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Ab initio investigations on hydrodynamic phonon transport: 
From diffusion to convection

Huan Wu, Yongjie Hu*

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 
90095, United States of America

Abstract

In classical theory, heat conduction in solids is regarded as a diffusion process driven by a 

temperature gradient, whereas fluid transport is understood as convection process involving the 

bulk motion of the liquid or gas. In the framework of ab initio theory, which is directly built 

upon quantum mechanics without relying on measured parameters or phenomenological models, 

we observed and investigated the fluid-like convective transport of energy carriers in solid heat 

conduction. Thermal transport, carried by phonons, is simulated in graphite by solving the 

Boltzmann transport equation using a Monte Carlo algorithm. To capture convective transport, 

with phonon distributions deviating significantly from equilibrium Bose-Einstein distribution, 

we determined phonon interactions using ab initio approaches that go beyond relaxation time 

approximations. The presence of strong momentum-conserved Normal scatterings in graphite 

introduces a regime for hydrodynamic phonon transport. Fluid-like features, such as vortex 

and jet flow, are visualized and compared with classical theories on heat diffusion and fluid 

convection. Our study on phonon convection enhances fundamental understandings of heat 

conduction in solids from both atomic scale and quantum aspects, innovating thermal designs 

for future microelectronic devices and other thermal management applications. This potentially 

offers solutions for heat dissipation challenges in the post-Moore era.

Keywords

Hydrodynamic phonon transport; Monte Carlo simulation; First principles theory

1. Introduction

Convection and diffusion are two basic facets of transport phenomena. Convection involves 

a collective motion of particles due to external forces, such as pressure differences and 

gravity, while diffusion stems from the random walk of thermal motions, driving systems 
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with a particle density gradient towards equilibrium. Traditionally, fluid transport has been 

understood as convection processes involving the bulk motion of molecules in liquid 

or gas flows [1]. In the classical theory of heat transfer, heat conduction in solids is 

phenomenologically regarded as a diffusive process, described by Fourier’s law; that is, 

heat flux is proportional to the temperature gradient, but the microscopic picture of such a 

diffusive process was untouched. With the establishment of quantum theory, the quantization 

of lattice vibrations introduced the concept of phonons. The lattice vibrations can be 

considered as the superposition of elementary modes of harmonic waves, and the quantum 

description of those elementary vibrations is known as a phonon. Microscopically, heat 

conduction in nonmetals results from phonon transport. Since phonons are quasi-particles, 

their momentum is not necessarily conserved during phonon-phonon interactions.

The Umklapp scatterings, which destroy momentum, inhibit the collective motion of 

phonons and impede phonon convection [2]. Consequently, heat transport in solids 

predominantly exhibits diffusive behavior, which has served as the foundation of the heat 

transfer theory used across various engineering applications. However, when the phonon-

phonon interactions are dominated by momentum-conserved Normal scatterings, a realm 

for phonon convection—or hydrodynamic phonon transport—emerges. In the hydrodynamic 

regime, the transport of phonons behaves like fluid. For example, thermal energy can 

propagate like waves in an ocean, and the resistance to heat flux is dominated by friction 

with the wall, similar to pipe flow, as described by simplified models [3–8]. In comparison 

to diffusion, convection can be a more efficient method of heat transfer. Despite their 

significance in thermal applications, such as heat dissipation in microelectronic devices, the 

real-space dynamics of phonon hydrodynamic processes have not been thoroughly studied 

from an ab initio perspective.

Ab initio approaches serve as powerful tools for computing phonon transport from first 

principles without using any measured parameters or phenomenological models. These 

approaches have been employed to predict materials thermal properties and have achieved 

good agreement with experiments [9–17]. As for hydrodynamic phonon transport, many 

studies are based on classical models or partially incorporated with ab initio input [3–

8]. The Boltzmann transport equation, under Callaway’s dual relaxation approximation 

[18], has been intensively employed to study phonon hydrodynamic transport [5,8], while 

a comprehensive ab initio treatment of phonon interactions beyond the dual relaxation 

approximation has only been applied to investigate the dynamics of convective phonon 

transport in steady-state or simple structures [19–21]. Although the Green’s function method 

is based on ab initio, it is limited to specific geometries [22]. Recently, the phonon vortex 

was predicted to exist in graphene by phenomenological models [23] and was later examined 

by the dual relaxation approximation with ab initio determined relaxation time [24]. The 

dynamics of the phonon vortex have not yet been fully investigated by an ab initio approach. 

