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Abstract
Using Neuroimaging to Predict Behavioral Outcomes

By 

Susan Whitfield-Gabrieli

Doctor of Philosophy in Psychology
University of California, Berkeley

Professor Silvia Bunge, Chair

The emerging field of “neuroprediction” or “predictive analytics” in mental health has promise 
for revolutionizing clinical practice by moving towards personalized or precision medicine. The 
core idea is that brain measures at a given time may predict individual future behavioral 
outcomes, presumably because specific structural or functional brain characteristics constrain the 
trajectories of evolving behavior over time. For basic science, discovery of such brain measures 
identifies particular neural circuits that constrain specific future behaviors. For clinical science, 
such brain measures may support identification of vulnerabilities that could be treated 
preventively to minimize poor mental health outcomes.     

In this thesis, I first provide an overview of the key questions and challenges in the field
of predictive analytics, aiming to (1) propose general guidelines for predictive analytics projects 
in psychiatry, (2) provide a conceptual introduction to core aspects of predictive modeling 
technology, and (3) foster a broad and informed discussion involving all stakeholders including 
researchers, clinicians, patients, funding bodies and policymakers. Next, I discuss two strategies 
for identifying, in a developmental context with children, brain vulnerabilities for future mental 
health difficulties. First, I used resting state functional connectivity, measured via functional 
magnetic resonance imaging (fMRI), to discover whether children without depression but with 
heightened familial risk for major depression disorder (MDD) had brain differences indicative of
risk for depression. At-risk children, compared to children not at familial risk, exhibited 
significant differences in functional brain connectivity in three brain networks. Classification 
between at-risk versus control children based on resting-state connectivity yielded high accuracy 
with high sensitivity and specificity that was superior to traditional clinical rating scales.
Second, I examined whether variation in functional connectivity could predict the trajectory of 
clinical symptomology over the ensuing four years in a longitudinal study with a normative child 
sample. Variation at age 7 in specific networks predicted individual children’s developmental 
trajectories at age 11 towards attentional problems characteristic of Attention Deficit
Hyperactivity Disorder (ADHD) or internalizing problems characteristic of MDD. The predictive 
network for internalizing problems was one of the networks that had been atypical in children at 
familial risk for MDD. These studies identify variation in brain networks indicative of risk for 
two of the most common disorders of adolescent mental health, and suggest that such measures 
may support targeted early and preventive interventions. The conclusion of the thesis provides a 
discussion of these findings, future directions, theoretical implications, clinical applications and 
ethical considerations. 
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INTRODUCTION

The value of brain-based prediction for mental health derives from the great need to better help 
people with mental health challenges. Despite much progress in basic neuroscience, from 
optogenetics to gene editing, and despite over 20,000 MRI publications on neuropsychiatric 
disorders (and many more publications using other brain measures), there has been little progress 
in diagnosing or treating mental health disorders. Indeed, there is evidence for worsening mental 
health in the population. For example, suicide is perhaps the most tragic outcome of failed treatment, 
and suicide rates in the United States have steadily climbed over this century, tripling in girls ages 
10-14.  

Unfortunately, there is to date no biologically informed basis by which to select an effective 
treatment program for an individual and it can take years to get a successful intervention, if ever. 
Moreover, diagnosis is typically done by crisis, often too late to substantially alter the trajectory of 
the course of the disorder. Two potential relatively near-term benefits of human neuroscience are
1) neuroprediction (predictive analytics) aimed at personalized or precision medicine for selection 
of an optimal treatment, and 2) improved identification of individuals at risk for mental health 
difficulties, so that preventive treatment can reduce or even avert future difficulties.

In this thesis, I first provide an overview of the key questions and challenges in the field of 
predictive analytics in mental health. Next, I describe strategies for identifying brain vulnerabilities 
for future mental health difficulties in children at familial risk for MDD as well as in a normative 
child sample, specifically in the context of resting state networks (RSNs). Regions of the brain 
that are highly temporally correlated during rest form resting state profiles which are intrinsic, 
spontaneous, low-frequency fluctuations in the fMRI blood-oxygen-level dependent (BOLD)
signal that define specific networks of the brain in the absence of any task (Biswal et al., 1995). I 
first examined RSNs in non-depressed children with a family history of MDD who are at 3-5 fold 
increased risk for developing MDD. I then examined RSNs in longititudinal study of a normative 
sample of children. Expansion of findings to such a sample would allow for early identification 
and preventive treatment regardless of family history.   

There is great heterogeneity in the functional organization of the brain that is captured by RSNs. 
In fact, they may be considered “fingerprints” of the human brain, as they can accurately identify 
an individual from among large group (N=126) of individuals (Finn et al., 2015). Furthermore, 
RSN profiles are known to be robust and reliable (Damoiseaux et al., 2006; Chen et al., 2008; 
Shehzad et al., 2009; Van Dijk et al., 2009; Zuo et al., 2010a ,b, Finn et al., 2015). 

RSNs are particularly relevant to studying psychiatric and pediatric populations because 1) they 
are task-independent, so individual differences in task performance cannot explain differences 
observed in the BOLD data, 2) they are easy and fast to acquire which make them more accessible 
to a wide variety of people including young children and a wide range of clinical populations, and 
3) they are plastic and have been shown to change during typical development (e.g., Chai et al., 
2014)  can be modulated by behavioral (e.g., Yuan et al., 2016; McFadden et al., 2013) or 
pharmacological interventions (e.g., Salinas et al., 2017; Whitfield-Gabrieli et al., In Press). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=McFadden%20KL%5BAuthor%5D&cauthor=true&cauthor_uid=24022176
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Chapter 1

Predictive Analytics in Mental Health: Applications, Guidelines, Challenges and 
Perspectives

(Reference: Hahn T., Nierenberg A., Whitfield-Gabrieli S., Molecular Psychiatry, 2017)

With the bold promise to revolutionize clinical practice in psychiatry, the emerging field of 
Predictive Analytics in Mental Health has recently generated tremendous interest, paralleling 
similar developments in personalized and precision medicine. Here, we provide an overview of the 
key-questions and challenges in the field, aiming to 1) propose general guidelines for Predictive 
Analytics projects in psychiatry, 2) provide a conceptual introduction to core-aspects of predictive 
modelling technology, and 3) foster a broad and informed discussion involving all stakeholders 
including researchers, clinicians, patients, funding bodies, and policymakers.

Mental disorders are among the most debilitating diseases in industrialized nations today.1, 

2 The immense economic loss3-5 mirrors the enormous suffering of patients and their friends and 
relatives.6-12 In addition, health care costs as well as the number of individuals diagnosed with 
psychiatric disorders are projected to disproportionately rise within the next twenty years.13 With 
an ever-growing number of patients, the future quality of health-care in psychiatry will crucially 
depend on the timely translation of research findings into more effective and efficient patient care. 
Despite the certainly impressive contributions of psychiatric research to our understanding of the 
aetiology and pathogenesis of mental disorders, the ways in which we diagnose and treat 
psychiatric patients have largely remained unchanged for decades.14

Recognizing this translational roadblock, we currently witness an explosion of interest in 
the emerging field of Predictive Analytics in Mental Health, paralleling similar developments in 
personalized or precision medicine.15-19 In contrast to the vast majority of investigations 
employing group-level statistics, Predictive Analytics aims to build models which allow for 
individual (i.e. single-subject) predictions, thereby moving from the description of patients 
(“hindsight”) and the investigation of statistical group differences or associations (“insight”) 
toward models capable of predicting current or future characteristics for individual patients 
(“foresight”), thus allowing for a direct assessment of a model’s clinical utility (Figure 1). 

Within this framework, we can differentiate three main areas of clinical application of 
Predictive Analytics models in mental health: 
1. The prediction of therapeutic response can support the selection of optimized interventions, 

through comparative effectiveness research, thereby improving the trial-and-error-based 
approach common in psychiatry. For example, genetic variants have been linked to the outcome 
of psychotherapy as well as to therapeutic response to pharmacological interventions20,21. This
individualized treatment optimization might maximizes adherence and minimizes undesired 
side-effects. Importantly, it also allows clinicians to focus resources on patients who will most 
likely benefit from the first-line treatment and allocate other resources to those who will require 
second line or other treatments. Finally, identifying treatment-resistant individuals with high 
accuracy would also simplify the development and evaluation of novel drugs and interventions 
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as research efforts could be more focused.
2. Supporting differential diagnoses is crucial, whenever the clinical picture alone is ambiguous. 

Providing additional model-based information to clinicians thus enables a timely 
administration of disease-specific interventions. Similar to the prediction of therapeutic 
response, this increases adherence and minimizes undesired side-effects. The differentiation of 
patients suffering major depression from patients with bipolar disorder before the first manic 
episode is but one example illustrating clinical utility in this area.

3. Models predicting individual risks are important in two respects: On the one hand, short-term 
predictions of risk can greatly improve outpatient management – for example with regard to 
prodrome detection in schizophrenia. On the other hand, long-term risk prediction would allow 
for a targeted application of preventive measures in early stages of a disorder or even before 
disease onset. Equally important, individual risk prediction could greatly increase the efficiency 
of the development and evaluation of preventive interventions as research efforts could be 
focused specifically on at-risk individuals. 

In summary, valid models in this area would be instrumental, both, for minimizing patient 
suffering and for maximizing the efficient allocation of resources for research. For example, 
children and adults are diagnosed with Attention-Deficit-Hyperactivity-Disorder (ADHD) every 
day and prescribed medications with little or no scientific evidence as to which patient will be 
likely to benefit from one or the other of the two major classes of medications (methylphenidate or 
amphetamine) or unlikely to benefit from either medication. In the same vein, the STAR*D study 
– a large evaluation of depression treatment including 4,041 outpatients – showed that 
approximately 50% of patients respond22. In both cases, patients would greatly benefit from
Predictive Analytics models predicting which treatment would be most effective (for a wide range 
of predictions possible based on neuroimaging data today, see 17).

Against this background, Predictive Analytics in general and its potential applications in 
(mental) health have simultaneously been met with exuberant enthusiasm as well as with 
substantial skepticism: On the one hand, some see “previously unimaginable opportunities to apply 
machine learning to the care of individual patients”15, prompting others to even propose “a shift 
from a search for elusive mechanisms to implementing studies that focus on predictions to help 
patients now”.23 On the other hand, critics have pointed out problems of an all too care-free view 
of Predictive Analytics in general and Big Data in particular.24 Considering the tremendous 
investment into Big Data infrastructure and Predictive Analytics capabilities in all areas of science 
and in the private sector16, most will agree, however, that this technology – to quote a recent New 
York Times article24 – “is here to stay”, but that we ought to see it as “an important resource for 
anyone analyzing data, not a silver bullet”. From this, the question arises: How can we best steer 
the development and implementation of Predictive Analytics technology to effect the clinical 
innovations demanded by researchers and practitioners alike?

Now that evidence from initial proof-of-concept studies is accumulating in all areas – from 
genetics to neuroimaging, from blood-based markers to ambulatory assessments – and the approach 
is gaining momentum (for reviews, see 17, 19, 25-31), this question is particularly pressing. As the field 
of Predictive Analytics in Mental Health is faced with strategic choices which will have formative 
influence on research and clinical practice for the decades to come, we seek to move beyond the 
numerous descriptions and reviews of this beginning transformation of psychiatry by 1) proposing 
general guidelines for Predictive Analytics projects in psychiatry, 2) providing a conceptual 
introduction to the core-aspects of predictive modelling technology which distinguish Predictive 
Analytics in Mental Health from other areas of medicine or predictive analytics applications, and 
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3) fostering a broad and informed discussion involving all stakeholders including researchers, 
clinicians, patients, funding bodies, and policymakers. To this end, we will, first, provide an 
overview of the steps of a Predictive Analytics project. Secondly, we will consider the challenges 
that arise from the unique, multivariate and multimodal nature of mental disorders and argue that 
the combination of expert domain-knowledge and data integration technology is the key for 
overcoming, both, the conceptual and practical obstacles ahead. Finally, we will briefly discuss 
perspectives for the field.
Predictive Analytics projects in mental health

Every Predictive Analytics project can be described as a series of steps aimed at ensuring 
the utility (i.e. the validity and applicability) of the resulting model. While this process is similar 
for all Predictive Analytics projects, numerous questions, problems and opportunities are unique 
to the area of mental health. The guiding-questions in Box 1 are intended primarily as a means to 
support explicit reflection of the essential steps of a project – from defining objectives to deploying 
the model. Thereby, we hope to foster a broad discussion leading to common standards and 
procedures in the field.

Predictive Analytics efforts in psychiatry parallel developments in other fields of medicine. 
Generally, we have witnessed a trend towards ever more precise specification of the genetic, 
molecular and cellular aspects of disease. This so-called Precision Medicine approach (for an 
overview, see e.g. the US National Academy of Sciences report on the topic32), in many cases, led 
to the realization that disease entities which appear to be a single disorder actually have distinct 
genetic precursors and pathophysiology. For example, cancer diagnosis is – for many forms of 
cancer – defined by analysis of genetic variants based on which the optimal treatment can be 
predicted.33 While communalities are particularly obvious with regard to technology, researchers 
in psychiatry are also faced with rather unique challenges. 

Apart from the massively multivariate and multimodal nature of mental disorders which we 
will discuss in detail below, a traditionally much discussed issue arises from the often-times fuzzy 
and relatively unreliable labels of disease entities in psychiatry. As predictive models learn from 
examples, training a model aiming to support the differentiation between patients suffering from 
Major Depressive Disorder (MDD) and individuals with Bipolar Disorder prior to conversion (i.e. 
before any (hypo)manic symptoms have become apparent), for instance, might proof difficult 
simply because it may be very hard to reliably categorize patients with certainty. In practice, most 
studies either mitigate this problem by employing resource-intensive, state-of-the-art diagnostic 
procedures in combination with multiple clinical expert ratings or circumvent it by acquiring data 
first and then waiting for the quantity of interest to become more easily accessible (e.g. until the 
end of a therapeutic intervention or until a disorder actually manifests in at-risk individuals 
screened years ago). Complementing these efforts to render labels more accurate, fuzzy and 
unreliable labels can also be handled directly using machine learning algorithms specifically 
designed for this purpose (for a straightforward introduction, see 34, 35). While currently, it seems 
as if researchers in psychiatry almost exclusively rely on the optimization of data acquisition rather 
than trying to inherently model label uncertainty, combining the two approaches might be highly 
beneficial.

In addition, current disease entities as defined by DSM-5 or ICD-10 are very heterogeneous 
regarding, both, (neuro)physiology as well as clinical endophenotypes.36 On the one hand, this 
will make the classification of disease entities difficult as each entity is in fact a conglomerate of 
different (neuro)physiological and behavioral deviations. On the other hand, the underlying causes 
or correlates of therapeutic response or disease trajectory may qualitatively as well as quantitatively 
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vary for different, more homogeneous sub-samples of the data. While this makes training predictive 
models more difficult (i.e. either more training data or more prior information will be needed), 
machine learning algorithms are generally well equipped to handle such cases. In fact, learning 
multiple rules mapping features to labels are quite common (model averaging, stacking and voting 
are but three ways outlined in the next section to handle this). That said, homogeneous disease 
entities would not only make discovering rules easier (especially on small datasets), but definitely 
lead to more interpretable models which – though not technically the goal of predictive analytics –
is still desirable from a scientific point of view. Most importantly, however, discovering 
homogeneous disease entities would enable us to move beyond merely reproducing the presently 
established diagnostic classification using considerably more expensive and complicated 
procedures. While this has thus far been a seemingly unattainable goal not only for DSM-5, the 
recent success of so-called unsupervised machine learning approaches might reinvigorate this line 
of research (for an introduction to unsupervised machine learning, see 37).
Challenges arising from the unique multivariate and multimodal nature of mental disorders

While the guidelines outlined above provide a straightforward framework for Predictive 
Analytics projects in psychiatry, the main challenge for the field arises from the unique, 
multivariate and multimodal nature of mental disorders. In the following, we will outline the 
conceptual and practical problems in more detail and argue that the combination of expert domain-
knowledge and data integration technology is the key when aiming to construct valid predictive 
model for clinical use.
Modeling massively multivariate data

Overwhelming evidence shows that no single measurement – be it a gene, a psychometric 
test or a protein – explains substantial variance with regard to any practically relevant aspect of a 
psychiatric disorder (compare e.g. 38). To the contrary, it has been recognized that multiple 
measures are necessary to gain meaningful information even within a single modality. It is this 
profoundly multivariate nature of mental disorders that has driven researchers to, for example, 
conduct genome-wide association studies and acquire whole-brain neuroimaging data. 

When aiming to build predictive models, this complexity necessitates the use of methods 
suitable for high-dimensional datasets in which the number of variables (i.e. measurements) may 
far exceed the number of samples (i.e. patients). Generally, the so-called Curse of Dimensionality 
is addressed in three ways (for an excellent review detailing this issue, see 39). First, unsupervised 
methods for dimensionality reduction – such as Principal Component Analysis (PCA) – may be 
used. These algorithms apply more or less straightforward transformations to the input data to yield 
a lower-dimensional representation. Also, they can extract a wide range of predefined features from 
raw-data. For example, distance measures can be extracted from raw protein sequences for 
classification in a fully automated fashion.40 Second, techniques integrating dimensionality 
reduction and predictive model estimation (e.g. regularization, Bayesian model-selection and 
cross-validation) may be applied. In essence, they use penalties for model complexity, thereby 
enforcing simpler, often lower-dimensional models. Simply speaking, models containing more 
parameters must enable proportionally better predictions to be preferred over simpler models. 
These algorithms are at the heart of predictive analytics projects and include well-known 
techniques such as Support Vector Machines and Gaussian Process Classifiers as well as the 
numerous tree algorithms (for details, see 37, 41). Third, feature-engineering – i.e. all methods 
aiming to create useful predictors from the input data – can be used. In short, feature-engineering 
aims to transform the input data (i.e. all measures acquired) in a way that optimally represents the 
underlying problem to the predictive model. An illustrative example comes from a recent study 
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which constructed a model predicting psychosis onset in high-risk youths based on free speech 
samples. Whereas it would have been near impossible to build a model based on the actual 
recordings of participants’ speech, the team achieved high accuracy in a cross-validation
framework using speech features extracted with a Latent Semantic Analysis (LSA) measure of 
semantic coherence and two syntactic markers of speech complexity42. While these results still 
await fully independent replication, the approach shows that transforming the input data (speech 
samples) using domain-knowledge (in this case the knowledge that syntax differs in certain 
patients) can greatly foster the construction of a predictive model. Demonstrating the problem-
dependent nature of feature-engineering, it might have been much easier to decode, for example, 
participants’ gender from the actual recordings than from LSA measures given the difference in 
pitch between males and females. In that it links data acquisition and model algorithms, feature-
engineering is not primarily a preprocessing or dimensionality-reduction technique, but a 
conceptually decisive step of building a predictive model. 

While important for all modalities, feature-engineering often plays a particularly crucial 
role when constructing predictive models based on physiological or biophysical data. On the one 
hand, these data are often especially high-dimensional (e.g. genome, proteome or neuroimaging 
data with regularly tens of thousands of variables), thus often requiring dimensionality-reduction. 
On the other hand, alternative transformations of the raw-data can contain fundamentally different, 
non-redundant information. For example, the same fMRI raw-data – i.e. measures of changes in 
regional blood-oxygen levels – can be processed to yield numerous, non-redundant representations 
(e.g. activation maps or functional connectivity matrices). In addition, domain-knowledge 
regarding the choice of relevant regions-of-interest or atlas parcellations also fundamentally affects 
the representation of information in neuroimaging data.43 As different parameters can be 
meaningful in the context of different disorders, these examples powerfully illustrate the 
fundamental importance of domain-knowledge in feature-engineering. The sources of domain-
knowledge needed to decide which data representations might be optimal with regard to the 
problem at hand may range from large-scale meta-analyses, reviews and other empirical evidence 
to clinical experience.

Taking the traditionally somewhat subjective “art of feature-engineering” a step further, are 
automated feature-engineering algorithms. The former are akin to other unsupervised methods for 
dimensionality reduction, but can learn meaningful transformations from large, unlabeled datasets 
(e.g. using Deep Learning algorithms 44). In short, these algorithms form high-level representations 
of more basic regularities in the data (for a large-scale example, see 45). It is these high-level 
representations which can then be used to train the model. For example, we might use large datasets 
of resting-state fMRI to automatically uncover regularities (such as network-structure) using 
unsupervised learning. These newly constructed features might then provide a lower-dimensional, 
more informative basis for model-building in future fMRI projects. Note that domain-knowledge 
is not provided directly, but learned from independent data sources in this framework. While these 
techniques appear highly efficient as no expert involvement is required, discovering high-level 
features for the massively multivariate measures commonly needed in psychiatry will require 
extraordinarily large – though possibly unlabeled – datasets as well as computational power beyond 
the capabilities of most institutions today. Considering the developments in other areas such as 
speech recognition, we believe, however, that the significance of automated feature-engineering 
techniques can only grow in the years to come.

In many ways, the theory-driven approach to Computational Psychiatry is following an at 
least equally promising – albeit extreme opposite –strategy: This approach builds mechanistic 
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models based on theory and available evidence. After a model is validated, model parameters 
encapsulate a theoretical, often mechanistic, understanding of the phenomena (for an excellent 
introduction, see 39). In many ways, the resulting models thus constitute highly-formalized (one 
might say “condensed”) representations of domain-knowledge, custom-tailored to the problem at 
hand. Unlike virtually all other approaches to feature-engineering, computational models allow 
researchers to test the validity of data-representations while simultaneously fully explicating 
domain-knowledge. While certainly more scientifically satisfying and theoretically superior to
feature-engineering, constructing valid models is far from simple. Thus, we believe that this 
technology will gain in importance to the degree that building valid models proofs feasible, further 
intertwining theoretical progress and Predictive Analytics. 

