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ABSTRACT OF THE DISSERTATION

A Morse Theory for the Cohomology of Primitive Forms on Symplectic Manifolds
By
David Clausen
Doctor of Philosophy in Mathematics
University of California, Irvine, 2023

Associate Professor Li-Sheng Tseng, Chair

On a symplectic manifold, Tsai, Tseng, and Yau introduced a coholomogy of differential
forms that is analogous to the Dolbeault cohomology for symplectic manifolds. Such forms
are called primitive forms. We develop a Morse theory for these primitive forms, including
a Morse-type Cone complex of pairs of critical points that has isomorphic cohomology to
the primitive cohomology. The differential of the complex consists of gradient flows and
an integration of the symplectic form over spaces of gradient flow lines. We prove that
the complex is independent of the choice of metric and Morse function. We also derive
Morse style inequalities for the cohomology of the Cone complex and thus the primitive
cohomologies. Also, we develop a Witten deformation of the Cone complex, which provides

a Witten deformation of the differential operators associated to the cohomology.

X



Chapter 1

Introduction

We begin by introducing the background to define the primitive forms.

1.1 Filtered Cohomologies

Let (M?",w) be a symplectic manifold.

Definition 1.1. For a coordinate chart (U, x1,...x2,) of M, Define the Poisson bivector as

the map

where (w™")" is the inverse matriz of wi; and o, is the interior product. A : Q*(M) —

Q*2(M) is globally defined on (M,w), so it does not depend on coordinate chart.

Proof: To see this, note that if w = %wijdxi A dz; in one chart, and w = %w,’ddyk A dy, in



_ .. a i _ )
another, then w;; = %! 9% Thus (w=1)¥ = 22 (k) =192 Thep

dx; Ykl dz; — Oy Oy
N ox; _,0x; _ -
2N = (w010 = =2(W*N T L1010 = (W) Now, o tes, 5 = (W) Lo
Ox; Ox; ayé ayk‘ dz; Ox; By, Ox; TWW 9y  9yp

which is 2A’ so they agree on the overlap of coordinate charts and are thus globally define.

Definition 1.2. Define the maps
L:Q (M) — QM)
by LA, = w A\ A and H : Q*(M) — Q*(M) by
H=> (n— k]
k

where Iy, : Q* (M) — QF(M) is the projection, Iy (A) = A if A € QF(M) and Tx(A) = 0 if

Lemma 1.1.1. the three operators L, A, H satisfy the sly commutivity relations, or

A L] = H
[H,A] = 2A
[H,L] = —2L

Proof: The last two relations follow from degree considerations. For the first relation, we



can simply work with Darboux coordinates w = dp; A dg;, A = ¢ oL Then
qj Opj

AL = Z Lo Lo (dp; A dg;)

—  9q5 Opj
Z7]

=) o 2 (dpi A day) + (dpi A dai)e o |

2%

= Z[L%(éﬁ Adg;) — 85 A dgit o 2 —|— Lo (dpl A qu)L 2 —|— (dp; N dql)L 2.l o ]

22

— Z dQJ — 05 N\ d%‘b% — (dps A 5ji)L%] + LA

—Zl—dqj/\ba — (dp;N )La]—i—LA

2

and since we are summing over 1 < j < nmand 1 < j < n, we have AL — LA = n —
dg; N Lo — (dpj/\)bai. Now note that if this is applied to a k-form A = A; jdprdq,, then
qa; D
Zj dpj VAN L%A[,Jdp]dq{] = |I|A[7Jdp[dq(] and Zj dq] AN L%A[ﬂ]dp[dqt] = |J|AI’Jdp[dQJ, thus
pj q;

(AL - LAN)A=nA—-(|I|+|J))A=(n—k)A

Corollary 1.1.2. For any sly there is a Lefschetz decomposition QOF = @ L"P; where

k=2r+s
={Bs; € Q° : AB; = 0} are called primitive forms.

Proof: see [7]

Using this, we define filtered forms

Definition 1.1.3. A form A, € QF(M) is p-filtered if
Ak = Bk -+ LB]C,Q + ...+ Lkafgp,

or its Lefschetz decomposition does not possess terms with terms LP*1 or higher. We denote

the filtered k-forms by FPQF = {A, € @=" . L'P,}

k=2r+s



We are interested in how the differential interacts with the filtration. For that, we first define

the following two operators

Definition 1.1.4. Let A; € Qp have a Lefschetz decomposition Ay, = Ay, = By + LBy_o +

...L*Byj,_ss. Define the projection operator IIP : Q, — FPQF by IIPA, = By + LBj_o +

..LPBy_q, by projecting to the first p components. Also, define the reflection operator *, :

Omegak — an_k by *r(Ak:> = *T‘(Bk‘ + LBk,Q + ...+ Lkafgp) = Ln—kBk + Ln—k+lBk72 +

ot LnikerBk_gp

Using these operators one can define an elliptic complex on FPQF for a particular p

Theorem 1.1. Define d_ := *,.dx, and dy :=11Pd. Then

0 % pro _Hy peqr % B peonip

|oso-

FrQrp

0 o & ol

AN

18 an elliptic complex.

Proof: See [12]. Therefore, we have the following cohomologies.

Definition 1.3 (Filtered cohomologies). Let FPH* = {FPH! .

where
ker(dy) N FPQF)
Pk _— + _
R RIT=Y k=0,1,2,
. ker(0,0_) N FPQF
FpH++p — ( + )n —
dy (FPQrtr—t)
P ker(d_) N FrQ"+p
T 0,0_(FrQnte)
)N FPQF
ot = Rer(d) 0 k=012,

d_(FrQk+)

. FPHE™ FPHPT L FPHO),

cooon+p—1

cooyn+p—1



note that F pHT“p and FPH"*? these are second order differential operators. The filtered
complex has an alternative description in terms of the mapping cone complex, which we now

describe

Definition 1.4. Define Cone®(wP™) = {n+0¢ : n € QF(M), € € Q1 (M)} = QF (M) @ Q%1 (M)

on the symplectic manifold M, where 0 is a formal object satisfying df = wP™*

Applying the exterior derivative gives

d(n, + 0&p_1) = dmg + WP A &y + 0(—dEg_1)

Thus we can define do on T as
k-1
d wPtn
dc =
0 —d

Thus we have an elliptic complex (Cone(w?™), dc¢).

Theorem 1.2. The cohomology of Cone(wP™) is isomorphic to the cohomology of the filtered

complex

FPHY =~ g% (Cone(wP™)) 0<k<n+p
FPHT™P = H"P(Cone(w”™))
FPH"™™ = gt Cone(wP™™))

FPHY = {7 PR Cone(wPt™)) 0<k<n+p

Proof: see [12] and [11].

We wish to develop a Morse theory for the filtered cohomology, below we will give a brief



review of Morse Theory.

1.2 Morse Theory

Definition 1.5. A function f : M — R on a manifold is a Morse function if at critical
92
8$i8:vj
the index of p is defined to be the dimension of the negative definite subspace of T,M with

respect to 82f
P (’3@81‘] ij‘

points where df = 0, the Hessian { ] 1s non-degenerate. If p is a critical point, then
4]

For a Riemannian metric g, we let ¢ : R — M be the gradient flow by -f, ¢(t) = —V f. This

allows us to define two submanifolds related to the flow.

Definition 1.6. Let p be a critical point of a Morse function. Define U, = {y € M :
tlim &(y) = p} to be the unstable manifold of p, and S, = {y € M : tlim oi(y) = p} to be
——00 —00

the stable manifold of p. We say a pair (f, g) is Morse-Smale provided for allp # q, U, M S,,.

One can flow by —grad(f) from a critical point p to another point ¢q. Being Morse-Smale

ensures that if there is a flow from p to ¢, then ind(p) > ind(q)

Definition 1.7. Let Cy(M, f, g) = the free Z module generated by the critical points p of f
with ind(p) = k. We define the boundary operator Oy, : Ci(M, f,g) — Cr_1(M, f, g)

Opgbr = > #M(p,q)q—

ind(q)=k—1

Where M (p, q) = (U,NS,)/ ~ is the submanifold of points that flow from p to ¢ modded by

the flow, counted with orientation.

The transversality condition ensures that M(p, ) is a zero dimensional manifold. If (f, g) is

Morse-Smale, we have the following theorem [19].

6



Theorem 1.3. the following is a differential complex

Of,g Of.g 8¢9
Camu (M, f,9) — Camm—1(M, f,9) —2 ... =% Co(M, f,g)
K
The Morse homology is then (Hy)c(p (M, f,g) = er(0y,9)k
[m(aﬂg)k,l

Note that, from [19], (Hy)c(r) (M, f,g) = H%,(M). Thus the Morse homology is independent
of the Morse function f and the metric g. Witten showed in [18] can also use the Morse

function to deform the exterior derivative.

Definition 1.8 (Witten Deformation). If f is a Morse function, then for t € R, define the
deformed differential d, = e~ det = d + tdf A
if we have a metric g, we can also define the deformed adjoint df = e/ d*e " = d* + tiy;

and the deformed Laplacian A, = dydf +didy = A+t(df Nd*+diy s+ vy pd+d*df N) + 2| df |2

In [18], the factor t?|df|? dominates as ¢ goes to infinity and the harmonic solutions localize

around critical points, which provides a proof of the Morse inequalities.

Theorem 1.4 (Morse Inequalities). Let my = dim Cy, be the number of Morse points of
dim M dim M

index k. The Morse polynomial is defined as M(t) = Z mytt. If P(t) = Z bit® is the
k=0 k=0

Poincaré polynomial, then

M(t)=P(t)+ (1+1t)Q(?)

dim M
where Q(t) = Z aitt is a nonnegative polynomial, a; > 0.

k=0
Thus we have the weak Morse inequalities

my > by, for all k



and the strong Morse inequalities

i

k=0

> (1) Fmy, > i(—l)ikbk for all i
k=0

Our goal is to derive a Morse theory for the filtered cohomologies, and in certain cases

generalize from wP*! it to other closed forms . This would involve a Morse complex, Morse

inequalities, and Witten Deformation.

k=0

k=0

Morse
* p+1

QF (M) C(M, f,qg) Cone(wP™) Cone(w™
elements differential critical points py _77} ?

forms £
differential exterior - deriva- Morse flow 0 fc ?

tive d W d wh '

0 —d
Weak Morse b, < my = # of critical b‘,;ij = dim(H*(Cone(w))) <?
Inequalities points of index k
Strong Morse : ik g ik : kPt
_1)¢ < _1)¢ _1)¢ WP 9

Inequalities Z( 1)y —kz;( )™ Z( D7 <

—



Chapter 2

Symplectic Morse Chain Complex

2.1 Preliminaries

The following work is derived from joint work with Tseng and Tang in [4]. Let (M9, )
be a closed manifold of dimension d equipped with a geometric structure given by a closed
differential (-form, ¢p € H*(M). For example, we might consider a symplectic manifold

(M2, w).

Our symplectic Morse complex is motivated by a result of Tanaka-Tseng [11] that relates the
cochain complex that underlies the TTY cohomologies with the Cone complex of the wedge

product map wP™ : Q*(M) — Q*2PT2(M) on the space of differential forms.



2.2 Morse Cone Complex: Cone(c(v)))

2.2.1 Preliminaries: Morse Complex and c¢(v))

To begin, let f be a Morse function and ¢ a Riemannian metric on M. We will assume
that (f,g) satisfy the standard Morse-Smale transversality condition. The elements of the
Morse cochain complex C*(M, f) are R-modules with generators critical points of f, graded
by the index of the critical points, with boundary operator 0 determined by the counting of

gradient lines, i.e.