Furthermore, theoretical investigations on the phonon vortex so far have been limited to 

two-dimensional materials, which pose greater challenges for experiments and applications 

compared to bulk materials.

In this paper, we employ ab initio approaches based on density functional theory to simulate 

the dynamics of hydrodynamic phonon transport in real-space, focusing on a widely used 
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bulk material, graphite. The three-dimensional mode-resolved phonon Boltzmann transport 

equation, complemented with ab initio phonon interactions that go beyond the relaxation 

time approximation, is solved using a deviational variance-reduced Monte Carlo algorithm 

[25–27]. Our simulations reveal anomalous fluid-like behaviors, such as vortex and jet flow, 

in the heat conduction of graphite, which extend beyond the understanding provided by 

classical heat transfer theory. Our work broadens the knowledge of heat conduction in solids 

and provides insights for thermal designs in future microelectronic industries.

2. Method

2.1. Boltzmann transport equation and ab initio scattering matrix

The phonon transport process is governed by phonon Boltzmann transport equation (BTE) 

that describes the dynamics of the phonon distribution function nqs x, t  as a function of real 

space x and time t for phonon modes labelled by wavevector q and polarization s,

∂nqs
∂t + vqs ⋅ ∇nqs = ∂nqs

∂t scatt

(1)

where the phonon advection on the left-hand side is balanced by the phonon scatterings 

on the right-hand side. vqs = ∂ωqs/ ∂q is the phonon group velocity, and ωqs is the phonon 

frequency determined by diagonalizing the dynamic matrix. For diffusive process, the 

phonon distribution typically remains close to equilibrium, hence the scattering term could 

be approximated by only considering the distribution deviation of the single mode qs
while treating other background modes as equilibrium, which is known as relaxation time 

approximation. While for hydrodynamic process, the phonon distribution is far away from 

equilibrium Bose-Einstein distribution due to the collective motion of phonons, so the 

deviation of all modes should be simultaneously considered using a scattering matrix Ωqs, q′s′

that quantifies the transition rates from q′s′ to qs,

∂nqs
∂t scatt

= ∑
q′s′

Ωqs, q′s′ nq′s′ − nq′s′
0

(2)

where nqs
0  is the equilibrium Bose-Einstein distribution function. If only considering the 

diagonal terms and set the off-diagonal terms of Ωqs, q′s′ to zero, Eq. (2) reduces to 

relaxation time approximation. The scattering matrix is ab initio determined by quantum 

perturbation theory [28] considering three-phonon scattering processes. The details of the 

methodology to obtain the scattering matrix can be found in our previous work [15]. 

The only input of this ab initio approach is the interatomic force constants, i.e., the 

expansion coefficients of the interatomic potential with respect to the atomic displacements 

from equilibrium positions. To get interatomic force constants of graphite, we start with 

generating an irreducible set of displacement configurations on a supercell with 588 carbon 

atoms. For each displacement configuration, the interatomic forces were determined from 

Wu and Hu Page 3

Int J Heat Mass Transf. Author manuscript; available in PMC 2024 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the electron wave functions derived by density functional theory [15–17,29,30] using 

Quantum ESPRESSO package [31,32]. Then the interatomic force constants are extracted 

by fitting the displacement-force set using the ALAMODE package [33]. The cutoff radius 

of the third-order interatomic force constants is 9 bohr. We used projector-augmented 

wave pseudopotentials and non-local functional ‘vdW-DF-ob86’ for electron exchange and 

correlation [34]. The convergence threshold for self-consistency is 10−11. The kinetic energy 

cutoff for electronic wavefunctions is 120 Ry. The Monkhorst-Pack grids for primitive and 

supercell are 14 × 14 × 6 and 2 × 2 × 2, respectively. All the parameters for the density 

functional theory calculations have been carefully checked to make the uncertainty of the 

forces acting on each atom less than 10−6 Ry/bohr. The mesh of the q-points for phonon 

transport is 50 × 50 × 8.

