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ABSTRACT OF THE DISSERTATION
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Professor Rafail Ostrovsky, Chair

Matrix balancing is a preprocessing step in linear algebra computations such as the computation

of eigenvalues of a matrix. Such computations are known to be numerically unstable if the matrix

is unbalanced, that is the L2 norm of some rows and their corresponding columns are different

by orders of magnitude. Given an unbalanced matrix A, the goal of matrix balancing is to find

an invertible diagonal matrix D such that DAD−1 is balanced or approximately balanced in the

sense that every row and its corresponding column have the same norm. In thesis, we study a

classic iterative algorithm for matrix balancing due to Osborne (1960). The original algorithm was

proposed for balancing rows and columns in the L2 norm, and it works by iterating over balancing

a row-column pair in fixed round-robin order. Variants of the algorithm for other norms have been

heavily studied and are implemented as standard preconditioners in many numerical linear algebra

packages. Despite the popularity of Osborne’s algorithm in practice and extensive research on it

there were no polynomial-time upper bound on the running time of this algorithm to explain the

excellent performance of this algorithm in practice. Recently (in 2015), Schulman and Sinclair, in

a first result of its kind for any norm, analyzed the rate of convergence of a variant of Osborne’s

algorithm that uses the L∞ norm and a different order of choosing row-column pairs. In this
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thesis we study matrix balancing in the L1 norm and other Lp norms. We consider two notions of

approximately balancing matrices and refer to them as ε-balancing and strict ε-balancing. As the

names suggest strict ε-balancing implies ε-balancing. These notions will be defined in the body of

the thesis.

We prove upper bounds on the convergence rate of Osborne’s algorithm and some of its vari-

ants. We prove fast convergence of different variants of the algorithm to an ε-balanced matrix, and

propose a variant that converges to a strictly ε-balanced matrix in polynomial time. These results

resolve a problem that has been open since Osborne proposed his algorithm in 1960. The following

is a summary of our results for any real matrix A = (aij)
n
i,j=1:

1. We propose a simple greedy variant of Osborne’s algorithm and show that it converges to an

ε-balanced matrix in K = O(min{ε−2 logw, ε−1n3/2 log(w/ε)}) iterations that cost a total

of O(m + Kn log n) arithmetic operations over O(n log(w/ε))-bit numbers. Here m is the

number of non-zero entries of A, and w =
∑

i,j |aij|/amin with amin = min{|aij| : aij 6= 0}.

2. We show that the original round-robin implementation of Osborne’s algorithm converges to

an ε-balanced matrix in O(ε−2n2 logw) iterations totaling O(ε−2mn logw) arithmetic oper-

ations over O(n log(w/ε))-bit numbers.

3. We devise a random implementation of the iteration and show that it converges to an ε-

balanced matrix in O(ε−2 logw) iterations using O(m + ε−2n logw) arithmetic operations

over O(log(wn/ε))-bit numbers.

4. We propose a variant of Osborne’s algorithm and prove that it converges to a strictly ε-

balanced matrix in O (ε−2n9 log(wn/ε) logw/ log n) iterations that require

O (ε−2n10 log(wn/ε) logw/ log n) arithmetic operations over O(n logw/ε)-bit numbers.

5. We demonstrate a lower bound of Ω(1/
√
ε) on the convergence rate of any implementation

of the iteration. Thus, the dependence of our upper bounds on 1/ε is in the right ballpark.

All our results are proved for balancing in L1 norm, but we observe, through a known trivial
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reduction, that our results for L1 balancing apply to any Lp norm for all finite p, at the cost of

increasing the number of iterations by only a factor of p (or p2 in some cases).
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CHAPTER 1

Introduction

Let A = (aij)n×n be a square matrix with real entries, and let ‖ · ‖ be a given norm. For an index

i ∈ [n], let ‖ai,.‖ and ‖a.,i‖, respectively, denote the norms of the ith row and the ith column of A,

respectively. The matrix A is balanced in ‖ · ‖ iff ‖a.,i‖ = ‖ai,.‖ for all i. An invertible diagonal

matrix D = diag(d1, . . . , dn) is said to balance a matrix A iff DAD−1 is balanced. A matrix A is

balanceable in ‖ · ‖ iff there exists a diagonal matrix D that balances it.

Osborne [8] studied the above problem in the L2 norm and considered its application in pre-

conditioning a given matrix in order to increase the accuracy of the computation of its eigenvalues.

The motivation is that standard linear algebra algorithms that are used to compute eigenvalues are

numerically unstable for unbalanced matrices; diagonal balancing addresses this issue by obtaining

a balanced matrix that has the same eigenvalues as the original matrix, as DAD−1 and A have the

same eigenvalues. Osborne suggested an iterative algorithm for finding a diagonal matrix D that

balances a matrix A in the L2 norm, and also proved that his algorithm converges in the limit. He

also observed that if a diagonal matrix D = diag(d1, . . . , dn) balances a matrix A in the L2 norm,

then the diagonal vector d = (d1, . . . , dn) minimizes the Frobenius norm of the matrix DAD−1.

Osborne’s classic algorithm (see Algorithm 1) is an iteration that at each step balances a row and

its corresponding column by scaling them appropriately. More specifically the algorithm balances

row-column pairs in a fixed cyclic order. In order to balance row and column i, the algorithm

scales the ith row by
√
‖a.,i‖/‖ai,.‖ and the ith column by

√
‖ai,.‖/‖a.,i‖. Osborne’s algorithm

converges to a unique balanced matrix, but there have been no upper bounds on the convergence

rate of Osborne’s algorithm for the L2 norm prior to our work.

Parlett and Reinsch [9] generalized Osborne’s algorithm to other norms without proving con-

1



Algorithm 1 Osborne’s Balancing Algorithm

Input: Matrix A ∈ Rn×n, ε

Output: An ε-balanced matrix

i = 0

repeat

i = i+ 1 mod n

for j = 1 to n do

aij =

√
‖a.,i‖
‖ai,.‖

· aij

aji =

√
‖ai,.‖
‖a.,i‖

· aji

end for

until Sufficiently balanced

return the resulting matrix

vergence. The L1 norm version of the algorithm has been studied extensively. The convergence

in the limit of the L1 version was proved by Grad [4], uniqueness of the balanced matrix by Hart-

fiel [5], and a characterization of balanceable matrices was given by Eaves et al. [3]. Again, there

have been no upper bounds on the running time of the L1 version of the iteration.

The first polynomial time algorithm for balancing a matrix in the L1 norm was given by

Kalantari, Khachiyan, and Shokoufandeh [6]. Their approach is different from the iterative al-

gorithm of Osborne. They reduce the balancing problem to a convex optimization problem and

then solve that problem approximately using the ellipsoid algorithm. Their algorithm runs in

O(n4 log(ε−1n logw)) arithmetic operations where w =
∑

i,j |ai,j|/amin for amin = min{|aij| :

aij 6= 0} and ε is the relative imbalance of the output matrix (see Definition 1).

For matrix balancing in the L∞ norm, Schneider and Schneider [11] gave an O(n4)-time non-

iterative algorithm. This running time was improved to O(mn + n2 log n) by Young, Tarjan, and

Orlin [14]. Despite the existence of polynomial time algorithms for balancing in the L1 and L∞

norms, and the lack of any theoretical bounds on the running time of the Osborne’s iterative al-
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gorithm, the latter is favored in practice, and the Parlett and Reinsch variant [9] is implemented

as a standard in almost all linear algebra packages (see Chen [2, Section 3.1], also the book [10,

Chapter 11] and the code in [1]). One reason is that iterative methods usually perform well in

practice and run for far fewer iterations than are needed in the worst case. Another advantage of it-

erative algorithms is that they are simple, they provide steady partial progress, and they can always

generate a matrix that is sufficiently balanced for the subsequent linear algebra computation.

Motivated by the impact of the Osborne’s algorithm and the lack of any theoretical bounds on

its running time, Schulman and Sinclair [12] recently showed the first bound on the convergence

rate of a modified version of this algorithm in the L∞ norm. They prove that their modified

algorithm converges in O(n3 log(ρn/ε)) balancing steps where ρ measures the initial imbalance

of A and ε is the target imbalance of the output matrix. Their algorithm differs from the original

algorithm only in the order of choosing row-column pairs to balance (we will use the term variant

to indicate a deviation from the original round-robin order). Schulman and Sinclair do not prove

any bounds on the running time of the algorithm for other Lp norms; this was explicitly mentioned

as an open problem. In this work, we resolve this open question, and upper bound the convergence

rate of the Osborne’s iteration in any Lp norm.

It should be noted that the literature on matrix balancing uses two different definitions for a

matrix that is balanced to the relative error of ε, with one being stronger than the other. We consider

both definitions for balancing a matrix to the relative error of ε, and use the terms ε-balanced matrix

and strictly ε-balanced matrix. These notions are defined exactly in Definition 1. As the names

suggest obtaining an ε-balanced matrix is easier than a strictly ε-balanced matrix. 1

We bound the convergence rate of the algorithm and its variants to both an ε-balanced matrix

and a strictly ε-balanced matrix. We first show that Osborne’s algorithm and some greedy and

randomized variants of it converge to an ε-balanced matrix relatively quickly. Then, we propose

a variant of Osborne’s algorithm and prove that it converges to a strictly ε-balanced matrix in

polynomial time. Naturally, proving convergence to a strictly ε-balanced requires more work and

the time to converge to a strictly ε-balanced matrix, although polynomial, is much more than the

1because a strictly ε-balanced matrix is 2ε-balanced.
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time to converge to an ε-balanced matrix.

It is easy to see that Osborne’s iteration in Lp norm for any p reduces to balancing in L1 norm

because applying Osborne’s iteration to matrix A = (aij)n×n in any Lp norm is equivalent to

applying the iteration to matrix A = (apij)n×n in L1 norm. Thus, any time bounds for L1 norm

imply the same bounds with an extra factor of p (or sometimes p2) for the Lp norm, by using them

on the matrix with entries raised to the power of p. For this reason, in thesis we only consider

Osborne’s iteration in L1 norm, and specifically show the following bounds. Below, the Õ(·)

notation hides factors that are logarithmic in various parameters of the problem. Exact bounds

await the statements of the theorems in the following sections. We also sometimes refer to an

iteration of Osborne’s algorithm as a balancing step.

1.1 Our results

We show that the original algorithm (with no modification) converges to an ε-balanced matrix in

Õ(n2/ε2) balancing steps, using Õ(mn/ε2) arithmetic operations. We also show that a greedy

variant converges in Õ(1/ε2) balancing steps, using O(m) + Õ(n/ε2) arithmetic operations; or

alternatively in Õ(n3/2/ε) iterations, using Õ(n5/2/ε) arithmetic operations. Thus, the number of

arithmetic operations needed by our greedy variant is nearly linear inm or nearly linear in 1/ε. The

near linear dependence onm is significantly better than the Kalantari-Khachiyan-Shokoufandeh al-

gorithm that usesO(n4 log(ε−1n logw)) arithmetic operations (and also the Schulman and Sinclair

version with a stricter, yet L∞, guarantee). For an accurate comparison we should note that we may

need to maintain Õ(n) bits of precision, so the running time is actually O(m + n2 log n logw/ε2)

(the Kalantari et al. algorithm maintains O(log(wn/ε))-bit numbers). We improve this with yet

another, randomized, variant that has similar convergence rate (nearly linear in m), but needs only

O(log(wn/ε)) bits of precision.

For convergence to a strictly ε-balanced matrix, we propose a variant of Osborne’s iteration

and prove that it converges to a strictly ε-balanced matrix in O (ε−2n9 log(wn/ε) logw/ log n) iter-

ations that requireO (ε−2n10 log(wn/ε) logw/ log n) arithmetic operations overO(n log(w/ε))-bit

4



numbers. This polynomial but very large upper bound of Õ(n9) on the number of iterations should

be viewed in the light of a O(n3) lower bound. Chen [2] shows that Osborne’s algorithm on L∞

needs at least O(n3) iterations to converge to a strictly ε-balanced matrix. She proves this lower

bound for cycles of length n, so this lower bound naturally extends to other Lp norms. How-

ever, our work still leaves a huge gap between lower and upper bound of the convergence rate of

Osborne’s iteration to a strictly ε-balanced matrix.

Finally, we show that the dependence on ε given by our analyses is within the right ballpark by

proving a lower bound of Ω(1/
√
ε) on the convergence rate of any variant of the algorithm to an

ε-balanced matrix. This lower bound naturally applies to convergence rate to a strictly ε-balanced

matrix. Also, notice the contrast with the Schulman-Sinclair upper bound for balancing in the L∞

norm that has O(log(1/ε)) dependence on ε

1.2 Organization

The remainder of this thesis is organized as follows. In the next section we formally define the

balancing problem and give definitions and some lemmas that are needed in future chapters. In

Chapter 2 we discuss original Osborne’s algrorithm and its greedy and randomized variants and

prove upper bounds on their rate of convergence to an ε-balanced matrix. In Chapter 3 we propose

a variant of Osborne’s algorithm and bound its convergence rate to a strictly ε-balanced matrix.

Finally in Chapter 4, we prove our lower bound of Ω(1/
√
ε) on the convergence rate of any variant

of the algorithm to an ε-balanced matrix.

1.3 Preliminaries

In this section we introduce notation and definitions, we discuss some previously known facts and

results, and we prove a couple of useful lemmas.
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The problem. Let A = (aij)n×n be a square real matrix, and let ‖ · ‖ be a norm on Rn. For an

index i ∈ [n], let ‖ai,.‖ and ‖a.,i‖, respectively, denote the norms of the ith row and the ith column

ofA, respectively. A matrixA is balanced in ‖·‖ iff ‖a.,i‖ = ‖ai,.‖ for all i. An invertible diagonal

matrix D = diag(d1, . . . , dn) is said to balance a matrix A iff DAD−1 is balanced. A matrix A is

balanceable in ‖ · ‖ iff there exists a diagonal matrix D that balances it.

For balancing a matrix A in the Lp norm only the absolute values of the entries of A matter, so

we may assume without loss of generality that A is non-negative. Furthermore, balancing a matrix

does not change its diagonal entries, so if a diagonal matrix D balances A with its diagonal entries

replaced by zeroes, then D balances A too. Thus, for the rest of the paper, we assume without loss

of generality that the given n× n matrix A = (aij) is non-negative and its diagonal entries are all

0.

