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ABSTRACT OF THE DISSERTATION 

 

 

 

Challenges in High-throughput Data Analysis: Proteomic Data Pre-

processing and Network Methods for Integrating Multiple Data Types 

 
 

by 

 

 

Eileen Lingchen Liao 

 

Doctor of Philosophy in Biostatistics 

 

University of California, Los Angeles, 2012 

 

Professor Robert Elashoff, Chair 

 

1) Proteomic Data Pre-processing: Quantification and Normalization of Luminex Assay System 

      High through-put genomic and proteomic technologies allow rapid analysis of molecular 

targets of thousands of genes at a time, either at the DNA, RNA or protein level. In these type of 

experiments variations in expression measurements can occur from a variety of sources. Our goal 

was to examine measurement and normalization techniques to reduce the experimental variation 

in data derived from a bead-based multiplex Luminex assay system which allows simultaneous 

measurements of proteins. Normalization for the Luminex assay system requires a fundamentally 

different approach than the case of traditional microarrays. In the Luminex assay system, each 

experimental unit is a plate and each plate has results for multiple subjects and analytes. We 

quantified performance among different measurement systems (fluorescent intensity, background 
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in fluorescent intensity, and observed concentration) in both high and standard scanning systems. 

Various normalization techniques (scale normalization, quantile normalization, lowess curve 

normalization) were adapted to the Luminex data scenario and their performance was compared 

in two datasets.   

     We used the coefficient of variation across plates to compare the performance of 

normalization methods.  Median and Lowess normalizations appeared to result in reducing plate- 

to-plate variation the most.  Quantile normalization does not appear to work well for these 

datasets. Our results suggest that simple normalizations such as scale and lowess curve 

normalizations perform better than complex methods such as quantile normalization.  Complex 

methods may add noise and bias to the normalized adjustment when the assumptions are not met.  

 

2) Integration of microRNA and mRNA by Weighted Gene Co-expression Network Analysis 

 

We focus on the step-by-step network construction and module detection of mRNAs by 

weighted gene co-expression network analysis (WGCNA), followed by identifying the strong 

correlation between miRNA and module eigengenes. We then evaluate whether the predicted 

mRNA targets are differentially present between a given module and other modules by using the 

Fisher’s exact test. We retained miRNAs who are significant in the fisher exact test, and are 

strongly correlated with eigengenes in a module. 

Next we relate modules to disease status by using eigengene network methodology, we found 

that 11 out of 13 modules are significantly related with disease status. Enrichment analyses by 

DAVID software are implemented for the 11 modules.   

We also run step-by-step network construction and module detection of miRNAs and found 6  

modules. We used LASSO regression to explore the relationship between miRNA and mRNAs. 
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The predictors are module eigengene of miRNA and the outcome is the eigengene from each 

mRNA module.  

We found that 1 miRNA “hsa_miR_25” is significantly anti-correlated with mRNA Magenta 

module. “hsa_miR_25” belongs to the miRNA module “blue” that is also predictive to Magenta 

mRNA module through LASSO regression. Its putative mRNA targets are found and integrated 

from the renal dataset.    

In conclusion, the weighted co-expression network analysis provides a novel integrative view 

of miRNA and their putative genes. It also greatly alleviates the multiple testing problems that 

plague standard gene-centric methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

 

The dissertation of Eileen Lingchen Liao has been approved.  

 

             Steven M. Dubinett  

 

                                                        Christina R. Kitchen 

                    

                                                            Steve Horvath 

          

                                                           David Elashoff 

            

                                        Robert M. Elashoff, Committee Chair 

 

 

 

 

 

       University of California, Los Angeles 

                                  2012 

 



vi 

 

 

 

 

 

 

 

 

To my parents, my husband Victor, and my daughter Katelyn whom I deeply love.. 

  



vii 

 

TABLE OF CONTENTS 
Chapter 1: Introduction ................................................................................................................... 1 

1.1 Genomics Basics: .....................................................................................................………..3 

1.2 Affymetrix High-Density Oligonucleotide Microarray .........................................................5 

1.3 Luminex Bead-Based Multiplex Immunoassay .....................................................................8 

1.4 Microarray Experiment Principle ........................................................................................10 

Chapter 2: Preprocessing Microarray Data ................................................................................... 12 

2.1 Normalization for cDNA Microarray ..................................................................................13 

2.2 Normalization for Affymetrix array ....................................................................................16 

Chapter 3: Normalization for a Lung Cancer Marker Dataset ...................................................... 22 

3.1 Study illustrations ................................................................................................................22 

3.2 Quantification ......................................................................................................................24 

3.3 Normalization ......................................................................................................................32 

3.3.1Median Normalization .................................................................................................. 33 

3.3.2 Quantile Normalization ................................................................................................ 37 

3.3.3 Lowess Curve Normalization ...................................................................................... 40 

3.3.4 Lowess Curve Extrapolation ........................................................................................ 44 

3.4 Evaluation of Normalization Methods .................................................................................46 

3.5 Discussion ............................................................................................................................52 

Chapter 4: Evaluation of methods on a second example ---------------------------------------------- 55 

Chapter 5: Integration of miRNA and mRNA datasets ................................................................ 58 

5.2 Study Illustrations ................................................................................................................59 

5.3 Normalization of miRNA and mRNA .................................................................................60 

5.5 WGCNA package: Step-by-step Network Construction and Module Detection ................64 



viii 

 

5.6 Multiple Testing Problem ....................................................................................................83 

5.7 Multiple Testing Correction .................................................................................................84 

5.8 WGCNA Alleviates Multiple Testing Problems .................................................................90 

5.10 Results and Conclusion ......................................................................................................96 

References ..................................................................................................................................99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

LIST OF FIGURES 
 

Figure 1: DNA structure ................................................................................................................. 4 

Figure 2: A probe set (PM and MM) in Affymetrix microarray..................................................... 7 

Figure 3: A scanned microarray image ........................................................................................... 8 

Figure 4: Luminex multiplex detection reactions ......................................................................... 10 

Figure 5: Luminex assay ............................................................................................................... 24 

Figure 6: Standard curve fitted with 4-PL regression ................................................................... 30 

Figure 7: before and after quantile normalization: mean intensity in plate 5 vs. plate 6 .............. 37 

Figure 8: box plots for eight plates before and after quantile normalization ................................ 38 

Figure 9: Lowess curve fitting of plate 1 vs. median mock array (27-plex) when span is 0.2 and 1

....................................................................................................................................................... 41 

Figure 10: Lowess curve fitting of plate 1 vs. median mock array (27-plex) when span is 0.4, 0.6 

and 0.75 ......................................................................................................................................... 41 

Figure 11: Lowess curve for 21-marker: plate intensity in median sample matrix vs. median 

mock array .................................................................................................................................... 42 

Figure 12: Lowess curve for 27-marker: plate intensity in median sample matrix vs. median 

mock array .................................................................................................................................... 43 

Figure 13: Dot plots of the ratios of coefficient of variation between unnormalized and 

normalized Sample B matrix. The y-axis is the ratios of coefficient of variation, and the x-axis is 

each marker in Sample B matrix (21-markers) ............................................................................. 54 



x 

 

Figure 14: Dot plots of the ratios of coefficient of variation between unnormalized and 

normalized Sample B matrix. The y-axis is the ratios of coefficient of variation, and the x-axis is 

each marker in Sample B matrix (27-markers) ............................................................................. 55 

Figure 15: Comparison of normalization methods on control 1 and 2, and samples c1 and c2. .. 57 

Figure 16: Pair-wise comparison between RCC sample 1 and sample 2, 3, 4, 5 before quantile 

normalization ................................................................................................................................ 61 

Figure 17: pair-wise comparison between RCC sample 1 and sample 2, 3, 4, 5 after quantile 

normalization ................................................................................................................................ 62 

Figure 18: Scale free topology for choosing the power β for the unsigned weighted correlation 

network. ........................................................................................................................................ 70 

Figure 19: The free topology plot shows the slope of the regression line between log10 P(k)  and 

log10(k)  is around -1. .................................................................................................................... 70 

Figure 20: Dendrogram before correlated modules are merged ................................................... 72 

Figure 21: Visualization of the eigengenes network representing the relationship among the 

modules. ........................................................................................................................................ 72 

Figure 22: Dendrogram after correlated modules are merged. ..................................................... 73 

Figure 23: Module Significance by Disease Status. 11 mRNA modules are significantly related 

to disease status. Only Salmon module and Grey module (not shown here) do not behave gene 

significance. .................................................................................................................................. 75 

Figure 24: Hierarchical cluster tree (average linkage, dissTOM) of 17529 genes. ...................... 75 

Figure 25: Fisher’s exact tests between gene modules and miRNA.  The counts that belong to 

module i and putative targets and p-value have been reported. .................................................... 77 



xi 

 

Figure 26: Heatmap of correlations and p-values between miRNA and mRNA module 

eigengenes. Each cell indicates the correlation and p-values of miRNA and mRNA eigengenes.

....................................................................................................................................................... 78 

Figure 27: Hierarchical cluster tree (average linkage, dissTOM) of 257 genes. .......................... 79 

Figure 28: Correlations of genes modules, miRNA modules, and disease status......................... 80 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

LIST OF TABLES 
 

Table 1: Mean normalization ........................................................................................................ 18 

Table 2: Plate Layout of 21-Plex .................................................................................................. 25 

Table 3: Coefficient of variation across 8 plates for 6 measurements on "normal control" (21-

plex) .............................................................................................................................................. 28 

Table 4: Coefficient of variation across 8 plates for 6 measurements on "normal control" (27-

plex) .............................................................................................................................................. 28 

Table 5: Average coefficient of variation across plates on "normal control" ............................... 28 

Table 6: Standard deviation across plates for "normal control" ................................................... 29 

Table 7: Variance of ranking across 8 plates for control plasma and standards ........................... 32 

Table 8: Median normalization to Sample A: ratio of coefficient of variation (CV) between 

unnormalized and normalized for the first 21 markers ................................................................. 35 

Table 9: Median normalization to Sample A: ratio of coefficient of variation (CV) between 

unnormalized and normalized for the remaining 27 markers ....................................................... 35 

Table 10: Median normalization to Sample B matrix: ratio of coefficient of variation (CV) 

between unnormalized and normalized for the first 21 markers ................................................... 36 

Table 11: Median normalization to Sample B matrix: ratio of coefficient of variation (CV) 

between unnormalized and normalized for the remaining 27 markers ......................................... 36 

Table 12: Median normalization: mean ratios of c.v. among Sample A and B matrices ............. 36 

Table 13: Quantile normalization for the first 21 markers: ratio of coefficient of variation (CV) 

between unnormalized and normalized Sample A matrix ............................................................ 39 

Table 14: Quantile normalization for the remaining 27 markers: ratio of coefficient of variation 

(CV) between unnormalized and normalized Sample A matrix ................................................... 39 



xiii 

 

Table 15: Quantile normalization for the first 21 markers: ratio of coefficient of variation (CV) 

between unnormalized and normalized Sample B matrix ............................................................ 39 

Table 16: Quantile normalization for the remaining 27 markers: ratio of coefficient of variation 

(CV) between unnormalized and normalized Sample B matrix ................................................... 40 

Table 17: Lowess curve normalization for the first 21 markers: ratio of coefficient of variation 

(CV) between unnormalized and normalized Sample B matrix ................................................... 44 

Table 18: Lowess curve normalization for the remaining 27 markers: ratio of coefficient of 

variation (CV) between unnormalized and normalized Sample B matrix .................................... 44 

Table 19: mean ratios of c.v. between unnormalized and normalized Sample B matrix ............. 44 

Table 20: Lowess curve extrapolation for the first 21 markers: ratio of coefficient of variation 

(CV) between unnormalized and normalized Sample B matrix ................................................... 45 

Table 21: Lowess curve extrapolation for the remaining 27 markers: ratio of coefficient of 

variation (CV) between unnormalized and normalized Sample B matrix .................................... 46 

Table 22: mean ratios of c.v. between unnormalized and normalized Sample B matrix ............. 46 

Table 23: mean of markers (marker-27) from Sample A matrix .................................................. 48 

Table 24: pair-wise concordant correlation coefficient among plates (27-marker) ...................... 49 

Table 25: pair-wise concordant correlation coefficient among plates (27-marker) after marker 24 

and 25 are removed ....................................................................................................................... 50 

Table 26: Comparison of normalization methods: mean ratios of unnormalized to normalized c.v.

....................................................................................................................................................... 55 

Table 27: Comparison of normalization methods ......................................................................... 56 

Table 28: list of scale free topology under different powers ........................................................ 69 

Table 29: Frequency of genes belongs to each module ................................................................ 74 



xiv 

 

Table 30: 4 miRNAs who are significant in the Fisher exact test, and are also strongly correlated

....................................................................................................................................................... 77 

Table 31: Frequency of miRNA in Each Module ......................................................................... 79 

Table 32: LASSO Regression where the outcome is module eigengene (mRNA), and the 

predictors are eigengene from 6 miRNA modules ....................................................................... 82 

Table 33: the most significant term in each mRNA module. ....................................................... 83 

Table 34: Simulated FDR from our method ................................................................................. 94 

Table 35: Simulated FDR from traditional method ...................................................................... 95 

Table 36: Comparison of False Discovery Rate from Both Methods ........................................... 96 

  



xv 

 

ACKNOWLEDGEMENTS 

I could not have completed the four-year journey to obtain my Ph.D. without the guidance, 

encouragement and support of many people. First and foremost, I need to acknowledge my 

advisor Professor David Elashoff for his excellent mentorship. I will forever treasure the lessons 

he drilled into me on how to do scientific research with independent thinking. He trained me to 

carefully plan and justify each statistical approach so that even failed solutions can yield useful 

information. He also trained me with scientific writing and communication skills which are 

indispensable for career growth.  

I also greatly appreciate of the support and guidance from Professor Robert Elashoff for his 

constructive suggestion on my dissertation research.  

Professor Steve Horvath is kindly and resourcefully to collaborate the second project with me. 

I am deeply grateful that he spends much time discussing the implementation of the second 

project with me, provides the guidance to write the draft, and organize and submit the paper.  

I would like to take this opportunity to thank Professor Steven Dubinett for kindly providing 

the data and supporting for my GSR.  

I also want to thank Professor Christina Kitchen for kindly serving on my doctor committee 

and providing insightful comments in dissertation.   

The four-year journey has definitely not been smooth sailing all the way. And for that, I am 

grateful to have the support of my family. My Mom and Dad took the initiative to help take care 

of my daughter Katelyn. Without their help and spiritual support, I would not have saved enough 

energy and time to prepare the oral exam and do research. I would not have walked to the end of 



xvi 

 

this journey. I also greatly thank my husband Victor for his encouragement, calm and humor. He 

never doubts my abilities to finish the Ph.D. program.  



xvii 

 

VITA 

             

 2004 – 2006     M.S.      

       Department of Biostatistics   

       University of California, Los Angeles 

 2006 – 2008     Biostatistician 

       Amgen 

       Thousand Oak, California 

 

2011      Summer Biostatistics Interns 

       Abbott Laboratory 

       Chicago, Illinois 

 

2011 – 2012     Teaching Assistant 

       Department of Biostatistics 

    University of California, Los Angeles 

 

 2011 – 2012      Graduate Student Researcher    

       School of Medicine    

       University of California, Los Angeles 

  



xviii 

 

 

PUBLICATIONS AND PRESENTATIONS 

 

Liao E, Elashoff D, Horvath S. Integration of miRNA and mRNA by Weighted Gene Co-

expression Network  Analysis. In preparation to BMC Systems Biology.  

 

 

Babbitt C, Halpern R, Liao E, and Lai K. Hyperglycemia is associated with intracranial injury 

in children less than 3 years of age. Pediatric Emergency Care. Accepted July, 2012.  

 

John M, Eliezer N, Liao E, Inderpal R. Beta-Blocker Management of Refractory Hemoptysis in 

Cystic Fibrosis: A Novel Treatment Approach. Chest. Submitted April, 2012.  

 

Weight S, Derhovanessian A, Liao E, Hu S, Gregson A.L, Kubak B.M, Saggar R, Plachevskiy 

V, Fishbein M.C., Lynch J.P., Ardehali A, Ross D.J, Wang H.J, Elashoff R.M., and Belperio 

J.A. CXCR3 Chemokines Ligands During Respiratory Viral Infections Predict Lung Allograft 

Dysfunction. American Journal of Transplantation. 2012 Feb; 12(2): 477-84. 

 

Elashoff D, Liao E, Dubinett S, Weight S. Gardner B. Data Preprocessing: Quantification and 

Normalization for  the Luminex Assay System. In preparation.   

 

Fan K, Andrews B, Liao E, Allam K, Amaral C, Bradley J. Protection of Temporomandibular 

Joint Problems during Syndromic Neonatal Mandibular Distraction using Condylar Unloading. 

Plastic and Reconstructive Surgery. 2012 May; 129(5):1151-61.  



xix 

 

  

Fan K, Roostaeian J, Sorice S, Liao E, Tabit C, Tanna N, Bradley J. Evaluation of Plastic 

Surgery Training Programs: Integrated/Combined vs. Independent. Plastic and Reconstructive 

Surgery. Accepted December 27, 2011.  

 

Babbitt C, Cooper M, Liao E. A single Center’s Experience with High-Frequency Oscillatory 

Ventilation in Children. Respiratory Care. Accepted June, 2012.  

 

Fan K, Liao E, Dickinson B, Bradley J. Reply: Rank Sum Test or Paired t Test? Plastic and 

Reconstructive Surgery. 2011 Oct; 128 (4): 369-370e. 

 

Lim A, Fan K, Allam K, Wan D, Tabit C, Liao E, Bradley J, Kawamoto H. Autologous Fat 

Transplantation in the Craniofacial Patient: UCLA Experience. Journal of Craniofacial Surgery. 

Submitted August 24, 2011.  

 

Levin, L, Kitchen C, Liao E, Kim B, Marrogi A, Widney D, Krampf R, Magpantay L, Breen 

E.C, Martinez-Maza, O. Elevated serum levels of CXCL13 precede the diagnosis of B cell non-

Hodgkin lymphoma. Blood, submitted, 2011. 

