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Chapter 1

Introduction

This publication documents an analysis and synthesis technique for the estimation

and modeling of a particular class of nonlinear acoustical systems with losses in energy

constrained to the linear dynamics. This particular class of system may be modeled as a

multidimensional linear system perturbed by signal-dependent unitary transformations.

It is situated in the field of sound analysis / synthesis techniques. The algebraic structure

of the model affords an intuitively descriptive parameter-space, while allowing synthesis

to guarantee stability, and analysis to converge on a solution with minimal complexity

in the recursion. This thesis describes both the abstract mathematical properties of the

underlying model as well as a family of algorithms for analysis and synthesis.

This introductory chapter first provides some context to the project, describing

the nature of the recordings and performances that inspired the model this developed

herein. Following this, Section 1.2 lays out our desired characteristics for this model and

its parameter estimation algorithm, depicts the theoretical framework within which it

resides, and makes note of some notational peculiarities developed for the specific needs

of this project. Section 1.3 outlines the primary research questions this thesis hopes to

answer, followed by an important caveat regarding equiavalency in the parameter space.
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Finally, section 1.5 provides a brief guide to the rest of the document.

1.1 Performance

The theory for the model presented in later chapters largely grew out of informal

observations and experiments with vibrometers such as piezoelectric contact microphones

and hydrophones, electromagnetic pickups, and simple laser vibrometers. These forays

were generally in the service of aesthetics or curiosity. Although these explorations may

have lacked the rigor and procedure necessary to make definitive quantitative statements

about the various systems that were observed, they nonetheless provided a qualitative

and intuitive enrichment of understanding.

The subjects of investigation included systems such as spiderwebs in the presence

of controlled jets of air, highly dispersive metal sheets, and the surfaces of various

vibrating liquids. Their study comprised something more akin to a craft than a field of

scientific inquiry. A few opportunities to perform with particularly beautiful systems

in front of an audience presented themselves, and this modest performance practice

necessitated more robust and portable realizations.

As a result, many iterations of vibrometers were developed over time. The larger

goal was to create a portable array of such sensors, robust enough to perform outside of

controlled conditions, yet still sensitive enough to deliver a satisfying musical experience.

In addition to honing the design of the sensor, a digital signal processing algorithm was

sought to compensate for unwanted components of the signal. Eventually, the more

interesting questions came not from so-called “noise removal” techniques, but from

parametric methods of modeling the system dynamics, based on recordings.

After several design iterations, these laser microphone arrays began to see utiliza-

tion in musical performances, beginning sometime in 2014. Initially, these performances
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had focused on spiderwebs. To activate the webs acoustically, a variety of mechanisms

were tested. Ultimately it was determined that compressed air provided a highly con-

trollable continuous activation not dissimilar to a bow. The results sounded like a cross

between a string instrument and a reed instrument. Depending on the type of web, its

size and age, these tiny instruments could have strings with fundamentals well below the

audible range, and so audible activation would require coaxing out some upper vibratory

mode. Some web configurations exhibited sympathetic resonance and coupling of an

unusual character as the various modes interacted with each other along the diaphanous

medium.

Although dexterity with the compressed air bowing technique improved with

practice, the limitations of the medium became apparent rather quickly after a few

performances. Most significantly, a reliable source of these instruments would require a

reliable source of spiders, an animal which I find deeply and irrationally terrifying. This

fact alone did not bode well for the future of the performance practice. Furthermore,

while spiderwebs could occasionally be found in my apartment, their locations were very

rarely convenient for performance. I had been lucky enough to find an orb web on a small

potted orchid, and I had eked out as many performances and multi-channel recording

sessions as possible with the instrument, but this web could not last forever. It turns out

that spider silk dries out and becomes progressively inelastic as it ages. Finding another

naturally occurring, highly portable, and –most importantly– vacant spider web could be

months away. Even with this relatively convenient instrument, the process of calibrating

the microphones was laborious, often requiring up to an hour of delicate, tedious work

simply to prepare for a performance.

