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Abstract

Water occupies typically 50% of a protein crystal, and thus significantly contributes

to diffraction signals from crystallography experiments. Separating its contribution

from that of the protein is challenging mainly because almost water molecules are

mostly delocalized as a result of the probabilistic nature of solvation, and are thus are

difficult to assign to specific density peaks. The intricate protein-water interface com-

pounds this difficulty. Here, we compare the solvent structure obtained from diffrac-

tion data for which experimental phasing is available to that obtained from constrained

molecular dynamics (MD) simulations. The resulting spatial density maps show that

commonly used MD water models are only partially successful at capturing biomolecu-

lar solvation. In general, their radial distribution is captured with only slightly higher

accuracy than their angular distribution, and only a fraction of the water molecules

assigned with high reliability to the crystal structure are recovered. These differences

are likely due to shortcomings of both the water models and the protein force fields.

Despite this difficulty, we nevertheless attempt to infer protonation states of side chains
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utilizing MD-derived densities, and observe some cases for which assignment is possible

with reasonable confidence.

1 Introduction

Water is not only a medium for biological processes, but an active participant in them.

It mediates interactions between proteins and small-molecule inhibitors,1,2 and enables the

enzymatic transfer of a proton to a protein residue.3 One remarkable group of examples of

such a water-biomolecule relationship is caused by ice-binding proteins, which can alter the

ordering of water around them, with effects ranging from ice nucleation to antifreeze.4 A

reliable physico-chemical description of water in the vicinity of biomolecules is needed both to

properly solvate these complex objects and to comprehend their function. Yet despite marked

advances to our microscopic understanding of the properties of bulk water,5–7 including its

many phases8–10 and the origine of hydrophobicity,11 our grasp of biomolecular solvation

still markedly lags behind.12,13 The intricate interplay between the mosaic of hydrophobic

and hydrophilic surface residues, steric hindrance, and side-chain dynamics indeed requires a

careful balance of the various intermolecular interactions in order for a structurally accurate

description of solvation to emerge. Standard water models, which are rigid, non-polarizable,

and parameterized to reproduce a standard set of bulk properties, attempt to do just that7,14

(Figure 1), but it is unclear how they fare at solvating biomolecules. Reliable experimental

information about solvation to assess their predictions is not forthcoming, hence the question

largely remains unanswered.

A possible experimental headway into this problem comes from crystallography. Protein

unit cells contain a significant fraction of water (between 26% and 90% by volume with

an average of about 50%21,22), hence the solvent density fluctuations are captured by the

diffracting radiation – be it X-ray,23–25 neutron,26 or electron.27,28 The “phase problem”

actually makes the accurate reconstruction of water density profile an essential component
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Figure 1: Typical water models used in biomolecular simulations vary mostly in the number
of point charges they have. All include charges at the hydrogen positions and a Lennard-
Jones potential on the oxygen atom, but (a) three-site models contain an additional point
charge on the oxygen atom (e.g., SPC15 and SPC/E16), while (b) four-site models use a
virtual site (V) (e.g., TIP4P17 (with Ewald summation18) and TIP4P/200519), and (c) five-
site models split the charge between two virtual sites (e.g., TIP5P20). Although six-site
models also exist, they are not commonly used.

of most protein structure determinations.25 Because full structure factors – amplitude and

phase – are needed to determine atomic densities within a unit cell, but only amplitudes can

typically be measured directly, phases must be obtained by iteratively refining the unit cell

description and the phase estimates. Even when some of the phase values can be gleaned

from multiple intensity measurements or molecular replacement,29 iterative refinement is

still needed to determine the remaining ones. Obtaining the structure of the protein chain

therefore requires a careful treatment of water density fluctuations, which should is then

available for detailed structural analysis.

The resulting description of the unit cell structure, however, is far from perfect. The

extent of the mismatch, which is commonly quantified by R-factors,

R =

∑
k∈S
|Fexp(k)− Fmodel(k)|∑

k∈S
Fexp(k)

, (1)

where Fexp(k) and Fmodel(k) are the experimentally measured and model structure factor

3



amplitudes, respectively, from the set S of reflections k, where k = 2πn is a vector with

n ∈ Z3, ∗. is about 15% even for the highest-quality protein structures. Remarkably, this

is an order of magnitude larger than for small molecules.31 Although part of the difference

is attributable to experimental noise, the weaker agreement between model and experiment

is more generally ascribed to the limited sophistication of the structural model of the unit

cell,32 especially for the solvent.32,33 In this context, the solvating water is indeed crudely

decomposed between, on the one hand, localized crystal water molecules and, on the other,

delocalized bulk water regions, with nothing in between. A solvent model that could improve

water structure description would thus increase agreement between model and data, and

ultimately improve the quality of protein structures obtained crystallographically. Could

MD predictions help? Whether molecular dynamics (MD) or refined models of water better

capture the solvation of biomolecules remains unclear.