 

Gregson A, Hoji A, Palchevskiy V, Hu S, Weigt S, Liao E, Derhovanessian A, Saggar R, Song S, 

Elashoff R, Yang O, and Belperio J. Protection Against Bronchiolitis Obliterans Syndrome is 

Associated with Allograft CCR7
+
CD45RA

-
 T Regulatory Cells. PLoS One. 2010 Jun 29; 5(6): 

e11354.  



xx 

 

 

Patel KR, White SC, Tejirian T, Han SH, Russell D, Vira D, Liao E, Patel KB, Haigh P, Gracia 

C, Dutson E, Mehran A. Gallbladder management during laparoscopic roux-en-y gastric bypass 

surgery: routine pre-operative screening for gallstones or post-operative prophylactic medical 

treatment are not necessary. The American Surgeon. 2006 Oct;72 (10):857-61 17058721  

 

Eileen Liao, David Elashoff, Steve Horvath. Integration of miRNA and mRNA by Weighted 

Gene Co-expression Network Analysis. Joint Statistical Meeting. Poster Presentation. August 30, 

2012. San Diego.  

 

Eileen Liao. Chair the High Dimensional Data Session. ENAR. April 3, 2012. Washington DC.  

 

Eileen Liao, David Elashoff. Data Preprocessing: Quantification and Normalization for the 

Luminex Assay System. ENAR. Poster Presentation. March 31, 2012. Washington DC. 

 

Ahmed Sulliman, Kenneth Fan, Neil Tanna, Eileen Liao, Jaco Festekjian. Autologous Breast Fat 

Grafting: A survey of Current Opinions and Practices among Plastic Surgeons. American Society 

of Reconstructive Microsurgery. January 14-17, 2012. Las Vegas, NV.   

  

Ahmed Sulliman, Kenneth Fan, Neil Tanna, Eileen Liao, Jaco Festekjian. Autologous Breast Fat 

Grafting: Current Opinions and Practices among North American Plastic Surgeons. 9
th

 Annual 

Meeting of the International Federation of Adipose Therapeutics and Sciences. November 4-6, 

2011. Miami, FL.   



xxi 

 

 

Eileen Liao, David Elashoff. Data Preprocessing: Quantification and Normalization of the 

Luminex Aasay System. Joint Statistical Meeting. August 2, 2011. Miami, FL.  

 

Eileen Liao, Vipin Arora. Application of Multiple Imputation in Immunology. Abbott Intern 

Poster Presentation. July 21, 2011. Abbott Park, IL.  

 

Ahmed Suliman, Kenneth Fan, Neil Tanna, Eileen Liao, Malcolm A Lesavoy, Jacob Festekjian. 

Autologous Breast Fat Grafting – Current Opinions and Practices among North American Plastic 

Surgeons. UCLA Division of Plastic Surgery, Annual Resident Research. June 14, 2011. Los 

Angeles, CA.  

 

 

 

 



1 

 

Chapter 1: Introduction 
 

Over the last several years, there has been an increased demand for high-throughput, cost-

effective and accurate measurement of small proteins and other analytes in clinical trial and 

research laboratories. High throughput genomic technology has become an essential tool to 

understand gene regulation and interaction [1]. High throughput techniques, such as cDNA 

microarrays[2], bead-based multiplex immunoassay[3], miRNA analysis, proteomics arrays 

enable the analysis of thousands of gene expressions simultaneously.  

In the past few years researchers are moving from single analyte assay to multiplex bead-

based solutions, such as the Luminex bead-based multiplex assay system[4]. The data are 

automatically processed and evaluated by the analysis system. The results are represented by 

multi-analyte profile and directly provide the intensity quantification. Using this process, 

Luminex bead-based assay allows rapid and simultaneous multiplexing of up to 500 analytes 

with a single sample. 

In high throughput technology, there are many sources of systematic variation. 

Measurements may be systematically biased by diverse effects such as efficiency of RNA 

extraction, reverse transcription, label incorporation, exposure, scanning, spot detection, etc. 

Data pre-processing is a critical factor in assuring the validity and success of downstream studies. 

The key-processing steps are quantification and normalization[5].  In the Luminex system results 

are quantified before communication to the researcher, however normalization of data across 

plates may still need to be performed to reduce systematic sources of variation. 

 There are a variety of techniques to remove systematic variation. Yang YH, Dudoit S et al.[6] 

summarized a number of normalization methods for dual labeled microarrays such as global 
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normalization, intensity dependent normalization and within-print-tip-group normalization. 

Smyth GK et al.[7] introduced a few lowess normalization including print-tip lowess and 

composite lowess normalization. Amararunga[4], Quackenbush J [8] and Bilban et al.[9] gave a 

thorough review on normalization methods. Chen L & Wong WH [10-11]proposed model-based 

analysis of oligonucleotide arrays. There are some extensions for global and intensity-dependent 

normalization. For example, Chen et al. [12] proposed a subset normalization to adjust for 

location biases, and global normalization for intensity biases. Edwards[13] proposed non-linear 

lowess normalization to correct for spatial heterogeneity. Bolstad et al.[14] developed the 

Quantile normalization algorithm and showed that it performed well for microarray data.  

Normalization approaches are designed to remove systematic variations, while retaining 

biological variation. Visual aids such as MA plots [15-17]can be used to assess the effectiveness 

of normalization methods in cDNA microarray. Quantitative criteria to assess normalization 

methods include: rank variation of spot intensity in non-normalized versus normalized data [15, 

18] correlation [19-20]; variance[17, 21]; error in replicated data[16, 22].   

In this thesis, we will present and attempt to address several general as well as data-specific 

statistical issues in high throughput technology. After all, the data themselves do not express the 

knowledge. They have to be first analyzed, and the associations and relationship could be studied 

and confirmed before conclusions are drawn.  

The background information important to high throughput technologies will be presented in 

the first chapter, including basic understand of the field of genomics, the microarray technology 

and the principle of microarray. Chapter 2 describes the main preprocessing methods in 

microarray analysis, especially quantification and normalization of microarray. Chapter3 

describes four normalization methods for a lung cancer marker dataset and contains comparative 
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results for each method. Chapter 4 we validated the normalizations methods for a lung transplant 

dataset. In chapter 5 we introduced the method to integrate miRNA and mRNA datasets.   

1.1 Genomics Basics: 

 

Genes, often referred to as the discrete hereditary units, are made of deoxyribonucleic acid 

(DNA). A DNA molecule consists of a sugar group, a nitrogenous base and a phosphate group.  

The base groups for DNA can be one of four types: adenine (A), thymine (T), guanine (G), and 

cytosine (C).  Because of the favorable hydrogen-binding interactions, these molecules are 

capable of forming base pairing where adenine (A) pairs with thymine (T) and guanine (G) pairs 

with cytosine(C).  DNA molecules can also form a polymer through the chemical bonds between 

the phosphate group and the sugar group, which allow them to become a long DNA strand.  

When two complimentary DNA strands come in contact with each other, the base pairings cause 

the two strands wind tightly with each other in spiral structure known as double helix[23].   

The DNA sequence, a particular order of the bases arranged along one strand, encodes the 

information necessary for virtually all aspects of an organism’s biological functions [24]. The 

central dogma of molecular biology formulates the transmission of genetic information from 

DNA to protein as: DNA  mRNA  protein. A simplified description of this process can be 

broken down to two stages.  In the first stage, DNA is transcribed into a transient intermediary 

molecule known as messenger RNA (mRNA). The mRNA is similar to DNA with three key 

differences:1) mRNA is single-stranded, 2) its sugar group is replaced with ribose and 3) the  

base thymine (T) in the DNA is substituted by uracil (U). The second stage is translation, during 

which mRNA serves as the template for protein synthesis.  In this stage, the coding regions of 

mRNA read three bases at a time in units known as codons and convert them into a string of 

amino acids that folds into a protein molecule. Thus mRNA is translated into a protein. Finally, 
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protein acts as building blocks and the workhorse of life, and it regulates most of life’s day-to-

day functions[25].  

 
Figure 1: DNA structure 

                                

In biological research, although the protein molecules are useful in connecting genetic 

information to function, it is often inaccurate as a temporal measurement for the level of 

expression for the gene.  This is due to a number of factors such as the longevity of the protein 

molecules, sensitivity of protein detection assays and problems with specificity and yields during 

the protein purification.  Unlike proteins, mRNA levels, which are composed of intermediate 

molecules, are relatively simple to purify and analyzed by high-throughput technology.  So to 

date, attention has been primarily focused on expression at the transcription stage, i.e. on mRNA 

levels.  
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The different types of microarray systems, including cDNA microarray, Affymetrix 

oligonucleotide array, Luminex bead-based assay, have now become the widely used technology 

to study mRNA, miRNA, proteomic levels. These technologies have provided a means of 

detecting the expression patterns of a huge amount of genes at once, thereby bring out 

tremendous improvements over the traditional PCR assay that can only analyze a few genes per 

experiment.  

1.2 Affymetrix High-Density Oligonucleotide Microarray 

 

GeneChip arrays are the combination of advanced technology, design criteria, and quality 

control processes. Affymetrix’s GeneChip manufacturing is directed by photochemical synthesis. 

Because of this technology, more than a million different probes can be synthesized on an array 

that is the size of a thumbnail. Over the years, Affymetrix’s platform has proven to be a reliable 

and robust system for the genome-wide analysis of gene expression. A typical Affymetrix 

microarray experiment[4] process follows the next 5 steps: 

1) Preparing the microarray:  

The Affymetrix array begins with a 5-in quartz wafer. Through two basic steps: deprotection 

and coupling, the oligonucleotide, a short chain composed of up to approximately 20 nucleotides, 

is synthesized on the wafers.  Once synthesis is complete, wafers are diced in a variety of array 

sizes for use. Typically a 1.28 cm
2
 array can accommodate more than 1.4 million different probe 

locations, and each of these probes contains millions of identical DNA molecules.  

2) Preparing the labeled sample:  

The mRNA, the working complementary copies of target genes within cells, is purified from 

the cells following conventional methods. In order to detect which mRNA is recognized by the 
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microarray, the sample is labeled by fluorescent dyes that fluoresce when exposed to the correct 

wavelength of light. The labeled sample is the target for the experiment. 

 3) Hybridizing the labeled sample to the microarray and washing the microarray:  

Affymetrix utilizes two types of probes: 1) probes that are completely complementary to the 

target sequence. These are called perfect match probe (PM). 2) probes with a single mismatch to 

the target, centered in the middle of the oligonucleotide. These are mismatch probe (MM). MM 

are identical to the PM sequences, except differs on the 13th nucleotide. Mismatch probes are 

designed to account for the effects of nonspecific binding, cross-hybridization, and electronic 

noise. Affymetrix refers to each PM-MM pair as a probe pair. And it uses 11-20 probes, which 

have 25 oligonucleotide bases, to represent one gene. The entire set of probe pairs for a gene is 

called probe set. In each array, these probe sets are selected to interrogate specific single 

nucleotide polymorphisms. In addition, arrays contain a number of different control probes 

which are used for quality control.  

The labeled sample is then sealed to a hybridization chamber to allow the hybridization 

reactions to complete.  The single-stranded mRNA molecule binds tightly with high affinity to 

PM that has precisely matched sequence, and binds with significantly lower affinity to MM that 

has imperfect match. Due to this base pairing, the mRNA preferentially hybridizes to the 

oligonucleotides spot in each array.  

The microarray is then washed to eliminate the excess labeled sample, and dried with clean 

compressed air.  
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Figure 2: A probe set (PM and MM) in Affymetrix microarray 

 

 

 

4) Scanning the microarray:  

 

Since the sample is labeled with fluorescent reporter molecule that emits detectable light, the 

microarray is scanned to determine the amount of labeled sample. Scanner not only picks up 

light emitted by the target mRNA, but also inevitably picks up lights from various sources, such 

that the labeled sample hybridized nonspecifically to the glass slide, unwashed labeled samples 

that is adhered to various other chemicals used in the process, etc. All these signals constitute 

background which needs to be accounted for.  

Also, scanner sets up lower and upper threshold intensity levels for each measurement. When 

intensities exceed the upper threshold, saturation is occurred. So there is a trade-off between 

precision and threshold: increasing one will decrease the other.  

5) Interpreting the scanned image 

After the microarray is scanned, the intensity of fluorescence on each spot is recorded. The 

end product of this microarray experiment is a scanned gray scale image, which is usually stored 

in a proprietary file format. Various softwares could convert the image into spot intensity 

measurements, which can be analyzed for gene expression differences. Higher intensity 

ctgtctgaggataccactgaagag

a ctgtctgaggattccactgaagag

a 

Target 

Perfect match 

Mismatch 

Probe pair 

tttccagacagactcctatggtgacttctctggaat 
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corresponds to more mRNA expression levels of a gene in the sample. A typical microarray 

image is shown Figure 2. Red spots are from samples that are transcribed to cDNA and labeled 

with red fluorescence. Green spots are from other samples that are labeled with green 

fluorescence. When both cDNA is hybridized to the same location, mixed signal will produce the 

yellow color.  

                                          
Figure 3: A scanned microarray image 

 

1.3 Luminex Bead-Based Multiplex Immunoassay 

 

The Luminex bead-based assay is a new promising technology. As researcher focus on 

multiple targets, they are moving from single analyte assays to multiplex bead-based solutions, 

such as the Luminex assay system. This fiber-optic system is a bundle of optical fibers where 

microscopic wells are etched on the end of each fiber[4]. These wells hold the DNA sequences in 

bead form. Each bead can be coated with a reagent specific to a particular bioassay. Once the 

array is exposed to the fluorescently labeled sample, and sample finds the complementary DNA 

sequence on the array, the hybridization takes place. A light source will illuminate the array and 

excite fluorescent probe in the tagged samples. This causes a signal to be passed through the 

optical fiber to a detector, which could identify which probe matches sequences in the labeled 

http://www.wormbook.org/chapters/www_germlinegenomics/germlinegenomicsfig1.jpg
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sample. Using this process, Luminex bead-based assay allows rapid and simultaneous 

multiplexing of up to 500 analytes with a single sample.  

Figure 4 details the process of multiplex assays that are directly performed in microliter 

plates. Test reagents contain a mixture of different microspheres populations (bead mix). Each 

bead type is characterized by an individual red fluorescent color tone and a capture reagent (A, B, 

C). These specific detection reagents are oligonucleotide probes or specific proteins staying on 

bead’s surface.  

During incubation, microsphere population (bead mix) react with a patient sample, and 

captures its specific target molecules (analyte). The analytes are bound to the surface of the 

microspheres, and could be labeled using a green fluorescent labeling reagent (marker or 

conjugate). The amount of bound analytes corresponds directly to the fluorescent intensity 

quantification.  

Within a few seconds, thousand of microspheres are analyzed individually for their red 

(analyte classification) and green (reporter quantification) fluorescence using a Luminex assay 

system. The data are automatically processed and evaluated by the analysis system. The results 

are represented by multi-analyte profile and directly provide the intensity quantification.   
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Figure 4: Luminex multiplex detection reactions 

 

1.4 Microarray Experiment Principle 

 

To explain the principle behind the microarray experiment, a simple hypothetical example is 

illustrated here.  

Suppose we have obtained cancer tissue and normal tissue and we would like to know which 

genes are expressed differentially between two tissues. We first extract mRNA from each tissue, 

then we reverse-transcribe mRNA to cDNA and conjugate fluorescent dyes to each sample. The 

labeled samples are often referred to as the “target”.  
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Suppose we have a DNA microarray containing 36,000 genes. Each of these 36,000 genes 

are printed on the rectangular array of spots on the tiny glass slide, with one gene corresponds to 

a spot. These genes are called “probe”. Two such microarrays are prepared.  

Then we flood one microarray with labeled samples from cancer tissue, and the other 

microarray with samples from normal tissue. We allow enough time for cDNA in the samples to 

hybridize to probes in the slide. Then we wash off the excess labeled samples from the 

microarray and dry them.  

 In principle, each spot in the microarray could identify a gene that corresponds to some 

reverse transcribed mRNA in the labeled sample. These spots are easily recognized as they are 

the spots that will fluoresce. We will then scan the microarray and measure the intensity level of 

fluorescence. By comparing the intensities between two microarrays, we are able to tell which 

genes are differentially expressed between cancer and normal tissues. 
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Chapter 2: Preprocessing Microarray Data 
 

Once the microarray experiment is performed and spot intensity data are collected, these data 

are ready to be analyzed to draw conclusions. Transforming raw data into a scale suitable for 

analysis, removing systematic source of variation, and identifying outliers in array are common 

methods in preprocessing. Normalization is one of common the methods to pre-process 

microarray data.  

In early microarray experiments, variation of expression measurements among arrays can be 

attributed to many sources, such as differences in mRNA preparation, cDNA labeling, image 

intensity and microarray hybridization/wash efficiency. Variation still exists despite huge 

improvements in the technology. These variations include interesting biological variation and 

unwanted non-biological variation. It is the unwanted obscuring variation, sometimes called 

technical variation, which normalization procedures seek to remove. Sources of obscuring 

variation could be differences in scanner-setting, mRNA hybridized quantities, processing order, 

differences in labeling efficiency between two fluorescent dyes and many other factors. 

Normalization attempts to remove such variation which affects the measured gene expression 

levels. 

Yang YH, Dudoit S et al [26]summarized a number of normalization methods for dual 

labeled microarrays that includes global normalization and locally weighted lowess smoothing. 

Following this, good reviews on normalization were provided by Quackenbush[8] and Bilban[9]. 

The extension of normalization for global and intensity-dependent normalization was later 

brought up by Kepler[22] and Wang[27]. Kepler et al[22] utilized local regression to estimate a 

normalized intensities and intensity-dependent error variance. Wang et al[27] proposed an 

iterative algorithm to estimate normalized coefficients and identify control genes in cDNA 
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microarray. Workman et al.[15] proposed a robust non-linear method for normalization using 

array signal distribution analysis and cubic spline. Chen et al. [12] proposed a subset 

normalization to adjust for location biases combined with global normalization for intensity 

biases. For cDNA microarray, Edwards [13] considered a non-linear lowess normalization in one 

channel to correct spatial heterogeneity.   