Having discussed feature-engineering in greater detail, it is important to point out that 
model construction algorithms are not limited to the use of one single data-representation. To the 
contrary, it is a particular strength of this approach – with algorithms usually allowing for massively 
multivariate data and model integration –that multiple, meaningful data representations can be 
combined to enable valid predictions (for a more detailed discussion of model integration, see 
below). 

Summarizing, the acquisition of high-dimensional data is regularly required to capture the 
massively multivariate nature of the processes underlying psychiatric disorders. Even on a single 
level of observation, we thus need to deal with the Curse of Dimensionality. To this end, model 
building commonly includes steps such as simple dimensionality-reduction techniques (e.g. PCA) 
and penalizing model-complexity as part of machine learning algorithms. Most importantly, 
however, feature-engineering is used to create data-representations from the input data which 
enable machine learning algorithms to build a valid model. Feature-engineering may draw on 
partially (meta-analyses or clinical experience) or fully formalized domain-knowledge (e.g. 
parameters from previously validated computational models) or a combination thereof. This 
prominent role of domain-knowledge underlines the interdependence of classic scientific 
approaches seeking mechanistic insight fostering theoretical development and Predictive Analytics 
approaches in mental health. While theoretical progress and meta-analytic evidence aid the 
construction of optimal features, a predictive analytics approach, in turn, allows for a direct 
assessment of the clinical utility of group-level evidence and theoretical advances. Thus, it is 
evident that these two branches of research are not mutually exclusive, but complementary 
approaches when aiming to benefit patients.
Incorporating (interactions across) multiple levels of observation

Substantially aggravating the problem of dimensionality discussed above, mental disorders 
are characterized by numerous, possibly interacting biological, intrapsychic, interpersonal and 
socio-cultural factors.46, 47 Thus, a clinically useful patient representation must probably, in many 
cases, be massively multimodal, i.e. include data from multiple levels of observation – possibly 
spanning the range from molecules to social interaction. All these modalities might contain non-
redundant, possibly interacting sources of information with regard to the clinical question. In fact, 
it is this peculiarity – distinguishing psychiatry from most other areas of medicine – which has 
hampered research in general and translational efforts in particular for decades now. As applying 
a simple predictive modelling pipeline on a multi-level patient representation would increase the 
already large number of dimensions for a unimodal dataset by several orders of magnitude, it might 
seem that Predictive Analytics endeavors are likely to suffer from similar if not larger problems. 
Indeed, neither of the dimensionality-reduction, regularization or even feature-engineering 
approaches outlined above is capable of seamlessly integrating such ultra-high-dimensional data 
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from so profoundly different modalities. Considering the tremendous theoretical problems of 
understanding phenomena on one level of observation, we also cannot rely on progress regarding 
the development of a valid theory spanning multiple levels of observation in the near future. 
Likewise, detailed domain-knowledge across levels of observation is extremely difficult to obtain 
as empirical evidence as well as expert opinions are usually specific to one modality. Given the 
extreme amounts of data and the combinatorial explosion due to their potential interactions, fully 
automated feature-engineering approaches across levels of observation (as opposed to such 
techniques for single levels of observation) also appear unlikely in the near future. Finally, the 
often qualitatively different data sources alone – including genetics, proteomics, psychometry, and 
neuroimaging data as well as ambulatory assessments and information from various, increasingly 
popular wearable sensors – would make this a herculean task.

A somewhat trivial solution would be to limit the predictive model to a single level of 
observation. If high-accuracy predictions can be obtained in this way – which might be considered 
unlikely at least for the most difficult clinical questions – such unimodal models are always 
preferable due to their comparatively high efficiency. Apart from the inherent multimodal nature 
of mental disorders which might render unimodal models less accurate, it is, however, exactly these 
efficiency considerations which obviate the need for Predictive Analytics research to consider 
multiple levels of observation. In order to identify the most efficient combination of data sources 
in a principled way in the absence of detailed cross-modal expert knowledge and evidence, we have 
to learn it from the data. To this end, a plethora of machine learning approaches which can be 
broadly described as model integration techniques – have been developed. 

Probably, the most intuitive way to combine information from different high-dimensional 
sources is by voting. In this framework, a predictive model is trained for each modality and the 
majority vote is used as the overall model prediction. In a binary classification – if we wish to 
predict therapeutic response (yes, patient will benefit vs. no, patient will not benefit from the 
intervention) from five multivariate data sources – we first train a model for each modality. Then, 
we count the number of models predicting a response (#yes) and the number of models predicting 
no response (#no). The final prediction of therapeutic response is given by the option receiving 
more votes across modalities. A slightly more sophisticated approach is stacking or stacked 
generalization. Here, again, a model is trained for each modality. The predictions are, however, not 
combined by voting, but used as input to another machine learning algorithm which constructs a 
final model with the unimodal predictions as features (note that both examples might technically 
be considered automatic feature-engineering techniques). In addition to these simple approaches, 
numerous other techniques (e.g. (Bayesian) Model Averaging, Bagging, Boosting or more 
sophisticated ensemble algorithms) exist – each with different strengths and weaknesses which 
affect the computational infrastructure needed and interact with data structure within and across 
modalities. That said, most Predictive Analytics practitioners would agree that models – in the field 
– are most often constructed by evaluating a large number of approaches, i.e. by trial-and-error 
relying on computational power. However, it cannot be emphasized enough that this strategy must 
rely on the training data only. At no time and in no form, may the test set – i.e. the samples later 
used to evaluate (out-of-bag) model performance – be used in this process. Only in this way, we 
guarantee a valid estimation of predictive power in practice. Note that the techniques for model 
combination can generally be used also to construct predictive models from unimodal multivariate 
datasets as well (see for example 43, 48; for an in-depth introduction, see 49). Given the multimodal 
nature of psychiatric disorders, however, they hold particular value for cross-modal model 
integration.
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Importantly, the construction of models from multimodal data does not mean that the final 
predictive model used in the clinic must also be multimodal. To the contrary, by training models 
with multimodal data, we not only guarantee maximum predictive power, but also gain empirical 
evidence regarding the utility of each modality. Analyzing the final model, we can investigate 
which modalities (and which variables within each modality) contribute substantial, non-redundant 
information. In an independent sample, we could then train a model based only on those modalities 
(or variables) most important in the first model. With this iterative process, we can obtain not only 
the most accurate, but also the most efficient combination of modalities and variables in a 
principled manner. Thus, final models might only consist of very few modalities and variables 
fostering their widespread use also from a health economics point of view.
Perspectives

Effective translation of research findings into clinical practice using Predictive Analytics 
will not only require the combination of expert domain-knowledge and data integration technology 
as outlined above. Effective translation will also need to address more general issues regarding the 
organization and structure of the emerging field. This will require joint efforts from all stakeholders 
including researchers, clinicians, patients, funding bodies, and policymakers. One such example is 
the Patient Centered Outcomes Research Network (PCORnet.org) and its associated psychiatric 
networks, the MoodNetwork, the Interactive Autism Network, and the Community and Patient-
Partnered Centers of Excellence which focuses on behavior disorders in underserved 
communities.50

Given the often sensitive nature of the data needed to build predictive models – which might 
for example include electronic health records – an adequate level of security must be maintained 
at all times. Whether this speaks for decentralized infrastructure or outsourcing to specialized 
institutions is likely to remain a matter of intensive debate. As an example, PCORnet uses a 
federated datamart with a common data model infrastructure for multiple health care systems 
across the US that includes over 90 million people. Similar discussions will probably arise with 
regard to the predictive models themselves. Whereas only easy access to validated, pre-trained 
models will make them widespread, useful tools in the clinic, predictive models might also enable 
the prediction of sensitive personal data from the combination of seemingly harmless information 
an individual might readily provide. Thus, it is in the interest of all stakeholders to reach a public 
consensus regarding the regulation of access to pre-trained models before practically applicable 
models become available. While some level of regulation is likely beneficial with regard to industry 
use, it will be essential for efficient model construction to encourage model sharing (similar to data 
sharing) for research purposes. Especially for multimodal models, sharing modality-specific, pre-
trained models (e.g. in dedicate model databases) will save substantial amounts of time and money. 
Finally, we need experts to consider the legal implications of deploying models (publicly or within 
the field) which predict health-related information which potentially guides medical decisions. 

From a more applied perspective, we believe that technology will continue to simplify data 
acquisition and improve data quality in the years to come, thus bringing predictive Mobile Health 
(mHealth) applications within reach. While holding great promise, especially mHealth applications 
raise the question of whether it is generally better to rely on mechanistic predictors or instead on a 
pragmatic approach.23, 51 While we firmly believe that the identification of causal relationships 
provides the most robust and scientifically satisfying features for prediction, we expect a pragmatic 
approach to prevail in the years ahead for two reasons. First, while causal predictors might be most 
effective, they will often be inefficient. For example, measuring variables of brain metabolism 
causally linked to a disorder might enable the construction of highly accurate predictive models. If 
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however, we can use cheaper and more readily obtainable (e.g. smartphone-based) measures not 
causal to the disorder with comparable or even slightly lower predictive power, those would 
probably be more efficient and thus more useful to clinicians in practice. Secondly, as decades of 
research have only begun to uncover causal links on single levels of observation, we think it highly 
unlikely that unified theoretical models across levels of observation will be established even in the 
mid-term. 

To promote the endeavor of creating individualized predictive models to improve patient 
care and maximize cost efficiency in psychiatry, concrete steps can to be taken by institutions, 
researchers and practitioners. For example, we have recently seen numerous educational efforts 
such as organizing workshops and seminars on the various technical topics. Conferences such as 
the European College of Neuropsychopharmacology (ECNP) Congress or the Resting-State 
Conference and many others will continue to host sessions and satellite symposia dedicated to 
predictive analytics. Common in the field of machine learning, but currently scarce in psychiatry, 
predictive analytics competitions in which teams compete for the best predictive model 
performance (e.g. ADHD-200 global competition) bring together clinicians, researchers, and 
machine learners and may accelerate the availability of pre-trained, validated models in the mid-
term as well as make this research more visible to the public.

Although patients, clinicians, and researchers share a common interest in improving mental 
health outcomes, there will need to be a thoughtful balancing of issues related to privacy, data 
security, and ethics in relation to the contrasting priorities and roles of various stakeholders. 
Currently, research and curation of shared data bases arise primarily from publicly funded, 
academic research groups, where data sharing is viewed as a common good to support greater 
utilization of large datasets to enhance predictive accuracy. A private business, on the other hand, 
could have the different role of using predictions to make decisions about reimbursing health care 
options or to advise on hiring practices or to identify potential customers for advertisements. 
Although these contrasting goals could lead to some tensions about the use of predictive analyses, 
there are examples where a public-private hybrid could be advantageous. For example, because 
intervention research is costly and complex, it tends to have limited numbers of subjects and 
relatively short durations (such as evaluation immediately after an intervention). Public-private 
partnerships could take advantage of the ongoing administration of treatments to very large 
numbers of subjects over extended time periods.

In summary, we believe that unimodal feature-engineering and model integration across 
levels of observation will be the key to highly accurate and efficient Predictive Analytics Models 
in mental health. Successful Predictive Analytics projects will thus require 1) substantial domain-
knowledge to enable optimal feature-engineering for the often massively multivariate datasets 
obtained on each level of observation and 2) profound machine learning expertise with a focus on 
model integration techniques. With technology rapidly simplifying data acquisition and model 
construction, we urge all stakeholders including researchers, clinicians, patients, funding bodies, 
and policymakers to initiate an open discussion regarding key-issues such as data-sharing and 
model access-regulations to enable Predictive Analytics technology to close the gap between bench 
and bedside.
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Box 1. Predictive Analytics project in Mental Health research
Every Predictive Analytics project can be described as a series of steps aimed at ensuring the utility of the 
resulting model. Here, we provide guiding-questions covering issues essential to ensure the validity and 
applicability of such a model.
Defining objectives. 
∑ Is the prediction of an unknown (e.g. future) quantity required (for machine learning approaches to

data analysis, see 52, 53; for the interdependent relationship between group-level analyses and 
predictive analytics, see 54)?

∑ What is the desired scope of the model? While models based on a heterogeneous population (e.g. 
diverse comorbidities, age-range etc.) have a much broader field of application and thus higher utility, 
they might require much more training data.

∑ Will the link between predictors and the to-be-predicted quantity remain stable in the future (cf. 55)?
Acquiring data. 
∑ How to choose potentially informative predictors? While drawing upon available group-level evidence

(e.g. meta-analyses) is reasonable, even predictors displaying substantial association with the target 
on the group-level are not guaranteed to allow for single-subject prediction. Thus, expert knowledge 
and evidence from prior predictive analytics models will be essential.

∑ How to build efficient models? Predictors might contain redundant information with respect to the 
target, thus rendering the assessment of more than one inefficient. If prior information is lacking, it 
might be better to base the model solely on easily obtainable data; even if the model’s predictive 
power is slightly decreased. For example, a model using Smartphone-based ambulatory assessments 
and actimetry data only might be more efficient – and thus more useful in practice – than a more 
accurate model based on a combination of whole-genome data and neuroimaging measures. As a rule 
of thumb, measures routinely obtained in the clinic should be used wherever possible. 

∑ Is it necessary to obtain new data? Generally, any dataset acquired for group-level investigations may 
be suitable also for predictive model building, stressing the relevance of data sharing for the field.
Importantly, constructing clinically applicable models will require fully independent data for model 
construction and validation (for details, see 17). 

Building the model. 
∑ Which machine learning approach should I use? In theory, no learning algorithm can be superior on all 

possible problems.56 Thus, the goal must be to identify the best approach given the concrete problem 
and data at hand. Generally, every approach will require finding the right combination of learning 
algorithm(s) and data representation (commonly referred to as feature-engineering; for a general 
introduction, see 37, 39). In practice, this is empirically determined based on the training data.

∑ How is the predictive model generated? Generally, machine learning algorithms as used in this context 
are presented with example inputs (features) and the corresponding desired outputs (targets). The 
goal of this “training” is for the algorithm to learn a general rule that maps features to targets. This 
rule constitutes a valid predictive model if it correctly maps features to targets not only in the training 
sample, but also in an independent, previously unseen test sample. 

Using the model in clinical practice. 
∑ How can a validated model be deployed? For patients to benefit from Predictive Analytics models, 

they need to be available to as many clinicians as possible. One option might be to provide online 
applications to which service users can upload patient data and receive the desired prediction(s).

∑ How can the future validity of the model be ensured? To this end, continuously monitoring real-life 
performance is crucial. This can be achieved if users provide feedback regarding the accuracy of the 
prediction at a later point in time. In addition, the data provided by service users might be used to 
increase the amount of training data for the model, thus adding to its reliability, accuracy and scope. 
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Figure 1. Predictive Analytics in Mental Health is moving from the description of patients 
(“hindsight”) and the investigation of statistical group differences or associations (“insight”) 
toward models capable of predicting current or future characteristics for individual patients 
(“foresight”), thereby allowing for a direct assessment of a model’s clinical utility.

In Chapter 1, I described ways in which neuroimaging could be used in the context of predictive 
analytics. Although predictive analytics of response to treatment for mental health disorders could 
improve the individual efficacy of treatments, treatments to functional disorders are inherently 
reactive to suffering and incapacity. More desirable would be a proactive approach in which RSN 
pathologies would be identified in children who are known to be at familial high risk for a disorder, 
but who are not yet ill. Once these RSN pathologies are identified, proactive treatment could be 
implemented. In Chapter 2, I describe ways in which neuroimaging could be used to identify resting 
state network pathologies in children who are at familial risk for MDD but who are not currently 
diagnosed with any disorder.
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Chapter 2
Altered Intrinsic Functional Brain Architecture in

Children at Familial Risk of Major Depression
(Reference: Chai J., Hirshfeld-Becker D., Doehrmann O., Leonard J., Biederman J., 

Gabrieli J, Whitfield-Gabrieli S., Biological Psychiatry, 2016)

Abstract
Background: Neuroimaging studies of patients with major depression have revealed abnormal 
intrinsic functional connectivity measured during the resting state in multiple, distributed networks.  
However, it is unclear whether these findings reflect the state of major depression or reflect trait 
neurobiological underpinnings of risk for major depression.  
Methods: We compared resting-state functional connectivity, measured with functional magnetic 
resonance imaging (fMRI), between unaffected children of parents who had documented histories 
of major depression (at-risk, n = 27; 8-14 years of age) and age-matched children of parents with 
no lifetime history of depression (controls, n = 16).  
Results: At-risk children exhibited hyperconnectivity between the default mode network (DMN) 
and subgenual anterior cingulate cortex (sgACC) / orbital frontal cortex (OFC), and the magnitude 
of connectivity positively correlated with individual symptom scores.  At-risk children also 
exhibited (1) hypoconnectivity within the cognitive control network, which also lacked the typical 
anticorrelation with the DMN; (2) hypoconnectivity between left dorsolateral prefrontal cortex 
(DLPFC) and sgACC; and (3) hyperconnectivity between the right amygdala and right inferior 
frontal gyrus, a key region for top-down modulation of emotion.  Classification between at-risk 
children and controls based on resting-state connectivity yielded high accuracy with high 
sensitivity and specificity that was superior to clinical rating scales.
Conclusions: Children at familial risk for depression exhibited atypical functional connectivity in 
the default-mode, cognitive-control, and affective networks.  Such task-independent functional 
brain measures of risk for depression in children could be used to promote early intervention to 
reduce the likelihood of developing depression.

Introduction
Neuroimaging in patients with major depression (MDD) has revealed abnormal activation 

patterns in multiple brain networks, including the default mode (DMN), cognitive control, and 
affective networks.  The DMN, anchored in the medial prefrontal cortex (MPFC) and posterior 
cingulate cortex (PCC), is suppressed in healthy adults during tasks that demand external attention, 
but does not show the typical pattern of task-induced deactivation in adults and adolescents with 
MDD (1–3).  The cognitive control network, including dorsal lateral prefrontal cortex (DLPFC), 
which is typically activated during cognitively demanding tasks, has shown decreased activations 
in adults with MDD (4, 5).  The affective network includes the amygdala and other limbic-region 
structures (6, 7), and most saliently for MDD, the subgenual anterior cingulate cortex (sgACC), 
which is considered a core region in the functional and structural pathophysiology of MDD (8–10).  
The affective network exhibits abnormal activation patterns during emotion processing in adults 
with MDD (11–13).  These abnormal activations in distributed networks may account for cortico-
limbic dysregulation in MDD (8,14). 
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Mirroring these brain activation abnormalities, patients of different ages with MDD have 
shown abnormal intrinsic functional connectivity of the brain measured via resting-state fMRI (rs-
fMRI) (15).  First, increased resting-state connectivity within the DMN and between the DMN and 
sgACC has been reported in adults (16,17) and adolescents (18) with MDD.  Hyperconnectivity 
of sgACC correlated with duration of current depressive episodes in adults (16) and with emotional 
dysregulation in pediatric depression (19).  These results support the possibility that DMN-sgACC 
hyperconnectivity might underlie depressive rumination (20).  Second, several studies reported 
decreased resting-state connectivity within the cognitive control network in adult patients with 
MDD (21–23).  In line with this evidence, MDD has been conceptualized as an imbalance between 
the DMN and the cognitive control network (24–26).  Third, atypical connectivity between the 
amygdala and cortical structures has been found in adults (27,28) and children (29) with MDD and 
is thought to reflect deficits in emotion regulation.

Despite evidence of abnormal functional connectivity across distributed brain networks in 
patients with MDD, it is unclear whether these differences reflect the state of current depression 
versus neurobiological traits that predispose individuals to be at risk for MDD.  One approach to 
distinguishing between current state and predisposing traits is the study of unaffected individuals 
at heightened risk for MDD, such as unaffected children at familial risk for MDD by virtue of 
having a parent with MDD.  Such familial history increases the risk of MDD in offspring by three-
to five fold (30), and increases the risk of a broader spectrum of mood and anxiety disorders (31).  
Understanding whether rs-fMRI findings represent trait or state markers of MDD in the young can 
lead to the identification of informative neural biomarkers of risk for mood and anxiety disorders
and help develop early intervention strategies to mitigate this risk.  Rs-fMRI also possesses 
significant translational strengths in its short duration of scanning, and the lack of task performance 
demands that can complicate interpretation of activations. 

In the present study, we examined rs fMRI in unaffected children at familial risk for MDD
and other mood and anxiety disorders by virtue of being offspring of parents with MDD (at-risk 
group) and compared them with age matched children who were offspring of parents with no
lifetime history of any mood disorder (control group).  Two previous studies examining at-risk
children and adolescents found decreased connectivity between amygdala and frontal-parietal
network in unaffected children of depressed mother and in children with early onset depression 
(29), and decreased connectivity within the frontal-parietal cognitive control network in unaffected 
adolescent girls with parental depression (32).