2.2. Deviational variance-reduced Monte Carlo algorithm

The BTE with full scattering matrix is solved by the recently developed deviational 

variance-reduced Monte Carlo algorithm [25–27]. The deviational variance-reduced Monte 

Carlo approach has been demonstrated to quantify phonon transport and provide agreement 

with experiments in our recent studies [25,26]. In Monte Carlos method, large quantities 

of sample particles are initialized in real space with assigned phonon modes based on 

equilibrium Bose-Einstein distribution, and then loop over advection-scattering-sampling 

procedures to simulate the transport dynamics. In advection procedure, the sample particle 

moves with group velocity. In scattering procedure, the sample particle changes its mode 

according to scattering matrix. Temperature and heat flux field are sampled in sampling 

procedure. Different from conventional Monte Carlo algorithm, our method solves the 

deviational energy-based Boltzmann transport equation,

∂δfqs
∂t + vqs ⋅ ∇δfqs = ∑

q′s′
Aqs, q′s′δfq′s′

(3)

where δfqs = ℏωqs nqs − nqs
0  is the deviational energy of phonon mode qs, and 

Aqs, q′s′ = Ωqs, q′s′ωqs/ωq′s′ is the matrix that describes the energy exchange between phonon 

modes through phonon scatterings. Each sample particle carries a positive or negative 

unit energy that contributes to the energy deviation from equilibrium distribution. This 

formalism can provide two benefits: i) The energy can be strictly conserved in scattering 

procedure by fixing the number of sampling particles. ii) Since the deviation from the 

equilibrium distribution is much smaller than the distribution itself, sampling the deviation 

from equilibrium significantly reduces the stochastic uncertainty compared with sampling 

the distribution function. Based on this deviational variance-reduced Monte Carlo algorithm, 

the phonon BTE can be efficiently solved.

Another challenging to simulate hydrodynamic process is to deal with the full scattering 

matrix, which makes our scattering algorithm different from the case under relaxation time 

approximation [35–38]. Under relaxation time approximation, the scattering probability Pqs

under a time interval Δt is determined by relaxation time τqs,
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Pqs = 1 − exp − Δt
τqs

(4)

and Phonons re-distribute to equilibrium after scattering. However, with full scattering 

matrix, the sample particles change their mode following a probability matrix,

P Δt = eAΔt ≈ I + AΔt

(5)

where I is identity matrix. And phonons are re-distributed as

δfqs t + Δt = ∑
q′s′

Pqs, q′s′ Δt δfq′s′ t

(6)

The scattering procedure requires more considerations than directly simulated Eq. (6) using 

a stochastic method, because both Pqs, q′s′ and δfq′s′ can be either positive and negative, and 

simply flipping the sign of δfq′s′ could break the energy conservation. To account for this 

complexity, Eq. (6) can be mathematically rewritten as

δfqs t + Δt = ∑
q′s′

sgn Pqs, q′s′ Δt Pqs, q′s′ Δt
pq′s′

1 + ∑
n = 1

∞ pq′s′
−

pq′s′

n
2n δfq′s′ t

(7)

where sgn is the sign function, and

pq′s′ = ∑
qs

Pqs, q′s′

(8a)

pq′s′
− = ∑

qs Pqs, q′s′ < 0
Pqs, q′s′

(8b)

The Eq. (7) can be implemented through the following algorithm [27]:

For a sample particle at mode j with carried energy ε,

(1) Transit particle to mode i that satisfies
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∑k = 1
i − 1 Pk, j

pj
≤ R <

∑k = 1
i Pk, j

pj

(9)

where R is a random variable uniformly distributed in [0,1).

(2) If P i,j < 0,

i. update the energy carried by this sample particle as ε′ = − ε,

ii. generate two new particles in mode j with carried energy and process each by 

going to step (1).

Based on this algorithm, the energy conservation can be rigidly enforced in scattering 

procedure. However, the generation of additional particles can boost up the particle numbers 

in the simulation domain and generate errors due to out of memory. To solve this problem, 

a cancellation procedure is arranged after scattering procedure to remove particle pairs that 

carry opposite energies and are in the same phonon mode and spatial cell.

2.3. Sampling of temperature

In deviational variance-reduced Monte Carlo algorithm, the deviation of the local 

temperature T  away from the background equilibrium temperature T eq, ΔT = T − T eq, is 

derived from the local deviational energy,

ΔT x, t = ∑qs δfqs x, t
C

(10)

where C is the volumetric specific heat at T eq.