A consideration that needs to be addressed is: when applying normalization method to 

microarray data, how many genes are expected to change between different conditions (such as 

treatment and control), and how these changes will occur. Most normalization methods require 

that the number of genes changing in expression between different conditions is small. When this 

assumption is not satisfied, ideally the normalization would only be applied on arrays within 

each treatment condition group. 

Although normalization alone cannot control all systematic variations, normalization plays in 

important role in the early stage of microarray data analysis because expression data can 

significantly vary from different normalization procedures. Subsequent analyses, such as 

clustering, gene networks, they are all dependent on the performance of a normalization 

procedure.  

A few normalization methods used in cDNA microarray, Affyemetric microarray, and 

Luminex assay system are described in the following section.  These approaches could be used 

separately or in combination to normalize a set of microarrays. 

2.1 Normalization for cDNA Microarray   

 

1) Notation in an array display 

 

For a spot j, j = 1, …, p, let jR and jG denote the measured fluorescence intensities for the 

red and greed dyes respectively.   
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Denote log intensity ratio GR /logM 2 , and mean log-intensity RGA 2log . An M vs. 

A plot is widely used representation of the (R, G) data in terms of log-intensity ratio M, which is 

the interest to most studies.  

2) Within-Slide: Global Normalization 

In this case, the normalization is done separately for each slide, using the red and green 

intensities for each slide.  

Global normalization assumes that red and green intensities are proportional to each other, i.e. 

G kR , so that the center of the distribution of log-ratios is shifted to be 0: 

)/(log/log/log 222 kGRcGRGR  , where kc 2log is the median or mean of the 

log-intensity ratios for a gene set. Global normalization is still the most widely used methods in 

spite of intensity dependent dye biases in numerous experiments.  

3) Within-Slide: Intensity-Dependent Normalization  

In most cases, the dye bias appears to be dependent on spot intensity, which is shown in M vs. 

A plot, where M is the log intensity ratio and A is the mean log-intensity. The lowess smoother is 

used to perform a local A-dependent normalization: 

)(/log/log 22 AcGRGR   

Where )(Ac is the lowess fit to the M vs. A plot. The lowess() function is a scatter-plot 

smoother which performs robust locally linear fits. In addition, the lowess() function will not be 

affected by a small amount of differentially expressed genes which appear to be outliers in the M 

vs. A plot. This will be discussed in detail again in Affymetrix array.  

4) Within-Print-Tip-Group Normalization 
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When we take into account the fact of every grid in an array, within-print-tip-group 

normalization is a common choice. It is simply a (print-tip + A)-dependent normalization, that is,  

))(/(log)(/log/log 222 GAkRAcGRGR ii   

Where )(Aci is the lowess fit to the M vs. A plot for the ith grid only, Ii ,,1  , and I

represents the number of print-tips.  

5) Within-Slide Normalization: Scale 

After the within-print-tip group normalization introduced above, it is possible that the log-

ratios from various print-tip have different spread and scales. One approach to adjust this is 

assuming all log-ratios from the ith print-tip group follow a normal distribution with mean 0 and 

variance 22ia , where 2

ia is the scale factor for the ith print-tip group, and 
2 is the variance of 

the true log-ratios. The constraint for this is 0log
1

2  

I

i ia , where I denoting the total number 

of print-tips in the array, so that the estimated ia  is: 

 
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ˆ  Where ijM is the jth log ratio in the ith print-tip group, inj ,,1  .  

A more preferable robust alternative to this estimate is:

 


I

i i

i
i

MAD

MAD
a

1

ˆ , where MAD is 

the median absolute deviation: |})({| ijjijji MmedianMmedianMAD  .  

Behind this estimation there are a few assumptions: 1) it assumes a small number of genes 

are expressed significantly different between two mRNA samples. 2) it assumes the spread of the 

distribution of the log-ratios is roughly same for all print-tip groups. In brief, the statistics MAD, 

is robust and is not affected by a small percentage of differentially expressed genes.  
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2.2 Normalization for Affymetrix array 

 

2.2.1 Scale Normalization 
 

There are a few variations of scale normalization. One such method is normalization by the 

sum. This method normalizes the sums of intensities of each microarray to be equal to one 

another, which is 1. 

The assumption of doing this is the total RNA content is roughly the same across samples. 

Suppose for each microarray their sums are  kxx ,,x 21 . If we divide all the observations in 

the ith  array by ix , their sum will be 1. By doing this for all the microarrays would make the 

sum equal to1 for each microarray. 

Another version of this method is normalization by the mean, in which the arithmetic means 

of the microarray are equated. Similarly, normalization by the median result in median intensities 

is the same across all arrays. Q3 normalization, in which the 3
rd

 quartiles are equated, is also 

commonly used. The rational for using Q3 normalization is that we expect about half of the 

genes are unexpressed and the 3rd quartile is the median intensity of the rest expressed genes. 

All these methods normalize the intensities by scaling. By comparing multiple arrays and 

normalizing them, we assume the overall distribution of mRNA intensity values does not change 

between samples, and most genes change very little in intensity across samples. These 

assumptions are reasonable since we start with equal quantities of mRNA for the samples we are 

going to prepare. Therefore the average hybridization should be same for all the samples. 

Normalization by scaling belongs to the global or linear normalization schemes. The 

common feature of these schemes is it assumes the spot intensities on every pair of arrays being 

normalized are linearly correlated, so that the lack of comparability could be corrected by 

adjusting every spot intensity on any microarray by the same amount. This same amount of 
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intensity is called normalization factor. The disadvantage of scale normalization is it depends on 

how the baseline array is chosen. If the poor baseline is chosen, the poorer result is produced.  

The scale normalization could be performed by Affymetrix MAS software in the following 

steps: 

1. Choose a baseline array  

2. For each array i besides baseline, multiply each probe expression value by:  

     (probe value)* [(mean expression on baseline array)/(mean expression on array i)]. This makes 

each array having the same mean intensity as baseline array. 

Below is the example of how to perform mean normalization in each step.  

 

Step1: calculate average intensity for each slide: 

 Slide 1 (baseline) Slide 2 Slide 3 

Probe 1 10 25 50 

Probe 2 20 40 70 

Probe 3 25 50 60 

Probe 4 15 45 40 

Mean 17.50 40 55 

 

 

Step 2: Since we choose slide 1 as baseline, then multiply each cell by average 1, then divide by 

average of array i.  

 Slide 1 (baseline) Slide 2 Slide 3 

Probe 1 10 25*17.5/40 50*17.5/55 

Probe 2 20 40*17.5/40 70*17.5/55 

Probe 3 25 50*17.5/40 60*17.5/55 

Probe 4 15 45*17.5/40 40*17.5/55 

Mean 17.50   

 

 

Step 3: Now average intensities of each array are all the same – average of slide 1 

 Slide 1 (baseline) Slide 2 Slide 3 

Probe 1 10 10.94 15.90 

Probe 2 20 17.50 22.27 

Probe 3 25 21.88 19.09 

Probe 4 15 19.69 12.73 

Mean 17.50 17.50 17.50 
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Table 1: Mean normalization 

 

 

2.2.2 Quantile Normalization 
 

Bolstad et al[14] in 2003 introduced this method to minimize non-biological difference that 

might exist in multiple arrays. It assumes the distribution of intensities for each array the same.  

This is motivated by Q-Q plot where the distribution of two vectors are the same if the plot is 

a straight diagonal line, and are not same if it is other than a diagonal line. If we extend this idea 

to n dimension, then plotting the quantiles in n dimension would give a straight line along the 

line given by the unit vector )
1

,,
n

1
(

n
 . Following this idea, if the points of n dimensional 

quantile plots are projected onto the diagonal line, it suggests the set of data have the same 

distribution. This is how the quantile normalization is based on.  

The algorithm for normalizing a set of vectors by quantile normalization is as follows: 

 

1) Given n arrays of length p, form a matrix X of dimension p×n where each gene is a row, 

and each array is a column 

2) Sort each column of X separately to generate a sorted p×n matrix Y 

3) Take the mean of each row of Y and generate a p-dimensional vector sortY  

4) Set averages as value for all elements in the row 

5) Rearrange vector sortY  to have the same ordering of the corresponding column of matrix 

X so that the empirical distributions of intensities are the same as that of the sortY  across arrays 

This algorithm gives each array the same distribution by calculating the mean of each 

quantile and substituting it as the data value in the original data. The advantage of quantile 

normalization is it can quickly normalize within a set of chips the same time, without choosing 

either a baseline array to which all other arrays are normalized or working in a pair-wise manner. 
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It could be dealt reliably to non-linearity. The main drawback of this method is the strong 

assumption that the distributions of array intensities are identical, even if individual probes differ 

in their positions in the distribution. This is true for low abundance genes, and to a fairly good 

approximation for genes of moderate abundance, but certainly not true for the few high-

abundance genes, whose typical levels vary noticeably from sample to sample. Also since it 

forces the values of quantile to be equal, this could be potentially problematic in the tails where it 

is possible that a probe could have same values across all the arrays.   

Here is an illustration of quantile normalization.  

 

Given a matrix: 
















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Step 1: Sort each column of the original matrix X generate a sorted matrix Y 


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
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Step 2: Take averages across rows and generate a vector sortY  

 




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














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


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Step 3: Set average as values for all elements in a row 
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Step 4: Unsort columns of matrix to the original order 
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2.2.3 Lowess Smoothing Curves 
 

Lowess stands for “LOcally WEighted polynomial regreSSion”, which is a process 

considered local because each fitted value is determined by neighboring data points defined 

within a specified span. At each point in the data set, a polynomial is fitted in a subset, with 

explanatory independent variable values near this point whose outcome is being estimated. The 

extent of the neighborhood is defined by the “span” parameter which defines the proportion of 

points out of the total sample size to consider in the neighborhood.  

The ideas of local smoothing date back to 1979 when Cleveland[28] originally proposed the 

method which focuses in a univariate regression setting with one independent variable. Later in 

1988[29], Cleveland expanded this idea to multivariate observations.  

Lowess is also a weighed process because the regression weight function is defined for the 

data points contained within the span. The polynomial is fitted by weighted least squares, giving 

more weight to points near whose response is being estimated, and less weights to points further 

away. The values of the function for this point are obtained by evaluating the local polynomial 

using the explanatory variable value. For each data points(x,y) and a given span, the regression 

weight is calculated by the tricube function: 
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Where x  is the predictor value, ix is the nearest neighbors of x as defined by the span, and 

)(xd is the distance from x to the most distant predictor value within the span. Be reminded that 

in lowess curve procedure, the data points to be smoothed have the largest weight and the most 

influence on the fit. Data points outside the span have 0 weight so no influence on the fit. Then 

the coefficients in regression are estimated by minimizing the following function using the least 

square method: 

  
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n

k
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2
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Here ky is the k
th

 value of the dependent variable, kx is the k
th

 value of the independent 

variable. )( ik xw is the weight of each point with respect to the center ix , 0 and 1  are the 

intercept and regression coefficient, and n is the sample size.  

Dudoit and Speed et. al [17] performed a within print-tip group intensity dependent 

normalization using the scatterplot smoother implemented in the lowess() function from the 

Splus software (Venables and Ripley, 1996 [30]): 

GRAkAGRGR jj /)(log)(c/log/log 222   

Where )(c Aj is the lowess() fit to the M.A plot. They used f = 20 % to 40% for the 

parameter specifying the data fraction using for smoothing at each point. Since a very small 

proportion of genes are expected to vary in expression between red and green labeled mRNA 

samples, the normalization is uses upon all the genes. In other circumstances, the housekeeping 

genes could be selected for normalization purpose (Yang et al [26, 31]). In R, lowess curve is 

implemented by “loess” package.  
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Chapter 3: Normalization for a Lung Cancer 
Marker Dataset 

3.1 Study illustrations 

 

Lung cancer is the leading cause of cancer-related deaths in the United States[32]. Cigarette 

smoking is the most important risk factor for lung cancer and accounts for 85-90% of lung 

cancer cases [33-34]. Although smoking prevalence has decreased as a result of emphasis on 

prevention, lung cancer continues to be a major problem partly due to persistent risk among 

former smokers[35]. In the United States, lung cancer is diagnosed more commonly in former 

than current smokers. During many studies of lung cancer, some findings support the concept 

that interactions between tumor cells and other components of tumor microenvironment may 

produce a unique molecular protein profile. If possible, this protein profile could be utilized as a 

diagnostic test. 

CT scan screening of nodules in the lung may not resolve the issue of whether nodules are 

malignant or benign. If nodules are large with many spots, they are sure to be malignant. If 

nodules are small, they are probably benign. But the interpretation of intermediate sized nodules 

is more complicated and patients may have to undergo surgery to have nodules biopsied and/or 

removed.  

The plasma data come from a study done by the American College of Surgeons Oncology 

Group (ACOSOG). This study utilizes the biospecimen resources from Z4031 trial and has been 

assigned study number Z4093. Trial Z4031 includes a biospecimen repository of serum 

specimens from patients with suspicious lung lesions that underwent surgery for nodule resection. 

A subset of these patients had benign pulmonary nodules and thus serves as an ideal control 

group for the proposed research study (993 total samples; 799 serum specimens from patients 
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with lung cancer and 194 serum specimens from patients without cancer). Peripheral blood was 

obtained before and after lung nodule resection at 90 days post-operatively. The study receives 

and tests these specimens in a blinded manner with the cooperative group holding the outcome 

data.  

We requested and obtained plasma samples both before and post operation from 50 patients 

with diagnosed malignant nodules and single plasma samples from 50 patients with benign 

nodules; 150 plasma samples in all. To assess whether a marker panel could discriminate 

between patients with malignant and benign nodules, a panel of antibodies against 48 potential 

markers composed of proteins hypothesized to contribute to lung cancer progression was 

assembled. All lung cancer and control samples were collected and processed utilizing a 

standardized collection and storage protocol previously used by the NIH/NHLBI sponsored Lung 

Health Study trial (LHS).  

In order to prevent experimental artifacts that could arise from analyzing cancer samples and 

non- cancer samples separately, the study analyzes cancer and control serums together on each 

assay plate, with samples randomized across plates in the assay system. In addition, 8 standards 

and 1 control plasma are included on each plate to provide a means of normalizing results 

between plates run on separate days.  

However, from the earlier analysis, there is no statistically significant difference of intensities 

between normal and cancer samples, which seem to suggest that markers are not useful to detect 

the lung cancer early. But other than markers themselves, this might due to other reasons such as 

experimental variability. We would like to explore the variability across plates for each marker 

before we conclude for markers. This motivates us to explore this study further.   
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3.2 Quantification  

 

A bead based multiplex immunoassay utilizing a Luminex assay system was used to evaluate 

the effects of these markers.  

Data on 48 markers were to be measured for each of the 150 plasma samples. Two standard 

assay plates were used to provide data for each sample, a 21-plex marker plate and a 27-plex 

marker plate.  Each plate has space for 96 samples.  Each of the plasma samples was measured in 

triplicate, for a total of 450 “samples” divided across eight 21-plex and eight 27-plex plates.  

Samples from patients with and without malignant nodules were randomized to each plate, each 

was measured in triplicates on that plate and on the average 19 samples per plate.  Each plate 

also contained one blank (duplicates), one “normal” (duplicates or triplicates), and eight 

singletons standards which served as a basis for estimating the standard curve, a four-parameter 

logistic. The samples arranged the same on both the 21-plex and 27 plex plates. 

     
Figure 5: Luminex assay                

 

The Luminex’s xMAP® system is built on proven, existing technology of flow cytometry. 

Featuring a flexible, open-architecture design, xMAP technology can be configured to perform a 

wide variety of bioassays quickly, cost-effectively and accurately, which require only a 

miniscule amount of sample (<100 l). First, Luminex® color-codes tiny beads, called 
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microspheres, into 100 distinct sets. Each bead set can be coated with a reagent specific to a 

particular bioassay, allowing the capture and detection of specific analytes from a sample. 

Within the Luminex analyzer, lasers excite the internal dyes that identify each microsphere 

particle by color, and also any reporter dye captured during the assay. Many readings are made 

on each bead set, further validating the results. In this way, xMAP technology allows 

multiplexing of up to 100 unique assays within a single sample, both rapidly and precisely. In 

order to prevent experimental artifacts from corrupting the data we randomize all samples 

(cancer and control groups) across the assay plates. In addition all samples were run in triplicate 

and these replicates were also randomized across the assay plates.  

 The data structures within the 8 plates are as follows: the average of replicates is shown in 

the following.  

 

Table 2: Plate Layout of 21-Plex 

 

 

 

Marker1 Marker2 Marker n

Blank

Standard1

…... …... …... …...
Standard8

Control

Sample1

…... …... …... …...
Sample18

…...
…...
…...

…...
…...
…...
…...
…...
…...
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Three measurements are made for each sample, each marker and each plate--fluorescent 

intensity (FI), background in FI and observed concentration (OC).  Each measurement is made at 

two scanning intensities, either high or standard. Therefore there are six different measurements 

to consider: high vs. low FI, high vs. low background in FI, high vs. low OC.   

The first question we want to tackle is: which one of the 6 measurements is in tightest 

estimation of the true markers for the control plasma/standard plasma matrix. Since control or 

standards plasma are from the same sample, in principle we expect to read similar values from 

each plate. These values are expressed by mean plus some experimental variability across plates. 

For different markers, there might be different schemes to measure them best. However we 

would like to identify first if there is one measurement that gives lowest coefficient of variation 

and most precision across plates consistently. Then this is the measurement we would like to 

quantify before proceeding normalization. Once the best method of measurement is chosen, we 

can proceed to determine which of the 8 standards or the control plasma is most suitable.  