Oq, = Z n(rkJrlan)rker

ind(r)=k+1
where n(rri1,qr) = #M (rr+1, qr) is a count of the moduli space of gradient flow lines with

orientation modulo reparametrization.

Note that Morse theory is typically presented as a homology theory, and hence, flowing from
index k to index k£ — 1 critical points. To match up with the cochain complex of differential
forms, we here work with the dual Morse cochain complex. Hence, our 0 is the adjoint of

the usual Morse boundary map under the inner product (qx,, qx,) = 6i;.

Following Austin-Braam [1] and Viterbo [16], we define

(W) = Z (/¢> Tk+e
ind(r)=k+e \Y M(Trte,ax)

where ¢ € QY(M) is an (-form and M (444, qx) is the submanifold of all points that flow
from 1., to g, oriented as in [1]. From Appendix A, we have the Leibniz-type product

relation

Oc(i) + (—1)4 B (1)) = —c(dap)

10



specifying a sign convention that is ambiguous in Austin-Braam [1] and Viterbo [16]. Thus,

for instance, for ¢ = w, the symplectic structure, we have the relation

Jc(w) — ¢(w)0 = —c(dw) = 0.

2.2.2 Chain Map Between Cone(y)) and Cone(c(v)))

As explained by Bismut, Zhang and Laudenbach [2, 19], there is a chain map P : QF(M) —

Ck(M, f) between differential forms and the Morse cochain complex given by

Po= 3 </U¢> i

qr€CTit(f)

where ¢ € QF(M) and U, is the set of all points on a gradient flow away from ¢. Being a

chain map,
OP="Pd. (2.1)

We are interested to find an analogous chain map relating Cone()) = (Q*(M)®0 Q*~+1(M), dc)
with Cone(¢y) = (C*(M, f)®C*“1(M, f), dc), where as given in Definition of the mapping

cone,

de - QF(M) @ 0 Q1 (M) — QY (M) @ 0 Q¥ 2(M)

80 . Ck(M, f) D Ck*H»l(M’ f) N CkJrl(M’ f) D Ck*l+2(M7 f)

with



The chain map, which we will label by Pg, that links the two cone complexes will need
to satisfy 0o Pe = Pcde. In fact, such a map exists and can be expressed in an upper-

triangular matrix form.

Definition 2.2.1. Let P : Cone®(¢)) — Cone®(c(v))) be the upper-triangular matriz map

P K
0 P

where K : Q¥ Y(M) — C*(M, f) acting on & € QY M) is defined by
K¢ = (1) [P(y Nd"GE) — c(¥)P(d"GE)] + O L(P( AHE) — c()P(HE)),  (22)
in terms of the Hodge decomposition with respect to the de Rham Laplacian A = dd* 4+ d*d:
£ =(H+AG)E = HE+ dd*"GE + ddGE
where HE is the harmonic component and G is the Green’s operator.

We explain the notation J; 1 in the second term for the definition of K in (2.2).

Let v be a closed (k — ¢+ 1)-form. Then, it is known that Py A~ and ¢(¢)P~ are cohomol-
ogous. (See, for instance, Austin-Braam [1, Section 3.5] or Viterbo [16, Lemma 4].). Then
P A7) — c(yp)Py = 9b for some b € C*(M, f). Note that C*(M, f) is an inner product
space under (qx,, qx;) = 0y;, so we have an orthogonal splitting, CH(M, f) = ker 0, ® (ker O )+,
and that 9, is an isomorphism between Im(9;) C C**1(M, f) and C*(M, f)/ ker O, which is
isomorphic to (ker 9;)*. Thus, it follows from the finite-dimensional assumption on C*(M, f)
and C**1(M, f) that we can define a right inverse 9, : Im(d) — (ker )" C C*(M, f),
and 8,;1(73(1& A7) —c()Py) € C¥(M, f). For the second term of K in (2.2), v = HE is the

closed form that is the harmonic component of &.

12



With Pe defined, we now show that it is a chain map.
Theorem 2.2.2. Pc : Cone® (1)) — Cone®(c(v)) is a chain map. In particular,

dcPe = Podc . (2.3)

Proof. The right and the left hand side of (2.3) acting on 7 + 6¢ € Cone® (1)) give

P K||ld v Pd Py + (1) Kd
Pode = = ,

0o Pllo (1) 0 (=1)'Pd

o o) ||P K| |oP cwyp+or
OcPc = =

0 (-19| |o P 0 (=1)'9p

Since P is a chain map (2.1), i.e. dP = P 0, the only entry we need to check comes from

the off-diagonal one,

Py + (-1)"'Kd = c(¢)P + 0K ,

or equivalently, we need to show that

Py — ()P = 0K + (-1)'Kd, (2:4)

is a graded chain homotopy. To compute Kd&, note first that Hd¢ = 0, V& € QFH1(M).

Therefore, we find that

Kd¢ = (=1 [P(¢ Ad*Gd€) — c(v)Pd*GdE] = (—1) [P(¢ A d*dGE) — c(¢)Pd*dGE] ,

13



having used (2.2) and the fact that Gd = dG. Now, for the 0K¢ term, we have

OKE =0 ((=1)" [Py A d*GE) — c()Pd*GE] + 9, L (P( A HE) — c(1p) PHE))
= (=1)* [Pd(¥ A d*GE) — 0c(p)Pd*GE] + 9 (051 (P(¥ AHE) — c(¥)PHE))
= (=D [(-D'P@ A dd*GE) — (=1)'c()OPA*GE] + Py AHE — c(yp)PHE

=P ANdd*GE) — c()Pdd*GE + P (¢ N HE) — c(v)PHE
Altogether, we find for the right-hand side of (2.4)

OKE 4 (—1)'Kdé = P(y A dd*GE) — c(v)Pdd*GE + P(p A HE) — () PHE
+ [P(¢ A d*dGE) — c(¢)Pd*dGE]
=P (¢ A (dd*GE + d*dGE + HE)) — ()P (dd*GE + d*dGE + HE)

=P NE) = c(P)PE.

Thus, K is a graded chain homotopy of Py and ¢(¢)P, and therefore, Pode = 0c Po. O

2.2.3 Isomorphism of Cohomologies via Five Lemma

A mapping cone cochain complex can be described by a short exact sequence of chain maps.

For the differential forms case, we have

0 —— (M), d) =2 (Cone®(v))),de) —Ls (QF—E1(M), (-1)1d) —— 0 (2.5)

14



a

where ¢ is the inclusion in the first component t(a) = and 7 is the projection to the
0
a .
second component 7 =b. It is easy to check that these maps are chain maps:
b
dn
Lardn = = dctarn
0
and
1 dn+ 1 NE _ _ Ul
Tardc = TdR = (—1)£ 1df = (—1)£ ' | mar
§ (—1)tdg 3

The short exact sequence (2.5) implies the following long exact sequence for the cohomology

of Cone(v))

[¥A]
—_

s HEAM) HrL (M) 4 fR (Cone(w)) T4 g=G (M) —— .

(2.6)

Analogously, for Cone(c(¢))), we also have the short exact sequence of chain maps

0 —— (CH(M, £),0) <L (Cone*(c(v)), de) —Ls (CH=41(M, f), (—=1)719) —— 0

(2.7)

and the long exact sequence of cohomology

(M) 298 B (Cone(e(w))) TS FE-O (A1) ——

s HE () O g K

() (f)

(2.8)

15



The two short exact sequences, (2.5) and (2.7), fit into a commutative diagram

0 —— (QF(M),d) —2— (Cone®(¢)),de) —L— (Q=H1(M),(~1)"1d) —— 0
gl vl gl

0 —— (CK(M, f),0) —2% (Cone*(c(1)), e) —L25 (CH+L(M, §), (—1)719) —— 0

(2.9)

The commutativity can be checked as follows:

Pn P K| |n
e (P(n)) = = = Pc(tar(n)),
0 0o P 0

n Pn+ K¢
mo | Po = () =PE=P | mar

§ (3 §

The short exact commutative diagram (2.9) gives a long commutative diagram of cohomolo-

gies:

=t ony 2 ik ) 4y gk (Cone(y)) —m mEe () 2 gk ()
[P]l [P]l [Pc}l [P]l [P]l
_ [e()] ltop) [ron) _ [e(¥)]
i () O gk () 220 R (Cone(e(w))) —<s HES (M) S mEE (M)
(2.10)

We can check that each square commutes. The outer squares commute since P(i) A £) and

c()PE are cohomologous when both ¢ and 1) are d-closed, i.e.

[PllA] = [e()][P]

as was shown by Austin-Braam in [1, Section 3.5]. The middle two squares commute follows

from the commutativity of the chain maps in (2.9). Furthermore, the vertical map [P] is

16



an isomorphism as shown by Bismut-Zhang and Laudenbach [2, Theorem 2.9] (see also [19,

Theorem 6.4]).

We can now apply the Five Lemma to (2.10) which implies that the middle vertical map

[Pc] is also an isomorphism on cohomology, and thus we prove Theorem ?7?.

Theorem 2.2.3. Pc : (Cone®(¢),dc) — (Cone®(c(v)), dc) is a Z graded quasi-isomorphism.

2.2.4 Example: Cone(c(w)) on T

We now work out a simple example of the Cone(c(¢)) complex on the four-dimensional
torus, M = T* = R*/Z*. We will describe the torus using Euclidean coordinates, x; with
1=1,2,3,4, with identification z; ~ x; + 1. We are interested in the symplectic case where

¢:w:d$1Ad$2+dl’3Adfb4.

The complex Cone(c(w)) is dependent on the choice of the metric and the Morse function.
For simplicity, we will work with the flat metric, g = >_ dz? and choose the Morse function

to be

4
f=2- %ZCOS(QWCQ) .

=1

This Morse function has several desirable properties that are straightforward to prove:

(i) the non-degenerate critical points are located at z; = [0] or z; = [3] and have Morse
index equal to the number of coordinates which are equal to [1];

(ii) the Morse differential 0 is 0;

(ili) the pair (f,g) is Morse-Smale.

Because of (ii), the dc map in the equation above reduces to the ¢(w) map. Hence, we are
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interested in pairs of critical points whose indices differ by two, e.g qx1 has two more [%]
coordinates than g;_;. Also, note that M(qx41, gx—1) will be a two-dimensional face with two
of the coordinates fixed and two coordinates spanning the entire coordinate interval [0, 1]

when we take the closure.

In the Table 2.1 below, we give the cohomologies of H(Cone(c(w))) and H(Cone(w)) on
(T*,w = dxy A dze + drs A dry). We use a multi-index notation of I = {7;...i;} in increasing

order such that dz; = dx;; A ... Ndx;;, qo denotes the index 0 point, and ¢; denotes the point

. 1 - . . . o
with 5 In entry 11, ...15, 1.e. q13 = q[%,o,%,

]. The orientation of the submanifolds are chosen

such that Pdx; = q;. Further, since 0 = 0 and G dx; = 0, we also have K dz; =0.