2.4. Boundary conditions

Three types of boundary conditions can be applied in Monte Carlo simulation, the 

specular, diffusive, and equilibrium temperature boundary conditions. For specular boundary 

condition, the sample particles are reflected by the boundary by changing the sign of 

their velocity component perpendicular to the surface. For diffusive boundary condition, 

the sample particles that carry deviational energy δfqs randomly change its mode at the 

boundary according to the distribution of the mode-dependent specific heat Cqs, since the 

deviational energy under the temperature rise ΔT  contained by phonon mode qs is CqsΔT . 

In a diffusive boundary scattering process, the velocities and the moving directions of the 

reflected phonons are randomly distributed. At the boundaries maintained at equilibrium 

temperature, ΔT  is fixed at zero, hence the sample particles are removed once arrive at those 

boundaries.
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3. Result and discussion

3.1. Hydrodynamic transport regime

In Fig. 1a, we derive the thermal conductivity of isotopically pure graphite nanowire 

with diffusive boundary and 4-μm-width square cross-section by solving the BTE through 

deviational variance-reduced Monte Carlo algorithm. The thermal conductivity of materials 

can be determined by sampling the heat flux under applied temperature gradient. The 

temperature gradient is applied by adding a source term to the governing equation,

∂δfqs
∂t + vqs ⋅ ∇δfqs = ∑

q′s′
Aqs, q′s′δfq′s′ − Cqsvqs ⋅ ∇T

(11)

where the source term on the right-hand side arises because fqs
0  varies in space when there 

is a temperature gradient. In our Monte Carlo algorithm, ∇T  can emit sample particles 

that carries deviational energy, leading to non-equilibrium. For the simulation setup, we 

initialize the sample particles at x = 0, t = 0, distributed randomly over the cross-section 

area. The modes are assigned based on the distribution of Cqsvqs ⋅ ∇T  with the sign of the 

carried unit energy opposite to the sign of vqs ⋅ ∇T . Then we simulate the evolution of the 

sample particles and sample the total heat flux as a function of time, yielding the transient 

heat flux in response to the heating pulse at t = 0. We employed a time step of 0.1 ps and 

used a 20 × 20 spatial mesh at the nanowire cross-section, which has been confirmed to 

achieve convergence. In the end, we integrate the responsive heat flux cumulatively over 

time to determine the steady-state heat flux under ∇T , and derive the thermal conductivity 

of nanowire. The numerical procedure has been validated by comparing with semi-analytical 

approximate solutions in Appendix A.

Based on Monte Carlos algorithm, we deterministically recovered the resistance to 

hydrodynamic heat flux caused by the friction with nanowire wall, analogous to Poiseuille 

flow in fluids. As shown in Fig. 1a, the calculated thermal conductivity decreases at low 

and high temperature limit, forming a peak near 100 K. The temperature-dependent thermal 

conductivity of graphite nanowire can be attributed into three regimes. At low temperature, 

the phonon mean free path (i.e., the distance a phonon travels between consecutive 

scatterings) exceeds the nanowire width, causing the phonons to ballistically bounce back 

and forth between boundaries. In this regime, the thermal conductivity increases with 

temperature due to the increase of the high energy phonons. At high temperature, thermal 

energy diffuses along the nanowire, and in this regime, the thermal conductivity drops with 

increasing temperature due to the increased anharmonic scatterings. In the intermediate 

hydrodynamic regime, the heat flux flows in the nanowire like Poiseuille flow, and the 

thermal resistance is partially contributed by the friction with boundary. As shown by 

the inset of Fig. 1a, the drifting velocity of the collective phonon flux is near zero at 

the nanowire boundary due to diffusive scattering, increases as it moves away from the 

boundary, and peaks at the center of nanowire.
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3.2. Propagation of hydrodynamic wave packet