We started with the first 21 markers on the control plasma. We extracted control plasma from 

each plate and repeat this across 8 plates. Thus it makes a matrix of 8*21 where row is plate and 

column is marker. Since there are six different measurements, this composes six separate control 

plasma matrices. The coefficient of variation across plates is calculated from each control plasma 

matrix, and the comparison on the six measurements has been made.  Repeat the same procedure 

for the remaining 27 markers.  

One criterion to use in choosing a measurement method to use is to select the one for which 

plate to plate variability is the least.  Here we measure plate to plate variability for an outcome 

measure by computing the coefficient of variation across the eight plates for the “normal control” 
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and for the “standard” samples for each marker.  The coefficient of variation (c.v.) is the ratio of 

the standard deviation across the eight plates to the mean across the eight plates.  We choose the 

coefficient of variation rather than the raw standard deviation because of the large scale variation 

in intensity across markers.  

Tables 2 and 3 show the coefficient of variation for the six measurement methods for the 

eight 21 marker plates and for the eight 27 marker plates for the “normal control”.  For the 21 

markers, the c.v. is the smallest for standard FI for 12 of the 21 markers; the average c.v. across 

markers for standard F.I. is 0.21.  For the remaining 27 markers, the lowest c.v. is usually 

provided by using the standard or high FI; the means across markers are 0.16 and 0.19 

respectively (Table 3).  

Marker: 

Coefficient 

of variation 

 

High FI 
High FI –  

background 

High 

observed 

conc 

Standard 

FI 

Standard FI 

- 

background 

Standard 

observed 

  conc 

Marker:1 0.13 0.25 0.64 0.15 0.14 0.39 

Marker:2 0.48 1.23 0.17 0.10 0.39 0.14 

Marker:3 0.12 0.63 1.98 0.09 0.82 0.17 

Marker:4 0.26 0.73 0.27 0.17 0.26 0.15 

Marker:5 0.24 0.76 0.26 0.16 0.21 0.20 

Marker:6 0.22 1.03 0.32 0.17 0.45 0.28 

Marker:7 0.23 0.43 0.14 0.15 0.16 0.12 

Marker:8 0.26 0.24 0.19 0.20 0.21 0.12 

Marker:9 0.18 0.21 0.65 0.13 0.12 0.65 

Marker:10 0.24 0.60 1.91 0.21 0.30 1.24 

Marker:11 0.17 0.33 0.76 0.18 0.31 0.68 

Marker:12 0.20 0.25 0.17 0.16 0.18 0.14 

Marker:13 0.47 0.36 0.34 0.16 0.17 0.19 

Marker:14 0.25 0.45 0.39 0.21 0.26 0.34 

Marker:15 0.18 0.40 0.11 0.18 0.21 0.09 

Marker:16 0.24 0.50 0.31 0.17 0.17 0.30 

Marker:17 0.22 0.46 0.41 0.13 0.14 0.15 

Marker:18 0.18 1.24 0.52 0.13 0.67 0.57 

Marker:19 0.16 0.29 0.16 0.15 0.19 0.34 

Marker:20 0.23 0.22 0.11 0.14 0.17 0.68 
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Marker:21 0.24 0.52 0.48 0.18 0.24 0.59 
Table 3: Coefficient of variation across 8 plates for 6 measurements on "normal control" (21-plex) 

 

 

Marker: 

Coefficient 

of variation  

 

High FI 

High FI 

minus  

background 

High 

observed 

concentrat

ion 

Standard 

FI 

Standard FI 

minus 

background 

Standard 

observed 

concentrat

ion 

Marker:22 0.09 0.08 0.08 0.09 0.09 0.09 

Marker:23 0.24 0.36 0.60 0.22 0.35 0.49 

Marker:24 0.26 0.33 0.31 0.24 0.29 0.36 

Marker:25 0.24 0.63 N/A 0.22 1.05 N/A 

Marker:26 0.18 0.34 0.16 0.27 0.36 0.28 

Marker:27 0.31 0.40 0.27 0.22 0.28 0.13 

Marker:28 0.22 0.37 0.36 0.24 0.37 0.32 

Marker:29 0.22 0.27 0.32 0.24 0.28 0.39 

Marker:30 0.16 0.23 0.65 0.26 0.36 0.81 

Marker:31 0.23 0.83 0.54 0.21 0.84 0.39 

Marker:32 0.22 0.82 0.88 0.20 1.86 0.72 

Marker:33 0.13 0.34 0.60 0.26 0.50 0.41 

Marker:34 0.21 0.30 0.18 0.22 0.28 0.20 

Marker:35 0.15 0.43 N/A 0.13 0.63 N/A 

Marker:36 0.14 2.73 0.58 0.14 2.72 0.74 

Marker:37 0.10 0.10 0.07 0.12 0.11 0.06 

Marker:38 0.14 0.81 N/A 0.16 0.98 0.63 

Marker:39 0.25 0.43 0.39 0.31 0.48 0.45 

Marker:40 0.19 1.82 0.72 0.20 2.40 0.51 

Marker:41 0.26 0.47 0.32 0.18 0.23 0.21 

Marker:42 0.06 0.06 0.07 0.09 0.09 0.07 

Marker:43 0.14 0.30 0.11 0.19 0.27 0.11 

Marker:44 0.13 1.02 0.32 0.21 1.27 0.52 

Marker:45 0.11 0.10 0.11 0.13 0.12 0.10 

Marker:46 0.05 0.05 0.07 0.06 0.06 0.07 

Marker:47 0.28 1.92 0.52 0.21 3.32 0.91 

Marker:48 0.14 0.88 N/A 0.20 0.92 0.93 
Table 4: Coefficient of variation across 8 plates for 6 measurements on "normal control" (27-plex) 

 

Average 

c.v. 
High FI 

High FI 

minus 

background 

High 

observed 

concentrati

on 

Standard FI 

Standard FI 

minus 

background 

Standard 

observed 

concentrati

on 

21-marker 0.22(0.09) 0.52 (0.32) 0.70(1.03) 0.15(0.03) 0.27(0.18) 0.42(0.49) 

27-marker 0.16(0.06) 0.61(0.63) 0.36(0.24) 0.19(0.06) 0.76(0.86) 0.40(0.27) 
Table 5: Average coefficient of variation across plates on "normal control" 
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In addition, background in FI is calculated by subtracting background from FI. According to 

the definition of the coefficient of variation, background in FI across plates would share the same 

standard deviation with FI, but with smaller mean. This results in the larger coefficient of 

variation for the background in FI. Therefore, we compared the standard deviation rather than 

coefficient of variation between FI and background in FI. Table 4 shows that high or standard FI 

is more consistent across plates than background, as it has smaller standard deviation.  

Standard 

Deviation   High FI 

High FI 

minus 

background 

Standard 

FI 

Standard FI 

minus 

background 

21-marker 160.38 228.65 30.78 31.44 

27-marker 85.94 98.13 24.70 26.24 
Table 6: Standard deviation across plates for "normal control" 

Furthermore, we notice that there are many “<< OOR” or “>> OOR” in observed 

concentration. These concentrations are read out of range of detection, which is determined 

based on the standard curve. The simplest method for determining concentrations from a 

standard curve is to construct a plot of fluorescent intensity vs. concentration by linear 

regression[36] . In this project, a four parameter logistic (4PL) has been used to construct the 

standard curve. The 4PL equation contains 4 parameters in the curve, as illustrated in Figure 7.  
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Figure 6: Standard curve fitted with 4-PL regression 

Where a is the estimated response at zero concentration, b is the slope factor, c is the mid-

range concentration (C50), and d is the estimated response at infinite concentration. In principle, 

once the 4PL equation is created from a set of standards, the 4 parameters could be determined. 

Then the equation could be used to calculate unknown concentrations (x) from the fluorescent 

intensity (y). However, in this dataset, 8 standards in each plate are used to draw the standard 

curve. Among these standards, two of them are saturated, and two of them are responded at very 

low concentration. Literally only 4 standards in the range of samples are appropriate to estimate 

the standard curve. However the 4PL standard curve is composed of four parameters. Thus only 

the remaining four standards can potentially be used to estimate the four parameters in the 

standard curve.  Statistically speaking, this results in over-fitting. This suggests that the middle 

four standards, 3-6, will generally be most informative.  The observed concentrations derived 

from the standard curve are not reliable.  

On the other hand, ideally fluorescent intensity falls into the middle range of the standard 

curve (sensitive region). If fluorescent intensity is higher than the sensitive region, we call it is 

saturated. If the fluorescent intensity is too low, the concentration extracted from the curve is not 
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accurate. However samples out of the range of the standard curve are not necessarily out of 

limits of detection, but probably are out of limits of quantification by the standard curve when 

machine cannot read these numbers.  We counted the number of OOR in samples for each 

marker. On the average, 21-plex has 40 out of 150 samples that are out of range, and 27-plex has 

58. Practically there is disadvantage of using observed concentration.    

Once we decide to select standard fluorescent intensity as the best measurement, we 

proceeded to determine whether standards/control plasma provide consistent behavior across 

plates. We ranked each standard /control plasma across plates for each marker and averaged the 

rankings across markers. We then calculated the variance of the ranking across 8 plates for 

standards and control plasma respectively. The rank represents the consistency of the order 

preservation. The maximum variance of the ranking across 8 plates would be 6. Normal plasma 

has the highest variance which is 4.19. This suggests that normal plasma has the best separation 

of ranking across plates. S1 and S6 performed comparably well to the performance of control 

plasma. However S1 is mostly saturated and out of the sample range. Other standards have 

smaller variance suggesting they are provide less consistent order preservation across plates 

(Table 4). Overall standard 6 and control plasma provide consistent separation and perform 

better than other standards.  

 Variance of Ranking 

Normal Plasma 4.19 

Standard 1 4.02 

Standard 2 2.71 

Standard 3 3.13 
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Standard 4 2.75 

Standard 5 1.97 

Standard 6 4.21 

Standard 7 3.17 

Standard 8 3.71 

Table 7: Variance of ranking across 8 plates for control plasma and standards 

In brief, since standard fluorescent intensity is a consistent measurement providing small 

coefficient of variation, it is chosen as the measurement we will utilize for further analysis.  In 

addition we will evaluate normalization methods by examining their effects on the “normal 

control” and Standard 6. 

3.3 Normalization 

 

In the following we evaluate the effects of four different normalization methods: scale 

normalization (comparison to “baseline” plate using median, mean, or third quartile), quantile 

normalization, lowess smoothing curve normalization, and lowess curve extrapolation.   

We first introduce the median sample matrix to serve as the basis for each of the 

normalization methods and the assessment matrices using Sample A and/or Sample B.   

Median sample matrix is used to calculate normalization factor or fit the lowess curve. 

Sample A and/or Sample B matrices are used to evaluate the coefficient of variation across plates.  

The median sample matrix is constructed by taking the median value for each marker across 

the clinical samples on each plate (blanks, standards, and normal control are excluded). Thus 

there is a pair of median sample matrices--an 8 x 21 (plate x marker) matrix and an 8 x 27 (plate 

x marker) matrix. 
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       Two pairs of assessment matrices are also constructed.  One pair contains the “normal 

control” (Sample A values) for the 21-plex and the 27-plex plates, one pair contains the values 

for Sample B, uses a mixture of “normal control” and Standard 6 values.  For Sample B for each 

plate and each marker we choose whichever of the “normal control” or the Standard 6 values is 

closest to the median across clinical samples. 

Sample A matrix is organized as follows:  

1) Within each plate, choose control plasma intensity that is labeled as “C1” 

2) Repeat this for all the 8 plates, then organize them as a control plasma matrix 

3) The dimension for the control plasma is 8 × 21 or (8 × 27), where rows represent  

      plates from 1 to 8, and columns represent each marker. 

Similarly, sample B matrix is constructed by: 

1) Within each plate, choose median intensities across samples 

2) Since control plasma and standard 6 give consistent separation of plates, we choose intensity 

from either control plasma or standard 6 that is closest to median samples 

3) Following this procedure for all the 8 plates, the standard plasma matrix is organized.  

4) The dimension for the standard plasma is 8 × 21 or (8 × 27), where rows are plates and 

columns are markers.   

If plate to plate variation is reduced by a normalization method the normalized assessment 

matrices should show low plate to plate variability for each marker. 

3.3.1Median Normalization  

 

These scale normalization methods are based on adjusting values for each array to values for 

a selected baseline/comparison array.  The disadvantage of scale normalization is that it depends 

on the arbitrary choice of a baseline array.  
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The first step in these scale normalization methods is to choose a baseline plate.  We usually 

choose a plate whose marker values tended to fall close to the median across all plates.  This 

plate was labeled plate 1. 

 Then for median normalization, each expression value, marker j on plate i for sample k, is 

normalized by multiplying it by the factor (median expression for marker j on baseline plate 1) / 

(median expression for maker j on plate i).  Mean and third quartile normalizations are done in 

the same way except that the mean or the third quartile value is used instead of the median in the 

normalization factor. 

To evaluate the normalization approaches, the normalizations were applied to Sample A and 

Sample B values for each marker and plate.  Then the coefficient of variation was computed 

across plates for each marker and the ratio of the coefficient of variation for the unnormalized 

compared to the coefficient for the normalized values computed for each marker.  See results in 

Table 5 below. 

Table 5 and 6 show that when we apply median normalization factors back to the Sample A 

matrix, most c.v. ratios are above 1, and a few ratios are smaller but very close to 1. The mean 

ratio of c.v. between unnormalized and normalized for 21-marker is 1.02, and for 27-marker is 

1.23. This demonstrates the median normalization has made some reduction in variability. 

Although the ratios are not too far away from 1, median normalization reduced the variation 

across plates at a certain degree. Other than median normalization, mean and Q3 normalization 

showed similar results.  

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

1 1.01 12 1.04 

2 0.99 13 0.99 

3 0.99 14 1.02 

4 1.05 15 1.00 
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5 0.99 16 1.00 

6 1.01 17 1.04 

7 1.06 18 1.03 

8 1.01 19 1.06 

9 1.05 20 1.02 

10 1.04 21 1.00 

11 1.01   
Table 8: Median normalization to Sample A: ratio of coefficient of variation (CV) between unnormalized and 

normalized for the first 21 markers 

 

 

 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

1 2.36 10 1.14 19 1.07 

2 1.11 11 1.20 20 1.19 

3 1.13 12 1.19 21 0.95 

4 1.16 13 1.13 22 1.25 

5 1.07 14 1.26 23 1.21 

6 1.12 15 1.47 24 1.36 

7 1.14 16 1.63 25 1.47 

8 1.03 17 1.23 26 1.09 

9 1.04 18 1.02 27 1.22 
Table 9: Median normalization to Sample A: ratio of coefficient of variation (CV) between unnormalized and 

normalized for the remaining 27 markers 

 

 

For Sample B, the mean ratio of c.v. between unnormalized and normalized on standard 

plasm matrix for 21-marker is 1.30, and for 27-marker is 1.05. The median normalization 

reduces more variability in Sample B than Sample A matrix.   
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Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

1 1.52 12 1.03 

2 1.10 13 1.19 

3 1.18 14 1.28 

4 1.13 15 1.43 

5 0.96 16 1.00 

6 1.48 17 1.91 

7 1.11 18 2.59 

8 1.06 19 1.12 

9 1.97 20 0.97 

10 0.85 21 1.13 

11 1.35   
Table 10: Median normalization to Sample B matrix: ratio of coefficient of variation (CV) between 

unnormalized and normalized for the first 21 markers 

 

 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

1 0.95 10 1.08 19 1.07 

2 0.94 11 1.01 20 1.19 

3 1.12 12 1.05 21 0.95 

4 1.22 13 1.23 22 1.30 

5 1.01 14 0.86 23 1.21 

6 0.94 15 1.16 24 0.90 

7 0.93 16 0.99 25 0.68 

8 1.03 17 1.01 26 1.06 

9 1.22 18 1.02 27 1.06 
Table 11: Median normalization to Sample B matrix: ratio of coefficient of variation (CV) between 

unnormalized and normalized for the remaining 27 markers 

 

 

 

 

 

 

 
Table 12: Median normalization: mean ratios of c.v. among Sample A and B matrices 

 

 

 

 

 

 

 

 

Median Normalization Mean Ratios of c.v.  

21-marker from Sample A matrix 1.02 

27-marker from  Sample A matrix 1.23 

21-marker from  Sample B matrix 1.30 

27-marker from  Sample B matrix 1.05 
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3.3.2 Quantile Normalization 

 

After the median normalization, we made an attempt to normalize the Sample A and B 

matrix with quantile normalization, by first applying the quantile normalization on the median 

sample matrix.    

Upon the normalization, intensity in median sample matrix is matched up across all 8 plates 

so that the smallest median value on each array is identical, the second smallest is identical, and 

so forth. Figure 8 shows an example of such intensities on plates 5 and 6, before and after the 

quantile normalization. Before normalization, intensities in plate 5 and 6 are scattered around 

diagonal line but not exactly corresponding to each other. After the normalization, intensities are 

aligned exactly on the diagonal line, showing plate 5 is matched identically with plate 6. Figure 9 

is the box plot of eight plates before and after quantile normalization. There was substantial 

variability across plates before quantile normalization, but this variability was removed by the 

quantile normalization.  

             
Figure 7: before and after quantile normalization: mean intensity in plate 5 vs. plate 6 
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Figure 8: box plots for eight plates before and after quantile normalization 

 

 

After the median intensity in each plate is normalized, the deviation is obtained by 

subtracting the normalized intensity from the median intensity in each plate. Then we apply the 

deviation back to Sample A or Sample B, by subtracting deviation from intensities in assessment 

matrix to obtain the normalized values. The ratio of coefficient of variation between 

unnormalized and normalized Sample A/B is compared.  