Based on previous functional connectivity results in patients with MDD, we focused on 
functional connectivity differences between at-risk and control children in the DMN, the cognitive 
control network, and the affective network, using a seed-based functional connectivity approach.  
We examined connectivity differences from the two midline anchor regions of the DMN (MPFC 
and PCC), which are associated with self-referential processing (33) and self-focused rumination 
in MDD (20,34), and from seed regions in left and right DLPFC and amygdala.  We tested: 1) 
whether unaffected at-risk children exhibit patterns of abnormal functional connectivity similar to 
those reported in patients with MDD, and 2) whether connectivity of DMN-sgACC is related to 
symptom scores in at-risk children. To further test whether resting-state connectivity can be a 
useful neural biomarker for risk for MDD, we built classification models based on resting-state d
ata to discriminate at-risk versus control children.

Methods and Materials
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Participants

We initially recruited 38 offspring ages 8-14 years of parents with lifetime history of MDD (at-risk 
group) and 30 age-matched offspring of parents with no lifetime mood disorder (control group).  
The study was approved by the Institutional Review Boards at the Massachusetts General Hospital 
and at the Massachusetts Institute of Technology.  Parents provided written informed consent for 
their and their child’s participation, and youths provided written assent.  Exclusion criteria included 
the presence of acute psychosis or suicidality in a parent or a child; the presence at any point in the 
lifespan of bipolar disorder in the parent, autism in the child, or a lifetime history of a traumatic 
brain injury or neurological disorder in the child. 

The final sample included in the analyses consisted of twenty-seven at-risk and sixteen 
control participants with no prior history of depression or current clinical-range symptom scores.  
Those participants who did not complete the scan, had excessive head movement during the scan, 
or had a history of depression or clinical range symptom scores were excluded. See Supplementary 
Information for details. 
Diagnostic Assessment

At enrollment for the present study, each child and both parents in each family were 
assessed for current and lifetime mood disorders (MDD, bipolar disorder, and dysthymia), using 
structured clinical interviews in which the mother was the informant.  Interviews about parents 
used the depression, mania, dysthymia modules, and psychosis modules from the Structured 
Interview for DSM-IV (35) and those about the child used the depression, mania, dysthymia, and 
psychosis modules from the Schedule of Affective Disorders and Schizophrenia for School-Aged 
Children–Epidemiological Version (KSADS-E) for DSM-IV (36). 

Other Assessments
Cognitive Function: To compare cognitive function between groups, we used the Kaufman 

Brief Intelligence Test-2 (KBIT-2), a 20-minute screen for verbal and nonverbal cognitive 
functioning (37).

Current Symptoms, Parent Report: To assess current behavioral and emotional symptoms 
in the children, we asked mothers to complete the Child Behavior Checklist (CBCL) (38) (see 
Supplementary Information for details) about all children.  The CBCL includes a total problems 
score, as well as scores reflecting internalizing (affective and anxiety) and externalizing symptoms 
(attentional problems and disruptive behavior).  T-scores of 70 and above have been shown to 
discriminate clinical-range from non-clinical range children (38). 

Current Symptoms, Self-Report: To assess current depressive symptoms by self-report, we 
administered the Child Depression Inventory (CDI) (39) to all children. See Supplementary 
Information for details of the CDI.   
Participant Demographics (Table 1)

Children in the at-risk and control groups did not differ significantly in age, gender 
distribution, or IQ (ps > .3).  The at-risk group had marginally higher CBCL total (p = .05), 
internalizing (p = .096), and anxiety scores (p= .08), but did not differ significantly in CBCL exte
rnal problem scores (p= .34).  None of the children had clinical-range CBCL scores (> 70).  CDI 
total scores did not differ significantly between the two groups (p = .26).  Additionally, by parent 
report, the children were largely pre-pubertal (with the exceptions of 4 at-risk and 3 control 
children).
Imaging Procedure

Data were acquired on a 3T TrioTim Siemens scanner using a 32-channel head coil. T1-
weighted whole brain anatomical images (MPRAGE sequence, 256x256 voxels, 1x1.3-mm in-
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plane resolution, 1.3-mm slice thickness) were acquired.  After the anatomical scan, participants 
underwent a resting fMRI scan in which participants were instructed to keep their eyes open and 
the screen was blanked. Resting scan images were obtained in 67 2-mm thick transverse slices, 
covering the entire brain (interleaved EPI sequence, T2*-weighted images; repetition time = 6 s, 
echo time = 30 ms, flip angle = 90, 2x2x2 mm voxels).  The resting scan lasted 6.2 min (62 
volumes).  Online prospective acquisition correction (PACE) was applied to the EPI sequence (40)
(see Supplementary Information).  Two dummy scans were included at the start of the sequence. 
Functional connectivity analysis

Rs-fMRI data were first preprocessed in SPM8, using standard spatial preprocessing steps. 
Images were slice-time corrected, realigned to the first image of the resting scan, resampled such 
that they matched the first image of the resting scan voxel-for-voxel, normalized in MNI space, 
and smoothed with a 6-mm kernel (full width at half maximum). Functional connectivity analysis 
was performed using a seed-driven approach with in-house, custom software “CONN” (41,42) . 
We performed seed-voxel correlations by estimating maps showing temporal correlations between 
the BOLD signal from our a priori regions of interest and that at every brain voxel.  We performed 
resting-state connectivity analysis from the DMN seeds (MPFC, PCC), cognitive control network 
seeds (bilateral DLPFC), and bilateral amygdala seeds (Figure 1). The DMN and DLPFC seeds 
were defined as 6-mm spheres around peak coordinates from (43).  The amygdala seeds were 
defined from the WFU Pick Atlas (44).

Physiological and other spurious sources of noise were estimated and regressed out using 
the anatomical CompCor method (aCompCor) (45).  Global signal regression (GSR), a widely used 
preprocessing method was not used because it artificially creates negative correlations which 
prevents the interpretation of anticorrelation (46) and can contribute to spurious group differences 
in positive correlations (47).  Instead, aCompCor allows for interpretation of anticorrelations and 
yields higher specificity and sensitivity compared to GSR (41). See Supplementary Information for 
details on the aCompCor. A temporal band-pass filter of0.008 Hz to 0.083 Hz was applied 
simultaneously to all regressors in the model. Residual head motion parameters (3 rotation and 3 
translation parameters, plus another 6 parameters representing their first-order temporal derivatives) 
were regressed out.  Artifact/outlier scans (average intensity deviated more than 3 SD from the 
mean intensity in the session or composite head movement exceeded 1mm from the previous image) 
were also regressed out. Head displacement across the resting scan did not differ significantly 
between the two groups for either frame-to-frame translations in x, y, z directions (at-risk: mean 
= .19 mm l .11; control: mean = .16mm ± .11; p = .33) or frame-to-frame rotations (at-risk: mean 
= .0044  m .002; control: mean = .004 ± .003; p = .66).  The number of outliers also did not differ 
significantly between the groups (range: 0 to 9; at-risk: mean = 2.7  ± 2.2; control: mean = 2.1 ± 
3.1; p = .47).  Outlier images were modeled as nuisance covariates.  Each outlier image was 
represented by a single regressor in the GLM, with a 1 for the outlier time point and 0s elsewhere.

Time series of all the voxels within each seed were averaged, and first-level correlation 
maps were produced by extracting the residual BOLD time course from each seed and computing 
Pearson’s correlation coefficients between that time course and the time course of all other voxels.  
Correlation coefficients were converted to normally distributed z-scores using the Fisher 
transformation to allow for second-level General Linear Model analyses.  DMN connectivity was 
calculated from the averages of the time series from MPFC and PCC seeds (48,49), given their 
similar connectivity patterns.  Functional connectivity of left and right DLPFC were analyzed 
separately, as were left and right amygdala due to evidence of differential roles in emotion 
processing (50).  First-level connectivity maps for each participant were entered into a between-
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group t-test to determine connectivity differences for each seed between groups.  Clusters-level 
threshold was set at p < .05 using false discovery rate (FDR) correction for multiple comparisons 
(51), with voxel-wise t-value threshold of 2.42 (df = 41; p < .01).   Bonferroni correction was 
applied to the FDR-corrected cluster-level p-values to correct for multiple comparisons of the five 
a priori seeds tested (DMN, left and right DLPFC, and left and right amygdala).  Regions that 
showed significant connectivity differences between groups were further examined for their 
connectivity values (significantly above or below zero) using one sample t-tests in each group.  
Based on prior evidence of DMN-sgACC hyperconnectivity in MDD and its implication in 
depressive rumination (20), we examined the within group correlations between DMN-sgACC 
connectivity values and CBCL scores.  Given the higher CBCL total score in the at-risk group, we 
re-tested group differences by including CBCL total scores as a covariate.
Classification models of at-risk children and controls discrimination

We trained two linear classification models using logistic regression, implemented in 
machine learning software Weka (52), in order to categorize individual participants to the at-risk or 
control groups based on their rs-fMRI or behavioral data.  To create robust prediction models that 
can be generalized to new cases, we performed leave-one-out cross-validation so that each 
individual was classified on the basis of data from the other individuals.  Specifically, data from all 
participants except one were used as the training set to build a classification model, and the 
remaining participant was classified with the model and used as the validation case. This procedure 
was iterated for each participant and used to estimate specificity/sensitivity from the out-of-sample 
predictions. In the first model, we used anatomically defined regions-of-interest (ROIs) that were 
independent from the regions that showed between-group connectivity differences.  Connectivity 
values between the five a priori seeds and 116 clusters defined by the AAL atlas (53) were estimated 
and used in the prediction model. We constructed a second model based on CBCL scores (total, 
internalizing, externalizing, anxiety), to compare with classification accuracies from the model 
based on rs-fMRI data in anatomically defined ROIs. 

Results
Increased connectivity between DMN and sgACC/OFC in at-risk children

Compared to the control group, the at-risk group exhibited increased positive DMN 
connectivity with a cluster in the sgACC extending into medial orbital frontal cortex (OFC) 
bilaterally (Figure 2A-B; Table 2A).  Among the at-risk children, connectivity between the DMN 
and sgACC /OFC correlated significantly and positively with CBCL internalizing scores (at-risk: r 
= .53, p = .003, Figure 2C) and CBCL total scores (at-risk: r = .39, p = .04); there was no such 
correlation among the control children.  Connectivity strengths within the DMN did not differ 
significantly between groups.  
Decreased anticorrelation between DMN and inferior parietal lobule in at-risk children

Compared to the control group, the at-risk group exhibited higher positive connectivity 
between the DMN and the right inferior parietal lobule (IPL) (Figure 3; Table 2A).  Instead of the 
anticorrelation exhibited in the control group (t(15) =  - 5.99 , p = .004), the at-risk group exhibited 
a positive correlation between the DMN and the right IPL (t(29) = 2.25 , p = .03). 
Decreased connectivity within cognitive control network in at-risk children

Compared to the control group, the at-risk group exhibited decreased positive connectivity 
between the right DLPFC seed and the right frontal-parietal control network regions including the 
right IPL and the right DLPFC (BA46) (Figure 4; Table 2B), and decreased connectivity between 
left DLPFC seed and the left IPL (Table 2C). 
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Decreased connectivity between L DLPFC and sgACC in at-risk children
Compared to the control group, the at-risk group exhibited decreased connectivity between 

the left DLPFC seed and sgACC (bilateral), right lingual gyrus, right superior frontal gyrus, and 
bilateral inferior temple gyri, and increased connectivity between left DLPFC and supplementary 
motor cortex (Table 2C).  Left DLPFC and sgACC were anticorrelated in at-risk children only (t(29) 
= - 3.36, p=.002; Figure 5). 
Increased connectivity between amygdala and inferior frontal gyrus (IFG) in at-risk children

Compared to the control group, the at-risk group exhibited increased connectivity between 
the right amygdala and both the right IFG and the right supramarginal gyrus (SMG) (Figure 6; Table 
2D).  Instead of the of the negative correlations exhibited in the control group, the at-risk group 
exhibited positive correlations between right amygdala and right IFG (controls: t(15) = -3.54, p 
= .003 ; at-risk: t(29) = 4.67, p < .001 ), and between right amygdala and right SMG (controls: t(15) 
= -2.53, p = .02  at-risk: t(29) = 4.53, p < .001). Connectivity from the left amygdala did not differ 
between the two groups. 
Group differences after controlling for symptom scores

After controlling for CBCL total scores, differences between the at-risk and control groups 
remained largely similar to the above reported results (Table S1).
Classification of at-risk children and controls

The classification model based on connectivity data in ROIs defined from the AAL atlas 
yielded 79% accuracy, 81% sensitivity, and 78% specificity.  Connectivity between left DLPFC and 
right supramarginal gyrus, between left DLPFC and left inferior temporal cortex, between DMN 
and left rectus (medial OFC and sgACC), between DMN and left IFG, between DMN and left/right 
inferior temporal cortex contributed most to the classification. The model based on CBCL scores 
yielded only 64% accuracy with 80% sensitivity, and 27% specificity.   

Discussion
We found differential intrinsic functional connectivity patterns in unaffected children with 

familial risk for MDD compared to children without such familial risk in the DMN, the cognitive 
control network, and the amygdala.  At-risk children showed hyperconnectivity between the DMN 
and the sgACC/OF.  Furthermore, although none of the at-risk children was clinically depressed, 
DMN-sgACC/OFC connectivity was positively correlated with individual CBCL scores among 
those children.  At-risk children also showed hypoconnectivity within the cognitive control networ
k, lacked the typical anticorrelation between the DMN and the right parietal region, and exhibited 
lower connectivity between left DLPFC and sgACC.  In addition, at-risk children showed 
hyperconnectivity between amygdala and the right IFG.  Finally, classification between at-risk 
children and controls based on resting-state connectivity yielded high sensitivity and specificity.  
These findings appear to identify trait neurobiological underpinnings of risk for major depression 
in the absence of the state of depression. 

Increased connectivity between DMN and sgACC in at-risk children, and the positive 
correlation between DMN-sgACC connectivity and current symptom scores, are consistent with 
findings reported in adult (16, 17) and pediatric (19) patients with MDD.  The fact that these 
findings were observed in unaffected children at familial risk for MDD suggests that 
hyperconnectivity with sgACC is not a consequence or manifestation of MDD, but instead may be 
a biomarker of predisposed risk for MDD.  The at-risk children also exhibited an atypical 
anticorrelation between sgACC and left DLPFC.  In line with our finding, stimulation of the sgACC 
resulted in attenuation of hyperactivation in sgACC and increased activation in previously 
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underactive DLPFC in adults with MDD (54).  The left DLPFC region that showed maximum 
anticorrelation with the sgACC has been identified as a target for TMS treatment of MDD (55).  A 
prospective study would be needed to determine if atypical sgACC connectivity at this age predicts 
later development of MDD.

The lack of typical anticorrelation between the DMN and supramarginal gyrus / inferior 
parietal lobule, an important attention control region (56,57), in at-risk children is consistent with 
cognitive control deficits in depressed adult patients (58,59) and reduced DMN deactivation during 
an emotional identification task in depressed adolescents (3).  Greater anticorrelation between DMN 
and cognitive control networks in healthy adults has been linked to better performance in cognitive 
control and working memory tasks (60,61) and may reflect an individual’s capacity to switch 
between internally and externally focused attention (62).  This dynamic interplay between DMN 
and cognitive control networks in MDD was examined in a task-based connectivity study.  During 
an external attention condition, adults with MDD exhibited increased DMN connectivity and 
decreased cognitive control network connectivity (25).  The present study suggests that an 
imbalance between DMN and cognitive-control networks is a developmental risk factor for MDD.  

With regards to decreased connectivity within the cognitive control regions in at-risk 
children, a previous study of adolescents with familial risk for depression also reported reduced 
connectivity between cognitive control regions (32).  In that study, lower connectivity in the control 
network was associated with more severe parental depression symptoms.  These results in at-risk 
children and adolescents are consistent with findings from depressed adults of reduced connectivity 
in attention control regions including the DLPFC (23).  Studies consistently show that the DLPFC 
is under-activated in depressed adults (63), which might contribute to their difficulty in cognitive 
control and emotion regulation (64).  It is possible that children at-risk for depression have an under-
connected control network that is also a developmental risk factor for MDD.

There was increased connectivity between the right amygdala and the right IFG and 
supramarginal gyrus in at-risk children.  The right IFG is a key region in emotion regulation (65). 
The top-down IFG-amygdala circuitry is disrupted during emotion regulation in adults with mood 
disorders (66,67).   A study of children with MDD and children of mothers with MDD also reported 
reduced negative correlation between the amygdala and lateral parietal regions including the 
supramarginal gyrus (29).  The atypically high level of connectivity between amygdala and emotion 
regulation and cognitive-control regions might reflect emotion dysregulation in MDD. 

To test whether intrinsic functional organization of the brain, as measured by rs-fMRI, can 
be a potential biomarker for risk for depression in children, we performed a classification analysis 
to discriminate children in the at-risk group and control group based their resting-state functional 
connectivity data.  This classification based on functional connectivity yielded high accuracy, 
sensitivity, and specificity in discriminating between children at risk for MDD and controls 
compared to classification based on CBCL scores.  Importantly, the rs-fMRI classification was 
based on analyses that, at the level of each individual child, were independent of the group 
differences in functional connectivity.  Such generalizable and individually robust classification is 
important if brain measures are to be used for early identification (68).  Future prospective and 
longitudinal studies can determine whether such biomarkers predict which high-risk children 
progress to MDD and whether early intervention reduces the likelihood of developing MDD.  Also, 
perhaps such biomarkers may be helpful in identifying children at risk for developing depression 
independent of parental histories of depression.

Our findings need to be viewed in light of some methodological limitations.  First, we did 
not exclude children born prematurely, and premature births can lead to neurological complications.  
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However, we did exclude children with known developmental delays such as autism and intellectual 
disability.  Second, because parental MDD confers a spectrum of risk to offspring (31,69), the at-
risk children were also at risk for anxiety and other disorders.  Parents with MDD also have higher 
rates of comorbid anxiety than the general population.  Thus we cannot rule out that the brain 
differences we found were due to the children being at risk for anxiety and other disorders.  Third, 
although our sample size of at-risk children (N=27) was moderate, the control group was small 
(N=16).  Lastly, our resting-state scans were acquired with a repetition time (TR) of 6 seconds, 
which is longer than most resting state fMRI studies so that we could acquire high-resolution whole-
brain data (2mm isotropic voxels) without the use of parallel imaging.  A previous study found there 
was no significant difference in correlation strengths within and between resting-state functional 
networks when comparing TR = 2.5 and 5 seconds resting scans, and that correlation strengths 
stabilized with acquisition time of 5 min (TR = 5) (70).  In the current and previous studies using 
the same acquisition parameters (TR = 6 s) (71), we observed the typical resting-state network 
patterns observed in other studies.  Nonetheless, an additional issue of the long TR is that cognitive 
and emotional processes internally initiated at the beginning and the end of each scan can be 
different.  We cannot rule out the possibility that the group difference observed here might be in 
part due to systematic differences in chronometry between the two groups.

The present study consisted of a sample of pre-adolescent children who were at familial risk 
for depression but not currently affected with depression and therefore functional connectivity 
differences cannot reflect an expression of depression as could be the case in patients with ongoing 
MDD.  Rather, the differences in intrinsic functional brain architecture likely reflect neural traits 
that predispose children towards MDD or related disorders.  Importantly, we demonstrated that 
discrimination between at-risk and control children occurred with high sensitivity and specificity 
based on resting-state functional connectivity.  Future studies that track the development of children 
at familial risk for MDD and determines which children develop MDD or other mood and anxiety 
disorders are needed to build predictive models based on findings from the present study so as to 
identify high-risk individuals for early intervention.
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Tables:

Table 1. Participant demographic and clinical information. Mean ± SD where appropriate. 
F, female; M, male; CBCL, Child Behavior Checklist; CDI, total score on the Child 
Depression Inventory; t(df), between-group t-statistic and degrees of freedom; p, between-
group test p value. 

Control
(N = 16)

At-risk
(N = 27)

Statistical Evaluation

Age 11.3 ± 2.14 11.2±1.67 t(41)= .17, p=.86
Gender 8 F, 8 M 13 F, 14 M c2 =. 14, p = .9
IQ (KBIT) 117 ± 10.5 120.6 ± 12.0 t(41)=.99, p =.33
Mother affected 0 18
Father affected 0 14
Both parents affected 0 5
CBCL total 41.0 ± 11.8 48.8 ± 10.0 t(35) = 2.07, p = .046
CBCL internalizing 44.3 ± 8.50 50.1 ± 9.83 t(35) = 1.71, p = .096
CBCL externalizing 45.1 ± 10.5 47.8 ± 9.30 t(35) = 0.96, p = .34
CBCL anxiety 51.5 ± 2.78 55.2 ± 6.56 t(35) = 1.79, p = .08
CDI 4.33 ± 5.54 6.57 ± 4.64 t(35) = 1.16, p= .26
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Table 2. Between-group connectivity differences from A) default mode network (DMN), 
B) right dorsolateral prefrontal cortex (DLPFC), C) left DLPFC, and D) right amygdala. 
BA, Brodmann area; k, cluster size in mm3.  Peak coordinates (x y z) based on MNI 
(Montreal Neurologic Institute) brain. t, peak t value from the cluster (degrees of freedom 
= 41); p-value, FDR-corrected cluster-level p value; sgACC, subgenual anterior cingulate 
cortex; OFC, orbital prefrontal cortex; SMG, supramarginal gyrus; STG, superior temporal 
gyrus; All reported clusters survived Bonferroni correction of p < .05 for the number of 
seeds tested (five). 