I eventually turned to other objects of interest, particularly those with properties

uniquely suited to my laser microphone design. Liquids seemed especially promising.

Minor modifications to the spiderweb technique afforded me the ability to amplify the
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surface vibrations of a wide variety of liquids, foams and gels. Transducing signals into a

dish of the liquid and listening to the result at the surface yielded audible transformations:

a sort of electroacoustic filter. As might be expected, the resulting transformations were

not strictly linear– differences in amplitude would reveal entirely different regimes of

operation, and combinations of pure tones would occasionally interact in unexpected

ways. I also found that feedback could be implemented by sending a combination of

the microphone signals back into the transducer, resulting in “oscillators” with often

unpredictable and rich behaviors.

These techniques in liquid amplification generated a number of performances

in a wide variety of venues. Often, the sonifications were coupled with visualization

techniques. In some, the light of an additional laser would be reflected off of a point

on the surface of the liquid and onto a wall or projection screen in the performance

space. The wave patterns along the surface of the liquid would then cause responsive,

multifarious patterns in the laser projection. In others, an overhead projector was used to

display the full image of activity on the surface of the liquid-air interface.

A number of performances, which were a collaborative effort with sound artist

and multi-instrumentalist Adam Tinkle, integrated the dishes of amplified liquids with

more traditional analog music and video synthesizer components. The source of the video

was generally a small camcorder. A typical performance would begin with transducing

sinusoids into the liquid– typically a solution of water and surfactant or potato flour– and

transition into more complex processing relationships involving feedback. Simultane-

ously, a visual representation of the system was projected onto a wall or screen, and also

routed to several television monitors via analog video mixer. Using video feedback both

internally to this mixer and externally involving the camcorder, a variety of processing

techniques, somewhat analogous to the sound processing, could take place in video

streams. We experimented with software-controlled multicolor LEDs for additional stage
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lighting and found, happily, that the PWM signals used to control these LEDs could be

picked up by the laser microphones. I had experimented with techniques for reducing

such interference during the microphone design stages, and ultimately decided to reduce

my BOM by removing it altogether.

The gestalt of the performances was a combination of overwhelming physical

presence of multi-sensory stimulation and garish equipment evoking the imagery of

pseudoscience. In some performances we emphasized the latter of these by dressing in

lab coats and delivering absurd abstracts from phony articles. The equipment was old and

often failed in quirky, interesting ways. We destroyed at least three overhead projectors

and burned out many more bulbs, each of which cost nearly as much as the cantankerous

hulks themselves. It is difficult to assess the degree to which the synesthetic qualities of

the performance would immerse our audiences, except to glean reactions afterward. My

impression is that the overstimulating aspect of the performance was highly effective,

given the oddball conversations that tended to happen as most people stumbled for the

exits. Several of these performances have been documented with video, and a release of

this material (in addition to more touring) is anticipated in future months.

1.1.1 Notes on the Recording Sessions

In addition to performances, this project generated a number of recording sessions,

with varying degrees of control. One such recording session is described in detail in the

following section. This thesis does not claim to have successfully modeled anything.

Accomplishing that goal would have required an entirely different approach, with far

more care taken to relate the model back to the particular system of interest. However,

the fact remains that a framework for the analysis and synthesis of a particular class of

nonlinear systems has been developed, and so have the measurement tools for exploring

the systems that inspired this framework. An obvious way to proceed is to treat the
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framework as a hypothesis, and attempt to prove it, but this is misguided. The framework

is not a hypothesis, it is a sound analysis / synthesis technique. A more appropriate

strategy might be to engage in a well-conducted recording session. The procedures bear

some superficial similarity to each other, and there is strong justification for this: they

both require precise control over environmental conditions. Regardless, the conclusions

one can hope to draw from either form of inquiry are of firmly distinct categories.