A diagonal matrix D = diag(d1, . . . , dn) balances A = (aij) in the Lp norm if and only if

Dp = diag(d1
p, . . . , dn

p) balances the matrix A′ = (aij
p) in the L1 norm. Thus, the problem of

balancing matrices in the Lp norm (for any finite p) reduces to the problem of balancing matrices

in the L1 norm; for the rest of this thesis we focus on balancing matrices in the L1 norm.

For an n × n matrix A, we use GA = (V,E,w) to denote the weighted directed graph whose

adjacency matrix is A. More formally, GA is defined as follows. Put V = {1, . . . , n}, put E =

{(i, j) : aij 6= 0}, and put w(i, j) = aij for every (i, j) ∈ E. We use an index i ∈ [n] to refer to

both the ith row or column of A, and to the node i of the digraph GA. Thus, the non-zero entries

of the ith column (the ith row, respectively) correspond to the arcs into (out of, respectively) node

i. In the L1 norm it is useful to think of the weight of an arc as a flow being carried by that arc.

Thus, ‖a.,i‖1 is the total flow into vertex i and ‖ai,.‖1 is the total flow out of it. Note that if a

matrix A is not balanced then for some nodes i, ‖a.,i‖1 6= ‖ai,.‖1, and thus the flow on the arcs

does not constitute a valid circulation because flow conservation is not maintained. Thus, the goal

of balancing in the L1 norm can be stated as applying diagonal scaling to find a flow function on

the arcs of the graph GA that forms a valid circulation. We use both views of the graph (with arc

weights or flow), and also the matrix terminology, throughout this thesis, as convenient.

Without loss of generality we may assume that the undirected graph underlying GA is con-
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nected. Otherwise, after permuting V = {1, . . . , n}, the given matrix A can be replaced by

diag(A1, . . . , Ar) where each of A1, . . . , Ar is a square matrix whose corresponding directed

graph is connected. Thus, balancing A is equivalent to balancing each of A1, . . . , Ar.

The goal of the iterative algorithm is to balance approximately a matrix A, up to an error term

ε. We define the error here.

Definition 1 (approximate balancing). Let ε > 0.

1. A matrix A is ε-balanced iff √∑n
i=1(‖a.,i‖1 − ‖ai,.‖1)2∑

i,j ai,j
≤ ε.

2. A matrix A is strictly ε-balanced iff for every index i of A (where i ∈ [n])

max {‖a.,i‖1, ‖ai,.‖1}
min {‖a.,i‖1, ‖ai,.‖1}

≤ 1 + ε.

We also say that every index i that satisfies the above condition is ε-balanced.

3. A diagonal matrix D with positive diagonal entries is said to (strictly) ε-balance A iff

DAD−1 is (strictly) ε-balanced.

We use both notions of an ε-balanced matrix and a strictly ε-balanced matrix. Note that the

literature on matrix balancing does not distinguish the two notions and uses ε-balanced matrix to

refer to both. However, we distinguish between these two mainly because we can show very good

convergence rate to an ε-balanced matrix with nearly linear rate, but the convergence to a strictly

ε-balanced matrix is much slower (takes at least O(n3) as mentioned before) and the analysis is

far more complicated. Most of the literature uses the notion of a strictly ε-balanced (without using

the word “strictly”), and to the best of our knowledge the weaker notion of balancing was first

introduced by Kalantari et al. in [6]. However, this weaker notion of an ε-balanced matrix is also

very useful; its use is justified by the fact that the numerical stability of eigenvalue calculations

depends on the Frobenius norm of the balanced matrix (see [9]). As we show in Corollary 2,

ε-balancing in the L2 norm approximates the minimum Frobenius norm that can be achieved by

balancing.
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Our technique Osborne observed that a diagonal matrix D = diag(d1, . . . , dn) that balances

a matrix A in the L2 norm also minimizes the Frobenius norm of the matrix DAD−1. Thus, the

balancing problem can be reduced to minimizing a function. Kalantari et al. [6] gave a convex

program for balancing in the L1 norm. Our analysis is based on their convex program. We relate

the Osborne’s balancing step to the coordinate descent method in convex programming. We show

that each step reduces the value of the objective function. Our various bounds are derived through

analyzing the progress made in each step. In particular, one of the main tools in our analysis is an

upper bound on the distance to optimality (measured by the convex objective function) in terms of

the L1 norm of the gradient, which we prove using network flow arguments.

We prove upper and lower bounds on the convergence rate of the Osborne’s balancing algo-

rithm. The Osborne’s iterative algorithm balances indices in a fixed round-robin order. Schulman

and Sinclair considered a variant that uses a different rule to choose the next index to balance.

We consider in this paper several alternative implementations of Osborne’s balancing (including

the original round-robin implementation) that differ only in the rule by which an index to bal-

ance is chosen at each step. For all rules that we consider, the iteration generates a sequence

A = A(1), A(2), . . . , A(t), . . . of n× n matrices that converges to a unique balanced matrix A∗ (see

Grad [4] and Hartfiel [5]). The matrix A(t+1) is obtained by balancing an index of A(t). If the ith

index of A(t) is chosen, we get that A(t+1) = D(t)A(t)D(t)−1 where D(t) is a diagonal matrix with

d
(t)
ii =

√
‖a(t).,i ‖1/‖a

(t)
i,. ‖1 and d(t)jj = 1 for j 6= i. Note that a(t)i,. (a(t).,i , respectively) denotes the ith

row (ith column, respectively) of A(t). Also, putting D̄(1) = In×n and D̄(t) = D(t−1) · · ·D(1) for

t > 1, we get that A(t) = D̄(t)A(D̄(t))−1.

The following lemma shows that each balancing step reduces the sum of entries of the matrix2.

Lemma 1. Balancing the ith index of a non-negative matrix B = (bij)n×n (with bii = 0) decreases

the total sum of the entries of B by
(√
‖b.,i‖1 −

√
‖bi,.‖1

)2
.

Proof. Before balancing, the total sum of entries in the ith row and in the ith column is ‖bi,.‖1 +

‖b.,i‖1. Balancing scales the entries of the ith column by
√
‖bi,.‖1/‖b.,i‖1 and entries of the ith row

2This observation was known to Osborne and other researchers that worked on this problem. We prove it here for
completeness.
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by
√
‖b.,i‖1/‖bi,.‖1. Thus, after balancing the sum of entries in the ith column, which equals the

sum of entries in the ith row, is equal to
√
‖bi,.‖1 · ‖b.,i‖1. The entries that are not in the balanced

row and column are not changed. Therefore, balancing decreases
∑

i,j bij by

‖b.,i‖1 + ‖bi,.‖1 − 2
√
‖bi,.‖1 · ‖b.,i‖1 =

(√
‖b.,i‖1 −

√
‖bi,.‖1

)2

.

A reduction to convex optimization. Kalantari et al. [6], as part of their algorithm, reduce ma-

trix balancing to a convex optimization problem. We overview their reduction here. Our start-

ing point is Osborne’s observation that if a diagonal matrix D = diag(d1, . . . , dn) balances

a matrix A in the L2 norm, then the diagonal vector d = (d1, . . . , dn) minimizes the Frobe-

nius norm of the matrix DAD−1. The analogous claim for the L1 norm is that if a diagonal

matrix D = diag(d1, . . . , dn) balances a matrix A in the L1 norm, then the diagonal vector

d = (d1, . . . , dn) minimizes the function F (d) =
∑

i,j aij
di
dj

. On the other hand, Eaves et al. [3]

observed that a matrix A can be balanced if and only if the digraph GA is strongly connected. The

following theorem [6, Theorem 1] summarizes the above discussion.

Theorem 1 (Kalantari et al.). Let A = (aij)n×n be a real non-negative matrix, aii = 0, for all

i = 1, . . . n, such that the undirected graph underlying GA is connected. Then, the following

statements are equivalent.

(i) A is balanceable in L1 norm (i.e., there exists a diagonal matrix D such that DAD−1 is

balanced).

(ii) GA is strongly connected.

(iii) Let F (d) =
∑

(i,j)∈E aij
di
dj

. There is a point d∗ ∈ Ω = {d ∈ Rn : di > 0, i = 1, . . . , n} such

that F (d∗) = inf{F (d) : d ∈ Ω}.

We refer the reader to [6, Theorem 1] for a proof. We have the following corollary.

Corollary 1. d∗ minimizes F over Ω if and only if D∗ = diag(d∗1, . . . , d
∗
n) balances A.
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Proof. As F attains its infimum at d∗ ∈ Ω, its gradient∇F satisfies∇F (d∗) = 0. Also, ∂F (d∗)
∂di

=

0 if and only if
∑n

j=1 aij ·(d∗i /d∗j) =
∑n

j=1 aji ·(d∗j/d∗i ) for all i ∈ [n]. In other words,∇F (d∗) = 0

if and only if the matrixD∗AD∗−1 is balanced whereD∗ = diag(d∗1, . . . , d
∗
n). Thus, d∗ minimizes

F over Ω if and only if D∗ = diag(d∗1, . . . , d
∗
n) balances A.

It can also be shown that under the assumption of Theorem 1, the balancing matrixD∗ is unique

up to a scalar factor (see Osborne [8] and Eaves et al. [3]). Therefore, the problem of balancing

matrix A can be reduced to optimizing the function F . Since we are optimizing over the set Ω of

strictly positive vectors, we can apply a change of variables d = (ex1 , . . . , exn) ∈ Rn to obtain a

convex objective function:

f(x) = fA(x) =
n∑

i,j=1

aije
xi−xj . (1.1)

Kalantari et al. [6] use the convex function f because it can be minimized using the ellipsoid

algorithm. We do not need the convexity of f , and use f instead of F only because it is more

convenient to work with, and it adds some intuition. Notice that the partial derivative of f with

respect to xi is
∂f(x)

∂xi
=

n∑
j=1

aij · exi−xj −
n∑
j=1

aji · exj−xi , (1.2)

which is precisely the difference between the L1 norms of the ith row and the ith column of

the matrix DAD−1, where D = diag(ex1 , . . . , exn). Also, by definition, the diagonal matrix

diag(ex1 , . . . , exn) ε-balances A iff

‖∇f(x)‖2
f(x)

=

√∑n
i=1

(∑n
j=1 aije

xi−xj −
∑n

j=1 ajie
xj−xi

)2
∑n

i,j=1 aije
xi−xj ≤ ε. (1.3)

We now state and prove a key lemma that our analysis uses. The lemma uses combinatorial flow

and circulation arguments to measure progress by bounding f(x) − f(x∗) in terms of ‖∇f(x)‖1

which is a global measure of imbalances of all vertices.

Lemma 2. Let f be the function defined in Equation 1.1, and let x∗ be a global minimum of f .

Then, for all x ∈ Rn, f(x)− f(x∗) ≤ n
2
· ‖∇f(x)‖1.
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Proof. Recall that f(x) = fA(x) is the sum of entries of a matrix B = (bij) defined by bij =

aij · exi−xj . Notice that f(x) = fB(~0), and f(x∗) = fB(x∗∗), where x∗∗ = x∗ − x. Alternatively,

f(x) is the sum of flows (or weights) of the arcs of GB, and f(x∗) is the sum of flows of the arcs of

a graph G∗ (an arc ij of G∗ carries a flow of aij · ex
∗
i−x∗j ). Notice that GB and G∗ have the same set

of arcs, but with different weights. By Equation 1.2, ‖∇fA(x)‖1 =
∑n

i=1

∣∣‖b.,i‖1 − ‖bi,.‖1∣∣, i.e., it

is the sum over all the nodes of GB of the difference between the flow into the node and flow out

of it. Also notice that GB is unbalanced (else the statement of the lemma is trivial), however G∗ is

balanced. Therefore, the arc flows in G∗, but not those in GB, form a valid circulation.

Our proof now proceeds in two main steps. In the first step we show a way of reducing the

flow on some arcs of GB, such that the revised flows make every node balanced (and thus form a

valid circulation). We also make sure that the total flow reduction is at most n
2
· ‖∇fA(x)‖1. In the

second step we show that sum of revised flows of all the arcs is a lower bound on f(x∗). These

two steps together prove the lemma.

We start with the first step. The nodes of GB are not balanced. Let S and T be a partition of the

unbalanced nodes ofGB, with S = {i ∈ [n] : ‖b.,i‖1 > ‖bi,.‖1} and T = {i ∈ [n] : ‖b.,i‖1 < ‖bi,.‖1}.

That is, the flow into a node in S exceeds the flow out of it, and the flow into a node in T is less

than the flow out of it. We have that∑
i∈S

(‖b.,i‖1 − ‖bi,.‖1)−
∑
i∈T

(‖bi,.‖1 − ‖b.,i‖1)

=
∑
i∈[n]

(‖b.,i‖1 − ‖bi,.‖1) = 0.

Thus, we can view each node i ∈ S as a source with supply ‖b.,i‖1 − ‖bi,.‖1, and each node i ∈ T

as a sink with demand ‖bi,.‖1 − ‖b.,i‖1, and the total supply equals the total demand. We now add

some weighted arcs connecting the nodes in S to the nodes in T . These arcs carry the supply at the

nodes in S to the demand at the nodes in T . Note that we may add arcs that are parallel to some

existing arcs in GB. Such arcs can be replaced by adding flow to the parallel existing arcs of GB.

In more detail, to compute the flows of the added arcs (or the added flow to existing arcs), we add

arcs inductively as follows. We start with any pair of nodes i ∈ S and j ∈ T , and add an arc from

i to j carrying flow equal to the minimum between the supply at i and the demand at j. Adding
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this arc will balance one of its endpoints, but in the new graph the sum of supplies at the nodes of

S is still equal to the sum of demands at the nodes of T , so we can repeat the process. (Notice that

either S or T or both lose one node.) Each additional arc balances at least one unbalanced node,

so GB gets balanced by adding at most n additional arcs from nodes in S to nodes in T . The total

flow on the added arcs is exactly
∑

i∈S(‖b.,i‖1 − ‖bi,.‖1) = 1
2
· ‖∇f(x)‖1.