A) DMN connectivity
BA k (mm3) x, y, z t p-value

At-risk > Control
L sgACC/ OFC 25/11 2544 -8, 22, -20 4.44 < .001
R supramarginal gyrus 40 2152 64, -40, 26 4.47 < .001
R mid cingulum 24/31 2808 18, -34, 38 4.50 < .001

Control > At-risk
None

B) R DLPFC connectivity
BA k (mm3) x, y, z t p-value

At-risk > Control
None

Control > At-risk
R DLPFC 46/9 2920 42, 28, 22 4.57 < .001
R inferior parietal lobule 40 1424 46, -50, 58 3.89 .01

C) L DLPFC connectivity
BA k (mm3) x, y, z t p-value

At-risk > Control
Medial frontal gyrus 6/24 2072 0, -2, 48 3.66 .005

Control > At-risk
R sgACC 25/11 2480 10, 18, -18 4.62 < .001
L inferior parietal lobule 40 2248 -50, -56, 54 4.93 .003
L lingual gyrus 18 2760 -14, -82, -14 5.77 < .001
R lingual gyrus 18 1976 32, -70, -14 4.24 < .001
R superior frontal gyrus 8/6 8616 14, 34, 60 5.25 < .001
R inferior temporal gyrus 21 8392 60, -14, -20 6.88 < .001
L inferior temporal gyrus 21 3120 -60, -14, -20 5.00 < .001

D) R Amygdala connectivity
BA k (mm3) x, y, z t p-value

At-risk > Control
R Inferior frontal gyrus 47 2608 44, 40, 4 4.41 < .001
R SMG/STG 40/22 1456 42, -40, 16 3.94 < .001

Control > At-risk
None
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Figure 1.  Seeds (regions of interest) used in the study. A) Default network (DMN) seeds 
(posterior cingulate cortex and medial prefrontal cortex), B) left and right dorsolateral 
prefrontal cortex (DLPFC) seeds, C) left and right amygdala seeds.  L, left hemisphere. R, 
right hemisphere.  Images are presented in neurological convention in all figures (left side 
of the brain is on the left side of the image). 

Figure 2. A) Region in subgenual anterior cingulate cortex (ACC) / orbital frontal cortex 
(OFC) (white arrow) that exhibited higher connectivity with the default mode network 
(DMN) in the at-risk than the control group.  Color bar represents t-values from between-
group t-test (at-risk > control). B) Mean DMN-sgACC/OFC connectivity (Fisher’s z) in 
each group.  Error bars represent standard errors of the means.  C) DMN-sgACC/OFC 
connectivity plotted against CBCL internalizing scores within the at-risk group.  
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Figure 3. A) Region in the right inferior parietal lobule that exhibited higher connectivity 
with the default mode network (DMN) in the at-risk than the control group.  Color bar 
represents t-values from between-group t-test (at-risk > control). B) Mean connectivity 
between DMN and the inferior parietal lobule cluster shown in A) in each group.  Error 
bars represent standard errors of the means. 

Figure 4. A) Regions that exhibited lower connectivity with right dorsolateral prefrontal 
cortex (DLPFC) seed in the at-risk than the control group; (1) right inferior parietal lobule; 
(2) right DLPFC.  Color bar represents t-values from between-group t-test (control > at-
risk). B) Mean connectivity (Fisher’s z) between the right DLPFC seed and the right 
inferior parietal lobule cluster (1) in each group. C) Mean connectivity (Fisher’s z) 
between the right DLPFC seed and a cluster in the right DLPFC (2) in each group. Error 
bars represent standard errors of the means. 
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Figure 5. A) Region in the subgenual anterior cingulate cortex (sgACC) (white arrow) that 
exhibited lower connectivity with left dorsolateral prefrontal cortex (DLPFC) seed in the 
at-risk than the control group.  Color bar represents t-values from between-group t-test 
(control > at-risk). B) Mean connectivity (Fisher’s z) between the left DLPFC seed and 
the sgACC cluster shown in A) in each group.  Error bars represent standard errors of the 
means. 

Figure 6. A) Region in the right inferior frontal gyrus (IFG) (white arrow) that exhibited 
higher connectivity with right amygdala seed in the at-risk than the control group.  Color 
bar represents t-values from between-group t-test (at-risk > control). B) Mean connectivity 
(Fisher’s z) between the right amgydala seed and the right IFG cluster shown in A) in each 
group. Error bars represent standard errors of the means.
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In Chapter 2, I described ways in which neuroimaging could be used to identify resting state 
network pathologies in children who are at familial risk for MDD but who are not currently 
diagnosed with any disorder. Such early biomarkers could provide a proactive approach in which 
individuals at high risk for a disorder are identified and early interventions could be instantiated.  
However, such cross-sectional analyses do not provide information on how individuals will 
behaviorally progress over time. Only longitudinal analyses would validate whether variation of 
RSNs would predict progression of psychiatric symptoms at a later age. Secondly, should such 
RSN characterization become clinically useful, we would not want to limit it to children with family 
histories of psychiatric disorders. In Chapter 3, I expand on the previous findings by investigating 
longitudinally a non-selected or normative sample of children. Discovering RSN predictors on this 
sample could allow for early identification of RSN pathologies and support preventive treatment 
regardless of family history.  
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Chapter 3

Intrinsic Brain Architecture Predicts Future Attentional and Mood Problems in a Normative 
Pediatric Sample
(Reference:  Whitfield-Gabrieli S., Wendelken C., Bailey S., Cutting L., Bunge S.A. In Prep)

Abstract
We tested whether the intrinsic functional architecture of the human brain, as measured by resting 
state fMRI, can predict individual children’s developmental trajectories towards attentional 
problems characteristic of Attention Deficit Hyperactivity Disorder (ADHD), or internalizing 
problems characteristic of major depression (MDD). To this end, we analyzed neuroimaging and 
behavioral data from an existing longitudinal study of children assessed at age 7 (N=94), and again 
at age 11 (N=54). We preregistered a set of analyses aimed at testing whether specific connectivity 
patterns would predict scores on the Child Behavior Checklist (CBCL)1, a parental report 
assessment used to screen for emotional, behavioral, and social problems and to predict psychiatric 
illnesses. As hypothesized, greater connectivity at age 7 between medial prefrontal cortex (MPFC), 
a core node in the default mode network (DMN), and dorsolateral prefrontal cortex (DLPFC) 
predicted the development of attentional problems characteristic of ADHD by age 11. Exploratory 
analyses also revealed that weaker connectivity between a region implicated in mood, the 
subgenual anterior cingulate cortex (sgACC), and DLPFC at age 7 predicted the development of 
internalizing behaviors by age 11. Logistic Regression Analyses of resting state metrics revealed 
that sgACC-DLPFC connectivity was a more accurate predictor than initial CBCL measures of 
whether a child would progress to a subclinical score on internalization, which is itself highly 
predictive of a future psychiatric diagnosis2,3. Thus, stronger MPFC-DLPFC connectivity, known 
to be related to lower cognitive functioning, was a predictor of the development of attentional 
problems, and weaker sgACC-DLPFC connectivity was a better predictor of the development of 
mood problems than a standard screening tool. Such neuroimaging biomarkers provide early 
identification of vulnerabilities in neural systems and may support preventive treatment of at-risk 
children prior to the emergence of full-blown psychiatric disorders. 

Introduction
The regulation of both cognition and emotion is thought to depend upon top-down modulation of 
multiple neural circuits by prefrontal cortex, and in particular the dorsolateral prefrontal cortex 
(DLPFC)4-8. Because prefrontal-dependent cognitive control mechanisms regulate the focus of 
attention and regulate mood, it stands to reason that they play a key role in mental health8,9. There 
is indeed ample evidence that adult psychiatric patients exhibit an attenuation or failure of top-
down control mechanisms in depression10-12, anxiety13, and Attention Deficit Hyperactivity 
Disorder (ADHD)14. Given that these prevalent mental health problems tend to emerge during 
childhood and adolescence15-17, it is important to know whether dysregulated top-down control can 
be detected even before behavioral symptoms are evident. 
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The strength of coupling between regions involved in top-down control and their targets 
can be measured with resting state fMRI (rs-fMRI). Regions of the brain that are highly temporally 
correlated during rest form resting state profiles which are intrinsic, spontaneous, low-frequency 
fluctuations in the fMRI blood-oxygen-level dependent (BOLD) signal that define specific 
networks of the brain in the absence of any task18. There is great heterogeneity in the functional 
organization of the brain that is captured by RSNs. In fact, they may be considered “fingerprints” 
of the human brain, as they can accurately identify individual subjects from a large group (N=126) 
of individuals19. Furthermore, RSN profiles are known to be robust and reliable19-25. 
RSNs are particularly relevant to studying psychiatric and pediatric populations because 1) they 
are task-independent, so individual differences in task performance cannot explain differences 
observed in the BOLD data, 2) they are easy and fast to acquire which make them more accessible 
to a wide variety of subjects including young children and a wide range of clinical populations, and 
3) they are plastic and have been shown to change during typical development26 and can be 
modulated by behavioral27,28 or pharmacological interventions29,30.

An RSN that is particularly relevant for mental health is the Central Executive Network 
(CEN), of which the DLPFC is a key node. The CEN has been associated with externally focused 
attention31 and goal-directed behavior32-34. In neurotypical adults, the CEN is negatively correlated 
– i.e., anticorrelated – with the default mode network (DMN), an RSN associated with internal 
mentation and self-referential processing, whose key nodes include the medial prefrontal cortex 
(MPFC)35-39. The decoupling of these RSNs has been found to be adaptive: Greater MPFC-DLPFC 
anticorrelations are associated with superior cognitive control and cognitive performance, such as 
greater working memory capacity40-43. In addition, there is a selective growth of anticorrelations 
between the MPFC and DLPFC in typically developing children26, which is consistent with the 
findings that top-down control mechanisms improve markedly over childhood and adolescence44.
Rs-fMRI studies have shown an association between diminished MPFC-DLPFC anticorrelations 
and cognitive impairment in Attention Deficit Hyperactivity Disorder (ADHD)45. 

The CEN also plays a role in regulating mood through its interactions with the subgenual 
anterior cingulate cortex (sgACC). The sgACC is part of the affective network, which is involved 
in emotion processing46-53, and has anatomical connections to hypothalamus, amygdala, entorhinal 
cortex, nucleus accumbens and other limbic structures50. There are several lines of evidence 
showing that top-down modulation of the sgACC is dysregulated in adults with major depressive 
disorder (MDD). Neuroimaging studies have reported decreased metabolism and decreased gray 
matter volume in patients with MDD54, and a decreased number of glia in sgACC55. Furthermore, 
deep brain stimulation of the sgACC results in attenuation of hyperactivation in sgACC and 
increased activation in previously underactive DLPFC in adults with MDD56. In addition, the left 
DLPFC region that shows maximal anticorrelation with the sgACC in rs-fMRI has been identified 
as an optimal target for TMS of MDD57. The sgACC has also been shown to exhibit decreased 
connectivity with cognitive control regions in children with a history of preschool-depression58. 
Finally, left DLPFC and sgACC exhibit hypoconnectivity (anticorrelated activation) in children at 
familial risk for MDD59. 

In sum, prior research on adult patient populations reveals that atypically strong functional 
connectivity between DLPFC and MPFC is characteristic of ADHD, whereas atypically weak 
connectivity between DLPFC and the sgACC is characteristic of MDD. Here, we build on this prior 
work by asking whether the strength of connectivity between these regions can predict a 
progression towards attentional or mood disorders in childhood. Rather than comparing children 
diagnosed with psychiatric disorders and typically developing children, we examined longitudinal 
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data from a community sample of children. 
Specifically, we tested whether DLPFC-MPFC and DLPFC-sgACC connectivity at age 7 

predict scores at age 11 on a questionnaire used to screen children for behavioral problems, the 
Child Behavior Checklist (CBCL). The goals of this research are twofold: first, to better understand 
how changes in brain connectivity over childhood relates to cognitive and affective development, 
and second, to evaluate the predictive validity of DLPFC-MPFC and DLPFC-sgACC connectivity 
for future mental health problems in children who have not been identified previously as being at 
elevated risk for the development of a psychiatric disorder.

Numerous studies have demonstrated a high rate of reliability between the CBCL scales 
and actual psychiatric diagnosis60,61. For example, CBCL Attention Problem scores are highly 
correlated for the screening of and prediction of ADHD62,63. A subthreshold elevation on the 
anxiety/depression subscale of the CBCL in preadolescence is a predictor for future development 
of the diagnosis of MDD3. However, neuroimaging measures may, in conjunction with clinical 
measures, allow us to identify with greater confidence and at an earlier age children at the greatest 
risk for development of psychiatric disorders. 

In the present study, then, we investigated whether rs-fMRI data can be used to predict 
future CBCL scores in a community sample of 54 children. Specifically, we tested whether the 
individual differences in MPFC-DLPFC connectivity at age 7 predict subsequent change in 
attention four years later, as measured by the CBCL “Attentional Problems” measure at age 11. 
Additionally, we tested whether individual differences in sgACC-DLPFC connectivity at age 7 
predicts subsequent change in Anxiety/Depression four years later, as measured by the CBCL 
“Internalization” and Anxiety/Depressed subscale at age 11. We have pre-registered our hypotheses 
at the openscienceframework (OSF); https://osf.io/7cfvq/.

Methods
Participants: Ninety-four participants were included in this study which were part of a 
developmental longitudinal study, “Predicting Late-Emerging Reading Disability” (LERD; 
Vanderbilt University; PI: L. Cutting). LERD had a longitudinal design in which all baseline or 
Time 1 (T1) data were collected from participants at age 7 (N=94; 53 M, 41 F) and subsequently 
at 1-year intervals for four years. Data at Time 4 are available for 54 of the original participants. 
Exclusion Criteria: Children were eligible for the LERD study if they met the following general 
exclusion criteria: No uncorrected vision or hearing problems, no mental retardation (IQ<70), no 
limited proficiency in English, no brain injury (e.g., history of head trauma, meningitis, epilepsy, 
etc.), no severe psychiatric disorders (major depression, Tourette's syndrome, obsessive-
compulsive disorder), and no ferromagnetic material in their body (e.g., braces). However, because 
the LERD study related to reading disability (RD) and there is a comorbidity of RD with ADHD, 
children with ADHD (as well as other mild psychiatric conditions, e.g., oppositional-defiant 
disorder, adjustment disorder, mild depression) were not excluded from participation. 
For the purposes of this paper, we excluded those children who were on medication and performed 
predictive analyses with and without the children who were diagnosed with ADHD.
ADHD Diagnosis: ADHD status was determined by DSM-IV criteria, which requires that 
symptoms be present in at least two settings. Therefore, two questionnaires were administered to 
each child’s parent and teacher. For an ADHD diagnosis, participants had to meet the criterion of 
scoring above the 93rd percentile on at least one of two parent questionnaires/rating scales, and on 
at least one of the two teacher questionnaires/rating scales (ADHD Rating Scale-IV64,65). 
Participants classified as having ADHD also had to meet DSM-IV diagnostic criteria for ADHD 

https://osf.io/7cfvq/
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based on Diagnostic Interview for Children and Adolescents-IV (DICA-IV66) interview (past or 
present) conducted with the parent and signs/symptoms must have been present before age 7 and 
have persisted for longer than 6 months. Children were only considered free of ADHD if they did 
not meet criteria on the parent and teacher questionnaires/rating scales used to diagnose ADHD and 
on the DICA-IV. Seven patients who completed the study were diagnosed with ADHD and four of 
them were on medication. We statistically controlled for all of the ADHD subjects as well as for 
those four participants who were diagnosed with ADHD and were on medication.
CBCL Scoring: The CBCL records behavioral problems and competencies of children ages 6 to 
18 years based on parental reports. Normed on a nationally representative sample of 1,753 youths, 
it includes the following eight empirically based syndrome scales: 1) Aggressive Behavior, 2) 
Anxious/Depressed, 3) Attention Problems, 4) Rule-Breaking Behavior, 5) Somatic Complaints, 6) 
Social Problems, 7) Thought Problems, and 8) Withdrawn/Depressed, as well as summary scores 
reflecting “Internalization” and “Externalization.” Internalizing Problems sums the 
Anxious/Depressed, Withdrawn, and Somatic complaints scores, while Externalizing Problems 
combines Rule-breaking and Aggressive behavior. The standard scores are scaled so that 50 is 
average for the youth's age and gender, with a standard deviation of 10 points. Higher scores 
indicate greater problems. For each syndrome, scores can be interpreted as falling in normal, 
borderline, or clinical ranges of behavior. Researchers typically use T scores of 60-70 (>1SD <2SD) 
as medium level of symptoms (or “subthreshold” elevations), and T scores above 70 (>2SD) as 
syndromatic. 
Data Acquisition: Data were acquired at Vanderbilt University Institute of Imaging Science on a 
3T Philips Achieva MRS scanner with a 32-channel head coil. One 5.9-minute resting state EPI 
scan was collected with the following parameters: TR=2200ms, TE=30ms, 35 slices, 3 mm 
isotropic voxels.
Resting state fMRI Analyses: Resting state fMRI data were analyzed in Conn
(http://www.nitrc.org/projects/conn)67, which incorporates methods to both minimize the influence 
of head motion artifacts and allow for valid identification of correlated and anti-correlated 
networks68. 
Preprocessing: Spatial preprocessing of functional volumes included slice timing correction, 
realignment, normalization, and smoothing (8mm FWHM Gaussian filter), using SPM12 
(Wellcome Department of Imaging Neuroscience, London, UK; http://www.fil.ion.ucl.ac.uk/spm).
Denoising (e.g., Motion and Physiological Aliasing): To address potential spurious correlations 
in resting state networks caused by head motion, we used a procedure to identify problematic time 
points during the scan, using the Artifact Detection Tools (ART, 
http://www.nitrc.org/projects/artifact_detect) which is implemented in Conn. Specifically, an 
image was defined as an outlier image if the head displacement in x, y, or z direction was greater 
than 1.0 mm from the previous frame, or if the global mean intensity in the image was greater than 
3 standard deviations from the mean image intensity for the entire resting scan. The temporal 
timeseries characterizing the estimated subject motion (3 rotation and 3 translation parameters, plus 
another 6 parameters representing their first-order temporal derivatives) and artifactual covariates 
(one covariate per artifactual time point consisting of 0’s everywhere and a “1” for the artifactual 
time point), were used as nuisance regressors in the first level General Linear Model (GLM).

The anatomical image for each participant was segmented into white matter, grey matter, 
and cerebrospinal fluid (CSF) masks using SPM12. To minimize partial voluming, the white matter 
and CSF masks were eroded by one voxel, which resulted in substantially smaller masks than the 
original segmentations69. The eroded white matter and CSF masks were then used as noise regions 

http://www.nitrc.org/projects/conn
http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/artifact_detect
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of interest (ROI). Signals from the white matter and CSF noise ROIs were extracted from the 
unsmoothed functional volumes to avoid additional risk of contaminating white matter and CSF 
signals with grey matter signals. The BOLD timeseries within the subject-specific white matter 
mask (5 PCA parameters) and CSF mask (5 PCA parameters), were then used as temporal 
covariates and removed from the BOLD functional data using linear regression, and the resulting 
residual BOLD timeseries were band-pass filtered (0.01Hz < f < 0.10Hz). 

