean climate is about 905,000 miles^2 [38].  

Each test subject was given an ID number and asked to communicate his/her votes with that specific ID 
number, using the UI (Figure 1). The temperature/humidity sensor used in the experiments was Aosong 
AM2302 temperature/humidity sensor, which has an accuracy of ±0.5​°​C for temperature and ±2% RH 
(Relative Humidity) for temperature, and the resolution of 0.1​°​C for temperature and 1% RH for 
humidity. The sensors where placed in a closed proximity (less than 1.5 meters to 2 meters) to the test 
subjects. Air temperature, radiation, air velocity, and humidity might have unsteady and time variant 
distributions in office spaces. In this study, we are benchmarking an individual’s thermal preferences to 
a temperature sensor placed at a certain location in an office. If the sensor is in close proximity to the 
occupant, the modeling results can be used in other spaces with similar environmental conditions. 
However, if the sensor is located at a distance, the environmental conditions are likely not to be the 
same as the occupant’s location, therefore the modeling results could be used only in that environment 
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[39].  The test subjects included students, staff, and the faculty in the USC campus buildings. The test 
subjects were asked to communicate their votes while having their regular office activities in order to be 
representative of an actual implementation. The subjects were also asked not to communicate their 
votes during the first few minutes that they have arrived to their offices as we did not want the transient 
conditions of the environment influence the votes of the test subjects. We also asked the test subjects 
to communicate a maximum of 10 votes per day. Our goal was to eliminate the bias of the comfort 
information to a specific day or a condition. Finally, the test subjects were asked not to communicate 
their votes very frequently, specifically they were asked to have at least a 15-minute interval between 
each vote. The number of data points and the duration of data collection are presented in Table 1. 

 

Table 1. Data acquisition details 

As the first step of the research, we used analysis of variance (ANOVA) to find which variables influence 
thermal votes of an individual. The average ​p​-values was 0.0139 with a standard deviation of 0.038, 
which shows significant contribution of temperature to the thermal preferences. However, the average 
p​-values with regards to humidity was 0.2913 with a standard deviation of 0.3273, which shows 
considerably small contribution of humidity to the thermal preferences. Consequently, humidity does 
not provide considerable information gain. Although the proposed probabilistic modeling approach can 
potentially integrate several factors, as an alternative to monitor and integrate all factors, we are 
adaptively keeping track of comfortable temperatures which requires considerably smaller data points 
to train the Bayesian network.  

5 ANALYSIS OF THE RESULTS 

The online learning technique, described in Section 3, first uses a Bayesian network to parameterize and 
then combines the input data. Once a new data point (i.e., thermal vote and associated environmental 
thermal conditions) is collected, the algorithm checks whether enough data have been collected to 
reject previous data points that are no longer representative of the individual’s preferences. Figure 7 
presents the results for three sample subjects. Different colors in the graphs in the left column (Figure 
7a) represent the data points segmentation based on the Kolmogorov – Smirnov test. The graphs on the 
right columns (Figure 7b) show the joint probability distributions of the comfort for each occupant as 
new data points are calculated by the algorithm. Since the figures would have been unrecognizable if we 
were to plot them once every single data point is analyzed, the probability distributions at 15 data point 
intervals are shown. 