In this work, we compare the MD and refinement-derived hydration structure of a single

protein, a Yb+3-substituted mannose binding protein (PDB ID: 1YTT).32 Like by Burling et

al., we choose this system because its X-ray structure was determined from multi-wavelength

anomalous diffraction (MAD) and a complete set of experimental phases is available. This

rare occurrence enables us to extract an experimental solvent density profile unbiased by the

refinement process. The comparison relies on an ergodic-like hypothesis that the signal from

diffraction techniques is spatially averaged over the configurations of water in the various

unit cells, and thus can be recovered by averaging over water configurations obtained from

long MD trajectories of a single unit cell. In the following, we first describe the test protein

(Sec. 2.1), water models used in the study (Sec. ??), the MD simulation scheme (Sec. 2.3),

and the comparison scheme (Sec. 2.4,2.5), before detailing the results of our analysis in

Section 3.

∗If the set S contains all the measured structure factors, the resulting R-factor is Rwork. As a measure of
overfitting, crystallographers also calculate Rfree

30 by choosing S to be a small set of structure factors that
do not participate in any stage of structure determination, including refinement.
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2 Methods

This section presents the technical aspects of the experimental system and of the MD simu-

lation approach as well as the analysis scheme for the solvent density.

2.1 Protein and Setup

We study the Yb+3-substituted mannose binding protein (PDB ID: 1YTT) solved by MAD

phasing up to a resolution of 1.8Å32 from a crystal with space group symmetry P212121.
34

The unit cell containing four protein dimers related by symmetry operations, thus amounting

to eight copies of the protein (SI). The model deposited in the Protein Data Bank (PDB)

nearly two decades ago had Rwork = 0.206 and Rfree = 0.185,35 but methodological advances

achieved since enable Phenix36 (version phenix-dev-2405) to make substantial improvements

to the structural refinement and update the assigned crystal waters. The biochemical rea-

sonableness of the resulting structure was nevertheless verified by MolProbity.37 No crystals

waters were found to clash with protein atoms and all were at a reasonable hydrogen bonding

distance from other crystal waters. Careful examination of the local difference density maps,

however, led us to remove six water molecules because they resulted in an excess electron

density compared to the experimental data. Keeping the remaining 254 crystal waters per

protein in place, an additional iteration of structural refinement gave Rwork = 0.1537 and

Rfree = 0.1804.

In order to assess the robustness of these R-factors, estimates of the measurement errors

were propagated to Rwork. Because errors for the measured intensities were not reported,

a typical experimental error, ∆Fexp/Fexp ≈ 5%,33 was used as estimate. Errors for the

measured phases, ∆ϕ, were obtained from the figure of merit, m, of each wavevector,

∆ϕ = cos−1(m). (2)

Assuming a Gaussian noise with standard deviation ∆ϕ/2 and Fexp(k)× 0.05, we generated
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N = 10, 000 perturbations, computing Rwork for each. The resulting distribution of structure

factors gives an estimate of Rwork = 0.1614(3), within the 95% confidence interval (Fig. 2).

This analysis suggests that although the final refined model is slightly overfitted, it remains

structurally quite reasonable.

From the set of optimal structure factors obtained from the refinement process, the

electron density at each point r within the unit cell can formally be computed as,

ρ(r) =
1

v

∑
k

F (k) ei[ϕ(k)−k·r], (3)

where v is the volume of the unit cell. However, because F (0) cannot be extracted ex-

perimentally – it is coincident with the transmitted beam – the density profile can only be

determined up to an unknown constant, ρ̄. It is here determined using the approach adopted

by Lang et al.38 (See Supporting Information).

Figure 2: Probability distribution of Rwork for structure factors perturbed by the estimated
experimental errors as described in the text. From this analysis we get Rwork = 0.1614(3),
which is slightly higher than the refined value. Because a small perturbations in the structure
factors consistently lead to larger Rwork values suggests that the data is overfitted slightly.
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2.2 Water Models

The water models considered in molecular simulations are: (i) SPC,15 (ii) SPC/E,16 (iii)

TIP3P,17 (iv) TIP4P17 with Ewald summation,18 (v) TIP4P/2005,19 and (vi) TIP5P20 (see

Fig. 1). The first five have three planar charges (TIP4P and TIP4P/2005 have a negative

charge off the oxygen atom), while the sixth has four tetrahedrally-distributed charges. All

overestimate the gas phase dipole moment of water, in order to treat some of the many-body

contributions in condensed phases in an effective way.7 SPC and SPC/E, by contrast to

TIP3P, have an O-H bond length and a H-O-H bond angle differing from the gas phase

water geometry for a similar reason. The charge distribution in SPC/E also effectively takes

into account the polarization correction to the energy.16 Note that the difference between

TIP4P and TIP4P/2005 is that their parameters were optimized to match different sets of

thermodynamic properties.

A number of differences between these models have been observed in bulk water. For

instance, TIP4P is better than SPC and TIP3P at reproducing the structure of the gas

phase dimer as well as the water density, enthalpy of vaporization, and peak structure of the

oxygen-oxygen radial distribution function.17 TIP5P reproduces the oxygen-oxygen radial

distribution function even better than TIP4P,39 while TIP4P/2005 reproduces better the

phase diagram of water than any other models of this type.19 Although Vega et al.,7 judged

TIP4P/2005 to be generally superior their analysis mainly highlight that all of such models

result from compromises. Whether similar distinctions exist for the structure of water near

the protein surface, however, has yet to be tested.