Global signal regression, a widely used preprocessing method, was not used because it 
mathematically mandates negative correlations that prevent the interpretation of anticorrelations70

and can contribute to spurious group differences in positive correlations71. Instead, the anatomical 
CompCor (aCompCor) method of noise reduction72 as implemented in Conn and described 
above, allows for interpretation of anticorrelations and yields higher specificity and sensitivity 
compared with global signal regression69.
Seed Definitions: The default mode network seed was defined as a 10mm sphere around the peak 
coordinates from literature (MPFC: (-1, 47, -4)31). The selection of these coordinates was based on 
a number of papers illustrating that a) this MPFC seed region has significant anticorrelations with 
DLPFC, which correlates with executive function43, b) there is a selective growth of 
anticorrelations between this MPFC seed and DLPFC in typically developing children26, and c) 
there is a significant reduction of MPFC-DLPFC anticorrelations in adult psychiatric populations 
with cognitive impairment, such as in ADHD45, Bipolar Disorder73, and Schizophrenia74. In order 
to define the sgACC seed to investigate the relationship between sgACC-DLPFC connectivity and 
the CBCL Internalization, we used Independent Component Analyses to define this component (see 
below). 
Seed-to-voxel Bivariate Correlation: First-level correlation maps were produced by extracting the 
residual blood oxygen level–dependent (BOLD) time course from each seed and computing 
Pearson’s correlation coefficients between that time course and the time course of all other voxels. 
Correlation coefficients were converted to normally distributed z-scores using the Fisher 
transformation to improve the validity of second-level General Linear Model analyses. Fisher-
transformed r-maps from each seed were submitted to a second-level analysis of covariance 
(ANCOVA) regressing the changes in the CBCL measures (T4-T1) onto brain responses, 
controlling for the effect of initial severity (initial CBCL). To create a robust prediction model that 
could be generalized to new cases, we performed leave-one-out cross-validation, which minimizes 
potential biases due to voxel-selection in our predictive models. Crossvalidated scatter plots were 
computed as follow: 1) for each subject, a second-level analysis looking for voxel-level 
associations between connectivity with MPFC and change in attentional problems was run entering 
only the remaining N-1 subjects; 2) the suprathreshold cluster from this analysis was used a subject-
specific mask of DLPFC in the left-out subject, and functional connectivity between MPFC and 
DLPFC for this individual subject was computed as the average of the Fisher-transformed 
correlation coefficients between MPFC and each voxel in this mask; and 3) the previous two steps 
were repeated for each subject to obtain a list of MPFC-DLPFC connectivity values, which were 
then plotted against the corresponding subjects' change in attentional scores.
In addition, we implemented a replication analysis wherein we correlated the connectivity between 
the MPFC seed and an independent DLPFC mask defined from the literature26.
ICA analyses: Independent Component Analyses (group-ICA75) were used to identify the 
emotional regulation network (ERN), including the sgACC. Group-level components were 
estimated using a 64-dimensions subject-level dimensionality reduction step, followed by 40-
component group-level dimensionality reduction and fast-ICA with a hyperbolic tangent contrast 



32

function. The ERN was identified as the component with highest loading at the sgACC coordinates 
(5, 25, -10) (I9 seed76). ERN subject-level component-score maps were averaged across
participants and thresholded using a combination of T>6 voxel-level “height” threshold and a 
FWE-corrected p<.001 cluster-level threshold. This analysis resulted in a positive cluster including 
sgACC as well as bilateral amygdala and hippocampus, and two negative clusters in bilateral 
DLPFC areas. Average ICA subject-level component scores over the resulting DLPFC cluster was 
used in subsequent analyses as a measure of the negative association (anticorrelations) between the 
ERN and DLPFC for each subject, specifically between the sgACC and left DLPFC. 
Longitudinal Analyses: In order to explore whether individual differences in DLPFC 
connectivity predicted future negative behavioral outcomes, we performed cross-validated 
prediction analysis to investigate whether T1 resting state correlations predict progression of 
subsequent change of CBCL (T4-T1) behavioral measures after factoring out T1 CBCL behavior. 
First, we tested whether stronger MPFC-DLPFC resting state correlations at T1 predict future 
change in CBCL attentional problems, after controlling for the initial attentional score at T1. 
Second, we used a data-driven Independent Component Analyses (ICA) approach as described 
above to define a component which consisted of the left DLPFC-sgACC. We then tested whether 
the connectivity of this component predicted worsening of internalization across three subscales, 
and subsequently examined the internalization subscales separately: a) anxiety/depression, b) 
withdrawn behavior, and c) somatic complaints. 
Logistic regression for CBCL Internalization (and anxiety/depression subscale). As per CBCL 
diagnostic category definitions, we subdivided participants into a “subclinical” category for 
individuals with a CBCL Internalization (and anxiety/depression) score >= 55, and a “typical” 
category for those whose scores on this subscale fell below this cut-off based on the literature3. We 
used logistic regression of initial severity (initial CBCL scores) and T1 resting state measures 
combined with leave-one-out cross-validation – that is, all participants except one were fit and 
predicted the out-of-sample participants’ outcome category; this procedure was iterated for each 
participant and used to build cross-validated predictions and estimate specificity/sensitivity from 
the out-of-sample predictions. We did not have a sufficient number of subjects with subclinical 
scores for the CBCL Attentional Problems at T4 to perform this Logistic Regression for that CBCL 
scale.

Results
Behavioral results: 
A summary of the CBCL data is provided in Table 1. Many children did not exhibit changes in 
CBCL scores, but others exhibited worsening (higher CBLC scores at T4) or improvement (lower 
CBCL scores at T4) over the course of 4 years (Figures 2, 3; Table 1). Twice as many children 
developed worse internalizing problems over the four years (39% of children) compared to those 
with worsening attentional problems (17% of children). A crosstabulation Chi-square test revealed 
that the prevalences differed between the two measures (χ2(2) = 7.1; p = 0.029). Although there 
were children who were already subclinical for both attentional problems and internalization at 
Time 1, there was not selective attrition – that is, the CBCL scores did not differ between those 
who did and did not complete the study. 
Head Motion: 
The average number of outliers across all timepoints, based on thresholds described in the methods, 
was 17.03 out of 160 timepoints. Excluding these timepoints preserved enough data to achieve a 
stable estimate of resting state networks77. Three subjects were dropped due to excessive head 
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motion. Although rs-fMRI/behavior correlations have been called into question due to the fact that 
motion often correlates with the behavioral measure of interest78, in this sample, Time 1 motion 
parameters did not correlate significantly with CBCL behavioral measures (or progression of CBCL 
measures (t4-t1), p’s > .15).
Neuroimaging results:
First, we tested for a replication (and extension) or our previous results indicating that children 
(ages 8-12) had positive MPFC-DLPFC resting state connectivity (as opposed to the MPFC-
DLPFC anticorrelations evident in teenagers and young adulthood). We performed a one-sample t-
test of the MPFC seed resting state functional connectivity at T1 (n=94, age 7). We then calculated 
the mean resting state correlations between the MPFC seed region and an a priori seed region of 
interest in DLPFC26. Cross-sectional analyses at T1 revealed that, on average, children 7 years of 
age did not exhibit significant MPFC-DLPFC anticorrelations that are evident in adults, but rather 
exhibited positive MPFC-DLPFC correlations (Figure 1). These results replicate those observed 
previously in children ages 8-1226. We had hypothesized that stronger MPFC-DLPFC correlations 
would correlate with worse attention at T1, but anticipated that there would be insufficient variance 
in the CBCL attentional scores to establish a significant brain-CBCL relation in this sample, as 
specified in the pre-registration.  Indeed, we did not observe any significant correlations between 
the MPFC-DLPFC connectivity and CBCL attentional scores at a height threshold of p<.001 
uncorrected (or even at a liberal threshold p<.01 uncorrected).

Because there was not much change in CBCL overall but great inter-subject variability in 
amount of change, we sought to use T1 neuroimaging data to predict CBCL change from T1 to T4. 
We found that relatively higher MPFC-DLPFC resting state correlations at T1 predicted the 
subsequent worsening of attention, such that greater positive MPFC-DLFPC correlations at T1 
were associated with worsening of attentional problems four years later: ( (T(49) = 2.38, p = 0.01, 
controlling for medication, Figure 2)  and (T(49) = 1.02, p = 0.030, controlling for those children 
who were diagnosed with ADHD), and T(50) = 2.36, p = .01 without controlling for ADHD 
subjects); reported p-values are one-sided due to our a priori and preregisterd hypotheses). 
Because we implemented this analysis using leave-one-out cross-validation, this is a true prediction 
as opposed to a simple correlation, a distinction that is frequently lost in the neuroimaging 
literature79. Moreover, we replicated this finding by implementing an independently defined a 
priori DLPFC mask26, showing a significant correlation between the MPFC-DLPFC connectivity 
at T1 and the worsening of attentional problems from T1 to T4 (r = .40; p =.04).

Next, we tested whether the independent ICA derived left DLPFC-sgACC anticorrelations 
would predict worsening of internalization (and anxiety/depression, withdrawn, somatic subscales). 
We found that left DLPFC-sgACC connectivity predicted internalizing changes (T(49) = -2.4, p = 
0.010; controlling for medication (figure 3) and  (T(49) = -2.15, p = .018, controlling for ADHD) 
and (T(50) = -2.61, p =.008, not controlling for ADHD or medication), such that stronger 
anticorrelations at baseline were associated with worsening CBCL scores (Figure 3). In addition, 
left DLPFC and sgACC connectivity predicted progression of internalization subscales: a) 
anxiety/depression (T(49) = -2.64, p = 0.005, controlling for medication), such that stronger 
anticorrelations were predictive of worse outcomes, and b) withdrawn (T(49) = -2.38, p = 0.01, 
controlling for medication), such that stronger anticorrelations were predictive of worse outcomes. 
By contrast, left DLPFC-sgACC connectivity was not associated with somatic-complaints (T(49) 
= -0.88, p = 0.192, controlling for medication).
Logistic regression: Logistic Regression Analysis, using left DLPFC - sgACC resting state 
connectivity measures, predicted whether an individual child would fall into the Subclinical 
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Internalization category above and beyond the initial CBCL measures (Figure 4). This analysis 
yielded 77% accuracy, 87% sensitivity, and 74% specificity.

Discussion
Here, we used resting state networks to identify the neural mechanisms underlying the emergence 
of adaptive behavior during middle childhood, and identified neural signatures of maladaptive 
behavior that could lead to future mental health problems and potentially to psychiatric diagnoses. 
First, we found that MPFC-DLPFC anticorrelations, known to be related to cognitive functioning, 
are a positive predictor of attentional development. Diminished DMN-CEN anticorrelations may 
reflect an attenuation of top-down control mechanisms and an inability to allocate resources away 
from internal thoughts and feelings and towards external stimuli in order to adaptively perform 
difficult tasks74,80. Thus, 7-year-olds who exhibit MPFC-DLPFC anticorrelations may have the 
capacity to toggle between internal and external foci of attention, while those children who have 
diminished MPFC-DLPFC anticorrelations may not have this ability. The failure to decouple these 
networks may be an early indicator of attentional problems, or may in fact preclude the 
development of age-appropriate attentional skills. Second, we found that sgACC - left DLPFC 
anticorrelations predict the progression of Internalization symptoms related to MDD. Stronger 
sgACC-left DLPFC anticorrelations at this young age may already reflect an attenuation or failure 
of top-down control mechanisms that are evident in adult MDD. Thus, the functional connectivity 
of specific neural systems in middle childhood forecasts individuals’ resilience or vulnerability in 
cognition and emotion over the ensuing four years of development. 

Plasticity in Resting State Networks
Although variation in resting state networks forecasts the progression of attentional and emotional 
problems, there is strong evidence that such networks are plastic, and thus may be altered by 
supportive interventions. Resting state functional connectivity is thought to reflect habitual network 
activations81 that can be remodeled by long-term82 and even brief83 interventions. Resting state 
functional connectivity can be altered by behavioral interventions such as Cognitive Behavioral 
Therapy (CBT)27, exercise28, and mindfulness meditation84,85. Mindfulness meditation training has 
been previously shown to enhance cognitive functioning, and a recent study reports that 
mindfulness intervention modulates the CEN (e.g., DLPFC), as well as the affective network (AN) 
(e.g., sg-ACC)84,85. In a large sample of children ranging from grades 1-12, mindfulness meditation 
improved cognitive performance and resilience to stress86. In a randomized controlled trial, children, 
11 years old, who received mindfulness training showed a selective increase in MPFC-DLPFC 
Anticorrelations (as compared to the CN group), and the degree of change positively correlated 
with an increase in attention87. In addition, neurotechnological approaches have been shown to alter 
RSNs, such as real-time fMRI neurofeedback training in controls subjects as well as patients with 
MDD and Schizophrenia87-89. Finally, pharmacological interventions have also been shown to 
normalize or ameliorate pathological RSNs30,90. It is likely that supportive behavioral interventions 
are especially salient in attempts at preventive treatments in children who can be identified as being 
on a trajectory towards ADHD or MDD but who do not currently meet critera for these diagnoses. 

Limitations
One limitation relates to the fact that we used only one brain imaging modality as a predictor in 
this study. In future work, multi-modal imaging could further enhance predictive accuracy91-93.
A second limitation is that it would be nice to have more rigorous clinical outcome measures for 



35

the kids beyond the parental subjective questionnaire. Finally, little is known about the underlying 
neural mechanisms of these anticorrelations. Future research could combine resting state functional 
MRI with MR spectroscopy to gain insights regarding neurochemical modulation of functional 
connectivity. In addition, the electrophysiological correlates of the anticorrelations remain 
unknown. Future research could involve collecting simultaneous EEG and resting state fMRI with 
a view to identifying an electrophysiological signature of these anticorrelations and, in future, 
developing an EEG biofeedback intervention.

Conclusion
A fundamental goal of neuroscience research on mental health disorders is to understand the 
neurobiological roots of those disorders so as to better target treatment and perhaps even prevent 
the development of those disorders. Given the relative infrequency of even such common disorders 
as ADHD or MDD, a fruitful strategy has been to examine brain differences in children at 
heightened familial risk for a disorder. Indeed, such studies have revealed structural and functional 
brain differences in children who are not diagnosed with MDD but have familial risk59,94-96. Perhaps 
because ADHD is often diagnosed at a young age, there are few if any such studies of brain 
differences predating clinical manifestations of ADHD. 
Many children, however, develop ADHD or MDD without a documented family history of either 
disorder. It is important, therefore, to understand the neurobiological roots of ADHD and MDD in 
unselected groups of children, as was done in the present study. These findings reveal that variation 
in brain function, as elucidated by specific resting state networks, forecast the development of 
particular forms of psychopathology (e.g., attentional problems or internalization) that are highly 
predictive of psychiatric diagnosis in children who were not pre-selected to be at familial risk. 
These findings not only further our understanding of the neurobiological vulnerabilities that foster
the deterioration of mental health, but also could inform early identification and preventative 
treatment for children who, regardless of a documented family history of mental disorders, have a 
neurobiological vulnerability for ADHD or MDD.
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Table 1.

Table 1. CBCL Measures for Time 1 (7 years of age) and Time 4 (11 years of age). Higher scores 
indicate worse problems. A CBCL score of 60-70 (>1SD <2SD) is generally considered to represent 
a medium level of symptoms “subclinical” or “subthreshold”.
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Figures:

Figure 1. On average, children 7 years of age exhibit positive MPFC-DLPFC resting state 
connectivity (n=94, age 7): a) MPFC seed (yellow) and DLPFC mask (blue) b) Whole brain MPFC 
seed driven resting state functional connectivity map.
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Figure 2. Longitudinal prediction of progression of attentional problems over four years (ages 7-
11). Weaker T1 MPFC-DLPFC anticorrelations are associated with worsening of attentional 
problems 4 years later. Note: negative change scores indicate improvement, and positive change 
scores indicate decline over four years. The colorbar reflects the posterior probability values of 
voxels showing association between MPFC connectivity and changes in Attentional Problems with 
LOOCV.
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Figure 3. Longitudinal prediction of progression of Internalization problems over four years (ages 
7-11). Left DLPFC and sgACC predicted progression of Internalization (and anxiety/depression 
and withdrawn subscales) such that greater anticorrelation at Time 1 (7 years old) predicted 
worsening of internalization four years later (11 years old). Note: negative change scores indicate 
improvement, and positive change scores indicate decline over four years.
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Figure 4: Logistic regression using left DLPFC-sgACC to predict Internalization problems at T4 
(>=55), controlling for Internalization scores at T1. Green left: true negatives; Green right: true 
positives; Red left: false positives; Red right: false negatives. The histograms represent the 
distribution of the risk of internalization problems at T4 (as predicted by subgenual-DLPFC 
connectivity at T1) displayed separately for those subjects with low- (left) vs. high- (right) 
internalization problem scores at T4.
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CONCLUSION

Mental disorders are among the most debilitating diseases in industrialized nations today (Kessler 
et al., 2009). Further, health-care costs as well as the number of individuals diagnosed with 
psychiatric disorders are projected to disproportionately rise within the next 20 years (Bloom et al., 
2011). The future quality of health care in psychiatry will benefit from a timely translation of basic 
research findings into more effective and efficient patient care. In this thesis, I have discussed ways 
in which human brain imaging may have translational potential in terms of 1) neuroprediction, 
aimed at personalized or precision medicine for selection of an optimal treatment, and 2) improved 
identification of individuals at risk for mental health difficulties, so that preventive treatment can 
reduce or even avert future difficulties.

In Chapter 1, I provided an overview of the key questions and challenges in the field of predictive 
analytics in mental health aiming to (1) propose general guidelines for predictive analytics projects 
in psychiatry, (2) provide a conceptual introduction to core aspects of predictive modeling
technology, and (3) foster an informed discussion amongst researchers, clinicians, patients, 
foundations and policymakers. Importantly, I described ways in which predictive analyses (e.g., 
prediction of therapeutic response) can support the selection of optimized interventions, thereby 
improving the trial-and-error based approach common in psychiatry.

Although predictive analytics of response to treatment for mental health disorders could improve 
the individual efficacy of treatments, treatments to functional disorders are inherently reactive to 
suffering and incapacity. More desirable would be a proactive approach in which individuals at 
high risk for a disorder are identified and treatment is preventive. Brain measures characteristic of 
risk in children could support such a proactive approach.     

In Chapters 2 and 3, I presented findings which provide evidence that resting state fMRI measures 
of functional connectivity help identify brain differences in children selected to be at heightened 
familial risk for MDD and in a normative sample of children followed longitudinally who 
developed symptoms related to MDD or ADHD. For example, children at familial risk for MDD 
exhibited significantly greater sgACC-DLPFC anticorrelations than children not at familial risk, 
and in a normative sample not selected to be at risk, greater sgACC-DLPFC anticorrelations 
predicted a worsening of the CBCL internalization, as well as the anxiety/depression subscale. Thus, 
variation in the resting-state properties of a single neural network was associated with both 
heightened familial risk and heightened longitudinal progress towards MDD.

Future progress in this direction can be considered in terms of basic neuroscience (a better 
neurobiological understanding of these functional connectivities) and clinical neuroscience 
(application of this knowledge toward treatments). 

Future Directions (Neurobiology of Resting State Functional Connectivity)
FMRI measures of BOLD signals are indirect and heterogeneous measures of brain function in 
general, and the neurophysiological basis of resting state fluctuations are especially unclear.  
Several of the variations in functional connectivity that were most diagnostic of vulnerability in the 
present studies occurred in brain regions that are anticorrelated in adults, and that appear to progress 
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during child development from being correlated to anticorrelated (Chai et al., 2014).  Variation of 
DLPFC anticorrelations are indicative of risk for two of the most common disorders of adolescent 
mental health (ADHD and MDD). Despite the apparent significance of resting state connectivity, t
he neural and molecular mechanisms underlying such correlations and anticorrelations are still no
t well understood. 

Resting state functional connectivity has been associated with neurotransmitter concentrations (e.
g., Fox & Raichle, 2007; Nasrallah et al., 2014), white matter fiber density (e.g., Hu et al., 2016) a
nd regional cerebral blood flow (e.g., Liang et al., 2013). For example, one study used fMRI of bl
ood-oxygenation-level–dependent and arterial-spin–labeling perfusion contrasts to investigate the 
relationship between functional connectivity and regional cerebral blood flow (rCBF) during rest. 
The resting state functional connectivity had a striking spatial correlation with rCBF, and the 
correlation was stronger in the DMN (including MPFC) and the ECN (including DLPFC) compared 
with visual and sensorimotor networks (Liang et al., 2013).  
In addition, spontaneous BOLD follows a 1/f distribution and this 1/f distribution has also been 
observed in studies of spontaneous electroencephalography (EEG) (Linkenkaer-Hansen et al., 2001; 
Stam et al., 2004), magnetoencephalography (MEG) (Linkenkaer-Hansen et al., 2001), local field 
potential recordings (Leopold et al., 2003), and cerebral blood flow (Lowen et al., 1997).    
Importantly, one study showed that only frequencies below 0.1 Hz contribute to regionally specific 
BOLD correlations, while faster frequencies relate to cardiac or respiratory factors (Cordes et al., 
2001).

Because rapid excitatory glutamate (Glu) and inhibitory g-aminobutyric acid (GABA) signals mo
dulate local and long-range cortical neural circuits, studies relating Glu and GABA to cortical net
work function may be particularly relevant to elucidating the underlying mechanism of anticorrela
tions. In humans, this could be examined by combining magnetic resonance spectroscopy (MRS) 
measures of these neurotransmitters with resting state fMRI measures of salient anticorrelations.  F
or example, an as yet unpublished study used functional MRI to measure whole-brain BOLD sign
al during resting state and task evoked conditions, and MRS to quantify GABA and glutamate con
centrations, in nodes within the DMN and CEN (MPFC and DLPFC, respectively) in 19 healthy i
ndividuals. GABA concentrations in the MPFC were consistently and significantly associated wit
h DMN deactivation during a working memory task and with anticorrelation between DMN and C
EN at rest and during task performance (Fei et al., In Prep).

In addition, the electrophysiological correlates of anticorrelations are unknown.  Future research 
could involve collecting simultaneous EEG, with a Direct Current (DC) amplifier, and resting state 
fMRI with a view to identifying an electrophysiological signature of these anticorrelations in the 
low frequency range (<.1) that is typically done in rs-fMRI.  Most studies combining EEG and 
fMRI focus on higher EEG frequency bands because low frequencies are typically filtered out of 
the signal.  It may be better to identify electrophysiological correlates in the same ultra-slow 
frequency bands (e.g., Buzsáki & Draguhn, 2004;  Martino et al., 2016) that characterize typical 
resting state fMRI measures.  

Future Directions (Applications)
Promising Interventions and Surrogate Endpoints to Monitor Treatment Efficacy
Because resting state networks are plastic, they can be modulated by behavioral or pharmacological 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Nasrallah%20FA%5BAuthor%5D&cauthor=true&cauthor_uid=25241086
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interventions. One such class of treatments is cognitive behavioral therapy (CBT), which is usually 
performed as a combined parent-child treatment in preadolescent children.  Another intriguing 
preventive treatment is mindfulness-based intervention in children, particularly in relation to 
improving cognitive performance and resilience to stress.  A review of  school-based mindfulness 
interventions in 1348 students instructed in mindfulness (876 controls) in children ranging from 
grades 1-12 noted significant improvements for cognitive performance and decreased self-
perception of stress (Zenner et al., 2014).  An as yet unpublished study found that mindfulness-
based intervention may act upon the specific MPFC-DLPFC anticorrelation that predicted the 
growth of symptoms of inattention in Chapter 3.  One hundred sixth-graders (11 years of age) 
participated in a randomized controlled trial (RCT) at a charter school in Dorchester, MA, USA.
The Intervention Group (Mindfulness Training or MT) received a mindfulness curriculum
(wws.calmerchoice.org) during their last 45 minutes of their school day, 4 times a week for 8 weeks 
whereas an Active Control Group (CON) received SCRATCH computer programming.  Forty of 
the children (20 MT) additionally underwent MRI scans at MIT.  From before to after training, the 
MT group had a selective increase in MPFC-DLPFC anticorrelations (as compared to the CON 
group), and the increase in MPFC-DLPFC anticorrelations positively correlated with an increase 
performance on an attention task (Bauer et al., In Prep). In addition, neurotechnological approaches 
have been shown to alter RSNs, such as real-time fMRI neurofeedback training in controls subjects 
as well as patients with MDD and schizophrenia (Garrison et al, 2013; Sacchet & Gotlib 2016; 
Bauer et al., In Prep).  Finally, pharmacological interventions have also been shown to normalize 
or ameliorate pathological RSNs (Whitfield-Gabrieli et al., In Press; Fisher et al., 2014).