As it can be seen in Figure 7, Kolmogorov – Smirnov test detected 1 statistical significant change in the 
comfort probability distributions for the test subject 1. The probability distributions plotted for the test 
subject 1 also confirms the fact that thermal preferences of the test subject have not significantly 
changed over the course of the data collection. The temperature range with stochastic dominance of 
comfort (i.e., probability of comfort greater than discomfort) has been oscillating between 22.5 °C and 
24.5 °C. For the test subject 2, Kolmogorov – Smirnov test detected 2 statistical significant changes in 
comfort probability distributions. The temperature range with stochastic dominance of comfort was 
approximately between 22.5 °C and 24 °C at the beginning of the data collection (the blue square curve). 
Preferences then moved forward towards warmer conditions in a way that temperature range with 
stochastic dominance of comfort lied approximately between 23.2 °C and 25.5 °C (the black circle curve), 
however at 3​rd​ significant change, the temperature range with stochastic dominance of comfort was 
approximately around 21.5 °C to 23 °C (the red cross lined curve). We detected 3 significant comfort 
variations for the test subject 3. The temperature range with stochastic dominance of comfort was 
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initially between 23.5 °C and 24.6 °C (the blue square curve). The preferences changed toward a warmer 
temperature range (approximately between 24.5 °C and 27.5 °C (the black circle curve). At the 3​rd 
significant change, the temperature range with stochastic dominance of comfort approximately lied 
between 25 °C and 26.5 °C (the red cross lined curve). Preferences continued to change toward cooler 
conditions to around 23.9 °C to 25.8 °C. Subject 3 was female and the duration of data collection was 
approximately 2 months. Subjects 1 and 2 were male subjects with 33 and 38 days of data collection 
duration respectively (See Table 1). The reason for higher number of changes could be related to 
gender. Several other studies have also pointed that females experience thermal comfort differently due 
to biological reasons [40-43]. The Smirnov statistical variability test greatly help with the adaptive 
feature of our proposed model and improved the accuracy of the predictions.  

 

Figure 7(a) Data points segmented based on Kolmogorov – Smirnov test; (b) overall comfort probability 
at 15 data points interval 

 

In order to validate if our systematic approach provides higher accuracy for classifying comfortable vs. 
uncomfortable conditions, we compared the classification results of our proposed algorithm with 
several well-known generative and deterministic classification techniques (i.e., KNN, logistic regression, 
decision tree, and support vector machine (SVM) with a linear basis function). Each of the 
above-mentioned algorithms has one or several hyper parameter(s) that need to be tuned for providing 
their best performance during classification. We do not discuss the process of parameter tuning of these 
algorithms in this paper as there are several machine learning books/notes that describe the parameter 
tuning process [35]. In addition, in order to compare the results with respect to the static models, we 
used ASHRAE PMV-PPD model for classification. PMV’s value between 0.5 and -0.5 represent 80% of the 
occupants to be satisfied. Therefore, using the humidity data collected by the sensor and setting the 
static values for other input parameters of the PMV (i.e., air flow velocity= 0.15, clothing = 0.8, 
metabolic rate = 1.1), driven from ASHRAE Standard 55 tables [3], we calculated the temperatures at 
which the PMV value is between 0.5 and -0.5 and labeled it as comfortable. We then calculated the 
error based on the actual comfort votes of the test subjects.  In order to unify the training process for all 
of the algorithms, we provided 10 data points to the algorithms, trained the model and then checked 
the classification results for a new (11​th​) data point. We then saved the result of the predictions, added 
the validation data point to the training set, and checked the accuracy for the next data point. We 
continued this process for all of the data points for each test subject (totaling 33 test subjects). We 
specifically used two measures of performance evaluation for the algorithms: (1) accuracy; and (2) 
specificity. ​Accuracy​ is defined as the ratio of all correct predictions divided by number of the 
predictions. ​Specificity​ is defined as the fraction of data points that are actually uncomfortable with a 
comfortable predicted classification. 

The hyper parameter probability threshold ( ), defined in Section 3.1, was selected based on tests ofP T  
a set for different probability thresholds for the maximum achievable accuracy. The average and 
standard deviation of the optimal probability thresholds for each test subject are presented in Figure 8. 

 

Figure 8. Average and standard deviation of optimal probability threshold ( ) across test subjectsP T  
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As it can be seen in Figure 8, the values have considerable variability. The average of the probability 
thresholds was 0.42 with a 0.11 standard deviation across different individuals. Large standard deviation 
for each test subject show that the probability threshold have varied as new data points have been 
introduced to the algorithm. The probability threshold range selected in the classification training stage 
(once a new data point is received and processed by the algorithm) for all test subjects included 0.1 to 
0.9.  