2.3 Molecular Dynamics Simulations

The numerical solvent density profile was extracted from molecular dynamics (MD) simu-

lations. Systems are initialized by first placing copies of the crystal structure (obtained in

Sec. 2.1) of the protein following the crystal symmetry, within a simulation box that has

the same dimensions as the crystal unit cell (SI). Preserving the protein within its unit cell
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rather than solvating it within a larger simulation box more closely captures the confinement

conditions within the crystal as well as the impact of protein-protein interfaces. This choice,

however, also introduces computational difficulties. In particular, sampling configurations

near protein-protein interfaces can be sluggish, and selecting the water density in confine-

ment is nontrivial. Errors in the latter may result in a water activity quite different from

that of a crystal grown in an experimental cocktail. In order to minimize the impact of both

of these problems on the water density profile we run four simulations, each containing a

different three-protein dimer copy subset of the unit cell. The absence of a protein copy

both accelerates sampling and endogenously introduces a reservoir of solvent that brings its

activity near the bulk value †. Note that because only seven protein surface atoms (out of

1769) per chain lie at the interface of four protein dimers, the impact of this removal on the

analysis of the solvent structure is negligible. Water molecules are then inserted by tiling the

whole unit cell with a disordered template configuration of 216 water molecules; molecules

that clash with the protein chain–as determined by the sum of their van der Waals radii–are

removed. This results in a water density within the bulk region of the simulation box that

deviates at most by 1% from its standard value 1.00 g/mL at a temperature of 298K.

In order to neutralize the net protein charge, 0.05 M of sodium and chloride ions are

subsequently added by replacing some of the solvent molecules with ions. Higo et al. have

found that the ionic strength does not noticeably affect the structure of water within the

unit cell,40 which we also verified by running test simulations with 0.05M, 0.1 M, 0.5 M and

1.0 M NaCl. The lowest salt concentration was thus used for the rest of the analysis.

The protonation states of side chains were at first automatically assigned by Gromacs,

based on the hydrogen-bonding network analysis of the software package.41 In order to assess

the impact of protonation on the surrounding water structure, we also generated variants

with opposite protonation states for histidines, glutamates, lysines, and aspartates.

The protein chain was modeled using the Amber99sb biomolecular force field.42 Param-

†This is an approximation in that it assumes that only water and small ions are present in the crystal-
lization cocktail. Typically, other additives are included to enable crystallization.
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eters for Yb3+ ions, which are not defined in this force field, were constructed from the

Lennard-Jones parameters for sodium ions, which has a similar ionic radius, but a charge of

+3. Although this crude treatment cannot fully capture the rich coordination chemistry of

a transition metal ion, only a small subset of nearby surface atoms are affected.

Gromacs43 (version 5.1.2) was used to run the MD simulations with various restraints

imposed. To minimize possible deviations from the experimentally-refined protein model,

carbon and nitrogen atoms on the protein backbone as well as the Yb+3 ions were kept

immobile. In order to facilitate the sampling of water configurations near the protein surface,

heavy atoms (all protein atoms but hydrogens) in the side chains as well as backbone oxygen

atoms were also harmonically restrained with a force constant of 1000 kJ nm−2 mol−1, which

is the weakest restraint that prevented side chains from changing conformation over the

course of the simulations. Hydrogen atoms, water molecules and ions were allowed to move

freely.

The simulations were thermostatted at 298 K, which is the temperature at which the

various water models used were parameterized.15–17,19,20 Although the crystallization tem-

perature for this protein was not specifically reported, it likely is around room temperature,

because most structures deposited in the PDB are crystallized at room temperature.35 The

lack of experimental details indeed suggests that an atypical experimental procedure was

unlikely. Conveniently, this temperature further allows an efficient sampling of solvent con-

figurations (SI).

We optimize the sampling quality and computational time by first equilibrating the sys-

tems for 30 ns, and then saving configurational snapshots every 3 ns. This provides 40

fairly well decorrelated solvent configurations. As a consistency check, we compare the wa-

ter distribution surrounding a given protein atom with that of its symmetric counterparts

by computing the real-space correlation coefficients around these atoms (detailed in section

2.5). This indicates that at most 6% of the surface atoms have a sampling error larger than

10%.

9



Because the experimental diffraction data with which we compare the simulation results

were obtained at 110 K–after flash freezing in liquid nitrogen–the water within the protein

crystal is expected to be glassy.8 The strong confinement experienced by water in the crystal

is expected to leave it in a low-density amorphous (LDA) ice44 with a structure that is

similar to the liquid water from which it came. It has indeed been established by neutron

diffraction10 that although the bulk structure of LDA ice more closely resembles that of

crystalline water, its local spatial distribution around a given water molecule is closely related

to that of the liquid phase. In this work, we thus assume that at distances comparable to the

size of the cavities in the protein unit cell, the quenched structure water is closely reproduced

by simulations at higher (liquid) temperatures, where sampling is ergodic.

2.4 Analyzing the Solvent Density

Electron density maps are extracted from the MD snapshots and the model unit cell using the

Computational Crystallography Toolbox (CCTBX) library,45 upon which Phenix is based.