To elucidate the transport physics in hydrodynamic regime, the dynamics of the phonon 

transport in graphite at 100 K is simulated by this ab initio approach. Fig. 1b shows 

the evolution of temperature field response to a given heat pulse at t = 0 and x = 0. The 

simulation domain has been made long enough to make sure the propagating phonon density 

waves do not reach the other boundary. We observed two components of the temperature 

field, the diffusive and the hydrodynamic component. The two components are extracted 

by fitting the overall temperature profile with two Gaussian functions. Since the thermal 

diffusion is driven by phonon density gradient, the diffusive component always has the 

maximum at the boundary. On the other hand, hydrodynamic component is a propagating 

wave packet. The temperature field calculated by phonon Boltzmann transport equation 

exhibits remarkable difference from the solution of the heat diffusion equation,

T x, t = 1
4παtexp − x2

4αt

(12)

where α is the thermal diffusivity. This contrast showcases the pronounced deviation of the 

propagative hydrodynamic heat transport away from the conventional heat diffusion. Fig. 

1c shows the propagation of the hydrodynamic wave packet, characterized by diminishing 

intensity and broadening width. The moving wave pack demonstrates typical characteristics 

of fluid. The inset of Fig. 1c represents the decay of the wave intensity, fitted by dual 

exponential terms, suggesting the decay of the wave packet involves two processes. The 

timescale of the rapid process is comparable to the phonon lifetime, thus, during this 

process, phonons experience insufficient scatterings and transport ballistically analogy to 

radiation. The rapid process fades within 1 ns, indicating that ballistic component is 

negligible at the time points shown in Fig. 1b. During the slow process, despite adequate 

scatterings occurring among the phonons within the wave packet, the wave packet still 

propagates collectively due to momentum-conserving Normal scatterings. From the slow 

process, we extract the propagation length lp of the hydrodynamic wave shown in the inset of 

Fig. 1c.

3.3. Window of hydrodynamics transport

Utilizing ab initio Monte Carlo simulation, we are able to identify the length scale and 

temperature where the hydrodynamic phonon transport can be observed. At the scale far 

larger than lp, the hydrodynamic waves extinct, leading to thermal transport governed by 

diffusion of phonons. When reducing the scale to phonon mean free path, the phonons 

travel ballistically and no longer support the continuity condition for hydrodynamic process. 

Therefore, the propagation length lp and ballistic limit lb defines a window for hydrodynamic 

regime as shown in Fig. 1a and d. The ballistic limit can be estimated as mode-averaged 

phonon mean free path,

Λ = ∑qs CqsΛqs
∑qs Cqs
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(13)

where Cqs is the volumetric specific heat and Λqs = vqs τqs is the phonon mean free path of the 

phonon mode qs. The calculated window for hydrodynamic phonon transport is shown in 

Fig. 1d. From Fig. 1d, the hydrodynamic process exists in isotopically pure graphite up to 

250 K at the length around 0.14 μm.

3.4. Quantified strong normal scatterings in Graphite

The hydrodynamic phonon transport is caused by strong Normal scatterings compared with 

Umklapp scatterings. As shown in Fig. 2a, the Normal scatterings can strictly conserve 

the momentum of phonons defined as ℏq, while the Umklapp scatterings cannot. Since the 

phonon wavelength are always longer than the lattice parameters, the phonon wave vectors 

should always stay inside the Γ-centered first Brillouin Zone. Once a phonon scattering 

process generates a phonon mode out of the first Brillouin Zone, the phonon wave vector 

will be transformed back to the first Brillouin Zone based on translational invariance as 

shown in Fig. 2a, which as a result destroys the phonon momentum. Strong Umklapp 

scatterings could prevent a large deviation from equilibrium distribution, keep the average 

phonon velocity near zero, and avoid convective phonon transport. On the other hand, 

the Normal scatterings can maintain the momentum of the phonon flux, which makes the 

phonon flows behave like fluid.

To quantitatively verify the strong Normal scattering in graphite, we demonstrate the ratio 

of normal scattering rates τN
−1 to total scattering rates τtotal

−1  at 100 K at qz = 0 plane for the 

selected phonon branches in Fig. 2b, indicating vast majority of the phonon modes are 

dominated by normal scatterings. In the flexural acoustic (ZA), transverse acoustic (TA), 

longitudinal acoustic (LA), and first flexural optical (ZO1) branches presented in Fig. 2b, 

around 84% of the phonon modes exhibit Normal scattering rates surpassing Umklapp 

scattering rates. In the remaining 8 optical branches which are occupied by only 5% of the 

phonons, half of the phonon modes still present Normal scattering rates exceeding Umklapp 

scattering rates. The strong Normal scattering in Graphite is the reason of the observed 

hydrodynamic phonon transport.