1.1.1.1 Materials and Apparatus

A plastic container the shape of a rectangle with rounded edges (see figure 1.1),

measuring 42.06748× 28.73248× 13.97 cm was filled with 1 L of room temperature

tap water. The sample was placed atop a 50 W, 8 Ω Vidsonix tactile transducer,

Figure 1.1: The apparatus, viewed from above.

driven by a Denon amplifier capable of supplying 80 W into 8 Ω with 0.08% THD,

100 dB SNR and ±3 dB 20 Hz→ 20 kHz response. The sample was coupled to the

transducer using 4 neodymium magnets, each with 3.62874 kg pull strength. The sample

was balanced carefully such that the water surface was roughly level across the entire

container, resulting in a slightly varying depth of 1.3−1.7 cm.

Two 5 mW red laser diodes were suspended above the sample using shock-

absorbing mounts, and the light sources were received by a pair of high-bandwidth PIN

photodiodes, forming a simple pair of geometric optical vibrometers. Vibrometer “A”
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Figure 1.2: Vibrometer “A”, measuring a point approximately 5 cm from the corner of
the container.

was placed at a vertical distance of 12.5 cm from the surface of the water, with its receiver

14.5 cm above the surface. This pair measured a point approximately 5 cm from the

corner of the container.

Vibrometer “B” was arranged such that the transmitter was 9.5 cm and the receiver

13.5 cm above the surface of the water. This pair measured a point approximately 14.366

cm from either side of the container (width-wise), and approximately 6 cm from the end

of the container (length-wise).

Figure 1.3: Vibrometer “B”, measuring a point approximately 14.366 cm from either
side of the container, 6 cm from the end.

The PIN photodiodes were configured in zero-biased photoconductive mode,

amplified using a differential instrumentation transimpedance amplifier (TIA). [Gra96]

The signals were then further amplified and their relative gains were calibrated using an

analog Yamaha MG166c audio mixer and an oscilloscope. Ultimately the signals were
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recorded at 48 kHz, 24 bit into a Sound Devices USBPre ADC.

Figure 1.4: Schematic of the differential instrumentation TIA.

1.1.1.2 Methods

The sample was probed with a number of test signals, and the response of the

sample recorded. These test signals were also digitally captured for reference. The

signals consisted of white noise and linear sinusoidal chirps across several frequency

ranges. The signal generation and capture was performed in the PureData audio synthesis

environment. After each trial, the collected data was given an initial processing pass,

whereupon spectrograms were generated to aid the search for interesting dynamics.

Occasionally, based on the results of this search, follow-up tests were performed, prior to

proceeding with the next trial.

1.1.1.2.1 Trial 1: Linear Chirps

After calibration, broad-band linear chirps were captured at 3 distinct amplitude

levels, as described in the first 3 entries of table 1.1. After capturing the data, it was

observed that the extreme low-end of the frequency range was the most active. Two
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Table 1.1: A table of test signals used for Trial 1.

Trial
No.

Time Frequency
Range

Amplitude

00.00 240s 0 Hz→ 24 kHz 0 dB
00.01 240s 0 Hz→ 24 kHz −6 dB
00.02 240s 0 Hz→ 24 kHz −12 dB
00.03 120s 0 Hz→ 100 Hz 0 dB
00.04 120s 0 Hz→ 50 Hz 0 dB

additional tests were performed within this range as a follow-up. The settings for these

tests are also included in table 1.1, as entries 00.03 and 00.04.

1.1.1.2.2 Trial 2: White Noise

Table 1.2: A table of test signals used for Trial 2.

Trial
No.

Time Amplitude

01.00 120s 0 dB
01.01 120s −6 dB
01.02 120s −12 dB

White noise was then applied to the system, at 3 distinct amplitudes. Given

the apparent low frequency poles that affected the system in Trial 1, we expected

to see these poles respond to white noise. Furthermore, given what appeared to be

amplitude-dependent sideband generation on those poles, we hypothesized that vary-

ing the amplitude of the white noise would result in varying the amplitude of those

sidebands.
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1.1.2 Notes

It is evident from the spectrograms that the two vibrometers measured very

different transfer functions. In particular, vibrometer “B” appears to exhibit a considerable

bias toward the low frequencies. Though this could have occurred for a number of reasons,

the richness of high-frequency detail in the responses it measured in test 00.03 (figure

A.4) and Test 00.04 (figure A.5) suggest this biasing occurred prior to the vibrometer

receiver in the signal path.

