
UC Davis
Computer Science

Title
Map navigation app with social posting

Permalink
https://escholarship.org/uc/item/38h991dg

Author
Xu, Jian

Publication Date
2016-11-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/38h991dg
https://escholarship.org
http://www.cdlib.org/

	 1	

Map navigation app with social posting
Jian (Kevin) Xu

1. Introduction

 MapNav is a location based image social app for the iPhone. For activities like

Picnic Day at UC Davis, people might be interested to discover appealing events that are

not widely promoted. Using MapNav, they could take and post photos in a map (as

posters), and others could like or dislike the photo post (as browsers). Users can choose

interesting events to go to by browsing the posts near their location, or they can view a

rank board showing all the posts.

 This map-based social network application can be useful in the scenario of

navigation in general. Such navigation can be city navigation, museum navigation and

campus navigation, etc. By posting indoor photos, MapNav fills a need left open by tools

like Google Earth. The accuracy of indoor locations measured by GPS will be slightly

lower compared to outdoor locations because of GPS signal attenuation caused by

construction materials. However, indoor location service can be improved using hybrid

technology, which incorporates Wi-Fi, GPS, cell towers, IP address and device sensors

[1].

 There are some commercial products that are built with map and social features.

Spottesetters combines friend’s recommendations, information from social media and

online reviews with a map feature [2]. CityMaps is an urban planner mapping the New

York City and adding tags to different locations based on popularity and

recommendations [3]. Met is a museum navigation app allowing pin the location of

events, exhibitions and artworks [4]. To make a difference, MapNav can target to the

campus navigation or some temporary events like Picnic Day or career fair.

 The current work is a frontend implementation. A server will be implemented as a

backend in the future to store and update posts. The backend work needs to solve the

problem that which and how many photo posts should be pushed to the user’s map view,

according to the user’s location and activity relevance.

	 2	

2. Methods

 MapNav is written in Objective-C with Xcode with 4 basic screens: (1) photo shoot

and edit, (2) photo gallery and marker function, (3) like and dislike feature for the post in

the map view, (4) ranked list of photo posts.

2.1 Photo shoot and edit

 A photo of an interesting event can be taken using the iPhone camera. To access the

iPhone camera, the user should add a new photo into the photo gallery. This could be

done by tapping “+” button at the upper right corner of the navigation bar (As is shown in

Figure 1.a). When the “+” is clicked, a grey photo background is added into the photo

gallery. Then tapping the grey photo background will lead to the detailed editing interface

in 3.2. There is a camera button at the left bottom in the shoot and edit view. In the photo

and edit interface, a post name and description can be added. The location where the

photo is taken will be recorded as latitude and longitude, and then be saved as metadata

for the post.

Figure 1.a View of shoot and edit

2.2 Photo gallery of browsing photos and marker method

 A photo gallery is implemented for users to browse the photos. For a clear view

doing browsing, each photo is presented at a large size. The post name is positioned at the

	 3	

middle bottom of each photo, and a mark button is positioned at the right bottom of each

photo.
 In addition to adding a new photo, users can also edit, and delete posts in the photo

gallery. To edit name and description of a photo, detailed editing interface (the third

picture in Figure 1.a) can be accessed at anytime by tapping the photo. To delete a photo

in the gallery, user taps the “Edit” button in the upper left of navigation bar. A red delete

button appears. Tapping the red delete button removes the photo from the photo gallery.

Tapping the marker button adds the photo post to the map view.

Figure 1.b Buttons and states in the photo gallery

2.3 Like and Dislike feature for a post in the map view

 After the mark button is tapped in the photo gallery, a photo post is marked in the

map interface. The map view is implemented using the Google Maps API. The markers

remain at a constant size during zoom of the map view.

 When a marker post is tapped, a post view information window pops out in the map

view. A photo with a larger size and the post name will appear in the window. Also, like

and dislike buttons and the numbers of likes and dislikes are displayed in the window.