This algorithm uses a three-dimensional grid that spans the unit cell, with a grid spacing

that is roughly one fourth of the maximum resolution of the dataset (SI). The contribution

of water to the overall electron density ρoxygen(r) is then estimated by centering an isotropic

Gaussian with a standard deviation determined by the given atomic B-factor, B, on the

oxygen atom of each water molecule (SI).

In order to reconstruct the solvent density from combining simulation boxes that contain

only parts of the unit cell (see Sec. 2.3), we use the water density at protein-protein interfaces

from the simulation box that contains the relevant protein dimer copies. In other words,

we select the protein copy that contains the given atom, and two neighboring protein dimer

copies that are the closest to the atom. The densities are then joined by first partitioning

the unit cell such that each grid point is assigned to the closest protein atom, and by then

copying the density within the relevant partition of each atom. This partitioning uses protein

atom positions averaged over the course of the MD simulation, as is also the case for the
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analyses described in Sect. 2.5.

2.5 Water Structure Analysis

We compare the spatial distribution of water around protein atoms in both experimental

and simulated systems, using the unit cell partitioning scheme described above and the

refined protein atom positions as reference. Because the protein backbone is frozen, the

protein structure throughout the MD simulation only differs from the refined structure in

its side-chain configurations.

The radial distribution functions (RDF), which capture the average solvent density profile

as a function of distance from a protein heavy atom, offers the lowest-order correction to the

bulk solvent description near an interface.46 For a subset of atoms A and the grid described

above, it is computed as follows. For an atom i ∈ A, let χi be the set of grid points assigned

to that atom, and define X = ∪i∈Aχi the set of grid points assigned to atoms in A. Then,

gA(r) =
1

ρsolvent

∑
i∈A

∑
p∈χ′

i

ρ(p) Θ(ρ(p))∑
i∈A

∑
p∈χ′

i

Θ(ρ(p))
, (4)

where p is a grid point, ρ(p) is the electron density at grid point p, χ′i is a subset of χi that

contains grid points that are r ± ∆r away from atom i, and ρsolvent is the average electron

density in the solvent region. The chosen shell thickness, ∆r = 0.3Å, is only slightly smaller

than the grid spacing derived from the maximal resolution of the protein data, dmin = 1.8Å,

which ensures that a statistically sufficiently number of grid points is captured within each

shell, without overly coarsening the data. The normalization, ρsolvent, is the average density

computed over the solvent region in the unit cell.

RDFs are obtained both for separate sets of surface N, O, and C atoms and for individual

surface atoms, in both cases considering only surface atoms that are well localized, i.e., with

|χi| ≥ 500 and Bi ≤ 24Å
2
. We discard surface atoms that are within 6Å of ytterbium ions
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due to the strong Fourier ripples that surround these atoms (SI). For the sets of surface

N, O, and C atoms, an average radial correlation coefficient of the RDFs are computed for

2.4Å < r < 6Å away from the protein atoms. This particular range is chosen because for r <

2.4Å it is not possible to deconvolute protein from solvent contributions to the experimental

electron density, while for r > 6Å statistical noise and diffraction artifacts dominate as . 2%

of the grid points fall beyond that distance. The correspondence between the RDFs from

experimental and MD-generated densities is assessed by the Pearson correlation coefficient.47

For individual surface atoms, we construct the set of RDFs, {(gi,MD(r), gi,exp(r))} for all

i ∈ A, and all radial bins. The Pearson correlation coefficient of this set of ordered pairs is

also computed. In order to compare the radial position of a given peak in the RDFs, its 95%

confidence intervals is estimated by drawing 1000 perturbed RDFs according to the error

margin in each radial bin.

Because RDFs lose information about the (relative) orientation of water molecules with

respect to the protein and each other, we also consider the angular distribution function

(ADF), which depends on the hydrogen bond network in each configuration, and thus encodes

three-body and higher-order correlations. Only grid points within the first solvation shell,

i.e., between 2.4Å to 4.8Å, are considered. Axis orientations follow the PDB conventions,

placing the heavy atom at the origin, and then determining the orientation of each grid point

around this atom in spherical coordinates, (θ, φ),

γi(φ, θ) =

∑
p∈χi(Iφ,Iθ)

ρ(p) Θ(δ(p)− r1)Θ(r2 − δ(p))∑
p∈χi(Iφ,Iθ)

Θ(δ(p)− r1)Θ(r2 − δ(p))
, (5)

where δ(p) gives the distance from the grid point to the heavy atom, χi(Iφ, Iθ) is the set

of grid points assigned to i and are oriented such that φ ∈ [φ − ∆φ/2, φ + ∆φ/2] and

θ ∈ [θ −∆θ/2, θ + ∆θ/2]. We set ∆φ = ∆θ = π/30, which corresponds to an arc-length of

0.25Å at 2.4Å, and 0.5Å at 4.8Å, and is thus comparable in size to the radial binning used
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for the RDF. The comparison between the angular distribution functions in experiments and

simulations is also done using the Pearson correlation coefficient of Γexp(i, φ, θ) = γi,exp(φ, θ)

and ΓMD(i, φ, θ) = γi,MD(φ, θ), considering only cases in which both values are greater than

zero.