Let E ′ be the set of newly added arcs, and let GB′ be the new graph with arc weights given

by B′ = (b′ij). Since GB′ is balanced, the arc flows form a valid circulation. We next decompose

the total flow of arcs into cycles. Consider a cycle C in GB′ that contains at least one arc from E ′

(i.e., C ∩ E ′ 6= ∅). Reduce the flow on all arcs in C by α = minij∈C b
′
ij . This can be viewed as

peeling off from GB′ a circulation carrying flow α. This reduces the flow on at least one arc to

zero, and the remaining flow on arcs is still a valid circulation, so we can repeat the process. It can

be repeated as long as there is positive flow on some arc in E ′. Eliminating the flow on all arcs in

E ′ using cycles reduces the total flow on the arcs by at most n times the total initial flow on the

arcs in E ′ (i.e., n
2
· ‖∇f(x(1))‖1), because each cycle contains at most n arcs and its flow α that

is peeled off reduces the flow on at least one arc in E ′ by α. After peeling off all the flow on all

arcs in E ′, all the arcs with positive flow are original arcs of GB. Let GB′′ be the graph with the

remaining arcs and their flows which are given by B′′ = (b′′ij). The total flow on the arcs of GB′′ is

at least f(x) + 1
2
· ‖∇f(x)‖1 − n

2
· ‖∇f(x)‖1 ≥ f(x)− n

2
· ‖∇f(x)‖1.

Next we show that the total flow on the arcs of GB′′ is a lower bound on f(x∗). Our key tool

for this is the fact that balancing operations preserve the product of arc flows on any cycle in the

original graph GB, because balancing a node i multiplies the flow on the arcs into i by some factor

r and the flow on the arcs out of i by 1
r
. Thus, the geometric mean of the flows of the arcs on

any cycle is not changed by a balancing operation. The arc flows in GB′′ form a valid circulation,

and thus can be decomposed into flow cycles C1, . . . , Cq by a similar peeling-off process that was

described earlier. Let n1, . . . , nq be the lengths of cycles, and let α1, . . . , αq be their flows. The

total flow on arcs in GB′′ is, therefore,
∑q

k=1 nk · αk. Notice that, by construction, b′′ij ≤ bij , and

the decomposition into cycles gives that b′′ij =
∑

k:ij∈Ck αk. Thus,
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f(x∗) =
n∑

i,j=1

bije
x∗∗i −x∗∗j

≥
n∑

i,j=1

b′′ije
x∗∗i −x∗∗j

=
n∑

i,j=1

∑
k:ij∈Ck

αke
x∗∗i −x∗∗j

=

q∑
k=1

∑
ij∈Ck

αke
x∗∗i −x∗∗j

≥
q∑

k=1

nk

( ∏
ij∈Ck

αke
x∗∗i −x∗∗j

)1/nk

=

q∑
k=1

nkαk =
n∑

i,j=1

b′′ij

where the last inequality uses the arithmetic-geometric mean inequality. Notice that the right-

hand side is the total flow on the arcs of GB′′ , which is at least f(x) − n
2
· ‖∇f(x)‖1. Thus,

f(x∗) ≥ f(x)− n
2
· ‖∇f(x)‖1, and this completes the proof of the lemma.

Corollary 2. Let x = (x1, . . . , xn), let ε > 0, and let ε′ = ε
n3/2 . If D = diag(ex1 , . . . , exn) is a

diagonal matrix that ε′-balances A, then (1− ε)f(x) ≤ f(x∗).

Proof. By Lemma 2, f(x)− f(x∗) ≤ n
2
· ‖∇f(x)‖1. Dividing both sides by f(x), we get

1− f(x∗)

f(x)
≤ n

2

‖∇f(x)‖1
f(x)

≤ n3/2

2

‖∇f(x)‖2
f(x)

≤ n3/2

2
ε′ ≤ ε

where the second inequality uses the Cauchy-Schwarz inequality, and the third inequality follows

from the definition of ε-balance in 1.3. Thus (1− ε)f(x) ≤ f(x∗).

The above corollary justifies the usefulness of the notion of ε-balancing because according

to [9] the numerical stability of eigenvalue calculations depends on the magnitude of the Frobenius

norm of the balanced matrix. In case of L1 balancing, the Frobenius norm is determined by f(x).

Thus, minimizing f(x) amounts to optimizing the numerical stability of eigenvalue computations

on the balanced matrix. According to Corollary 2, ε′-balancing matrix A approximately minimizes
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f(x) to within multiplicative factor of 1 − ε, and this is good enough for numerical stability of

eigenvalue computations.
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CHAPTER 2

Convergence to an ε-balanced matrix

In this chapter, we study the convergence rate of Osborne’s algorithm to an ε-balanced matrix.

Specifically, we prove an upper bound on the convergence of Osborne’s original algorithm to an

ε-balanced matrix. We also propose a greedy and a randomized variant of Osborne’s iteration and

show that they quickly converge to an ε-balanced matrix. These variants only differ in the order of

balancing operations.

This chapter is organized as follows. In section 2.1, we introduce a greedy variant of Osborne’s

iteration, and bound its convergence rate. In section 2.2, we bound the convergence of Osborne’s

original algorithm, and finally in section 2.3 we introduce a randomized variant of the algorithm

and show that it converges to an ε-balanced matrix in nearly linear time in m (i.e. the number of

non-zero entries of A).

2.1 Greedy Balancing

Here we present and analyze a greedy variant of Osborne’s iteration. Instead of balancing indices

in a fixed round-robin order, the greedy modification chooses at iteration t an index it of A(t) such

that balancing the chosen index results in the largest decrease in the sum of entries of A(t). In other

words, we pick it such that:

it = arg max
i∈[n]

(√
‖a(t).,i ‖1 −

√
‖a(t)i,. ‖1

)2

. (2.1)

We give two analyses of this variant, one that shows that the number of balancing operations

is nearly linear in the size of GA, and another that shows that the number of operations is nearly

linear in 1/ε. More specifically, we prove the following theorem.
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Theorem 2. Given an n × n matrix A, let m = |E(GA)|, the greedy implementation of the

Osborne’s iterative algorithm outputs an ε-balanced matrix in K iterations which cost a total

of O(m+Kn log n) arithmetic operations over O(n log(w/ε))-bit numbers , where

K = O
(
min

{
ε−2 logw, ε−1n3/2 log(w/ε)

})
.

The proof uses the convex optimization framework introduced in Section 1.3. Recall that

A(t) = D̄(t)A(D̄(t))−1. If we let D̄(t) = diag(ex
(t)
1 , . . . , ex

(t)
n ), the iterative sequence can be viewed

as generating a sequence of points x(1),x(2), . . . ,x(t), . . . in Rn, where x(t) = (x
(t)
1 , . . . , x

(t)
n ) and

A(t) = D̄(t)A(D̄(t))−1 = (aije
x
(t)
i −x

(t)
j )n×n. Initially, x(1) = (0, . . . , 0), and x(t+1) = x(t) + αtei,

where αt = ln
√
‖a(t).,i ‖1/‖a

(t)
i,. ‖1 and ei is the ith vector of the standard basis for Rn. By Equa-

tion 1.1, the value f(x(t)) is sum of the entries of the matrix A(t). The following key lemma allows

us to lower bound the decrease in the value of f(x(t)) in terms of a value that can be later related

to the stopping condition.

Lemma 3. If index it defined in Equation 2.1 is picked to balanceA(t), then f(x(t))−f(x(t+1))) ≥
‖∇f(x(t))‖22
4f(x(t))

.

Proof. The value f(x(t)) is the sum of the entries of A(t). By Lemma 1, balancing the i-th index

of A(t) reduces the value of f(x(t)) by
(√
‖a(t).,i ‖1 −

√
‖a(t)i,. ‖1

)2

. To simplify notation, we drop

the superscript t in the following equations. We have(√
‖a.,i‖1 −

√
‖ai,.‖1

)2

=
(‖a.,i‖1 − ‖ai,.‖1)2(√
‖a.,i‖1 +

√
‖ai,.‖1

)2
≥ (‖a.,i‖1 − ‖ai,.‖1)2

2 (‖a.,i‖1 + ‖ai,.‖1)
. (2.2)

It is easy to see that

max
i∈[n]

(‖a.,i‖1 − ‖ai,.‖1)2

(‖a.,i‖1 + ‖ai,.‖1)
≥
∑n

i=1 (‖a.,i‖1 − ‖ai,.‖1)2∑n
i=1 (‖a.,i‖1 + ‖ai,.‖1)

. (2.3)

But the right hand side of the above inequality (after resuming the use of the superscript t) equals
‖∇f(x(t))‖22
2f(x(t))

. This is because for all i,
(
‖a(t)i,. ‖1 − ‖a

(t)
.,i ‖1

)
is by Equation 1.2 the i-th coordinate
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of ∇f(x(t)), and in the denominator
∑n

i=1

(
‖a(t)i,. ‖1 + ‖a(t).,i ‖1

)
= 2f(x(t)). Together with Equa-

tions 2.2 and 2.3, this implies that balancing it = arg maxi∈[n]

{(√
‖a(t).,i ‖1 −

√
‖a(t)i,. ‖1

)2
}

de-

creases f(x(t)) by the claimed value.

Corollary 3. If matrixA(t) is not ε-balanced, by balancing index it at iteration t, we have f(x(t))−

f(x(t+1))) > ε2

4
· f(x(t)).

Proof. From Equation 1.3, if A(t) is not ε-balanced,
‖∇f(x(t))‖2
f(x(t))

> ε. Therefore by Lemma 3,

f(x(t))− f(x(t+1))) ≥ ‖∇f(x(t))‖22
4f(x(t))

= 1
4
·
(
‖∇f(x(t))‖2
f(x(t))

)2
· f(x(t)) > ε2

4
· f(x(t)).

Before we prove Theorem 2, we give a lower bound on a(t)ij for all i, j and t. This lemma is

needed to show that finite precision arithmetic using O(n log(w/ε)) bits of precision is sufficient

for ε-balancing. Recall that w = 1
amin
·
∑

i,j ai,j , where amin = min{aij : aij 6= 0}.

Lemma 4. For every i, j and for every iteration t, a(t)ij ≥ 1
wn
·
∑

ij aij .

Proof. By Theorem 1 the graph corresponding to A is strongly connected, so (i, j) is contained

in at least one directed cycle. Choose a cycle C containing (i, j). Let k be its length. Since the

product of weights of arcs in a cycle is preserved by balancing operations,

∏
(u,v)∈C

a(t)uv =
∏

(u,v)∈C

auv.

Therefore,

a
(t)
ij =

∏
(u,v)∈C

auv∏
(u,v)∈C−{(i,j)}

a(t)uv
≥ (amin)k

(
∑
ij

aij)
k−1

≥

(
amin∑
ij aij

)n

·
∑
ij

aij =
1

wn

∑
ij

aij.

The first inequality holds because for every (u, v), a(t)uv ≤ f(x(t)) ≤ f(x(0)) =
∑

ij aij .

Corollary 4. At any time t, 1
wn

∑
ij aij ≤ f(x(t)) ≤

∑
ij aij .

17



Proof of Theorem 2. By Corollary 3, whileA(t) is not ε-balanced, there exists an index it to balance

such that f(x(t)) − f(x(t+1))) > ε2

4
· f(x(t)). Thus, f(x(t+1)) <

(
1− ε2

4

)
· f(x(t)). Iterating

for t steps yields f(x(t+1)) <
(

1− ε2

4

)t
· f(x(1)). So, on the one hand, f(x(1)) =

∑n
i,j=1 aij

since f(x(1)) is the sum of entries in A(1). On the other hand, we argue that the value of f(x(t+1))

is at least min(i,j)∈E aij . To see this, consider a directed cycle in the graph GA. Since balancing

operations preserve the product of weights of the arcs on any cycle, the weight of at least one arc

in the cycle is at least its weight in the input matrix A. Therefore,

amin ≤ f(x(t+1)) <

(
1− ε2

4

)t
· f(x(1)) =

(
1− ε2

4

)t
·

n∑
i,j=1

aij.

Thus, t ≤ 4
ε2
· lnw and this is an upper bound on the number of balancing operations before an

ε-balanced matrix is obtained.

The algorithm initially computes ‖a.,i‖1 and ‖ai,.‖1 for all i ∈ [n] in O(m) time. Also the

algorithm initially computes the value of
(√
‖ai,.‖1 −

√
‖a.,i‖1

)2
for all i in O(m) time and in-

serts the values in a priority queue in O(n log n) time. The values of ‖a(t)i,. ‖1, ‖a
(t)
.,i ‖1 for all i

and
(√
‖a(t)i,. ‖1 −

√
‖a(t).,i ‖1

)2

are updated after each balancing operation. In each iteration the

weights of at most 2n arcs change. Updating the values of ‖a(t)i,. ‖1 and ‖a(t).,i ‖1 takes O(n) time

and updating the values of
(√
‖a(t)i,. ‖1 −

√
‖a(t).,i ‖1

)2

involves at most n updates of values in the

priority queue, each taking time O(log n). Thus, the first iteration takes O(m) operations and

each iteration after that takes O(n log n) operations, so the total number of arithmetic operations

performed by the algorithm is O(m+ (n log n logw)/ε2).

An alternative analysis completes the proof. Notice that ‖∇f(x(t))‖2 ≤ ‖∇f(x(t))‖1 ≤
√
n ·

‖∇f(x(t))‖2. Therefore,

f(x(t))− f(x(t+1))) ≥ ‖∇f(x(t))‖22
4f(x(t))

≥ ‖∇f(x(t))‖2
4
√
n · f(x(t))

· ‖∇f(x(t))‖1

≥ 1

2n3/2
· ‖∇f(x(t))‖2

f(x(t))
· (f(x(t))− f(x∗))

where the first inequality follows from Lemma 3, and the last inequality follows from Lemma 2.
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Therefore, while At is not ε-balanced (so ‖∇f(x
(t))‖2

f(x(t))
> ε), we have that

f(x(t))− f(x(t+1)) ≥ ε

2n3/2
· (f(x(t))− f(x∗))

Rearranging the terms, we get f(x(t+1)) − f(x∗) ≤
(
1− ε

2n3/2

)
· (f(x(t)) − f(x∗)). Therefore,

f(x(t+1))− f(x∗) ≤
(
1− ε

2n3/2

)t · (f(x(1))− f(x∗)). Notice that by Lemma 3,

f(x(t+1))− f(x∗) ≥ f(x(t+1))− f(x(t+2)) ≥
(
‖∇f(x(t+1))‖2

2f(x(t+1))

)2

· f(x(t+1))

≥
(
‖∇f(x(t+1))‖2

2f(x(t+1))

)2

· amin

On the other hand, f(x(1)) − f(x∗) ≤ f(x(1)) ≤
∑n

i,j=1 aij . Thus, for t = 2ε−1 · n3/2 ln(4w/ε2),

we have that ‖∇f(x
(t+1))‖2

f(x(t+1))
≤ ε, so the matrix is ε-balanced.