3.5. Hydrodynamic phonon vortex

As a further step, we simulate the phonon transport in hydrodynamic regime and compared 

with the transport features derived from heat diffusion model and fluid model (see 

Appendix B). The heat diffusion equations and fluid equations are solved by finite element 

methods using COMSOL Multiphysics [39]. We observed convective features in solid heat 

conduction due to hydrodynamic phonon transport.

In Fig. 3a–c, heat transport in a 1-μm-wide square disk at a background temperature of 100 

K is simulated using the phonon BTE and compared with results from the heat diffusion and 

fluid model. In the heat diffusion model and phonon BTE, a 0.2-μm-width heating source 

and cooling source are positioned at the top edge of the left boundary and the right edge of 

the bottom boundary, respectively. In the fluid model, the heating and cooling sources are 

replaced with fluid inlet and outlet. The insulative, slip, and specular boundary conditions 
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are applied in the heat diffusion model, fluid model, and phonon BTE, respectively. Fig. 

3a–c shows the resultant flux fields with streamlines. Fig. 3a demonstrates the absence 

of vortex in heat flux as calculated by heat diffusion model, since the vortex cannot be 

generated through diffusion processes. Fig. 3b shows a vortex at the corner by fluid model, 

as indicated by the streamlines. In Fig. 3c, the phonon flux by BTE also demonstrates a 

vortex at the corner, which illustrates the convective feature in solid heat conduction due to 

the hydrodynamic phonon transport.

To explore the formation conditions of the phonon vortex, we investigate the effects of disk 

size and background temperature in Fig. 3d and e, respectively. In Fig. 3d, we compute 

the heat flux fields for square widths ranging from 50 nm to 7.5 μm, maintaining a fixed 

flux density at the heating and cooling sources and a constant background equilibrium 

temperature. We observe that as the width of the square increases from 1 μm to 3 μm, the 

vortex at the top right corner disappears. Regarding the vortex at the bottom left corner, 

its size grows from approximately 0.5 μm to around 1.2 μm when the width of the square 

extends from 1 μm to 3 μm, and remains constant as the square width further increases to 

5 μm. At 1 μm width, the size of the vortex is limited by the dimensions of the square 

disk. As the square width expands, the size of the vortex is no longer constrained by 

the geometry and becomes comparable with the average phonon mean free path. When 

the width of the square further increases to 7.5 μm, the phonon vortex disappears as the 

phonon density wave originating from the heating source cannot propagate a sufficiently 

long distance to form a vortex in such a large disk. Consequently, at a width of 7.5 μm, 

thermal transport transits from convective to diffusive. On the other hand, as the size of the 

disk decreases, the streamlines gradually become increasingly tortuous. At 100 nm width, 

the vortex at the top right corner splits into two. Furthermore, at 50 nm width, phonons 

travel ballistically without sufficient scatterings since the size of the disk becomes less than 

the phonon mean free path, leading the flux field and streamline to appear more chaotic due 

to the anisotropic nature of the crystal along various orientations. In Fig. 3e, we compute 

the heat flux field under varying background equilibrium temperature, while fixing the 

geometry. As the temperature increases, the thermal transport transit from convective to 

diffusive due to the reduced propagation length of phonon density wave. At 150 K, the 

vortex at top right corner disappears, and at 200 K, the vortex at bottom left corner vanishes. 

In contrast, with the decrease of temperature, the thermal transport transit from convective 

to ballistic due to increased phonon mean free path. At 50 K, the flux field and streamline 

exhibit chaotic and tortuous patterns. Based our study, we found that the convective phonon 

transport occurs within a specific range of size and temperature. At lower temperatures or 

smaller sizes, when the phonon mean free path exceeds the size of the domain, the thermal 

transport becomes ballistic. On the other hand, at higher temperatures or larger sizes, when 

the propagation length of phonon density wave is shorter than the size of the domain, the 

thermal transport becomes diffusive.

