# Lawrence Berkeley National Laboratory

**Environ Genomics & Systems Bio** 

# Title

Patterns and drivers of fungal community depth stratification in Sphagnum peat

**Permalink** https://escholarship.org/uc/item/3887b9pj

**Journal** FEMS Microbiology Ecology, 93(7)

**ISSN** 0168-6496

# **Authors**

Lamit, Louis J Romanowicz, Karl J Potvin, Lynette R <u>et al.</u>

**Publication Date** 

2017-07-01

# DOI

10.1093/femsec/fix082

Peer reviewed

| 1  | Patterns and drivers of fungal community depth stratification in Sphagnum peat                                                                                            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                                                                           |
| 3  | L. J. Lamit <sup>1</sup> , K. J. Romanowicz <sup>2</sup> , L. R. Potvin <sup>3</sup> , A. R. Rivers <sup>4</sup> , K. Singh <sup>4</sup> , J. T. Lennon <sup>5</sup> , S. |
| 4  | Tringe <sup>4</sup> , E. S. Kane <sup>1,3</sup> , E. A. Lilleskov <sup>1,3</sup>                                                                                          |
| 5  |                                                                                                                                                                           |
| 6  | <sup>1</sup> School of Forest Resources and Environmental Science. Michigan Technological University,                                                                     |
| 7  | Houghton, MI 49931, USA                                                                                                                                                   |
| 8  | <sup>2</sup> School of Natural Resources & Environment, University of Michigan, Ann Arbor, MI 48109,                                                                      |
| 9  | USA                                                                                                                                                                       |
| 10 | <sup>3</sup> USDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, Houghton, MI                                                                   |
| 11 | 49931, USA                                                                                                                                                                |
| 12 | <sup>4</sup> Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA                                                                                   |
| 13 | <sup>5</sup> Department of Biology, Indiana University, Bloomington, IN 47405, USA                                                                                        |
| 14 |                                                                                                                                                                           |
| 15 | Keywords: Ericaceae, ericoid mycorrhiza, peat, soil depth, sedge, water table                                                                                             |
| 16 |                                                                                                                                                                           |
| 17 | Corresponding Author: L.J. Lamit. School of Forest Resources and Environmental Science,                                                                                   |
| 18 | Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931. Fax = (906)                                                                                     |
| 19 | 482-6303. ljlamit@mtu.edu.                                                                                                                                                |
| 20 |                                                                                                                                                                           |
| 21 | Running title: Controls on fungal community structure in peatlands                                                                                                        |

### 23 Abstract

| 24 | Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought  |
|----|--------------------------------------------------------------------------------------------------|
| 25 | and intentional draining. We used amplicon sequencing and quantitative PCR to 1) examine how     |
| 26 | fungi are influenced by depth in the peat profile, water table (WT) and plant functional group   |
| 27 | (PFG) at the onset of a multi-year mesocosm experiment, and 2) test if fungi are correlated with |
| 28 | abiotic variables of peat and pore water. We hypothesized that each factor influenced fungi, but |
| 29 | that depth would have the strongest effect early in the experiment. We found that: 1)            |
| 30 | communities were strongly depth stratified; fungi were four-times more abundant in the upper     |
| 31 | (10-20 cm) than the lower (30-40 cm) depth, and dominance shifted from ericoid mycorrhizal       |
| 32 | fungi to saprotrophs and endophytes with increasing depth; 2) the influence of PFG was depth-    |
| 33 | dependent, with Ericaceae important in structuring the community in the upper peat only; 3) WT   |
| 34 | had minor influences; and 4) communities strongly covaried with abiotic variables, including     |
| 35 | indices of peat and pore water carbon quality. Our results highlight the importance of vertical  |
| 36 | stratification to peatland fungi, and the depth-dependency of PFG effects, which must be         |
| 37 | considered when elucidating the role of fungi in peatland carbon dynamics.                       |
| 38 |                                                                                                  |
|    |                                                                                                  |

#### 40 Introduction

41 Northern peatlands are characterized by extremely high soil carbon density, sequestering 42 almost one third of the world's soil organic carbon stocks in ~3% of land area (Page, Rieley and 43 Banks 2011). Carbon accumulates in peatlands because anoxic, phenol-rich, water-saturated 44 conditions depress rates of decomposition relative to primary production (Rydin and Jeglum 45 2013). In many locations around the world, peatlands are experiencing water table (WT) declines 46 due to climate change related droughts, and drainage for forestry and agriculture (Rydin and 47 Jeglum 2013). Such declines in WT expose formerly anoxic peat to oxic conditions favorable to 48 aerobic microbial metabolism and decomposition, and are likely to have important influences on 49 microbial community structure (Freeman, Ostle and Kang 2001; Jaatinen, Laiho and Vuorenmaa 50 2008; Trinder, Johnson and Artz 2008). The switching of large areas of peatlands from net sinks 51 to net sources of carbon may act as a positive feedback to climate change (Bardgett, Freeman 52 and Ostle 2008; Bridgham et al. 2008). However, our understanding of the responses of 53 peatlands to drainage and climate-change stresses are incomplete without understanding how 54 altered WT interacts with other factors, including plant functional groups (PFGs) and peat depth, 55 to influence the structure and function of microbial communities involved in decomposition 56 (Andersen, Chapman and Artz 2013). 57 Hydrologically driven shifts in the relative dominance of PFGs may influence communities 58 of microorganisms, such as fungi. Of particular importance, fungal community structure and 59 function could be regulated by differences in root traits among PFGs. At one end of the 60 spectrum, peatland sedge (*Carex* and *Eriophorum* spp.) roots typically lack coevolved

61 mycorrhizal symbionts (e.g. Thormann, Currah and Bayley 1999) but locally oxic conditions

62 created by their aerenchyma (spongy tissues with air channels that permit gas exchange into

| 63 | otherwise anoxic peat) likely have strong influences on free-living fungi. In contrast, ericaceous  |
|----|-----------------------------------------------------------------------------------------------------|
| 64 | shrubs (Ericaceae) are sensitive to anoxic conditions due to their lack of aerenchyma, but host     |
| 65 | ericoid mycorrhizal fungi (ErMF) with extracellular enzymes that enable depolymerization of         |
| 66 | complex organic molecules to gain access to limiting nutrients (e.g. nitrogen, phosphorous;         |
| 67 | Cairney and Burke 1998; Cairney and Meharg 2003; Read, Leake and Perez-Moreno 2004).                |
| 68 | Experimental work indicates that drier peat conditions promote dominance by ericaceous shrubs,      |
| 69 | whereas sedges can sometimes be favored by more moist conditions (Weltzin et al. 2003;              |
| 70 | Breeuwer et al. 2009; Potvin et al. 2015). The link between plants and fungi suggests that shifts   |
| 71 | in the dominance of PFGs due to WT alteration could change the structure and function of            |
| 72 | peatland fungal communities.                                                                        |
| 73 | Fungal communities can also exhibit vertical stratification within peat profiles (Artz et al.       |
| 74 | 2007; Lin et al. 2014), and the causes of vertical stratification are likely intertwined with the   |
| 75 | effects of WT and PFG on fungi. A suite of abiotic variables change between surface and deep        |
| 76 | peat, including water content, oxygen availability, redox potential, temperature, dissolved         |
| 77 | organic carbon (DOC), bulk density and peat humification (i.e. the level of decomposition)          |
| 78 | (Hribljan et al. 2014; Lin et al. 2014; Tfaily et al. 2014; Potvin et al. 2015). Depth gradients of |
| 79 | many of these chemical and physical characteristics are largely a consequence of water              |
| 80 | saturation and age, creating a contrast between the more frequently oxic, lower bulk density,       |
| 81 | fibric peat (acrotelm) and the typically water saturated, anoxic, denser, more sapric deeper peat   |
| 82 | (catotelm). Plant functional groups also have divergent influences on abiotic properties of peat    |
| 83 | (Andersen, Chapman and Artz 2013), and different PFGs can thus be expected to modulate the          |
| 84 | effect of depth in the peat profile on fungal communities. For example, sedge aerenchyma allows     |
| 85 | living sedge roots to penetrate deeper into a peat profile than roots of Ericaceae, potentially     |

| 86  | moderating the depth gradient in oxygen and root-derived labile resources. In contrast, shallowly    |  |
|-----|------------------------------------------------------------------------------------------------------|--|
| 87  | rooted Ericaceae, with enzymatically active ErMF symbionts, may be expected to sharpen the           |  |
| 88  | distinction between upper and lower depths in a peat profile. These interactive effects of PFG       |  |
| 89  | with peat depth should be further modified by WT, because the WT level defines the major             |  |
| 90  | environmental context within which plant roots interact with peat and fungi. When WTs are low,       |  |
| 91  | oxygen is available to a greater fraction of the peat profile, which should reduce the importance    |  |
| 92  | of oxygenation by sedge aerenchyma on the rhizosphere and be less limiting to the growth of          |  |
| 93  | ericaceous roots, associated symbionts and aerobic free-living fungi. Because they are               |  |
| 94  | intertwined, the individual and interactive effects of depth in the peat profile, WT and PFG are     |  |
| 95  | difficult to understand without direct experimental manipulation.                                    |  |
| 96  | Here, we characterize the fungal community during the first year of a peatland mesocosm              |  |
| 97  | experiment, PEATcosm (Potvin et al. 2015). The experiment is aimed at understanding how              |  |
| 98  | peatland community and ecosystem processes are influenced by PFG and WT level, and how               |  |
| 99  | depth in the peat profile modulates the effects of these factors. Our primary objective with this    |  |
| 100 | sampling was to characterize the change in fungal community structure with depth in the peat         |  |
| 101 | profile. We hypothesized that, H1) the steep physical, chemical and biological gradients             |  |
| 102 | associated with depth in the peat profile cause fungal community structure to be vertically          |  |
| 103 | stratified. Specifically, we predicted that surface peat has the greatest overall fungal abundance   |  |
| 104 | and is dominated by ErMF fungi, whereas deeper in the peat profile fungal abundance declines         |  |
| 105 | and saprotrophic fungi become increasingly important. Our next objective was to test for a rapid     |  |
| 106 | response of fungi to PFG removal and WT decline. Relative to the effect of peat depth, we            |  |
| 107 | expected the effects of these factors to be small during the first season of the experiment.         |  |
| 108 | Nevertheless, when they do occur, we hypothesized that, <b>H2</b> ) contrasting traits between plant |  |

### Comment [LL1]:

The last paragraph in the intro was completely revised.

Here is the original hypothesis paragraph, before I revised it:

Here, we characterize the fungal community during the first year of a peatland mesocosm experiment, PEATcosm (Potvin et al. 2015). The experiment is aimed at understanding how peatland community and ecosystem processes are influenced by PFG and WT level, and how depth in the peat profile modulates the effects of these factors. Our primary objective with this sampling was to characterize the change in fungal community structure with depth in the peat profile. Due to the steep physical, chemical, and biological gradients associated with depth, we expected this factor to be the strongest force structuring fungal communities. We hypothesized that H1) fungal communities differ between depths in the peat profile. Specifically, we predicted that surface peat has the greatest overall fungal abundance and is dominated by ErMF fungi, whereas deeper in the peat profile fungal abundance declines and saprotrophic fungi become increasingly important. Our second objective was to test for a rapid response of fungi to PFG removal and WT decline. We expected the effects of these factors to be relatively small during the first season of the experiment. Nevertheless, when they do occur, we hypothesized that, H2) plant functional group manipulation alters fungal community structure. In particular, the distinction in communities between upper and lower peat depths should be greatest in the presence of Ericaceae and the absence of sedges; this is likely, due to the influence of Ericaceae roots and ErMF symbionts in the upper peat, and the potential ability of sedges to homogenize fungal communities along depth gradients by bringing oxygen to deep peat. Furthermore, we hypothesized that H3) a lowered WT alters fungal communities, with increases in relative abundance of ErMF and overall fungal abundance as the WT decline

#### Comment [LL2]: From the reviewer:

"lines 103, 109, 114, 120: strictly speaking these are predictions, not hypotheses. A hypothesis should invoke a mechanism that, if correct, lead to a prediction that can be compared to an observation. But this should only take some minor rewording to address because the mechanisms are presented in the sentences leading up to these statements. The more detailed predictions that follow most of these statements are suitably precise and wellwritten."

| 109 | functional groups have differential effects on fungal community structure. Experimental removal      |
|-----|------------------------------------------------------------------------------------------------------|
| 110 | of different plant functional groups should therefore alter fungal community structure in different  |
| 111 | ways. In particular, the distinction in community structure between upper and lower peat depths      |
| 112 | should be greatest in the presence of Ericaceae and the absence of sedges; this is likely, due to    |
| 113 | the influence of Ericaceae roots and ErMF symbionts in the upper peat, and the potential ability     |
| 114 | of sedges to homogenize fungal communities along depth gradients by bringing oxygen to deep          |
| 115 | peat. Furthermore, we hypothesized that, H3) WT level influences fungal community structure,         |
| 116 | due to WT effects on abiotic characteristics of peat and the plant community. We specifically        |
| 117 | predicted that the relative abundance of ErMF and overall fungal abundance should increase as        |
| 118 | WT declines with experimentally simulated drought conditions. Our final objective was to test        |
| 119 | the relationship between fungal community structures and abiotic characteristics of peat and pore    |
| 120 | water (e.g. humification, carbon quality, temperature). We hypothesized that, H4) fungal             |
| 121 | community variation is coupled with variation in abiotic characteristics of peat and pore water,     |
| 122 | because these abiotic characteristics are influenced by the activities of fungi (e.g.,               |
| 123 | decomposition), and some represent important resources for, or constraints on, fungi. In             |
| 124 | particular, variation in abiotic peat and pore water characteristics should mirror changes in fungal |
| 125 | community structure between depths in the peat profile, and exhibit corresponding shifts with        |
| 126 | experimental manipulations of WT and PFG.                                                            |
| 127 |                                                                                                      |
| 128 | Materials and methods                                                                                |
|     |                                                                                                      |

- 129 Experimental study system
- 130 PEATcosm is a multifactorial peatland mesocosm experiment located at the Houghton Mesocosm Facility, USDA Forest Service, Northern Research Station, Forestry Sciences 131

| 132 | Laboratory in Houghton, Michigan (N47.11469°, W88.54787°). The experiment includes 24                  |
|-----|--------------------------------------------------------------------------------------------------------|
| 133 | mesocosms, each composed of a single $\sim 1 \text{ m}^3$ intact peat monolith excavated from an       |
| 134 | oligotrophic peatland in Meadowlands, MN, USA (N47.07278°, W92.73167°) in May 2010, and                |
| 135 | installed in the Houghton Mesocosm Facility. Monoliths were obtained from lawn habitat, with           |
| 136 | existing vegetation dominated by the ericaceous shrubs Chamaedaphne calyculata (L.) Moench.,           |
| 137 | Kalmia polifolia Wangenh., and Vaccinium oxycoccus L, and the sedge Carex oligosperma                  |
| 138 | Michx., above a moss layer of Sphagnum species and Polytrichum strictum Brid. (Potvin et al.           |
| 139 | 2015). No experimental treatments were imposed during the 2010 growing season. The                     |
| 140 | experiment included a two level WT treatment, and a three level PFG treatment, with four               |
| 141 | replicate spatial blocks representing each of the six unique factor-level combinations. In June        |
| 142 | 2011 PFG manipulation was initiated with clipping of ericaceous shrubs (Sedge treatment),              |
| 143 | sedges (Ericaceae treatment), or unclipped as a PFG control (Unmanipulated treatment; n = 8 for        |
| 144 | each treatment). Ericaceae and Sedge treatments were subsequently maintained by clipping new           |
| 145 | growth of excluded species as needed on a weekly basis. WT manipulations were also initiated in        |
| 146 | June 2011 (12 mesocosm bins with high and 12 with low water tables; hereafter referred to as           |
| 147 | High and Low, respectively). WT manipulation was designed to match typical seasonal WT                 |
| 148 | dynamics for average (High) and summer drought (Low) years, and was carried out using rain-            |
| 149 | out shelters, artificial rainwater addition and drainage in the spring at the acrotelm-catotelm        |
| 150 | boundary (~25 cm depth). In 2011, WT manipulation was minimal but distinct between                     |
| 151 | treatments, to avoid stress to mosses after initiation of the PFG treatment; High and Low WT           |
| 152 | treatments differed by $\sim$ 5 cm through the season, with the High averaging $\sim$ 7 cm and the Low |
| 153 | $\sim$ 12 cm below the peat surface during the peat sampling period (Fig. S1, Supporting               |
| 154 | Information). See Potvin et al. (2015) for additional details on design and treatments.                |