Notice that c¢(w)q; only picks out critical points that have two coordinates of ¢; changed

from [0] to [3] in either the 1-2 or 3-4 directions. Thus, we find that

c(w)go = q12+ ¢34, c(w)qi2 = qra34 c(w)qss = qra3a

C(W)% = {134, C(W)QQ = {234, C(W)CB = {123, C(W)CM = {124,

with all other critical points mapped to zero when acted upon by c¢(w).
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J 0 1 2
H (Cone(w)) w dgl , d(f? d%” , dff‘* : d?” :
_dI3= =dCL’4= dlL’24 diElg - dl’34=
01’10 0 _ ’ 0
HI (Cone(c(w))) [q(;)] P i [q(ﬂ : {qﬂ : [qﬁf’ :
-Q3- -Q4- q24 qi2 — C]34-
0(’1]10 01’ 0
j 3 4 5
; dxi93 dxi24 dx934 0 0 0
J
H?(Cone(w)) [ 0 ] ’ [ 0 ] ’ [ 0 1 | |dzaes|’ _d$124_ lelsz
drazy 0 0 0
0 |’ |dzri2 —dxsy dzy3a |’ |dTosa
j 4123 4124 G234 0 0 0
H?(Cone(c(w))) { 0 | ’ { 0 | ’ { 0 J ’ | 7123 7 | 7124 1234
G234 0 0 0
0 |’ |qi2— g3 Gu3a |’ | G234

Table 2.1: Cohomology of Cone(w) versus Cone(c(w)) on (T, w = dxy A dzy + dxz A dzyg).
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Chapter 3

Symplectic Morse Inequalities

We have a symplectic Morse complex Cone(c(w),dc), but it is of interest to ask if we have
decomposition of 0 = 07 + ¢(w)0™ or primitive Morse cochains and homologies without
regard to Cone. We provide partial answers. To begin recall from Weibel [17, page 6] that

there are two complexes, the kernel and cokernel complex, associated to a chain map

Definition 3.0.1. The kernel complex of c¢(w) is the complex ker(c(w)) C C*(M, f) ={b e
C*(M, f) : c(w)b = 0}, with differential Oe

Definition 3.0.2. The cokernel complex of c¢(w) is the complex coker(c(w)) = {[{a} €
C/Im (c(w))} with differential O ([a]) = [0a] € C/Im (c(w))

The analogy to the kernel complex in differential forms are those ¢ € Q° (M) such that wAp =
0, which are precisely the forms w™ *P*. These are a chain complex under (w™ *P* d) =
(W *P* wd_) that is quasi-isomorphic to (P*, d_) under the symplectic reflection *, : B —
Wk By

The analogy to the cokernel in differential forms would be if we pick a representative of
C/Im (c(w)) to be ¢ € Q*(M) which is orthogonal to w A Q*(M) under the hodge inner

product with compatible metric. Such forms satisfy 0 = ((¢,w A @)) = ((Ap, «)), which
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are precisely the primitive forms P*(M,w). The differential for this map is 9, = I1°d on
primitive forms.

We might guess from these similarities that these are Morse analogies of the primitive forms.
Unfortunately, we need more structure on the Morse function. From Weibel [17, page 24],

coker(c(w))), Cone(c(w)), ker(c(w)) fit together in a long exact sequence

o H" M ker(c(w))) — H*(Cone(c(w)) — H*(coker(c(w))) — H*(ker(c(w))) ...

3.1 Improved Morse Inequalities

We will show using the complex above that we can improve our Cone Morse inequalities.
To do this, let wj, = rank[Aw] : H*(M) — H**2(M) and let v, = rank c(w) : CK(M, f) —
C*2(M, f). Then we know from [12] that

by = (dim coker[Aw] : H*(M) — H*™2(M)) + (dim ker[Aw] : H*"Y(M) — H*™(M))

=bp — Wi—2 + b1 — Wi—1

Note that we find the following theorem, that could be considered as an analogy of the Morse

inequalities.

Theorem 3.1. Let Cone(c(w)) be the Cone complex for the symplectic form w, then
b, <My — Vg2 + Mg—1 — Vg1
Proof. To start, note that from Weibel [17] that

o H (ker(o(w)) 25T HF(Cone(e(w))) €2 B (coker(c(w))) 2= HE (ker(e(w)) ...
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is a long exact sequence. Note that this being an exact sequence is true if and only if the

following are short exact sequences.

k—1 k
0 = Im(f*=1) ey B*(Cone(c(w)) 222 Im(fE,, ) — 0

ker
k k
0 — Im(fL, ) 2o H¥ (coker(e(w)) 22 Im(f, ) — 0

coker

k k
0 = Im(f2,.,) Lo HE (ker(e(w)) 22 Im(f% ) — 0

coker

Thus

bij = dim Im( k_l) + dim Im(fé‘one)

< dim H* ! (ker(c(w)) + dim H*(coker(c(w))
< dim(ker**(¢(w))) + dim(coker® (c¢(w))

=Mg_1 — Wg_1 + M — Wg_2

We thus have an analogous form of our weak inequalities. Now for the weak inequalities, we

have

Lemma 3.1.1. If v, = rank c(w) : C¥(M, f) — C*2(M,g) and wy = rank [c(w)] :

HE gy (MR) = HER o (MUR) = rank [wA] : Hjp(M,R) — Hy?(M,R), then wy, < vy

Using this inequalities above, we have the following immeadiate corollaries:

Corollary 3.1.2.

by — Vg + b1 + V1 < b <y — We—o + M1 — We—1
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We now prove the strong Morse inequalities
Theorem 3.2. If by = dim(H*(Cone(w)) = dim(H*(Cone(c(w))), then
k k
by — Vg2 = Z(—l)z_kbf < Z(—l)z_k(mi — Vj_g + My — Vi_1) = My — Vg1
i=0

=0

Proof. The first and last inequalities follow from the telescoping sum. For the middle in-

equality, note that

k k

Do = S i (L) + dim ()
= Z M(dim Im(f1) + dim Im(fé,.))

(dlm Im( é’;llce'r) dim [m< Coker))

- dlm Im(fc’one + Z dlm Im( Iie_rl)

=0

— dim Im(f5} ) + (dim Im( é;,lger) — dim I'm( é;ier))

Cone

= dim Im(f%,,.)) +Z VR (dim Im(fE1) + dim Im( fo .,
=0

— (dim Im( fep,,) + dim Im(f&o.)))
= dim Im(f,,.)) —1—2 ) (dim H (ker(c(w)))

— dim(H""!(coker(c(w)))))

< dim(H"(coker(c(w))) + Z(—l)i’k(dim H" (ker(c(w)))
— dim(H" ! (coker(c(w)))))

D (1) F(dim H (ker(c(w))) + Z(—l)""“ dim(H*(coker(c(w)))))
(—1)"*(dim(ker’(c(w))) + > _(—1)"* dim((coker’(c(w)))))

=0 =0

7

E |
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Where in the last line we use the strong Morse inequalities for the complexes ker(c(w))
and coker(c(w)). Since the dimensions of these complexes are m; 1 — vp_1 and my — vg_o,

respectively, we have

k k k
Z Z kbw Z mz 1 — U= 1) + Z(—l)l_k(mz — Ul'_g)
i=0 i=0
k
= (1) k(mz 1 = Vim1 + M — Vi_g)
=0
=Mj — Vg-1
And we have thus proven our Cone complex strong Morse inequality. O

Corollary 3.1.3. If f is a perfect Morse function, then my = by and therefore our Morse
inequalities become equalities dim H*(Cone(w) = my_1—vp_1+mp—vp_o and Zf:o(_l)ibgj =

myg — Ug—1

Proof. Note that we have b, — wg_o+br_1 — W1 < Mg — Vg_o +Mp_1 — U_1 from our weak
Morse inequalities. Also, note that if we have a perfect Morse function dim H* = dim C*,
so our differential is zero 0 = 0. In particular, this implies that [c(w)] and ¢(w) are the
same map (as there is only one element in each cohomology class) thus vy = wg. combining
my = by with vy = wy, implies by — Wr_9 + bp_1 — Wi_1 = My — Vg9 + Mp_1 — Vp_1, SO
the alternating sums are also equal. Thus the inequalities are equalities for a perfect Morse

function. u

3.2 Example

We now provide an example that shows the necessity of having both terms, m; and my_p11,

in the weak Morse-type inequality of Theorem for Cone(1)).
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Example 3.2.1. Let (X, 0) be the siz-dimensional, closed, symplectic manifold constructed
by Cho in [3] where the symplectic form w = o is not hard Lefschetz type. We will be working
with p = 0, or the primitive case. Topologically, X can be described as a two-sphere bundle
over a projective K3 surface and has the following notable properties [3, Theorem 1.3]: (i)
X is simply connected; (ii) the odd-degree cohomology, H'(X) = H3(X) = H*(X) = 0.

We will consider the TTY cohomology for (X,o) in the p = 0 case, i.e. FP=°H(X,0) =
Cone(c)(X), and b = dim(H*(Cone(w)). From [12], we find

W= =1,
W= =0,
B = b2 = by(X) — 1,

by = dim [ker (o : H*(X) — H*(X))] >0,

by = dim [coker (0 : H*(X) — H*(X))] > 0.

Note that b3 = b} > 0. Since (X,0) is not hard Lefschetz, which implies that the map,

o: H*(X) — HYX), can not be an isomorphism.

For the inequalities, we can choose to work with a perfect Morse function on X. That such
exists is due to a a result of Smale [9, Theorem 6.3] which states that any simply-connected
manifold of dimension greater than five that has no homology torsion has a perfect Morse
function. (No homology torsion here can be seen from applying the Gysin sequence to X as

a two-sphere bundle over K3.) Since X has trivial odd-degree cohomology, this implies that
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It 1s straightforward to check that the bounds are satisfied. In particular, for the weak TTY-

Morse bound of the morse inequality, the k = 3,4 case corresponds to

bg§m3+m2—1:m2—1,

b2§m4+m3—1:m4—1.

The above demonstrate the necessity of having both terms, my and my_gsiq1, in our strong
Cone Morse inequalities (and in our weak Cone Morse inequalities for the middle case) in

order for the inequalities to hold generally.
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Chapter 4

Symplectic Witten Deformation

4.1 Preliminaries

In this chapter we generalize Zhang’s [19] work showing the Witten deformation for De Rahm
cohomology to the Cone complex. We focus in particular on F°Q*, also called the primitive

forms.

4.1.1 Witten Deformation on the Cone Laplacian

To begin, consider a circle bundle over a symplectic manifold M?" given by
St— X

I

M2n
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Let Q,/(X) denote the space of S! invariant differential forms on E (which is isomorphic to

Cone(w)),

Qy(X) = Q" (M) @ 0 Q1 (M) = {ne + 0 Ay, i € Q8(M), &1 € Q1 (M)},

where 6 is geometrically the global angular form.
If g is a compatible metric on M with w, on X choose the metric
gx =mg+0®0.

If {¢1, ...¢2n } is & pointwise orthonormal basis for 7,y M, then {0, ¢1, ..., } is an orthonormal
basis for T X, where z is a point in the pre-image, i.e. m(z) = p . The Hodge star on X is
thus

kx (M 4 08k—1) = #Ep—1 + (—1)k9 A *0.