	 4	

Figure 1.c Information window, like and dislike buttons

2.4 Rank algorithms for photo posts

 Three rank lists are provided, which are (1) ranking by likes, (2) ranking by LBW

(lower bound Wilson algorithm) and (3) ranking by weighted rating. A screenshot of

ranked items view is in Figure 8.

3. App framework: Model-View-Controller

 MapNav follows the MVC (Model-View-Controller) paradigm. In MVC, every

object is either a model object, a view object, or a controller object. View objects are

visible to users. Examples of view objects are buttons and text fields. Model objects hold

data. Controller objects configures views the user sees and makes sure that the view and

model objects are in sync.

 As is shown in Figure 2, there are 4 basic views, which are (1) map view for

displaying markers and user current location, (2) photo gallery view for adding and

setting markers, (3) marker editing view for getting image and editing name of marker,

(4) ranking view for ranking the marker post according to their likes and dislikes.

Corresponding to the 4 views, there are 4 basic controllers, which are (1)

MapNavViewController, (2) ItemsViewContoller, (3) DetailViewController, (4)

RankItemsViewController. A tab bar at the bottom is set between the 3 views (1), (2) and

	 5	

(4) by at each screen. The shoot and edit view is accessed via photo gallery view by

tapping a photo. To go back, the user can either use the tab bar, or the top navigation bar.

Figure 2. Model-View-Controller framework for MapNav

	 6	

3.1 Data storage in model and ItemsViewController

Figure 3. Model and ItemsViewController

 The ItemsViewController is implemented as the basic data controller in MapNav,

because it controls the data in the model. The basic data structure is a decoded image and

a set of strings, including name, dateCreated, itemKey, longitude and latitude. Archiving

to the phone is used to record some of the object’s properties and save them to the

phone’s file system. Two iOS methods encodeWithCoder: and initWithCoder: are

implemented for archiving. As a result, the photos and marker names can be stored

locally in the iPhone after the app is closed.

	 7	

3.2 Marker information editing and DetailViewController

Figure 4. Methods in DetailViewController

 After tapping a photo in the photo gallery, the app brings up the shoot and edit view.

The two basic functions are setting the marker name and taking a photo while recording

the location. The associated methods are coded in the DetailViewController. The marker

name is input to the nameField (as is shown in Figure 4) and will be stored in the marker

item after going back to the photo gallery view. When the camera button is tapped, the

user’s current location is recorded as longitude and latitude. Then an iOS method

imagePickerController: will run a camera function to take and store a photo.

 3.3 Marker setting in mapView and MapNavViewController

 The MapNavViewController provides the interface from the backend Google Maps

server. It displays the default map view, which is set to the main campus of UC Davis.

Also, it uses several location methods to get the user’s current location. The longitude

and latitude are passed to ItemsViewController after the photo is taken. When the marker

button is tapped, variables markerItemName, markerItemImage, markerItemLongitude,

markerItemLatitude are passed back from ItemsViewController to the

MapNavViewController to place the marker into the map view (as is shown in Figure 5).

	 8	

Figure 5. Flow of marker placement in map view and

 the data structure of one marker item

	 9	

 In the map view, after a marker is tapped, an information window pops out. In the

window, the marker name, image, number of likes and dislikes are displayed. The default

Google Maps API has a window method, but it cannot provide interactive content (like

button events) in the window. Therefore, the window is implemented separately using the

location information of the marker. When the map is scrolled horizontally or vertically,

the information window will move along with the marker position. This is achieved by

self-written methods including didChangeCameraPosition and idleAtCameraPosition.