The real-space distribution of the water density combines information about both the

radial and angular components. It thus provides an overall comparison of solvation. Using

the three-dimensional grid on which the electron density is calculated, we consider correla-

tions between each grid point within 2.4 < r < 6Å of a surface atom. Because grid points

are roughly 0.4Å apart, the resulting coarsening is similar to that of the RDF and the ADF.

The Pearson correlation coefficient for ρMD(p) and ρexp(p) computed for a set of grid points

X can thus be meaningfully compared to that of the latter two. The discrepancy between

the real-space simulation and experimental maps is further measured separately for the first

solvation shell and for protein-protein contacts. The latter are defined as the grid points at

least 2.4Å and at most 3.0Å away from a pair of N or O atoms situated on different protein

dimer copies.

In order to eliminate the role of the water density peak breadths and shapes from the

structural analysis, water density peak locations are directly compared, selecting only peaks

that appear above a threshold density, ρth. We additionally deconstruct the solvent density

by focusing exclusively on crystal waters, which by definition are associated with a local

electron density well above experimental noise. This comparison also deconvolutes the role

of peak shape from that of peak location in assessing the density profile. Following Higo et

al.,40 we define a prediction Apred and a recall Arec score as a function of a threshold electron

density. The former yields the fraction of crystal waters that are within a distance smaller

than the water radius, i.e., ∼1.4Å, of an MD peak above a threshold density, ρth, while the

latter gives the fraction of MD peaks above ρth that are within ∼1.4Å, of a crystal water,
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Apred(ρth) =

∑
p∈PMD

Θ(ρ(p)− ρth)(1−
∏

w∈PCW

(1− w(|rw − rp|))∑
p∈PMD

Θ(ρ(p)− ρth)
,

Arec(ρth) =

∑
w∈PCW

(1−
∏

w∈PCW

(1− w(|rw − rp|))θ(ρ(p)− ρth))

|PCW|
,

(6)

where PMD is the set of MD peaks, PCW is the set of crystal waters, ρ(p) is the density that

corresponds to peak p, with w(r) ≡ Θ(1.4− r) the overlap function defined in terms of the

Heaviside Θ function, |rcw− rp| is the distance between the MD peak and the crystal water,

and |PCW| is the total number of crystal waters in the refined protein structure. Note that

to assess the structural significant of the measured signal, we further compute these scores

with a random distribution of crystal waters with the same number density in the solvent

region. The results give Apred = 0.1, and Arec steadily decays from 0.2 with increasing ρth,

which are both well below the level of the measured signal.

Finally, we compare the experimental densities with MD densities in reciprocal space by

generating a model of the protein unit cell that combines the simulated density with the

protein model. Comparing the resulting Rwork of this model with that of the original protein

model determines whether or not the simulated densities improve the agreement with the

experimental data. This analysis can also be performed by partitioning the set of reflections

into different resolution bins and calculating Rwork for each. Because higher resolution bins

correspond to more structured parts of the unit cell, such as the protein atoms and ordered

water molecules around the protein surface, while lower resolution bins correspond to regions

with flatter electron density, such as the bulk solvent,21 this analysis provides some insight

into the regions of MD-generated solvent density that better agree with experimental data.
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2.6 Inferring Protonation States

The solvent distribution reflects the physical conditions of its environment. Given sufficiently

accurate solvation information, it should thus be possible to determine the protonation state

of some of the residues. To test this hypothesis, different MD simulations were run for

alternative side-chain protonation states, and the resulting water density was compared with

the experimental density. The default Gromacs protonation states for a subset of histidines,

glutamates, aspartates, and lysines residues were inverted in different simulations. The

default and inverted protonation states for the residue types we study are summarized in

Table 1. For glutamates, aspartates, and lysines, the residues to be (de)protonated were

chosen, such that: (i) they have one side chain oxygen or nitrogen on the surface; (ii)

they are at least 6Å away from another residue chosen for protonation analysis in the same

simulation to avoid interference between the solvent distribution of one residue with the

other residue; and (iii) do not neighbor a ytterbium ionbecause the water density around

ytterbium ions is affected by the approximations to its force field. We further verify that

the water density in the vicinity of these examples is well sampled by making sure that all

the surrounding water molecules decorrelate in at most ∼ 1 ns, and that observations are

consistent for all four protein dimer copies. Note that the whole set of these simulations was

run with the TIP4P water model.

3 Results and Discussion

In this section, the experimental and MD solvent information are used to assess the quality

of the MD descriptions first by comparing density profiles, and second by using standard

crystallography measures. The potential to infer the protonation state of residues from MD

solvent density is also examined.
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Table 1: Default vs. inverted protonation states.

Residue Default Inverted

Histidine

Nδ1 protonated
or

Nε2 protonated
charge: +1

Nε2 protonated
or

Nδ1 protonated
charge: +1

Lysine
Nζ has 3 protons

charge: +1
Nζ has 2 protons

charge: 0

Aspartate
both Oδ1 and Oδ2

deprotonated
charge: -1

either Oδ1 or Oδ2

has 1 proton
charge: 0

Glutamate
both Oε1 and Oε2

deprotonated
charge: -1

either Oε1 or Oε2

has 1 proton
charge: 0

3.1 Real-Space Comparison of Water Densities

The RDF, which is a quintessential component of liquid state theory,46 has been utilized

as main observable by most prior studies of macromolecular solvation.32,48–50 Some of these

have even attempted to reconstruct protein hydration from RDFs alone.48–50 It is therefore

a natural starting point for our evaluation.