3.6. Hydrodynamic phonon jet

To further explore the characteristics of hydrodynamic phonon transport, we use ab initio 
Monte Carlo simulations to demonstrate the formation of a phonon jet flow arising from 

the propagation of phonon wave packets in hydrodynamic regime. In Fig. 4a–c, we simulate 
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the transport process of the jet flow at 100 K, originating from a 0.2-μm-width inlet or heat 

source. In the heat diffusion model, we apply thermal insulation boundary condition at left 

and side boundaries, and fixed temperature boundary condition at right boundary. In the 

fluid model, we apply no-slip, slip, and open boundary condition for left, side, and right 

boundaries, respectively. In phonon BTE, we apply diffusive, specular, and equilibrium 

temperature boundary condition for left, side, and right boundaries, respectively. The 

simulation domain is sufficiently large to ensure negligible effects from the side and right 

boundaries on the demonstrated region. In a heat diffusion process, as shown in Fig. 4a, the 

isocontour of the flux density shows a semicircle shape, reflecting the uniform distribution 

of flux density from a point heater over various angles. While for fluid in Fig. 4b, the jet 

flow is highly directional due to the bulk motion of the fluid. Similarly, in Fig. 4c, the heat 

flux field by phonon BTE also demonstrates a strong directional characteristic, illustrating 

fluid-like features in solid heat transfer due to phonon convection. Our simulations in real 

geometries uncover the fluid-like convective features of heat conduction in solids.

To comprehensively understand the behavior of the phonon jet flow, we examined the 

impact of inlet width and background temperature based on phonon BTE in Fig. 4d and e, 

respectively. As both the inlet width and temperature decrease, the phonon jet flow becomes 

more directional due to longer phonon mean free path relative to the characteristic length 

of the thermal transport. Conversely, as the inlet width and temperature rise, the phonon 

jet flow gradually become less directional and approaches to diffusive transport due to the 

increased phonon scatterings that diminish the directional nature of the flow.

4. Conclusion

In summary, we investigate the convection of phonons in heat conduction processes based 

on ab initio approaches. The hydrodynamic phonon transport is simulated by solving the 

phonon BTE with the scattering matrix determined by quantum perturbation theory using 

ab initio approaches based on density functional theory. The fluid-like features such as 

vortex and jet flow are captured by the BTE beyond relaxation time approximation and 

compared with the heat diffusion model based on Fourier’s law and the fluid model based on 

Navier-Stokes equation. We observed the fluid-like convective features in heat conduction 

that was missed in classical heat transfer theory. This work expands the fundamental 

understandings of the heat conduction from quantum theory and atomistic scale simulations. 

The investigations on the phonon convection could innovate the thermal design of the 

future microelectronic industries [26,40,41] and other thermal management applications 

[42–44], which potentially opens opportunities to address the heat dissipation issues in the 

post-Moore era.
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Appendix A

To fully validate our numerical procedure, we compared our calculated size-dependent 

nanowire thermal conductivity with the semi-analytical approximate solutions [45]. Under 

temperature gradient ∇T , the phonon distribution nqs  deviates from equilibrium Bose-

Einstein distribution nqs
0 , and can be expanded as

nqs = nqs
0 − ∂nqs

0

∂T Fqs ⋅ ∇T

(A1)

where qs denotes a phonon mode with wavevector q and polarization s, and Fqs is the 

expansion coefficient that quantifies the deviation of phonon distribution. Given that the 

cross-plane phonon mean free path is shorter than the width of the nanowire, while the 

in-plane phonon mean free path exceeds the width, we assume that confinement occurs 

only in the in-plane direction. By solving Boltzmann transport equation with relaxation time 

approximation, Fqs y  varies with the distance to boundary y, and can be approximately 

expressed as

Fqs y =
Fqs

∞ 1 − exp − y
Λy, qs

, 0 < y ≤ W
2

Fqs
∞ 1 − exp − W − y

Λy, qs
, W

2 < y ≤ W

(A2)

where W  is the width of the nanowire, and Λy,qs = vy,qs τqs is the in-plane phonon mean 

free path. Here, a diffusive boundary condition is applied, assuming phonons are fully 

equilibrium at the boundary, i.e., Fqs y = 0 = 0. Fqs
∞ is the Fqs in bulk materials and can be 

obtained by solving Boltzmann transport equation through self-consistent iterations [15].