# 156 Fungal sampling and molecular methods

| 157 | One core per mesocosm was collected between August 31 and September 13, 2011,                                    |
|-----|------------------------------------------------------------------------------------------------------------------|
| 158 | approximately three months after initiation of experimental manipulations. Peat cores were                       |
| 159 | extracted using a 2.54 cm diameter aluminum corer sharpened at the leading edge and fitted to an                 |
| 160 | electric drill. The 10-20 cm (acrotelm) and 30-40 cm (catotelm) depth increments from each core                  |
| 161 | were split length-wise and one half (for DNA analysis) was immediately flash frozen in liquid                    |
| 162 | nitrogen, then stored at -80 °C. Each sample was pulverized in a mortar and pestle under liquid                  |
| 163 | nitrogen, and then ground to a fine powder with liquid N in an electric coffee grinder. Total soil               |
| 164 | DNA was isolated from 0.5 g of ground, wet peat using a PowerSoil DNA Isolation kit followed                     |
| 165 | by purification with a PowerClean DNA Clean-Up kit (MoBio Laboratories Inc., Carlsbad,                           |
| 166 | California, USA). To enable wet to dry-mass conversion, a subsample of ground peat from each                     |
| 167 | core was weighed wet and again after oven drying for 36 hours at 60 °C.                                          |
| 168 | Fungal abundance was estimated in each sample using quantitative PCR (qPCR) following                            |
| 169 | Lau and Lennon (2011). Briefly, the first internal transcribed spacer region (ITS1) was amplified                |
| 170 | with the primers ITS1f and 5.8S (Fierer, Vilgalys and Jackson 2005). Each 30 $\mu L$ reaction                    |
| 171 | included 1 $\mu$ L of DNA template, 0.5 $\mu$ L of each primer (10 $\mu$ mol), 14.5 $\mu$ L of DNase-free water, |
| 172 | and 13.5 $\mu$ L of 5 PRIME 2.5x Real-MasterMix SYBR ROX (5 Prime, Inc. Gaithersburg,                            |
| 173 | Maryland, USA). PCR assays were performed with an Eppendorf Mastercycler realplex <sup>2</sup> system            |
| 174 | using the thermal cycle conditions of Fierer, Vilgalys and Jackson (2005). Standards were                        |
| 175 | generated from a Trichosporon sp. isolate using the TOPO TA Cloning Kit (Invitrogen;                             |
| 176 | Carlsbad, California, USA). Plasmids were extracted from transformed cells (Sambrook and                         |
| 177 | Russell, 2001), and the M13 forward and reverse primers from the cloning kit were used to                        |

| 178 | generate PCR products for a standard curve. The standard curve ranged from $10^2-10^7$ copies per          |
|-----|------------------------------------------------------------------------------------------------------------|
| 179 | $\mu$ L, with coefficients of determination ( $R^2$ ) of 0.96–0.99 and amplification efficiencies of 0.93– |
| 180 | 0.99. Melting curve analyses provided no evidence for primer dimers. Three analytical replicates           |
| 181 | of each sample were run through the preceding qPCR process, data were averaged per sample,                 |
| 182 | and values were expressed as ITS1 gene copies per gram dry peat.                                           |
| 183 | To further characterize fungal communities in each sample, community metabarcode                           |
| 184 | sequencing was conducted at the U.S. Department of Energy Joint Genome Institute (JGI,                     |
| 185 | Walnut Creek, California). Sample prep followed Caporaso et al. (2012), and utilized a                     |
| 186 | PerkinElmer Sciclone NGS G3 Liquid Handling Workstation (Waltham, Massachusetts, USA)                      |
| 187 | and 5 PRIME's HotMasterMix amplification kit. The fungal ITS2 region was targeted with the                 |
| 188 | forward primer sequence fITS9 (Ihrmark et al. 2012) and the reverse primer ITS4 (White et al.              |
| 189 | 1990). The full-length primer contained an Illumina adapter sequence, an 11bp index (on the                |
| 190 | reverse primer only) which was unique to each sample, a primer pad, a 0-3 bp spacer pad and the            |
| 191 | ITS2 primer sequence. Prepared amplicon libraries were normalized, pooled, and quantified                  |
| 192 | using KAPA Biosystem's (Wilmington, Maryland, USA) next-generation sequencing library                      |
| 193 | qPCR kit using a Roche LightCycler 480 real-time PCR instrument. The quantified amplicon                   |
| 194 | pool was sequenced with an Illumina MiSeq (San Diego, California, USA) using 2 x 250 bp                    |
| 195 | paired-end chemistry. Data are available through the JGI genome portal (project ID 1021300,                |
| 196 | folder iTAGs_2014Jan10_ITS_M2943; http://genome.jgi.doe.gov/).                                             |
| 197 |                                                                                                            |

- **Bioinformatics** 198
- 199 The Itagger pipeline, version 1.1 (https://bitbucket.org/berkeleylab/jgi\_itagger), was used for initial data processing. Duk (http://duk.sourceforge.net/) was used to filter PhiX 174, human, 200

| 201 | and Illumina adapter sequences from demultiplexed reads. Primers were removed with Cutadapt              |                                     |
|-----|----------------------------------------------------------------------------------------------------------|-------------------------------------|
| 202 | (Martin 2011). Reads were quality trimmed based on the expected error rate over a 5 base                 |                                     |
| 203 | window at their 3' ends and merged with Pandaseq (minimum overlap = 15 bp, quality threshold             |                                     |
| 204 | = 0.25; Masella <i>et al.</i> 2012) if their combined length was $\pm$ 3 standard deviations of the mean |                                     |
| 205 | ITS2 length. The 5' and 3' ends of merged reads were trimmed by 94 and 35 bases, respectively,           |                                     |
| 206 | to remove the conserved 5.8S and 28S rRNA gene flanking regions. Reads were then discarded               |                                     |
| 207 | when their expected number of errors (calculated as the product of error probabilities from Phred        |                                     |
| 208 | scores) exceeded three. Sequences were dereplicated at 100% identity and operational taxonomic           |                                     |
| 209 | units (OTUs) were clustered iteratively at 99, 98, 97, 96 and 95% identity with USEARCH                  |                                     |
| 210 | (Edgar 2010). Reference-based chimera detection was run with UCHIME (Edgar, Haas and                     |                                     |
| 211 | Clemente 2011) using UNITE (2011-07-22 release; https://unite.ut.ee). Clusters formed at 95%             |                                     |
| 212 | sequence similarity were used in subsequent analyses. Using 95% sequence similarity is slightly          |                                     |
| 213 | more conservative than the frequently used 97% cutoff, however there is no single % similarity           |                                     |
| 214 | cut-off that is perfect for delineating species in sequence datasets. We felt that it was most           |                                     |
| 215 | important to guard against superfluous OTU propagation, which may be common in                           |                                     |
| 216 | environmental sequence datasets, and a recent mock community study using the ITS2 region                 |                                     |
| 217 | suggested that similarity cut-offs lower than the typically used 97% may yield a more accurate           |                                     |
| 218 | number of OTU clusters (Taylor et al. 2016).                                                             | Comment [LL3]: How does this sound? |
| 219 | Further processing, using OTUs generated from the Itagger pipeline, proceeded as follows.                |                                     |
| 220 | Taxonomy was assigned using the Ribosomal Database Project (RDP) Classifier with confidence              |                                     |
| 221 | set at 0.5 (Porras-Alfaro et al. 2014), implemented in Qiime 1.9 (Caporaso et al. 2010). The RDP         |                                     |
| 222 | Classifier was trained with the UNITE 7 species hypothesis dynamic clustering dataset (released          |                                     |
| 223 | 02 March 2015; https://unite.ut.ee/repository.php; Kõljalg, Nilsson and Abarenkov 2013),                 |                                     |

| 224 | supplemented with | additional ITS | sequences | from non-f | fungal eu | karvotic | lineages | obtained | from |
|-----|-------------------|----------------|-----------|------------|-----------|----------|----------|----------|------|
|     |                   |                |           |            |           |          | L )      |          |      |

the NCBI nucleotide database (Accession numbers: JF444765.1, JN853795.1, KF977223.1,

226 AY398500.1, AY455777.1, GU097876.1, AY070244.1, HQ156450.1, JF742525.1,

227 KC594036.1, AF317109.1, AY368576.1, AF401150.1, AY346506.1, AY570231.1,

228 AY836783.1, FJ572393.1, AY396437.1, JF801558.1, KPU48597.1; http://ncbi.nlm.nih.gov).

229 OTUs from non-fungal lineages and those that the RDP Classifier could not assign to a lineage

230 were then filtered from the dataset. OTUs whose taxonomy was resolved only to fungal class, or

231 higher, were subjected to BLASTn searches in the NCBI nucleotide database. These OTUs were

retained only if BLASTn hits were of clear fungal origin and had an E-value  $\leq 1 \times 10^{-20}$ . OTUs

represented by less than 10 sequences were removed to limit sources of sequencing error. OTUs

were tentatively assigned to functional groups using FUNGuild (Nguyen et al. 2015),

235 complemented with our own literature searches. Functional assignments are based on the best

available knowledge, however we stress that these are putative. The final OTU matrix was

- rarefied to 20 000 sequences per sample.
- 238

239 Chemical and physical characteristics of pore water and peat

We measured a suite of abiotic characteristics to investigate potential correlations with
fungal community structure. Pore water was collected on 22 September 2011 from piezometers
covered on their ends with 37 µm nylon mesh and installed at 20 cm and 40 cm depths. Samples
were filtered (0.45 µm) and acidified with hydrochloric acid. Dissolved organic carbon (DOC)
and total dissolved nitrogen (TDN) concentrations were measured using a Shimadzu TOC-V
Combustion Analyzer (Shimadzu Scientific Instruments, Columbia, MD, USA). Three optical
properties indicative of DOC composition were also quantified. First, specific ultraviolet

| 247 | absorbance (SUVA <sub>254</sub> ) was calculated by dividing UV absorbance at $\lambda = 254$ nm by total DOC  |
|-----|----------------------------------------------------------------------------------------------------------------|
| 248 | concentration. The SUVA <sub>254</sub> index should increase linearly with DOC aromaticity (Weishaar et        |
| 249 | <i>al.</i> 2003). The second property, E2:E3 (UV absorbance ratio of $\lambda = 254$ nm to $\lambda = 365$ nm) |
| 250 | decreases as molecular size of dissolved organic matter (DOM) increases (De Haan and De Boer                   |
| 251 | 1987). The third optical property, E4:E6 (UV absorbance ratio at $\lambda = 465$ nm to $\lambda = 665$ nm)     |
| 252 | increases with DOC aromaticity and is inversely related to DOC humification (lower values =                    |
| 253 | more decomposed; Zhang and He 2015). Total phenolics were quantified using Hach (Loveland,                     |
| 254 | CO, USA) reagents scaled to a microplate (Sinsabaugh, Reynolds and Long 2000), at 700 nm                       |
| 255 | absorbance on a SpectraMax M2 plate reader (Molecular Devices, Sunnyvale, California).                         |
| 256 | Ammonium was determined spectrophotometrically using Hach salicylate and cyanurate                             |
| 257 | reagents, also scaled to a microplate. Temperature was continuously recorded in each mesocosm                  |
| 258 | (see Potvin et al. 2015). We used the average temperature over one month (August 15 to                         |
| 259 | September 15), from probes at 20 and 40 cm depths. pH was measured (all but three samples) on                  |
| 260 | fresh peat collected during microbial coring using a peat slurry (1 g peat: 30 mL deionized                    |
| 261 | water), with a Denver Instrument Model 220 pH meter (Bohemia, New York). The von Post                          |
| 262 | score, an ordinal index of peat decomposition (see Rydin and Jeglum 2013), was measured on                     |
| 263 | peat from both sampling depths collected in May 2011 (prior to initiation of experimental                      |
| 264 | treatments).                                                                                                   |
|     |                                                                                                                |

### 266 Statistical Analyses

A suite of analyses were used to address hypotheses 1 to 3, focused on understanding how depth in the peat profile, PFG and WT influence fungi. First, linear mixed models were run with the following response variables: ITS1 gene abundance, OTU richness (S), Pielou's OTU

| 270 | evenness (J'), and the relative abundance and richness of the three most abundant functional                  |
|-----|---------------------------------------------------------------------------------------------------------------|
| 271 | groups (saprotrophs, ErMF, root endophytes). Additionally, we examined the relative abundance                 |
| 272 | of the three most common putative ErMF lineages: <i>Rhizoscyphus ericae</i> (= <i>Pezoloma ericae</i> ),      |
| 273 | Sebacinales group B (= Serindipitaceae spp.) and Oidiodendron maius. Relative abundances                      |
| 274 | were calculated as the proportion of sequences representing a specific taxa or functional group               |
| 275 | divided by the total number of sequences in a sample (20 000). Linear mixed models included                   |
| 276 | PFG (Sedge, Ericaceae, Unmanipulated), WT (High, Low), sampling depth (10-20 cm, 30-40                        |
| 277 | cm), all two and three-way interactions, and block as fixed factors. Individual mesocosm bin was              |
| 278 | included as a random effect. Variables were log or square root transformed when necessary.                    |
| 279 | Models were fit in R 3.0.2 (R Core Team, 2013) with the package <i>lme4</i> (Bates <i>et al.</i> 2014), fixed |
| 280 | effects were tested with the <i>lmerTest</i> package using the Kenward-Roger approximation, and post          |
| 281 | hoc tests, when appropriate, were run with the <i>lsmeans</i> and <i>multcompView</i> packages (Graves et     |
| 282 | <i>al.</i> 2012; Lenth and Hervé 2015).                                                                       |
| 283 | To test responses of fungal composition, matrices of fungal OTUs and orders were analyzed                     |
| 284 | using distance-based permutation MANOVA (PERMANOVA) and non-metric multidimensional                           |
| 285 | scaling (NMDS), with Bray-Cutis dissimilarity. PERMANOVA models included the same                             |
| 286 | factors as described above for linear mixed models, including individual mesocosm bin as a                    |
| 287 | random effect. Type III sums of squares were used for PERMANOVA, with null distributions                      |
| 288 | created by permuting residuals from partial models lacking the factor being tested (Anderson,                 |
| 289 | Gorley and Clarke 2008). Prior to PERMANOVA and NMDS, matrices were 4 <sup>th</sup> root                      |
| 290 | transformed to down-weight the influence of the most abundant taxa (Clarke and Gorley 2006).                  |
| 291 | The variance in community composition explained by each NMDS axis was estimated by                            |
| 292 | calculating the coefficient of determination $(R^2)$ between the original Bray-Curtis matrix and the          |

| 293 | distances between communities on an ordination axis (McCune and Grace 2002). Indicator              |
|-----|-----------------------------------------------------------------------------------------------------|
| 294 | species analysis was run to understand which OTUs were driving the strongest patterns in the        |
| 295 | dataset, and a chi-squared test was used to test whether the functional groups of indicator species |
| 296 | shifted between sampling depths. PERMANOVA was also conducted on the OTU matrix after               |
| 297 | transformation to presence-absence, and the square root of the variance component for the depth     |
| 298 | effect was used to estimate the average percentage change in OTU membership between                 |
| 299 | communities from one sampling depth to the other (i.e., OTU turnover between depths;                |
| 300 | Anderson, Gorley and Clarke 2008). PERMANOVA was conducted in Primer 6.1.15 with                    |
| 301 | PERMANOVA+ 1.0.5 (PRIMER-E, Plymouth, UK). NMDS and indicator species analysis were                 |
| 302 | run in R 3.0.2 with the packages vegan (Oksanen et al. 2013) and indicspecies (De Caceres and       |
| 303 | Jansen 2009), respectively.                                                                         |
| 304 | To further understand the effects of PFG, WT and depth in the peat profile, we examined             |
| 305 | whether shifts in relative abundances were mirrored by similar shifts in qPCR-adjusted              |
| 306 | abundances for the dominant functional groups (ErMF, root endophytes, saprotrophs). This            |
| 307 | adjustment was accomplished by multiplying a functional group's relative abundance (the             |
| 308 | proportion of sequences out of 20 000) by a sample's total fungal ITS1 gene abundance (ITS1         |
| 309 | gene copies per gram dry peat). This conversion generated a qPCR-adjusted abundance that            |
| 310 | should semi-quantitatively reflect variation in a functional group's total abundance among          |
| 311 | samples. We recognize that artifacts may arise from biases associated with sequencing, and the      |
| 312 | use of ITS2 sequence data in conjunction with qPCR data generated using ITS1; however, we           |
| 313 | believe this metric is informative because it adjusts for the huge decline in fungal abundance      |
| 314 | with depth. qPCR-adjusted data were tested with the linear mixed model approach described           |
| 315 | above.                                                                                              |

| 316                                                       | The final set of analyses tested hypothesis 4, that fungal communities covary with pore                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 317                                                       | water and peat characteristics. To understand the sources of variation in abiotic variables, their                                                                                                                                                                                                                                                                                         |
| 318                                                       | responses to sampling depth, PFG and WT were examined using the linear mixed model                                                                                                                                                                                                                                                                                                         |
| 319                                                       | approach as described above for fungal community variables. However, the effect of depth on                                                                                                                                                                                                                                                                                                |
| 320                                                       | von Post humification was tested with a paired <i>t</i> -test (paired within mesocosm), with <i>P</i> -values                                                                                                                                                                                                                                                                              |
| 321                                                       | obtained through permutation using the broman package (Broman 2014) in R. Vectors for each                                                                                                                                                                                                                                                                                                 |
| 322                                                       | abiotic variable were then fit to NMDS ordinations using the 'envfit' function in the R package                                                                                                                                                                                                                                                                                            |
| 323                                                       | vegan. Because pore water variables primarily responded only to peat depth (see Results), we                                                                                                                                                                                                                                                                                               |
| 324                                                       | focused these analyses on understanding covariation between abiotic variables and the fungal                                                                                                                                                                                                                                                                                               |
| 325                                                       | community across the peat depth gradient.                                                                                                                                                                                                                                                                                                                                                  |
| 326                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |
| 327                                                       | Results                                                                                                                                                                                                                                                                                                                                                                                    |
| 328                                                       | The fungal community                                                                                                                                                                                                                                                                                                                                                                       |
| 329                                                       | A diverse community was recovered through sequencing. The data set contained a total of 5                                                                                                                                                                                                                                                                                                  |
| 330                                                       | 205 263 sequences (22 697-190 244 per sample) and 1489 OTUs, after clustering and chimera                                                                                                                                                                                                                                                                                                  |
| 331                                                       | filtering but prior to further OTU filtering. The RDP classifier categorized the majority of these                                                                                                                                                                                                                                                                                         |
| 332                                                       | amaining OTUs as furged, however, upon menual sheaking some OTUs ware upolessificable or                                                                                                                                                                                                                                                                                                   |
|                                                           | remaining OTOs as lungai, nowever upon manual checking some OTOs were unclassifiable of                                                                                                                                                                                                                                                                                                    |
| 333                                                       | matched non-fungal lineages. Furthermore, the RDP classifier identified some OTUs as fungal,                                                                                                                                                                                                                                                                                               |
| 333<br>334                                                | matched non-fungal lineages. Furthermore, the RDP classifier identified some OTUs as fungal,<br>but did not provide taxonomy below the kingdom or phylum; nearly all of these OTUs were                                                                                                                                                                                                    |
| <ul><li>333</li><li>334</li><li>335</li></ul>             | matched non-fungal lineages. Furthermore, the RDP classifier identified some OTUs as fungal,<br>but did not provide taxonomy below the kingdom or phylum; nearly all of these OTUs were<br>unclassifiable through BLASTn or strongly matched non-fungal lineages. After removing OTUs                                                                                                      |
| <ul><li>333</li><li>334</li><li>335</li><li>336</li></ul> | matched non-fungal lineages. Furthermore, the RDP classifier identified some OTUs as fungal,<br>but did not provide taxonomy below the kingdom or phylum; nearly all of these OTUs were<br>unclassifiable through BLASTn or strongly matched non-fungal lineages. After removing OTUs<br>with uncertain identities and those represented by less than 10 sequences, the dataset included 4 |