Measurements of resting state networks may serve as surrogate endpoints to monitor the efficacy 
of a treatment.  Initial randomized clinical trials (RCTs) of CBT or mindfulness will have to follow 
children over multiple years to provide evidence that preventive treatment is actually effective 
because MDD or ADHD could be expressed over multiple years (a true endpoint).  After that, 
however, patients, families, and clinicians will want more rapid evidence (surrogate endpoint) that 
a treatment is effective for an individual so that an effective treatment is maintained or an 
ineffective treatment is terminated.  Plasticity in predictive networks could provide information 
about whether a preventive treatment is altering specific functional connectivity in desired 
directions (increase or decrease).   

Clinical Applications and Ethical Considerations of Predictive Brain Vulnerabilities
Currently, mental health disorders are treated on a wait-to-fail basis, with treatment typically offer
ed after a person is severely debilitated.  By then, a person’s life has had an accumulated downwa
rd spiral in terms of worsened relations with family and friends, deteriorating school performance 
for children and adolescents, and lost wages and productivity at work for adults.  

Predictive brain measures, in combination with behavioral and perhaps genetic measures, might b
e able to identify individuals at risk and justify preventive treatment that is offered before the dow
nward spiral of severe dysfunction.  Although the present research used MRI, an important directi
on for future research is to learn whether recordings from scalp electrodes using electroencephalo
graphy (EEG) could serve a similar function.  There has been steady technical progress in EEG re
cordings, including wireless devices that employ dry electrodes.  Such an EEG device could be de
ployed widely in physician offices and hospitals.   If this were to be achieved, widescale predictive 
brain screening could occur. 
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If the sensitivity and specificity of neuroimaging screening were to meet useful criteria, a number 
of important ethical and policy questions would arise.  A risk would be that such screening would 
be used to select people for jobs and school admissions rather than providing at-risk individuals 
with early treatment.  Further, one would have to consider how to communicate such risk to an 
adult or child so that knowledge of the risk is helpful rather than discouraging or destructive.  Most 
importantly, it would be essential that helpful treatments be coupled to the risk assessments so that 
knowledge of the risk can be a beneficial trigger for benign intervention.
Preventive treatment is paradoxical in that a treatment would be initiated for a mental health risk 
rather than a mental health problem.  For this reason, benign behavioral treatments with few or no 
side effects would be preferred over pharmaceutical treatments that often have associated side 
effects.  



46

References (Chapter 1)
1. Kessler RC, Aguilar-Gaxiola S, Alonso J, Chatterji S, Lee S, Ormel J et al. The global 

burden of mental disorders: an update from the WHO World Mental Health (WMH) 
surveys. Epidemiologia e psichiatria sociale 2009; 18(01): 23-33.

2. Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jonsson B et al. The size and 
burden of mental disorders and other disorders of the brain in Europe 2010. Eur 
Neuropsychopharm 2011; 21(9): 655-679.

3. Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jonsson B et al. The size and 
burden of mental disorders and other disorders of the brain in Europe 2010. Eur 
Neuropsychopharm 2011; 21(9): 655-679.

4. Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jonsson B et al. The size and 
burden of mental disorders and other disorders of the brain in Europe 2010. Eur 
Neuropsychopharm 2011; 21(9): 655-679.

5. Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E et al. Cost of 
disorders of the brain in Europe 2010 (vol 21, pg 718, 2011). Eur Neuropsychopharm 
2012; 22(3): 237-238.

6. Insel T. Assessing the economic costs of serious mental illness. American Journal of 
Psychiatry 2008; 165(6): 663-665.

7. Stamm K, Salize H-J. Volkswirtschaftliche Konsequenzen. In: Stoppe G, Bramesfeld A, 
Schwartz F-W (eds). Volkskrankheit Depression? Springer Berlin Heidelberg2006, pp 
109-120.

6. Dore G, Romans SE. Impact of bipolar affective disorder on family and partners. Journal 
of Affective Disorders 2001; 67(1–3): 147-158.

7. Gianfrancesco FD, Wang R-h, Yu E. Effects of patients with bipolar, schizophrenic, and 
major depressive disorders on the mental and other healthcare expenses of family 
members. Social Science & Medicine 2005; 61(2): 305-311.

8. Guan B, Deng Y, Cohen P, Chen H. Relative impact of Axis I mental disorders on quality 
of life among adults in the community. Journal of Affective Disorders 2011; 131(1–3): 
293-298.

9. Hasui C, Sakamoto S, Sugiura T, Miyata R, Fujii Y, Koshiishi F et al. Burden on family 
members of the mentally ill: A naturalistic study in Japan. Comprehensive Psychiatry 
2002; 43(3): 219-222.

10. Olatunji BO, Cisler JM, Tolin DF. Quality of life in the anxiety disorders: A meta-analytic 
review. Clinical Psychology Review 2007; 27(5): 572-581.

11. Saunders JC. Families living with severe mental illness: A literature review. Issues in 
Mental Health Nursing 2003; 24(2): 175-198.

12. Wittmund B, Wilms HU, Mory C, Angermeyer MC. Depressive disorders in spouses of 
mentally ill patients. Soc Psych Psych Epid 2002; 37(4): 177-182.

13. Bloom DE, Cafiero E, Jané-Llopis E, Abrahams-Gessel S, Bloom LR, Fathima S et al. 
The global economic burden of noncommunicable diseases: Program on the Global 
Demography of Aging; 2012.

14. Stephan KE, Bach DR, Fletcher PC, Flint J, Frank MJ, Friston KJ et al. Charting the 
landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet 
Psychiatry 2016; 3(1): 77-83.

15. Darcy AM, Louie AK, Roberts LW. Machine Learning and the Profession of Medicine. 
JAMA 2016; 315(6): 551-552.



47

16. Eyre HA, Singh AB, Reynolds C, 3rd. Tech giants enter mental health. World Psychiatry 
2016; 15(1): 21-22.

17. Gabrieli JD, Ghosh SS, Whitfield-Gabrieli S. Prediction as a humanitarian and pragmatic 
contribution from human cognitive neuroscience. Neuron 2015; 85(1): 11-26.

18. Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science 
2015; 349(6245): 255-260.

19. Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating 
activation locality to predicting disorder: A review of pattern recognition for 
neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev 2015; 57: 328-349.

20. Eley TC, Hudson JL, Creswell C, Tropeano M, Lester KJ, Cooper P et al. 
Therapygenetics: the 5HTTLPR and response to psychological therapy. Mol Psychiatry 
2012; 17(3): 236-237.

21. Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N et al. Genetic variants 
associated with response to lithium treatment in bipolar disorder: a genome-wide 
association study. Lancet 2016; 387(10023): 1085-1093.

22. DeRubeis RJ, Siegle GJ, Hollon SD. Cognitive therapy versus medication for depression: 
treatment outcomes and neural mechanisms. Nat Rev Neurosci 2008; 9(10): 788-796.

23. Paulus MP. Pragmatism Instead of Mechanism: A Call for Impactful Biological 
Psychiatry. JAMA Psychiatry 2015; 72(7): 631-632.

24. Marcus G, Davis E. Eight (No, Nine!) Problems With Big Data.  The New York Times. 
Arthur Ochs Sulzberger, Jr.: New York, 2014, p A23.

25. Chan MK, Gottschalk MG, Haenisch F, Tomasik J, Ruland T, Rahmoune H et al. 
Applications of blood-based protein biomarker strategies in the study of psychiatric 
disorders. Prog Neurobiol 2014; 122: 45-72.

26. Fu CH, Costafreda SG. Neuroimaging-based biomarkers in psychiatry: clinical 
opportunities of a paradigm shift. Can J Psychiatry 2013; 58(9): 499-508.

27. Hofmann-Apitius M, Ball G, Gebel S, Bagewadi S, de Bono B, Schneider R et al. 
Bioinformatics Mining and Modeling Methods for the Identification of Disease 
Mechanisms in Neurodegenerative Disorders. Int J Mol Sci 2015; 16(12): 29179-29206.

28. McMahon FJ. Prediction of treatment outcomes in psychiatry--where do we stand ? 
Dialogues Clin Neurosci 2014; 16(4): 455-464.

29. Savitz JB, Rauch SL, Drevets WC. Clinical application of brain imaging for the diagnosis 
of mood disorders: the current state of play. Mol Psychiatry 2013; 18(5): 528-539.

30. Scarr E, Millan MJ, Bahn S, Bertolino A, Turck CW, Kapur S et al. Biomarkers for 
Psychiatry: The Journey from Fantasy to Fact, a Report of the 2013 CINP Think Tank. Int 
J Neuropsychopharmacol 2015; 18(10): pyv042.

31. Veronese E, Castellani U, Peruzzo D, Bellani M, Brambilla P. Machine learning 
approaches: from theory to application in schizophrenia. Comput Math Methods Med 
2013; 2013: 867924.

32. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research 
and a New Taxonomy of Disease: Washington (DC), 2011.

33. Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med 
2012; 366(6): 489-491.

34. Lin CF, Wang SD. Fuzzy support vector machines. IEEE Trans Neural Netw 2002; 13(2): 
464-471.

35. Qin ZC, Lawry J. Decision tree learning with fuzzy labels. Inform Sciences 2005; 172(1-



48

2): 91-129.
36. Regier DA, Narrow WE, Kuhl EA, Kupfer DJ. The conceptual development of DSM-V. 

Am J Psychiatry 2009; 166(6): 645-650.
37. Hastie T, Tibshirani R, Friedman J, Franklin J. The elements of statistical learning: data 

mining, inference and prediction. The Mathematical Intelligencer 2005; 27(2): 83-85.
38. Ozomaro U, Wahlestedt C, Nemeroff CB. Personalized medicine in psychiatry: problems 

and promises. BMC Med 2013; 11: 132.
39. Huys QJM, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience 

to clinical applications. Nat Neurosci 2016; 19(3): 404-413.
40. Ofer D, Linial M. ProFET: Feature engineering captures high-level protein functions. 

Bioinformatics 2015; 31(21): 3429-3436.
41. MacKay DJC. Information theory, inference, and learning algorithms. Cambridge 

University Press: Cambridge, UK ; New York, 2003, xii, 628 p.pp.
42. Bedi G, Carrillo F, Cecchi GA, Slezak DF, Sigman M, Mota NB et al. Automated analysis 

of free speech predicts psychosis onset in high-risk youths. Npj Schizophrenia 2015; 1: 
15030.

43. Hahn T, Kircher T, Straube B, Wittchen HU, Konrad C, Strohle A et al. Predicting 
treatment response to cognitive behavioral therapy in panic disorder with agoraphobia by 
integrating local neural information. JAMA Psychiatry 2015; 72(1): 68-74.

44. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-444.
45. Building high-level features using large scale unsupervised learning. Proceedings of the 

Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference 
on2013. IEEE.

46. Kendler KS. The nature of psychiatric disorders. World Psychiatry 2016; 15(1): 5-12.
47. Maj M. The need for a conceptual framework in psychiatry acknowledging complexity 

while avoiding defeatism. World Psychiatry 2016; 15(1): 1-2.
48. Hahn T, Marquand AF, Ehlis AC, Dresler T, Kittel-Schneider S, Jarczok TA et al. 

Integrating neurobiological markers of depression. Arch Gen Psychiatry 2011; 68(4): 361-
368.

49. Bishop CM. Pattern recognition and machine learning. Springer: New York, 2006, xx, 738 
p.pp.

50. Collins FS, Hudson KL, Briggs JP, Lauer MS. PCORnet: turning a dream into reality. J 
Am Med Inform Assn 2014; 21(4): 576-577.

51. Pine DS, Leibenluft E. Biomarkers With a Mechanistic Focus. JAMA Psychiatry 2015; 
72(7): 633-634.

52. Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial 
overview. Neuroimage 2009; 45(1 Suppl): S199-209.

53. Yang Z, Fang F, Weng X. Recent developments in multivariate pattern analysis for 
functional MRI. Neurosci Bull 2012; 28(4): 399-408.

54. Lueken U, Hahn T. Functional neuroimaging of psychotherapeutic processes in anxiety 
and depression: from mechanisms to predictions. Current opinion in psychiatry 2016; 
29(1): 25-31.

55. Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in 
big data analysis. Science 2014; 343(6176): 1203-1205.

56. Wolpert DH. The lack of A priori distinctions between learning algorithms. Neural 
Comput 1996; 8(7): 1341-1390.



49

References (Chapter 2)
1.    Grimm S, Boesiger P, Beck J, Schuepbach D, Bermpohl F, Walter M, et al. (2009): Altered 

negative BOLD responses in the default-mode network during emotion processing in 
depressed subjects. Neuropsychopharmacology. 34: 932–843.

2. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, et al. (2009): The 
default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A. 
106: 1942–1947.

3. Ho TC, Connolly CG, Henje Blom E, LeWinn KZ, Strigo I a., Paulus MP, et al. (2014): 
Emotion-Dependent Functional Connectivity of the Default Mode Network in Adolescent 
Depression. Biol Psychiatry. 1–13.

4. Fales CL, Barch DM, Rundle MM, Mintun MA, Snyder AZ, Cohen JD, et al. (2008): Altered 
emotional interference processing in affective and cognitive-control brain circuitry in major 
depression. Biol Psychiatry. 63: 377–384.

5. Mitterschiffthaler MT, Williams SCR, Walsh ND, Cleare AJ, Donaldson C, Scott J, Fu CHY 
(2008): Neural basis of the emotional Stroop interference effect in major depression. Psychol 
Med. 38: 247–256.

6. Sheline YI, Price JL, Yan Z, Mintun M a (2010): Resting-state functional MRI in depression 
unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci U 
S A. 107: 11020–11025.

7. Zeng LL, Shen H, Liu L, Wang L, Li B, Fang P, et al. (2012): Identifying major depression 
using whole-brain functional connectivity: A multivariate pattern analysis. Brain. 135: 1498–
1507.

8. Mayberg HS (1997): Limbic-cortical dysregulation: a proposed model of depression. J 
Neuropsychiatry Clin Neurosci. 9: 471–481.

9. Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier M, Raichle ME (1997): 
Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 386: 824–827.

10. Ongür D, Drevets WC, Price JL (1998): Glial reduction in the subgenual prefrontal cortex in 
mood disorders. Proc Natl Acad Sci U S A. 95: 13290–13295.

11. Gotlib IH, Sivers H, Gabrieli JDE, Whitfield-Gabrieli S, Goldin P, Minor KL, Canli T (2005): 
Subgenual anterior cingulate activation to valenced emotional stimuli in major depression. 
Neuroreport. 16: 1731–1734.

12. Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA (2001): Increased 
amygdala response to masked emotional faces in depressed subjects resolves with 
antidepressant treatment: An fMRI study. Biol Psychiatry. 50: 651–658.

13. Suslow T, Konrad C, Kugel H, Rumstadt D, Zwitserlood P, Schöning S, et al. (2010): 
Automatic mood-congruent amygdala responses to masked facial expressions in major 
depression. Biol Psychiatry. 67: 155–160.

14. Disner SG, Beevers CG, Haigh EAP, Beck AT (2011): Neural mechanisms of the cognitive 
model of depression. Nat Rev Neurosci. 12: 467–477.

15. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA (2015): Large-scale network 
dysfunction in major depressive disorder. JAMA Psychiatry. 02478: 1–10.

16. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. (2007): 
Resting-state functional connectivity in major depression: Abnormally increased contributions 
from subgenual cingulate cortex and thalamus. Biol Psychiatry. 62: 429–437.

17. Zhou Y, Yu C, Zheng H, Liu Y, Song M, Qin W, et al. (2010): Increased neural resources 
recruitment in the intrinsic organization in major depression. J Affect Disord. 121: 220–230.



50

18. Connolly CG, Wu J, Ho TC, Hoeft F, Wolkowitz O, Eisendrath S, et al. (2013): Resting-state 
functional connectivity of subgenual anterior cingulate cortex in depressed adolescents. Biol 
Psychiatry. 74: 898–907.

19. Gaffrey MS, Luby JL, Repovš G, Belden AC, Botteron KN, Luking KR, Barch DM (2010): 
Subgenual cingulate connectivity in children with a history of preschool-depression. 
Neuroreport. 21: 1182–8.

20. Hamilton JP, Farmer M, Fogelman P, Gotlib IH (2015): Depressive Rumination, the Default-
Mode Network, and the Dark Matter of Clinical Neuroscience. Biol Psychiatry. 78: 224–230.

21. Veer IM, Beckmann CF, van Tol M-J, Ferrarini L, Milles J, Veltman DJ, et al. (2010): Whole 
brain resting-state analysis reveals decreased functional connectivity in major depression. 
Front Syst Neurosci. 4: 1–10.

22. Alexopoulos GS, Hoptman MJ, Kanellopoulos D, Murphy CF, Lim KO, Gunning FM (2012): 
Functional connectivity in the cognitive control network and the default mode network in late-
life depression. J Affect Disord. 139: 56–65.

23. Ye T, Peng J, Nie B, Gao J, Liu J, Li Y, et al. (2012): Altered functional connectivity of the 
dorsolateral prefrontal cortex in first-episode patients with major depressive disorder. Eur J 
Radiol. 81: 4035–4040.

24. Marchetti I, Koster EHW, Sonuga-Barke EJ, De Raedt R (2012): The default mode network 
and recurrent depression: a neurobiological model of cognitive risk factors. Neuropsychol Rev. 
22: 229–51.

25. Belleau EL, Taubitz LE, Larson CL (2014): Imbalance of default mode and regulatory 
networks during externally focused processing in depression. Soc Cogn Affect Neurosci. 1–8.

26. Hamilton JP, Chen MC, Gotlib IH (2013): Neural systems approaches to understanding major 
depressive disorder: An intrinsic functional organization perspective. Neurobiol Dis. 52: 4–11.

27. Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, et al. (2005): Activity and connectivity of 
brain mood regulating circuit in depression: A functional magnetic resonance study. Biol 
Psychiatry. 57: 1079–1088.

28. Chen C-H, Suckling J, Ooi C, Fu CHY, Williams SCR, Walsh ND, et al. (2008): Functional 
coupling of the amygdala in depressed patients treated with antidepressant medication. 
Neuropsychopharmacology. 33: 1909–18.

29. Luking KR, Repovs G, Belden AC, Gaffrey MS, Botteron KN, Luby JL, Barch DM (2011): 
Functional connectivity of the amygdala in early-childhood-onset depression. J Am Acad 
Child Adolesc Psychiatry. 50: 1027–41.e3.

30. Williamson DE, Birmaher B, Axelson DA, Ryan ND, Dahl RE (2004): First episode of 
depression in children at low and high familial risk for depression. J Am Acad Child Adolesc 
Psychiatry. 43: 291–297.

31. Lieb R, Isensee B, Höfler M, Pfister H, Wittchen H-U (2002): Parental major depression and 
the risk of depression and other mental disorders in offspring: a prospective-longitudinal 
community study. Arch Gen Psychiatry. 59: 365–374.

32. Clasen PC, Beevers CG, Mumford J a, Schnyer DM (2014): Cognitive control network 
connectivity in adolescent women with and without a parental history of depression. Dev Cogn 
Neurosci. 7: 13–22.

33. Whitfield-Gabrieli S, Moran JM, Nieto-Castañón A, Triantafyllou C, Saxe R, Gabrieli JDE 
(2011): Associations and dissociations between default and self-reference networks in the 
human brain. Neuroimage. 55: 225–232.

34. Nejad AB, Fossati P, Lemogne C (2013): Self-referential processing, rumination, and cortical 



51

midline structures in major depression. Front Hum Neurosci. 7: 666.
35. First MB, Spitzer RL, Gibbon M, Williams JBW (1995): Structured Clinical Interview for 

DSM-IV Axis I Disorders (Clinician Version). New York, New York State Psychiatric Institute 
Biometrics Department.

36. Orvaschel H (1994): Schedule for Affective Disorder and Schizophrenia for School-Age 
children–Epidemiologic Version (5th ed.). Fort Lauderdale, FL: Nova Southeastern University, 
Center for Psychological Studies.

37. Kaufman AS, Kaufman NL (2004): Kaufman Brief Intelligence Test, Second Edition (KBIT-
2). Bloomington, MN: Pearson, Inc.

38. Achenbach TM, Rescorla LA (2001): Manual for ASEBA School-Age Forms & Profile. 
Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families.

39. Kovacs M (1985): The children’s depression, Inventory (CDI). Psychopharmacol Bull. 21: 
995–998.

40. Thesen S, Heid O, Mueller E, Schad LR (2000): Prospective acquisition correction for head 
motion with image-based tracking for real-time fMRI. Magn Reson Med. 44: 457–465.