The differential operator is
dxn =dx(me +0N&—1) =dn +wA &1 — 0 N d&p1.
The adjoint of d with respect to the metric gy is
d* = (=1)F xx dxx

SO

dx (M + 0&k—1) = d"np + O(Amy, — d" 1)

3

where A = (—1)* x w* = L*, assuming the metric is compatible. If o} = € Cone(w)
k-1

is a vector in the mapping Cone of wA : Q*(M) — Q*t?(M), then as Cone(w) is quasi-
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isomorphic to 4,(X), [11] we have the corresponding matrix operators

d w d* 0

And if we do a Witten deformation, with f a Morse function, we have

d+td w dy  w
dC,t = €_tfdcetf = f = !
0 —d — tdf 0 —d;
dey = etigneis — | T T 0 A
’ A —d —tuyy 0 —d

We can define the deformed Laplacian as

AC,t = dC,tdat + d*c,tdcvt

dd* + d*d + wA d'w — wd* . %[dmi, 2] lypw — wiyy
Ad—dAN  dd*+ d*d + Aw Adf —dfA 2, 5]
L dff* 0
0 ldff?
A+wh dw— wd oL [dri, 5] tv s — Wigraa(p) p dfl2 0
= + 7 +
Ad—dA A+ Aw Adf — df A %[d%%] 0 |df?

where dx;,0/0x; come from local coordinates and

" = dA—Ad, = (d+tdf)A — A(d + tdf) = dA — Ad + t(dfA — Adf)

AV = wdf — djw = w(d* + tigy) — (d* + tiyf)w = wd* — d*w + t(wigy — tyw)
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Lemma 4.1.1. If difco =0 and datfa =0, then doy—p) *x 0 =0 and dat(_f) xx0=0

Proof: To begin, note that since X is 2n + 1 dimensional, that xy*x = (—1)*@r+1=k 14 =

(—D)*-P1g = Id

0= dtf,CO'
= e Udpetl o
= sy #x e TNdee ™D sy xyo
= (=D)F sy D ate D (xx0)
X C X

= (_1)k *X d:(—f),c(*XU)
And taking the (—1)*xx implies d;"(_f)jo(*xa) = 0 Likewise

= etfdge_tfa
= (=1)*xx e Ndpe! D sy o

= (=1) xx dy(p).c(*x0)

Lemma 4.1.2. If 0 is an eigenvalue of Acyy, then xxo is an eigenvalue of Acy—y)
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Proof: if Agyyyo = Ao, implies

Ao = dyp).cdy )00 + dyp) cdus).co
= (=)re Mdee® dfe ™o + (—1)" e de ™ doet o
= (—=DFe Mdpe®™ xx dosx e o+ (=1 et xx de xx e deel o
= (—D)*e ™ wy xxdee®™ xx doe™ (xx0)
+ (—1)k+1etf sx do xx e deet! xx (xx0)
= (—1)" sy (=D sy doe™ T wx e TN dge ™ (xx0)
et Dage DD ay doeD sy (x0)
= ()" Py (= (=)D e DAy o (xx0)
+ dy—p),o(=1) "D dge D (xx0)
= (=DM (=) (&3 py.cdi(—p),c(xx0) + dy—p) cdi_p) c(*x0))

= xxAcy(-p) (*x0)

And taking *x of both sides gives A xx 0 = Ay_p) c(*x0)

Note that Lemma 2.1 or 2.2 immediately implies the following corollary.

n
Corollary 4.1.3. let 0 = € Cone(w) be a harmonic solution of Acy for the Morse

§

*Ek—1
function f. Then xxo = is a harmonic solution of Acy for the Morse function

(—1)k * Mk
—-f

Corollary 4.1.4. If 0 is a local harmonic of Aysc, then xxo is a local harmonic of Ay_p) ¢,

and thus a local solution for an index 2n — k point
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4.1.2 Harmonic Solutions of the Witten Deformed Cone Laplacian

we want to find harmonic oy, € Cone(w), or the forms such that Aq o, = 0, which is true if

and only if d¢ 0, = 0 = dj-05. This amounts to the system of solutions

(1) dtﬁk +wA ﬁk_l =0 (3) d:nk—l =0

(2) d§rp—1 =10 (4) dip—1 — Anp =0

To prove this, we have the following lemma

Lemma 4.1.5. Let ¢i,1); be differential k and j forms, respectively then di(¢w N ;) =

Ao N s + (=1)%p A dyt);

Proof: Using d; = d + tdf, we have

di(dx Ny) = (d+tdf N) (e A Y,
= dop ANY; + (=1 Fdp Adpy + (1) gp A (tdf Aapy)

= dgbk A ¢j + (_1)k¢k A dtl/}j

Following Witten [18], as ¢ gets large the t?|df|? term localizes the solution around critical
points. We will show in this chapter that these are in fact the only solutions, but for now we
will focus on finding a solution around a critical point p. If the index of p is index n¢(p), we

can find Darboux coordinates x; around and critical points such that w = dx;Adz;,,. In [10],

ny(y) 2n
Strattman showed there is a Morse function v such that v = f(p) + Z —x7 )2+ Z x7/2,

/=1 l=ng¢+1
where v is a pullback via symplectomorphism of f (hence we will treat v as our new f).

define fF(z) = f*(z) — f(y) and note that locally

dyp; = e d(e ;) = e ST @ IS+ Py ) = =5 d(etS )
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A similar result shows df = et/ d*e =10

We wish to investigate forms in Cone*(w) = QF(M) @ 0QF~1(M), so for Conek(w) for k < n,
note that for ny(p) =k (so f¥(z) = f(p) + 5(—af — a3 — ... — 2] + 2, + 315+ ... +23,).
Then Witten [18] showed that there was a harmonic solution e **/2dx; A .. A dxy. Let
Mep = e~!#*/2dz, A .. A dxy, be this harmonic solution when we set N, equal to it, and for
ng(p) =k —1,let &, = e Ue*/2dz A .. A drs_q be the solution when we set &r—1 equal to

it when p is an index k£ — 1 critical point. Then two solutions are given below

Theorem 4.1 (Solutions of deformed laplacian for k < n). for k < n There exist two

harmonic solutions for the deformed Laplacian

One of our solutions is Witten-type solution, namely setting

2n
o M e 2l 2qp A A day, e thexp ( Z x?) dry A ... \Ndxy
= = = (=k+1
k-1 0 0 0

As Witten showed that diny, = 0 = djny,p, and as A = Lay,, Ly > WE have Any, =0 as k

stops before n+ 1, so digp +w A g1 = dymr, = 0 and df&x_1 — An = A, = 0 are solutions.

Now, suppose ny(p) = k—1,s0 f*=1(z) = f(p)+3(—at—a3—..—af_ +ai+..+ad, fi ' =
k1

1 n
f¥(z) — f*(p) is an index k — 1 critical point let 7, = Z —xipdr; + 3 Z TidTiyy — Tipndr;

i=1 i=k
be a local 1-form, and note that d7, = w. Then another solution is of the form

2 1<
Mk —Tp A f?—[,p €_t|x’ /2 (5 Z$z+nd$z - xzd$z+n) A dxl VANPUAN dwk*l

= = i=k

§k—1 Erp el 2qp A L day_y

Now let fk—l = 67tx?/2d1'1/\.../\dl‘k_1 = etfé€71 exp (—t Z $?) dl‘l/\...dl‘k_l We need to show
=k
(Mk, €k—1) above localized around p € M are solutions for (1-4) above, or dinp = —w A &1,
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(2) di& =0, (3) dinr, = 0 and (4) d;§ = Any. Since dié—1 = 0 = d;&—1, we satisfy (2) and
(4) reduced to Ang = 0.

For (1)

dﬂ?k = dt(—Tp A fH,p)
= _d<7p) N&np + Tp N di&ap

:—w/\fq.[’p—l—TpAO:—W/\fH,p

Next since A = Ly, Lay» for the dxy A ...dxg_1 we need dz;,, for 1 <¢ < k—1, but our sum
starts at k = n, so this is primitive and An; = 0.

Computing equation (3) gives

dime = e d* (e )

_ _ 1
— €tf(])C 1d* <€tf(l)c 167t‘x|2/2 (5 Z andxi — .I'Zdl’Hn) A\ dl'l A A d$k1>
i=k

- n 1
= etf(lf 1d* (exp (—t;l’?) (5 ;szrndxz — l‘zdIH_n) ANdxy N ...\ dJZk_l)

Note that in our codifferential we have no dependence on xy,....x;_1, so those terms do not

contribute to the codifferential and we only have

dfnk = etf(’f—l <_71) Z {axi [an exp (—tZﬁ)]
i=k l=k
_axi+,L [$z exp <—t Z I’%)] } (d$1 VANV dl’k_l)
l=k

. _1 n n
— ¢tfs <7) exp (—t Z x?) — 2152 (TiTisn — Tiznxi) (dxy A oo Adzg_1) =0
=k i=k

Thus we satisfy all three solutions, so
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5 n
Mk €_tx€/2 <% Z .Tid.fEH_n — xz—i—ndxz) ANdxy A ....\Ndxr_q

= i=k

Sh—1 e~ 2wy A . dryy

Is a non-Witten-type solution for k < n

Theorem 4.2 (solutions of the deformed Laplacian, k& > n). for k < n There exist two

harmonic solutions for the deformed Laplacian

Now let us consider solutions to (1)-(4) in Cone®(w) for k > n. If nf(p) = k — 1 have the

Witten-type solution

Mk 0 0

gk—l S'H,p €7t‘x|2/2d1’1 AN --‘dxk—l

Since &1 is harmonic we have d;§ = 0 (satisfying equation (2)) and so we d;& = 0= A0 =
Ang, so we satisfy equation (4), also w A &_1 = 0 = dyny, as it has to have a dx; term for
1 <i < n, so we satisfy equation (1). Finally din, = 0, so the above is a (Witten-type)
solution.
Now around any critical point p so ns(p) = k = n + r, we will show that we have a non-
Witten-type solution of the form

e e e 2dg, A A day,

€r el (1) (3) Z (vidz; + Tpyidan, i) Adrg A ofa?ld/xlzl Adx, g,
i—1

— T

To prove this, note that

N = e_tm?/del A ... Ndxy
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is Witten harmonic and thus d;n, = 0 = djny, so we satisfy equation (3). Also,

_ tfo _ 2 _ tfo _ 2 w_r
N =e exp( tz 93[>dx1/\.../\d:1:k—e exp( tz x£> - ANdxyiq N ... Ndx,

l=k+1 l=k+1

As any dx; € dx,41 A ... Adx, will cancel out with any dz; A dx;, terms in w", leaving only
the terms that have dzy A dxyiyy, ..., dx, ANdx,p, = dz, A\ dz), and we get that term r! times.

We will also write {;_; in a more convenient way as

a2 r 1 - w1
1 =ce ] /2(_1) (§> 2 (xidx; + xipndri,) A 1) ANdz,yqi... \Ndx,

Again, any dz; € dz,1A...Adx, will cancel out with any dz;Adz;, terms in w", leaving only
the terms that have dxy Adxyyy, ..., dx, Ndx,,, = dx, \dzxy, and then the x;dx; + x;  ,dx; .y
cancels out the dx;dx;,, term, removing that, and we have (r — 1)! copies

Thus we need to show that &, is a solution to (1) w A &1 = dinr = 0, (2) di&—1 = 0, and
(4) digs — A = 0

To check equation number (1), or that w A &1 = 0, note that each term in ¢; is of the form
—t|z[?/2 Pl o g
e (—1) 3 (ridzr; + Tipndxiyn) ANdry A .dxg..dTipy... N dT,

And note that for the terms in w = dz; A dz;4,, the terms with j # ¢ will cancel out with
one of the dzy A ...dz;...dT ;... A d2 iy, while dz; Adzji, = da; Adzip, will cancel out with

Tidr; + Tipndrii,
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Next, for (2), di&x—1 = 0.

dy(Epy) = e H0d(e0g,_y)

k r \
o ) 1 wrfl
— e thgd (exp <_t gzl l’?) (_1) (§> Z(:mdxz + $n+id$n+i) " m /\ dx])

i=1 =
X 1 r wrfl n
_ —tfk B 2 1y (= dx; i i (r— 1\ .