Information). The final dataset contained 630 OTUs (56-325 OTUs per sample; Fig. S2,

| 339 | Supporting Information), with OTU reference sequences being 160 bp on average (range = 100-        |
|-----|----------------------------------------------------------------------------------------------------|
| 340 | 214 bp). Rarefaction to 20 000 sequences per sample reduced the number of OTUs to 623 (50-         |
| 341 | 226 OTUs per sample). The OTUs represented three phyla, at least 30 orders from 12 classes,        |
| 342 | and were dominated by the Ascomycota order Helotiales (Table S1, Supplementary Information;        |
| 343 | Fig. 1).                                                                                           |
| 344 |                                                                                                    |
| 345 | The fungal community and depth in the peat profile                                                 |
| 346 | In support of hypothesis 1, there was a large shift in the fungal community with increasing        |
| 347 | depth in the peat profile. Fungal ITS1 gene abundance was four-fold greater at the 10-20 cm than   |
| 348 | the 30-40 cm depth, and OTU evenness increased slightly with depth (Table 1; Fig. 2a and c).       |
| 349 | However, there was no evidence of an OTU richness response to depth (Table 1; Fig. 2b).            |
| 350 | Composition changed with sampling depth, at both the ordinal and OTU-level (Table 1; Fig.          |
| 351 | 3). Furthermore, the identity of OTUs occurring in the community changed by an average of          |
| 352 | $\sim$ 21% between sampling depths (i.e., there was a turnover in approximately 21% of the         |
| 353 | communitie's OTUs from one depth to the other; square root of the variance component for the       |
| 354 | depth effect from the presence-absence matrix = $21.15$ ). Indicator species analysis identified a |
| 355 | suite of indicators for each peat depth (Table S2, Supplementary Information), and the functional  |
| 356 | group to which indicator OTUs tended to belong differed between depths ( $X^2 = 31.21$ , $P <$     |
| 357 | 0.001). Indicator OTUs of the 10-20 cm depth were typically ErMF, whereas indicators of the        |
| 358 | 30-40 cm depth were primarily saprotrophs and root endophytes (Table S2, Supplementary             |
| 359 | Information; Fig. 3a). At the order-level, the Rhytismatales, Archaeorhizomycetales, Sebacinales   |
| 360 | and Xylariales were identified as indicators of the 10-20 cm depth, while the Polyporales was an   |
| 361 | indicator of the 30-40 cm depth (Table S2: Fig. 3b)                                                |

| 362 | The dominant fungal functional groups were also influenced by depth in the peat profile.         |
|-----|--------------------------------------------------------------------------------------------------|
| 363 | ErMF relative abundance decreased more than one-third, and OTU richness decreased by             |
| 364 | approximately one-fourth, from the 10-20 cm to 30-40 cm depths (Table1; Fig. 4a and c). In       |
| 365 | contrast, saprotroph relative abundance was more than five-fold greater at the 30-40 cm than 10- |
| 366 | 20 cm depth, and OTU richness increased by one-third from the upper to lower depth (Table1;      |
| 367 | Fig. 4d and f). The relative abundance of root endophytes increased six-fold and OTU richness    |
| 368 | nearly doubled, from the 10-20 cm to 30-40 cm depth (Table 1; Fig. 4g and i). However, root      |
| 369 | endophyte relative abundance exhibited a complex three-way interaction with other factors (see   |
| 370 | details below).                                                                                  |
| 371 | qPCR-adjusted abundances provided a different view of functional group responses to depth        |
| 372 | in the peat profile. After qPCR-adjustment, ErMF still decreased with increasing depth, and at   |
| 373 | the 30-40 cm depth were only one-sixth of their value at the 10-20 cm depth (Table 1; Fig. 4b).  |
| 374 | However, the depth effect on root endophytes lost statistical significance after qPCR adjustment |
| 375 | (Table 1; Fig. 4e). Although depth remained a marginally significant effect on saprotrophs after |
| 376 | qPCR adjustment, its effect was largely obscured by its interaction with WT (Table 1; Fig. 4h).  |
| 377 | Each of the three putative ErMF lineages examined individually (Rhizoscyphus ericae,             |
| 378 | Oidiodendron maius, Sebacinales Group B) decreased sharply with increasing depth (Table 1;       |
| 379 | Fig. 5). This decrease was observed in relative and qPCR-adjusted abundances (Fig. 5).           |
| 380 |                                                                                                  |
| 381 | Fungal community responses to plant functional group and water table                             |
| 382 | Although PFG and WT effects were less pronounced than those of sampling depth, there             |
| 383 | was modest support for hypotheses 2 and 3. OTU evenness showed a marginal response to WT,        |

being slightly greater in the Low WT treatment within most PFG by depth factor-levels (Table 1;

| 385 | Fig. 2c). However, neither ITS1 gene abundance nor OTU richness showed clear evidence of a              |
|-----|---------------------------------------------------------------------------------------------------------|
| 386 | response to PFG or WT (Table 1; Fig. 2a and b).                                                         |
| 387 | Fungal composition responded to PFG at the order-level but not at the OTU-level, and                    |
| 388 | showed no evidence of a response to WT (Table 1; Fig. 3). At the 10-20 cm depth, ordination             |
| 389 | (Fig. 3b) coupled with post-hoc PERMANOVA suggested that the composition of orders in                   |
| 390 | mesocosms containing ericaceous shrubs was distinct from the Sedge treatment (Unmanipulated             |
| 391 | vs. Ericaceae: $P = 0.298$ ; Unmanipulated vs. Sedge: $P = 0.033$ ; Ericaceae vs. Sedge: $P = 0.071$ ). |
| 392 | This PFG effect was not evident at 30-40 cm depth (Sedge vs. Ericaceae: $P = 0.544$ ; Sedge vs.         |
| 393 | Umanipulated: $P = 0.885$ ; Ericaceae vs. Unmanipulated: $P = 0.383$ ). Ordination also revealed        |
| 394 | that the Sedge treatment at the 10-20 cm depth was more similar to all treatment groups at the          |
| 395 | 30-40 cm depth than were the 10-20 cm Unmanipulated and Ericaceae treatments (Fig. 3b).                 |
| 396 | In some cases, responses to PFG and WT were exhibited by fungal functional groups. Root                 |
| 397 | endophyte relative abundance exhibited a WT x depth interaction, although post-hoc analyses             |
| 398 | revealed a complicated WT x depth response that was specific to each PFG treatment (Table 1             |
| 399 | and S3, Supplementary Material; Fig. 4d). Root endophyte OTU richness responded to PFG,                 |
| 400 | where it was lowest in the Ericaceae relative to other treatments at both depths (Table 1 and S3,       |
| 401 | Supplementary Material; Fig. 4f). qPCR-adjusted saprotroph abundance responded significantly            |
| 402 | to WT (Table 1; Fig. 4h), being greater in the Low compared to the High WT treatment at the             |
| 403 | 10-20 cm depth (Table S3, Supplementary Material). There were also several cases with                   |
| 404 | marginally significant P-values that suggest incipient WT and PFG effects (e.g. 3-way                   |
| 405 | interactions for ErMF and root endophyte relative abundance; Table 1).                                  |
| 406 | Some individual ErMF lineages also responded to PFG. While Rhizoscyphus ericae did not                  |
| 407 | respond significantly to experimental manipulations, abundance of Sebacinales Group B                   |

| 408 | responded marginally to PFG (Table 1; Fig. 5a and c), and qPCR-adjusted abundances of both    |
|-----|-----------------------------------------------------------------------------------------------|
| 409 | Oidiodendron maius and Sebacinales Group B were affected by PFG. Specifically, the Untreated  |
| 410 | and Ericaceae PFG treatments were generally higher than Sedge in these taxa, driven primarily |
| 411 | by a PFG effect in the 10-20 cm depth only (Table 1 and S3, Supplementary Material; Fig. 5d   |
| 412 | and f).                                                                                       |

#### 414 Fungal community relationships with abiotic variables of peat and pore water

415 Consistent with hypothesis 4, some abiotic peat and pore water variables covaried with the 416 fungal community (Table S4, Supplementary Material; Fig. 3). However, the abiotic variables 417 were primarily influenced by depth in the peat profile; inconsistent with hypothesis 4, only one 418 variable (pore water pH) exhibited responses to WT and PFG manipulation and these were very 419 small in magnitude (Table 2 and S4, Supplementary Material). Compared to the 10-20 cm depth, 420 the 30-40 cm depth had higher DOC, TDN, E4:E6 and Von Post values, but had lower 421 temperature, E2:E3, and SUVA<sub>254</sub>. The vectors with the strongest relationships in OTU- and 422 order-level ordinations were von Post humification, temperature, and the E2:E3 and E4:E6 423 organic matter features (Table S5, Supplementary Material; Fig. 3). Von Post humification 424 increased as composition shifted along NMDS axis 1 from the shallow to deeper depth, and this 425 axis explained the majority of variation in the original Bray-Curtis distance matrices for both 426 ordinations (Table S5, Supplementary Material; Fig. 3). In contrast, temperature and E2:E3 427 vectors increased from the deeper to shallower depth, although these variables' were less 428 colinear with NMDS axis 1 in the OTU-level ordination than was von Post humification. Many 429 of the other pore water variables also exhibited significant relationships with fungal OTU 430 composition, and there was a clear gradient in the community along which TDN, phenolics,

431 NH4<sup>+</sup> and DOC decreased, and SUVA<sub>254</sub> and E2:E3 increased.

432

#### 433 Discussion

#### 434 Fungal community stratification with depth in the peat profile

435 In support of hypothesis 1, depth in the peat profile had the strongest effect on fungi. Depth 436 stratification of fungal communities has been documented by a number of studies in upland and 437 peat soils (e.g. Artz et al. 2007; Taylor et al. 2014). For example, in agreement with our findings, 438 sharp decreases in total fungal abundance within the upper 40 cm of peat were recently observed 439 in a bog and poor fen (Lin et al. 2014). Such drops in fungal abundance likely reflect the 440 intolerance of many fungi to anoxic conditions below the WT (Kavanagh 2011), combined with 441 declining root subsidy to symbiotic fungi with depth. 442 As predicted, the fungal community shifted from ErMF to saprotroph dominance with 443 increasing depth in the peat profile. This result was supported by relative abundance and OTU 444 richness of functional groups, as well as indicator species analysis. Most indicators of the upper 445 depth were putative ErMF OTUs while those of the lower depth included many saprotrophs, as 446 well as endophytes of unclear function. In fact, the only putative ErMF indicators of the deeper 447 depth were classified as *Rhizoscyphus* sp. These OTUs are likely related to the confirmed ErMF 448 *Rhizoscyphus ericae* as well as potentially non-ErMF fungi in the greater *R. ericae* aggregate;

449 because their function has not been directly characterized, it is possible that they may not be

450 ErMF. Roots at 30-40 cm depth are below the growing season typical WT minimum, the limit to

451 active ericaceous roots (Wallèn 1987; Moore et al. 2002). This suggests that the shift from ErMF

- 452 to saprotroph dominance with increasing depth was also driven by aging and senescence of
- 453 submerged ericaceous roots buried by accumulating peat. Importantly, ErMF (a whole and the

| 454 | three lineages examined individually) still decreased with depth after qPCR-adjustment while the |
|-----|--------------------------------------------------------------------------------------------------|
| 455 | depth effect on saprotrophs and endophytes diminished. This highlights the primary role of       |
| 456 | ErMF in driving the shift with depth, and indicates that saprotrophs and endophytes do not       |
| 457 | necessarily prefer the deeper depth.                                                             |

458 Vertical stratification of communities may also be driven by mycorrhizal fungi actively 459 excluding saprotrophs (Gadgil and Gadgil 1971; Lindahl et al. 2007; Fernandez and Kennedy 460 2016). Extensive extracellular enzymatic capabilities and access to host-derived carbon likely 461 make ErMF formidable competitors with saprotrophs for nutrients in recalcitrant organic matter. 462 Most filamentous saprotrophic fungi likely prefer oxic conditions and should therefore have the greatest abundances in surface peat. A lack of saprotroph preference for the upper depth may 463 464 indicate that, despite favorable redox and litter quality, saprotrophs were inhibited by ErMF in 465 the upper peat. In upland forests, it is hypothesized that mycorrhizal inhibition of saprotrophs 466 creates depth stratification, where saprotrophs colonize litter at the soil surface and mycorrhizal 467 fungi colonize more humified organic matter in subsurface horizons (Lindahl et al. 2007; 468 Fernandez and Kennedy 2016). The vertical distribution of functional group dominance in our 469 peat system was the inverse of this pattern, which likely reflects fundamental differences 470 between the systems: deeper peat is water saturated and the entire soil profile is composed of 471 organic matter. We did not sample the upper 0-10 cm of peat because most of it is represented by 472 living moss, and so the 10-20 cm depth includes what may be considered new litter inputs; this is 473 reflected by low von Post scores. 474 Consistent with the hypothesis of suppression of saprotrophs in surface peat, our results