Figure 6. Information window for one marker in the map view

 The Google Maps API provides a data structure for each marker to store additional

information besides the marker name. It is called .userData and implemented as a set of

key-value pairs. The userData we create has bRatingNumber and IBWScoreNumber that

are computed and used for ranking marker posts. Also, the time stamps are recorded in

UTC (Coordinated Universal Time) in ISO 8601 format, such as "yyyy-MM-

dd'T'HH:mm:ss.SSS'Z'". The time stamps include the marker setting time, likes tapped

time stored in likesTimeStampArray and dislikes tapped time stored in

dislikesTimeStampArray. One example of .userData for one marker is shown in Figure 7.

	 10	

Figure 7. Data Structure example of one marker with 8 likes and 3 dislikes

3.4 item rank algorithms and RankItemsViewController

 Three sort algorithms are implemented in the MapNavViewController. Then the

result arrays are passed to the RankItemsViewController, which displays the ranked items

in the form of UITableView, which is a widely used view format in iOS to display a

single column of data with a variable number of row. The three sort algorithms are (1)

like sort, (2) weighted rating and (3) LBW sort.

 Like sort orders the photos by the number of likes for each post. Weighted rating is

based on rating = likes – dislikes.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑎𝑡𝑖𝑛𝑔 =
𝐴𝑣𝑒𝑅𝑎𝑡𝑖𝑛𝑔 ∗ 𝐴𝑣𝑒𝑉𝑜𝑡𝑒𝑠 + 𝑇ℎ𝑖𝑠𝑅𝑎𝑡𝑖𝑛𝑔 ∗ 𝑇ℎ𝑖𝑠𝑉𝑜𝑡𝑒𝑠

𝐴𝑣𝑒𝑉𝑜𝑡𝑒𝑠 + 𝑇ℎ𝑖𝑠𝑉𝑜𝑡𝑒𝑠

in which:

AveRating	=	(sum	of	all	likes	–	sum	of	all	dislikes)	/	number	of	photo	posts,	

AveVotes	=	(sum	of	all	likes	+	sum	of	all	dislikes)	/	number	of	photo	posts,	

ThisRating	=ThisLikes	–	ThisDislikes,	

ThisVotes	=	ThisLikes	+	ThisDislikes,	

ThisLikes:	number	of	likes	of	this	post,			

ThisDislikes:	number	of	dislikes	of	this	post.	

	 11	

	

 Another ranking algorithm based on the fraction of likes is also implemented. The

algorithm is called lower bound of Wilson score (LBW Score). It represents a confidence

interval for a Bernoulli parameter. The LBW Score algorithm can work well even when

the vote number of a post is low. The rank method is developed and revised in in Evan

Miller’s blog [5], which also mentions its application in Yelp, Reddit, and Digg.

	

𝐿𝐵𝑊 𝑆𝑐𝑜𝑟𝑒 =
𝑇ℎ𝑖𝑠𝐿𝑖𝑘𝑒𝑠 + 1.9208

𝑇ℎ𝑖𝑠𝑉𝑜𝑡𝑒𝑠 −
1.96 ∗ 𝑇ℎ𝑖𝑠𝐿𝑖𝑘𝑒𝑠 ∗ 𝑇ℎ𝑖𝑠𝐷𝑖𝑠𝐿𝑖𝑘𝑒𝑠

𝑇ℎ𝑖𝑠𝑉𝑜𝑡𝑒𝑠 + 0.9604
𝑇ℎ𝑖𝑠𝑉𝑜𝑡𝑒𝑠

1+ 3.8416
𝑇ℎ𝑖𝑠𝑉𝑜𝑡𝑒𝑠

Figure 8. Ranked items view

	 12	

4. Discussion

4.1 Use of dislike button

 A dislike button is implemented in MapNav. Large social network products like

Facebook and Linkedin do not include dislike. The main reason is that if the dislike

button is not used sensibly, it may lead to negativity [6]. For an individual user, the

posting and sharing might be inhibited by dislikes. For commercial users, many dislikes

feedbacks might hurt the brand reputation, even if the dislikes may come for instance

from competitors.