Comparing the RDF for different atom types and water models reveals that the various

descriptions qualitatively agree with one another (Fig. 3). In particular, a clear first sol-

vation shell is denoted, and hints of second shell can be gleaned, although the number of

available grid points beyond 6Å is too small to obtain a reliable profile of that shell. Because

of experimental noise and artifacts, such as Fourier ripples (SI), it is difficult to determine

whether the first peak position of the various simulation models match that of the exper-

imental RDF. The first peak position of all water models, however, agree with each other

within the error margin, with the exception of TIP5P for surface oxygens, for which the peak

is pushed further out. For nitrogens and oxygens, the peak amplitude is significantly higher

in simulations than in experiment. One might be tempted to ascribe the sensitivity of this

feature to the choice of B-factor for water. Some water molecules are indeed less localized

than others, especially near fairly mobile surface protein atoms. Hence, no single B can
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reliably describe all water molecules. The difference in mismatch between the peak height

of various heavy atom types, however, does not support this hypothesis. Neither nitrogens

(B = 20.2Å
2
) nor oxygens (B = 18.7Å

2
) have significantly higher average B-factors than

carbons (B = 19.3Å
2
). The peak intensity might thus simply be weakened by experimental

noise and artifacts.

The overall shape of the RDF should nevertheless be insensitive to these effects. The

Pearson correlation coefficients between the averaged RDFs of surface N, O, C atoms reveal

that the water density in the vicinity of surface oxygens and carbons is more accurately

reproduced than around nitrogens (dashed lines in Fig. 4a). However, when one considers

the radial correlation coefficients for RDFs of individual atoms (solid lines in Fig. 4a), the

distributions around oxygens are significantly worse. The radial distribution of water around

individual oxygen atoms thus depends more sensitively on the chemical environment than

around individual nitrogens and carbons. We also conclude that the distribution of water

around each atom is far from universal. Efforts to reconstruct water density using averaged

radial distribution functions – as was previously attempted48,50 – are therefore inherently

flawed. Interestingly, all water models perform identically within the estimated error, for

both average and regular radial correlation coefficients. We get back to this point below.

Radial correlation coefficients are generally slightly higher than angular correlation co-

efficients. This effect is consistent with the latter being a higher-order structural feature.

One might nonetheless expect that a model parameterized to more accurately reproduce the

subtle orientational order of the various bulk water crystal phases,19 such as TIP4P/2005, or

a model like TIP5P which explicitly treats tetrahedral point charges, to improve the angular

description. Neither TIP5P nor TIP4P/2005, however, perform significantly better than

other water models, including the original parameterization of TIP4P.

Angular correlation coefficients are also generally larger for nitrogens and oxygens than

for carbons. This observation is particularly interesting. The orientation of water molecules

around surface nitrogens and oxygens indeed mostly results from direct hydrogen bond-
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ing, while that of water molecules around carbons are affected by their interplay with the

broader hydrogen-bond network and are thus less constrained. The resulting hydrophobicity

is structurally more subtle to capture, which likely explains why water models do a relatively

poorer job at capturing this effect (Fig. 4b). Water models that account more accurately

for many-body correlations in water, such as E3B51 and E3B2,52 might improve the orien-

tational description in these systems, but direct tests of this hypothesis are not immediately

possible as these models have not yet been parameterized for macromolecular solvation.

By getting rid of most of the spatial coarsening the real-space distribution includes struc-

tural correlations of all orders. It thus generally gives rise to significantly lower correlations

than either the radial or the angular correlation coefficients (Fig. 4). While water models

capture the radial distribution of water around carbons equally well as around nitrogens,

they rank last in spatial correlation coefficients. This is consistent with their poor perfor-

mance describing angular correlation coefficients. Similarly, models reproduce the angular

distribution around oxygens as well as around nitrogens, but are worse for their real-space

correlation coefficients.

To gain further insight into the aspects of water models that increase their propensity to

capture water structure around biomolecules, we compare the spatial distribution of water

in different regions of space. We first calculate real-space correlations separately for contact

and first-layer waters. Correlations for the first shell are consistent with the overall real-

space correlations for surface N, O, and C. Beyond the first layer errors get amplified by

structural imprecisions in the first layer, a situation that is worsened by the decreasing

number of grid points in that region. Protein-protein contacts, by contrast, show a fairly

good structural agreement. This likely results from the surface atoms in these regions being

much less mobile than the other surface atoms, and from steric constraints there playing a

larger role in dictating the solvent structure in this regime. The position and orientation of

water molecules in protein contacts are then less sensitive to water model parametrization

and protein force fields, although even there agreement is not perfect.
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We next consider the recall and prediction scores (Eq. 6) of the MD peak locations with

the assigned crystal waters. At low threshold densities many MD peaks are identified and

a high fraction of crystal waters are recovered, although only a few of these MD peaks are

near crystal waters. As the threshold density increases, the number of MD peaks decreases,

but a greater fraction of the remaining ones overlap with crystal waters. This encouragingly

suggests that the strongest predictions (and interactions) of the MD model correlate with

crystal waters with reasonably high accuracy (70%). The recall scores, however, fall steadily

with increasing threshold density, and thus many crystal waters are not predicted by MD

simulations. For all water models, the highest Apred and Arec is ∼ 0.7. From this analysis, we

conclude that there is a small yet significant contribution to the error in the water structure

that arises from the peak location. The discrepancy between MD and experiments is thus

not purely due to imprecisions in the MD description of the shape and width of the density

peaks, but also in their location.