- 475 indicate that taxa capable of decomposing recalcitrant plant material are relatively more
- 476 important deeper in the peat. As an order and as individual OTUs, Polyporales were indicators of

| 477 | the deeper depth. Polyporales largely specialize in wood decomposition, and the Polyporales              |
|-----|----------------------------------------------------------------------------------------------------------|
| 478 | OTUs found as indicators are placed in genera (Phanerochaete, Hypochnicium) that have white              |
| 479 | rot capabilities (i.e. the enzymatic potential for complete mineralization of lignocellulose; Aust       |
| 480 | 1995). Certain other non-polypore white rot fungi were also indicators of deeper peat, including         |
| 481 | Hypholoma, Gymnopilus and Pleurotus. In contrast, only one white rot fungus (Ganoderma) was              |
| 482 | an indicator of the shallower depth. Of the four orders that were indicators of surface peat, none       |
| 483 | is a white rot lineage: one contains fungi that are ErMF in our system (Sebacinales), one contains       |
| 484 | members with unknown functions (although some may be root-associated;                                    |
| 485 | Archaeorhizomycetales) and two contain pathogens, endophytes and non-white rot saprotrophs               |
| 486 | (Xylariales and Rhytismatales). In fact, the 10-20 cm indicator OTUs found in these two orders           |
| 487 | are related to plant pathogens: Physalospora vaccinii (Xylariales) attacks cranberry fruit               |
| 488 | (Polashock et al. 2009) and Colpoma (Rhytismatales) can infect Ericaceae wood (Johnston                  |
| 489 | 1991).                                                                                                   |
| 490 | Differential patterns of dormancy or preservation of DNA from dead fungal tissues may                    |
| 491 | also influence vertical stratification, although the results suggest that vertical stratification in the |
| 492 | fungal community is due to environmental preferences, life histories and interactions among              |
| 493 | OTUs of active fungi. For example, extracellular relic DNA in soil can affect the picture of             |
| 494 | community structure revealed through environmental sequencing (Carini et al. 2016). However,             |
| 495 | the sharp decrease in fungal abundance with depth revealed through qPCR suggests that much of            |
| 496 | the fungal DNA of fungi active in upper peat degrades as it becomes part of the deeper, more             |
| 497 | humified peat. Furthermore, results indicate that depth stratification in peat is strongly shaped by     |
| 498 | the presence of ErMF in the active rooting zone of host plants dependent on the these fungi,             |
| 499 | lending additional support for the role of active fungi driving the patterns of depth stratification.    |

| 500 | The future application of RNA sequencing (e.g., Lin et al. 2014) will shed further light on the     |  |
|-----|-----------------------------------------------------------------------------------------------------|--|
| 501 | active fungal lineages driving depth stratification in fungal community structure.                  |  |
| 502 |                                                                                                     |  |
| 503 | Rapid responses to plant functional group and water table manipulation                              |  |
| 504 | PFG and WT manipulation should provide evidence for the mechanisms causing depth                    |  |
| 505 | stratification of fungal communities. If sedges homogenize the community, as we hypothesize,        |  |
| 506 | their presence should drive both depths of treatments in which they are present (Unmanipulated      |  |
| 507 | and Sedge) to be similar to each other and intermediate between the 10-20 cm and 30-40 cm           |  |
| 508 | depths in the treatment from which they were removed (Ericaceae). However, results (for             |  |
| 509 | Oidiodendron maius, Sebacinales group B and order-level composition) show that PFG primarily        |  |
| 510 | influenced the upper depth, and communities in Sedge mesocosms at the 10-20 cm depth were           |  |
| 511 | intermediate between mesocosms with ericaceous shrubs at 10-20 cm depth (Ericaceae and              |  |
| 512 | Unmanipulated) and all communities at the 30-40 cm depth. This indicates that ericaceous roots      |  |
| 513 | and ErMF, which dominate the 10-20 cm depth, are stronger structuring agents for fungal             |  |
| 514 | communities than sedge roots present at both depths. This should facilitate depth stratification of |  |
| 515 | fungal communities.                                                                                 |  |
| 516 | WT manipulation had the least effect on fungi, which is not surprising given the small              |  |
| 517 | depth difference of the initial WT treatment. Contrary to our hypotheses, the responses of ErMF     |  |
| 518 | and total fungal abundance to WT were too variable to be statistically significant. Instead,        |  |
| 519 | saprotrophs and root endophytes both responded to WT, where WT level tended to modulate the         |  |
| 520 | effects of PFG or depth in the peat profile. Concerning root endophytes, their co-dominance in      |  |
| 521 | the deeper depth suggests they may not be dependent on active host roots, perhaps acting            |  |
| 522 | saprotrophically on senescent roots and moss (Day and Currah 2011; Mandyam and Jumpponen            |  |

**Comment [LL4]:** I added this paragraph in, to respond to one of the reviewer's comments. Howe does it sound?

| 523 | 2015). Perhaps consistent with this interpretation, root endophyte relative abundance was           |
|-----|-----------------------------------------------------------------------------------------------------|
| 524 | primarily affected by WT at the 10-20 cm depth, where endophytes decreased with lower WT in         |
| 525 | treatments containing ericaceous shrubs (Ericaceae and Unmanipulated) and increased in the          |
| 526 | Sedge treatment. This could arise if reduced flooding stress on ericaceous roots favors ErMF        |
| 527 | over root endophytes. In Sedge mesocosms, lowered WTs might have favored endophyte                  |
| 528 | colonization of living roots and/or saprotrophic utilization of dying shrub roots.                  |
| 529 | Many of the detectable rapid fungal responses to experimental manipulations were modest.            |
| 530 | Community inertia may slow the response of fungi to PFG manipulation due to survival of             |
| 531 | hyphae, dormant propagules and/or DNA in the absence of hosts, perhaps explaining why the           |
| 532 | Sedge treatment supported many ErMF OTUs. Facultative saprotrophy, as has been reported for         |
| 533 | some ErMF (e.g. Oidiodendron maius; Rice and Currah, 2006), may also mute the effects of            |
| 534 | PFG manipulation. Finally, misassignment of taxa to functional guilds, as discussed earlier for     |
| 535 | Rhizoscyphus sp., could blur the signal of community responses to PFG manipulation. The             |
| 536 | possibility of misassignment points to the tentative nature of functional group designation in      |
| 537 | amplicon sequencing datasets, highlighting the importance of efforts to characterize the natural    |
| 538 | history of a greater range of fungal species (Peay 2014).                                           |
| 539 |                                                                                                     |
| 540 | Relationship of fungi with abiotic peat and pore water variables                                    |
| 541 | Fungal community composition covaried with several properties of peat and pore water.               |
| 542 | This could have arisen from a causal link, with fungi affecting peat characteristics or vice versa, |
| 543 | or correlation with another variable (e.g. presence of host roots or redox conditions associated    |
| 544 | with depth). Fungi associated with the 10-20 cm depth (e.g. ErMF) were living in less               |
|     |                                                                                                     |

545 decomposed peat (lower von Post), with less degraded DOC that was of relatively lower

| 546 | molecular size (lower E4:E6, higher E2:E3), and had lower overall DOC and TDN                       |  |
|-----|-----------------------------------------------------------------------------------------------------|--|
| 547 | concentrations, relative to fungi associated with the 30-40 cm depth (e.g. Polyporales). While the  |  |
| 548 | higher SUVA254 observed in the shallower depth is at odds with the observed E2:E3 data, it is       |  |
| 549 | consistent with less-processed inputs from the breakdown of litter (lignin-like), which is          |  |
| 550 | supported by lower E4:E6 (Zhang and He 2015). Many of the differences between depths can be         |  |
| 551 | attributed to the 30-40 cm depth being older. However, WT and PFG should have direct and            |  |
| 552 | indirect (via microbial community alteration) influences on the vertical stratification of peat and |  |
| 553 | pore water variables; over time, experimental PFG and WT manipulation should outline how            |  |
| 554 | these factors promote such vertical stratification.                                                 |  |
| 555 |                                                                                                     |  |
| 556 | Conclusions                                                                                         |  |
| 557 | This study highlights the strong depth stratification of peatland fungal communities. The           |  |
| 558 | precipitous drop in total fungal abundance with increasing depth indicate that fungi thrive best in |  |
| 559 | the oxic conditions near the surface. However, the shift in fungal composition with depth in the    |  |
| 560 | peat profile was driven by a strong decrease in ErMF that dominate the shallow oxic peat in the     |  |
| 561 | sphere of active host roots. The preference of ErMF for the upper peat may constrain saprotrophs    |  |
| 562 | and root endophytes to dominating communities in deeper peat, in low oxygen conditions that         |  |
| 563 | they may not prefer. Such patterns support the hypothesis that ErMF competitively suppress          |  |
| 564 | other fungi in surface peat. Furthermore, the rapid responses to PFG and WT manipulation            |  |
| 565 | highlight the importance of these factors in stratifying fungi by depth. Given the abundance of     |  |
| 566 | ErMF in surface peat, the likelihood that ErMF effectively compete with saprotrophs, and the        |  |
| 567 | potential for a lowered WT to increase ericaceous shrub abundance over time, ErMF are likely to     |  |
| 568 | become increasingly important players in peatland carbon cycling as the climate warms.              |  |

**Comment [LL5]:** I had to significantly modify the ending here because a reviewer criticized what we wrote originally. I agree with their criticism, so let me know if the revision sounds OK.

| 570 | Funding                                                                                                      |
|-----|--------------------------------------------------------------------------------------------------------------|
| 571 | This work was supported by the USDA Forest Service Northern Research Station Climate                         |
| 572 | Change Program, the US National Science Foundation [grant number DEB-1146149], and the                       |
| 573 | U.S. Department of Energy Joint Genome Institute Community Science Program [Proposal ID                      |
| 574 | 1445]. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE                     |
| 575 | Office of Science User Facility, is supported by the Office of Science of the U.S. Department of             |
| 576 | Energy under Contract No. DE-AC02-05CH11231.                                                                 |
| 577 |                                                                                                              |
| 578 | Acknowledgements                                                                                             |
| 579 | We thank Aleta Daniels, Tim Veverica, Kayla Grifith, Lee Theobold, John Hribljan, Todd Ontl                  |
| 580 | and Magdalena Wiedermann for technical support or helpful input.                                             |
| 581 |                                                                                                              |
| 582 | References                                                                                                   |
| 583 | Andersen R, Chapman SJ, Artz RRE. Microbial communities in natural and disturbed peatlands:                  |
| 584 | A review. Soil Biol Biochem 2013;57:979-94.                                                                  |
| 585 | Anderson MJ, Gorley RN, Clarke KR. PERMANOVA for PRIMER: Guide to Software and                               |
| 586 | Statistica Methods. Plymouth, UK: PRIMER-E, 2008.                                                            |
| 587 | Artz RRE, Anderson IC, Chapman SJ et al. Changes in fungal community composition in                          |
| 588 | response to vegetational succession during the natural regeneration of cutover peatlands.                    |
| 589 | Microbial Ecol 2007; <b>54</b> :508-22.                                                                      |
| 590 | Aust SD. Mechanisms of degradation by white rot fungi. <i>Environl Health Persp</i> 1995; <b>103</b> :59-61. |

591 Bardgett RD, Freeman C, Ostle NJ. Microbial contributions to climate change through carbon

- 592 cycle feedbacks. *The ISME J* 2008;**2**:805-14.
- 593 Bates D, Maechler M, Bolker B et al. Ime4: Linear mixed-effects models using Eigen and S4. R
- 594 package version 1.0-6. 2014 http://CRAN.R-project.org/package=lme4.
- 595 Breeuwer A, Robreck BJM, Limpens J et al. Decreased summer water table depth affects
- 596 peatland vegetation. *Basic Appl Ecol* 2009;**10**:330-39.
- Bridgham SD, Pastor J, Dewey B *et al.* Rapid carbon response of peatlands to climate change.
   *Ecology* 2008;**89**:3041-48.
- 599 Broman KW, Broman AT. broman: Karl Broman's R code. R package version 0.48-2. 2014.
- 600 Cairney JWG, Burke RM. Extracellular enzyme activities of the ericoid mycorrhizal endophyte
- 601 Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead
- 602 plant tissue in soil. *Plant Soil* 1998:**205**:181-92.
- 603 Cairney JWG, Meharg A. Ericoid mycorrhiza: a partnership that exploits harsh edaphic
- 604 conditions. *Eur J Soil Sci* 2003;**54**:735-40.
- 605 Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput
- 606 community sequencing data. *Nature Methods* 2010;7:335-6.
- 607 Caporaso JG Lauber CL, Walters WA et al. Ultra-high-throughput microbial community
- analysis on the Illumina HiSeq and MiSeq platforms. *ISME J* 2012;6:1621-24.
- 609 Carini P, Marsden PJ, Leff JW et al. Relic DNA is abundant in soil and obscures estimates of
- 610 soil microbial diversity. *Nat Microbiol* 2016;**2**:16242. doi: 10.1038/nmicrobiol.2016.242
- 611 Clarke KR, Gorley RN. Primver v6: User Manual/Tutorial. Plymouth, UK: PRIMER-E, 2006.
- 612 Day MJ, Currah RS. Role of selected dark septate endophyte species and other hyphomycetes as
- 613 saprobes on moss gametophytes. *Botany* 2011;**89**:349-59.
- 614 De Cáceres M, Legendre P. Associations between species and groups of sites: indices and

- 615 statistical inference. *Ecology* 2009:**90**:3566-74.
- 616 De Haan H, De Boer T. Applicability of light absorbance and fluorescence as measures of
- 617 concentration and molecular size of dissolved organic carbon in humic Lake Tjeukemeer.
- 618 *Water Res* 1987;**21**:731-34.
- Edgar R. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 2010;26:
  2460-2461.
- 621 Edgar R, Haas BJ, Clemente JC et al. UCHIME improves sensitivity and speed of chimera
- 622 detection. *Bioinformatics* 2011;**27**:2194-200.
- 623 Fernandez CW, Kennedy PG. Revisiting the 'Gadgil Effect': do interguild fungal interactions
- 624 control carbon cycling in forest soils? *New Phytol* 2015;**209**:1382-94.
- Fierer N JJ, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of
  taxon-specific quantitative PCR assays. *Appl Environ Microb* 2005;**71**:4117–20.
- 627 Freeman C, Ostle N, Kang H. An enzymatic "latch" on a global carbon store—a shortage of
- 628 oxygen locks up carbon in peatlands by restraining a single enzyme. *Nature* 2001:409:149.
- 629 Gadgil RL, Gadgil PD. Mycorrhiza and litter decomposition. *Nature* 1971;233:133.
- 630 Graves S, Piepho HP, Selzer L et al. multcompView: Visualizations of Paired Comparisons. R
- 631 *package version 0.1-5.* 2012. http://CRAN.R-project.org/package=multcompView
- 632 Hribljan JS, Kane ES, Pypker TG et al. The effect of long-term water table manipulations on
- dissolved organic carbon dynamics in a poor fen peatland. Journal of Geophysical Research:
- 634 *Biogeosciences* 2014;**119**:577–95.
- 635 Ihrmark K, Bödeker IT, Cruz-Martinez K et al. New primers to amplify the fungal ITS2 region--
- 636 evaluation by 454-sequencing of artificial and natural communities. *FEMS Microbiol Ecol*
- 637 2012;**82**:666-77.

- 638 Jaatinen K, Laiho R, Vuorenmaa A. Responses of aerobic microbial communities and soil
- respiration to water-level drawdown in a northern boreal fen. *Environ Microbiol* 2008;10:339-
- 640 53.
- 641 Johnston PR. Rhytismataceae in New Zealand 5. Wood-and bark-inhabiting species in the genera
- 642 Colpoma and Propolomyces. *New Zeal J Bot* 1991;**29**:405-10.
- 643 Kavanagh K. Fungi: Biology and Applications. Chichester, UK: John Wiley & Sons, 2011.
- 644 Kõljalg U, Nilsson RH, Abarenkov K. Towards a unified paradigm for sequence-based
- 645 identification of fungi. *Mol Ecol* 2013;**22**:5271–77.
- 646 Lau JA Lennon JT. Evolutionary ecology of plant-microbe interactions: soil microbial structure
- alters natural selection on plant traits. *New Phytol* 2011;**192**:215-24.
- 648 Lenth RV, Hervé M. Ismeans: Least-Squares Means. R package version 2.16. 2015.
- 649 http://CRAN.R-project.org/package=lsmeans.
- 650 Lin X, Tfaily MM, Steinweg JM et al. Microbial community stratification linked to utilization of
- 651 carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest,
- 652 Minnesota, USA. *Appl Environ Microb* 2014;**80**:3518–30.
- 653 Lindahl BD, Ihrmark K, Boberg J et al. Spatial separation of litter decomposition and
- mycorrhizal nitrogen uptake in a boreal forest. *New Phytol* 2007;**173**:611–20.
- 655 Mandyam KG, Jumpponen A. Mutualism-parasitism paradigm synthesized from results of root-
- 656 endophyte models. *Front Microbiol* 2015;**5**: 776. doi:10.3389/fmicb.2014.00776
- 657 Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
- 658 *EMBnet.journal* 2011;**17**:10-2.
- 659 Masella AP, Bartram AK, Truszkowski JM et al. PANDAseq: paired-end assembler for illumina
- 660 sequences. *BMC Bioinformatics* 2012;**13**:31 doi:10.1186/1471-2105-13-31

- 661 McCune B, Grace JB. Analysis of ecological communities. Gleneden Beach, USA: MjM
- 662 Software Design, 2002.
- 663 Moore TR, Bubier JL, Frolking SE et al. Plant biomass and production and CO<sub>2</sub> exchange in an
- 664 ombrotrophic bog. *J Ecol* 2002;**90**:25–36.
- 665 Nguyena NH, Song Z, Bates ST et al. FUNGuild: An open annotation tool for parsing fungal
- 666 community datasets by ecological guild. *Fungal Ecol* 2015;**20**:241-8.
- 667 Oksanen J, Blanchet FG, Kindt R et al. vegan: community ecology package. R package version
- 668 2.0-10 edn. 2013. http://CRAN.R-project.org/package=vegan.
- 669 Page SE, Rieley JO, Banks CJ. Global and regional importance of the tropical peatland carbon
- 670 pool. *Global Change Biol* 2011;**17**:798–818.
- 671 Peay KG. Back to the future: natural history & the way forward in modern fungal ecology.
- 672 Fungal Ecol 2014;**12**:4-9.
- 673 Polashock JJ, Caruso FL, Oudemans PV et al. The North American cranberry fruit rot fungal
- 674 community: a systematic overview using morphological and phylogenetic affinities. *Plant*
- 675 *Pathol* 2009;**58**:1116-27.
- 676 Porras-Alfaro A, Liu KL, Kuske CR et al. From genus to phylum: large-subunit and internal
- 677 transcribed spacer rRNA operon regions show similar classification accuracies influenced by
- database composition. *Appl Environ Microb* 2014;**80**:829–40.
- 679 Potvin L, Kane ES, Chimner RA et al. Effects of water table position and plant functional group
- 680 on plant community, aboveground production, and peat properties in a peatland mesocosm
- 681 experiment (PEATcosm). *Plant Soil* 2015;**387**:277-94.
- 682 R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation
- 683 for Statistical Computing. 2013.