Thus far, assuming exact arithmetics with infinite precision we have shown that the greedy

implementation of Osborne’s algorithm converges in the claimed number of arithmetic opera-

tions. It remains to show that the algorithm still works if all numbers are represented with only

O(n log(w/ε))-bits. For every i, j and t let â(t)ij represent a(t)ij truncated to O(n log(w/ε)) bits of

precision. We set the hidden constant so that the truncation error is r < (ε/w)2n. By Lemma 4,

this error is negligible compared to a(t)ij . Specifically,

(1− (
ε

w
)n)a

(t)
ij ≤ a

(t)
ij − r ≤ â

(t)
ij ≤ a

(t)
ij ,

where the first inequality uses Lemma 4 and assumes without loss of generality that A is scaled

so that
∑

i,j ai,j ≥ 1. For every i and j, the algorithm maintains the value of â(t)ij instead of

a
(t)
ij . To balance the i-th index at time t, the algorithm computes

√
‖â(t).,i ‖1/‖â

(t)
i,. ‖1 truncated to

O(n log(w/ε)) bits of precision and saves the value in a variable d̂(t)ii . Then it multiplies row i

by d̂(t)ii and divides column i by d̂(t)ii . Thus, for all j, a(t+1)
ij = a

(t)
ij · d̂

(t)
ii and a(t+1)

ji = a
(t)
ji /d̂

(t)
ii .

The algorithm computes a(t+1)
ij truncated to O(n log(w/ε)) bits of precision and saves this value in

â
(t+1)
ij .
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Thus, balancing index i reduces the value of function f by

f(x(t))− f(x(t+1)) =(
‖a(t).,i ‖1 + ‖a(t)i,. ‖1

)
−
(
‖a(t+1)

.,i ‖1 + ‖a(t+1)
i,. ‖1

)
=
(
‖a(t).,i ‖1 + ‖a(t)i,. ‖1

)
−

(
‖a(t).,i ‖1
d̂
(t)
ii

+ ‖a(t)i,. ‖1 · d̂
(t)
ii

)
≥
(
‖a(t).,i ‖1 + ‖a(t)i,. ‖1

)
− 2(1 +O((

ε

w
)n))

√
‖a(t).,i ‖1‖a

(t)
i,. ‖1

=

(√
‖a(t).,i ‖1 −

√
‖a(t)i,. ‖1

)2

−O((
ε

w
)n)

√
‖a(t).,i ‖1‖a

(t)
i,. ‖1

= (1− o(1))

(√
‖a(t).,i ‖1 −

√
‖a(t)i,. ‖1

)2

.

In the last equation we used the fact that the index i being balanced at time t is not ε-balanced, and

thus O(( ε
w

)n)
√
‖a(t).,i ‖1‖a

(t)
i,. ‖1 = o(1)

(√
‖a(t).,i ‖1 −

√
‖a(t)i,. ‖1

)2.
Hence, using O(n log(w/ε)) bits of precision affects the reduction in the value of function f

in each iteration by at most a constant factor, and therefore the proof of Theorem 2 using finite

precision is essentially the same as the proof above using infinite precision.

2.2 Round-Robin Balancing (the original algorithm)

Recall that original Osborne’s algorithm balances indices in a fixed round-robin order. Although

the greedy variant of the Osborne’s iteration is a simple modification of the implementation, the

convergence rate of the original algorithm (with no change) is interesting. This is important be-

cause the original algorithm has a slightly simpler implementation, and also because this is the

implementation used in almost all numerical linear algebra software including MATLAB, LA-

PACK and EISPACK (refer to [13, 7] for further background). We answer this question in the

following theorem.

Theorem 3. Given an n × n matrix A, the original implementation of the Osborne’s iteration

outputs an ε-balanced matrix in O(ε−2n2 logw) iterations totaling O(ε−2mn logw) arithmetic

operations over O(n log(w/ε))-bit numbers (m is the number of non-zero entries of A).
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Proof. In the original Osborne algorithm, the indices are balanced in a fixed round-robin order. A

round of balancing is a sequence of n balancing operations where each index is balanced exactly

once. Thus, in the OPR algorithm all n indices are balanced in the same order every round. We

prove a more general statement that any algorithm that balances indices in rounds (even if the

indices are not balanced in the same order every round) obtains an ε-balanced matrix in at most

O((n logw)/ε2) rounds. To this end, we show that applying a round of balancing to a matrix that

is not ε-balanced reduces the value of function f at least by a factor of 1− ε2/16n.

To simplify notation, we consider applying a round of balancing to the initial matrix A(1) = A.

The argument clearly holds for any time-t matrix A(t). If A is not ε-balanced, by Lemma 3 and

Corollary 3, there exists an index i such that by balancing i the value of f is reduced by:

f(x(1))− f(x(2)) =

(√
‖a.,i‖1 −

√
‖ai,.‖1

)2

≥ ε2

4
f(x(1)). (2.4)

If i is the first index to balance in the next round of balancing, then in that round the value of

f is reduced at least by a factor of 1 − ε2/4 ≥ 1 − ε2/16n, and we are done. Consider the graph

GA corresponding to the matrix A. If node i is not the first node in GA to be balanced, then some

of its neighbors in the graph GA might be balanced before i. The main problem is that balancing

neighbors of i before i may reduce the imbalance of i significantly, so we cannot argue that when

we reach i and balance it the value of f reduces significantly. Nevertheless, we show that balancing

i and its neighbors in this round will reduce the value of f by at least the desired amount. Let t

denote the time that i is balanced in the round. For every arc (j, i) into i, let δj = |aji − a(t)ji |, and

for every arc (i, j) out of i let σj = |aij − a(t)ij |. These values measure the weight change of these

arcs due to balancing a neighbor of i at any time since the beginning of the round. Note that in the

current round and before balancing i, the weight of each arc incident on i is changed at most once

by balancing its other endpoint. Thus, if and arc aij changes value to a(t)ij at time t, we know that

the weight change must have been due to balancing node j. The next lemma shows if the weight of

an arc incident on i has changed since the beginning of the round, it must have reduced the value

of f .

Claim 1. If balancing node j changes aji to aji + ∆, then the balancing reduces the value of f by
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at least ∆2/aji. Similarly if balancing node j changes aij to aij + ∆, then the balancing reduces

the value of f by at least ∆2/aij .

Proof. To simplify notation we assume without loss of generality that j is balanced in the first

iteration of the round. If balancing j changes aji to aji + ∆, then by the definition of balancing,

aji + ∆

aji
=

√
‖a.,j‖1
‖aj,.‖1

. (2.5)

Thus, by Lemma 1 the value of f reduces by

(√
‖a.,j‖1 −

√
‖aj,.‖1

)2

=

(√
‖a.,j‖1
‖aj,.‖1

− 1

)2

‖aj,.‖1

=

(
aji + ∆

aji
− 1

)2

‖aj,.‖1

=

(
∆

aji

)2

‖aj,.‖1 ≥
∆2

aji

The proof for the second part of the claim is similar.

Going back to the proof of Theorem 3, let t denote the iteration in the round that i is balanced. By

Claim 1, balancing neighbors of i has already reduced the value of f by

∑
j:(j,i)∈E

δ2j
aji

+
∑

j:(i,j)∈E

σ2
j

aij
. (2.6)

Balancing i reduces value of f by an additional
(√
‖a(t).,i ‖1 −

√
‖a(t)i,. ‖1

)2

, so the value of f in the

current round is reduced by at least:

R =
∑

j:(j,i)∈E

δ2j
aji

+
∑

j:(i,j)∈E

σ2
j

aij
+

(√
‖a(t).,i ‖1 −

√
‖a(t)i,. ‖1

)2

Assume without loss of generality that ‖ai,.‖1 > ‖a.,i‖1. To lower boundR, we consider two cases:

case (i):
∑

j:(j,i)∈E

δj +
∑

j:(i,j)∈E

σj ≥
1

2
(‖ai,.‖1 − ‖a.,i‖1).
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In this case,

R ≥
∑

j:(j,i)∈E

δ2j
aji

+
∑

j:(i,j)∈E

σ2
j

aij

≥ 1

‖a.,i‖1

∑
j:(j,i)∈E

δ2j +
1

‖ai,.‖1

∑
j:(i,j)∈E

σ2
j

≥ 1

n‖a.,i‖1
(
∑

j:(j,i)∈E

δj)
2 +

1

n‖ai,.‖1
(
∑

j:(i,j)∈E

σj)
2, (2.7)

where the last inequality follows by Cauchy-Schwarz inequality. By assumption of case (i),

max(
∑

j:(j,i)∈E

δj,
∑

j:(i,j)∈E

σj) ≥
1

4
(‖ai,.‖1 − ‖a.,i‖1). (2.8)

Equations 2.7 and 2.8 together imply that

R ≥
(
∑

j:(j,i)∈E δj)
2 + (

∑
j:(i,j)∈E σj)

2

nmax(‖a.,i‖1, ‖ai,.‖1)

≥ 1

16n

(‖ai,.‖1 − ‖a.,i‖1)2

max(‖a.,i‖1, ‖ai,.‖1)

=
(
√
‖a.,i‖1 −

√
‖ai,.‖1)2(

√
‖a.,i‖1 +

√
‖ai,.‖1)2

16nmax(‖a.,i‖1, ‖ai,.‖1)

≥ 1

16n

(√
‖a.,i‖1 −

√
‖ai,.‖1

)2

.

case (ii):
∑

j:(j,i)∈E

δj +
∑

j:(i,j)∈E

σj <
1

2
(‖ai,.‖1 − ‖a.,i‖1).

By definition of δj’s and σj’s:

‖a.,i‖1 −
∑

j:(j,i)∈E

δj ≤ ‖a(t).,i ‖1 ≤ ‖a.,i‖1 +
∑

j:(j,i)∈E

δj (2.9)

‖ai,.‖1 −
∑

j:(i,j)∈E

σj ≤ ‖a(t)i,. ‖1 ≤ ‖ai,.‖1 +
∑

j:(i,j)∈E

σj. (2.10)

Combining Equations 2.9 and 2.10, and the assumption of case (ii) gives:

‖a(t)i,. ‖1 + ‖a(t).,i ‖1

≤ ‖ai,.‖1 + ‖a.,i‖1 +
∑

j:(i,j)∈E

σj +
∑

j:(j,i)∈E

δj

≤ 2 (‖ai,.‖1 + ‖a.,i‖1) (2.11)
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and

‖a(t)i,. ‖1 − ‖a
(t)
.,i ‖1

≥ ‖ai,.‖1 − ‖a.,i‖1 −
∑

j:(i,j)∈E

σj −
∑

j:(j,i)∈E

δj

≥ 1

2
(‖ai,.‖1 − ‖a.,i‖1) . (2.12)

Using Equations 2.11 and 2.12, we can write:

R ≥
(√
‖a(t)i,. ‖1 −

√
‖a(t).,i ‖1

)2

=

(
‖a(t).,i ‖1 − ‖a

(t)
i,. ‖1

)2
(√
‖a(t).,i ‖1 +

√
‖a(t)i,. ‖1

)2 ≥
(‖ai,.‖1 − ‖a.,i‖1)2

4

(√
‖a(t).,i ‖1 +

√
‖a(t)i,. ‖1

)2

≥ (‖ai,.‖1 − ‖a.,i‖1)2

8
(
‖a(t)i,. ‖1 + ‖a(t).,i ‖1

) ≥ (‖ai,.‖1 − ‖a.,i‖1)2

16 (‖ai,.‖1 + ‖a.,i‖1)

≥ 1

16

(√
‖ai,.‖1 −

√
‖a.,i‖1

)2

.

Thus, we have shown in both cases that in one round the balancing operations on node i and its

neighbors reduces the value of f by at least

1

16n

(√
‖a.,i‖1 −

√
‖ai,.‖1

)2

, (2.13)

which in turn is at least Ω( ε
2

n
f(x(1))) by Equation 2.4. Thus, we have shown that if A is not ε-

balanced, one round of balancing (where each index is balanced exactly once) reduces the objective

function f by a factor of at least 1−Ω
(
ε2

n
f(x(1))

)
. By an argument similar to the one in the proof

of Theorem 2, we get that the algorithm obtains an ε-balanced matrix in at most O(ε−2n logw)

rounds. Since each round has n balancing operations, the total number of balancing operations

is at most O(ε−2n2 logw). The number of arithmetic operations in each round is O(m) because

the number of arithmetic operations in balancing each node is proportional to the number of arcs

incident on that node. Thus, the original Osborne’s algorithm obtains an ε-balanced matrix using

O(ε−2mn logw) arithmetic operations.
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The proof above assumes exact arithmetics with infinite precision. As with Theorem 2, it is

easy to modify the proof to show that the algorithm has similar performance if all numbers are

truncated to O(n log(w/ε)) bits of precision.

2.3 Randomized Balancing

In variants of Osborne’s algorithm that we considered so far (see Theorem 2 and Theorem 3), the

arithmetic operations were applied to O(n log(w/ε))-bit numbers. This will cause an additional

factor of O(n log(w/ε)) in the running time of the algorithm. In this section we fix this issue by

presenting a randomized variant of the algorithm that applies arithmetic operations to numbers of

O(log(nw/ε)) bits. Thus, we obtain an algorithm for balancing that runs in nearly linear time inm.