 Facebook added emotion buttons recently [7]. Seven emojis (Like, Love, Haha,

Yay, Wow, Sad, and Angry) were added as a new feature. The emojis enable Facebook

user to express their feelings more specifically. Negative feedback such as sad or angry

targets the post content itself, while “dislike” is a more general negative feedback, which

can be interpreted as the dislike of the post or even of sharing behavior of the poster.

 Other platforms like YouTube use both positive and negative feedbacks to rate the

quality of content. “Dislike” is useful for rating. Also, it is not personal since the video

upload users and the viewers are mostly anonymous. In MapNav, the dislike button is

used for rating activities. For example, activities with long waiting time may get many

dislike votes thus having a lower ranking.

4.2 Comparison of ranking algorithms

Table 1. Comparison of different rank algorithms

Algorithm Comments

Score = Likes – Dislikes

Post A: 80 likes, 20 dislikes,
Score = 60.
Post B: 550 likes, 450 dislikes,
Score = 100.
Post B will be ranked above Post
A, even if the percentage of likes
is higher for Post A.

 Score = Likes / (Likes + Dislikes)

Post A: 2 likes, 0 dislikes,
Score = 1.
Post B: 98 likes, 2 dislikes,
Score = 0.98.
Post A will be ranked above Post
B, even if there is just 1 like for it.

	 13	

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑎𝑡𝑖𝑛𝑔 =
𝐴𝑣𝑒𝑅𝑎𝑡𝑖𝑛𝑔 ∗ 𝐴𝑣𝑒𝑉𝑜𝑡𝑒𝑠 + 𝑇ℎ𝑖𝑠𝑅𝑎𝑡𝑖𝑛𝑔 ∗ 𝑇ℎ𝑖𝑠𝑉𝑜𝑡𝑒𝑠

𝐴𝑣𝑒𝑉𝑜𝑡𝑒𝑠 + 𝑇ℎ𝑖𝑠𝑉𝑜𝑡𝑒𝑠

Post A: 20 likes, 0 dislikes,
Post B: 100 likes, 70 dislikes,
Post B will be ranked above Post
A, since it has higher ratings
votes. However, large number of
dislikes is not reflected.

Score = Lower bound of Wilson score confidence
interval for a Bernoulli parameter. [5]

in which p̂ is the observed fraction of positive
ratings, zα/2 is the (1 - α/2) quantile of the standard
normal distribution, and n is the total number of
ratings (total likes + total dislikes).

Based on fraction algorithm.
Solved the problem when the total
voting number is small. If the
setting confidence to 95%, the
equation will compute the lower
bound of "real" fraction of
positive ratings, when there is
95% chance it is correct (zα/2 can
be set to 1.96 when confidence
level is 0.95).

Figure 9. Example of difference of 3 Controller ranks

 As is shown if Figure 9, the LBW rank algorithm ranks the 5-0 item to the first one,

which has the potential of ending up with the most like ratio. The disadvantages of the

	 14	

other two algorithms are that the like-algorithm only considers the number of likes and

W-Rank may prefer the item with more votes, even if it may have lower like ratio.

4.4 Future work

1. MapNav can be integrated with other social app like Facebook, Twitter or Instagram in

order to access more photo sources. This is necessary as a start point to build content.

2. When zooming out in the map view, how to present the photo that is more relevant.

When the zoom of map view to a certain point, how many photo frames to show? For the

ones that are not showing, how to overlay them? An algorithm based on location

(longitude and latitude) and post popularity (likes and dislikes) should be designed.

3. Considering more parameters like time of marking, and time of views, how should the

photo post be updated?

4. Create objects to contain photos about a certain activity. People would like to see posts

that are relevant to a special event.

5. Implement a navigation function. It could be actuated by tapping a cell in the rank

view or a marker in the map view. A route lead from the user’s current location to the

marker location could be displayed.