684 Read DJ, Leake JR, Perez-Moreno J. Mycorrhizal fungi as drivers of ecosystem processes in

heathland and boreal forest biomes. *Can J Bot* 2004;**82**: 1243–63.

- 686 Rice AV, Currah RS. Oidiodendron maius: Saprobe in Sphagnum peat, mutualist in ericaceous
- 687 roots? In: Schulz BJE, Boyle CJC, Sieber TN (eds.). *Microbial Root Endophytes*. Berlin:
- 688 Springer-Verlag, 2006, 227-46.
- Rydin J, Jeglum J. *The Biology of Peatlands, 2<sup>nd</sup> edition*. Oxford, UK: Oxford University Press,
  2013.
- 691 Sinsabaugh R, Reynolds H, Long T. 2000. Rapid assay for amidohydrolase (urease) activity in
- 692 environmental samples. *Soil Biol Biochem* **32**:2095–7.
- 693 Sambrook J, Russell DW. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY,
- 694 USA: Cold Spring Harbor Laboratory Press, 2001.
- 695 Taylor DL, McFarland JW, Hollingsworth TN et al. A first comprehensive census of fungi in
- soil reveals both hyperdiversity and fine-scale niche partitioning. *Ecol Monogr* 2014;**84**:3-20.
- 697 Taylor DL, Walters WA, Lennon NJ et al. Accurate estimation of fungal diversity and
- abundance through improved lineage-specific primers optimized for Illumina amplicon
- 699 sequencing. *Appl Environ Microb* 2016;**82**:7217-26.
- 700 Thormann MN, Currah RS, Bayley SE. The mycorrhizal status of the dominant vegetation along
- a peatland gradient in southern boreal Alberta, Canada. *Wetlands* 1999;19:438-50.
- 702 Tfaily MM, Cooper WT, Kostka JE et al. Organic matter transformation in the peat column at
- 703 Marcell Experimental Forest: Humification and vertical stratification. *J Geophys Res-Biogeo*
- 704 2014;**119**:661–75.
- 705 Trinder C.J, Johnson D, Artz RE. Interactions among fungal community structure, litter
- decomposition, and depth of water table in a cutover peatland. *FEMS Microbiol Ecol*

707 2008;**64**:433–48.

- 708Wallèn B. Living roots in hummocks go down to water table, living roots in lawns go down ~15
- below table, to the lowest  $H_20$  table point. *Holarctic Ecol* 1987;**10**:73-9.
- 710 Weishaar JL, Aiken GR, Bergamaschi BA et al. Evaluation of specific ultraviolet absorbance as
- an indicator of the chemical composition and reactivity of dissolved organic carbon. *Environ Sci Technol* 2013;**37**:4702–8.
- 713 Weltzin JF, Bridgham SD, Pastor J et al. Potential effects of warming and drying on peatland
- plant community composition. *Global Change Biol* 2003;**9**:141–51.
- 715 White TJ, Bruns T, Lee S et al. Amplification and direct sequencing of fungal ribosomal RNA
- 716 genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds.). PCR protocols: a
- 717 guide to methods and applications. Orlando, Florida, USA: Academic Press, 1990, 315–22.
- 718 Zhang M, He Z. Characteristics of dissolved organic carbon revealed by ultraviolet-visible
- absorbance and fluorescence spectroscopy: the current status and future exploration. In: He Z,
- 720 Wu F (eds.). Labile Organic Matter- Chemical Compositions, Function, and Significance in
- 721 Soil and the Environment, SSSA Special Publication 62. Madison, WI, USA: Soil Science
- 722 Society of America, 2015, 1-21.

## 1 Table 1. Mixed model results for the effect of plant functional group (PFG), depth to water table (WT) and depth in the peat profile

| 2 | (Depth) on fungal community variables. <sup>abcd</sup> |
|---|--------------------------------------------------------|
| 2 | (Depth) on fungal community variables.                 |

| Response variable <sup>b</sup>          | PFG<br>( <i>F</i> <sub>2,15</sub> <i>P</i> ) | WT<br>( <i>F</i> <sub>1,15</sub> <i>P</i> ) | Depth $(F_{1,18} P)$ | PFG x WT $(F_{2,15} P)$ | PFG x Depth $(F_{2,18} P)$ | WT x Depth $(F_{1,18} P)$ | PFG x WT<br>x Depth<br>$(F_{2,18} P)$ |
|-----------------------------------------|----------------------------------------------|---------------------------------------------|----------------------|-------------------------|----------------------------|---------------------------|---------------------------------------|
| ITS1 gene abundance                     | 2.13 0.154                                   | 0.74 0.404                                  | 41.14 < <b>0.001</b> | 0.21 0.815              | 0.93 0.413                 | 2.54 0.129                | 0.79 0.468                            |
| Rarefied OTU richness                   | 2.44 0.121                                   | 1.48 0.243                                  | 0.03 0.855           | 0.28 0.760              | 0.43 0.658                 | 0.05 0.823                | 0.23 0.797                            |
| Pielou's OTU evenness                   | 1.21 0.325                                   | 3.34 <b>0.087</b>                           | 14.3 <b>0.001</b>    | 0.46 0.641              | 0.33 0.724                 | 0.00 0.901                | 0.78 0.475                            |
| OTU composition                         | 0.96 0.554                                   | 0.79 0.782                                  | 13.25 < <b>0.001</b> | 0.86 0.731              | 0.76 0.811                 | 0.89 0.552                | 0.91 0.585                            |
| OTU composition                         | 1.01 0.452                                   | 0.79 0.744                                  | 11.33 < <b>0.001</b> | 0.89 0.686              | 0.85 0.689                 | 0.95 0.502                | 0.92 0.570                            |
| Order composition                       | 1.74 <b>0.039</b>                            | 0.86 0.568                                  | 10.10 < <b>0.001</b> | 0.63 0.879              | 0.71 0.753                 | 1.13 0.339                | 0.75 0.715                            |
| Ericoid mycorrhizal fungi               |                                              |                                             |                      |                         |                            |                           |                                       |
| Relative abundance                      | 1.80 0.199                                   | 0.03 0.867                                  | 14.11 <b>0.001</b>   | 0.00 0.998              | 1.09 0.356                 | 0.04 0.843                | 2.68 <b>0.096</b>                     |
| qPCR-adjusted abundance                 | 2.09 0.158                                   | 0.43 0.524                                  | 40.22 < <b>0.001</b> | 0.03 0.969              | 1.46 0.258                 | 0.70 0.413                | 1.23 0.316                            |
| OTU richness                            | 0.26 0.773                                   | 0.47 0.502                                  | 9.05 <b>0.008</b>    | 0.22 0.803              | 0.73 0.494                 | 0.58 0.456                | 0.75 0.485                            |
| Root endophytes                         |                                              |                                             |                      |                         |                            |                           |                                       |
| Relative abundance                      | 1.42 0.271                                   | 0.30 0.594                                  | 102.6 < <b>0.001</b> | 0.53 0.598              | 1.49 0.251                 | 4.72 <i>0.043</i>         | 2.90 <b>0.081</b>                     |
| qPCR-adjusted abundance                 | 0.48 0.625                                   | 0.01 0.917                                  | 2.94 0.104           | 2.05 0.163              | 0.14 0.871                 | 0.03 0.861                | 0.23 0.796                            |
| OTU richness                            | 4.22 <b>0.035</b>                            | 1.34 0.265                                  | 39.11 < <b>0.001</b> | 0.137 0.873             | 1.00 0.387                 | 0.01 0.906                | 2.29 0.130                            |
| Total saprotrophs<br>Relative abundance | 1.08 0.366                                   | 1.21 0.289                                  | 35.1 < <b>0.001</b>  | 0.75 0.488              | 0.12 0.901                 | 0.34 0.565                | 0.80 0.465                            |
| qPCR-adjusted abundance                 | 0.01 0.986                                   | 4.71 <b>0.046</b>                           | 3.77 <b>0.068</b>    | 2.00 0.170              | 0.48 0.629                 | 3.79 <b>0.067</b>         | 2.52 0.109                            |
| OTU richness                            | 2.94 <b>0.083</b>                            | 2.40 0.142                                  | 15.37 <b>0.001</b>   | 2.12 0.154              | 0.31 0.739                 | 0.05 0.820                | 0.22 0.808                            |

| Rhizoscyphus ericae<br>Relative abundance | 0.22 0.804         | 0.00 0.959 | 40.77 < <b>0.001</b> | 0.51 0.608 | 1.32 0.291 | 0.50 0.487  | 1.49 0.251 |  |
|-------------------------------------------|--------------------|------------|----------------------|------------|------------|-------------|------------|--|
| qPCR-adjusted abundance                   | 1.01 0.389         | 0.11 0.749 | 65.96 < <b>0.001</b> | 0.15 0.862 | 1.73 0.205 | 0.06 0.815  | 1.46 0.259 |  |
| Sebacinales Group B                       |                    |            |                      |            |            |             |            |  |
| Relative abundance                        | 3.10 <b>0.075</b>  | 0.01 0.926 | 4.50 <b>0.050</b>    | 0.24 0.788 | 0.23 0.789 | 0.242 0.630 | 036 0.702  |  |
| qPCR-adjusted abundance                   | 3.85 <b>0.045</b>  | 0.10 0.753 | 20.95 < <b>0.001</b> | 0.13 0.881 | 0.69 0.515 | 1.22 0.284  | 0.21 0.816 |  |
| Oidiodendron maius                        | Oidiodendron maius |            |                      |            |            |             |            |  |
| Relative abundance                        | 1.72 0.212         | 0.69 0.419 | 14.75 <b>0.001</b>   | 0.19 0.825 | 1.50 0.249 | 2.68 0.119  | 0.70 0.510 |  |
| qPCR-adjusted abundance                   | 4.33 <i>0.033</i>  | 0.06 0.805 | 23.91 < <b>0.001</b> | 0.83 0.453 | 1.64 0.222 | 2.14 0.161  | 0.26 0.771 |  |
|                                           |                    |            |                      |            |            |             |            |  |

<sup>a</sup> Models included individual *mesocosm* (random effect) and *block* (fixed effect); no hypothesis test was applied to these factors.

2 <sup>b</sup> *F* for univariate variables are *F*-ratios for mixed linear models, and *F* for composition are pseudo-*F*-ratios from PERMANOVA.

<sup>c</sup> OTU = operational taxonomic unit.

4 <sup>d</sup> Bold indicate 0.1 > P > 0.05, and bold italics indicate  $P \le 0.05$ . Greater than 16% of the tests are significant at  $P \le 0.05$ , which is much

5 more than are expected by chance. Additionally, we emphasize that interpretation of 0.1 > P > 0.05 should be treated with caution.

|                              |       |                  |                   |                                 |                  |                   |                   |                  | Statistically |
|------------------------------|-------|------------------|-------------------|---------------------------------|------------------|-------------------|-------------------|------------------|---------------|
| Response                     | Depth | Ericaceae        | Ericaceae         | Sedge                           | Sedge            | Unmanipulated     | Unmanipulated     | Overall          | significant   |
| variable                     | (cm)  | High WT          | Low WT            | High WT                         | Low WT           | High WT           | Low WT            | mean             | factors       |
| DOC $(mgL^{-1})$             | 20    | $118.2 \pm 29.4$ | $112.0 \pm 25.1$  | $86.4 \pm 11.8$                 | $98.7 \pm 25.9$  | $112.7 \pm 28.3$  | $110.6 \pm 16.3$  | $106.4 \pm 23.7$ | D             |
|                              | 40    | $123.3\pm24.9$   | $119.8\pm25.7$    | $91.4 \pm 11.5$                 | $107.9 \pm 27.4$ | $119.9\pm31.3$    | $115.2\pm14.2$    | $112.9\pm23.6$   |               |
| <b>T 1 1</b>                 | •     | 10.00 0.55       | 20.20 4.55        | 10.11 0.00                      | 10.44 4.95       | 20.60 2.45        | 10 54 0 10        | 10.12 0.20       |               |
| Total phenolics              | 20    | $18.22 \pm 2.77$ | $20.39 \pm 4.57$  | $18.11 \pm 2.69$                | $19.44 \pm 4.25$ | $20.68 \pm 3.45$  | $19.74 \pm 3.18$  | $19.43 \pm 3.30$ |               |
| (mgL <sup>-</sup> )          | 40    | $19.32 \pm 2.10$ | $21.47 \pm 3.59$  | $17.72 \pm 3.01$                | $20.78 \pm 5.15$ | $21.06 \pm 3.51$  | $19.40 \pm 1.21$  | $19.96 \pm 3.23$ |               |
| E2:E3                        | 20    | $6.82\pm0.68$    | $6.47\pm0.92$     | $7.11 \pm 0.57$                 | $6.91 \pm 0.95$  | $6.59\pm0.88$     | $6.33 \pm 0.81$   | $6.71 \pm 0.77$  | D             |
|                              | 40    | $6.08 \pm 0.75$  | $5.75 \pm 0.86$   | $6.58 \pm 0.42$                 | $6.20 \pm 0.85$  | $5.92 \pm 0.93$   | $5.89 \pm 0.52$   | $6.07 \pm 0.71$  |               |
|                              |       |                  |                   |                                 |                  |                   |                   |                  |               |
| E4:E6                        | 20    | $4.34 \pm 0.50$  | $4.05\pm0.93$     | $4.55\pm\ 0.43$                 | $4.54 \pm 0.94$  | $4.37 \pm \ 0.94$ | $4.20\pm\ 0.95$   | $4.34~\pm~0.74$  | D             |
|                              | 40    | $4.86\pm0.66$    | $5.57 \pm 0.51$   | $5.08 \pm \ 0.69$               | $5.40 \pm 0.87$  | $5.17 \pm \ 0.78$ | $5.16 \pm \ 0.69$ | $5.21~\pm~0.67$  |               |
|                              |       |                  |                   |                                 |                  |                   |                   |                  |               |
| SUVA <sub>254</sub>          | 20    | $3.69 \pm 0.87$  | $4.27 \pm 0.30$   | $4.57 \pm 0.47$                 | $4.62 \pm 0.81$  | $4.17 \pm 0.70$   | $4.18 \pm 0.58$   | $4.25 \pm 0.66$  | D             |
|                              | 40    | $3.64 \pm 0.71$  | $3.95 \ \pm 0.42$ | $4.37 \hspace{0.1 in} \pm 0.29$ | $4.20 \pm 0.79$  | $3.99\pm0.66$     | $3.97\pm0.22$     | $4.02\pm0.54$    |               |
| $TDN (mal^{-1})$             | 20    | $2.27 \pm 0.04$  | $2.70 \pm 0.69$   | 257 + 057                       | 2 15 + 1 29      | $2.67 \pm 0.60$   | 2.05 + 0.57       | $2.02 \pm 0.70$  | n             |
| IDN (lligL)                  | 20    | 3.37 ± 0.94      | $2.79 \pm 0.08$   | $2.57 \pm 0.57$                 | $3.13 \pm 1.20$  | $2.07 \pm 0.09$   | $3.05 \pm 0.57$   | $2.93 \pm 0.79$  | D             |
|                              | 40    | $3.53 \pm 0.84$  | $3.04 \pm 0.78$   | $2.58 \pm 0.61$                 | $3.26 \pm 1.19$  | $3.01 \pm 0.94$   | $3.19 \pm 0.62$   | $3.10 \pm 0.81$  |               |
| <b>x x x + </b> <i>x -</i> 1 | •     | 0.45 0.05        | 0.05              | 0.04 0.10                       | 0.41 0.20        | 0.04 0.10         | 0.40 0.00         | 0.24 0.22        |               |
| $NH_4$ (mgL <sup>-</sup> )   | 20    | $0.47 \pm 0.35$  | $0.25 \pm 0.09$   | $0.24 \pm 0.18$                 | $0.41 \pm 0.30$  | $0.26 \pm 0.19$   | $0.40 \pm 0.22$   | $0.34 \pm 0.23$  |               |
|                              | 40    | $0.53\pm0.42$    | $0.36\pm0.16$     | $0.20\pm0.22$                   | $0.46\pm0.43$    | $0.25\pm0.26$     | $0.37\pm0.17$     | $0.36\pm0.29$    |               |
|                              |       |                  |                   |                                 |                  |                   |                   |                  |               |
| pH                           | 20    | $3.99 \pm 0.09$  | $3.79 \pm 0.07$   | $3.99 \pm 0.16$                 | $3.99 \pm 0.21$  | $3.74 \pm 0.09$   | $3.89 \pm 0.26$   | $3.88 \pm 0.17$  | D, PFGxD,     |
|                              | 40    | $3.81\pm0.04$    | $3.74\pm0.11$     | $3.87\pm0.10$                   | $3.85\pm0.13$    | $3.81\pm0.10$     | $3.84\pm0.17$     | $3.82\pm0.11$    | PFGxWTxD      |
|                              |       |                  |                   |                                 |                  |                   |                   |                  |               |
| Temperature °C               | 20    | $18.33\pm2.25$   | $17.86\pm0.51$    | $18.19 \pm 1.06$                | $18.13\pm0.16$   | $18.64\pm0.66$    | $17.96 \pm 0.43$  | $18.19\pm0.99$   | D             |
|                              | 40    | $17.41 \pm 1.46$ | $17.41\pm0.45$    | $17.32\pm0.34$                  | $17.35\pm0.26$   | $17.85\pm0.82$    | $17.40\pm0.4$     | $17.45\pm0.69$   |               |
|                              |       |                  |                   |                                 |                  |                   |                   |                  |               |
| Von Post <sup>c</sup>        | 10-20 |                  |                   |                                 |                  |                   |                   | $2.88 \pm 0.95$  | D             |
|                              | 30-40 |                  |                   |                                 |                  |                   |                   | $5.04 \pm 1.00$  |               |
|                              |       |                  |                   |                                 |                  |                   |                   |                  |               |

Table 2. Pore water and other peat variables (mean  $\pm$  1SD).