While the greedy algorithm works by picking the node i that maximizes (
√
‖ai,.‖−

√
‖a.,i‖)2, the

key idea of the randomized algorithm is sampling a node for balancing using sampling probabilities

that do not depend on the difference in arc weights (the algorithm uses low-precision rounded

weights, so this can affect significantly the difference). Instead, our sampling probabilities depend

on the sum of weights of the arcs incident on a node.

We first introduce some notation. For convenience we use in this section ‖ · ‖ instead of ‖ · ‖1

to denote the L1 norm. We use O(log(nw/ε)) bits of precision to approximate xi-s with x̂i-s.

Thus, xi − 2−O(log(nw/ε)) ≤ x̂i ≤ xi. In addition to maintaining x̂(t) = (x̂
(t)
1 , x̂

(t)
2 , . . . , x̂

(t)
n ) at every

time t, the algorithm also maintains for every i and j the value of â(t)ij which is a(t)ij = aije
x̂
(t)
i −x̂

(t)
j

truncated to O(log(nw/ε)) bits of precision. We set the hidden constant to give a truncation error

of r = (ε/wn)10amin, so a(t)ij − r ≤ â
(t)
ij ≤ a

(t)
ij . To be precise, the hidden constant is 11, and we

get a truncation error of (ε/wn)11 ≤ (ε/wn)10amin = r, where the inequality assumes w.l.o.g. that∑
i,j aij ≥ 1, which can be ensured by scaling A.

The algorithm also maintains for every i, ‖â(t)i,. ‖ =
∑n

j=1 â
(t)
ij and ‖â(t).,i ‖ =

∑n
j=1 â

(t)
ji . For every

i, we use the notation ‖a(t)i,. ‖ =
∑n

j=1 a
(t)
ij and ‖a.,i‖ =

∑n
j=1 a

(t)
ji . Note that the algorithm does not

maintain the values a(t)ij , ‖a(t).,i ‖ or ‖a(t)i,. ‖.
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Algorithm 2 RandomBalance(A, ε)

Input: Matrix A ∈ Rn×n, ε

Output: An ε-balanced matrix

1: r = amin · (ε/wn)10

2: Let â(1)ij = a
(1)
ij for all i and j

3: Let ‖â(t)i,. ‖ = ‖a(t)i,. ‖ and ‖â(t).,i ‖ = ‖a(t).,i ‖ for all i

4: for t = 1 to O(ε−2 lnw) do

5: Pick i randomly with probability pi =
‖â(t)i,. ‖+‖â

(t)
.,i ‖

2
∑
i,j â

(t)
ij

6: if ‖â(t)i,. ‖+ ‖â(t).,i ‖ ≥ εamin/10wn then

7: M̂i = max{‖â(t)i,. ‖, ‖â
(t)
.,i ‖}, m̂i = min{‖â(t)i,. ‖, ‖â

(t)
.,i ‖}

8: if m̂i = 0 or M̂i/m̂i ≥ 1 + ε/n then

9: if m̂i 6= 0 then α = 1
2

ln(‖â(t).,i ‖/‖â
(t)
i,. ‖)

10: else if m̂i = ‖â(t).,i ‖ = 0 then α = 1
2

ln(nr/‖â(t)i,. ‖)

11: else if m̂i = ‖â(t)i,. ‖ = 0 then α = 1
2

ln(‖â(t).,i ‖/nr)

12: end if

13: Let x̂(t+1) ← x̂(t) + αei
(
truncated to O(log(nw

ε
)) bits of precision

)
14: for j = 1 to n do

15: if j is a neighbor of i then

16: â
(t+1)
ij ← aije

x̂
(t+1)
i −x̂(t+1)

j and

17: â
(t+1)
ji ← ajie

x̂
(t+1)
j −x̂(t+1)

i ,
(
truncated to O(log(nw/ε)) bits

)
18: ‖â(t+1)

j,. ‖ = ‖â(t)j,. ‖ − â
(t)
ji + â

(t+1)
ji and ‖â(t+1)

.,j ‖ = ‖â(t).,j ‖ − â
(t)
ij + â

(t+1)
ij

19: end if

20: end for

21: ‖â(t+1)
i,. ‖ =

∑n
j=1 â

(t+1)
ij and

22: ‖â(t+1)
.,i ‖ =

∑n
j=1 â

(t+1)
ji

23: end if

24: end if

25: end for

26: return the resulting matrix

26



The algorithm works as follows (see the pseudo-code of Algorithm 2). In each iteration it

samples an index i with probability

pi =
‖â(t)i,. ‖+ ‖â(t).,i ‖∑
i ‖â

(t)
i,. ‖+ ‖â(t).,i ‖

=
‖â(t)i,. ‖+ ‖â(t).,i ‖

2
∑

i,j â
(t)
ij

.

If i is sampled, a balancing operation is applied to index i only if the arcs incident on i have sig-

nificant weight (line 6), and i’s imbalance is sufficiently large (line 8). Put M̂i = max{‖â(t)i,. ‖, ‖â
(t)
.,i ‖}

and m̂i = min{‖â(t)i,. ‖, ‖â
(t)
.,i ‖}. The imbalance is considered large if m̂i = 0 (this can happen be-

cause of the low precision), or if m̂i 6= 0 and M̂i

m̂i
≥ 1 + ε

n
. A balancing operation is done by adding

α to x̂
(t)
i , where α = 1

2
ln(‖â(t).,i ‖/‖â

(t)
i,. ‖), unless m̂i = 0, in which case we replace the 0 value by

nr. This updates the weights of the arcs incident on i. Also, the L1 norms of changed rows and

columns are updated.

Note that in the pseudo-code,← indicates an assignment where the value on the right-hand side

is computed to O(log(nw/ε)) bits of precision. In contrast, = indicates an exact equlaity. Thus,

we have

α− (ε/wn)10 ≤ x̂
(t+1)
i − x̂(t)i ≤ α (2.14)

and

aije
x̂
(t+1)
i −x̂(t+1)

j − r ≤ â
(t+1)
ij ≤ aije

x̂
(t+1)
i −x̂(t+1)

j ,

ajie
x̂
(t+1)
i −x̂(t+1)

j − r ≤ â
(t+1)
ji ≤ ajie

x̂
(t+1)
i −x̂(t+1)

j .

We are now ready to state and prove the main Theorem of this section.

Theorem 4. With probability at least 9
10

, Algorithm 2 returns an ε-balanced matrix using O(m +

ε−2n logw) arithmetic operations over O(log(wn/ε))-bit numbers.

The idea of proof is to show that in every iteration of the algorithm we reduce f(·) by at least a

factor of 1− Ω(ε2). Before we prove the theorem, we state and prove a couple of useful lemmas.

Fix an iteration t, and define three sets of indices as follows: A = {i : ‖â(t)i,. ‖ + ‖â(t).,i ‖ ≥

εamin/10wn}, B = {i : m̂i 6= 0∧ M̂i/m̂i ≥ 1 + ε/n}, and C = {i : m̂i = 0}. If the random index
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i satisfies i /∈ A or i ∈ A \ (B ∪ C), the algorithm does not perform any balancing operation on i.

The following lemma states that the expected decrease due to balancing such indices is small, and

thus skipping them does not affect the speed of convergence substantially.

Lemma 5. For every iteration t,
∑

i/∈A∩(B∪C) pi ·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

< 3ε2

n
· f(x̂(t)), where p

is the probability distribution over indices at time t.

Proof. Notice that for every i,

(‖â(t)i,. ‖+ ‖â(t).,i ‖) ·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

≤ (‖â(t)i,. ‖+ ‖â(t).,i ‖) ·

(
‖a(t)i,. ‖ − ‖a

(t)
.,i ‖
)2

‖a(t)i,. ‖+ ‖a(t).,i ‖

≤
(
‖a(t)i,. ‖ − ‖a

(t)
.,i ‖
)2
, (2.15)

because ‖â(t)i,. ‖+ ‖â(t).,i ‖ ≤ ‖a
(t)
i,. ‖+ ‖a(t).,i ‖. We first bound the sum over i /∈ A.

∑
i/∈A

pi ·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

=
∑
i/∈A

‖â(t)i,. ‖+ ‖â(t).,i ‖
2
∑

i,j â
(t)
ij

·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

≤ 1

2
∑

i,j â
(t)
ij

·
∑
i/∈A

(
‖a(t)i,. ‖ − ‖a

(t)
.,i ‖
)2

≤ 1

2
∑

i,j â
(t)
ij

·
∑
i/∈A

(
‖â(t)i,. ‖+ ‖â(t).,i ‖+ 2nr

)2
≤ 1

2
∑

i,j â
(t)
ij

·
∑
i/∈A

(
2εamin

10wn

)2

≤ 1

2
∑

i,j â
(t)
ij

· n ·
(εamin

5wn

)2
=

ε2

50n

1∑
i,j â

(t)
ij

a2min

w2

≤ ε2

25n
· amin ≤

ε2

25n
· f(x̂(t)) (2.16)

where the first inequality holds by (2.15), the second inequality follows because, for every j, a(t)ij ≤
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â
(t)
ij + r and a(t)ji ≤ â

(t)
ji + r, and the third inequality follows because ‖â(t)i,. ‖+ ‖â(t).,i ‖ < εamin/10wn

and 2nr < εamin/10wn.

Next, we bound the sum over i ∈ A \ (B ∪ C). Recall M̂i = max{‖â(t)i,. ‖, ‖â
(t)
.,i ‖} and m̂i =

min{‖â(t)i,. ‖, ‖â
(t)
.,i ‖}. Also letMi andmi denote the untruncated versions of M̂i and m̂i respectively.

Specifically,

Mi =

 ‖a
(t)
i,. ‖ if M̂i = ‖â(t)i,. ‖

‖a(t).,i ‖ if M̂i = ‖â(t).,i ‖

and mi is similarly defined to correspond to m̂i.

Let k = arg maxi∈A\(B∪C)(Mi −mi)
2. We have

∑
i∈A\(B∪C)

pi ·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

=
∑

i∈A\(B∪C)

‖â(t)i,. ‖+ ‖â(t).,i ‖
2
∑

i,j â
(t)
ij

·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

≤ 1

2
∑

i,j â
(t)
ij

·
∑

i∈A\(B∪C)

(
‖a(t)i,. ‖ − ‖a

(t)
.,i ‖
)2

By (2.15)

≤ 1

2
∑

i,j â
(t)
ij

·
∑

i∈A\(B∪C)

(Mi −mi)
2

≤ 1

2
∑

i,j â
(t)
ij

· n ·m2
k

(
Mk

mk

− 1

)2

. (2.17)

To bound the last quantity, we prove an upper bound on Mk

mk
using the fact that M̂k

m̂k
< 1 + ε

n
. As

k ∈ A, we have M̂k + m̂k = ‖â(t)k,.‖ + ‖â(t).,k‖ ≥
εamin

10wn
. Thus, M̂k ≥ εamin

20wn
. Combining this with

M̂k

m̂k
< 1 + ε

n
implies that m̂k >

1
2
M̂k ≥ εamin

40wn
. Hence,

Mk

mk

≤ Mk

m̂k

≤ M̂k + nr

m̂k

≤ M̂k

m̂k

+
nr

εamin/40wn

=
M̂k

m̂k

+ 40n ·
( ε

wn

)9
≤ M̂k

m̂k

+
40ε9

n8
≤ 1 +

2ε

n
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where we used w ≥ 1. Using the upper bound on Mk

mk
, we obtain

∑
i∈A\(B∪C)

pi ·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

≤ 1

2
∑

i,j â
(t)
ij

· n ·m2
k

(
Mk

mk

− 1

)2

By (2.17)

≤ 1

2
∑

i,j â
(t)
ij

· n ·m2
k

(
2ε

n

)2

≤ 2ε2

n
·mk ≤

2ε2

n
· f(x̂(t)), (2.18)

where the penultimate inequality uses the fact that mk ≤ m̂k + nr ≤ m̂k + εamin

40wn
< 2m̂k ≤

M̂k + m̂k ≤
∑

i,j â
(t)
ij . Together (2.16) and (2.18) complete the proof of Lemma 5.

Thus far, we have proved that the expected reduction in f(·) by balancing index i such that

i /∈ A or i ∈ A \ (B ∪ C) is negligible. Next, we consider the rest of the indices. The following

lemma shows a lower bound on the decrease in f(·), if a node i ∈ A ∩ (B ∪ C) is balanced.

Lemma 6. If i ∈ A ∩ (B ∪ C) is balanced in iteration t, then f(x̂(t)) − f(x̂(t+1)) ≥ 1
10
·(√

‖a(t)i,. ‖ −
√
‖a(t).,i ‖

)2

.

Proof. We will assume that ε < 1
10

. We first consider the case that i ∈ A∩B (notice that B ∩C =

∅). The update using O(ln(wn/ε)) bits of precision gives x̂(t)i +α− (ε/nw)10 ≤ x̂
(t+1)
i ≤ x̂

(t)
i +α,

so √√√√‖â(t).,i ‖
‖â(t)i,. ‖

· ex̂
(t)
i −(ε/wn)

10 ≤ ex̂
(t+1)
i ≤

√√√√‖â(t).,i ‖
‖â(t)i,. ‖

· ex̂
(t)
i .

Therefore,

‖a(t+1)
i,. ‖ =

n∑
j=1

aije
x̂
(t+1)
i −x̂(t+1)

j

≤

√√√√‖â(t).,i ‖
‖â(t)i,. ‖

·
n∑
j=1

aije
x̂
(t)
i −x̂

(t)
j =

√√√√‖â(t).,i ‖
‖â(t)i,. ‖

· ‖a(t)i,. ‖, (2.19)
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and

‖a(t+1)
.,i ‖ =

n∑
j=1

ajie
x̂
(t+1)
j −x̂(t+1)

i

≤ e(ε/wn)
10 ·

√√√√‖â(t)i,. ‖
‖â(t).,i ‖

·
n∑
j=1

ajie
x̂
(t)
j −x̂

(t)
i

≤ (1 + 2(ε/wn)10)) ·

√√√√‖â(t)i,. ‖
‖â(t).,i ‖

· ‖a(t).,i ‖. (2.20)

We used the fact that ex ≤ 1+2x for x ≤ 1
2
. We will now use the notation M̂i, m̂i, Mi, andmi (the

reader can recall the definitions from the proof of Lemma 5). We first prove the following useful

bounds on Mi and mi
Mi

.