For 21 marker in Sample A matrix, the ratios of c.v. from markers 2, 11, 12, 13, 16, and 20 

are smaller than 1. Particularly markers 2, 12, 13 and 20’s ratios are smaller than 0.5. For 27-

marker, 20 out of 27 (74%) markers whose ratios of c.v. are smaller than 0.5. For Sample B, it 

shows more number of markers with ratio of c.v. greater than 1. However in 21-marker, marker 

13’s ratio is equal to 0.61. In 27-marker system, 15 out of 27 (55.56%) markers’ ratios are 

smaller than 0.5.Quantile normalization is not consistent in reducing the variation across plates.  
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C.V. 
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5 1.22 16 0.78 

6 1.20 17 1.02 

7 1.26 18 1.76 

8 1.28 19 1.58 

9 1.34 20 0.21 

10 1.31 21 1.17 

11 0.85   
Table 13: Quantile normalization for the first 21 markers: ratio of coefficient of variation (CV) between 

unnormalized and normalized Sample A matrix 

 

 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

1 0.10 10 0.39 19 0.18 

2 0.18 11 0.74 20 0.16 

3 2.40 12 0.42 21 0.20 

4 0.17 13 0.18 22 0.27 

5 1.70 14 0.13 23 0.63 

6 0.24 15 0.37 24 0.48 

7 0.20 16 0.30 25 0.64 

8 0.33 17 0.55 26 0.92 

9 0.35 18 1.20 27 0.30 
Table 14: Quantile normalization for the remaining 27 markers: ratio of coefficient of variation (CV) between 

unnormalized and normalized Sample A matrix 

 

 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

1 1.07 12 1.09 

2 1.46 13 0.61 

3 1.46 14 1.20 

4 0.99 15 1.62 

5 1.13 16 1.14 

6 1.57 17 1.02 

7 1.15 18 1.76 

8 1.19 19 1.18 

9 1.47 20 0.92 

10 0.88 21 1.06 

11 0.88   
Table 15: Quantile normalization for the first 21 markers: ratio of coefficient of variation (CV) between 

unnormalized and normalized Sample B matrix 

 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

1 1.09 10 0.31 19 0.08 

2 0.19 11 0.74 20 0.17 
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3 0.34 12 1.13 21 0.54 

4 0.19 13 0.18 22 0.21 

5 0.53 14 0.13 23 0.63 

6 0.20 15 0.30 24 0.73 

7 0.16 16 1.25 25 0.87 

8 0.28 17 0.55 26 0.87 

9 0.35 18 0.49 27 0.88 
Table 16: Quantile normalization for the remaining 27 markers: ratio of coefficient of variation (CV) between 

unnormalized and normalized Sample B matrix 

 

3.3.3 Lowess Curve Normalization 

 

For each marker in the median sample matrix, median across 8 plates is selected so that a 

median mock array (1×27) is fashioned out of the averages of the plates being normalized. The 

normalization procedure is carried out as follows: 

1)  Upon median sample matrix, fit 8 smoothing curves, where each fit is intensity in each 

plate vs. median mock array  

2)  The deviation is calculated from fitted value in each plate minus median mock array 

3)  Apply the deviation back to Sample A/B matrix, by subtracting the deviation from them 

4) Calculate coefficient of variation before and after normalization respectively, and calculate 

the ratio of the coefficient of variation.    

When fitting the lowess curve of plate i vs. median mock array, we first check the span 

parameter. We start from plate 1 in 27-marker first. When the span value is as small as 0.10, the 

lowess curve cannot be fit. When the span is 0.2, it does not provide much smoothing. When 

span value is as large as 1 the lowess curve deviates from data points. When span is set as 0.4, 

0.6, 0.75, curves are fit well and there is no much difference between them. Overall the default 

value of 0.75 works fairly well in finding the smoothing curve.  This is also applied to other 

plates.  
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Figure 9: Lowess curve fitting of plate 1 vs. median mock array (27-plex) when span is 0.2 and 1 

 
Figure 10: Lowess curve fitting of plate 1 vs. median mock array (27-plex) when span is 0.4, 0.6 and 0.75 

 

In this dataset, the sample size for each lowess curve is 21 or 27, since we fit the lowess 

curve on the 21-marker or 27-marker. The sample size for lowess curve is small. Figure 10 and 

11 show the lowess curve fit for each plate (21-marker and 27-marker) in median sample matrix, 

where y axis is the median sample from each plate and x axis is the median mock array.  

For 21-marker, except marker1 whose average intensity is over 2000, others are scaled under 

1000. The range of its median mock array for is (14.5, 2144.6).  In 27-marker, their intensities 
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scales are variable across 27 markers. The range of its median mock array is: (15.05, 11745.60), 

where marker 1’s average intensity is 8836, and marker 24’s is 11745.     

The lowess curve plots have shown most data points are scattered around the left lower 

corner where they are low in intensity, while a few points are located at right upper side 

indicating high intensity.  

 
Figure 11: Lowess curve for 21-marker: plate intensity in median sample matrix vs. median mock array 
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Figure 12: Lowess curve for 27-marker: plate intensity in median sample matrix vs. median mock array 

 

 

Table 14-15 show the ratios of coefficients of variation between unnormalized and 

normalized in Sample B matrix. For 21-marker, most ratios are greater than 1 except marker 10 

and 13. For 27-marker, more markers’ ratio are smaller but close to 1. The mean ratios for 21-

makrer and 27-marker are 1.20 and 1.05. (Table 16).  
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5 1.07 16 1.13 

6 1.92 17 1.20 

7 1.17 18 1.71 

8 1.19 19 1.11 

9 1.28 20 1.05 

10 0.78 21 1.09 

11 1.20   
Table 17: Lowess curve normalization for the first 21 markers: ratio of coefficient of variation (CV)                

between unnormalized and normalized Sample B matrix 

 

 

 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

1 0.94 10 1.06 19 1.09 

2 0.93 11 1.16 20 1.00 

3 1.35 12 0.83 21 0.83 

4 1.16 13 1.14 22 0.64 

5 0.97 14 1.25 23 1.23 

6 0.95 15 0.99 24 0.66 

7 0.86 16 1.95 25 1.21 

8 1.01 17 1.22 26 1.05 

9 1.36 18 0.94 27 0.67 
Table 18: Lowess curve normalization for the remaining 27 markers: ratio of coefficient of variation (CV) 

between unnormalized and normalized Sample B matrix 

 

 

 mean ratios of c.v. 

21-marker, standard plasma 1.20 

27-marker, standard plasma 1.05 

Table 19: mean ratios of c.v. between unnormalized and normalized Sample B matrix 

 

 

3.3.4 Lowess Curve Extrapolation 

 

Next we developed an extrapolation method utilizing lowess smoothing curve. Again we first 

fit 8 lowess smoothing curves by median intensity in each plate vs. median mock array. Then by 

applying the lowess curve back to the control/standard plasma matrix, we back-predict 

(extrapolate) the lowess curve to obtain the normalized intensity. We then compared the 
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coefficient of variation between unnormalized and normalized standard plasma matrix. The ratio 

of the coefficient of variation for most markers is much greater than one, so the variability across 

plates has been substantially reduced.  

As shown in the tables 17 and 18, except a few ratios of c.v. are smaller but close to 1, most 

ratios are much greater than 1. Table 19 shows the mean ratios of c.v. between unnormalized and 

normalized Sample B matrix. The mean ratio for 21-marker is 2.19, and for 27-marker is 2.82. 

Comparing with the previous normalization methods, the mean ratios are the highest. Lowess 

curve extrapolation is the most effective solution to reduce the variability across plates. The 

lowess curve extrapolation is performed by R programming where span is set up as default value 

0.75.  

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

1 0.90 12 3.43 

2 1.53 13 1.42 

3 1.11 14 3.27 

4 2.08 15 1.51 

5 1.39 16 2.02 

6 1.32 17 1.67 

7 2.00 18 1.50 

8 2.76 19 1.61 

9 1.89 20 4.76 

10 1.08 21 6.32 

11 2.39   
Table 20: Lowess curve extrapolation for the first 21 markers: ratio of coefficient of variation (CV) between 

unnormalized and normalized Sample B matrix 

 

 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

Marker ID Ratio of 

C.V. 

1 0.70 10 0.71 19 0.70 

2 0.97 11 0.73 20 0.92 

3 0.92 12 1.04 21 0.70 

4 0.82 13 0.80 22 0.57 

5 0.96 14 0.68 23 0.72 

6 2.79 15 0.69 24 0.70 

7 1.01 16 0.87 25 0.69 
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8 0.84 17 0.70 26 0.84 

9 0.79 18 1.07 27 0.67 
Table 21: Lowess curve extrapolation for the remaining 27 markers: ratio of coefficient of variation (CV) 

between unnormalized and normalized Sample B matrix 

 

 

 mean ratios of c.v. 

21-marker, standard plasma 0.69 

27-marker, standard plasma 0.87 

Table 22: mean ratios of c.v. between unnormalized and normalized Sample B matrix 

 

 

3.4 Evaluation of Normalization Methods 

 

Since several normalization methods have been used on the Luminex assay system, which 

normalization method performing best needs to be assessed.  

Spearman’s rank correlation coefficient is a solution to assess how agreeable between two 

arrays if they are more or less, monotonically related to each other.  
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 , where g = 1, 2, … G (number of genes); giR

is the rank of giy when the }{ gjy are ranked from 1 to G.  

      In general, Spearman’s rank correlation coefficient is a measure of monotone association 

between two variables, which is not necessarily linear association. The range of correlation is 

between -1 and 1. When s̂ is 1 the two set of values are perfectly positively associated to each 

other, and when s̂ is -1 this indicates the two sets of values are negatively associated with each 

other, and 0 indicates no association associated with each other. Based on this concept, when 

normalizing two arrays, if s̂  is high or close to1, it is like the normalization brings the two sets 
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of arrays into an agreement. When s̂ is low it is unlikely that a normalization of that sort would 

be able to bring the two sets of arrays into agreement.  

In addition, Lin et al[37] introduced concordance correlation coefficient that is used to assess 

the degree of success of the normalization. This is an index that quantifies the degree of 

agreement between two sets of numbers. The concordance correlation coefficient, c̂ , is defined 

as: 
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      c = 1, 2 (2 arrays), g = 1, 2, … G (number of genes)  

c  is a standardized measure of ])[( 2

21 gg yyE  and 1c if and only if }{ 1gy and 

}{ 2gy are in perfect agreement. Otherwise 1c .  

Amaratunga et.al [4] in their book proposed the rough rule of thumb to evaluate the need for 

normalization, when combine Spearman’s rank correlation coefficients and concordance 

correlation coefficients together. 1) For a pair of arrays, if c̂ is very high (a rule of thumb is 

greater than 0.99), normalization may not be necessary. 2) if c̂ is not very high and s̂ is high( a 

rule of thumb is greater than 0.8), normalization is very likely to be beneficial. 3) If both c̂  and 

s̂ are low, indicating the relationship between arrays is not strong, it may be worth looking 

further to see whether there was a problem with either of arrays before doing any normalization.  
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For a series of arrays, Amaratunga et al [4] also suggests to display the pair-wise Spearman’s 

rank correlation coefficients or pair-wise concordance correlation coefficients. However, the 

correlation coefficient is not appropriate to be applied to this project. This is because within each 

plate the scales across markers are quite different. Most markers are expressed under 200, some 

are expressed over 1000. So even the two arrays are in disagreement and not correlated with each 

other at all, the outliers (some intensity over 1000) could potentially elevate the correlation to be 

close to 1. But this is not true that we could regard two arrays are in quite agreement.   

Table 19 shows the mean of each marker (for marker27) across Sample A matrix. We notice 

that most markers are scaled between 30 and 300. However marker 24 and 25 stand out with 

quite different scales. For marker 24, its mean is 596.3875 and the range is: (489.3, 757.5). For 

marker 25, its mean is 3938.863 and the range is: (3645.5, 4295.2).  

Marker ID Mean Marker ID Mean Marker ID Mean 

1 232.95 10 55.36 19 52.49 

2 42.84 11 83.03 20 47.70 

3 38.66 12 69.73 21 302.80 

4 36.31 13 42.43 22 164.95 

5 56.89 14 48.26 23 71.55 

6 37.48 15 64.36 24 596.39 

7 50.18 16 191.09 25 3938.86 

8 63.70 17 67.35 26 68.08 

9 74.35 18 78.68 27 101.66 
Table 23: mean of markers (marker-27) from Sample A matrix 

 

 

Table 20 shows the pair-wise concordance correlation coefficient among 8 plates in 27- 

marker system. There are very high correlations between plates that are almost 1. Without 

considering the fact these markers are quite different scales, it is misleading to conclude that 

plates are very concordant with each other thus normalization might not be necessary.   

Marker 1 2 3 4 5 6 7 8 
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1 1.00 0.993 0.991 0.982 0.990 0.997 0.998 0.991 

2 0.993 1.00 0.999 0.997 0.999 0.998 0.998 0.999 

3 0.991 0.999 1.00 0.998 0.999 0.996 0.997 0.999 

4 0.982 0.997 0.998 1.00 0.998 0.991 0.991 0.998 

5 0.990 0.999 0.999 0.998 1.00 0.995 0.997 0.999 

6 0.997 0.998 0.996 0.991 0.995 1.00 0.999 0.996 

7 0.998 0.998 0.997 0.991 0.997 0.999 1.00 0.997 

8 0.991 0.999 0.999 0.998 0.999 0.996 0.997 1.00 

Table 24: pair-wise concordant correlation coefficient among plates (27-marker) 

 

Table 21 shows the concordance correlation coefficient after we remove the marker 24 & 25 

from the control plasma matrix. Therefore the coefficients correlation went down and the two 

arrays do not “seem” to in a perfect match. This demonstrates that when different scales of 

intensities exist in the dataset, utilizing concordance correlation coefficient to assess the 

performance of normalization is not appropriate.  

Marker 1 2 3 4 5 6 7 8 

1 1.00 0.867 0.930 0.832 0.923 0.871 0.974 0.923 

2 0.867 1.00 0.963 0.976 0.978 0.985 0.909 0.975 

3 0.930 0.963 1.00 0.958 0.977 0.958 0.970 0.977 

4 0.832 0.976 0.958 1.00 0.945 0.965 0.887 0.955 

5 0.923 0.978 0.977 0.945 1.00 0.970 0.961 0.989 

6 0.871 0.985 0.958 0.965 0.970 1.00 0.902 0.983 

7 0.974 0.909 0.970 0.887 0.961 0.902 1.00 0.952 



50 

 

8 0.923 0.975 0.977 0.955 0.989 0.983 0.952 1.00 

Table 25: pair-wise concordant correlation coefficient among plates (27-marker) after marker 24 and 25 are 

removed 

 

 

Park et al. [38] proposed variability among the replicated slides to compare performance of 

normalization methods. They introduced variation 2

l , l = 1, 2, …N genes in a slide to evaluate 

the success of a normalization, and proposed two methods for estimating 2

l .  

The first method is pooled variance estimators: for gene l, a simple variance estimator for 2

l

is estimated as: 
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.  is the intensity from experimental groups i (i =1, …, I), j time point, and k (=1, …, K) 

replications and gene l.  

The second method is variance estimator using analysis of variance models: consider the 

following two-way analysis of variance (ANOVA) model with interactions for each gene: 

ijklijljlillijkl   )(y  

Where i = 1,…, I, j = 1, …, J, k=1, …, K and l = 1, … N. l  is the gene effects that capture 

the overall mean intensity across arrays, groups and time points. il  accounts for gene specific 

group effects representing overall difference between two groups. jl  is the time effects that 

capture difference in the overall concentration of mRNA in the samples from the different time 

points. ijl)(  is the interaction effect between group and time. From this ANOVA model, the 

unbiased estimate of variance for the l
th

 gene 2

l is obtained by error sum of squares divided by 
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degrees of freedom. If there are no missing observations, the variances estimated from ANOVA 

are the same with pooled variance. However, ANOVA gives more flexibility to fit the intensity 

data.  

Some people also suggest using bias and mean square error as well as variance to compare 

between normalization methods. Bolstad et al [14] used variance and bias to compare 

normalization method for high density oligonucleotide array data. Likewise, for each gene or 

marker, the mean square error (MSE) is computed as the average of the distances between 

normalized data and true expected value. However, in a real dataset, we don’t know true values 

so we cannot calculate bias or MSE. 

In this project, we use the coefficient of variation, which is the ratio of standard deviation to 

the absolute mean, across the control plasma matrix / standard plasma matrix to compare the 

performance of normalization methods. It is expected that the better the normalization method, 

the smaller the coefficient of variation.  The coefficient of variation in each marker across 

control/standard plasma matrix is expressed as Niv i ,2,1..c ,  . Dot plot for the variability 

measures can be used for visually comparing different normalization methods.  

We denote ijy  is the intensity for plate i (i =1,2, …8) and marker j (j =1, 2, …,48), jv.c  is the 

coefficient of variation for the j
th

 marker. The coefficient of variation for j
th

 marker is:

||
..c

j

j

jv



 , where j  is the standard deviation, and j is the mean for the j

th
 marker across 8 

plates. We compared the ratio of coefficient of variation between unnormalized and normalized 

standard plasma matrix. The comparison is based on four methods: scale (median) normalization, 

quantile normalization, lowess curve normalization, and lowess curve extrapolation. Specifically, 
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we compare the degree to which each method reduces the coefficient of variation across plates 

for Sample A (“normal” control) and Sample B (combination of normal control and Standard 6).  

3.5 Discussion 

 

Undesirable systematic variations are commonly observed in the microarray experiment. 

Normalization becomes a standard process for removing some of the variation which affects the 

measured gene expression levels.  

In this dissertation, we compared normalization methods commonly used to analyze 

microarray data. The comparison is based on the variability reduction from control plasma or 

standard plasma matrix, which are used to evaluate the performance of normalization.  

Although a number of normalization methods have been proposed, it has been difficult to 

decide which method performs better than the others. Therefore the evaluation of normalization 

methods in microarray data analysis is indeed an important issue. We used coefficient of 

variation to evaluate performance of each method.  

Figure 12 and 13 are the dot plots that compare the ratios of c.v. among four normalization 

methods. We expect the higher the ratios between unnormalized and normalized, the more 

variation reduced.  

In 21-marker, ratios of c.v. between unnormalized and normalized Sample B matrix scatter 

around 1 for both median and lowess curve normalization. For quantile normalization, most 

ratios are around 1 but a few are below 1. Lowess curve extrapolation outperforms other three 

methods, as shown its ratios are scatter above y =1.  