- 1 <sup>a</sup> DOC = dissolved organic carbon, E2:E3 = ratio of absorption spectra at  $\lambda$  = 254 nm to  $\lambda$  = 365 nm, E4:E6 = ratio of absorption
- 2 spectra at  $\lambda = 465$  nm to  $\lambda = 665$  nm, SUVA<sub>254</sub> = specific ultraviolet absorbance calculated as absorption spectra at  $\lambda = 254$  nm divided
- 3 by the DOC, TDN = total dissolved nitrogen.
- 4 <sup>b</sup> Results of mixed model analyses or a permutation-based paired *t*-test (Von Post only), see Table S2. Bold indicate 0.1>*P* >0.05, and
- 5 bold italics indicate  $P \le 0.05$ . D = depth in peat profile, PFG = plant functional group, WT = water table manipulation. An "x"
- 6 indicates interactions between factors.
- 7 <sup>c</sup> The Von Post humification index was quantified on samples taken prior to experimental manipulation, so its values are averages by
- 8 depth only.

## 1 Figure Legends

| 2  | Figure 1. Composition by relative abundance and number of OTUs (operational taxonomic                              |
|----|--------------------------------------------------------------------------------------------------------------------|
| 3  | units), of the rarefied sequence matrix. OTUs are grouped by class, unless otherwise noted.                        |
| 4  | Graphs are ordered from bottom to top by decreasing number of total sequences per class.                           |
| 5  | Figure 2. Total ITS1 gene abundance from qPCR (a), as well as OTU richness (b) and evenness                        |
| 6  | (c), for each factor-level combination and averaged by depth. Bars are means $\pm 1$ standard                      |
| 7  | error of the raw data. * indicates a significant (alpha $\leq 0.05$ ) main effect of sampling depth.               |
| 8  | Figure 3. Non-metric multidimensional scaling (NMDS) ordinations of fungal OTU (a) and order                       |
| 9  | (b) composition. Arrows represent vectors of variables with their lengths scaled to their                          |
| 10 | relative magnitude (TDN = total dissolved nitrogen, DOC = dissolved organic carbon, Temp.                          |
| 11 | = temperature, VP = von Post score). The locations of individual taxa with the highest                             |
| 12 | indicator values for each depth are plotted by their OTU code numbers or the first four letters                    |
| 13 | of their order (red = 10-20 cm indicators, blue = 30-40 cm indicators; Arch =                                      |
| 14 | $\label{eq:action} Archaeorhizomycetales\ ,\ Seba = Sebacinales\ ,\ Rhyt = Rhytismatales\ ,\ Xyla = Xylariales\ ,$ |
| 15 | Polyporales = Poly.). See Tables S1 and S2, Supplementary Material, for OTU taxonomy and                           |
| 16 | indicator species analysis results. WT was not a significant factor and is omitted for clarity of                  |
| 17 | presentation.                                                                                                      |
| 18 | Figure 4. Relative abundance, qPCR-adjusted abundance, and richness of ericoid mycorrhizal                         |
| 19 | fungi (ErMF; a,b,c), root endophytes (d,e,f) and saprotrophic fungi (f,g,h) for each factor-                       |
| 20 | level combination and averaged by depth. Note the variation in y-axis scales. Bars are means                       |
| 21 | $\pm$ 1 standard error. * indicates a significant (alpha $\leq$ 0.05) main effect of sampling depth; see           |
| 22 | Table S3, Supplementary Material, for pair-wise post hoc tests between specific factor-level                       |
| 23 | combinations.                                                                                                      |

| 1 | Figure 5. Relative and qPCR-adjusted abundances of the most common ericoid mycorrhizal                    |
|---|-----------------------------------------------------------------------------------------------------------|
| 2 | fungal lineages in our study: Rhizocyphus ericae (a), Sebacinales group B (b), Oidiodendron               |
| 3 | maius (c), for each factor-level combination and pooled by depth. Note the variation in y-axis            |
| 4 | scales. Bars are means $\pm 1$ standard error. * indicates a significant (alpha $\leq 0.05$ ) main effect |
| 5 | of sampling depth; see Table S3, Supplementary Material, for pair-wise post hoc tests                     |
| 6 | between specific factor-level combinations.                                                               |
|   |                                                                                                           |



### 2 Figure 1.







1 Figure 2







1 Figure 4

1 Figure 5



1 Table S2. Peat depth indicator species analysis results for operational taxonomic units (OTUs) and orders, listed from highest to

| OTU code # | Indicator<br>specificity | Indicator<br>fidelity | Indicator<br>value | <i>P</i> -value | Indicator<br>peat<br>depth<br>(cm) | Taxonomy <sup>a</sup>                                                                                                                              | Functional<br>group <sup>b</sup> |
|------------|--------------------------|-----------------------|--------------------|-----------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 38         | 0.981                    | 0.958                 | 0.969              | 0.0001          | 10-20                              | k_Fungi; p_Basidiomycota; c_Agaricomycetes;<br>o_Sebacinales; f_Sebacinales Group B;<br>g_unidentified; s_Sebacinales Group B sp                   | ĒrMF                             |
| 5          | 0.865                    | 1.000                 | 0.930              | 0.0071          | 10-20                              | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae                                   | ErMF                             |
| 24         | 0.895                    | 0.958                 | 0.926              | 0.0023          | 10-20                              | k_Fungi; p_Basidiomycota; c_Agaricomycetes;<br>o_Sebacinales; f_Sebacinales Group B;<br>g_unidentified; s_Sebacinales Group B sp                   | ErMF                             |
| 4          | 0.855                    | 1.000                 | 0.924              | 0.0004          | 10-20                              | k_Fungi; p_Ascomycota; c_Archaeorhizomycetes;<br>o_Archaeorhizomycetales; f_Archaeorhizomycetaceae;<br>g_Archaeorhizomyces; s_Archaeorhizomyces sp | Unknown                          |
| 37         | 0.852                    | 1.000                 | 0.923              | 0.0002          | 10-20                              | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp                                       | ErMF                             |
| 102        | 0.949                    | 0.875                 | 0.911              | 0.0001          | 10-20                              | k_Fungi                                                                                                                                            | Unknown                          |
| 81         | 0.952                    | 0.833                 | 0.891              | 0.0004          | 10-20                              | k_Fungi; p_Ascomycota; c_Dothideomycetes;<br>o_Incertae sedis; f_Myxotrichaceae; g_Oidiodendron;<br>s_Oidiodendron maius                           | ErMF                             |
| 7          | 0.905                    | 0.875                 | 0.890              | 0.0239          | 10-20                              | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae                                   | ErMF                             |
| 55         | 0.920                    | 0.792                 | 0.853              | 0.0052          | 10-20                              | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales                                                                                            | Unknown                          |
| 197        | 0.912                    | 0.792                 | 0.849              | 0.0002          | 10-20                              | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae                                   | ErMF                             |
| 10         | 0.711                    | 1.000                 | 0.843              | 0.0012          | 10-20                              | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp                                       | ErMF                             |
| 52         | 0.808                    | 0.833                 | 0.821              | 0.0209          | 10-20                              | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales                                                                                            | Unknown                          |
| 172        | 0.952                    | 0.708                 | 0.821              | 0.0001          | 10-20                              | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae                                   | ErMF                             |
| 94         | 0.832                    | 0.792                 | 0.812              | 0.006           | 10-20                              | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Rhytismatales; f_Rhytismataceae; g_Colpoma;<br>s_Colpoma sp                                           | Plant pathogen                   |

2 lowest indicator value within each peat depth.

|   | 104 | 0.979 | 0.667 | 0.808 | 0.0031 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;                                        | ErMF                  |
|---|-----|-------|-------|-------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|   | 87  | 0.919 | 0.708 | 0.807 | 0.037  | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae               | ErMF                  |
|   | 219 | 0.812 | 0.792 | 0.802 | 0.0003 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp                   | ErMF                  |
|   | 90  | 0.957 | 0.667 | 0.799 | 0.0097 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Dermateaceae; g_Phaeomollisia;<br>s_Phaeomollisia piceae            | Saprotroph            |
|   | 30  | 0.878 | 0.708 | 0.788 | 0.0494 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales                                                                        | Unknown               |
|   | 150 | 0.920 | 0.667 | 0.783 | 0.0025 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s Rhizoscyphus ericae               | ErMF                  |
|   | 106 | 0.816 | 0.750 | 0.782 | 0.0175 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_unidentified; g_unidentified;<br>s_Helotiales sp                    | Unknown               |
|   | 264 | 0.723 | 0.833 | 0.776 | 0.0011 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus                                         | ErMF                  |
|   | 123 | 0.683 | 0.875 | 0.773 | 0.0249 | 10-20 | k_Fungi; p_Basidiomycota; c_Agaricomycetes;<br>o_Polyporales; f_Ganodermataceae; g_Ganoderma;<br>s_Ganoderma lucidum           | Saprotroph, white rot |
|   | 162 | 0.935 | 0.625 | 0.765 | 0.0008 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Incertae sedis; g_Cystodendron;<br>s_Cystodendron sp EXP0561F       | Pathotroph            |
|   | 151 | 0.853 | 0.667 | 0.754 | 0.0097 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Meliniomyces;<br>s_Meliniomyces variabilis           | ErMF                  |
|   | 124 | 0.950 | 0.583 | 0.744 | 0.0065 | 10-20 | k_Fungi; p_Ascomycota; c_Pezizomycetes;<br>o_Pezizales; f_Sarcosomataceae; g_Pseudoplectania;<br>s_Pseudoplectania episphagnum | Saprotroph            |
|   | 223 | 0.924 | 0.583 | 0.734 | 0.0017 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae               | ErMF                  |
|   | 134 | 0.917 | 0.583 | 0.731 | 0.0065 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae               | ErMF                  |
|   | 211 | 0.755 | 0.708 | 0.731 | 0.0074 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales                                                                        | Unknown               |
| Γ | 182 | 0.795 | 0.667 | 0.728 | 0.0104 | 10-20 | k_Fungi; p_Ascomycota                                                                                                          | Unknown               |
|   | 142 | 0.977 | 0.542 | 0.727 | 0.0046 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae               | ErMF                  |
| F | 240 | 0.904 | 0.583 | 0.726 | 0.0022 | 10-20 | k Fungi; p Basidiomycota                                                                                                       | Unknown               |
|   | 260 | 0.900 | 0.583 | 0.725 | 0.0017 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;                                        | ErMF                  |

|     |       |       |       |        |       | sRhizoscyphus ericae                                                                                                     |            |
|-----|-------|-------|-------|--------|-------|--------------------------------------------------------------------------------------------------------------------------|------------|
| 146 | 0.892 | 0.583 | 0.721 | 0.0068 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae         | ErMF       |
| 227 | 0.823 | 0.625 | 0.717 | 0.0219 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae         | ErMF       |
| 117 | 0.747 | 0.667 | 0.706 | 0.0195 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales                                                                  | Unknown    |
| 193 | 0.742 | 0.667 | 0.703 | 0.0137 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae                                                   | Unknown    |
| 371 | 0.889 | 0.542 | 0.694 | 0.0022 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp             | ErMF       |
| 229 | 0.877 | 0.542 | 0.689 | 0.0028 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Incertae sedis; g_Catenulifera;<br>s_Catenulifera sp          | Saprotroph |
| 252 | 0.922 | 0.500 | 0.679 | 0.0027 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae         | ErMF       |
| 161 | 0.844 | 0.542 | 0.676 | 0.0067 | 10-20 | kFungi                                                                                                                   | Unknown    |
| 346 | 0.976 | 0.458 | 0.669 | 0.0015 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus                                   | ErMF       |
| 160 | 0.807 | 0.542 | 0.661 | 0.032  | 10-20 | k_Fungi; p_Ascomycota                                                                                                    | Unknown    |
| 316 | 0.918 | 0.458 | 0.649 | 0.0203 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s Rhizoscyphus ericae         | ErMF       |
| 62  | 0.998 | 0.417 | 0.645 | 0.0078 | 10-20 | k_Fungi; p_Ascomycota; c_Sordariomycetes;<br>o_Xylariales; f_Hyponectriaceae; g_Physalospora;<br>s_Physalospora vaccinii | Saprotroph |
| 222 | 1.000 | 0.417 | 0.645 | 0.001  | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_unidentified;<br>s_Helotiaceae sp              | Unknown    |
| 347 | 1.000 | 0.417 | 0.645 | 0.0003 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae         | ErMF       |
| 364 | 0.829 | 0.500 | 0.644 | 0.0128 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales                                                                  | Unknown    |
| 377 | 0.808 | 0.500 | 0.635 | 0.0112 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales                                                                  | Unknown    |
| 248 | 0.942 | 0.417 | 0.627 | 0.0105 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae         | ErMF       |
| 308 | 0.927 | 0.417 | 0.621 | 0.0235 | 10-20 | k_Fungi; p_Basidiomycota; c_Agaricomycetes                                                                               | Unknown    |
| 401 | 1.000 | 0.375 | 0.612 | 0.0017 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae         | ErMF       |
| 629 | 1.000 | 0.375 | 0.612 | 0.0012 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales                                                                  | Unknown    |
|     |       |       |       |        |       |                                                                                                                          |            |

| 157 | 0.978 | 0.375 | 0.606 | 0.0153 | 10-20 | k_Fungi; p_Ascomycota; c_Sordariomycetes;                                                                                                          | Unknown         |
|-----|-------|-------|-------|--------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|     |       |       |       |        |       | s Chaetosphaeriales sp                                                                                                                             |                 |
| 331 | 0.800 | 0.458 | 0.606 | 0.0314 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;                                                            | ErMF            |
| 426 | 0.962 | 0.375 | 0.600 | 0.0059 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae                                   | ErMF            |
| 128 | 0.926 | 0.375 | 0.589 | 0.0392 | 10-20 | k_Fungi; p_Basilomycota; c_Agaricomycetes;<br>o Agaricales                                                                                         | Unknown         |
| 257 | 0.897 | 0.375 | 0.580 | 0.0246 | 10-20 | k_Fungi; p_Ascomycota                                                                                                                              | Unknown         |
| 198 | 0.972 | 0.333 | 0.569 | 0.0374 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s Rhizoscyphus ericae                                   | ErMF            |
| 357 | 0.850 | 0.375 | 0.565 | 0.0416 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales                                                                                            | Unknown         |
| 224 | 0.944 | 0.333 | 0.561 | 0.0318 | 10-20 | k_Fungi; p_Ascomycota; c_Archaeorhizomycetes;<br>o_Archaeorhizomycetales; f_Archaeorhizomycetaceae;<br>g_Archaeorhizomyces; s_Archaeorhizomyces sp | Unknown         |
| 187 | 0.906 | 0.333 | 0.550 | 0.0251 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus ericae                                   | ErMF            |
| 515 | 1.000 | 0.292 | 0.540 | 0.0106 | 10-20 | k_Fungi; p_Basidiomycota; c_Agaricomycetes;<br>o_Agaricales; f_Clavariaceae; g_Clavaria;<br>s_Clavaria acuta                                       | Saprotroph      |
| 525 | 1.000 | 0.292 | 0.540 | 0.0102 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_unidentified;<br>s_Helotiaceae sp                                        | Unknown         |
| 624 | 1.000 | 0.292 | 0.540 | 0.0096 | 10-20 | k_Fungi; p_Ascomycota; c_Pezizomycetes;<br>o_Pezizales; f_Sarcosomataceae; g_Urnula;<br>s_Urnula craterium                                         | Saprotroph      |
| 414 | 0.938 | 0.292 | 0.523 | 0.0285 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Vibrisseaceae; g_Phialocephala;<br>s_Phialocephala hiberna                              | Root endophyte  |
| 362 | 1.000 | 0.250 | 0.500 | 0.0258 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales                                                                                            | Unknown         |
| 453 | 1.000 | 0.250 | 0.500 | 0.0241 | 10-20 | k_Fungi; p_Ascomycota; c_Sordariomycetes;<br>o_Hypocreales; f_Clavicipitaceae; g_Pochonia;<br>s_Pochonia bulbillosa                                | Animal pathogen |
| 467 | 1.000 | 0.250 | 0.500 | 0.0213 | 10-20 | k_Fungi; p_Ascomycota; c_Dothideomycetes;<br>o_Capnodiales                                                                                         | Unknown         |
| 544 | 1.000 | 0.250 | 0.500 | 0.0239 | 10-20 | kFungi                                                                                                                                             | Unknown         |
| 557 | 1.000 | 0.250 | 0.500 | 0.0227 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp                                       | ErMF            |
| 567 | 1.000 | 0.250 | 0.500 | 0.0224 | 10-20 | k_Fungi; p_Basidiomycota                                                                                                                           | Unknown         |
| 752 | 1.000 | 0.250 | 0.500 | 0.0216 | 10-20 | k_Fungi                                                                                                                                            | Unknown         |
| 354 | 0.970 | 0.250 | 0.492 | 0.0473 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                                                                                            | ErMF            |