3.2 Reciprocal Space

The agreement between MD and experiments is assessed in reciprocal space by first com-

bining MD densities with the refined PDB coordinates of the protein without the crystal

waters. If MD simulations reproduce water densities reasonably well, the resulting Rwork

would be less than that of the refined PDB model. Yet for the best water model we obtain

Rwork = 0.203(5) (SPC), which is significantly higher than Rwork = 0.155(2) obtained for the

refined protein model (Fig. 6). The difference in Rwork is also greater at higher resolution,

suggesting that highly ordered solvent regions are not captured adequately. If we instead

substitute a flat electron density for the solvent region, Rwork = 0.212(5), which is about 1%

higher than the result for the best water model. Note that this increase is orders of mag-

nitude larger than the estimated error in Rwork, 4 × 10−4. Hence, although the MD model

contains some information about the water density within the unit cell, a significant share

of its contribution is still lacking.
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To check whether MD simulations capture solvent structure that is complementary to

crystal waters assigned from the experimental data, we combine MD densities with the

refined PDB coordinates including crystal waters. (The MD electron density where crystal

waters are found is thus removed.) This strategy reduces Rwork for the best water model to

Rwork = 0.158, while the others have Rwork = 0.159. This is clearly better than the previous

scheme yet still appreciably higher than the refined model Rwork = 0.1537. The gap between

Rwork values at lower resolutions is nonetheless then closed.

It is important to note that the value of Rwork at high resolution is affected not only by

the water density around each protein atom, but also by the fact that the average protein

atom positions in the MD simulation is slightly different from the refined protein structure.

Although refined protein structure coordinates are used for this analysis, the water density

is affected by the slightly perturbed protein atom locations throughout the MD simulations,

resulting in possible overlaps between the solvent density and refined protein atom positions,

which contributes to the discrepancy at high resolution.

Retaining crystal waters in the refined protein structure results in substantially lower

Rwork in high resolution bins compared to using only the MD-generated density. As resolution

decreases, Rwork becomes substantially worse than that of the original protein model, which

once again confirms that the original protein model describes the electron density in the unit

cell more accurately than the model with the MD solvent density.

3.3 Inferring Protonation States

A complication hindering the improvement of the solvent description in the analysis of X-

ray diffraction experiments is that hydrogen atoms, which are surrounded by relatively small

electron clouds, cannot be distinguished unless one achieves a remarkably high diffraction

resolution, i.e., 0.7-1.0Å. Although the position of many of the hydrogens can be inferred

based on an elementary description of bonding (partly explaining the success of structure

validation tools, such as MolProbity37), side chain protonation states can remain some-
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what ambiguous. This problem is especially important for side chains that contribute to

an enzymatic pathway3 or to protein-protein interactions, such as salt-bridges.53–55 Predic-

tion servers have thus been developed to infer pKa values and titration curves of individual

side chains, based on the electrostatic properties of neighboring residues.56,57 Other software

packages rely on less involved algorithms to assign protonation states. For instance, MolPro-

bity picks the most suitable protonation state and hydrogen atom position that minimizes

clashes, while Gromacs43 analyses the hydrogen bonding network.41 Yet because the pres-

ence or absence of protons affects the solvent distribution around these sites, probing the

solvent distribution around such residues should allow one to determine their protonation

state more systematically.

The preceding analysis suggests that reconstructing the solvent density, and hence pre-

dicting every density peak, is not possible using existing water models. We are nevertheless

encouraged by the fact that MD simulations reproduce a significant fraction of the strong

peaks associated with crystal waters. It may thus be possible to infer protonation states by

comparing the overlap between MD peaks and crystal water, if changing the protonation

state of a residue gives rise to or eliminates strong peaks in the MD solvent density.

In most cases considered here, either residues have insufficient solvent exposure to conduct

the analysis, either no significant difference in solvation is observed, or both sets of density

patterns are similarly incompatible with the refined structure. However, a few successful

examples could be found. In the following cases, inverting the protonation state of a residue

significantly affects the water distribution around the residues.

For LYS 145 on chain B, where removing one of the three protons from the default +1

charged lysine results in a slightly better overlap with two crystal waters, labeled 1 and 3

in Figure 7a. There is, however, a third crystal water labeled 2 within hydrogen bonding

distance to the nitrogen atom that is unexplained by either protonation state. (The blue

blob is behind the water and does not overlap it.) Although this lysine residue is relatively

well localized and its average position does not deviate from that in the refined structure,
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MD models completely miss crystal water 2. In addition, both protonation states result in

an MD peak with the same orientation as the crystal waters, because removing a proton

does not drastically change the geometry of the remaining two hydrogens. The MD peaks

in the deprotonated case are, however, pushed farther away from the protein, likely due to

the altered charge distribution in the residue. We conclude that a neutral lysine with two

protons at this position leads to a water density that is more consistent with the experimental

density.