 

Table 2. Accuracy of different methods 

 

Table 3. Specificity of different methods 

 

As it can be seen in Tables 2 and 3, both accuracy and specificity measure of the proposed probabilistic 
approach were relatively higher than the other algorithms. The relatively higher accuracy of the 
proposed method is due to utilization of the Kolmogorov-Smirnov test, which detects statistically 
irrelevant points and removes these points from the Bayesian network probability distribution training 
sets. The large standard deviation for the accuracy of each classification technique was due to the fact 
that the overlap of comfortable and uncomfortable environmental conditions varied across all test 
subjects. The relatively smaller standard deviation of the proposed probabilistic approach across all 
classification techniques shows the consistency of the proposed procedure for predictions. However, the 
major advantage of developing a joint probability distribution for comfort is that we can specify the 
probability threshold as a decision boundary, which results in the definition of a closed range of 
temperatures that are labeled as comfortable. In Section 6, we describe how the probability threshold 
helps implementation of the proposed procedure in compliance with thermal comfort standards.  

6 COMPLIANCE WITH ASHRAE 55  

ASHRAE Standard 55 (Thermal environmental conditions for human occupancy) [3] uses the PMV-PPD 
model to define the requirements for indoor thermal conditions. The standard requires that percentage 
of dissatisfied people (PPD) to be less than 20%, which implies that at least 80% of the occupants in a 
building to be satisfied. Based on the triangle inequality, if we set the probability threshold of our 
proposed approach to 80%, the expected percentage of satisfied occupants would be greater than 80%. 
Therefore, the ASHRAE standard requirements would be met. Table 4 presents the accuracy and 
specificity measures for the algorithm for all of the test subjects as averages. In cases where the joint 
probability distribution built from the Bayesian network does not exceed 80% at any environmental 
condition, the algorithm fails to find a range of environmental conditions that meet the standard’s 
requirement. In such cases, we recommend to select the environmental condition that maximizes the 
joint probability distribution function.  

 

Table 4. Accuracy and specificity values for the probability threshold of 80% 

 

As it can be seen, the accuracy results compared to Table 2 has decreased, as we have fixed the 
probability threshold to 80%. In the previous section, we presented the results where the algorithm 
searched for the optimal probability threshold that best classified the comfort and uncomfortable 
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conditions for each individual. The mean probability threshold in classification was 0.42 (± 0.11). 
Therefore, the highest achievable accuracy was 70.14 % and the specificity measure was 76.74 %. 
Setting the probability threshold to 80% resulted in an increase in the specificity measure, due to the 
fact that it has reduced the range of acceptable temperatures. The reduction in the range of 
temperatures, classified as comfortable, would decrease false classification of comfort (FP) errors and 
increases correct discomfort (TN) predictions. Increase in TN and reduction in FP increases the specificity 
value. The specificity value, which is above 80%, demonstrates the compliance with the standards as it 
implies that the ratio of uncomfortable conditions labeled incorrectly as comfortable is less than 20%. 

7 DISCUSSION 

The proposed approach has to be carefully used in cases that we do not have enough input data to 
parameterize the three probability distributions (LD, MD, and UD). For example, this might be an issue 
when the number of data points labeled as comfortable or uncomfortable is 0. In cases where there is 
not enough data to populate LD and UD, but the MD is constructed, the algorithm disregards any 
un-identified distribution (LD or UD). If both LD and UD are not parametrized, the algorithm pursues the 
explained conservative routine and only classifies environmental conditions between LL and UL, as 
comfortable conditions. However, in a case that an individual only reports uncomfortable votes, which 
results in only parameterizing LD and UD, the algorithm would fail to classify any environmental 
condition that comfort can potentially be perceived. It is because there is not enough evidence (data 
points) of comfort. Therefore, we recommend to leave the algorithm to be as it is and do not make 
speculation of perceiving comfort in a range between uncomfortably warm and uncomfortably cool 
conditions. If we could collect substantial number of data points from individuals, we could have 
calculated the weights for each of the parent distributions individually. Accordingly, the decision 
boundary in this case would have been the temperatures that MD probability distribution is multiplied 
by the weight has stochastic dominance over summation of two other distributions multiplied with their 
associated votes. 