| r   |       | 1     |       |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|-----|-------|-------|-------|--------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|     |       |       |       |        |       | o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 575 | 1.000 | 0.208 | 0.456 | 0.0480 | 10.20 | sRnizoscypnus ericae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E-ME                        |
| 575 | 1.000 | 0.208 | 0.436 | 0.0489 | 10-20 | K_Fungl; p_Ascomycola; c_Leonomyceles;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EIMF                        |
|     |       |       |       |        |       | <ul> <li>Meliniomyces variabilis</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
| 636 | 1.000 | 0.208 | 0.456 | 0.0483 | 10-20 | k Eungi: p Ascomycota: c Leotiomycetes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ErME                        |
| 050 | 1.000 | 0.200 | 0.450 | 0.0405 | 10-20 | o Helotiales: f Helotiaceae: g Rhizoscyphus:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LIMI                        |
|     |       |       |       |        |       | s Rhizoscyphus sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
| 18  | 0.989 | 1.000 | 0.995 | 0.0001 | 30-40 | k Fungi; p Basidiomycota; c Agaricomycetes;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Saprotroph, white           |
| -   |       |       |       |        |       | o Polyporales; f Phanerochaetaceae;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rot                         |
|     |       |       |       |        |       | gPhanerochaete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
| 8   | 0.951 | 1.000 | 0.975 | 0.0001 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Saprotroph                  |
|     |       |       |       |        |       | o_Helotiales; f_Helotiaceae; g_Hymenoscyphus;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
|     |       |       |       |        |       | sHymenoscyphus sp aurim710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 9   | 0.978 | 0.958 | 0.968 | 0.0001 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Root endophyte              |
|     |       |       |       |        |       | <ul> <li>Melotiales; f_Vibrisseaceae; g_Phialocephala;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|     |       |       |       |        |       | sPhialocephala hiberna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
| 13  | 0.937 | 1.000 | 0.968 | 0.0001 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ErMF                        |
|     |       |       |       |        |       | <ul> <li>Melotiales; f_Helotiaceae; g_Rhizoscyphus;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
|     |       |       |       |        |       | sRhizoscyphus sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
| 19  | 0.976 | 0.958 | 0.967 | 0.0001 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Saprotroph                  |
|     |       |       |       |        |       | oHelotiales; fHelotiaceae; gAscocoryne;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| 66  | 0.084 | 0.017 | 0.050 | 0.0001 | 20.40 | s_Ascocoryne sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Linknown                    |
| 44  | 0.984 | 0.917 | 0.930 | 0.0001 | 30-40 | k_Fungi, p_Basidiomycola, c_Agaricomyceles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dikilowii<br>Root andonbuta |
| 44  | 0.981 | 0.917 | 0.946 | 0.0001 | 30-40 | K_Fuligi, p_Ascomycola, c_Leonomyceles, A scomycola, c_Leonomyceles,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Root endopriyte             |
|     |       |       |       |        |       | s_Leptodontidium sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
| 125 | 0.981 | 0.917 | 0.948 | 0.0001 | 30-40 | k Fungi: n Ascomycota: c Leotiomycetes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Root endophyte              |
| 120 | 01201 | 0.717 | 01910 | 0.0001 | 20 10 | o Helotiales; f Vibrisseaceae; g Phialocephala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | resor endopriyee            |
| 69  | 0.899 | 0.958 | 0.928 | 0.0001 | 30-40 | k Fungi; p Basidiomycota; c Agaricomycetes;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Saprotroph, white           |
|     |       |       |       |        |       | o_Agaricales; f_Strophariaceae; g_Hypholoma;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rot                         |
|     |       |       |       |        |       | s_Hypholoma udum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
| 75  | 0.984 | 0.875 | 0.928 | 0.0001 | 30-40 | k_Fungi; p_Ascomycota; c_Sordariomycetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unknown                     |
| 92  | 0.948 | 0.875 | 0.911 | 0.0001 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Root endophyte              |
|     |       |       |       |        |       | o_Helotiales; f_Vibrisseaceae; g_Phialocephala;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|     |       |       |       |        |       | sPhialocephala hiberna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
| 45  | 0.960 | 0.833 | 0.894 | 0.0001 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Saprotroph                  |
|     |       |       |       |        |       | o_Helotiales; f_Helotiaceae; g_Hymenoscyphus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 16  | 0.829 | 0.958 | 0.891 | 0.0037 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Root endophyte              |
|     |       |       |       |        |       | o_Helotiales; f_Vibrisseaceae; g_Phialocephala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
| 6   | 0.783 | 1.000 | 0.885 | 0.0308 | 30-40 | k_Fungi; p_Basidiomycota; c_Agaricomycetes;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Saprotroph, white           |
|     |       |       |       |        |       | o_Polyporales; t_Meruliaceae; g_Hypochnicium;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rot                         |
| 11  | 0.080 | 0.702 | 0.995 | 0.0002 | 20,40 | sHypochnicium albostramineum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TT.1                        |
| 11  | 0.989 | 0.792 | 0.885 | 0.0003 | 30-40 | K_Fungi; p_Ascomycota; c_Leotiomycetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unknown                     |
| 85  | 0.981 | 0.792 | 0.881 | 0.0001 | 30-40 | Krungi; pAscomycota; CLeonomycetes;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unknown                     |
| 41  | 0.011 | 0.792 | 0.840 | 0.0021 | 30.40 | k Eungi: n Ascomycota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unknown                     |
| 100 | 0.911 | 0.792 | 0.049 | 0.0021 | 30.40 | k Eungi: n Ascomycota: c Eurotiomycota:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Saprotroph                  |
| 100 | 0.920 | 0.708 | 0.810 | 0.0007 | 50-40 | o Eurotiales f Trichocomaceae g Penicillium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Saprouopii                  |
| L   | 1     |       | 1     |        |       | ointerior of the second condition of the second secon | 1                           |

|     |       |       |       |        |       | sPenicillium spinulosum                                                                                                |                       |
|-----|-------|-------|-------|--------|-------|------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 40  | 0.982 | 0.667 | 0.809 | 0.0037 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes                                                                                 | Unknown               |
| 144 | 0.978 | 0.667 | 0.808 | 0.0001 | 30-40 | k_Fungi; p_Ascomycota; c_Sordariomycetes;<br>o_Coniochaetales; f_Coniochaetaceae;<br>g_Lecythophora; s_Lecythophora sp | Root endophyte        |
| 153 | 0.733 | 0.875 | 0.801 | 0.0018 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_unidentified;<br>s_Helotiaceae sp            | Unknown               |
| 111 | 0.895 | 0.708 | 0.796 | 0.0009 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp           | ErMF                  |
| 56  | 0.864 | 0.708 | 0.782 | 0.0112 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Vibrisseaceae; g_Phialocephala;<br>s_Phialocephala hiberna  | Root endophyte        |
| 267 | 0.891 | 0.667 | 0.771 | 0.0001 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp           | ErMF                  |
| 147 | 0.832 | 0.708 | 0.768 | 0.0004 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp           | ErMF                  |
| 170 | 1.000 | 0.583 | 0.764 | 0.0001 | 30-40 | k_Fungi; p_Ascomycota                                                                                                  | Unknown               |
| 195 | 0.766 | 0.750 | 0.758 | 0.0015 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_unidentified;<br>s_Helotiaceae sp            | Unknown               |
| 164 | 0.842 | 0.667 | 0.749 | 0.0049 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp           | ErMF                  |
| 225 | 0.896 | 0.625 | 0.748 | 0.0007 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o Helotiales; f Vibrisseaceae; g Phialocephala                              | Root endophyte        |
| 118 | 0.608 | 0.917 | 0.747 | 0.0277 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_unidentified;<br>s_Helotiaceae sp            | Unknown               |
| 241 | 0.923 | 0.583 | 0.734 | 0.0002 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae                                                 | Unknown               |
| 234 | 0.959 | 0.542 | 0.721 | 0.0001 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Ascocoryne;<br>s_Ascocoryne sp               | Saprotroph            |
| 194 | 0.729 | 0.708 | 0.719 | 0.0154 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp           | ErMF                  |
| 206 | 0.880 | 0.583 | 0.716 | 0.0047 | 30-40 | k_Fungi; p_Basidiomycota; c_Agaricomycetes;<br>o_Agaricales; f_Pleurotaceae; g_Pleurotus;<br>s_Pleurotus ostreatus     | Saprotroph, white rot |
| 338 | 0.929 | 0.542 | 0.709 | 0.0005 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Vibrisseaceae; g_Phialocephala                              | Root endophyte        |
| 312 | 1.000 | 0.500 | 0.707 | 0.0001 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae                                                 | Unknown               |

| 80  | 0.984 | 0.500 | 0.701 | 0.0035 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Incertae sedis; g_Leptodontidium;                               | Root endophyte        |
|-----|-------|-------|-------|--------|-------|----------------------------------------------------------------------------------------------------------------------------|-----------------------|
|     |       |       |       |        |       | sLeptodontidium sp                                                                                                         |                       |
| 418 | 0.900 | 0.542 | 0.698 | 0.0007 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_unidentified;<br>s_Helotiaceae sp                | Unknown               |
| 221 | 0.772 | 0.625 | 0.695 | 0.0084 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_unidentified;<br>s_Helotiaceae sp                | Unknown               |
| 349 | 0.958 | 0.500 | 0.692 | 0.0005 | 30-40 | k_Fungi; p_Basidiomycota; c_Agaricomycetes;<br>o_Agaricales; f_Strophariaceae; g_Gymnopilus                                | Saprotroph, white rot |
| 22  | 0.996 | 0.458 | 0.676 | 0.0435 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales                                                                    | Unknown               |
| 324 | 0.909 | 0.500 | 0.674 | 0.0007 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_unidentified;<br>s_Helotiaceae sp                | Unknown               |
| 337 | 0.968 | 0.458 | 0.666 | 0.0009 | 30-40 | k_Fungi; p_Basidiomycota; c_Agaricomycetes;<br>o_Agaricales; f_Strophariaceae; g_Hypholoma;<br>s_Hypholoma sp              | Saprotroph, white rot |
| 278 | 0.708 | 0.625 | 0.665 | 0.0438 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o Helotiales                                                                    | Unknown               |
| 199 | 0.851 | 0.500 | 0.652 | 0.005  | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Hymenoscyphus;<br>s_Hymenoscyphus sp aurim710    | Saprotroph            |
| 470 | 1.000 | 0.417 | 0.645 | 0.0005 | 30-40 | kFungi; p_Basidiomycota                                                                                                    | Unknown               |
| 226 | 0.892 | 0.458 | 0.639 | 0.0059 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Vibrisseaceae; g_Phialocephala                                  | Root endophyte        |
| 273 | 0.958 | 0.417 | 0.632 | 0.0023 | 30-40 | k_Fungi; p_Basidiomycota; c_Agaricomycetes                                                                                 | Unknown               |
| 398 | 0.955 | 0.417 | 0.631 | 0.0028 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp               | ErMF                  |
| 381 | 0.857 | 0.458 | 0.627 | 0.0053 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp               | ErMF                  |
| 23  | 0.842 | 0.458 | 0.621 | 0.037  | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Incertae sedis; f_Incertae sedis; g_Geniculospora;<br>s_Geniculospora grandis | Saprotroph            |
| 289 | 0.909 | 0.417 | 0.615 | 0.0045 | 30-40 | k_Fungi; p_Ascomycota; c_Pezizomycetes;<br>o_Pezizales; f_Pyronemataceae; g_Scutellinia;<br>s_Scutellinia sp               | Saprotroph            |
| 145 | 1.000 | 0.375 | 0.612 | 0.0015 | 30-40 | kFungi; pAscomycota                                                                                                        | Unknown               |
| 286 | 1.000 | 0.375 | 0.612 | 0.0014 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Hymenoscyphus;<br>s_Hymenoscyphus sp aurim710    | Saprotroph            |
| 405 | 1.000 | 0.375 | 0.612 | 0.0017 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;<br>s_Rhizoscyphus sp               | ErMF                  |
| 237 | 0.742 | 0.500 | 0.609 | 0.0257 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Vibrisseaceae; g_Phialocephala                                  | Root endophyte        |

| 61            | 0.986  | 0.375  | 0.608 | 0.0242 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                   | Saprotroph        |
|---------------|--------|--------|-------|--------|-------|---------------------------------------------------------------------------|-------------------|
|               |        |        |       |        |       | oHelotiales; fHelotiaceae; gAscocoryne;                                   |                   |
| 314           | 0.763  | 0.458  | 0 591 | 0.0362 | 30-40 | k Fungi: n Ascomycota: c Eurotiomycetes:                                  | Saprotroph        |
| 514           | 0.765  | 0.150  | 0.571 | 0.0502 | 50 40 | o Eurotiales; f Trichocomaceae; g Aspergillus;                            | Suplotoph         |
|               |        |        |       |        |       | s_Aspergillus cibarius                                                    |                   |
| 530           | 1.000  | 0.333  | 0.577 | 0.0037 | 30-40 | k_Fungi; p_Basidiomycota; c_Agaricomycetes;                               | Saprotroph, white |
|               |        |        |       |        |       | o_Agaricales; f_Strophariaceae; g_Hypholoma;                              | rot               |
|               |        |        |       |        |       | sHypholoma udum                                                           |                   |
| 291           | 0.875  | 0.375  | 0.573 | 0.0243 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                   | Unknown           |
|               |        |        |       |        |       | o_Helotiales                                                              |                   |
| 313           | 0.938  | 0.333  | 0.559 | 0.0261 | 30-40 | k_Fungi                                                                   | Unknown           |
| 394           | 0.833  | 0.375  | 0.559 | 0.0215 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Vibrisseaceae  | Unknown           |
| 442           | 0.929  | 0.333  | 0.556 | 0.014  | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                   | ErMF              |
|               |        |        |       |        |       | o_Helotiales; f_Helotiaceae; g_Rhizoscyphus;                              |                   |
| 200           | 0.005  | 0.000  | 0.542 | 0.0000 | 20.40 | sRhizoscyphus sp                                                          |                   |
| 380           | 0.885  | 0.333  | 0.543 | 0.0389 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales; f_Incertae sedis | Unknown           |
| 283           | 0.969  | 0.292  | 0.532 | 0.0154 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes                                    | Unknown           |
| 396           | 0.960  | 0.292  | 0.529 | 0.0196 | 30-40 | k_Fungi; p_Ascomycota; c_Pezizomycetes;                                   | Saprotroph        |
|               |        |        |       |        |       | o_Pezizales; f_Pyronemataceae; g_Scutellinia;                             |                   |
|               |        |        |       |        |       | sScutellinia sp                                                           |                   |
| 606           | 1.000  | 0.250  | 0.500 | 0.0214 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;<br>o_Helotiales                   | Unknown           |
| 612           | 1.000  | 0.250  | 0.500 | 0.0218 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                   | Unknown           |
|               |        |        |       |        |       | oHelotiales; fHelotiaceae                                                 |                   |
| 667           | 1.000  | 0.250  | 0.500 | 0.0214 | 30-40 | k_Fungi; p_Ascomycota; c_Eurotiomycetes;                                  | Saprotroph        |
|               |        |        |       |        |       | <ul> <li>o_Eurotiales; f_Trichocomaceae; g_Penicillium;</li> </ul>        |                   |
|               |        |        |       |        |       | sPenicillium melinii                                                      |                   |
| 97            | 1.000  | 0.208  | 0.456 | 0.0499 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                   | Root endophyte,   |
|               |        |        |       |        |       | oHelotiales; fVibrisseaceae; gAcephala;                                   | Ectomycorrhizal   |
| 202           | 1 000  | 0.208  | 0.456 | 0.0497 | 20.40 | s_Acephaia sp 1                                                           | Unknown           |
| 595           | 1.000  | 0.208  | 0.430 | 0.0487 | 50-40 | o Helotiales                                                              | Unknown           |
| 792           | 1.000  | 0.208  | 0.456 | 0.0489 | 30-40 | k_Fungi; p_Ascomycota; c_Leotiomycetes                                    | Unknown           |
| 799           | 1.000  | 0.208  | 0.456 | 0.0464 | 30-40 | k_Fungi                                                                   | Unknown           |
|               |        |        |       |        |       |                                                                           |                   |
| Archaeorhizo- | 0.8545 | 1      | 0.924 | 0.0003 | 10-20 | k Fungi: p Ascomycota : Archaeorhizomycetes:                              |                   |
| mycetales     |        |        |       |        |       | o Archaeorhizomycetales                                                   |                   |
| Sebacinales   | 0.7335 | 1      | 0.856 | 0.0375 | 10-20 | k_Fungi; p_Basidiomycota; c_Agaricomycetes;                               |                   |
|               |        |        |       |        |       | o_Sebacinales                                                             |                   |
| Rhytismatales | 0.823  | 0.7917 | 0.807 | 0.0078 | 10-20 | k_Fungi; p_Ascomycota; c_Leotiomycetes;                                   |                   |
|               |        |        |       |        |       | oRhytismatales                                                            |                   |
| Xylariales    | 0.9979 | 0.4583 | 0.676 | 0.0033 | 10-20 | kFungi; pAscomycota; cSordariomycetes;                                    |                   |
|               |        |        |       |        |       | o_Xylariales                                                              |                   |
| Polyporales   | 0.8216 | 1      | 0.906 | 0.0059 | 30-40 | k_Fungi; p_Basidiomycota; c_Agaricomycetes;                               |                   |
|               |        |        | I     |        |       | o_Polyporales                                                             |                   |

- <sup>a</sup>Taxonomy is arranged in order by kingdom, phylum, class, order, family, genus and species, with the initial of the taxonomic ranking
- 2 preceding each name. Taxonomy is based on RDP classifier assignments.
- <sup>3</sup> <sup>b</sup>Functional assignments should be treated as putative. ErMF = ericoid mycorrhizal fungus.
- 4

1 Table S3. Least squares means for post hoc tests. Factor-level combinations that do not share a

2 group number within a comparison are considered significantly different as a given alpha-level.