The results of test 01-02b (figure A.8) are the most perplexing of this trial. In

this test, the tank was vibrated with white noise at a relative amplitude of -12 dB. The

resulting spectrogram shows some sort of amplitude modulation with an extremely low

frequency mode. In fact, the modulation effects of this low frequency component can also

be seen, albeit more subtly, in the -6 dB test (figure A.7). The darkened vertical bands

that appear at regular intervals are evidence of this behavior’s emergence. It appears that

in a higher amplitude regime, the effect is less pronounced.

Examining the chirp responses in trial 1, we can see the dynamics are both

nonlinear –due to the presence of additional striations to the initial chirp frequency– and

scale-dependent –due to the response differences between tests with different amplitudes.

Any modeling framework developed herein should be able to capture these dynamics.

1.2 Desiderata

We aim to model the behavior of systems similar to those described in the previous

section. If we are successful, we will not only be able to describe systems in the wild

via analysis, but also to model the behavior of entirely new systems. This possibility of

synthesis has particular applicability to the field of computer music, which is enriched by

the development of new synthesis paradigms. Given that we are interested in an analysis
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/ synthesis algorithm pair, we can apply the following desiderata:

Firstly, we require minimal knowledge of the driving signal. In section 1.1.1.2,

we used two driving signals which are common to the field of system identification. Their

pervasive adoption is justified: using these driving signals, we know we can completely

identify the dynamics of a linear system. That being said, the chirps used in test 1 are

unlikely to resemble much of anything we will find in the wild, and certainly far more

specialized than the mean-zero white noise used in test 2. We therefore would prefer,

to whatever extent possible, that the driving function be as simple and unconstrained as

possible. We go so far as to specify that it should be a random variable of some sort.

Secondly, we would like to end up with an interpretable parameter space which

can be inspected to observe qualities like the proximity (or in the extreme, equivalence)

of one system to another in terms of dynamics. An even happier result would be that

the parameter space may give us some information about the time scale of the system

dynamics, losses due to imperfect conservation of energy, et cetera. For the purposes of

a musical synthesis algorithm, we might ask for a predictable set of center frequencies,

bandwidths, and some classification or quantification of timbral complexity.

Third, we would like as simple a parameter set as needed to explain the system

dynamics up to a tolerance. It is common in system identification to require the simplest

explanatory model conceivable, thereby mitigating the hazards of overfit. The more

complex a model is, the greater these hazards, therefore this requirement is roughly

equivalent to prioritizing solutions which are more likely to generalize well.

1.2.1 Framework

The standard framework for modeling a general system is presented in this

section. We include this primarily as an opportunity to demonstrate the canonical

notational conventions and explain the necessity of extending them for the purpose of
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this dissertation.

1.2.1.1 The Residual

Recall that a linear model is defined as a system of equations whose future output

may be encapsulated by a linear combination of previous inputs and outputs, i.e.:

yk = Θpk +ξmk (1.1)

where p is a vector of the previous input and output terms, and Θ is a parameter matrix

describing how these are combined to describe each successive timestep. Such a model

is generally considered incomplete without ξm, which models the non-deterministic

component of the measurement. In modeling, we are attempting to find the best ap-

proximations of the above terms and parameters, Θ̂, ˆξm, and, in the case of prediction,

ŷ:

ŷk = Θ̂pk + ˆξmk (1.2)

Note in equation (1.2) we imply that the term vector p is directly observable and not

approximate. Eventually we may in fact find approximations of past terms or even future

ones. This becomes significant in recursive algorithms, which tend to alternate between

prediction and correction steps.