41. Chai XJ, Castañán AN, Öngür D, Whitfield-Gabrieli S (2012): Anticorrelations in resting state 
networks without global signal regression. Neuroimage. 59: 1420–1428.

42. Whitfield-Gabrieli S, Nieto-Castanon A (2012): Conn : A functional connectivity toolbox for 
correlated and anticorrelated brain networks. Brain Connect. 2.

43. Fair D a., Cohen AL, Power JD, Dosenbach NUF, Church J a., Miezin FM, et al. (2009): 
Functional brain networks develop from a “local to distributed” organization. PLoS Comput 
Biol. 5: 14–23.

44. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003): An automated method for 
neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 
19: 1233–1239.

45. Behzadi Y, Restom K, Liau J, Liu TT (2007): A component based noise correction method 
(CompCor) for BOLD and perfusion based fMRI. Neuroimage. 37: 90–101.

46. Murphy K, Birn RM, Handwerker D a, Jones TB, Bandettini P a (2009): The impact of global 
signal regression on resting state correlations: are anti-correlated networks introduced? 
Neuroimage. 44: 893–905.

47. Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW (2012): Trouble at rest: how 
correlation patterns and group differences become distorted after global signal regression. 
Brain Connect. 2: 25–32.

48. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone S V, McCarley RW, 
et al. (2009): Hyperactivity and hyperconnectivity of the default network in schizophrenia and 
in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A. 106: 1279–
1284.

49. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005): The human 
brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl 
Acad Sci U S A. 102: 9673–8.

50. Dyck M, Loughead J, Kellermann T, Boers F, Gur RC, Mathiak K (2011): Cognitive versus 
automatic mechanisms of mood induction differentially activate left and right amygdala. 
Neuroimage. 54: 2503–2513.

51. Genovese CR, Lazar NA, Nichols T (2002): Thresholding of statistical maps in functional 
neuroimaging using the false discovery rate. Neuroimage. 15: 870–878.

52. Hall M, National H, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009): The 



52

WEKA data mining software : An update. SIGKDD Explor. 11: 10–18.
53. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. 

(2002): Automated anatomical labeling of activations in SPM using a macroscopic anatomical 
parcellation of the MNI MRI single-subject brain. Neuroimage. 15: 273–289.

54. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. (2005): 
Deep brain stimulation for treatment-resistant depression. Neuron. 45: 651–660.

55. Fox MD, Liu H, Pascual-Leone A (2013): Identification of reproducible individualized targets 
for treatment of depression with TMS based on intrinsic connectivity. Neuroimage. 66: 151–
160.

56. Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A (2005): Neural basis and recovery of 
spatial attention deficits in spatial neglect. Nat Neurosci. 8: 1603–10.

57. Ptak R (2012): The Frontoparietal Attention Network of the Human Brain: Action, Saliency, 
and a Priority Map of the Environment. Neurosci. 18: 502–515.

58. Hartlage S, Alloy LB, Vázquez C, Dykman B (1993): Automatic and effortful processing in 
depression. Psychol Bull. 113: 247–278.

59. Harvey PO, Le Bastard G, Pochon JB, Levy R, Allilaire JF, Dubois B, Fossati P (2004): 
Executive functions and updating of the contents of working memory in unipolar depression. 
J Psychiatr Res. 38: 567–576.

60. Keller JB, Hedden T, Thompson TW, Anteraper S a., Gabrieli JDE, Whitfield-Gabrieli S 
(2015): Resting-state anticorrelations between medial and lateral prefrontal cortex: 
Association with working memory, aging, and individual differences. Cortex. 64: 271–280.

61. Hampson M, Driesen N, Roth JK, Gore JC, Constable RT (2010): Functional connectivity 
between task-positive and task-negative brain areas and its relation to working memory 
performance. Magn Reson Imaging. 28: 1051–1057.

62. Whitfield-Gabrieli S, Ford JM (2012): Default mode network activity and connectivity in 
psychopathology. Annu Rev Clin Psychol. 8.

63. Hooley JM, Gruber SA, Scott LA, Hiller JB, Yurgelun-Todd DA (2005): Activation in 
dorsolateral prefrontal cortex in response to maternal criticism and praise in recovered 
depressed and healthy control participants. Biol Psychiatry. 57: 809–812.

64. Gotlib IH, Hamilton JP (2008): Neuroimaging and depression: Current status and unresolved 
issues. Curr Dir Psychol Sci. 17: 159–163.

65. Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN (2008): Prefrontal-
subcortical pathways mediating successful emotion regulation. Neuron. 59: 1037–1050.

66. Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ (2007): Failure to regulate: 
Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major 
depression. J Neurosci. 27: 8877–8884.

67. Townsend JD, Torrisi SJ, Lieberman MD, Sugar CA, Bookheimer SY, Altshuler LL (2013): 
Frontal-amygdala connectivity alterations during emotion downregulation in bipolar I disorder. 
Biol Psychiatry. 73: 127–35.

68. Gabrieli JDE, Ghosh SS, Whitfield-Gabrieli S (2015): Prediction as a Humanitarian and 
Pragmatic Contribution from Human Cognitive Neuroscience. Neuron. 85: 11–26.

69. Hirshfeld-Becker DR, Micco JA, Henin A, Petty C, Faraone S V, Mazursky H, et al. (2012): 
Psychopathology in adolescent offspring of parents with panic disorder, major depression, or 
both: A 10-year follow-up. Am J Psychiatry. 169: 1175–1184.

70. Van Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010): 
Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and 



53

optimization. J Neurophysiol. 103: 297–321.
71. Redcay E, Moran JM, Mavros PL, Tager-Flusberg H, Gabrieli JDE, Whitfield-Gabrieli S 

(2013): Intrinsic functional network organization in high-functioning adolescents with autism 
spectrum disorder. Front Hum Neurosci. 7: 573.

References (Chapter 3)
1. Achenbach, T.M., & Rescorla, L. A. (2001). Manual for the ASEBA School-Age Forms and 

Profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, and 
Families. 

2. Petty CR, Rosenbaum JF, Hirshfeld-Becker DR, Henin A, Hubley S, LaCasse S, Faraone SV, 
Biederman J. (2008) The child behavior checklist broad-band scales predict subsequent 
psychopathology: A 5-year follow-up. J Anxiety Disord. 22:532-9.

3. <UCHIDA et al., 2017>
4. Stuss D. & Knight R. (2012) Principles of Frontal Lobe Functions, 2nd Edition. Oxford 

University Press.
5. Ochsner K., Gross J. The cognitive control of emotion. (2005) Trends Cogn Sci. 2005 

May;9(5):242-9.
6. Miller EK, Cohen JD. (2001): An integrative theory of prefrontal cortex function. Annu Rev 

Neurosci. 24:167-202. Review.
7. Uchida M, Biederman J, Gabrieli JD, Micco J, de Los Angeles C, Brown A, Kenworthy T, 

Kagan E, Whitfield-Gabrieli S. (2015) Emotion regulation ability varies in relation to 
intrinsic functional brain architecture. Soc Cogn Affect Neurosci. 10:1738-48

8. Etkin A, Büchel C, Gross JJ. (2015) The Neural Basis of Emotion Regulation. Nat Rev 
Neurosci. 16(11):693-700. doi: 10.1038/nrn4044.

9. Cole MW, Repovš G, Anticevic A. (2010) The frontoparietal control system: a central role 
in mental health. Neuroscientist. 20(6):652-64

10. Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ. (2007) Failure to regulate: 
counterproductive recruitment of top-down prefrontal-subcortical circuitry in major 
depression. J Neurosci. 27:8877-84.

11. Disner SG, Beevers CG, Haigh EA, Beck AT. (2011) Neural mechanisms of the cognitive 
model of depression. Nat Rev Neurosci. 12:467-77.

12. Kaiser RH, Whitfield-Gabrieli S, Dillon DG, Goer F, Beltzer M, Minkel J, Smoski M, 
Dichter G, Pizzagalli DA. (2016) Dynamic Resting-State Functional Connectivity in Major 
Depression. Neuropsychopharmacology. 41:1822-30

13. Mogg K, Bradley BP. (2016): Anxiety and attention to threat: Cognitive mechanisms and 
treatment with attention bias modification. Behav Res Ther. 87:76-108

14. Dalley JW, Everitt BJ, Robbins TW. (2011) Impulsivity, compulsivity, and top-down 
cognitive control. Neuron. 69(4):680-94

15. Paus T, Keshavan M, Giedd JN. (2008) Why do many psychiatric disorders emerge during 
adolescence? Nat Rev Neurosci 9(12):947-57

16. Keshavan MS, Giedd J, Lau JY, Lewis DA, Paus T. (2014) Changes in the adolescent brain 
and the pathophysiology of psychotic disorders. Lancet Psychiatry. 1:549-58. 

17. Visser HA1, van Minnen A, van Megen H, Eikelenboom M, Hoogendoorn AW, 
Kaarsemaker M, van Balkom AJ, van Oppen P. (2014) The relationship between adverse 
childhood experiences and symptom severity, chronicity, and comorbidity in patients with 
obsessive-compulsive disorder. . J Clin Psychiatry. 2014 Oct;75(10):1034-9.

https://www.ncbi.nlm.nih.gov/pubmed/17521868
https://www.ncbi.nlm.nih.gov/pubmed/17521868
https://www.ncbi.nlm.nih.gov/pubmed/15866151
https://www.ncbi.nlm.nih.gov/pubmed/11283309
https://www.ncbi.nlm.nih.gov/pubmed/25999363
https://www.ncbi.nlm.nih.gov/pubmed/25999363
https://www.ncbi.nlm.nih.gov/pubmed/?term=Etkin%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26481098
https://www.ncbi.nlm.nih.gov/pubmed/?term=B%C3%BCchel%20C%5BAuthor%5D&cauthor=true&cauthor_uid=26481098
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gross%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=26481098
https://www.ncbi.nlm.nih.gov/pubmed/26481098
https://www.ncbi.nlm.nih.gov/pubmed/26481098
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cole%20MW%5BAuthor%5D&cauthor=true&cauthor_uid=24622818
https://www.ncbi.nlm.nih.gov/pubmed/?term=Repov%C5%A1%20G%5BAuthor%5D&cauthor=true&cauthor_uid=24622818
https://www.ncbi.nlm.nih.gov/pubmed/?term=Anticevic%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24622818
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cole+M%2C+Anticevic+A+2014+The+Frontoparietal+Control+System%3A+A+Central+Role+in+Mental+Health
https://www.ncbi.nlm.nih.gov/pubmed/17699669
https://www.ncbi.nlm.nih.gov/pubmed/17699669
https://www.ncbi.nlm.nih.gov/pubmed/17699669
https://www.ncbi.nlm.nih.gov/pubmed/?term=Disner%20SG%5BAuthor%5D&cauthor=true&cauthor_uid=21731066
https://www.ncbi.nlm.nih.gov/pubmed/?term=Beevers%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=21731066
https://www.ncbi.nlm.nih.gov/pubmed/?term=Haigh%20EA%5BAuthor%5D&cauthor=true&cauthor_uid=21731066
https://www.ncbi.nlm.nih.gov/pubmed/?term=Beck%20AT%5BAuthor%5D&cauthor=true&cauthor_uid=21731066
https://www.ncbi.nlm.nih.gov/pubmed/21731066
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kaiser%20RH%5BAuthor%5D&cauthor=true&cauthor_uid=26632990
https://www.ncbi.nlm.nih.gov/pubmed/?term=Whitfield-Gabrieli%20S%5BAuthor%5D&cauthor=true&cauthor_uid=26632990
https://www.ncbi.nlm.nih.gov/pubmed/?term=Dillon%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=26632990
https://www.ncbi.nlm.nih.gov/pubmed/?term=Goer%20F%5BAuthor%5D&cauthor=true&cauthor_uid=26632990
https://www.ncbi.nlm.nih.gov/pubmed/?term=Beltzer%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26632990
https://www.ncbi.nlm.nih.gov/pubmed/?term=Minkel%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26632990
https://www.ncbi.nlm.nih.gov/pubmed/?term=Smoski%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26632990
https://www.ncbi.nlm.nih.gov/pubmed/?term=Dichter%20G%5BAuthor%5D&cauthor=true&cauthor_uid=26632990
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pizzagalli%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=26632990
https://www.ncbi.nlm.nih.gov/pubmed/26632990
https://www.ncbi.nlm.nih.gov/pubmed/27616718
https://www.ncbi.nlm.nih.gov/pubmed/27616718
https://www.ncbi.nlm.nih.gov/pubmed/21338879
https://www.ncbi.nlm.nih.gov/pubmed/21338879
https://www.ncbi.nlm.nih.gov/pubmed/19002191
https://www.ncbi.nlm.nih.gov/pubmed/19002191
https://www.ncbi.nlm.nih.gov/pubmed/26361314
https://www.ncbi.nlm.nih.gov/pubmed/26361314
https://www.ncbi.nlm.nih.gov/pubmed/?term=Visser%20HA%5BAuthor%5D&cauthor=true&cauthor_uid=25006863
https://www.ncbi.nlm.nih.gov/pubmed/?term=van%20Minnen%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25006863
https://www.ncbi.nlm.nih.gov/pubmed/?term=van%20Megen%20H%5BAuthor%5D&cauthor=true&cauthor_uid=25006863
https://www.ncbi.nlm.nih.gov/pubmed/?term=Eikelenboom%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25006863
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hoogendoorn%20AW%5BAuthor%5D&cauthor=true&cauthor_uid=25006863
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kaarsemaker%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25006863
https://www.ncbi.nlm.nih.gov/pubmed/?term=van%20Balkom%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=25006863
https://www.ncbi.nlm.nih.gov/pubmed/?term=van%20Oppen%20P%5BAuthor%5D&cauthor=true&cauthor_uid=25006863


54

18. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995).Functional connectivity in 
the motor cortex of resting human brain using echo-planarMRI. Magnetic Resonance in 
Medicine, 34:537–541

19. Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, Papademetris X, 
Constable RT. (2015) Functional connectome fingerprinting: identifying individuals using 
patterns of brain connectivity. Nat Neurosci.18:1664-71

20. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. 
(2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 
103: 13848–13853.

21. Chen S. Ross TJ. Zhan W. Myers CS. Chuang K-S. Heishman SJ. Stein EA. Yang Y. (2008) 
Group independent component analysis reveals consistent resting-state networks across 
multiple sessions. Brain Res. 1239:141–151

22. Shehzad Z. Kelly AMC. Reiss PT. Gee DG. Gotimer K. Uddin LQ. Lee SH. Margulies DS. 
Roy AK. Biswal BB. Petkova E. Castellanos FX. Milham MP. (2009) The resting brain: 
unconstrained yet reliable. Cereb Cortex. 19:2209–2229

23. Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. (2010) 
Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and 
optimization. Journal of Neurophysiology.  103:297–321.

24. Zuo X-N. Di Martino A. Kelly C. Shehzad ZE. Gee DG. Klein DF. Castellanos FX. Biswal 
BB. Milham MP. (2010) The oscillating brain: complex and reliable. NeuroImage. 49:1432–
1445

25. Zuo X-N. Kelly C. Adelstein JS. Klein DF. Castellanos FX. Milham MP. (2010) Reliable 
intrinsic connectivity networks: test-retest evaluation using ICA and dual regression 
approach. NeuroImage. 49:2163-77

26. Chai J., Ofen N., Gabrieli J.D.E., Whitfield-Gabrieli S. (2014). Development of resting-state 
functional connectivity of the default network: maturation of anticorrelated networks Journal 
of Cognitive Neuroscience, 26: 501-513.

27. Yuan M, Zhu H, Qiu C, et al. (2016) Group cognitive behavioral therapy modulates the 
resting-state functional connectivity of amygdala-related network in patients with 
generalized social anxiety disorder. BMC Psychiatry. 16:198. 

28. McFadden KL, Cornier M-A, Melanson EL, Bechtell JL, Tregellas JR. (2013): Effects of 
exercise on resting-state default mode and salience network activity in overweight/obese 
adults. Neuroreport. 24:866-871. 

29. Salinas FS. & Szabó CÁ, (2017) Resting-state functional connectivity changes due to acute 
and short-term valproic acid administration in the baboon model of GGE. Neuroimage 
Clinical 16:132-141

30. Whitfield-Gabrieli S., Fischer A., Henricks A.M., Roth R.M., Brunette M.F., Green A.I. (In 
Press) Understanding marijuana's effects on functional connectivity of the default mode 
network in patients with schizophrenia and co-occurring cannabis use disorder: A Pilot 
Investigation. Schizophrenia Research.

31. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. 
(2005). The human brain is intrinsically organized into dynamic, anticorrelated functional 
networks. Proceedings of the National Academy of Sciences, U.S.A., 102, 9673–9678.

32. Shimamura AP. The role of the prefrontal cortex in dynamic filtering. (2000) Psychobiology. 
28:207–218

https://www.ncbi.nlm.nih.gov/pubmed/26457551
https://www.ncbi.nlm.nih.gov/pubmed/26457551
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1564249/


55

33. Olson, EA.; Luciana, M. The development of prefrontal cortex functions in adolescence: 
Theorectical models and a possible dissociation of dorsal versus ventral subregions. In: 
Nelson, CA.; Luciana, M., editors. Handbook of developmental cognitive neuroscience. 2nd 
ed.. Cambridge, MA: MIT Press; 2008. p. 575-590.

34. Best JR & Miller PH (2010) A Developmental Perspective on Executive Function. Child 
Dev. 81(6): 1641–1660

35. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. (2001) A 
default mode of brain function. Proc. Natl. Acad. Sci. USA 98:676–82

36. Kelley WM, Macrae CN, Wyland CL, Caglar S, Inati S, Heatherton TF. (2002) Finding the 
self? An event-related fMRI study. J. Cogn. Neurosci. 14:785–94

37. Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J. (2006) Self-
referential processing in our brain—a meta-analysis of imaging studies on the self. 
Neuroimage 31:440–57

38. Buckner RL, Andrews-Hanna JR, Schacter DL. (2008) The brain’s default network: 
anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124:1–38

39. Whitfield-Gabrieli S, Moran JM, Nieto-Castañón A, Triantafyllou C, Saxe R, Gabrieli JDE 
(2011): Associations and dissociations between default and self-reference networks in the 
human brain. Neuroimage 55:225–232. 34. 

40. Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Competition between 
functional brain networks mediates behavioral variability. Neuroimage. 2008; 39:527–537.

41. Hampson M, Driesen N, Roth JK, Gore JC, Constable RT. (2010) Functional connectivity 
between taskpositive and task-negative brain areas and its relation to working memory 
performance. Magn. Reson. Imaging 28:1051–57

42. Barber AD, Caffo BS, Pekar JJ, Mostofsky SH. (2013) Developmental changes in within-
and between network connectivity between late childhood and adulthood. 
Neuropsychologia. 51:156–167.

43. Keller J.B., Hedden T., Gabrieli J., Whitfield-Gabrieli S. (2015) Anticorrelations between 
medial and lateral prefrontal cortex: association with executive function, aging, and 
individual differences. Cortex, 64:271-80

44. Bunge, S., & Toga, A. (2013) Introduction to section II: Frontal lobe development. 
Principles of frontal lobe function, 93-98.

45. Mattfeld A., Gabrieli J., Biederman J., Spencer T, Brown A., Kotte A. , Kagan E., Whitifeld-
Gabrieli S. (2014). Resting-state functional connectivity in a longitudinal study of ADHD 
children grown-up reflects persistent diagnostic status. Brain, 137:2423-8

46. Bush G, Luu P, Posner MI. (2000) Cognitive and emotional influences in anterior cingulate 
cortex. Trends Cogn. Sci. 4:215–22

47. Johansen-Berg H, Gutman DA, Behrens TE, Matthews PM, Rushworth MF, et al. (2008) 
Anatomical connectivity of the subgenual cingulate region targeted with deep brain 
stimulation for treatment-resistant depression. Cereb. Cortex 18:1374–83.

48. Kennedy SH, Evans KR, Kruger S, Mayberg HS, Meyer JH, et al. (2001) Changes in 
regional brain glucose metabolism measured with positron emission tomography after 
paroxetine treatment of major depression. Am. J. Psychiatry 158:899–905.

49. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, et al. (1999) Reciprocal 
limbic-cortical function and negative mood: convergingPETfindings in depression and 
normal sadness. Am. J. Psychiatry 156:675–82



56

50. Ongur D, Ferry AT, Price JL. (2003) Architectonic subdivision of the human orbital and 
medial prefrontal cortex. J. Comp. Neurol. 460:425–49

51. Phillips ML, Drevets WC, Rauch SL, Lane R. (2003) Neurobiology of emotion perception 
II: implications for major psychiatric disorders. Biol. Psychiatry 54:515–28

52. Price JL, Drevets WC. 2009. Neurocircuitry of mood disorders. Neuropsychopharmacology 
35:192–216

53. Sheline YI, Price JL, Yan Z, Mintun MA. (2010) Resting-state functional MRI in depression 
unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. 
Sci. USA 107:11020–25

54. Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier M, Raichle ME (1997): 
Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386:824–827.

55. Ongür D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in 
mood disorders. Proc Natl Acad Sci U S A 95:13290–13295.

56. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. (2005): 
Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660.

57. Fox MD, Liu H, Pascual-Leone A (2013): Identification of reproducible individualized 
targets for treatment of depression with TMS based on intrinsic connectivity. Neuroimage 
66:151–160.