For 27-marker, on the average ratios in both median and lowess curve normalization methods 

fluctuate around 1. However, quantile normalization has most ratios below than 1. Lowess curve 

extrapolation have ratios that are much higher than 1. There is substantial reduction in lowess 
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curve extrapolation.  Table 23 and 24 compare the mean ratios among four methods in 21-marker 

and 27-marker respectively.  

In conclusion, for this dataset, lowess curve extrapolation reduces the variation the most, 

followed by median normalization & lowess curve normalization, then quantile normalization. 

Scale normalization is the simplest approach assuming average gene expression is the same for 

all arrays, and most genes change very little in intensity across samples. This is justified since the 

equal quantities of mRNA were distributed to the samples, therefore the average hybridization 

should be the same for all samples.  

Quantile normalization does not work particularly well for this dataset. By its definition, 

when quantile normalization is applied on thousands of genes at the same time, it guarantees that 

the normalized intensities distribution is the same on each plate. However in our current dataset, 

each plate includes either 27 or 21 markers. The sample size is not sufficient enough to perform 

the quantile normalization well to reduce variation.    

Although we have studies a limited number of normalization, our findings can provide some 

guidance on the selection of normalization methods. We think the non-linear normalization 

methods such as lowess curve extrapolation is quite effective in controlling specific non-linear 

variations. Some methods may have more computational efficiency. Please note that the complex 

methods do not necessarily perform better than simpler methods. Complex methods may add 

noise to the normalized adjustment and may even add bias if the assumptions are not justified. 

Consequently the complicated normalization methods require validation. We suggest researchers 

examine their data carefully and consider applying non-linear normalization routinely. The 

normalizations are performed by R programming and available upon the request.  
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Figure 13: Dot plots of the ratios of coefficient of variation between unnormalized and normalized Sample B 

matrix. The y-axis is the ratios of coefficient of variation, and the x-axis is each marker in Sample B matrix 

(21-markers) 
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Figure 14: Dot plots of the ratios of coefficient of variation between unnormalized and normalized Sample B 

matrix. The y-axis is the ratios of coefficient of variation, and the x-axis is each marker in Sample B matrix 

(27-markers) 

 

Normalizations Plex Sample A Sample B 

Median 

21 1.02(0.02) 1.30(0.41) 

27 1.23(0.27) 1.05(0.14) 

Quantile 

21 1.08 (0.43) 1.18 (0.28) 

27 0.51(0.52) 0.50(0.34) 

Lowess 

21 1.14(0.44) 1.20(0.29) 

27 0.92(0.41) 1.05(0.26) 

Lowess Curve 

Extrapolation 

21 0.69 (0.23) 0.87 (0.19) 

27 0.93(0.44) 0.95 (0.21) 

Table 26: Comparison of normalization methods: mean ratios of unnormalized to normalized c.v. 

 
Chapter 4: Evaluation of methods on a second 
example 

 

We evaluated the three normalization methods using data from a second study.  This is an 

observational study “biologic changes in lung transplant recipients”. The 1088 samples from 309 

transplant recipients are bronchoalveolar lavage fluid collected during surveillance and clinically 

indicated bronchoscopies from lung transplant recipients at UCLA between July 2000 and June 

2008. The study was to explore the inflammatory milieu in the lung after transplantation, and 

how alterations in the milieu could inform common pathologies post-transplantation (i.e. acute 

rejection, chronic rejection, infections, etc.). The panel was a standard human 

inflammation/immunology multiplex panel from Millipore and the assay was done upon the 

Luminex assay system.  
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Samples were run on a total of 12 plates each with 42 markers and fluorescent intensities 

were obtained. On each plate control 1 and 2 were spiked samples provided by the manufactures 

with known values for each analyte and they were used to estimate the percent recovery. In plate 

1 controls were duplicated. Two samples c1 and c2 with unknown values were run from plate 2 

to 12. Since controls and samples were run on most plates, we could use them to infer plate to 

plate variance.  Therefore we have four plasma matrices to evaluate how normalization methods 

have reduced the plate to plate variance. Control 1 or 2 run from plate1 to plate 12, and they 

could be organized as two matrices where the dimension is 13*42. “13” is for 12 plates where 

plate1 had duplicates for controls. “42” is for 42 markers. Sample 304 or 530 run from plate 2 to 

12 and they were organized as another two matrices where the dimension is 11*42.  

Results are shown in Table 6 and Figure 4 for control 1 and 2, samples 1 and 2.  

  

*mean ratios of coefficient of variation are followed by standard deviation  

Table 27: Comparison of normalization methods 

 

 

Normalization results from control or sample matrices are consistent with our findings from 

the lung cancer dataset. Median normalization reduces variation across plates the most, followed 

by the lowess curve normalization. Quantile normalization is not steady in reducing the variation 

across plates for each marker.  Figure 14 illustrates that median normalization gives higher ratios 

of coefficient of variation than other two methods, based on the four assessment matrices.   

 Average ratio of c.v. across plates 

Control 1 Control 2 Sample 1 Sample 2 

Median 

normalization 
1.15(0.12) 1.52(0.37) 1.17(0.17) 1.14(0.20) 

Quantile 

normalization 
0.95(0.27) 0.97(0.14) 0.96(0.30) 0.95(0.30) 

Lowess curve 

normalization  
0.99(0.26) 1.01(0.12) 1.27(0.29) 1.26(0.23) 
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In addition, we have investigated the relationship between ratios of coefficient of variation 

and the scale of each marker, and we don’t find a particular pattern between them. The ratios 

fluctuate around 1 across markers. The ratios of the coefficient of variation are independent of 

the intensity in each marker.   

 

   

      

Figure 15: Comparison of normalization methods on control 1 and 2, and samples c1 and c2. 
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Chapter 5: Integration of miRNA and mRNA 
datasets  
 

5.1 Introduction 
 
    MicroRNAs (miRNAs) are small non-coding, endogenous, 19-24nt single-stranded RNAs 

acting as post-transcriptional regulators of gene expression [39-40].The first 2 miRNAs, lin-4 

and let-7, were experimentally discovered in 1993 and 2000[41-42].  So far there are more than 

4300 miRNAs that have been identified in plants, animals, and viruses by cDNA sequencing and 

computational predictions [43-45]. miRNA regulate mRNA and protein levels through base-

pairing, by inducing mRNA degradation and translational repression[46-47]. By modulating key 

cellular processes such as metabolism, division, differentiation, they can simultaneously regulate 

both oncogenes and tumor suppressor genes [48-49].  Deregulation of miRNAs expression plays 

a critical role in the pathogenesis of genetic and multifactorial disorders, as well as most human 

cancers[49]. According to the increasing experimental evidences supporting the miRNA 

mechanism of target degradation, miRNAs tend to negatively regulate mRNAs, i.e. the 

expression profiles are expected to be anti-correlated. 

    There are two ways that miRNA integrates mRNAs depending on the degree of 

complementarity between miRNA and its targets [50]. One is miRNAs bind perfectly to their 

targets’ coding sequence and they are thought to result in mRNA degradation. Another one is 

miRNAs bind with imperfect complementarity to the 3’ UTR block target gene expression at the 

level of protein translation. Given that miRNAs can have multiple targets and that each protein-

coding gene can be targeted by multiple miRNAs, it has been suggested that more than 1/3 

human genes could be regulated by miRNAs[51].  
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    For target prediction, the database including MiRecords[52] and TarBase[53], are becoming 

more extensive. However bioinformatic algorithms remain the principal means of predicting 

targets of specific miRNAs. Currently three of the most widely used and predicatively accurate 

algorithms are TargetScan, PITA, and PicTar. Two other methods Miranda and mirWIP are also 

increasingly being used[46]. For the webtool, miRGator[54] and DIANA-microT[55] web 

servers are used to elucidate the biological processes, functions and pathways targeted by 

miRNAs. The webtool MMIA[40] (miRNA and mRNA Integrated Analysis) integrates miRNAs 

and mRNA expression data using significantly up or down-regulated features, but it does not 

take into account the whole expression profile and loses the key information for the calculation 

of the expression anti-correlation degree. MAGIA [56] (miRNA and gene integrated analysis) is 

another webtool that integrates target predictions and gene expression profiles using miRNA-

mRNA bipartite networks reconstruction, gene functional enrichment and pathway annotations.  

     In conclusion, genome-wide miRNA studies allow the investigation of genomic changes at 

the miRNA level and are likely to provide additional clues to the mechanisms of tumorigenesis. 

Particularly, when miRNA and mRNA expression are both measured on the same samples, an 

integrative analysis can be performed to compare miRNAs and mRNAs profiles and to study 

their interaction patterns. We will perform the integrative analysis using a published study of 

miRNA and mRNA expression in renal cell carcinoma samples in section 5.2. 

5.2 Study Illustrations 

 

      We used expression data from clear cell Renal Cell Carcinoma (ccRCC) and matched 

normal kidney samples. In total RNA has sample size of 34, from 17 Renal Cell Carcinoma 

(RCC) tumors and 17 corresponding non-tumor samples. They were hybridized against a 

common reference RNA (Agilent-014850 Whole Human Genome Microarray) for gene 
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expression analysis. Correspondingly, MicroRNA from 17 RCC tumors and 17 corresponding 

non-tumor samples were hybridized on a single channel platform (Agilent Human miRNA 

Microarray Rel12.0) for miRNA expression analysis.  

Renal Cell Carcinoma represents 3% of all malignancies in the US, with 50,000 new cases 

and 12,000 deaths each year. The most common histological class is ccRCC, which accounts for 

75% of kidney cancers. ccRCC is known to be characterized by the loss of the VHL gene, where 

Von Hippel-Lindau syndrome (VHL) is a dominantly inherited familial cancer syndrome 

predisposing to a variety of malignant and benign tumors. Under normal oxygen pressure, 

ccRCC binds to the α subunits of hypoxia-inducible factors (HIFs), and induces subsequent 

degradation in the proteasome [57-58]. ccRCC tumors have a wide range of natural histories and 

varied responses to VEGF-targeted therapy. In early stage, low grade tumors tend to have 

significantly better disease free survival after resection than higher stage and grade [59]. 

Although VHL mutation is associated with all grades of ccRCC, the other molecular factors 

associated with ccRCC initiation and progressions are unknown. In conclusion, ccRCC is a ripe 

target for studies investigating the molecular and genetic nature of these hetero-genetics.  

       In RCC, various studies have identified panels of miRNAs and mRNAs that are 

differentially expressed between normal renal tissue and tumor [60-64]. Liu et al.[65] linked the 

miRNA to some of their putative gene targets, thus uncovering an unknown part of the biology 

of ccRCC disease. They also identified miRNA/mRNA anti-correlation relationship and 

validated this on a new cohort ccRCC study.  

5.3 Normalization of miRNA and mRNA 

 

The study includes 33398 mRNAs. The raw dataset has been log 2 transformed and lowess 

normalized. We first related gene expression with their gene symbols and entrezene, and 
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calculated the mean expression for RCC (renal carcinoma, 17 sample size) and normal tissues 

(17 sample size).  

      There are 319 miRNA in the study. To comply with the normalization of mRNA, we log 2 

transformed miRNA and performed quanitile normalization on it. After quantile normalization, 

the expression on each sample is matched with each other. For instance, Figures 15 and 16 

illustrated the pair-wise comparison between RCC sample 1 with sample 2, 3, 4, 5 before and 

quantile normalization.   

 

Figure 16: Pair-wise comparison between RCC sample 1 and sample 2, 3, 4, 5 before quantile normalization 
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Figure 17: pair-wise comparison between RCC sample 1 and sample 2, 3, 4, 5 after quantile normalization 

 

 

       The underlying hypothesis in our method is that the expression levels of miRNAs and their 

putative genes are strongly correlated when averaged over matched samples in either tumor or 

normal tissue. 

       The stepwise procedure is as follows: 

1) Log 2 transformed and normalized the miRNA and mRNA.  

2) For normalized mRNAs, using WGCNA package to perform step-by-step network 

construction and module detection. Thus we partitioned highly correlated gene into clusters 

(referred to as groups or modules).  

3) Identify strong correlation between each miRNA and module eigengenes. Eigengenes 

summarizes the overall behavior of a module. We computed the Pearson correlation 

between miRNA and module eigengenes and retain only those whose correlation | ρ | > = 

0.7.  
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4) For each of 319 miRNAs, using “TargetScan” to look for its putative gene targets. 

“TargetScan” uses seed sequence complementarity and free energy predictions of RNA-RNA 

duplexes to identify the putative targets [53, 66-72]. We found that out of 319 miRNAs, 257 

miRNAs could be located by their putative targets through “TargetScan”.  

5)   We next evaluate for each miRNA, whether its putative genes are differentially present 

between a given module and other modules by the Fisher’s exact test. In the 2 by 2 

contingency table of the Fisher’s exact test,  row is if miRNAs belong to a given module or 

not, and column is if these miRNAs are putative targets of a specific miRNA or not.  We are 

particularly interested in the 1
st
 cell that belongs to a given module and putative gene targets. 

The Fisher’s exact test hypothesize that putative gene targets have the same patterns between 

a given module and other modules. If the Fisher’s exact test is significant, it suggests there is 

a different pattern between a given module and other modules in terms of putative miRNAs. 

For this module, it has higher frequencies of putative genes than we expect by chance alone.  

6) Retain only those miRNAs who are strongly correlated with their putative genes targets and 

also significant in the Fisher’s exact test.  

5.4 Clustering Samples 

      Clustering samples is a distance measure which is calculated between the expression profiles 

of each gene (or clusters/modules) pair, and a recursive bottom-up or top-down algorithm to 

merge or split genes based on their distance. Examples are Euclidean distance and one minus the 

Pearson correlation coefficient. Hierarchical clustering is the most commonly used method for 

samples clustering using expression profiles[73].  

      A common drawback of clustering is it always generates a clustering even when there is no 

real underlying clustering in the dataset. It is not apparent whether the clustering structure 
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reflects a true pattern in the data or just an artifact of the clustering algorithm. Methods based on 

resampling simulate perturbations of the original data and assess the stability of the clustering 

results [74-76].  

      We will introduce a few clustering methods run by WGCNA package in the following 

section. The method applied to our project is hierarchical clustering to identify stable samples 

clusters (modules) based on their gene expression.  

          

5.5 WGCNA package: Step-by-step Network Construction and Module 

Detection 

      Correlation networks are increasingly being used in bioinformatics applications. For example, 

weighted gene co-expression network analysis (WGCNA) is a systems biology method for 

describing the correlation patterns among genes across microarray samples. It can be used for 

finding clusters (modules) of highly correlated genes, for summarizing such clusters using the 

module eigengene or an intra-modular hub gene, for relating modules to external sample traits by 

using eigengene network methodology. Correlation networks facilitate network based gene 

screening methods that can be used to identify candidate biomarkers or therapeutic targets. These 

methods have been successfully applied in various biological contexts, e.g. cancer, mouse 

genetics, and analysis of brain imaging data.[77].  

       The WGCNA software package is a comprehensive collection of R functions for performing 

various aspects of weighted correlation network analysis. The package includes functions for 

network construction, module detection, gene selection, calculations of topological properties, 
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etc. Here we used the function of step-by-step network construction and module detection to find 

clusters of highly correlated genes.  

WGCNA analyze genes by the following steps: 

1) Assessing scale free topology and choosing the parameters of the adjacency function using the 

scale free topology criterion (Zhang and Horvath[78]) 

2) Computing the topological overlap matrix  

3) Defining gene modules using clustering procedures 

4) Summing up modules by their first principal component (first eigengene) 

5)  Relating a measure of gene significance to the modules  

6) Carrying out a within module analysis (computing intramodular connectivity) and relating 

intramodular connectivity to gene significance. 

7) Miscellaneous other functions, e.g. for computing the cluster coefficient. 

      Detecting clusters (modules) of closely related genes is an important step in genetics. The 

WGCNA package uses dissimilarity measure matrix  = (     to assign the cluster. The matrix D 

is symmetric whose diagonal elements equal to 0. There are a few concepts we shall introduce 

first.  

       Total object scatter: 

                 
 

 
     

 

   

 

   

      

 

   

 

   

 

       Within object scatter: 

                     
 

 
      

              

 

   

 

http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/FemaleLiver-02-networkConstr-man.pdf
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       Between cluster object scatter: 

                      
 

 
      

              

 

   

 

      To define the cluster assignment Cl, we need to look for the Cl that minimizes the within 

cluster object scatter WithinScatter (Cl, D) over all possible assignments of the n objects to k 

clusters.  

Mainly there are three clustering methods that are widely used in network application. They 

are as follows:  

1) Partitioning-around-medoids (PAM) clustering: this is a clustering procedure implementing 

an iterative algorithm for minimizing the within-cluster scatter WithinScatter (CL). A medoid is 

the most centrally located object inside a given cluster. PAM is a classical partitioning technique 

to cluster a set of data of n objects into k clusters[79]. k is the number of cluster where we need 

to specify first.  

The PAM algorithm is as follows: 

Step 1: The algorithm begins with k medoids where k is pre-specified. 

Step 2: Each of the remaining objects are assigned to the medoid that is least dissimilar. This 

result in a cluster assignment CL. Compute the within-cluster scatter WithinScaller(CL).  

Step 3: For each of the k cluster, determine the medoid i.e. the object which minimizes the 

average dissimilarity to the other objects in the cluster.  

Step 4: Compute the within cluster scatter                             after swapping the 

initial medoids with the new set of medoids. 

Step 5: If                             <                   , then swap the initial set of k 

medoids with the new set.  
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      Repeat the steps 2 to 5 till no change in the medoid assignments.  

2) Agglomerative Hierarchical Clustering: 

      It begins objects as a separate cluster and merges them into successively larger clusters. 

Hierarchical clustering creates clusters that are represented in a tree structure (dendrogram). The 

root of the tree consists of a single cluster containing all objects, and the leaves correspond to 

individual objects.  