The accuracy of the proposed approach differs for each individual due to the uncertainties related to 
lack of monitoring influential factors. In addition, the sensing device accuracy (±0.5°C) also influenced 
the overall accuracy measures of this study. Bayesian network probability distributions were defined 
through parameter estimation on the input data, and the error propagated through the time dependent 
variation detection (i.e., Kolmogorov-Smirnov test) and the classification. Consequently, the error 
realized in the classification was partly due to the sensor accuracy. However, since the data was 
measured with only one type of sensing device, we were not able to quantify how much of the error was 
caused by the sensor accuracy. 

In this paper, as an alternative to monitoring all of the conditions, we are proposing to use air 
temperature in office buildings and to adaptively keep track of comfortable range of temperatures. 
Since HVAC systems in buildings often work with a single variable (i.e., temperature) control loop, the 
environment can be conditioned accordingly.  However, if needed, the same mathematical procedure 
(i.e., Bayesian network structure introduced in Section 3.2) could be deployed to utilize the information 
gain from any other source. The only difference is that, the weights should be defined as a hyper 
parameter (instead of a single probability threshold) and the stochastic dominance of probability 
distributions that are related to comfortable votes should be part of the classification rule. The difficulty 
in this case is how to relate two variables (i.e., temperature and humidity) to the HVAC control variable 
(i.e., temperature setpoint). In addition, the approach uses substantially small number of input data to 
construct the initial Bayesian network (it creates an MD with less than 10 data points). However, if the 
input data was derived from a survey-based HCCI (similar to the data acquisition UI used for the 
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validation of this paper), it still requires the building occupants to train the network based on their 
thermal preferences. Therefore, a next step of this research is to apply this methodology on other HCCI 
techniques (e.g., physiological measurements based techniques) and quantify personalized thermal 
comfort based on the physiological measurements and environmental factors. In this paper, we have 
developed a technique for mathematically detecting unrepresentative data points in the comfort data 
set of an individual. However, we did not map it to a certain change in the weather variation or change 
in life habits of the individual as there could be many other variables influencing it. We plan to 
investigate these research questions in our future research.  

8 CONCLUSIONS 

In this paper, we presented a systematic mathematical procedure to model thermal comfort as a 
function of variables and dynamically update the model to reflect individuals’ comfort requirements in 
an online learning fashion. Our systematic procedure quantifies personalized thermal comfort based on 
the conditions that an individual perceives comfort or discomfort. This systematic procedure can be 
categorized as an online learning approach since it learns based on each input data point collected. In 
order to implement this approach, we first transform the raw data into three sets: uncomfortably warm, 
comfortable, and uncomfortably cool. Three probability distributions were parameterized using the 
method of maximum likelihood. We then defined the overall comfort of an individual through combing 
these distributions in a Bayesian network. The model provides probability of comfort as a function of 
one to several environmental variables. In order to identify comfort variations over time, 
Kolmogorov–Smirnov test was used on the joint probability distributions generated from the Bayesian 
network. A Bayesian optimal classifier was trained in an online learning format to identify comfortable 
environmental conditions. The results from implementing this procedure on the data collected from 33 
test subjects showed superiority of this approach over other standard classification techniques. The 
average accuracy of 70.14% (± 8.20%) of and specificity of 76.74% (± 13.38%) were realized. These 
results were relatively higher than all other classification techniques used in this study for comparison. 
We finally applied the requirements for standard ASHRAE 55 to the proposed approach and 
demonstrated that it can be used in compliance with the standard using certain parameters. Therefore, 
this approach can be used to alter the conventional multi-objective (e.g., comfort and energy) 
optimization problems of building HVAC system and prevent pareto optimality conditions by 
transforming comfort objectives to constrain functions of a single optimization problem [44] while it 
remains in compliance with the ASHRAE 55 requirements. 
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