Where we have used that d(w) = 0,d(x;dx; + xiindxiy,) = 0, and d(A'_,,, dz;) = 0.

j=r+1

Focusing on the remaining term gives

k k k
6—tf(lfd <eXp <_t Z x?)) — e_tf(])C (exp <—t Z ZBE) Z —2tl‘gdﬂ?f>
/=1 s=1 (=1

k
= e tlel?/2 Z —2txpdxy
=1

(=1

k
di(&_1) = e (exp (—t Z x?) (—txpdrg A zpdry A ..o A dxg_q

trpdr, A Tpei(—1)""rdoy A LA E;E AN dxk)>
= ¢ 912 (—tapw, (= 1) ey A day — tra (=1 (=1)" ey A A day)

— 2ty (<1) Ny A iy — b (— 1) 2 A A dag) = 0
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For equation (2), note that (2) is equivalent to

r—1 n
d;&p—1 = Ay, = hetﬁ) exp (—t :E%) Az, 1 A ... Ndx,
(=k+1
r—1 n
& ethod*(e7thg,_ 1) = d 'etfo exp (—t [L’%) dx, 1 N ... Ndxy,
(r—1)! l=k+1
r—1 n
PN d*(e_tﬁ’fk_l) _ (rw ] exp (—t Z x?) Az, 1 N ... Ndxy,
I=k+1

We thus need to anti-codifferentiate this term, which gives us

ik (e " wrl 1 d
e ol )fk—1 = exp <—t Z x?) m A <<§> ;xzdﬂfz + xn+idxn+i)

l=k+1

ANdx,iq N ... Ndx,

n r—1 1 T
=4 é—k—l = etfé“ exp (—t Z ZE‘?) h VAN ((5) Zl’zdl’z + mn—i—idxn—i-i)
) i=1

l=k+1

ANdzx,iq1 A ... Ndzy,

- 2 9 wr—l 1 r
<~ gk—l —e tym‘ / (T — 1)' A\ 5 Z .I'Zdl'z + l'n_H‘dl'n_H‘
=1

ANdz.iq N ... Ndx, = L

Where we know by Lemma 4.2.1 that the solution is xx then send xp — w9, 1 of the

solutions we found in Theorem 2.4 hence this solution has to be n = xx(—7, A e~ tw} dxo, N
2n—k+2 n

1
o NdToy_pio = tpndry A ...dxg_1, where 7/ = E —Tp_idTon,_; + 3 E Top—idTp—_i —
i=0 k=2n—k+2

Tp_idrae,_;. Also, this is localized, and to see that this antidifferentiates, note that since
T

Next, note that the in the sum Z xidxr; + x,;dxr,.,; it cancels out with every term in the
i=1
dry A ... Ndx, A ... \Ndx,,—1 except for i = r. Also, when we take d;, the e!/o gets cancelled

out, and the only part of the Gaussian is exp (—t Z x?) , which will not be differentiated
(=k+1

by the any of the dz;. If we call ¢ = exp <—t Z x?) (=) tdzy A A jx\r/\ e NdT 1

{=k+1
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Then this is not impacted by the codifferential, and we get

* * 1
di&p—1 = di (ﬁb A (5) Z ridz; + l‘n+z‘d$n+i)

=7

1
=g <§> (1+1)
= tfo exp | —t Z :1:€> ) lday A /\dxr/\ N dTpgr

l=k+1

= e tfo exp | —t Z :1:@> ) lday A /\d:Cr/\ N dTpgr
t=k+1

-1
= e W exp | —t Z :L’g> = Any,

l=k+1

So this satisfies (1).

And note that the x;dx; and x,,;dx, ; will cancel out with the terms in the dzi A ... Adx,1;,
thus giving 0 for w A &;.

Thus this combination of 7, &, satisfies our equations. Thus for Conek(w) for k > n, we
have a non-Witten solution of the form

e T2z, A ..dxy
Mk MH.p

- _ W' 1 ]_ !
fkfl Lﬁﬁ)ﬁﬁ?—[,p e t$z/2 =] A\ ((5) Z l’zdl’z + In—l—idxn—l-i) VAN dIT_H VANPIRVAN dl’n
=1

4.1.3 Bounding the Eigenvalues of the Witten Deformed Cone

Lapacian Spectrum

Nk
Let be a non-harmonic eigenform of Ay~ with eigenvalue \. We wish to show that A

§h—1

goes to infinity linearly as ¢ goes to infinity.

Mk
Theorem 4.3 (Localized eigenvalues of Ao grow like ct). Suppose s orthogonal to

Er—1
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our solutions found above. then

2

Mk Mk Nk
<AtC : > > ct + O(||mwl?, 1€k-11[?)
Ek—1 Ek—1 Ek1

In particular, any non-harmonic eigenforms eigenvalue grows on an order of t

If we compute

< Nk Nk > < A + wA —df* Nk Nk >
At() 9 - )
Ek—1 Eh—1 —db A+ Aw | &t Eh—1

B < Ay + wAng — di\*fk—l Nk >

)

—dM + Appr&r—1 + Awé Eh—1

= (Aoar s M) + (WADE, ) — (A" Emr, )
+ (Aearbrot, Geor) — (A, Semr) + (Awe1, 1)
= (A M) — <d£\77k7£k71> + (Aearr-1,Ep-1)

—(d™ 1, ) + A1+ || wEri |2

To start, note that Ay, is self adjoint and has a basis of orthogonal eigenforms like H,,, (\/fa:i)e_”l’w 2dx;.
Note that this has an eigenvalue for Ay of 2¢(¢ + > m;) where ¢ is the number miss-
ing/different in dx; = dx;, A ... A dz;,, from harmonic form’s dz; A ... A dx, ;- Therefore,
we can write as a linear combination of these 7, = Hm?(\/fxi)e_”xF/Qdazlg =0, & =

Hms(\/fa:i)e_”g”'Q/zd%g = &' (call £, 0" a simple one). Next, as Ay is self adjoint, we have
1 —1

that

—Tp N\
M| (er Agey) s0 < Mk | N > - < Mk T En >
Sk—1 $k—1 0 Sk—1 Eu
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where 1, &y are Witten harmonic and thus we cannot have 7, with an orthogonal com-
. Ui :
ponent, as then it would not be orthogonal to However, we can have a particular

£ = C¢&y harmonic, but if this is the case then

Ui ——7b ﬁ\(jf}i i i 9
0=(1 |- = ' =7p N C&1) + (C&up, 1) = C((0", =7 AN &) + [|&apl[7)
'3 Céu

Thus we have that n° has to be some combination of the

1
—Tp Ny = 3 Z a:nﬂe’”xw?dxj Ndxy Ao Ndxy, — xje’”le/denﬂdxl Ao Ndy,
j=nf+1

so in particular, n® is a linear combination of

= ( —|&npll?
| 7jd2n 15 A Eapl 2

Yt (—2dTn i) N Epp + ajdr;) N Exp

where we know Y~ a; = 1. Normalizing so ||§,||* = 1, then &), = 7’;2/2 —tel gy AL N dy,,

SO

tn/2

TjdTpti N Epp = T2 —=T;e e tel? /de Ndz; A ... N dzy,

1 tn/2 a2
11%/2 1 . .
\/_ <\/—ﬂ—n/2 \(Vtxj)e da:j/\dxz/\.../\dxnf)

where the term in the parentheses has norm 1, so ||z;dz,1; A &u,pl|* = o, and thus

%
n' = 2t(ansjTidTnsj — ajTny dTi A Epyp)

. Noting that xje_”x|2/2dxj Adz; N ... ANdzy, is an eigenform of the Witten laplacian with
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m =1 and ¢ = 1) we have

<Ac,t Tl >:<AtMni,ni>—<dfn",5ﬂ>+<AtM§H,§H>
En En

— (@& n') + (AP + [|wd|?

= 4l |* — 2(dn’", &) + 0 + [|Ami] | + [ ||

If we calculate dy' = (d,A — Ady)n’, note that for a particular 77 = tx,, e~/ 2dx; A day A

... Ndxy, ; has no dz,dz, ., (7, ; was chosen in this way) so An; = ta, o Lo, +n77’; = 0 Thus

d'n; = (diA — Ady)n,
= —Ad(tepda, &,
= —tA(d + tdf ) (zpdn ;Erp)
= —tA(d(zjdzni ) N Enp — TidTn; A dépp — ;T4 (tdf A Eap))
= —tA(dzj Ndxnj Ny — TjdTps; A dibpp)

= —tA(dQTj VAN dxn—i—j A g’H,p - xjdxnﬂ VAN 0)

so we have d'n; = —tA(dwz,; Adx;&y,, and as &y, is primitive, this just gives di'n; = —t&y,
A similar result for 7,y; = —x;dr,; A &y also gives din’ = —t&y, And adding all these

terms together gives

din' = —2ta;by, = —2y,
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. Plugging these in, we get

<Ac,t : > = 4t||n*|]> — 2(dMn’, &) + (| Ane| P + w1 ]|
SRS

= 4t||n'[|* — 2(=t&x, &) + [[Ane][* + [Jw€r ]
= 4[|’ |* + 4tl&. |1 + [JAm]|* + [N ||

> 4t (| [0 I* + & !1*) + OCUAD |, [lwE] )

Thus in this case, we are also bounded by ct for some ¢ = 2. We thus have a bound for the
case of a ¢ harmonic, and also that n' cannot be not harmonic.

Before we continue, we first need to discuss the Witten symplectic laplacian A%, = d*d +
dMd}. To start, note that d* = d;A — Ad;, = *.d;*,, and similarly d* = wd! — dfw =

*,di*x, = (dM)T Therefore, using that *2 = I, we have

Al = dpd + dd}
= skgdy kg ko) ¥ + kg dy *g *ksdpg
= xo(dyd} + djdy)*4

- *sAtM*s

. _ _ . _ 2
Therefore since *, = *; 1, AN, = x,Ap*;! has the eigenforms x,H,,, (vVtx;)e 17 2dy; =

H,,,(V/tz;) xs dr; with eigenvalues 2¢t(¢* + " m;), where ¢ is the number of forms in *,dz;

missing/different from day A ... A day,
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Next, note that

il > = (d e, di i)
< {di s, di ) + (i, d )

= <A115XM77/€>

a similar argument works for ||[d2*&,_1|? < (AN, &1, Ee 1)

With these inequalities, we are now able to show that

2

Nk Nk Nk
<Ac,t : > > ct + O(/|mkl?, ||€e-1] )
Er—1 Ek—1 Ek—1

We will now focus on the two components (dny, &) and (d2*&,_1, ) To start, we begin
with (d2 & 1, me) = (d*np, Ex_1), which we will use later. Next, note that by the Cauchy-
Schwarz inequality, we have that (dng, 1) < ||mlll|€k—1]]- Next, using the arithmetic-
geometric mean inequality with C||dng||?, C||€x_1]]?, for C a constant we have

1.1

(dim, €1) < [Inellll€ell < 5(5

Mk Mk
<Ac,t ) >
Ek1 Ek—1

1 C
[l nell” + Cligk11?) = 5z lldiml* + S 1€kl

If we try to bound
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with n, = 0%, &s—1 = £ the sum of basic forms and re-indexing for the second term, we have

i J
<Ac,t Z , Z >:<AtMn@',nf>—<d£ni,fj>+<AtMé,fj>—

(dME ) + (wAn 17y + (AwE', &)
= g’y = 20din’, &) + A& ) + Ol NI |1, 1€ IE )
= ',y = 20din’, &) + A& ) + Ol NI |1 (1€ IE )

= Mgl l* = 24’ &) + AalIE']1* + Ol 1, 11€1111€7]1)

We now rewrite £ as A&y, + & where & are all now nonharmonic. Note that to be orthog-

—T, /\fH .
onal to ? there must exist a correstponding n* of the form n* = t(a;z;dw,+; —

$n

AntjTidx;) N\ Ay p. Thus, if we split the term above out term out, we get

= A0l = 20din', &) + Q1€ + O NP I, 1€ N1 ]])
= Al n'l1? = 2di ', &) — 2y, Abyp) + Aol 112 — 20", €7) — 20dy'n", Abaup)

+ A 181 + Aer 1 A& |2 + O 1117 1 1€ 1111€71])