ASP 200 on chain A is slightly more complicated. The MD peak resulting from the

protonated case agrees better with crystal water 1, compared to the peak resulting from the

simulation in which the residue is not protonated (Fig. 7b). However, two crystal waters

(2 and 3) are overlapped by blue blobs byt no red blobs. It is therefore more likely that

this residue is unprotonated, but it is unclear why the protonated case explains the peak on

crystal water 1 better.

Similarly for GLU 130 on chain B and GLU 218 in chain A, the unprotonated case gives

better agreement between MD peaks and crystal waters. Protonating the former results in

a loss of an MD peak that overlaps the crystal water (Fig. 7c). Similarly, protonating GLU

218 in chain A results in the loss of an MD peak that overlaps crystal water 1, but retains

those on crystal waters 2 and 3 (Fig. 7d). This is likely because crystal water 3 is still in

hydrogen bonding distance to the residue, and crystal water 2 is hydrogen bonding distance

to crystal water 3. It is however unclear why the peak on crystal water 1 disappears, as the

protonated oxygen could still form a hydrogen bond to a water at that location.

While these results are encouraging, their robustness with respect to protein atom po-

sitions remains untested. In addition, the success of these inferences ultimately depend on

our ability to reliably reconstruct the water density around proteins. Using this method to

detect protonation states thus ultimately depend on being well above the noise inherent to

our structural analysis.
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4 Conclusions

Using a protein with a high-quality dataset from X-ray crystallography, we have attempted

to extract complementary information about water structure in protein crystals from diffrac-

tion data and MD simulations. Comparison of experimental and MD densities in real space

revealed that although water models are relatively good at capturing the radial distribution

of water near the protein surface, they struggle to predict angular distributions and are

somewhat deficient at reconstructing the overall water density. The relatively poor distri-

bution of water around carbons atoms, in particular, suggests that the hydrophobic effect is

inadequately captured by these models. Remarkably, all water models we considered were

found to behave rather similarly at the structural level. The result of the comparison in

reciprocal space suggests that despite the limitations, water models do capture structural

information that is complementary to direct refinement of the X-ray data.

Although MD water models are insufficient for reconstructing biomolecular hydration

with a precision sufficient to conduct structural refinement, they nonetheless capture a frac-

tion of crystal waters. In optimal hydration circumstances, these models may thus suggest

the assignment of a protonation states to some side chains. The robustness of these predic-

tions with respect to the choice of variety of parameters, including the protein force field

and the protonation state of the nearby residues, is untested. Pavel: please add a sen-

tence about how this work might serve as a source of inspiration for improving

refinement in the future.

Our results suggest that it may be necessary to add more features to the common water

models in order to reconstruct accurately the water structure around biomolecules. A re-

parametrization of the existing models taking into account properties pertaining to protein-

water interactions might improve the description of these interactions. Whether or not a

re-parametrization can capture both bulk and interfacial water properties, however, relies

on whether both these behaviors can be captured with a single, fixed dipole moment.58

Considering more complex models that include polarizibility7 or include three-body interac-
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tions,59 might thus provide a more robust starting point. To model a process that depends

sensitively on the position of water molecules, it might thus be preferable to consider even

higher-accuracy models of water that include ab initio descriptions. The use of such models

might be sufficient to improve more directly the structural refinement process in the future.
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Figure 3: Averaged RDFs for surface (a) N, (b) O, and (c) C atoms, for different water
models. Results obtained from different water models agree well with each other, as well as
with the experimental RDFs.
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Figure 4: (a) Radial (solid) and averaged radial (dashed), (b) angular, and (c) spatial corre-
lation coefficients for surface N (blue), O (red) and C (yellow) atoms. Real-space correlation
coefficients for the first layer (green) and contact waters (black) are also given in (c). Error
bars denote 95% confidence interval.
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Figure 5: Prediction (solid) and recall scores (dashed), as defined in Eq. 6. At low threshold
densities, too many MD peaks are identified, resulting in a high recall score but a low
prediction score. As the threshold increases, MD peaks with stronger signals persist, which
at high densities predict roughly 70% of the crystal waters. However, the recall scores fall
as the density increases, suggesting that there is still a significant fraction of crystal waters
that do not overlap with an MD peak.
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Figure 6: Rwork in different resolution bins for the original model (EXP, black), and for
models constructed by combining MD densities with the protein model. The overall Rwork

values are as given in the legend. Dashed lines show Rwork when the crystal waters in the
refined protein model are retained while combining it with the MD density.
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Figure 7: Comparison of water density distribution for simulations that contain different
protonation states for (a) LYS 145 in chain A, (b) ASP 200 in chain A, (c) GLU 130 in
chain B, and (d) GLU 218 in chain A. The water density from the default protonation state
simulations are shown in blue wireframe, and the alternate protonation state simulations

are shown in red wireframe. For all snapshots the isosurfaces are contoured at 0.88 e−/Å
3
.

Crystal waters from the refined protein structure are shown with red spheres.
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