58. Gaffrey MS, Luby JL, Repovš G, et al. (2010) Subgenual Cingulate Connectivity in 
Children with a History of Preschool-Depression. Neuroreport. 21:1182-1188. 

59. Chai X.J., Hirshfeld-Becker D., Doehrmann O., Leonard J., Biederman J., Gabrieli J, 
Whitfield-Gabrieli S. (2016) The Intrinsic Functional Brain Architecture in Children at Risk 
for Major Depression. Biological Psychiatry. 80(11):849-858.

60. Warnick EM, Bracken MB, Kasl S. Screening efficiency of the child behavior checklist and 
strengths and difficulties questionnaire: a systematic review. (2007) Child and Adolescent 
Mental Health.13:140–147.

61. Biederman J1, Faraone SV, Doyle A, Lehman BK, Kraus I, Perrin J, Tsuang MT. 1993. 
Convergence of the Child Behavior Checklist with structured interview-based psychiatric 
diagnoses of ADHD children with and without comorbidity. J Child Psychol Psychiatry.
34(7):1241-51.

62. Lampert TL, Polanczyk G, Tramontina S, Mardini V, Rohde LA. (2004) Diagnostic 
performance of the CBCL-Attention Problem Scale as a screening measure in a sample of 
Brazilian children with ADHD.

63. Hudziak JJ, Copeland W, Stanger C, Wadsworth M. (2004) Screening for DSM-IV 
externalizing disorders with the Child Behavior Checklist: a receiver-operating characteristic 
analysis. J Child Psychol Psychiatry. 45:1299-307.

64. DuPaul G., Anastopopoulos A., Power T., Reid R, Ikeda M., McGoey K. (1998) Parent 
Ratings of Attention-Deficit/Hyperactivity Disorder Symptoms:  Factor Structure and 
Normative Data.  Jour of Psychopathology and Behavioral Assessment 20:1

65. Conners K. Conners Third Edition (Conners 3)
66. Reich A., (2000) Journal of the American Academy of Child & Adolescent Psychiatry. 

39:59-66
67. Whitfield-Gabrieli S, Nieto Castanon A. (2012) Conn: A functional connectivity toolbox for 

correlated and anticorrelated brain networks. Brain Connectivity. 2:125–141.

https://www.ncbi.nlm.nih.gov/pubmed/?term=Biederman%20J%5BAuthor%5D&cauthor=true&cauthor_uid=8245144
https://www.ncbi.nlm.nih.gov/pubmed/?term=Faraone%20SV%5BAuthor%5D&cauthor=true&cauthor_uid=8245144
https://www.ncbi.nlm.nih.gov/pubmed/?term=Doyle%20A%5BAuthor%5D&cauthor=true&cauthor_uid=8245144
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lehman%20BK%5BAuthor%5D&cauthor=true&cauthor_uid=8245144
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kraus%20I%5BAuthor%5D&cauthor=true&cauthor_uid=8245144
https://www.ncbi.nlm.nih.gov/pubmed/?term=Perrin%20J%5BAuthor%5D&cauthor=true&cauthor_uid=8245144
https://www.ncbi.nlm.nih.gov/pubmed/?term=Tsuang%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=8245144
https://www.ncbi.nlm.nih.gov/pubmed/?term=Biederman%2C+tsuang%2C+Kraus%2C+doyle
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lampert%20TL%5BAuthor%5D&cauthor=true&cauthor_uid=15801336
https://www.ncbi.nlm.nih.gov/pubmed/?term=Polanczyk%20G%5BAuthor%5D&cauthor=true&cauthor_uid=15801336
https://www.ncbi.nlm.nih.gov/pubmed/?term=Tramontina%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15801336
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mardini%20V%5BAuthor%5D&cauthor=true&cauthor_uid=15801336
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rohde%20LA%5BAuthor%5D&cauthor=true&cauthor_uid=15801336
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hudziak%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=15335349
https://www.ncbi.nlm.nih.gov/pubmed/?term=Copeland%20W%5BAuthor%5D&cauthor=true&cauthor_uid=15335349
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stanger%20C%5BAuthor%5D&cauthor=true&cauthor_uid=15335349
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wadsworth%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15335349
https://www.ncbi.nlm.nih.gov/pubmed/?term=James+J.+Hudziak%2C+1+William+Copeland%2C+1+Catherine+Stanger%2C+1+and+Martha+Wadsworth+2


57

68. Chai XJ, Whitfield-Gabrieli S, Shinn AK, Gabrieli JD, Nieto Castanon A, McCarthy JM, et 
al. (2011) Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder 
and schizophrenia. Neuropsychopharmacology.  36:2009–2017.

69. Chai, X. J., Castanon, A. N., Ongur, D., & Whitfield-Gabrieli, S. (2012) Anticorrelations in 
resting state networks without global signal regression. Neuroimage, 59, 1420–1428.

70. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. (2009) The impact of 
global signal regression on resting state correlations: Are anti-correlated networks 
introduced? Neuroimage 44:893–905

71. Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW (2012): Trouble at rest: 
How correlation patterns and group differences become distorted after global signal 
regression. Brain Connect 2:25–32.

72. Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction 
method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37, 90–101.

73. Chai, X. J., Whitfield-Gabrieli, S., Shinn, A. K., Gabrieli, J. D., Nieto Castanon, A., 
McCarthy, J. M., et al. (2011) Abnormal medial prefrontal cortex resting-state connectivity 
in bipolar disorder and schizophrenia. Neuropsychopharmacology, 36, 2009–2017.

74. Whitfield-Gabrieli, S., Thermenos, H., Milanovic, S., Tsuang, M., Faraone, S., McCarley, R., 
Shenton, M., Green, A., LaViolette, P., Wojcik, J., Gabrieli, J.D.E., Seidman, L. (2009) 
Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first 
degree relatives of persons with schizophrenia, Proceedings of the National Academy of 
Sciences of the United States of America, 106:1279-84

75. Calhoun V., Adali T., Pearlson G., and Pekar J., (2001) A Method for Making Group 
Inferences From Functional MRI Data Using Independent Component Analysis Hum.Brain 
Map., 14:140-151

76. Kelly, A.C., Di Martino, A., Uddin, L.Q., Shehzad, Z., Gee, D.G., Reiss, P.T., Margulies, 
D.S., Castellanos, F.X. and Milham, M.P., (2009) Development of anterior cingulate 
functional connectivity from late childhood to early adulthood. Cerebral cortex, 19:640-657.

77. Van Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010): 
Intrinsic functional connectivity as a tool forhuman connectomics: Theory, properties, and 
optimization. J Neurophysiol103:297–321

78. Siegel JS, Mitra A, Laumann TO, Seitzman BA, Raichle M, Corbetta M, and Snyder A 
(2016) Data quality influences observed links between functional connectivity and behavior. 
Cerebral Cortex. 2016 Aug 22. [Epub ahead of print]

79. Gabrieli JDE, Ghosh SS, Whitfield-Gabrieli S (2015): Prediction as a humanitarian and 
pragmatic contribution from human cognitive neuroscience. Neuron 85:11–26.

80. Whitfield-Gabrieli, S and Ford JM. (2012). Assessment of Default Mode Network Activity 
and Connectivity in Psychopathology. Annual Review of Clinical Psychology. 8:49-76

81. Harmelech T, Preminger S, Wertman E, Malach R. (2013) The day-after effect: long term, 
Hebbian-like restructuring of resting-state fMRI patterns induced by a single epoch of 
cortical activation. J Neurosci. 33(22):9488-97.

82. Taylor VA, Daneault V, Grant J, Scavone G, Breton E, Roffe-Vidal S, Courtemanche 
J, Lavarenne AS, Marrelec G, Benali H, Beauregard M. (2013) Impact of meditation training 
on the default mode network during a restful state. Soc Cogn Affect Neurosci. 8(1):4-14

83. Doll A, Hölzel BK, Boucard CC, Wohlschläger AM, Sorg C. (2015) Mindfulness is 
associated with intrinsic functional connectivity between default mode and salience 
networks. Frontiers in Human Neuroscience. 9:461.

https://www.ncbi.nlm.nih.gov/pubmed/23719815
https://www.ncbi.nlm.nih.gov/pubmed/23719815
https://www.ncbi.nlm.nih.gov/pubmed/23719815
https://www.ncbi.nlm.nih.gov/pubmed/?term=Taylor%20VA%5BAuthor%5D&cauthor=true&cauthor_uid=22446298
https://www.ncbi.nlm.nih.gov/pubmed/?term=Daneault%20V%5BAuthor%5D&cauthor=true&cauthor_uid=22446298
https://www.ncbi.nlm.nih.gov/pubmed/?term=Grant%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22446298
https://www.ncbi.nlm.nih.gov/pubmed/?term=Scavone%20G%5BAuthor%5D&cauthor=true&cauthor_uid=22446298
https://www.ncbi.nlm.nih.gov/pubmed/?term=Breton%20E%5BAuthor%5D&cauthor=true&cauthor_uid=22446298
https://www.ncbi.nlm.nih.gov/pubmed/?term=Roffe-Vidal%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22446298
https://www.ncbi.nlm.nih.gov/pubmed/?term=Courtemanche%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22446298
https://www.ncbi.nlm.nih.gov/pubmed/?term=Courtemanche%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22446298
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lavarenne%20AS%5BAuthor%5D&cauthor=true&cauthor_uid=22446298
https://www.ncbi.nlm.nih.gov/pubmed/?term=Marrelec%20G%5BAuthor%5D&cauthor=true&cauthor_uid=22446298
https://www.ncbi.nlm.nih.gov/pubmed/?term=Benali%20H%5BAuthor%5D&cauthor=true&cauthor_uid=22446298
https://www.ncbi.nlm.nih.gov/pubmed/?term=Beauregard%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22446298
https://www.ncbi.nlm.nih.gov/pubmed/22446298


58

84. Taren AA, Gianaros PJ, Greco CM, Lindsay EK, Fairgrieve A, Brown KW, Rosen RK, 
Ferris JL, Julson E, Marsland AL, Bursley JK, Ramsburg J, Creswell JD.(2015) Mindfulness 
meditation training alters stress-related amygdala resting state functional connectivity: a 
randomized controlled trial. Soc Cogn Affect Neurosci.10(12):1758-68

85. Taren AA., Greco CM, Lindsay EK, Fairgrieve A, Brown KW, Rosen RK,  Julson E, 
Marsland AL, Creswell JD. (2017) Mindfulness Meditation Training and Executive Control 
Network Resting State Functional Connectivity: A Randomized Controlled Trial. Psychosom 
Med. 79(6):674-683.

86. Zenner C., Herrnleben-Kurz S, Walach H. (2014): Mindfulness-based interventions in 
schools—a systematic review and meta-analysis. Frontiers in Psychology. 5:603.

87. Bauer C, Okano K, Nestor P, Del Re E, Gosh S, Niznikiewicz M, Whitfield-Gabrieli S. (In
Prep)Real time fMRI feedback in patients with schizophrenia reduces auditory 
hallucinations.

88. Garrison KA, Scheinost D, Worhunsky PD, Elwafi HM, Thornhill TA 4th, Thompson E, 
Saron C, Desbordes G, Kober H, Hampson M, Gray JR, Constable RT, Papademetris X, 
Brewer JA. (2013) Real-time fMRI links subjective experience with brain activity during 
focused attention. NeuroImage, 81:110-8

89. Sacchet M.D., & Gotlib I.H.  (2016) Neurofeedback training for major depressive disorder: 
recent developments and future directions. Expert Review of Neurotherapeutics. 9:1003-
1005.

90. Fischer,A., Whitfield-Gabrieli S., Roth R.M., Brunette, M.F.,  Green, A.I. (2014) Impaired 
functional connectivity of brain reward circuitry in patients with schizophrenia and cannabis 
use disorder: effects of cannabis and THC. Schizophrenia Research, 158:176-82

91. Whitfield-Gabrieli S., Ghosh S.S., Nieto-Castanon A, Saygin Z., Doehrmann O., Chai X.., 
Reynolds G., Hofmann S.G., Pollack M.H., Gabrieli J. (2016) Brain connectomics predict 
response to treatment in social anxiety disorder. Molecular Psychiatry, 21:680-5

92. Brown T., Kuperman J., Chung Y., Erhart M., McCabe C., Hagler Jr D., …Dale A.M.
(2012) Neuroanatomical Assessment of Biological Maturity, Current Biology. 22: 1693-
Bunge SA, Whitaker KJ. (2012) Brain imaging: your brain scan doesn't lie about your age.
Curr Biol. 22(18):R800-1.

93. Bunge SA, Whitaker KJ. (2012) Brain imaging: your brain scan doesn't lie about your age.
Curr Biol. ;22(18):R800-1.

94. Colich NL, Ho TC, Ellwood-Lowe M, Foland-Ross LC, Sacchet MD, LeMoult JL, Gotlib 
IH. (2017) Like Mother Like Daughter: Putamen Activation as a Mechanism Underlying 
Intergenerational Risk for Depression. Soc Cogn Affect Neurosci. 2017

95. Chai X.J., Hirshfeld-Becker D., Doehrmann O., Leonard J., Biederman J., Whitfield-
Gabrieli S., and Gabrieli J. (2015) Heightened neural response to fearful faces in children at-
risk for major depression. NeuroImage Clinical, 8:398-407

96. Hung Y, Saygin ZM, Biederman J, Hirshfeld-Becker D, Uchida M, Doehrmann O, Han M, 
Chai XJ, Kenworthy T, Yarmak P, Gaillard SL, Whitfield-Gabrieli S, Gabrieli JD. (2016) 
Impaired Frontal-Limbic White Matter Maturation in Children at Risk for Major Depression.
Cereb Cortex. 

References (Conclusion)
1. Bauer C., Okano K., Nestor P., Del Re E., Gosh S., Niznikiewicz M., Whitfield-Gabrieli S. 

(In Prep) Real time fMRI feedback in patients with schizophrenia reduces auditory 
hallucinations.

https://www.ncbi.nlm.nih.gov/pubmed/?term=Taren%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gianaros%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Greco%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lindsay%20EK%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fairgrieve%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Brown%20KW%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rosen%20RK%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ferris%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Julson%20E%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Marsland%20AL%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bursley%20JK%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ramsburg%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Creswell%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=26048176
https://www.ncbi.nlm.nih.gov/pubmed/26048176
https://www.ncbi.nlm.nih.gov/pubmed/?term=Taren%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=28323668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Greco%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=28323668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lindsay%20EK%5BAuthor%5D&cauthor=true&cauthor_uid=28323668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fairgrieve%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28323668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Brown%20KW%5BAuthor%5D&cauthor=true&cauthor_uid=28323668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rosen%20RK%5BAuthor%5D&cauthor=true&cauthor_uid=28323668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Julson%20E%5BAuthor%5D&cauthor=true&cauthor_uid=28323668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Marsland%20AL%5BAuthor%5D&cauthor=true&cauthor_uid=28323668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Creswell%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=28323668
https://www.ncbi.nlm.nih.gov/pubmed/28323668
https://www.ncbi.nlm.nih.gov/pubmed/28323668
http://www.ncbi.nlm.nih.gov/pubmed/26260493
http://www.ncbi.nlm.nih.gov/pubmed/26260493
https://www.ncbi.nlm.nih.gov/pubmed/23017993
https://www.ncbi.nlm.nih.gov/pubmed/23017993
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ho%20TC%5BAuthor%5D&cauthor=true&cauthor_uid=28575505
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ellwood-Lowe%20M%5BAuthor%5D&cauthor=true&cauthor_uid=28575505
https://www.ncbi.nlm.nih.gov/pubmed/?term=Foland-Ross%20LC%5BAuthor%5D&cauthor=true&cauthor_uid=28575505
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sacchet%20MD%5BAuthor%5D&cauthor=true&cauthor_uid=28575505
https://www.ncbi.nlm.nih.gov/pubmed/?term=LeMoult%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=28575505
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gotlib%20IH%5BAuthor%5D&cauthor=true&cauthor_uid=28575505
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gotlib%20IH%5BAuthor%5D&cauthor=true&cauthor_uid=28575505
https://www.ncbi.nlm.nih.gov/pubmed/28575505
https://www.ncbi.nlm.nih.gov/pubmed/27578495


59

2. Bloom D.E., Cafiero E.T., Jané-Llopis E., Abrahams-Gesse S., Bloom L.R., Fathima S. et al.
The Global Economic Burden of Noncommunicable Diseases. Geneva: World
Economic Forum. 2011, available from: http://www3.weforum.org/docs/WEF_
Harvard_HE_GlobalEconomicBurdenNonCommunicableDiseases_2011.pdf.

3. Buzsáki G., Draguhn A. (2004). Neuronal oscillations in cortical networks. Science.
304:1926-1929.

4. Chai J., Ofen N., Gabrieli J.D.E., Whitfield-Gabrieli S. (2014). Development of resting-state 
functional connectivity of the default network: Maturation of anticorrelated networks. Journal 
of Cognitive Neuroscience. 26: 501-513.

5.     Cordes, D. et al. (2001). Frequencies contributing to functional connectivity in the cerebral 
cortex in ‘resting-state’data. Am. J. Neuroradiol. 22: 1326–1333.

6.     Fischer, A., Whitfield-Gabrieli S., Roth R.M., Brunette, M.F., Green, A.I. (2014). Impaired
functional connectivity of brain reward circuitry in patients with schizophrenia and cannabis 
use disorder: Effects of cannabis and THC. Schizophrenia Research, 158:176-82

7.     Fox M. & Raichle M.E. (2007). Spontaneous fluctuations in brain activity observed with  
functional magnetic resonance imaging.  Nature Reviews Neuroscience: 9: 700-11

8.     Garrison K.A., Scheinost D., Worhunsky P.D., Elwafi H.M., Thompson E., Saron C.
Desbordes G., Kober H., Hampson M., Gray J.R., Constable R.T., Papademetris X., Brewer 

J.A. (2013). Real-time fMRI links subjective experience with brain activity during focused
attention.  NeuroImage: 81: 110-118.

9. Hsu L.M., et al. (2016). Constituents and functional implications of the rat default mode 
network. Proc Natl Acad Sci U S A 113:E4541-4547.

10.    Leopold, D. A., Murayama, Y. & Logothetis, N. K. (2003) Very slow activity fluctuations
in monkey visual cortex: Implications for functional brain imaging. Cerebral Cortex 13: 423–
433.

11. Liang X,, Zou Q., He Y., & Yang Y. (2013). Coupling of functional connectivity and
regional cerebral blood flow reveals a physiological basis for network hubs of the human 
brain. Proc Natl Acad Sci U S A 110:1929-1934.

12.     Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M. Llmoniemi, R. J.  (2001). Long-range 
temporal correaltions and scaling behavior in human brain oscillations. Journal of 
Neuroscience. 21: 1370–1377.

13.     Lowen, S.B., Cash, S.S., Poo, M. & Teich, M.C. (1997). Quantal neurotransmitter secretion 
rate exhibits  fractal behavior. Journal of Neuroscience.17: 5666–5677.

14.     Martino M., Magioncalda P., Huang Z., Conio B., Piaggio N., Duncan N.W., Rocchi G.,
Escelsior A., Marozzi V., Wolff A., Inglese M., Amore M., Northoff G. (2016).
Contrating variability patterns in the default mode and sensorimotor networks balance in 
bipolar depression and mania,  Proc Natl Acad Sci USA 113: 4824-4829.

15. Nasrallah F.A., Low S.M., Lew S.K., Chen K., Chuang K.H. (2014). Pharmacological 
insight  into neurotransmission origins of resting-state functional connectivity: α2-
adrenergic agonist vs antagonist. Neuroimage. 103:364-73. 

16. Sacchet D., Gotlib I. (2016). Neurofeedback training for major depressive disorder: recent 
developments and future directions.  Expert Review of Neurotherapeutics. 1473-7175
Stam, C.J., de Bruin, E.A. (2004). Scale-free dynamics of global functional connectivity in 
the human brain. Human Brain Mapping. 22, 97–109

17. Whitfield-Gabrieli S., Fischer A.S., Roth R.M., Green A.I. (In Press) Cannabinoid agonist 
improves intrinsic functional brain organization of the default mode network in patients 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Buzs%C3%A1ki%20G%5BAuthor%5D&cauthor=true&cauthor_uid=15218136
https://www.ncbi.nlm.nih.gov/pubmed/?term=Draguhn%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15218136
https://www.ncbi.nlm.nih.gov/pubmed/?term=Buzsaki+Science+2004
https://scholar.google.com/citations?user=IyXCbX0AAAAJ&hl=en&oi=sra
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nasrallah%20FA%5BAuthor%5D&cauthor=true&cauthor_uid=25241086
https://www.ncbi.nlm.nih.gov/pubmed/?term=Low%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=25241086
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lew%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=25241086
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20K%5BAuthor%5D&cauthor=true&cauthor_uid=25241086
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chuang%20KH%5BAuthor%5D&cauthor=true&cauthor_uid=25241086
https://www.ncbi.nlm.nih.gov/pubmed/25241086


60

with schizophrenia and co-occurring cannabis use disorder. Schizophrenia Research.
18. Zenner C., Herrnleben-Kurz S.H. (2014) Mindfulness-based interventions in schools—a 

systematic review and meta-analysis. Frontiers in Psychology 5: 603.

https://www.ncbi.nlm.nih.gov/pubmed/?term=Zenner%20C%5BAuthor%5D&cauthor=true&cauthor_uid=25071620
https://www.ncbi.nlm.nih.gov/pubmed/?term=Herrnleben-Kurz%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25071620