Next, note that 5’ = H,,, (v/tx,)e 1#*/2dz i, then dyn' (using that the hermite polynomials

satisfy the relations H), (Vtz, = Vt(2m,)H), (Vtz,),VtzH,, (Vtz) = Hp o (Viz) —
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Vit(m, — 1) H,,, _1(v/tz)) will give

dyg' = (d + tdf)Hp, (Vitx,)e 12 A day,
= (d(Hy, (Vx,)) £ tapde, Hy, (Viz,)e 1 2) A daps
= H,,,,,(Viz,,)(VEH,, (Viz,)e ") dz,
— V(1 F D)WVix, Hy,, (Viz,)e P 2de,) A dop
= Hon, (Vi) (2/im0) o, 1 (Ve ) e !172)
VL F 1) (Hpy i1 (Vi) — VE(m, — I)Hmr_l(\/i_&x))> dz, A dzps

so there are two eigenfunctions H,,_, (Hp,+1) and Hy, , (H,,, 1 in the form dz, A drp and

Mgty
this is summed over the 2n possible r, so we have at most 4n basic eigenforms in dyn* where
n" is basic. Next note that A = 14, ,, ts. can have at most n terms when applied to a basic 7".
Thus, d*n' = d,An' — Adyn; can have 4n(n) basic terms for d;A and n(4n) terms for Ad; so
we get at most 8n? terms (some of these will cancel out) Thus, for each of the n?, the term

(d*" ', &7} is nonzero for at most 8n? &7,

If we look at the first three terms, A,

nl|? — 2(dMy, &) — 2(dMy', A&y p), and removing the
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nonzero (dn’, &7) we get

— 2(dMy', &) = 2(dM, Abgep) > 20(07 ( ||A Hals
c . .
+ S 1I€11°) - ( Sllacan|l+ HA&{,sz)
— (e + Z G

’ —C”'Hfsz

Z

— Ci ol A&, 117
=2t /" — i | A
( (C @C”)

1 1 ; .
1— : _ 1 gk
+< (%ﬁ j 0“>>Zm )"””

= CYNIEN1” = Ciy,l| A1)

Now, recall that 7, is not harmonic, so either  m,; > 1 or 7 > 1. Also, A1 < o,

Therefore, if we choose C*, Cj, , so

11
(0;{p+zcw) n =1

(for instance, by setting C¥ = 4n(8n*) = Cj,, (as 8n is the number of &7 we have after

removing the zero terms), then in the case of £ > 1 (with 3. m” > 0, we have

(v (ot D)o (1= (G D)) o
P j H.p j
. n'A
> 2t W—K—Jr T L 0
4n C’Hp

2n
1 iA 1 1 i
) (1= (e +5, ) o) -

>2t(1— —) >t
22(1- )2

Thus the coefficient ¢ = 2 <£7’i — <oi1
H,p
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0 gives us a bound of ¢"'t||n’||? in this case.

In the case of £ > 0, so Zm”i > 1, we have

- 1 1 : 1 1 - .
2t | 07" — : — | A 1— : _ " |2
( (%@m) *( (%@Cw))zm )”""

.grA 1 ;
no_ - _ n
> 2t <€ in +(1 4n) 5 m )
3 ;
ZZt(O+Z§ m”>21.5t

Thus ¢ above also gives a bound ¢”¢||n||? inn either case, so this positive bound holds in

all cases. so we have

Al | = 20d oy’ €) = 20d ', Aba) = Tt | P = (4n) (8)[€51] — 4n(8n)? [,

And note that we picked only the ¢ that had a component with d**n, and each ¢’ can
only have this happen with a certain number of 1’ from the formula for d* ', so each |¢/] is
multiplied by (4n)(8n)? for the terms where H,,, of n’ are equal or off by 1 and the forms are
off by dz,., which is only 3*(2n) at most. Thus we are not summing &’ an infinite number of

times, but at most C < co times.

max
If we now look at the next three terms A, ||n®||*> — 2(din?, &7) — 2(dMn®, A&y,), note that
our calculation from the 7, harmonic case we have

e lln®|* = 2(di, €7) — 2(di ", Ayyp) > Atl[°[|* — 2(di'n", &) + 21| A&y |

And if we use our inequality on (d’n?, A& ,), we have

48



A [ 1[2 = 2(din®, €7) — 2(din", Aarp) = 4t|In°|* — 2(di ", €7) + 2t €l |

a a Caj ]
> 4] | — 2 1AM 7] + =€)

20
+ 2t|[&3,p ]

_ (4t - % (WA + Zmn“)) |2

+ 2t [6¢,* — C¥IE||?

with 7% having > m"" = 1. and again choosing the appropriate C% = 4n(8n?) where again
8n? is the max number of nonzero (di'n?, &7) (note that we removed the &7 associated to &,

50 > 77 < 1 ), we then have

a a j a 2t @ @ a
el = 2 €) — 2 Ao > (1= S (6 + o) )

+ 2t[Expl12 = CYN1E P
gn“A 1 all?2 2
> (4t —2t [ —— +— | ) |In°l1? + 2t||€xl|

dn  4n
el

2n 1
> (4t -2t — 4= )P+ 2t 2
> (1= 20 (32 + 7)) 101 + 2l
- ol

> (4t = 1.50) [[n°||* + 2t [, ||* — CV1€7]7

> 2.5t [n°|]* + 2t|| A&y, || — CV[1E7) P

Thus if we define ¢”* = 2.5 and ¢**» = 2, we have positive bounds for these forms.

49



Combining all of this together (and recalling C,  C*»C% < 3n(2n)(8n?)), we have

max?

' U i i g i i j i j
<A(J,t ol e >ZAnilln||2—2<d?77,€]>+&illf||2+0(||?7||||773||,||§||||§]|I)
i J

> 't

€17
> = O 1 11, [1€°1116 1)

1P+ 12 + rt] | Ay |I* + 't

= Cluall€]]P = CYYE|[P = Cr|| Ay,

Thus if we let ¢, be the minimum of ¢, ¢ ¢#*r & that are part of the sum (so no

¢, c*#e if they are not part of mg, &,_1) then this inequality shows

nl |
<AC,t ) 5 ] > — )\ni
§' &’

> cannt (117117 + 10" 1" + A&l * + 11E7]1%)—

Ol [N 111167112, 1€ 1€ 1)

2

I = 2(din’, &) + Aal€']* + O w1, 11 T111€7 1)

i

n S o
= Crint = O [l 11, [1E°1M11€71D

we thus have

2 2
AN = <A gy > >et||” || = oUmlielL )

3 LS 3

so by driving ¢ large enough it will dominate this inequality (as O(||n°||||7/|], [|€*]]||€7|| has
no factor of t) and as eigenforms are non-zero A > ct for sufficiently large ¢ As another
result of our inequality above, we now show that the kernel of A" is generated by only

our two harmonic solutions. For if it were a third independent solution, we could project it

to the orthogonal complement of our two solutions and get a nonzero harmonic solution in
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M, —Tp N &, . :
the othorgonal complement of g , ? ? , but then our inequality above would

0 gﬂ,p
apply to our new solution, but choosing ¢ large enough would give a positive eigenvalue,

contradicting that our projection was harmonic. Thus the kernel of A is two dimensional
. M, —Tp N&x,
and is generated by P , ! P , The proofs above work for the case of ny < n,

0 57-[712
for ny > n, use that [Ax,*| = 0 to change f to —f, which now has index less than n, and

the proof follows.

4.2 Showing that the Only L? Harmonic Solutions Are
Localized
Without loss of generality assume that each V,, where p € Zero(f) is an open ball of radius

4a, and assume ny < n,t > 0 let v, be a smooth bump function such that 7,(z) = 0 if

|z| > 2a v,(2) = 1 if |2] < a. Define

2 2

", —7p N &x,
ap1(t) = /wg T dVol,ays(t) = /'yg PSR dV ol
Lt Thip Eap

Now define the forms p,1(t), pp2(t) by

Y, MH.,p v —Tp A\ §H,p
ppa(t) = —2L Ppa(t) = —2

B Oép71 (t) Lo 77% D B ap»Q (t>
—Tp ,

fﬂ,p

Then p,1(t), pp2(t) is a section of unit length with compact support contained in V. Also,

note that p,1(t), pp2(t) encompass all our local solutions found in section 2 as if n(p) < n,
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then LT = 0 and if ny(p) > n, then —Tziﬂ N&np = 0. Let Ec,; denote the direct sum of
the vector spaces generated by the p,1(t), pp2(t), and let Eg, be the orthogonal complement
to Ec,; in H' (Cone(w)), so H' (Cone(w)) = Ec; @ Eg,. Let pey, pé, denote the orthogonal
projections from H'(Cone(w) to Ec; and E(/{t, respectively and decompose the operator

Doy = doy + di, = do + di + c(V(f)), where c(e) = e* A —1, via

1L 1L 1L 1L
Deyy = peiDepes, Doga = pC,tDC,tpC,ta Deys = Pc,tDC,tPC,ta Dgya = pc,tDC,tpc,t

we now have the following results:

Theorem 4.4.

for some ty > 0, and any t > ty, and 0 < u < 1, the operator is fredholm
Doy = Doy + Deoyga +u(Deygo + Deys) = Doy + (u— 1) (Do 2 + Deoyg,3)

(ii) the operatorDeyy : Eg, N H' (Cone(w) — Eg, is invertible

To prove these, we need the following inequalities:

Lemma 4.2.1. there ezists a constant ty > 0 such that for o € EétﬂHl(Cone(w)), o' € Ecy

and t >ty one has

o

1Daaolly < 1710,
/

1Dl < 1710

Proof: note that D, 3 is the adjoint. of D, so if we prove for the first we get the second.
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Since pp1(t), pp2(t) has support in V,,, we have

1
Dy 28 = poiDipg 0

= pc,tDtU

= Y a0 [ (onslt). Doy,
pEZero(V) Vo

T,

- Z pp’lzt/ <Dt0[ /yp(t) . 70->

peZero(V) O
Vp —Tp A §H7p

+ D ,o)dv

pp,27t /\;p < ' aP72(t> > v

5?%,17

And note that v is constants on |y| < a, |y| > 2a, so Dyp,1(t) = 0 = Dip,2(t) (as these are
harmonic solutions multiplied by a constant) on |y| < a, |y| > 2a.

Now note that we chose

2 2
M, —Tp N&n,
apa(t) = / " Tl dVol, apa(t) = / 2l "Il avol
Lt Thip Eap
M, —Tp N&n,
50 ppa(t) = %(t) ’  Ppa(t) = %(t) P "| have norm 1. Thus note that,
ap 1 , ap 1
b L*Tpun?{’p P 57‘[,}7

as N.py SHps —Tp N Ep, LT p are either e~ dx; or xje_m?de where dr; = t,,4;dxr or
P
dxpij A dry. Thus, on the interval a < |y| < 2a, these are bounded above by [p.(1 +

2a™)e " 2qV ol = max(1, (2a)") (2)271/27 and bounded below by [ max(1, 2a")e~ /2

™

dVol = C, (%)Qn/z, and thus C/t" < apli(t) < C"t". Thus when we look at the integrals

—Tp N\
/ D22 | ) Sy, / (Dy(—2 PP s
Vp ap,1 (1) LT Vp ap,a(t) Erp
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Mote that we can restrict these to a < |z| < 2a, where Y0y p, ANy p, Epp, —w N Ex,p are

bounded by C”e*"  also note that

dy + di (7)) = (dy) A+ vdip + (d" + tew )7y
= (dvy) AN +vdp + (Oiyibr)raidr + tog pyrdey
= (dy) N+ vdpp + (Oiy )brea, dxr + yOibriaidrr + vy pbrdey
= (dy) N + ydep + (Oy)br + yd™dr + tyre g

= (dy) N + ydpp + (07y)1ta, dxr + ydia

Therefore for ¢ = nyp,t__wMw, —Tp A Epp, Enp the terms we can get in Doy are A, w A9
(which are bounded by max(1,2a)e™"/2) and (dv) A 1, ydyh + (i) brte,dx; 4+ ydi1p (which

are bounded by (max ) max(1,2a)e""/2. therefore, we have

. C
/ (Dp(—) " ydoy, < oo / G gy,
Vp (07 a<|33|<2a @p’ivt

, 0
7/L"t
P bty

C
< et 2oy < Sl
Therefore, the norm of D, o5 is
Cllello|| _ Cllo]lo
L A

and we thus have our first inequality.
Next, note that this implies that D¢ ;9 and D¢ 3 are compact operators, and thus Dey,, =

Do+ (u—1)(Dei2+Deys) is a fredholm operator plus a compact operator, hence fredholm.