Claim 2. For every i ∈ A, Mi ≥
εamin

20wn
, and if i is in A ∩B,

mi

Mi

≤ 1− ε

2n
.

Proof. For every i ∈ A∩B, M̂i+m̂i >
εamin

10wn
, soMi ≥ M̂i ≥ M̂i+m̂i

2
> εamin

20wn
. Also,mi ≤ m̂i+nr,

so
mi

Mi

≤ m̂i + nr

M̂i

≤ 1

1 + ε/n
+
nr

M̂i

≤ 1− ε

2n
.

We also put δ = 2(ε/wn)10, and σ = M̂i/m̂i
Mi/mi

. Thus, by inequality (2.19) and (2.20) decrease of

function f(·) due to balancing i is

f(x̂(t))− f(x̂(t+1)) = Mi +mi − ‖a(t+1)
.,i ‖ − ‖a

(t+1)
i,. ‖

≥Mi +mi − (1 + δ)

(
Mi

√
m̂i/M̂i +mi

√
M̂i/m̂i

)
= Mi +mi − (1 + δ)

(√
1/σ +

√
σ
)
·
√
Mimi =(√

Mi −
√
mi

)2
−
(

1 + δ√
σ

+ (1 + δ)
√
σ − 2

)
·
√
Mimi (2.21)

Note that inequality (2.19) and (2.20) are used in the first inequality above.

To prove the lemma, we now consider three cases, and in each case show that(
1 + δ√
σ

+ (1 + δ)
√
σ − 2

)
·
√
Mimi ≤

9

10
·
(√

Mi −
√
mi

)2
. (2.22)

case (i): 1 ≤ σ ≤ 1 +
ε4

n2
.
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Since ε < 1
10

, we have (
1 + δ√
σ

+ (1 + δ)
√
σ − 2

)
·
√
mi

Mi

≤
(

(1 + δ) + (1 + δ) ·
(

1 +
ε4

n2

)
− 2

)
≤ 4ε4

n2

≤ 9

10

(
1−

√
1− ε

2n

)2

≤ 9

10

(
1−

√
mi

Mi

)2

where the first inequality holds because mi/Mi ≤ 1 and σ ∈ [1, 1 + ε4/n2], the second inequality

holds by definition of δ and the last inequality follows from Claim 2. By multiplying both sides of

the inequality by Mi we obtain the desired bound.

case (ii): σ < 1.

We first prove a lower bound on the value of σ, as follows: M̂i

m̂i
≥ M̂i

mi
≥ Mi−nr

mi
≥ Mi

mi
(1 − nr

Mi
) ≥

Mi

mi

(
1− 20ε9

n8

)
, where the last inequality use the lower bound on Mi from Claim 2, and the value

of r. Therefore, σ = M̂i/m̂i
Mi/mi

≥ 1− 20ε9

n8 . So we have(
1 + δ√
σ

+ (1 + δ)
√
σ − 2

)
·
√
mi

Mi

≤ 1 + δ√
1− 20ε9

n8

+ (1 + δ)− 2

≤ (1 + δ)

(
1 +

20ε9

n8

)
+ (1 + δ)− 2

≤ 24ε9

n8
<

4ε4

n2
≤ 9

10

(
1−

√
1− ε

2n

)2

≤ 9

10
·
(

1−
√
mi

Mi

)2

,

proving the desired inequality in this case. The first inequality holds because mi
Mi
≤ 1 and 1− 20ε9

n8 ≤

σ ≤ 1.

case (iii): σ > 1 +
ε4

n2
.
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The idea is to show that Mi/mi is large so the desired inequality follows. We know that σMi

mi
=

M̂i

m̂i
≤ Mi

m̂i
and therefore m̂i ≤ mi

σ
. On the other hand, m̂i ≥ mi − nr, so mi ≤ nr

1−1/σ . Clearly,

1/σ < 1− ε4

2n2 , so mi <
nr

ε4/2n2 . Also, by Claim 2, Mi ≥ εamin

20wn
. Therefore, Mi

mi
≥ εamin/20wn

2n3r/ε4
≥ n6

40ε5
.

Next, notice that since m̂i > 0 it must be that m̂i ≥ r. Therefore, mi ≤ m̂i + nr ≤ 2nm̂i. This

implies that M̂i

m̂i
≤ Mi

m̂i
≤ 2n · Mi

mi
, so σ ≤ 2n. Finally,(

1 + δ√
σ

+ (1 + δ)
√
σ − 2

)
≤ (1 + δ) ·

√
2n ≤ 1

10
·
√
Mi

mi

,

with room to spare (using the lower bound on Mi

mi
). Multiplying both sides by

√
Mi

mi
gives

(
1 + δ√
σ

+ (1 + δ)
√
σ − 2

)
·
√
Mi

mi

≤ 1

10

Mi

mi

≤ 9

10

(√
Mi

mi

− 1

)2

,

with more room to spare. Thus, we have shown that if i ∈ A∩B, then (2.22) holds. This combined

with (2.21) implies that in the case i ∈ A ∩B:

f(x̂(t))− f(x̂(t+1)) ≥
(√

Mi −
√
mi

)2
−
(

1 + δ√
σ

+ (1 + δ)
√
σ − 2

)
·
√
Mimi

≥ 1

10

(√
Mi −

√
mi

)2
.

We now move on to the case i ∈ A ∩ C, so M̂i + m̂i ≥ εamin

10wn
and m̂i = 0. In the algorithm,

α = 1
2

ln(nr/‖â(t)i,. ‖) or α = 1
2

ln(‖â(t).,i ‖/nr). Therefore, the idea is that we replace m̂i which is 0

by nr in some of the equations. In particular, f(x̂(t))−f(x̂(t+1)) = Mi+mi−‖a(t+1)
.,i ‖−‖a

(t+1)
i,. ‖ ≥

Mi + mi − (1 + δ)

(
Mi

√
nr

M̂i
+mi

√
M̂i

nr

)
by replacing m̂i instead of nr in inequality (2.19) and

(2.20). Note that since m̂i = 0 then mi ≤ nr. Therefore, M̂i

nr
≤ Mi

nr
≤ Mi

mi
. On the other hand, since
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i ∈ A by Claim 2 M̂i ≥ εamin

20wn
, so M̂i

nr
≥ εamin/20wn

n(ε/wn)10amin
≥ n8

20ε9
. Thus we get

f(x̂(t))− f(x̂(t+1))

≥Mi +mi − (1 + δ)

Mi

√
nr

M̂i

+mi

√
M̂i

nr


≥Mi +mi − (1 + δ)

(
Mi

√
20ε9

n8
+mi

√
Mi

mi

)

≥Mi +mi − 2(1 + δ)Mi

√
20ε9

n8

≥Mi

(
1− 20ε4

n4

)
≥ 1

10
Mi ≥

1

10
(
√
Mi −

√
mi)

2,

where the third inequality holds because mi

√
Mi

mi
= Mi

√
mi
Mi
≤ Mi

√
nr

M̂i
. This completes the

proof of Lemma 6.

Using Lemma 5 and Lemma 6, we can now prove Theorem 4.

Proof of Theorem 4. By Lemma 6, the expected decrease in f(·) in iteration t is lower bounded as

follows.

E[f(x̂(t))− f(x̂(t+1))]

≥
∑

i∈A∩(B∪C)

pi ·
1

10

(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

=
1

10
·
∑
i∈A

pi ·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

−

1

10
·

∑
i/∈A∩(B∪C)

pi ·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

.

The second term can be bounded, using Lemma 5, by
∑

i/∈A∩(B∪C)

(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

≤
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3ε2

n
· f(x̂(t)). For the first term, we can write∑

i∈A

pi ·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

≥
∑
i∈A

pi ·
(‖a(t)i,. ‖ − ‖a

(t)
.,i ‖)2

2(‖a(t)i,. ‖+ ‖a(t).,i ‖)

=
∑
i∈A

‖â(t)i,. ‖+ ‖â(t).,i ‖
2
∑

ij â
(t)
ij

·
(‖a(t)i,. ‖ − ‖a

(t)
.,i ‖)2

2(‖a(t)i,. ‖+ ‖a(t).,i ‖)

≥ 1

16

∑
i∈A

(‖a(t)i,. ‖ − ‖a
(t)
.,i ‖)2∑

ij a
(t)
ij

=
1

16

( n∑
i=1

(‖a(t)i,. ‖ − ‖a
(t)
.,i ‖)2∑

ij a
(t)
ij

−
∑
i/∈A

(‖a(t)i,. ‖ − ‖a
(t)
.,i ‖)2∑

ij a
(t)
ij

)
.

The last inequality above holds because M̂i

Mi
≥ Mi−nr

Mi
≥ 1

2
for all i inA, so

‖â(t)i,. ‖+‖â
(t)
.,i ‖

‖a(t)i,. ‖+‖a
(t)
.,i ‖
≥ M̂i

2Mi
≥

1
4
. By definition

∑n
i=1

(‖a(t)i,. ‖−‖a
(t)
.,i ‖)

2∑
ij a

(t)
ij

=
‖∇f(x̂(t))‖22
f(x̂(t))

> ε2f(x̂(t)) where the last inequality holds as

long as the matrix is not ε-balanced, and ‖∇f(x̂
(t))‖2

f(x̂(t))
> ε. Also,

∑
i/∈A

(‖a(t)i,. ‖ − ‖a
(t)
.,i ‖)2∑

ij a
(t)
ij

≤
∑
i/∈A

M2
i∑

ij a
(t)
ij

≤
(
∑

i/∈AMi)
2

n
∑

ij a
(t)
ij

≤
(2
∑

i/∈A M̂i)
2

n
∑

ij a
(t)
ij

≤ (2nM̂i)
2

n
∑

ij a
(t)
ij

≤
(2n εamin

10nw
)2

n
∑

ij a
(t)
ij

≤ ε2

25n
f(x̂(t))

Thus,
∑

i∈A pi ·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

≥ 1
16

[ε2f(x̂(t)) − ε2

25n
f(x̂(t))] ≥ ε2

20
f(x̂(t)). Combining

everything together, we get

E[f(x̂(t))− f(x̂(t+1))] ≥

1

10
·
∑
i∈A

pi ·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

−

1

10
·

∑
i/∈A∩(B∪C)

pi ·
(√
‖a(t)i,. ‖ −

√
‖a(t).,i ‖

)2

≥ 1

10
·
(
ε2

20
· f(x̂(t))− 3ε2

n
· f(x̂((t)))

)
≥ ε2

500
· f(x̂(t)),
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where the last inequality assumes n ≥ 100. This implies that the expected number of iterations

to obtain an ε-balanced matrix is O(ε−2 logw) using arguments similar to the proof of Theo-

rem 2. Markov’s inequality implies that with probability 9
10

an ε-balanced matrix is obtained in

O(ε−2 logw) iterations. It is easy to see that each iteration of the algorithm takes O(n) arithmetic

operations, and initializations take O(m) arithmetic operations. So the total number of arithmetic

operations of the algorithm is O(m+ ε−2n logw) over O(log(wn/ε))-bit numbers.
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CHAPTER 3

Convergence to a strictly ε-balanced matrix

In the previous chapter, we considered three variant of Osborne’s iteration and proved upper bounds

on their convergence rate to an ε-balanced matrix. In this chapter, we consider convergence to a

strictly ε-balanced matrix. Recall from Definition 1, that a matrix A is ε-balanced if√∑n
i=1(‖a.,i‖1 − ‖ai,.‖1)2∑

i,j ai,j
≤ ε.

and it is strictly ε-balanced if for every index i of A (where i ∈ [n])

max {‖a.,i‖1, ‖ai,.‖1}
min {‖a.,i‖1, ‖ai,.‖1}

≤ 1 + ε. (3.1)

Being strictly ε-balanced requires that condition (3.1) holds for every index of the matrix,

while being ε-balanced is a much weaker condition. The following lemma proves the relationship

between the two definitions.

Lemma 7. If matrix A is strictly ε-balanced, then it is also 2ε-balanced.

Proof. For every i ∈ [n] let Mi = max ‖a.,i‖1, ‖ai,.‖1 and mi = min ‖a.,i‖1, ‖ai,.‖1. Being strictly

ε-balanced implies that for all i, Mi

mi
≤ 1 + ε. Thus, for every i, Mi−mi

Mi+mi
≤ Mi−

Mi
1+ε

Mi+
Mi
1+ε

≤ ε. This implies

that, √∑n
i=1(‖a.,i‖1 − ‖ai,.‖1)2∑

i,j ai,j
≤
√∑n

i=1(Mi −mi)2

1
2

∑n
i=1(Mi +mi)

≤ 2
∑n

i=1(Mi −mi)∑n
i=1(Mi +mi)

≤ 2ε.

As the definition and the above lemma suggest bounding the rate of convergence to a strictly ε-

balanced matrix is much harder than bounding the convergence to an ε-balanced matrix. Although,
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we showed that Osborne’s algorithm and its variants converge in at most quadratic time to an ε-

balanced matrix, these proofs don’t provide any evidence that Osborne’s algorithm converges to a

strictly ε-balanced matrix even in a polynomial number of iterations.

The main difficulty with respect to previous work is the following. In the past chapter, to bound

convergence rate to an ε-balanced matrix, we interpreted Osborne’s balancing step to coordinate

descent in optimizing the following convex function:

f(x) =
n∑

i,j=1

aije
xi−xj .

The convergence rate of coordinate descent can be bounded effectively as long as there is a choice

of coordinate (i.e., index) for which the drop in the objective function in a single step is non-

negligible compared with the current objective value. But if this is not the case, then one can argue

only about the balance of each index relative to the sum of norms of all rows and columns. Indices

that have relatively heavy weight (row norm + column norm) will indeed be balanced at this point.