      Agglomerative hierarchical clustering has 2 inputs: 1) a pair-wise dissimilarity measure. 2) 

inter-cluster dissimilarity which is based on the pair-wise dissimilarities between objects inside 

the clusters. There are 3 approaches to define the inter-cluster dissimilarity between clusters 

         and         .  

The average linkage hierarchical clustering: 

                            
                          

                    
 

Complete linkage clustering: 

                                                                  

Single linkage clustering: 

                                                                  

     In our project, we used the agglomerative hierarchical clustering and average linkage 

clustering, and it leads to robust clusters. The R function involved is flashClust that implements 

the algorithm of order n
2
 (n is the number of clustered objects).  

3) DynamicTreeCut method and R package 

     WGCNA package developed a “dynamic” branch cutting method based on analyzing the 

shape of the branches, as opposed to static. The algorithm is implemented in the 
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DynamicTreeCut R package[80]. There are two variants of the method. The first variant, invoked 

function cutreeDynamicTree, is a top-down algorithm that only input the cluster tree. The second 

variant, invoked using function cutreeHybrid, is a bottom-up algorithm that inputs both a cluster 

tree and dissimilarity measure. It is a hybrid between hierarchical clustering and partitioning-

around-medoids (PAM) clustering, and it improve the detection of outlying members of each 

cluster. 

      To implement WGCNA package, we first chose the soft thresholding power β to which co-

expression similarity is raised to calculate adjacency[78]. Zhang and Horvath proposed to choose 

the soft thresholding power based on the criterion of approximate scale-free topology. The 

criteria are to choose the lowest β that results in approximate scale free topology as measured by 

the scale free topology fitting index.  

                                            

       WGCNA package uses the function pickSoftThreshold that performs the analysis of 

network topology and aids the user in choosing a proper soft-thresholding power. β = 6 is the 

default choice for unsigned weighted networks. The results are shown in Figure 17. On the left 

side the Scale Free Topology index R
2
 is a function of different powers β. When R

2
 tend to go up 

with higher powers, there is not a strictly monotonic relationship. Instead, when the power = 20 

the curve first reaches a saturation point.  On the right side, the mean connectivity is strictly 

decreasing function of the power β. We chose power β =20 and it has R
2
 0.86 that is close to be 

0.9. The advantage of weighted network is that they are highly robust with regard to the power β, 

i.e. other choices also lead to similar modules. Notice that there is a trade-off between 
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maximizing the scale-free topology model fit and maintaining a high mean number of 

connectivity. Power that leads to high R
2 

tends to lead a network with very few connections.   

We also validate the choice of power β =20 from the free topology plot (Figure 18) using the 

functions softConnectivity. On the free topology plot the slope of the regression line 

between           and          is around -1. This shows that the connectivity really follows 

the scale-free law. 

Power Scale Free Topology R
2 

Mean Connectivity 

1 0.31 4712.49 

2 0.02 1881.79 

3 0.34 909.15 

4 0.53 494.02 

5 0.61 291.25 

6 0.65 182.45 

7 0.68 119.85 

8 0.71 81.79 

9 0.74 57.62 

10 0.79 41.7 

12 0.86 23.34 

14 0.88 14.03 

16 0.89 8.92 

18 0.90 5.94 

20 0.90 4.11 

22 0.91 2.95 

24 0.91 2.17 

26 0.91 1.64 

28 0.91 1.26 

30 0.92 0.99 
Table 28: list of scale free topology under different powers 
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Figure 18: Scale free topology for choosing the power β for the unsigned weighted correlation network. 

 

 

 
 

Figure 19: The free topology plot shows the slope of the regression line between log10 P(k)  and log10(k)  is 

around -1. 
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      Then to minimize effects of noise and spurious associations, we transformed the adjacency 

into Topological Overlap Matrix (TOM) and calculated the topological overlap matrix based on 

the corresponding dissimilarity.  

                         

      Following the TOM, we used hierarchical clustering to produce a hierarchical clustering tree 

(dendrogram) of genes. The R function we have used is called flashClust which a fast 

hierarchical clustering routine. The branch cutting we used is the dynamic tree cut from the 

package dynamicTreeCut. We then defined modules as branches of the trees, i.e. module 

detection involves cutting the branches of the tree. Figure 19 demonstrates the clustering 

dendrogram. Notice that in the dendrogram, each vertical line corresponds to a gene. Branches of 

the dendrogram group densely interconnected and highly co-expressed genes together. Module 

identification amounts to the identification of individual branches.  
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Figure 20: Dendrogram before correlated modules are merged 

 

      However some modules are very similar whose eigengenes are highly correlated. More 

specifically, Figure 20 visualizes the eigenegenes network representing the relationship among 

modules. The top panel shows a hierarchical clustering dendrogram of the eigengenes based on 

the dissimilarity                                 The bottom panel shows the eigengenes 

adjacency       
                            The red area represents strong correlations 

between modules (absolute value is obtained representing either positive or negative correlation), 

and the green area represents modules are more distinct. Since they are not distinct, we decided 

to merge them (shown in Figure 21).  

     

 
Figure 21: Visualization of the eigengenes network representing the relationship among the modules. 
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Figure 22: Dendrogram after correlated modules are merged. 

 

      We used step-by-step network construction and module detection method to produce a 

hierarchical clustering tree (dendrogram) of genes, and we grouped genes into 13 modules. In the 

dendrogram, each leaf, that is a short vertical line, corresponds to a gene. Branches of the 

dendrogram group together densely interconnected and highly co-expressed genes. Module 

identification amounts to the identification of individual branches. Modules are indicated by the 

color bands below the dendrogram. Table 29 shows the frequency of genes belongs to each 

module.   

Module Frequency 

Black 204 

Brown 2309 

Cyan 421 

Dark Olivegreen 1636 

Grey 6439 

Light Cyan 1685 

Magenta 352 

Medium Purple 101 
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Pale Turquoise 1776 

Royal Blue 775 

Salmon 103 

Turquoise 1547 

Yellow Green 181 

Table 29: Frequency of genes belongs to each module 

 

We use module eigengene to represent each module. The module eigengene of a given 

module is defined as the first principal component of the standardized expression profiles. 

Module eigengene is considered as the best summary of the standardized module expression data, 

and we used it to summarize the gene expression profiles of a given module [80-81].  

We would like to see how many of these modules are related to disease status. Since we have 

34 samples, in which 17 are carcinoma samples and 17 are normal samples. Among 13 modules, 

except modules Salmon and Grey, all the remaining 11 modules are significantly related to 

disease, which is illustrated by barplot of Figure 22. In Figure 23, the first color-band shows the 

result of step-by-step network construction and module detection. The second color-band 

visualizes the module significance from the disease status. “Red” color corresponds to positive 

gene significance (GS), green color indicates negative significance, and white color indicates no 

gene significance. Color saturation corresponds to GS strength. Turquoise module contains many 

genes that are highly negatively correlated with the disease status. Similarly, the third color band 

annotates genes significance by the disease status.  
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Figure 23: Module Significance by Disease Status. 11 mRNA modules are significantly related to disease 

status. Only Salmon module and Grey module (not shown here) do not behave gene significance. 

 

 
 

Figure 24: Hierarchical cluster tree (average linkage, dissTOM) of 17529 genes.  
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(The colour bands provide a simple visual look of module assignment. The first colour-band shows the result 

of step-by-step network construction and module detection. The second colour-band visualizes the module 

significance from the disease status.  The third colour-band visualizes the genes significance based on 

measurement from disease status. “red indicates a high positive correlation and “green” indicates a high 

negative correlation with disease status.) 

 

     Thus, mRNAs were clustered based on the dissimilarity matrix, so that mRNAs with similar 

profiles were clustered together. mRNAs closer on the dendrogram are in a close distance and 

share similar patterns and are thus likely functionally related.  

In total there are 319 miRNA in the renal carcinoma data set. Out of 319 miRNAs 257 could 

be lcoated to their putative genes targts through “TargetScan”. For each miRNA, we run the 

Fisher exact test by a 2*2 contingency table, where row is if genes belong to a given module or 

not, and column is if these genes are putative targets or not. We evaluated whether the putative 

genes are differentially present between a given module and other modules. We are particularly 

interested in the 1
st
 cell that belongs to a given module and putative gene targets.  If the Fisher’s 

exact test is significant, it suggests there is a different pattern between a given module and other 

modules in terms of putative gene targets. For this module, it has higher frequencies of mRNA 

targets than we expect by chance alone.  

We compute the Pearson correlation between miRNA expression level and mRNA 

eigengenes from each module, and choose those miRNA/mRNA who are highly correlated 

(absolute correlation > = 0.70). These constraints remove spurious matches, reducing relatively 

speculative “putative” seed match based mRNA targets in “TargetScan” databases to a highly 

robust subset of direct functional targets. We retained only those miRNAs who are significant in 

the Fisher’s exact test, and are also strongly correlated with module eigengenes. We found that 4 

mRNAs are significant and their correlations with module eigengenes are shown in Table 19.  

 

miRNA  Strongly Correlation P-value  
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correlated to 

mRNA Module 

between 

miRNA and 

Module 

Eigengene 

from 

Fisher’s 

Exact Test 

Belong to 

miRNA 

Module 

Hsa_miR_200c Mediumpurple -0.74 0.01 brown 

Hsa_miR_25 Magenta 0.73 0.01 blue 

Hsa_miR_362_5p Magenta -0.77 0.04 brown 

Hsa_miR_7 Yellowgreen -0.74 0.03 blue 
Table 30: 4 miRNAs who are significant in the Fisher exact test, and are also strongly correlated 

 

Figure 25 shows their relationship by the Fisher’s exact test. The cell counts that belong to a 

given module and putative genes have been reported, so does the p-value from the Fisher’s exact 

test. Figure 26 illustrates the heatmap of the correlation and p-values between 4 miRNAs and 

mRNA modules. 

 
Figure 25: Fisher’s exact tests between gene modules and miRNA.  The counts that belong to module i and 

putative targets and p-value have been reported. 
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Figure 26: Heatmap of correlations and p-values between miRNA and mRNA module eigengenes. Each cell 

indicates the correlation and p-values of miRNA and mRNA eigengenes. 

 

There are 319 miRNA in the renal carcinoma data set. The raw dataset is already log 2 

transformed and quantiled normalized. Out of 319 miRNA 257 could be located by their putative 

genes through “targetscan”. We applied signed co-expression step-by-step networks construction 

and module detection to analyze these 257 miRNAs across 34 expression arrays, and we define 6 

modules.  By default, we choose the power =12 for signed gene network analysis and we specify 

the minimum module size is 10.  

Figure 27 shows the hierarchical clustering dendrogram of miRNAs and they are grouped 

into 6 modules. The first colour-band shows the result of step-by-step network construction and 

module detection. Turquoise and grey modules contain most genes in the module.  The second 

colour-band visualizes module significance based on measurement from the disease status. The 



79 

 

third colour-band visualizes the genes significance based on measurement from disease status. 

Red indicates a high positive correlation and green indicates a high negative correlation with 

disease status.  Table 31 shows the frequency of miRNAs in each module.  

 

 

 
Figure 27: Hierarchical cluster tree (average linkage, dissTOM) of 257 genes. 

(The colour bands provide a simple visual look of module assignment. The first colour-band shows the result 

of step-by-step network construction and module detection. The second colour-band visualizes module 

significance based on measurement from disease status. The third colour-band visualizes the genes 

significance based on measurement from disease status. “red indicates a high positive correlation and “green” 

indicates a high negative correlation with disease status.)   

 

 

Module Frequency 

Blue 41 

Brown 22 

Green 13 

Grey 83 

Turquoise 79 

Yellow 19 
Table 31: Frequency of miRNA in Each Module 
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Figure 28 reveals the relationship between miRNA modules, mRNA modules and the disease 

status. The first row illustrates the miRNA significance with respect to the disease status. The 

first column shows the gene (mRNA) significance with regard to disease status. The remaining 

cells reveal the correlation and p-value between miRNA modules and gene modules.  

 

 
Figure 28: Correlations of genes modules, miRNA modules, and disease status. 

(The first row illustrates the miRNA significance with respect to the disease status. The first column shows 

the gene (mRNA) significance with regard to disease status. The remaining cells reveal the correlation and p-

value between miRNA modules and gene modules.) 

 

 

We use least absolute shrinkage and selection operator (LASSO) regression to explore the 

relationship between miRNA and mRNA, so that the most informative miRNA with respect to 

our interest could be finalized. In the LASSO regression, the predictors are miRNA module 

eigengene and the outcome is the mRNA eigengene. We performed LASSO regression for each 

mRNA module respectively. The result is shown in table 32.  
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We find that a miRNA “hsa_miR_25” is significantly anti-correlated with magenta mRNA 

module. “hsa_miR_25” belongs to the blue miRNA module, which is also predictive to magenta 

mRNA module through the LASSO regression.  

Module R
2 

Selected Modules Parameter Estimates 

Black 0.35 

Blue -0.75 

Turquoise -0.05 

Brown -0.58 

Green 0.29 

Yellow -0.73 

Grey 0.31 

Brown 0.47 

Turquoise 0.09 

Brown -0.38 

Yellow -0.41 

Grey 0.14 

Cyan 0.33 

Blue 1.07 

Turquiose -0.57 

Brown 0.98 

Green 0.34 

Yellow 0.29 

Grey -0.31 

Dark 

Olivegreen 
0.57 

Blue 1.10 

Turquoise -0.10 

Green 0.36 

Yellow 0.27 

Grey 0.03 

Grey 0.49 
Blue 0.70 

Yellow 0.22 

Lightcyan 0.42 

Blue 0.88 

Turquoise -0.19 

Green 0.38 

Yellow -0.03 

Magenta 0.74 
Blue 0.65 

Brown -0.16 

Medium 

Purple 
0.28 

Blue 0.54 

Yellow 0.25 

Grey -0.07 

Pale 

Turquoise 
N/A 

N/A  

(no modules are selected) 
N/A 

Royalblue 0.53 

Blue -0.70 

Brown 0.17 

Green -0.19 
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Salmon 0.60 

Blue -0.80 

Turquoise -0.09 

Green 0.08 

Yellow -0.37 

Grey 0.14 

Turquoise 0.79 

Blue -0.43 

Turquoise -0.21 

Brown 0.25 

Green 0.29 

Yellow -0.16 

Yellowgreen 0.20 
Brown -0.09 

Yellow -0.28 
Table 32: LASSO Regression where the outcome is module eigengene (mRNA), and the predictors are 

eigengene from 6 miRNA modules 

 
 

For each of the 13 mRNA modules, we have applied DAVID software to perform enrichment 

analysis and reported all the significant functions (p-value of Benjamini test < = 0.05) within 

each module. Table 33 shows the most significant term for each module.  

Module Category Term Benjamini P-value 

Black SP_PIR_KEYWORDS phosphoprotein 2.70E-07 

Brown 
SP_PIR_KEYWORDS 

 

alternative splicing 

 

1.50E-12 

 

Cyan 
SP_PIR_KEYWORDS 

 

phosphoprotein 

 

3.90E-07 

 

Dark Olivegreen 
SP_PIR_KEYWORDS 

 

phosphoprotein 

 

9.60E-05 

 

Grey 
SP_PIR_KEYWORDS 

 

alternative splicing 

 

9.10E-35 

 

LightCyan 
SP_PIR_KEYWORDS 

 

phosphoprotein 

 

4.80E-09 

 

Magenta 
GOTERM_BP_FAT 

 

immune response 

 

8.90E-10 
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Medium Purple3 
SMART 

 

IG 

 

7.90E-03 

 

Pale 
UP_SEQ_FEATURE 

 

compositionally 

biased region:Pro-rich 

 

1.90E-12 

 

Royal Blue 
SP_PIR_KEYWORDS 

 

phosphoprotein 

 

2.60E-11 

 

Salmon 
SP_PIR_KEYWORDS 

 

leber hereditary optic 

neuropathy 

 

2.20E-08 

 

Turquoise 
SP_PIR_KEYWORDS 

 

ion transport 

 

1.10E-06 

 

Yellowgreen 
SP_PIR_KEYWORDS 

 

phosphoprotein 

 

1.30E-03 

 

Table 33: the most significant term in each mRNA module. 

 

5.6 Multiple Testing Problem 

In microarray experiments a common issue is the identification of differentially expressed 

genes. The biological question of differential expression can be restated as a problem in multiple 

hypothesis testing: the simultaneous test for each gene of the null hypothesis of no association 

between the expression levels. A typical microarray experiment measures expression levels for 

thousands of genes simultaneously, large multiplicity problem are generated. When testing for 

potential differential expression across those conditions, each gene is considered independently 

from one another. i.e. a t-test is performed on each gene separately. A false positive or type I 

error, is defined as genes are falsely called differentially expressed when they are not. In this 

situation if type I error (α) is 0.05, it suggests 5% probability that gene’s mean expression level 

in one condition is different than the other by chance alone. If 10,000 genes are tested, 500 genes 
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would be called significant by chance alone. This is why it is important to correct the p-value of 

each gene when performing a statistical test on a group or genes.  

A number of recent articles have addressed the question of multiple testing in microarray. 

Such as Dudoit et al[17], Efron et al[82], Golub et al[1], Kerr, Martin and Churchill[83], 

Manduchi et al[84], Tusher, Tibshirani and Chu[85], Westfall, and Young[86].  

 

5.7 Multiple Testing Correction 

     Multiple testing correction adjusts the individual p-value for each gene to keep the overall 

error rate (or false positive rate) to be less than or equal to the user-specified p-value cutoff or 

error rate.  

Consider the problem of testing simultaneously m null hypotheses Hj, j =1, …, m, and denote 

R the number of rejected hypotheses. In the frequentist setting, this could be summarized by the 

following table. The specific m hypotheses are assumed to be known in advance, the numbers m0 

and m1 = m – m0 of true and false null hypotheses are known parameter, R is an observable 

random variable and S, T, U and V are unobservable random variables. In the microarray context, 

there is a null hypothesis Hj for each gene j and rejection of Hj corresponds to declaring the gene 

j is differentially expressed. V is type I errors or false positives, and T is type II error or false 

negatives.  