To show that the operatorDey 4 @ Eg, N Hy(Cone(w)) — Eg, is invertible , we follow Bis-

mut and Zhang [2] will show that for ¢t > ¢ and o € E,, we have ||Dcyq0lo = C3vt|o]|o.
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To do this, we break into cases:

Lemma 4.2.2. Case 1

if Supp(s) € V,(4a) (the ball of radius 4a) Let E, be a euclidean space containing V. Define

P = (L) eteire

onto the subspace of Hy(E),) spanned by the p),, ;. Since pc:s = 0, we have that

Ppas and pf o, = (%)n/2 e~ p, 19, and define Pe, to be the projection

/ /
Pc+0 = PO — PO

n/2
t —tlz
= 5t [t (£) gy cdava,
(f) Ep

pEzero

As v = 1 near p, this is 0 in the ball of radius |a| and since o has support in the ball of

radius 4a A similar result to lemma 3.2
P (0)]] < 2 < Ci/t|o]||?

Next, note that Deyp’ = 0, so Degpl,0 = 0, and as 0 — p,0 € (Ef,)" we can apply our

inequalities above and get
|1Dcl|* = || Deilo = p'o)ll > Cstlls — plol[* > Cetllollo — Crv/||o]?

Thus ||Dc,t0'||0 > 082\/2H0||07

Lemma 4.2.3. Case 2
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Supp (o) C M\ U V,(2a) (and still 0 € Eg, N H'(M)) to prove this, recall that

p€Ezero(f)
0 _dA*
D, =D+ U+l
—d* 0
0 —d 0 d*w — wd* dfi> 0
=D+ +t + 17 4] :
—d* 0 Ad — dA 0 0 |df]?

where since we are away from the zeroes of f, |df|> > Cy, thus

1D = ((DEy0,0))

> (Cot?* — Cyot — C1y)||o])?

From which we can conclude ||D;o|| > Ciovt||0||
Case 3: Let 4 € C™(M) be defined such that on V,,p € zero(f) that ¥(y) = 7,(|y|/2)
and |anyv, e = 0 Now for ¢ € Ef, N H'(M) one can see that yo € Ex, N H'(M), as

gamma = 1 in the regions of V,, so it is still 0 there. also ||Dro|| > ||Drs+ (=¥Drs||+|| =7

Lemma 4.2.4. Case 3

Thus by Case 1 and 2, one deduces there is a (3 such that for t > t; + t,,

1 . -
1Dwollo 2 (11 = Deollo + [[7Deollo)
1 . -
2 5 (IP(1 = F)o +[D, 7ol + [|Dew + [, Dlollo)
VG, i
> =1 = y)allo + VCl[Follo) = Collolly

2

Where Cjy = min{/Cg/2, Cg/2}. Thus we have that the operator D¢ 4 : ExNH'(M) — Ef

is invertible.
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Theorem 4.5. There exists a Ts so that for T > Ts,0 € H(Cone(w)) ||Deao|| < w

To show this, note that for the operator D¢ that

1Dcaofly < Sl

to prove this, we proceed in a similar method to our first inequality, using

b= 3 ouilt) [ (it ol

pEZero(V) P

And note that if we take D;p,;(t), then this is 0 in the region |z —p| < @ and |z —p| > a and

from a similar argument to lemma 3.2 ||Dyp,;(t)|| < 2. Then using that p,,(¢) has norm 1

IpeeDicallo=|| 32 o) [ Demyilt) pyalt), o),
pEZero(V) Vo
< Y i) ppi(t),0) | Drppa(t)doy,
pEZero(V) Ve
Cs
< 3 [t
pEZero(V)
Cs
< 3 Zn®lblloll
pEZero(V)
< Clzuff Ho

Definition 4.1. Let for ¢ > 0, let Ec(c) denote the direct sum of eigenspaces of D2C,t with
eigenvalues in [—c,c|. since Dét is a self adjoint linear operator E(c) is finite dimensional
subspace of H'(Cone(w))

Let Pg,(c) denote the projection operator from H?(Cone(w)) to Ecy(c)
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Lemma 4.2.5. There exists a C; > 0 such that fort > t3 and o € Er

Ch
1Fe(c)o = allo < = llollo

Proof: Let § = {\ € C: |A\| = C)\} By Lemma 3.2 and Theorem 3.6, we have that for any

A€t >t +ty,0 € H (Cone(w),

1
H()\ - DC,t>UIH0 > 5 (H)\pc,tffl - Dt,lpc,tU - Dt,zpé,tU/HO + H)\P% - Dt,3pC,tU/_

Dt,4pé,t0/| |0)

1 C C C
>3 (0= 2 = S ol + (Cavi - a = ) el

By the inequality, for ¢4, > ¢+, and C13 > 0 such that for any ¢ > t, and ¢’ € H'(Cone(w)

[|(A = De)a’|lo > Chsllo’||o

Thus for any A € §, A\ — D¢ : H'(Cone(w)) — H°(Cone(w)) is invertible, so the resolvent

(A= D¢y)~ ! is well defined. By the basic spectral theory for operators, for ¢ € E7 one has

Pey(c)o —o = (A=D¢cy) " — A Had).

271'\/_

Since with pc; the projection to Er, we have pata = 0 Thus using the inequality above, we

have

(A - DC,t>_1 - A_I)O' = )\_1<)\ - Dc’t)_lDC’tO'

= )\_1<)\ — DC,t)_1<DC,t,10 + DC,t,SU)
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One deduces by Lemma 3.2 and above we have

A — DC,t)_l(DC,t,IU + Dei30)||o < 01_31||Dt 10 + Dy 30]|o

,4,C —|—C
< O (—=—lollo

and plugging this into the integral gives

||Pei(c)o —allo = ' ((A=D¢gy)™ — A_l)ad)\

271'\/ /
27 [ IN0 = De) ' (Deso + Decao)odd
é

C 4, Cu+C
<o / 103 (="l lodA
T Js

0

IN

Theorem 4.6. Let Fg;c] be the space of all eigenforms of Ay with eigenvalues in [0, c|.

Then for t large enough, (FCt ,dyc) is a chain complex with dlm(Ft[g’”) = my + Mi_1

Proof: by lemma 3.7 applied to the p,,, when ¢ is large enough, Pc(c)pp+ Will be linearly
independent (as if they are not linearly dependent, then o = p,;; and o’ = ap}, ;, would

have Poy(c)o = Poy(c)o’, but then by (3.7) we would have

C
—lHa— o'llo 2 [|Pea(c)o — Peylc)o’ — (0 = a')llo = [lo = o'[[o

Thus for ¢ > t5, we have dim(E¢¢(c)) > dim(E¢,). Now assume for the purposes of contra-
diction that dim(E¢;(c)) > dim(E¢,). Then there is a nonzero o € E¢(c) that is orthogonal

to Pei(c)Ecyt, or (0, Potppi(t)) 1o (conew) = 0 for any p,;. Then from lemma 4.2 and 4.7, we
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have that

po= Y (0ppil0)palt)

pEzero(df)

= Z (0, ppi()) pp,i(t) — Z (0, Po,tpp,i(t)) Pou(c)pp,(t)
pEzero(df) pEzero(df)

= Y (5 paD)(pit) = Poa(e)ppalt)+

pEzero(df)

Y (0.00i(t) = Powpp i) Poi(€)ppilt)

pEzero(df)

By lemma 3.2, there exists a Cs > 0 so when ¢ > t5 ||pc.o|lo < £||o]lo, and thus

||Pé,t0||0 > |lollo = llpciallo > llollo > Cisllallo

using this and lemma 3.7, when 7" > 0 is large enough

Ci5CavVt||ollo = || Depeiollo
= ||Dcyo — Deaperollo
= ||DC,tU - DC,t,10 - DC,t,BUHO

<||Dcyollo + || Degaollo + |[Degsollo
Co + C
< |[Dcyollo + —mT 2ol

From which one gets |Doyollo > CisCiVT||ollo — €25 |o||o which contradicts that o €

Ec4(c) is an eigenspace for ¢ large enough.

Thus one has
dim(Ecy(c)) = dim Egy = Z me +mp_1 = 2 Z my
k k

Morevoer E¢; is generated by the Pey(c)ppi(t)
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Now to prove Theorem 3.8, for any integer k such that 0 < k£ < 2n + 1 let @); denote the
projection from H°(Cone(w)) onto the L? completion of Cone*(w). Since A¢; preserves the

Z grading of Q* (M), for any eigenvector o of D¢, associated with an eigenvalue p € [—c¢, |

AciQro = QrAc o = Qppio = Qo

That is Qxo is an eigenform of Ag, with eigenvalue 2
We thus need to show that dim QE¢(c) = my + my_1 To prove this, note that by lemma
3.7

Cs
1@ns ) Pee(€)ppi(t) = ppi(®)llo < =
so for ¢ large enough the Q,,,(,) Pc(c)pp,i(t) are linearly independent. Thus for each &
dim Qi Ecy(c) > my + my_1

however, we also have (as every element in H°(Cone(w)) is a linear combination of 2n + 1

form)
2n+1 2n+1
Z dim Q. Ecy(c) = Z dim E¢,(c) = Z My + My = 2 Z my,
k=0 k=0 k k

from this and dim Qi Ec+(c) > my + mg_1 we have

dim QrEc(c) = my, + my_q

Remark: as Zhang [19] also proves, since ¢ > 0 is arbitrary, as T" — oo the eigenvalues of

[0, ] converge to 0.
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Appendix A

Morse Stokes’ Theorem

We describe here the conventions used to define the differential map 0 in the Morse cochain
complex and also the orientations of the submanifolds which are integrated over in the (1))

map of (??). A main aim is to prove the following:

Lemma A.0.1 (Leibniz Rule on forms in Morse cohomology). Let 1) € QM) then

De(y) + (1) (W) 0 = —c(dy) . (A1)

This formula appeared in Austin-Braam [1] and Viterbo [16] though with ambiguous signs.

To set our conventions and prove the Lemma, we start with a brief background.