3 The multivariate *t*-test method was used to correct for multiple comparisons, within a set of tests.

#### (a) Root endophyte relative abundance

Among WT x Depth factor levels, within PFG

| DEC           | N/T  |            | I.C.    | Lower  | Upper  | Group     | Group             |
|---------------|------|------------|---------|--------|--------|-----------|-------------------|
| PFG           | W I  | Deptn (cm) | LS mean | 95% CL | 95% CL | (P < 0.1) | $(P \le 0.05)$    |
| Ericaceae     | High | 10-20      | 5.251   | 3.763  | 6.739  | 1,2       | 1,2               |
| Ericaceae     | Low  | 10-20      | 3.905   | 2.417  | 5.393  | 1         | 1                 |
| Ericaceae     | High | 30-40      | 6.272   | 4.784  | 7.760  | 3         | 1,2               |
| Ericaceae     | Low  | 30-40      | 7.105   | 5.617  | 8.593  | 2,3       | 2                 |
|               |      |            |         | Lower  | Upper  | Group     | Group             |
| PFG           | WT   | Depth (cm) | LS mean | 95% CL | 95% CL | (P<0.1)   | ( <i>P</i> ≤0.05) |
| Sedge         | High | 10-20      | 5.799   | 4.311  | 7.287  | 1,2       | 1,2               |
| Sedge         | Low  | 10-20      | 6.246   | 4.758  | 7.734  | 1,3       | 1,3               |
| Sedge         | High | 30-40      | 7.444   | 5.956  | 8.932  | 3,4       | 3,4               |
| Sedge         | Low  | 30-40      | 7.757   | 6.269  | 9.245  | 2,4       | 2,4               |
|               |      |            |         | Lower  | Upper  | Group     | Group             |
| PFG           | WT   | Depth (cm) | LS mean | 95% CL | 95% CL | (P<0.1)   | ( <i>P</i> ≤0.05) |
| Unmanipulated | High | 10-20      | 5.724   | 4.236  | 7.212  | 1,2       | 1,2               |
| Unmanipulated | Low  | 10-20      | 4.379   | 2.891  | 5.867  | 1         | 1                 |
| Unmanipulated | High | 30-40      | 7.856   | 6.368  | 9.344  | 3         | 3                 |
| Unmanipulated | Low  | 30-40      | 7.086   | 5.598  | 8.574  | 2,3       | 2,3               |

#### (b)

Root endophyte OTU richness

| Among PFG within Depths, WT pooled |       |         |        |        |         |                   |  |  |  |  |
|------------------------------------|-------|---------|--------|--------|---------|-------------------|--|--|--|--|
|                                    | Depth |         | Lower  | Upper  | Group   | Group             |  |  |  |  |
| PFG                                | (cm)  | LS mean | 95% CL | 95% CL | (P<0.1) | ( <i>P</i> ≤0.05) |  |  |  |  |
| ericaceae                          | 10-20 | 6.375   | 3.643  | 9.107  | 1       | 1                 |  |  |  |  |
| sedge                              | 10-20 | 10.875  | 8.143  | 13.607 | 2       | 1                 |  |  |  |  |
| unmanipulated                      | 10-20 | 9.125   | 6.393  | 11.857 | 1,2     | 1                 |  |  |  |  |
|                                    | Depth |         | Lower  | Upper  | Group   | Group             |  |  |  |  |
| PFG                                | (cm)  | LS mean | 95% CL | 95% CL | (P<0.1) | ( <i>P</i> ≤0.05) |  |  |  |  |
| ericaceae                          | 30-40 | 12.875  | 10.143 | 15.607 | 1       | 1                 |  |  |  |  |
| sedge                              | 30-40 | 15.625  | 12.893 | 18.357 | 1,2     | 1                 |  |  |  |  |
| unmanipulated                      | 30-40 | 17.500  | 14.768 | 20.232 | 2       | 1                 |  |  |  |  |

| (c)                                                             |     |
|-----------------------------------------------------------------|-----|
| Saprotroph qPCR-adjusted abundance (log transformed for analyse | es) |

| Between WT treatments within Depths, PFG pooled |                                 |                           |                                   |                                   |                            |                             |  |  |  |
|-------------------------------------------------|---------------------------------|---------------------------|-----------------------------------|-----------------------------------|----------------------------|-----------------------------|--|--|--|
|                                                 | Depth                           |                           | Lower                             | Upper                             | Group                      | Group                       |  |  |  |
| WT                                              | (cm)                            | LS mean                   | 95% CL                            | 95% CL                            | (P<0.1)                    | ( <i>P</i> ≤0.05)           |  |  |  |
| High                                            | 10-20                           | 7.027                     | 6.373                             | 7.682                             | 1                          | 1                           |  |  |  |
| Low                                             | 10-20                           | 8.380                     | 7.726                             | 9.035                             | 2                          | 2                           |  |  |  |
|                                                 |                                 |                           |                                   |                                   |                            |                             |  |  |  |
|                                                 | Depth                           |                           | Lower                             | Upper                             | Group                      | Group                       |  |  |  |
| WT                                              | Depth<br>(cm)                   | LS mean                   | Lower<br>95% CL                   | Upper<br>95% CL                   | Group ( <i>P</i> <0.1)     | Group<br>( <i>P</i> ≤0.05)  |  |  |  |
| WT<br>High                                      | Depth<br>(cm)<br>30-40          | LS mean<br>8.226          | Lower<br>95% CL<br>7.572          | Upper<br>95% CL<br>8.881          | Group<br>(P<0.1)<br>1      | Group<br>(P≤0.05)<br>1      |  |  |  |
| WT<br>High<br>Low                               | Depth<br>(cm)<br>30-40<br>30-40 | LS mean<br>8.226<br>8.378 | Lower<br>95% CL<br>7.572<br>7.724 | Upper<br>95% CL<br>8.881<br>9.033 | Group<br>(P<0.1)<br>1<br>1 | Group<br>(P≤0.05)<br>1<br>1 |  |  |  |

..... \_ \_ . DEC 1

### (d)

| Sebacinales | grou | pВ | qPCR-ad | justed | abundance | (log | transformed | for analy | yses) |
|-------------|------|----|---------|--------|-----------|------|-------------|-----------|-------|
|             | -    |    |         |        |           |      |             |           |       |

| Among PFG within Depths.     | WT | pooled |
|------------------------------|----|--------|
| rinning i i o within Depuis, |    | poorea |

|               | Depth                 |         | Lower  | Upper  | Group   | Group             |
|---------------|-----------------------|---------|--------|--------|---------|-------------------|
| PFG           | (cm)                  | LS mean | 95% CL | 95% CL | (P<0.1) | ( <i>P</i> ≤0.05) |
| ericaceae     | 10-20                 | 12.382  | 10.825 | 13.939 | 2       | 1,2               |
| sedge         | 10-20                 | 10.205  | 8.648  | 11.761 | 1       | 1                 |
| unmanipulated | unmanipulated 10-20 1 |         | 11.572 | 14.686 | 2       | 2                 |
|               | Depth                 |         | Lower  | Upper  | Group   | Group             |
| PFG           | (cm)                  | LS mean | 95% CL | 95% CL | (P<0.1) | ( <i>P</i> ≤0.05) |
| ericaceae     | 30-40                 | 9.904   | 8.348  | 11.461 | 1       | 1                 |
| sedge         | 30-40                 | 8.244   | 6.688  | 9.801  | 1       | 1                 |
| unmanipulated | 30-40                 | 9.523   | 7.966  | 11.080 | 1       | 1                 |

#### (e)

Oidiodendron maius qPCR-adjusted abundance (log transformed for analyses)

#### Among PFG within Depths, WT pooled

| PFG           | Depth<br>(cm) | LS mean | Lower<br>95% CL | Upper<br>95% CL | Group<br>( <i>P</i> <0.1) | Group<br>( <i>P</i> ≤0.05) |
|---------------|---------------|---------|-----------------|-----------------|---------------------------|----------------------------|
| ericaceae     | 10-20         | 7.881   | 5.498           | 10.264          | 1,2                       | 1,2                        |
| sedge         | 10-20         | 4.867   | 2.484           | 7.250           | 1                         | 1                          |
| unmanipulated | 10-20         | 9.873   | 7.491           | 12.256          | 2                         | 2                          |
| PFG           | Depth<br>(cm) | LS mean | Lower<br>95% CL | Upper<br>95% CL | Group<br>( <i>P</i> <0.1) | Group<br>( <i>P</i> ≤0.05) |
| ericaceae     | 30-40         | 1.391   | -0.991          | 3.774           | 1                         | 1                          |
| sedge         | 30-40         | 4.316   | 1.933           | 6.699           | 1                         | 1                          |
| unmanipulated | 30-40         | 2.608   | 0.225           | 4.991           | 1                         | 1                          |

| Response variable   | PFG<br>(F df P)       | WT<br>(F df P)                                          | Depth<br>(F df P)            | PFG x WT<br>(F df P)                                    | PFG x Depth $(F df P)$                                | WT x Depth $(F \text{ df } P)$                          | PFG x WT<br>x Depth<br>(F df P)                       |
|---------------------|-----------------------|---------------------------------------------------------|------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|
| DOC                 | $1.92  2,15 \\ 0.181$ | 0.04 1,15<br>0.839                                      | 34.16 1,18<br>< <b>0.001</b> | 0.39 2,15<br>0.683                                      | 0.10 2,18<br>0.906                                    | 0.416 1,18<br>0.527                                     | $0.89  2,18 \\ 0.429$                                 |
| Phenolics           | 0.26 2,15<br>0.777    | $0.53  1,15 \\ 0.480$                                   | 1.92 1,18<br>0.183           | 0.67 2,15<br>0.523                                      | 0.66 2,18<br>0.527                                    | 0.19 1,18<br>0.671                                      | $0.92  2,18 \\ 0.417$                                 |
| E2:E3               | 1.04 2,15<br>0.376    | $\begin{array}{ccc} 0.70 & 1,15 \\ & 0.416 \end{array}$ | 165.9 1,18<br>< <b>0.001</b> | 0.04 2,15<br>0.963                                      | 1.16 2,18<br>0.336                                    | $\begin{array}{ccc} 0.07 & 1,18 \\ & 0.799 \end{array}$ | $\begin{array}{ccc} 1.44 & 2,18 \\ 0.263 \end{array}$ |
| E4:E6               | 0.27 2,15<br>0.771    | 0.16 1,15<br>0.699                                      | 10.74 1,18<br>< <b>0.001</b> | $\begin{array}{ccc} 0.16 & 2,15 \\ & 0.851 \end{array}$ | $0.25  2,18 \\ 0.783$                                 | $1.68  1,18 \\ 0.211$                                   | 0.47 2,18<br>0.631                                    |
| SUVA <sub>254</sub> | 1.65 2,15<br>0.225    | $0.26  1,15 \\ 0.614$                                   | 17.48 1,18<br><i>0.001</i>   | $\begin{array}{ccc} 0.40 & 2,15 \\ & 0.676 \end{array}$ | $\begin{array}{ccc} 0.52 & 2,18 \\ 0.602 \end{array}$ | $2.55  1,18 \\ 0.128$                                   | $0.43  2,18 \\ 0.659$                                 |
| TDN                 | 0.23 2,15<br>0.799    | 0.13 1,15<br>0.727                                      | 11.92 1,18<br><i>0.003</i>   | $0.90  2,15 \\ 0.427$                                   | 1.32 2,18<br>0.292                                    | $\begin{array}{ccc} 0.00 & 1,18 \\ & 0.947 \end{array}$ | 1.12 2,18<br>0.349                                    |
| $\mathrm{NH_4}^+$   | 0.20 2,15<br>0.819    | 0.19 1,15<br>0.666                                      | 0.81 1,18<br>0.381           | 1.22 2,15<br>0.322                                      | 1.20 2,18<br>0.325                                    | 0.46 1,18<br>0.507                                      | 0.29 2,18<br>0.752                                    |
| рН                  | 0.61 2,15.0<br>0.557  | 0.20 1,15.0<br>0.663                                    | 10.3 1,15.4<br><i>0.006</i>  | 0.1.3 2,15.0<br>0.290                                   | 3.73 2,15.4<br><i>0.048</i>                           | $0.24  1,15.4 \\ 0.634$                                 | 2.79 2,15.4<br><b>0.092</b>                           |
| Temperature         | 0.16 2,15<br>0.855    | 0.73 1,15<br>0.406                                      | 38.71 1,18<br>< <b>0.001</b> | 0.27 2,15<br>0.765                                      | 0.131 2,18<br>0.878                                   | 0.314 1,18<br>1.07                                      | 0.24 2,18<br>0.792                                    |
|                     |                       |                                                         | ( <i>t</i> , <i>P</i> )      |                                                         |                                                       |                                                         |                                                       |
| Von Post            |                       |                                                         | 8.33 <i>&lt;0.001</i>        |                                                         |                                                       |                                                         |                                                       |

Table S4. Mixed model results examining the effect of plant functional group (PFG), depth to water table (WT) and depth in the peat

2 profile (Depth) on porewater and peat variables.<sup>abcd</sup>

1

3 <sup>a</sup>  $\overline{\text{DOC}}$  = dissolved organic carbon, E2:E3 = ratio of absorption spectra at  $\lambda$  = 254 nm to  $\lambda$  = 365 nm, E4:E6 = ratio of absorption

4 spectra at  $\lambda = 465$  nm to  $\lambda = 665$  nm, SUVA<sub>254</sub> = specific ultraviolet absorbance calculated as absorption spectra at  $\lambda = 254$  nm divided

5 by the DOC, TDN = total dissolved nitrogen.

- <sup>b</sup> Models included individual *mesocosm* (random effect) and *block* (fixed effect); no hypothesis test was applied to these factors.
- 2 <sup>c</sup> F are F-ratios for linear mixed models. t is from a permutation-based paired t-test.
- 3 <sup>d</sup> Bold indicate 0.1 > P > 0.05, and bold italics indicate  $P \le 0.05$ .

1 Table S5. Results of ordination vector analysis with peat and pore water variables; bold italics

|             | OTU   |       |        | Order |       |        |
|-------------|-------|-------|--------|-------|-------|--------|
| Variable    | r     | $R^2$ | Р      | r     | $R^2$ | Р      |
| Tannins     | 0.353 | 0.125 | 0.049  | 0.233 | 0.054 | 0.285  |
| DOC         | 0.222 | 0.049 | 0.326  | 0.054 | 0.003 | 0.935  |
| TDN         | 0.380 | 0.144 | 0.029  | 0.190 | 0.036 | 0.435  |
| TDN:DOC     | 0.465 | 0.216 | 0.005  | 0.293 | 0.086 | 0.132  |
| Ammonium    | 0.252 | 0.064 | 0.225  | 0.093 | 0.009 | 0.821  |
| E2:E3       | 0.496 | 0.246 | 0.002  | 0.386 | 0.149 | 0.026  |
| E2:E4       | 0.389 | 0.151 | 0.026  | 0.401 | 0.161 | 0.017  |
| SUVA254     | 0.232 | 0.054 | 0.293  | 0.112 | 0.013 | 0.754  |
| Temperature | 0.548 | 0.301 | <0.001 | 0.394 | 0.155 | 0.021  |
| pН          | 0.178 | 0.032 | 0.492  | 0.241 | 0.058 | 0.256  |
| Von Post    | 0.631 | 0.398 | <0.001 | 0.541 | 0.293 | <0.001 |

2 indicate variables significant at  $P \le 0.05$ .

Figure S1. Rainfall episodes and water table (WT) depths in mesocosm bins over the course of the 2011 growing season. Horizontal bars over rainfall events represent episodes where rain-out shelters were used to exclude precipitation from Low WT treatments. Lines for WT depths represent means and 95% confidence intervals for the 12 bins from each water table treatment. The two peat coring depths are placed across the time interval where cores were collected.