4.5 Reason for crash

 During the test of MapNav, the app crashes sometimes when taking a photo. After

tapping the camera button in the marker editing view. A black view in the photo interface

shows and the app exits. This happens sometimes for the items that are created early, and

will definitely happen when there are a number of items. The message “Snapshotting a

view that has not been rendered results in an empty snapshot. Ensure your view has been

rendered at least once before snapshotting or snapshot after screen updates.” appears.

This is a iOS bug present since iOS 8.0 when the iOS method UIImagePickerController

was introduced [8].

 For general reasons of app crash besides coding and design errors by programmer,

there are other reasons that may lead an iOS app to crash, such as is shown in Table 2.

The crash rates of iOS are 3.15% for iOS 7, 2.83% for iOS 8 and 2.74% for iOS 9. (May

29, 2016) [9]. Table 2 introduces some general reasons for an iOS app to crash.

	 15	

Table 2. Reasons for an iOS app to crash

Reasons of crash Explanation

Low memory If memory pressure exists, the system will

terminate background process to free up

some memory. If there is still not enough

memory, the current process will be

terminated [10].

Network changes

Switch between cellular network and WiFi

may cause instability.

Device incompatibility

Some size variables set as a particular

number for iPhone 6 may exceed the frame

of window size in iPhone 5.

Browser incompatibility

Third-party mobile version browser like

chrome is not tested in iOS, which may

cause potential risk for crash [11].

Database contention

Bad queries and excessive sessions will

slow performance thus causing stalk of app

[11].

Reference

[1] “Skyhook Wireless,” Wikipedia, the free encyclopedia. 17-May-2016.
[2] “Apple Acquires Social Map App Spotsetter,” Global Dating Insights, 09-Jun-2014.

[Online]. Available: http://globaldatinginsights.com/2014/06/09/09062014-apple-
acquires-social-map-app-spotsetter/. [Accessed: 23-May-2016].

[3] J. Biggs, “CityMaps Launches Official iOS App That Aims To Make Mapping
Social,” TechCrunch. .

[4] “The Met App,” The Metropolitan Museum of Art, i.e. The Met Museum. [Online].
Available: http://www.metmuseum.org/visit/met-app. [Accessed: 24-May-2016].

[5] “How Not To Sort By Average Rating.” [Online]. Available:
http://www.evanmiller.org/how-not-to-sort-by-average-rating.html. [Accessed: 20-
May-2016].

[6] P. Sawers, “Facebook Dislike Button: Why it Will Never Happen,” The Next Web,
10-Oct-2010. [Online]. Available:

	 16	

http://thenextweb.com/socialmedia/2010/10/10/facebook-dislike-button-why-it-will-
never-happen/. [Accessed: 20-May-2016].

[7] “Facebook explains how its new Like and Dislike emojis will impact post ranking,”
VentureBeat. [Online]. Available: http://venturebeat.com/2015/10/08/facebook-
explains-how-its-new-like-and-dislike-emojis-will-impact-post-ranking/. [Accessed:
13-May-2016].

[8] “objective c - iOS 8 Snapshotting a view that has not been rendered results in an
empty snapshot - Stack Overflow.” [Online]. Available:
http://stackoverflow.com/questions/25884801/ios-8-snapshotting-a-view-that-has-
not-been-rendered-results-in-an-empty-snapshot. [Accessed: 30-May-2016].

[9] “iOS Crash Rate by Version.” [Online]. Available: https://data.apteligent.com/ios-
crash-rate-by-version. [Accessed: 31-May-2016].

[10] “Technical Note TN2151: Understanding and Analyzing iOS Application Crash
Reports.” [Online]. Available:
https://developer.apple.com/library/ios/technotes/tn2151/_index.html. [Accessed: 31-
May-2016].

[11] “Top 10 reasons your iOS and Android apps crash - TabTimes.” [Online].
Available: http://tabtimes.com/top-10-reasons-your-ios-and-android-apps-crash-
4783/. [Accessed: 31-May-2016].

	
	
	
	