However, light-weight indices may be highly unbalanced. The naive remedy to this problem is

to work down by scales. After balancing the matrix globally, heavy-weight indices are balanced,

approximately, so they can be left alone, deactivated. Now there are light-weight indices that have

become heavy-weight with respect to the remaining active nodes, so we can continue balancing

the active indices until the relatively heavy-weight among them become approximately balanced,

and so forth. The problem with the naive solution is that balancing the active indices shifts the

weights of both active and inactive indices, and they move out of their initial scale. If the scale sets

of indices keep changing, it is hard to argue that the process converges. Shifting between scales is

precisely what our algorithm in this chapter and proof deal with. Light-weight indices that have

become heavy-weight are easy to handle. They can keep being active. Heavy-weight indices that

have become light-weight cannot continue to be inactive, because they are no longer guaranteed to

be approximately balanced. Thus, in order to analyze convergence effectively, we need to bound

the number (and global effect on weight) of these reactivation events.
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3.1 Preliminaries

Recall that any implementation of Osborne’s iteration can be thought of as computing vectors

x(t) ∈ Rn for t = 1, 2, . . . , where iteration t is applied to the matrix (a
(t)
ij ) = DAD−1 for D =

diag(ex
(t)
1 , ex

(t)
2 , . . . , ex

(t)
n ). Thus, for all i, j, a(t)ij = aij · ex

(t)
i −x

(t)
j . Initially, x(1) = (0, 0, . . . , 0). A

balancing step of the iteration chooses an index i, then sets x(t+1)
i = x

(t)
i +1

2
·
(

ln ‖a(t).,i ‖1 − ln ‖a(t)i,. ‖1
)

,

and for all j 6= i, keeps x(t+1)
j = x

(t)
j . For x ∈ Rn, we denote the sum of entries of the ma-

trix DAD−1 for D = diag(ex1 , ex2 , . . . , exn) by f(x) = fA(x) =
∑

ij aij · exi−xj . For any

n× n non-negative matrix B = (bij), we denote by GB the weighted directed graph with node set

{1, 2, . . . , n}, arc set {(i, j) : bij > 0}, where an arc (i, j) has weight bij .

Before describing our variant of Osborne’s algorithm, we prove the following useful lemma

that states a global condition on indices being ε-balanced.

Lemma 8. Consider a matrix B = DAD−1 = (bij)n×n, where D = diag(ex1 , ex2 , . . . , exn), that

was derived from A by a sequence of zero or more balancing operations. Let ε ∈ (0, 1/2], and put

ε′ = ε2

64n4 . Suppose that ‖∇fA(~0)‖1 ≤ ε′ · fA(~0). Then, for every i ∈ [n] we have the following

implication. If ‖b.,i‖1 + ‖bi,.‖1 ≥ 1
8n3 · fA(x), then index i is ε-balanced in B.

Proof. We will show the contrapositive claim that if a node is not ε-balanced then it must have

low weight (both with respect to B). Let i be an index that is not ε-balanced in B. Without loss of

generality we may assume that the in-weight is larger than the out-weight, so ‖b.,i‖1/‖bi,.‖1 > 1+ε.

Consider what would happen if we balance index i in B, yielding a vector x′ that differs from x

only in the i-th coordinate.

fA(x)− fA(x′) =

(√
‖b.,i‖1 −

√
‖bi,.‖1

)2

> ‖b.,i‖1 ·

(
1−

√
1

1 + ε

)2

>
ε2

16
· (‖b.,i‖1 + ‖bi,.‖1) , (3.2)

where the equation follows from Lemma 1 and the last inequality uses the fact that ε ≤ 1
2
. On the
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other hand, we have

fA(x)− fA(x′) ≤ fA(~0)− fA(x∗)

≤ n

2
· ‖∇fA(~0)‖1

≤ n

2
· ε′ · fA(~0)

=
ε2

128n3
· fA(~0). (3.3)

where the first inequality follows from the the fact that every balancing step decreases fA, the

second inequality follows from Lemma 2, the third inequality follows from the assumption on

fA(~0), and the last equation follows from the choice of ε′. Combining the bounds on fA(x)−fA(x′)

in Equations (3.2) and (3.3) gives

‖b.,i‖1 + ‖bi,.‖1 <
1

8n3
· fA(~0),

and this completes the proof.

3.2 Strict Balancing

We are now ready to present a variant of Osborne’s iteration and prove that it converges in poly-

nomial time to a strictly ε-balanced matrix. The algorithm, a procedure named StrictBalance, is

defined in pseudocode labeled Algorithm 3 on page 41. Lemma 8 above motivates the main idea

of contracting heavy nodes in step 14 of StrictBalance.

Our main theorem is the following.

Theorem 5. StrictBalance(A, ε) returns a strictly ε-balanced matrix B = DAD−1 after at most

O
(
ε−2n9 log(wn/ε) logw/ log n

)
balancing steps, usingO (ε−2n10 log(wn/ε) logw/ log n) arithmetic operations overO(n log(w/ε))-

bit numbers.
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Algorithm 3 StrictBalance(A, ε)

Input: Matrix A ∈ Rn×n, ε

Output: A strictly ε-balanced matrix

1: B1 = ∅, τ1 = 0, s = 1, ε′ = ε2/64n4, x(1) = (0, . . . , 0), t = 1

2: while Bs 6= [n] and there is i ∈ [n] that is not ε-balanced do

3: Define f (Bs) : Rn → R, f (Bs)(x) =
∑

i,j:i/∈Bs or j /∈Bs

aije
xi−xj

4: while
‖∇f (Bs)(x(t))‖1
f (Bs)(x(t))

> ε′ do

5: Pick i = arg maxi/∈Bs

{(√
‖a(t).,i ‖1 −

√
‖a(t)i,. ‖1

)2
}

6: Balance ith node: x(t+1) = x(t) + αtei, where αt = ln
√
‖a(t).,i ‖1/‖a

(t)
i,. ‖1

7: t← t+ 1

8: if s > 1 and ‖a(t).,i ‖1 + ‖a(t)i,. ‖1 < τs for some i ∈ Bs \ Bs−1 then

9: Bs = Bs \ {i /∈ Bs−1 : ‖a(t).,i ‖1 + ‖a(t)i,. ‖1 < τs}

10: Redefine f (Bs) : Rn → R, f (Bs)(x) =
∑

i,j:i/∈Bs or j /∈Bs

aije
xi−xj

11: end if

12: end while

13: τs+1 =
1

4n3
f (Bs)(x(t))

14: Bs+1 = Bs ∪
{
i : ‖a(t).,i ‖1 + ‖a(t)i,. ‖1 ≥ τs+1

}
15: s← s+ 1

16: end while

17: return the resulting matrix

This polynomial but very large upper bound of Õ(n9) on the number of iterations should be

viewed in the light of aO(n3) lower bound. Chen [2] shows that Osborne’s algorithm on L∞ needs
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at least O(n3) iterations to converge to a strictly ε-balanced matrix. She proves this lower bound

for cycles of length n, so this lower bound naturally extends to other Lp norms. However, our

work still leaves a large gap between lower and upper bound of the convergence rate of Osborne’s

iteration to a strictly ε-balanced matrix.

The proof of Theorem 5 uses a few arguments, given in the following lemmas. A phase of

StrictBalance is one iteration of the outer while loop. Notice that in the beginning of this loop

the variable s indexes the phase number (i.e., s − 1 phases were completed thus far). Also in the

beginning of the inner while loop the variable t indexes the total iteration number from all phases

(i.e., t− 1 balancing operations from all phases were completed thus far).

We identify outer loop iteration s with an interval [ts, ts+1) = {ts, ts + 1, . . . , ts+1 − 1} of

the inner loop iterations executed during phase s. At any time during the algorithm, variable Bs

denotes the set of nodes of graph GA that are contracted. We denote by Bs,t the value of Bs in the

beginning of the inner while loop iteration number t (dubbed time t). If t ∈ [tj, tj+1), then Bs,t

is defined only for s ≤ j. We also use G(Bs,t) to denote the graph that is obtained by contracting

the nodes of set Bs,t in graph GA. Also f (Bs,t) is the function corresponding to graph G(Bs,t) and

f (Bs,t)(x(t)) denotes the sum of weights of arcs of graph G(Bs,t) at time t. If set Bs is unchanged

during an interval and there is no confusion, we may use G(Bs) instead of G(Bs,t). Particularly we

use f (Bs)(x(t)) instead of f (Bs,t)(x(t)). We refer to the quantity ‖a(t).,i ‖1 + ‖a(t)i,. ‖1 as the weight of

node i at time t.

Lemma 9. For every phase s ≥ 1, for every t ≥ ts+1, Bs,t = Bs,ts+1 .

Proof. The claim follows easily from the fact that any iteration t ≥ ts+1 belongs to a phase s′ > s,

so Bs,ts+1 ∩ (Bs′,t \ Bs′−1,t) = ∅, and by line 8 and 9 of StrictBalance none of the nodes in Bs,ts+1

will be removed.

Lemma 10. For all s > 1, for all t ∈ [ts, ts+1), f (Bs,t)(x(t)) ≤ (n− |Bs,t|) · τs.

Proof. Let ts = ts,1 < ts,2 < ts,3 < · · · < ts,`s denote the time steps before which Bs changes

during phase s. For simplicity, we abuse notation and use Bs,j instead of Bs,ts,j . Clearly Bs,1 ⊇

42



Bs,2 . . . ⊇ Bs,`s , because we only remove nodes from Bs once it is set. Fix s > 1. We prove

this lemma by induction on r ∈ {1, 2, . . . , `s}. For the basis, let r = 1. Clearly, by the way the

algorithm sets Bs before time ts,1, all nodes with weight ≥ τs are in Bs, and therefore every node

i 6∈ Bs has weight at most τs, so the lemma follows. Now, assume that the lemma is true for every

t ≤ ts,r, we show that the lemma holds for every t ≤ ts,r+1. If t ∈ [ts,r, ts,r+1), then Bs,t = Bs,ts,r ,

and we have:

f (Bs)(x(t)) ≤ f (Bs)(x(ts,r)) ≤
(
n−

∣∣Bs,ts,r∣∣) · τs = (n− |Bs,t|) · τs.

The first inequality holds because balancing operations from time ts,r to time t only reduce the

value of f (Bs), and the second inequality holds by the induction hypothesis.

Just before iteration t = ts,r+1, the set Bs changes, and one or more nodes are removed from it.

However, every removed node has weight at most τs, and its removal does not change the weights

of the other nodes in [n] \ Bs. Therefore, if k nodes are removed from Bs,

f (Bs)(x(ts,r+1)) ≤
(
n−

∣∣Bs,ts,r∣∣) · τs + k · τs =
(
n−

∣∣Bs,ts,r+1

∣∣) · τs.
This completes the proof.

Corollary 5. For all s > 1, f (Bs)(x(ts+1)) ≤ 1
4n2 · f (Bs−1)(x(ts)). If s > 2, then τs ≤ τs−1

4n2 .

Proof. Notice that

f (Bs)(x(ts+1)) ≤ n · τs =
1

4n2
· f (Bs−1)(x(ts)),

where the inequality follows from Lemma 10, and the equation follows from line 13 of StrictBal-

ance. This proves the first assertion. As for the second assertion, notice that if s > 2 then s−1 > 1,

so using line 13 of StrictBalance and Lemma 10 again,

τs =
1

4n3
· f (Bs−1)(x(ts)) ≤ 1

4n3
· nτs−1 =

1

4n2
· τs−1,

as stipulated.

Lemma 11. For every phase s > 1, for every t ≥ ts, all the nodes in Bs,t have weight ≥ τs/2 and

are ε-balanced at time t.
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Proof. Fix s > 1 and let i ∈ Bs,t. Without loss of generality i 6∈ Bs−1,t, otherwise we can replace

s with s − 1. (Recall that B1 = ∅ at all times.) Also note that it must be the case that i ∈ Bs,ts ,

because Bs does not accumulate additional nodes after being created. If t ∈ [ts, ts+1], then lines

13-14 and 8-9 of StrictBalance guarantee that if i ∈ Bs,t \Bs−1,t, then its weight at time t is at least

τs.

Otherwise, consider t > ts+1 and let s′ > s be the phase containing t. Consider a phase j > s.

By Lemma 10 the total weight of f (Bj) during phase j is at most nτj , and f (Bj) never drops below

0. So, the total weight that a node i ∈ Bj can lose (which is at most the total weight that f (Bj)

can lose) is at most nτj . By Corollary 5, for every j > s, τj+1 ≤ τj
4n2 . Now, suppose that t is an

iteration in phase s′ > s. Then, the weight of i at time t is at least

τs −
s′∑

j=s+1

nτj ≥ τs ·

(
1− n ·

s′−s∑
k=1

(2n)−2k

)
≥ τs

2
.

Thus we have established that at any time t ≥ ts, if i ∈ Bs,t then its weight is at least τs
2

=

1
8n3f

(Bs−1)(x(ts)). By line 4 of StrictBalance, ‖∇f (Bs−1,ts )(x(ts))‖1 ≤ ε′ · f (Bs−1,ts )(x(ts)). By

Lemma 9, Bs−1 does not change in the interval [ts, t]. Therefore, we conclude from Lemma 8 that

i is ε-balanced at time t.

Lemma 12. Suppose that t < t′ satisfies [t, t′) ⊆ [ts, ts+1), and furthermore, during the iterations

in the interval [t, t′) the set Bs does not change (it could change after balancing step t′− 1). Then,

the length of the interval

t′ − t = O
(
ε−2n7 log(wn/ε)

)
.