When applying ∇T  along the nanowire, the heat flux J is given by 

J = ∫S
1
N ∑qs ℏωqsvqs

α nqs y − nqs
0 ds = − Sκ ∇T , where S denotes the cross-sectional area and 

α represents the projection along nanowire. From this, the thermal conductivity of nanowire, 

κ, can be subsequently derived as

κ = 1
N ∑

qs
Cqsvqs

α F qs
α

(A3)
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where F qs
α  is cross-section average of Fqs

α y ,

F qs
α = Fqs

∞, α 1 − 4Λqs
W 1 − exp − W

4Λy, qs

(A4)

In Fig. 5, we compared the ab inito Monte Carlo results with semi-analytical approximate 

solution, focusing on graphite nanowire along the armchair orientation. The agreement 

shown in Fig. 5 validates our numerical approach. At W = 0.1 μm, the semi-analytical 

solution slightly over-estimates the thermal conductivity due to the neglect of confinement 

in the cross-plane direction. At W > 0.5 μm, semi-analytical solution slightly underestimates 

the thermal conductivity due the implication of relaxation time approximation.

Appendix B

In fluid model, we consider a steady-state laminar flow. The equation set is as follows,

ρ∇ ⋅ u = 0

(B1)

ρ u ⋅ ∇ u = ∇ ⋅ −pI + μ ∇u + ∇u T

(B2)

where Eq. (B1) and Eq. (B2) are the continuity equation and Navier-Stokes momentum 

equation, respectively. u is velocity. ρ and μ are density and dynamic viscosity, respectively. 

In Fig. 3c, a pressure difference at 10 kPa is applied between inlet and outlet. In Fig. 4c, the 

inlet velocity is set to be 15 m/s.
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Fig. 1. Ab initio analysis of hydrodynamic phonon transport in isotopically pure graphite.
a) Thermal conductivity of 4-um-width graphite nanowire in ballistic, hydrodynamic, and 

diffusive regimes as a function of temperature. b) Temperature field response to a heat 

pulse under a background temperature of 100 K. The temperature field determined by the 

phonon Boltzmann transport equation (black solid) is a superposition of the diffusive (red 

solid) and hydrodynamic (blue solid) components, and shows noticeable difference from the 

heat diffusion equation solution (back dashed). c) Visualization of hydrodynamic wave pack 

propagation. The inset shows the fitting of the slow and fast processes occurring during the 

intensity decay of the temperature wave. d) Window for hydrodynamic phonon transport.
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Fig. 2. Intrinsic phonon spectral properties that lead to strong phonon hydrodynamic.
a) Schematic of Normal scattering and Umklapp scattering. b) Portion of Normal scatterings 

at qz = 0 for selected phonon branches, including flexural acoustic (ZA), transverse acoustic 

(TA), longitudinal acoustic (LA), and first flexural optical (ZO1) branches.
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Fig. 3. Flux fields and streamlines of vortex generated at the corner of a square disk.
(a-c) Comparison in a 1-μm-width square disk at 100 K among (a) heat diffusion model, 

(b) fluid model, and (c) Boltzmann transport equations with ab initio phonon interactions. 

(d) Compare the effects of varying disk size under a fixed background temperature at 100 

K. (e) Compare the effects of varying background temperature with fixed disk width at 1 

μm. Both (d) and (e) are derived from Boltzmann transport equations with ab initio phonon 

interactions. The colormap represents the magnitude of flux density, the red curve shows the 

streamlines, and the red arrow indicates the flow direction.
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Fig. 4. Flux fields and streamlines of a jet flow.
(a-c) Comparison in a jet flow at 100 K originating from a 0.2-μm-width inlet among 

(a) heat diffusion model, (b) fluid model, and (c) Boltzmann transport equations with 

ab initio phonon interactions. (d) Compare the effects of varying inlet widths under a 

fixed background temperature at 100 K. (e) Compare the effects of varying background 

temperature with fixed inlet width at 0.2 μm. Both (d) and (e) are derived from Boltzmann 

transport equations with ab initio phonon interactions. The colormap represents the 

magnitude of flux density, the red curve shows the streamlines, and the red arrow indicates 

the flow direction.
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Fig. 5. 
Comparison between ab inito Monte Carlo results and semi-analytical approximate solution.
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