Let ¢; be the flow of the vector field —V f. For a critical point r € Crit(f), the stable S,

and unstable U, submanifolds are defined to be

STZ{xEM:tlgngzﬁt(x):r}, UT:{xEM:tlir_n oi(z) =71},
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and the moduli spaces of gradient lines between two critical points, q,r € Crit(f),

_ S,NU,
M(T,q) == Squ'r’y M(T7Q) - {x ~ Y ¢t($) =Y fOI' some t S R}

We define the orientation of the moduli spaces similar to that in Austin-Braam [1, Section
2.2]. For an oriented manifold M, we first specify an orientation for either the stable sub-
manifolds, or equivalently, the unstable ones. The orientation of one type determines the

other by the relation
[S:10;] = [M]. (A.2)

The orientation of the moduli space is then just the orientation of the transversal intersection

which can be expressed as
(M(r, )] = [U][M]7H[S,] = [U[U] 7 (A.3)

We will also take as convention

(M(r,q)] = [M(r, IV f]. (A.4)

In the special case when ind(r) = ind(q) + 1, M(r,q) is an oriented one-dimensional sub-
manifold of gradient flow lines and M (r,q) is an oriented collection of points. Also, recall

that the Morse differential is defined by dq = > n(r, q) r where

n(r,q) = #M(r,q). (A.5)

It follows from (A.4) that n(r,q) is equal to the number of gradient lines flowing in the

direction of V f minus the number flowing in the direction of —V f.
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As an example of why (A.1) has the correct signs, we first prove the zero-form case with

1 = h, a function.

Corollary A.0.2. If h € C®°(M), then —c(dh) = dc(h) — c(h)0.

Proof. Evaluating c(dh) by integrating over the gradient curves with orientation, we have

S y—
Tk+1,

Tk+1

= Z (1, @) (R(rrs1) — B(aw))) Trta
Tk+1

= Z h(res)n(rees, @r)res — Z (Tt @) PG ) Tt
Tk+1 Tk+1

= c(h)dg, — dc(h)qy, = (c(h)d — Dc(h))qy

where c¢(h)q, = (f o) h)qx = h(qx)qr. Thus, having taken into account our orientation

convention, we find that —c(dh) = dc(h) — ¢(h)0 . O

To prove (A.1) in general, we re-express the right-hand side by Stokes’ theorem

c(d)qr = Z (/M( — )dw) Tht+1 = Z (/aM( . )@D) Th+0+1 -
Tk+0+1:9k Tk+e+1:9k

Th+0+1 Thkto+1

The relevant components of M (14411, qx) for integrating ¢ consists of

U M(pk+£,Qk) X M(Tk+é+1upk+z) U U M(Tk—i—é—&-hpk—&-l) X Mv(pkﬂa%)

Prk+e Pk+1
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This implies up to signs

c(dy)qr

Yoy . D ) I p

Thtti1 pipe ? MPresar) M(Thtes1,Prte) pig1 Y MTkter1P+1 )X M(Pr41,a5)

_Z iz / U ) Thgesrs Prre) £ Zn(pk+1>Qk) /w Thaos1
M(prye,qr) M(Thyo41,Pr41)

Tk+e0+1 Pk+e Pk+1

= £0c(y)qr, + c(¥)Igy (A.6)

To fix the signs, we will proceed in two steps. First, we make a choice of the orientation of
the stable and unstable manifolds at the critical points {qx, Pk+1, Prtt, Trrir1 b By (A.3), this
determines the orientation of the various moduli spaces that arise in the Stokes’ theorem
calculation above. Then in step two, we compare the orientation of the relevant boundary
components, M (pgie, qr) X ./K/lv(rkHH,pkH) and M (rgyest1, Prae) X M(pk-+1,qk), with the
orientation needed to satisfy Stokes’ theorem. The relative difference in the orientations will

determine the signs in (A.6).

Step 1: Computing the orientation of the moduli spaces.

By (A.3), the orientation of a moduli space M(r,q) can be determined by the orientation
of the unstable submanifolds U, and U,. Hence, we will write below our choice for the
orientation for the relevant unstable submanifolds explicitly. (The orientation of the stable
submanifolds of a critical point are then fixed by (A.2).) Similar to [1, Section 2.2], we will
express the orientations in terms of orthonormal frame vectors grouped together by Clifford

multiplication.

Let ey, ..., ex be an orthonormal set of frame vectors that are shared by both U, and U,, . .
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Let exy1,...,€ex1er1 be the additional frame vectors in U, defined such that they point

k4041
in the direction away from ¢ towards rg,;.1, i.e. in the direction of Vf. Then, for ps1,
there is a vector €ipy that points along the gradient curve M(pg+1,qx) from g to pgi1, and
for prte, there is a vector e;, , that points along the gradient curve M(rpyi41, Per) from

Prse t0 Ti1er1. Note both €ipy .y and Cipy,, A€ defined to point in the direction of Vf. See

Figure A.1 below.

Vouts M (Tt g1 Prs1)

Pri1 Tie+e+1
v /_#
v j‘ TVf
Te"pmc
e[lpkﬂ
i o \l{ Pic+¢

uﬂul-M{pk+€r Qk.:'

Figure A.1: M(71041,qxr) with orientations.

Our choice for the orientation of the relevant unstable submanifolds are

[qu] = Ck---€1 [Upku] :€k+12+1---67p;---€k~-€1,
[Ukarl] ikarl €g...€1, [Urk+£+1] = ek+,€+1 R ) A AT

Then by (A.3), [M(r,q)] = [U,.][U,]™", we find the orientations of the moduli spaces:

[M(T’k+g+1, qk)] = (6k+g+1 R ) A 61)(61 . ek) = €kavt+1---Ckyl, (A?)

—

(M(Prae, qr)] = (Erest - - Cipgpp - Ch - er)(er...ex) = epior1--- Cipgry - - EhHL 5
(IM(Tres1, Pra1)] = (€xaosr - ek ...e1)(er ... ekeipkﬂ)

—

_ i —k—1
= (—1) Pk+1 Chto+1 - - - eil’k-o-l PR ) S
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And by (A.4), we also have

M (rirerrs Pese)] = IMPrperr, oo [V ]

—

= (eksos1---€k...e1)(€1.. €. .. Cipgry - ek+g+1)(e,~pk+e)
_ (_1)k+£+1—ipk+£ ’

(M (prt1, an)] = M(prt1, )] [V 17

= (eipk+1 57 61)(61 e ek)(eikarl) =1

Hence, we find

(M(Prte, @) X M(Trerr; Prse)] = (_1>k+f+1_i”” Chtt+1 - - 62,:2 co €kt (A.8)
[M(?“k+g+1,pk+1) X M(pk+1, Qk)] = (—1)ipk+1 k=l Ckipt1--- el'/p}; RN & S (A9)

Step 2: Orientation of the boundary components, M(pxie, qr) X M(Tkros1, Prre) and

M(Pryos1, Dry1) X .//\\/l/(pk+1, qr), as specified by Stokes’ theorem.

For a manifold N with boundary 0N, Stokes’ theorem holds only if the orientation of the

boundary N is chosen such that
[vout] [ON] = [N] (A.10)

where v,,; is the outward pointing normal on the boundary.

For the boundary component M (pg.is, qx) X M(Tk+g+1,pk+g), the outward pointing normal
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at for instance pg,, can be expressed as (see Figure A.1)

,UOU/taM(pk'+Z7qk) - _eipk+e + E aj6k+] .
k/'+j7éi1”—’k+e

Therefore, the specified orientation from Stokes’ theorem (denoted with a subscript *S’) is

M (Prses @) X M(Trrert, Pere)]s = Wout Mppsear)) M (Thterts i)

= (_eipk+£)(ek+£+1 C€rp1)

= (=) epipgg .. fi,:z Bl
= —[M(Prte, @) X M(Trses1, Do) (A.11)

having used (A.7) in the first line and (A.8) in the last line.

Similarly, for the boundary component M (74 ¢11, pri1) X M (Pk+1, qx ), the outward pointing

normal at for instance pgi; can be expressed as (see Figure A.1)
Vout M(ritot1:Pk+1) — eipkH + § : AjCh+tj -
k+j7éipk+1

This gives for the specified orientation from Stokes’ theorem

M (Pisest, Prs1) X M1, @) = Dout Mrpserpnin)) M (Thaerts r)]
= (€ip ) (Ehrer1 - - €hs1)

—

k+l+1—i
= (—1) Pk+1 Chaptl--- 6i?k+1 e Chi

= (D) M (rress prer) X M(pren,an)] (A12)

having used (A.7) in the first line and (A.9) in the last line.
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Finally, with (A.11)-(A.12) and matching up with the corresponding terms in (A.6), we have

c(dy)gr = Z o Z (/1/’) Tkt o1 Phre)
Th404+1 Dh+e M(prte,qx)
+ Z(_1>£n(pk+lv Qk> (/1&) ]Tk+g+1
Pk+1 M(rgte41:Pr+1)

= —c(¥)ar + (—1)e(¥))dqx

or equivalently, —c(d) = dc(vp) + (—1)Fe(1h)d.
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Appendix B

Proof of Long Exact Sequence

Between Cone, Kernel, and Cokernel

To show we have the isomorphism, we start with the short exact sequence
0 — (ker(c(w)), —9) % (Cone(c(w)), de) < (Cone(r),d,) — 0

where (Cone(t), d,) is the cone chain complex arising from the inclusion ¢ : Im (c¢(w)) — C*,

d
i.e t(c(w)b) = c(w)b, Cone(t) = C* @ c(w)C* 1 and d, = . The map F is given

0 —d
0 t t
by F(s) = while G = it is clear that F' is injective, GG is surjective, and
s b c(w)b
0
ker G = Im F'. It is also straightforward to check that do(F(s)) = = F(—0s) and
—0s
t Ot + c(w)b t
Gde = = 0,G Thus these are chain maps, and thus we get the
b —c(w)0b b

long sequence in cohomology. It remains to show that H*(Cone(s)) = H*(coker(c(w))). To
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t
do this, define the map H : Cone(t) — coker(c(w)) by H = {t} € coker(c(w)). Thus

b
t t
Hd, = {0t} = ofp{t} = O H ). Hence we have a chain map.
c(w)b c(w)b
t
We will show that [H] is injective. To do this, note that if |H = [{0}] €
c(w)b
H*(coker(c(w))), then this implies that {t} € [{0}], or {t} = dm{a} = {Oa}, which im-
t
plies t — da = c(w)r. Note also that being closed implies —c¢(w)db = 0 and
c(w)b

Ot + c(w)b = 0. Note that —c(w)b = dt = ¢(w)Ir combining these equations, we find

da + c(w)r t t
(w)r —c(w)or —(—c(w)ob) c(w)b
Thus is exact, so [H] is injective.
c(w)b
To show [H] is surjective, note that if [{a}] € H*(coker(c(w))), then da € {0}, i.e da = c(w)b.
a a 0
Thus c¢(w)db = 0, so if we consider , then it is clear that 0, =
—c(w)b —c(w)b 0
a a
Hence € H*(coker(c(w))), and [H] = [{a}], so [H] is surjective.
—c(w)b —c(w)b

Hence [H] is a bijection between H*(Cone(t)) and H*(cokerc(w)). Using [H] and the Zig-Zag

lemma, we thus have the following long exact seqeunce on cohomology

. H Y (ker(c(w))) s m* i)

(Cone(c(w)) 219,

S)[H]~"
e

H*(coker(c(w))) [ H*(ker(c(w))) ...

73



	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Filtered Cohomologies
	Morse Theory

	Symplectic Morse Chain Complex
	Preliminaries
	Morse Cone Complex: Cone(c())
	Preliminaries: Morse Complex and c()
	Chain Map Between Cone() and Cone(c())
	Isomorphism of Cohomologies via Five Lemma
	Example: Cone(c()) on T4


	Symplectic Morse Inequalities
	Improved Morse Inequalities
	Example

	Symplectic Witten Deformation
	Preliminaries
	Witten Deformation on the Cone Laplacian
	Harmonic Solutions of the Witten Deformed Cone Laplacian
	Bounding the Eigenvalues of the Witten Deformed Cone Lapacian Spectrum

	Showing that the Only L2 Harmonic Solutions Are Localized

	Bibliography
	Appendix Morse Stokes' Theorem
	Appendix Proof of Long Exact Sequence Between Cone, Kernel, and Cokernel