The Linear Residual is simply the point-by-point difference between this linear

approximation and the measured output of the system, disregarding measurement noise,

which will be addressed in chapter 3:

elink = Yk− ÂYk−1 (1.3)

where Â is simply the estimated parameter matrix whose entries only pertain to
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previous system outputs. Note that the system described in equation (1.3) is linear with

respect to measurements because its term matrix Y is always constrained to past output

values. This system would remain linear with respect to the measurements if the model

included input terms or linear transformations of input or output terms. In the linear case,

numerous techniques, such as those presented in [Alp14] , [Nor86, p. 59] , [Abu12, p.

82] , [LS86, p. 33] and [Bil13, p. 20], and many others, may be used to identify the

system dynamics. These classical identification techniques, which include LPC, modal

analysis and Kalman filtering, form the ground from which linear system identification

has been cultivated.

A nonlinear model, by extension, uses function composition rather than matrix

multiplication to express its transition from one timestep to the next. Despite this, it can

be represented in much the same form as equation (1.1), by relaxing the constraint on

P to include nonlinear functions of input or output terms. NARMAX, a deterministic

treatment of this generalization, may be found in [Bil13, p. 36]. We will explore these

ideas in greater depth, establishing our algorithm in relation to them, in chapters 2 and

3.

1.2.1.2 Extended Notation

In the literature, it is common to use the above notation for tensors without regard

to which reference frame we are viewing the tensor from. Typically this is permissible

because there are relatively few bases which we are operating in to solve a particular

problem, and once that basis is determined, we need not concern ourselves with further

transformations until we actually need to pull coefficients out of the tensors. At that time,

these coefficients must be represented in a particular basis. However, this dissertation

makes use of multiple bases, among which we will need to transform to solve different

pieces of the problem. Due to the fact that we relax the linearity requirement on the
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system, we lose the privilege of contracting our change-of-basis operations into a single

transformation step, and therefore we must have a consistent notation for a given tensor

under a certain set of transformations.

To denote a particular basis under which we view a given tensor, we place the

chain of transformations required to get back to standard basis over the top of the tensor,

like so:

SE
SE
x ≡ x (1.4)

SE
SE
T E−1S−1 ≡ T

where S is a matrix which diagonalizes the column state-variable vector x and state-

transition matrix T , and E is a matrix which transforms the diagonalized tensors into the

real-valued energy basis. This basis will allow us to track the amount and directionality

of energy flows among modes of vibration, which under the linear approximation are

presumed to be independent. We will assume that conservation of energy will provide

us with a dimensionally-reduced representation of system dynamics, thereby reducing

the complexity of the calculations required to solve for higher degree nonlinearities. For

example, solving a quadratic system with 4 degrees of freedom would require solving

for a tensor containing 64 terms, which, using this dimensonality reduction strategy,

we can shrink to a 20-dimensional subspace. This dimensionality reduction step itself,

along with the fact that it is necessary for solving this problem is a central finding of this

dissertation. We define it in Section 3.3.3.
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1.2.2 Two Cross-Model Metrics

To help us on this odyssey, we will need two metrics that may be considered

applicable in a cross-model sense: one which pertains to the modeling side of the problem,

and another which pertains to the identification side. In the case of modeling, we might

be in a position to use a metric as an equivalence condition or distance criterion among

candidate models. This might be useful in cases where dynamics are recorded, and

therefore we only have access to approximations of state. It might also be useful if the

system in question is synthesized, and therefore the state is known as ground truth. In

the case of identification, we may find use for a recursive approach, and this requires

a metric to determine if a subsequent recursion of the identification represents a step

toward or away from the solution.