Proof. Rename the nodes so that Bs,t = Bs,t′−1 = {p, p + 1, . . . , n}. The assumption that Bs

does not change during the interval [t, t′) means that the weights of all the nodes p, p + 1, . . . , n

remain at least τs for the duration of this interval. During the interval [t, t′), the graph G(Bs) (which

remains fixed) is obtained by contracting the nodes p, p + 1, . . . , n in GA. So G(Bs) has p nodes

1, 2, . . . , p − 1, p, where the last node p is the contracted node. In each iteration in the interval

[t, t′), one of the nodes 1, 2, . . . , p − 1 is balanced. Consider some time step t′′ ∈ [t, t′), and let Ii

and Oi, respectively, denote the current sums of weights of the arcs of G(Bs) into and out of node
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i, respectively. Let j ∈ [p− 1] be the node that maximizes (Ij−Oj)2
Ij+Oj

. We have

f (Bs)(x(t′′))− f (Bs)(x(t′′+1)) = max
i∈[p−1]

(√
Ii −

√
Oi

)2
≥
(√

Ij −
√
Oj

)2
≥ (Ij −Oj)

2

2(Ij +Oj)

≥
∑p−1

i=1 (Ii −Oi)
2

2
∑p−1

i=1 (Ii +Oi)
≥
(∑p−1

i=1 |Ii −Oi|
)2

2n
∑p

i=1(Ii +Oi)
≥ (

∑p
i=1 |Ii −Oi|)2

8n
∑p

i=1(Ii +Oi)

=
1

16n
· ‖∇f

(Bs)(x(t′′))‖21
f (Bs)(x(t′′))

. (3.4)

The first equation follows from the choice of i in line 5 StrictBalance, and Lemma 2. The

third inequality follows from an averaging argument and the choice of j. The fourth inequality

uses Cauchy-Schwarz. The last inequality holds because
∑p

i=1(Ii − Oi) = 0, so |Ip − Op| =∣∣∑p−1
i=1 (Ii −Oi)

∣∣ ≤∑p−1
i=1 |Ii −Oi|, and therefore

∑p
i=1 |Ii −Oi| ≤ 2

∑p−1
i=1 |Ii −Oi|.

Since the interval [t, t′) is contained in phase s, the stopping condition for the phase does not

hold, so
‖∇f (Bs)(x(t′′))‖1
f (Bs)(x(t′′))

> ε′ =
ε2

64n4
.

Therefore,

f (Bs)(x(t′′))− f (Bs)(x(t′′+1))) ≥ 1

16n
· ‖∇f

(Bs)(x(t′′)‖21
f (Bs)(x(t′′))

>
ε′

16n
· ‖∇f (Bs)(x(t′′))‖1

≥ ε′

8n2
· (f (Bs)(x(t′′))− f (Bs)(x∗)),

where the last inequality follows from Lemma 2. Rearranging the terms gives

f (Bs)(x(t′′+1))− f (Bs)(x∗) ≤
(

1− ε′

8n2

)
· (f (Bs)(x(t′′))− f (Bs)(x∗)).

Iterating for T step yields

f (Bs)(x(t+T))− f (Bs)(x∗) ≤
(

1− ε′

8n2

)T
· (f (Bs)(x(t))− f (Bs)(x∗)).

Now by Corollary 4, we have that f (Bs)(x(t)) − f (Bs)(x∗) ≤ f (Bs)(x(t)) ≤ f(x(t)) ≤
∑n

i,j=1 aij ,

and for all t′′, f (Bs)(x(t′′)) ≥ 1
wn

∑n
i,j=1 aij . Therefore, if t′ − t ≥ 8n2

ε′
· ln (16nwn/(ε′)2) + 1, then

f (Bs)(x(t′−1))− f (Bs)(x∗) ≤
(

ε′

4
√
n

)2

· 1

wn
·

n∑
i,j=1

aij ≤
(

ε′

4
√
n

)2

· f (Bs)(x(t′−1)).
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Therefore,

1

16n
·‖∇f

(Bs)(x(t′−1)‖21
(f (Bs)(x(t′−1)))2

≤ f (Bs)(x(t′−1))− f (Bs)(x(t′))

f (B)(x(t′−1))
≤ f (Bs)(x(t′−1))− f (Bs)(x∗)

f (B)(x(t′−1))
≤
(

ε′

4
√
n

)2

,

where the first inequality follows from (3.4), and the second inequality holds because f (Bs)(x∗) ≤

f (Bs)(x(t′−1)). We get that ‖∇f
(B)(x(t′−1))‖1

f (B)(x(t′−1))
≤ ε′, in contradiction to our assumption that the phase

does not end before the start of iteration t′.

Corollary 6. In any phase, the number of balancing steps is at most O (ε−2n8 log(wn/ε)).

Proof. In the beginning of phase s the set Bs contains at most n− 1 nodes. Partition the phase into

intervals [t, t′) where Bs does not change during an interval, but does change between intervals. By

Lemma 12, each interval consists of at mostO (ε−2n7 log(wn/ε)) balancing steps. Since nodes that

are removed from Bs between intervals are never returned to Bs, the number of such intervals is at

most n−1. Hence, the total number of balancing steps in the phase is at mostO (ε−2n8 log(wn/ε)).

Lemma 13. The total number of phases of the algorithm is O(n logw/ log n).

Proof. Let s > 2 be a phase of the algorithm and t ∈ [ts, ts+1). By Corollary 4, f (Bs,t)(x(t)) ≥
1
wn
·
∑

ij aij . On the other hand, by Lemma 10 and Corollary 5, τs ≤ 1
(4n2)s−2 ·τ2 ≤ 1

(4n2)s−2 ·
∑

ij aij ,

and f (Bs,t)(x(t)) ≤ nτs. Combining these gives 1
wn
·
∑

ij aij ≤ nτs ≤ n
(4n2)s−2 ·

∑
ij aij which

implies that s ≤ log(nwn)
log(4n2)

+ 2.

We are now ready to prove Theorem 5.

Proof of Theorem 5. By Lemma 13, for some s = O(n logw/ log n), StrictBalance terminates, so

Bs,ts = [n]. By Corollary 6, the number of balancing steps in a phase is at mostO (ε−2n8 log(wn/ε)).

Therefore, the total number of balancing steps is at most O (ε−2n9 log(wn/ε) logw/ log n). These

balancing steps require at most O (ε−2n10 log(wn/ε) logw/ log n) arithmetic operations, and as in

the proof of Theorem 2 we can show that working with O(n log(w/ε)) bits of precision is enough.

When the algorithm terminates at time ts, all the nodes are in Bs,ts , and by Lemma 11 they are all

ε-balanced, so the matrix is strictly ε-balanced.
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CHAPTER 4

A Lower Bound on the Rate of Convergence

In the previous chapters we have shown various upper bounds on the rate of convergence of Os-

borne’s iteration for Lp for finite p. In all these upper bounds the dependency on 1/ε is polynomial

while in a similar upper bound obtained by Schulman and Sinclair [12] for L∞ the dependency

is log(1/ε). This raises the question whether our analysis could be improved to show a better

dependency on 1/ε. We answer this question by proving a lower bound of 1/
√
ε on the rate of

convergence. Therefore, proving that log(1/ε) dependency is impossible and the dependency of

our upper bounds on the 1/ε is in the right ballpark.

Theorem 6. There are matrices for which all variants of the Osborne’s iterative algorithm (i.e.,

regardless of the order of indices chosen to balance) require Ω(1/
√
ε) iterations to ε-balance the

matrix.

Before proving this theorem, we present the claimed construction. Let A be the following 4×4

matrix, and let A∗ denote the corresponding fully balanced matrix.

A =


0 1 0 0

1 0 β + ε 0

0 ε 0 1

0 0 1 0

 A∗ =


0 1 0 0

1 0
√
ε(β + ε) 0

0
√
ε(β + ε) 0 1

0 0 1 0


Here ε > 0 is arbitrarily small, and β = 100ε. It’s easy to see that A∗ = D∗AD∗−1 where D∗ =

diag

(
1, 1,

√
β+ε
ε
,
√

β+ε
ε

)
. To prove Theorem 6, we show that balancingA to the relative error of

ε requires Ω(1/
√
ε) iterations, regardless of the order of balancing operations. Notice that in order

to fully balance A, we simply need to replace a23 and a32 by their geometric mean. We measure
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the rate of convergence using the ratio a32/a23. This ratio is initially ε
β+ε

= 1
101

. When the matrix

is fully balanced, the ratio becomes 1. We show that this ratio increases by a small factor in each

iteration, and that it has to increase sufficiently for the matrix to be ε-balanced. This is summarized

in the following two lemmas.

Lemma 14 (change in ratio). For every iteration t,
a
(t+1)
32

a
(t+1)
23

≤
(1 + 7

√
β

1 + ε

)
· a

(t)
32

a
(t)
23

.

Lemma 15 (stopping condition). If matrix A(t) is ε-balanced, then
a
(t)
32

a
(t)
23

>
1

100
.

Before proving the two lemmas we show how they lead to the proof of Theorem 6.

Proof of Theorem 6. By Lemma 14, a
(t+1)
32

a
(t+1)
23

≤
(

1+7
√
β

1+ε

)t
· a32
a23

=
(

1+7
√
β

1+ε

)t
· ε
β+ε

. By Lemma 15, if

A(t+1) is ε-balanced, then 1
100

<
a
(t+1)
32

a
(t+1)
23

≤
(

1+7
√
β

1+ε

)t
· ε
β+ε
≤
(
1 + 7

√
β
)t · ε

β+ε
. Using β = 100ε,

we get the condition that (1 + 7
√
β)t > 101

100
, which implies that t = Ω(1/

√
ε).

Proof of Lemma 14. Using the notation we defined earlier, we have that f(x(1)) =
∑4

i,j=1 aij =

4 + 2ε + β and f(x∗) =
∑4

i,j=1 a
∗
ij = 4 + 2

√
ε(β + ε), so f(x(1))− f(x∗) < β. We observe that

at each iteration t, a(t)12a
(t)
21 = a

(t)
34a

(t)
43 = 1 and a(t)23a

(t)
32 = ε(β + ε) because the product of weights of

arcs on any cycle in GA is preserved (for instance, arcs (1, 2) and (2, 1) form a cycle and initially

a12a21 = 1).

The ratio a
(t)
32/a

(t)
23 is only affected in iterations that balance index 2 or 3. Let’s assume a

balancing operation at index 2, a similar analysis applies to balancing at index 3. By balancing at

index 2 at time t we have

a
(t+1)
32

a
(t)
32

=
a
(t)
23

a
(t+1)
23

=

√√√√a
(t)
21 + a

(t)
23

a
(t)
12 + a

(t)
32

. (4.1)

Thus, to prove Lemma 14, it suffices to show that

a
(t+1)
32

a
(t)
32

· a
(t)
23

a
(t+1)
23

=
a
(t)
21 + a

(t)
23

a
(t)
12 + a

(t)
32

≤ 1 + 7
√
β

1 + ε
. (4.2)

By our previous observation, a(t)12a
(t)
21 = 1, so if a(t)21 = y, then a(t)12 = 1/y. Similarly a(t)23a

(t)
32 =

ε(β + ε) implies that there exists z such that a(t)23 = (β + ε)z and a(t)32 = ε/z. Therefore:

a
(t)
21 + a

(t)
23

a
(t)
12 + a

(t)
32

=
y + (β + ε)z

(1/y) + (ε/z)
(4.3)
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We bound the right hand side of Equation 4.3 by proving upper bounds on y and z. We first

show that y < 1 + 2
√
β. To see this notice that on the one hand, f(x(t)) =

∑4
i,j=1 a

(t)
ij =

a
(t)
12 + a

(t)
21 + a

(t)
23 + a

(t)
32 + a

(t)
34 + a

(t)
43 ≥ y + 1

y
+ 2
√
ε(β + ε) + 2, where we used a(t)34 + a

(t)
43 ≥ 2 and

a
(t)
23 + a

(t)
32 ≥ 2

√
ε(β + ε), both implied by the arithmetic-geometric mean inequality. On the other

hand, f(x(t)) ≤ f(x(1)) ≤ f(x∗) + β = 4 + 2
√
ε(β + ε) + β. Combining this upper bound on

f(x(t)) with the latter lower bound on f(x(t)), we have y + (1/y)− 2 ≤ β. For sufficiently small

ε, the last inequality implies, in particular, that y < 2. Thus, we have (y − 1)2 ≤ yβ < 2β, and

this implies that y < 1 + 2
√
β.

Next we show that z ≤ 1. Assume for contradiction that z > 1. By the arithmetic-geometric

mean inequality a(t)12 + a
(t)
21 ≥ 2 and a(t)34 + a

(t)
43 ≥ 2. Thus,

f(x(t)) =
4∑

i,j=1

a
(t)
ij ≥ 2 + (β + ε)z +

ε

z
+ 2 = 4 + βz + ε

(
z +

1

z

)
> 4 + β + 2ε = f(x(1)),

where the last inequality follows because z > 1, and z + 1/z > 2. But this is a contradiction,

because each balancing iteration reduces the value of F , so f(x(t)) ≤ f(x(1)).

We can now bound (a
(t)
21 + a

(t)
23 )/(a

(t)
12 + a

(t)
32 ). By Equation 4.3, and using our bounds for y and

z, we have,

a
(t)
21 + a

(t)
23

a
(t)
12 + a

(t)
32

=
y + (β + ε)z

(1/y) + (ε/z)

≤ (1 + 2
√
β) + (β + ε)
1

1 + 2
√
β

+ ε

≤ 1 + 4
√
β

1

1 + 2
√
β

+
ε

1 + 2
√
β

≤ 1 + 7
√
β

1 + ε
.

The last line uses the fact that
√
β � β = 100ε ≥ ε, which holds if ε is sufficiently small.

Proof of Lemma 15. Let t − 1 be the last iteration before an ε-balanced matrix is obtained. We

argued that there is z ≤ 1 such that a(t)23 = (β + ε)z and a
(t)
32 = ε/z. Assume for the sake
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of contradiction that a(t)32/a
(t)
23 < 1/100. This implies that (ε/z)/((β + ε)z) < 1/100, and thus

z2 > 100/101. So, we get

f(x(t))− f(x∗) ≥ a
(t)
23 + a

(t)
32 − 2

√
a
(t)
23a

(t)
32

=

(√
a
(t)
23 −

√
a
(t)
32

)2

(4.4)

≥ a
(t)
23

(
1−

√
1

100

)2
(4.5)

= 0.81 · (β + ε)z (4.6)

≥ 0.81 · (β + ε) ·
√

100

101
≥ 81 · ε. (4.7)

By Lemma 2, the left hand side the of above can be bounded as follows.

f(x(t))− f(x∗) ≤ n‖∇f(x(t))‖1 ≤ n2‖∇f(x(t))‖2 (4.8)

Note that for sufficiently small ε, f(x(t)) ≤ f(x(1)) ≤ 5. Combining Equations 4.6 and 4.8, and

using n = 4 and f(x(t)) ≤ 5, we get that

‖∇f(x(t))‖2
f(x(t))

>
81

80
· ε > ε. (4.9)

By Equation 1.3, this contradicts our assumption that t− 1 is the last iteration.
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