Number of Number not rejected Number rejected  

True null hypotheses U V (type I error) m0 

Non-true null 

hypotheses 
T (type II error) S m1 

 m-R R m 
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A few generalizations to the multiple testing situation are possible and particularly the 

following two concepts are important: 

1) The family-wise error rate (FWER) is defined as the probability of at least type I error, that is 

)1(Pr  VFWER  

2)  The false discovery rate (FDR) of Benjamini and Hochberg is the expected proportion of type 

I errors among the rejected hypotheses, that is )(QEFDR  , by definition RVQ / if 0R  

and 0 if 0R  

A multiple testing procedure is said to control a particular type I error rate at level α, if this 

error rate is less than or equal to α when the given procedure is applied to produce a list of R 

rejected hypotheses. FWER is controlled at level α by a particular multiple testing procedure if 

FWER and similarly for the other definitions of type I error rates.   

In this paper, we will introduce three commonly used multiple testing corrections: 

1) Bonferroni correction 

The p-value of each gene is multiplied by the number of genes in the gene list. If the 

corrected p-value is still below the error rate, the gene will be significant: 

Corrected p-value = p-value * n (number of genes in test) < 0.05. 

As a consequence, if testing 1000 genes at a time, the highest accepted individual p-value is 

0.00005, making the correction very stringent.  

Bonferroni is a very conservative method that simply divides the type I error by the number 

of tests performed. But it does not take into account the dependence structure between genes.  

2)  Westfall and Young Permutation 
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 Bonferron is a single- step procedure, where each p-value is corrected independently. The 

Westfall and Young[86] permutation method takes advantage of the dependence structure 

between genes, by permuting all the genes at the same time.  

 The Westfall and Young permutation follows a step-down procedure and combines with a 

bootstrapping method to compute the p-value distribution. The algorithm is as follows: 

1. For the original data, order the observed test statistics for each gene such that  

 

row gene |tsi| 

1 3 7.1 

2 2 3.4 

3 5 2.8 

4 4 0.2 

5 1 0.1 

 

2.For the b
th 

permutation, b=1,…B, permute the n columns of the data matrix X, and compute 

test statistics ti,b for each hypothesis. Below is the original data where T stands for treatment and 

C is the control.  

gene T T T C C C 

1 . . . . . . 

2 . . . . . . 

3 . . . . . . 

 

Permutation divides dataset into new “treatment” and “control” group.  

gene T C T C C T 

1 . . . . . . 

|||||| 21 smss ttt 
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2 . . . . . . 

3 . . . . . . 

  

3.Compute )|||,||,|max(||max ,,1,,,...1, bsmbsibsibslmlbi ttttu   , by assigning  

 

 

row gene |tsi| |tsi,b| ui,b 

1 3 7.1 1.8 u1,b= max(u2,b,|ts1,b|)=3.0 

2 2 3.4 2.1 u2,b= max(u3,b,|ts2,b|)=3.0 

3 5 2.8 3.0 u3,b= max(u4,b,|ts3,b|)=3.0 

4 4 0.2 0.8 u4,b= max(u5,b,|ts4,b|)=1.3 

5 1 0.1 1.3 u5,b=|ts5,b|=1.3 

 

4.Find the indicator function I (ui,b ≥ |tsi|), repeated the above step B times and the adjusted p-

values are:  

     row gene |tsi| |tsi,b| ui,b 

      I 

 (ui,b ≥|tsi|) 

∑ 

psi
*
= 

∑/1000 

1 3 7.1 1.8 3.0 0 48 0.048 

2 2 3.4 2.1 3.0 0 145 0.145 

3 5 2.8 3.0 3.0 1 138 0.138 

4 4 0.2 0.8 1.3 1 876 0.876 

5 1 0.1 1.3 1.3 1 935 0.935 
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5. Setting  

 

row gene |tsi| 
psi

*
 = 

∑/1000 
Psi

*
 

1 3 7.1 0.048 0.048 

2 2 3.4 0.145 0.145 

3 5 2.8 0.138 0.145 

4 4 0.2 0.876 0.876 

5 1 0.1 0.935 0.935 

 

This is the final adjustment of p-values, to keep the ranks consistent with the original p-values. 

3) Benjamini and Hochberg False Discovery Rate 

 A different approach to multiple testing was proposed in 1995 by Benjamini and Hochberg. 

They proposed a less conservative approach which calls for controlling the expected proportion 

of type I errors among the rejected hypotheses – the false discovery rate, FDR. 

Specifically, FDR is defined as )(QEFDR  , where RVQ /  if 0R  and 00 Rif . i.e. 

)0(Pr)0|/(  RRRVEFDR .  

Benjamini and Hochberg[87] derived the following step-up procedure to strong control the 

FDR for independent test statistics.  

1.The observed unadjusted p-values are ranked from smallest to the largest  

Test Raw 

1 0.0001 

2 0.0058 

3 0.0132 

4 0.0289 

mPPP  21
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5 0.0498 

6 0.0911 

7 0.2012 

8 0.5718 

9 0.8912 

10 0.9011 

 

2.Find k=max {k: p(k) ≤ kα/m}. In this example, the largest p-value to satisfy p(k) ≤ kα/m is p(3) 

Test Raw P(k) ≤ kα/m=k*0.05/10 

1 0.0001 0.005 

2 0.0058 0.01 

3 0.0132 0.015 

4 0.0289 0.02 

5 0.0498 0.025 

6 0.0911 0.03 

7 0.2012 0.035 

8 0.5718 0.04 

9 0.8912 0.045 

10 0.9011 0.05 

 

3.Thus, reject H0 corresponding to p(1),  p(2), and p(3) 

4.Adjusted p-values are:  

i.e.  
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       Example: 

Test Raw False Discovery Rate 

1 0.0001 0.0010 

2 0.0058 0.0290 

3 0.0132 0.0440 

4 0.0289 0.0723 

5 0.0498 0.0996 

6 0.0911 0.1518 

7 0.2012 0.2874 

8 0.5718 0.7148 

9 0.8912 0.9011 

10 0.9011 0.9011 

 

In the microarray setting, where thousands of tests are performed simultaneously and a fairly 

large number of genes are expected to be differentially expressed, FDR controlling procedures 

present a promising alternative to FWER approaches.  

5.8 WGCNA Alleviates Multiple Testing Problems 

In our research, we first applied WGCNA to construct network and detected modules for 

highly correlated genes and we found 13 modules. We then identified the strong correlation 
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between miRNA module eigengenes and mRNA module eigengenes. Through “TargetScan”, we 

located the putative gene targets for each miRNA. We next evaluate for each miRNA, whether 

its putative gene targets are differentially present between a given module and other modules by 

using the Fisher’s exact test. We retained miRNAs who are significant in the Fisher’s exact test, 

and are strongly correlated with mRNA module eigengenes. 

     Our method greatly alleviates the multiple testing problems that plague standard gene-centric 

methods [88]. Instead of testing the relationship between thousands of genes and individual 

miRNA, it focuses on the relationship between a few modules (here 13) and individual miRNA.  

Because the modules may correspond to biological pathways, focusing the analysis on module 

eigengenes (and equivalently intra-modular hub genes) amounts to a biologically motivated data 

reduction scheme. WGCNA starts from the level of thousands of genes, identifies clinically 

interesting gene modules, and finally uses intra-modular connectivity to suggest suitable targets. 

Because the expression profiles of intra-modular hub genes inside an interesting module are 

highly correlated typically dozens of targets. Although these targets are statistically equivalent, 

they may differ in terms of biological plausibility or clinical utility. In many applications, the list 

of module hub genes may be further narrowed down based on (i) biological plausibility based on 

external gene (ontology) information which is explored here in our paper. (ii) the availability of 

protein biomarkers for further validation. 

       We have carried out a simulation plan to compare our WGCNA method with the traditional 

methods, i.e. those methods that directly relate gene expression with miRNA expression to look 

for their correlation. We found our method provides much smaller false discovery rate. 

5.9 Simulation  
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For a fixed cut-off value d for a test statistic jz , we can obtain the true or realized FDR and 

its estimates as[74],  

)(ˆ/)(ˆˆ)(ˆ

)(ˆ/)()(

0

0

dPTdPFdRFD

dPTdFPdFDR








  

Where 0 is the proportion of equally expressed genes among all genes, and 0̂ is its 

estimator. FP is the number of false positive genes, i.e., the number of equally expressed genes 

but claimed as differentially expressed genes, PF ˆ is the estimated number of false positive genes. 

)(ˆ dPT is the total number of genes claimed as differentially expressed by a certain criteria.  

In order to obtain PF ˆ , we need to estimate the distribution of the test statistic iZ under the 

null hypothesis that gene i is an equally expressed gene. Rather than assuming a parametric 

distribution for the null distribution of iZ , a class of non-parametric methods has been proposed 

to estimate it empirically. The idea is to impute the data and calculate the null statistics iZ in the 

same way as calculating iZ , but based on the permuted data.  

Under the null hypothesis, the empirical distribution of the null statistics can be used to 

approximate the null distribution. In our context, the dimension of gene matrix X is 34* 17529. 

Rows correspond to samples where the first 17 are controls and the remaining 17 are cancers.  

Columns represent for each gene.  

Under null hypothesis, we can permute the gene data by randomly permuting the order of 

each column. And we performed a large number of random permutations (B times). Calculating 

the same test statistic from the b-th permuted data results in the null statistic )(b

iZ  for b = 1, …, B 

and i = 1, …, G. For any given cut off value d > 0, if we claim any gene i satisfying dZ i ||
 
to 

be significant, we estimate the true positive (TP) numbers and false positive (FP) numbers as: 
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BdZidPF

dZidPT

b

i

i

/}||:{#)(ˆ

}||:{#)(ˆ
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


 

We plug )(ˆ dPT and )(ˆ dPF to calculate FDR(d) and )(ˆ dRFD . However, owing to the 

difficulty of assigning p-values, the estimation of π0 remains challenging. Guo and Pan[89] 

pointed out that permutation method would over-estimate p-values, and thus lead to the 

overestimation of π0. Dalmasso et al[90] use a method to estimate only an upper bound of π0. 

Since estimation of π0 is itself an unsettled research question, and it’s not our focus in this 

context, we bypass it in the simulation. For the simulation result, we use true π0 which represents 

the ideal performance of the standard method to replace 0̂ .  We regard this is a constant and all 

the simulation results are proportional to it. 

   

Simulation 1: WGCNA method 

The true datasets: a miRNA dataset that includes 257 miRNA, and a mRNA dataset that 

includes 17529 genes. We applied step-by-step network construction and module detection to the 

gene matrix and 13 modules are defined. We choose the miRNAs who are strongly correlated 

with each module eigengene (the absolute correlation > =0.7). By “TargetScan” we locate the 

putative genes for each miRNA.  For each miRNA, we evaluated whether its putative gene 

targets are differentially present between a given module and other modules by the Fisher’s exact 

test. We retained miRNAs who are significant in the Fisher’s exact test, and are strongly 

correlated with module eigengenes. We observed 4 miRNAs falling into our criteria.  

Then we permute column of gene matrix for one time and apply the same procedure to the 

permuted gene matrix. We count the number of significant miRNAs. Following this, we repeat 

this procedure for 1000 times. We sum the number of significant miRNAs through the 
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permutations and divide them by 1000. In total 36 miRNAs have been chosen. Thus we obtain

036.01000/36)(ˆ dPF . The false discover rate = 0.036/4 = 0.009.  

When we change the cut off value of absolute correlation to be greater or equal to 0.6, we 

observe 21 miRNAs that are strongly correlated with their putative genes targets. Through 1000 

permutation, we find in total 303 miRNAs are significant. So the estimated false positive rate is 

303.01000/303)(ˆ dPF . The false discover rate is calculated as: 0.303/21 = 0.014. Similarly, 

when we change the cut off value of absolute correlation to be greater or equal to 0.5, we observe 

47 miRNAs that are strongly correlated with their putative genes targets. Through 1000 

permutation, we find in total 1427 miRNAs are significant. The estimated false positive rate is

427.11000/1427)(ˆ dPF  and the false discover rate is calculated as: 1.427/47 = 0.031.  

Fisher’s Exact Test 

Absolute Correlation 

Between miRNA Expression 

Level and mRNA Module 

Eigengenes 

False Discovery Rate 

P-value <= 0.05 >=0.7 0.009 

P-value <= 0.05 >=0.6 0.014 

P-value <= 0.05 >=0.5 0.031 

Table 34: Simulated FDR from our method 

 

Simulation 2: traditional method 

Following the tradition method such as MMIA[40], we choose the miRNAs who are strongly 

correlated with gene expression (the absolute correlation > = 0.7). We then go through 

“TargetScan” to locate the putative genes for each miRNA. We observed 37 miRNAs that are 

strongly correlated with their putative genes targets.   

Then we permute column of gene matrix for one time and apply the same procedure to the 

permuted gene matrix. We count the number of miRNAs that are strongly correlated with genes. 
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Following this, we repeat the same procedure for 1000 times. We sum the number of significant 

miRNAs through the permutations and divide them by 1000. In total 2541 miRNAs have been 

chosen. Thus we obtain 541.21000/2541)(ˆ dPF . The false discover rate is calculated as: 

2.541/37 = 0.068.  

When we change the cut off value of absolute correlation to be greater or equal to 0.6, we 

observed 88 miRNAs that are strongly correlated with their putative genes targets. Through 1000 

permutation, we find in total 16912 miRNAs are significant. So the estimated false positive rate 

is 912.161000/16912)(ˆ dPF . The false discover rate is calculated as: 16.912/88 = 0.192. 

Similarly, when we change the cut off value of absolute correlation to be greater or equal to 0.5, 

we observed 164 miRNAs that are strongly correlated with their putative genes targets. Through 

1000 permutation, we find in total 82515 miRNAs are significant. The estimated false positive 

rate is 515.821000/82515)(ˆ dPF  and the false discover rate is calculated as: 82.515/164 = 

0.503.  

Absolute Correlation Between miRNA 

and mRNA Expression 
False Discovery Rate 

>=0.7 0.068 

>=0.6 0.192 

>=0.5 0.503 

Table 35: Simulated FDR from traditional method   

 

Table 36 below lists and compares overall false discovery rates produced from both our 

method and the traditional method. Our method provides much smaller false discovery rates than 

the tradition method. By applying WGCNA to define modules for highly correlated genes first 

then relate module eigengenes to miRNAs, we greatly relieve the multiple testing problems and 

lower the false discovery rates inherent in microarray data analysis.  
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Absolute Correlation 

Between miRNA and 

Module Eigengene/Gene 

Expression 

False Discovery Rate from 

Our Method 

 

False Discovery Rate from 

Traditional Method 
 

>=0.7 0.009 0.068 

>=0.6 0.014 0.192 

>=0.5 0.031 0.503 

Table 36: Comparison of False Discovery Rate from Both Methods 

 

5.10 Results and Conclusion  

 

Weighted gene co-expression network analysis (WGCNA) is a systems biology method that 

describes the correlation patterns among genes across microarray samples. We used it to find 

clusters (modules) of highly correlated genes, to summarize clusters using the module eigengene, 

and to relate modules to disease status by using eigengene network methodology.   

We first perform the step-by-step network construction and module detection of highly 

correlated genes. We found 13 modules. We then identify the strong correlation between miRNA 

and module eigengenes. Through “TargetScan”, we locate the putative genes for each miRNA. 

We then evaluate for each miRNA, whether its putative genes are differentially present between 

a given module and other modules by using the Fisher’s exact test. We retained miRNAs who 

are significant in the Fisher exact test, and are strongly correlated with module eigengenes. 

Next we relate modules to disease status by using eigengene network methodology, 

and we find that 11 modules are strongly related with disease status. Within these modules, 

enrichment analyses are implemented by DAVID.  

We also run step-by-step network construction and module detection of miRNAs and  

define 6 modules. We use LASSO regression to explore the relationship between miRNA and  
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mRNAs. The predictors are miRNA module eigengene and the outcome is the mRNA module 

eigengene.  We find that a miRNA “hsa_miR_25” is significantly anti-correlated with magenta 

mRNA module. “hsa_miR_25” belongs to the blue miRNA module, which is also predictive to 

magenta mRNA module through the LASSO regression. Its putative gene targets are found and 

integrated from the renal carcinoma dataset.    

The advantage of using the step-by-step network construction and module detection by the 

WGCNA package is: WGCNA package partitioned tons of genes into a few modules (clusters) 

in which genes are closely related and share similar features and are thus likely functionally 

related. It does not require the number of clusters to be pre-specified and has nice visualization 

properties with dendorgram and heatmap. By first identifying the modules from WGCNA, it 

saves the huge work of computing the correlation between each miRNA and genes.   

In addition, our method greatly alleviates the multiple testing problems that plague standard 

gene-centric methods. Instead of testing the relationship between thousands of genes and 

individual miRNA, it focuses on the relationship between a few modules (here 13) and 

individual miRNA.  Because the modules may correspond to biological pathways, focusing the 

analysis on module eigengenes (and equivalently intramodular hub genes) amounts to a 

biologically motivated data reduction scheme. WGCNA starts from the level of thousands of 

genes, identifies clinically interesting gene modules, and finally uses intramodular connectivity 

to suggest suitable targets.  

We carried out the simulation plan and compared the false discovery rate produced from our 

method with other currently available software such as MMIA. Our method successfully relieves 

the multiple comparison problem and provides much smaller false discovery rate.  
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Weighted gene co-expression network analysis and gene ontology data provides a novel 

integrative view of miRNA and their prediction targets. We described a simple and reliable 

method to identify direct putative genes of miRNA in a renal carcinoma dataset. But this method 

could be extended to other cancer datasets. We applied the WGCNA package and applied 

constraints that miRNA and mRNA are strongly correlated, to remove spurious matches and 

identify a subset of putative gene targets for each miRNA, and greatly reduce the false discovery 

rate commonly existing in microarray setting. This gives a guidance to better understand the 

relationship between miRNAs and genes as well as their joint behaviors. 
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