1.2.2.1 Index of Nonlinearity

The task of comparing two nonlinear systems, even if their parameters are known

a priori, is somewhat less straightforward than that of comparing two linear systems, for

several important reasons. First, and perhaps most obviously, the nonlinear component

of the model must be somehow disentangled from the linear component, and a new

metric comparing the two nonlinear components must be constructed. (Linear systems

are somewhat more simple to compare, via their eigendecompositions.) Second, this

nonlinear component is no longer guaranteed to be scale-invariant, a degree of freedom

that threatens, among other things, to obfuscate the dynamics at the source with char-

acteristics typically attributed to the measurement procedure. As we will see in section

4.1.1.2, this nonlinear component might vary non-uniformly along its dimensions. For

these reasons and others, we require the definition of an intrinsic “Nonlinearity Index”

which will serve as a metric in the space of nonlinear systems. We introduce this measure

in earnest in section 3.3.5.2. This will serve as an equivalence condition between models
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based on their overall dynamics, and may be calculated only if the parameters of the

system are known. Of course, that will not prevent us from attempting to estimate it. Such

a measure captures the degree to which the system deviates from linearity, independent

of scale, modeling error, measurement noise, and linear frequency.

1.2.2.2 Absolute Prediction Error

Concomitant with estimating the parameters of a system which might be either

predominantly linear or nonlinear, there is a hazard of selecting an inappropriate model

to fit the in-sample data. This sort of error invalidates the parameter estimation and

causes poor generalization out-of-sample. When selecting a model, the general rule of

thumb is to start with the simpler model and build upward in complexity. Implicitly, two

descriptions being equally accurate, we often prefer the simpler of the two. To facilitate

this, we must construct a metric which encapsulates the improvement in descriptive

ability between echelons of complexity. In our case, the degrees of a Taylor series

provides us with a convenient hierarchy of analyses. We describe such a measure, which

is itself invariant to other model parameters like scale, etc, in section 3.3.5.1.

1.3 Research Questions

We set out to answer a number of questions regarding general dynamical systems,

pertaining to the problem of modeling dynamics given measurements of system output

alone. Some of these questions will be answered in the process of designing our conjoint

synthesis and analysis algorithms, and some of these questions must be answered in

a separate process of assessment given large numbers of systems. Since in an episte-

mological sense, we cannot know the state variables underlying a given system (state

itself being a conceptual tool rather than an intrinsic property of processes), we rely on
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synthesized systems of a particular form to pit our algorithms against. This permits us

to vary specific classes of parameters while keeping other parameter classes constant,

affording us the ability to validate the algorithms along a variety of axes. The questions

we ask are therefore related to our ability to perform this assessment: whether given

parameter sets will converge under estimation, whether systems of given parameter sets

are equivalent or nearly so, and what the expected accuracy of a given estimation might

be.

We have stated that we would like for our analysis algorithm to make very few

assumptions about the system to be identified. Since we will be relying mostly on

synthesized systems, we are afforded the opportunity to investigate how the presence or

absence of a priori knowledge of the system affects our ability to identify it. In chapter 4,

we organize our tests for the comparison of three basic cases: knowledge of the spatial

arrangement of microphones, blind estimation, and knowledge of the linear dynamics.

Of these three, we anticipate the second case to be the most challenging.

1.3.1 Bandwidth of Measurements

Our measurement techniques provide us with a finite-bandwidth, discrete-time

representation of the signals, and our resulting models of the underlying system share

those constraints. What is the effect of increasing the frequency with which the system

is measured on our ability to model it? Our choice of the Taylor series expansion

suggests that as our model’s sampling frequency increases, our low-order approximation

will approach the underlying measured system. (C.f. Section 3.2.1.) Is increasing the

sampling frequency similar to increasing the dimensionality of the measurements, from

the perspective of accuracy? We intuit that these two factors might have a similar effect

on the analysis algorithm, in that we increase the overall data available to the algorithm

in both cases. How might these two dimensions differ?
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1.3.2 Window Size

Another important factor in our analysis is the length of time needed to identify

underlying system dynamics. Intuitively, we hypothesize that a longer window size

would correspond with a greater degree of accuracy, perhaps at the cost of computational

complexity. We will seek to explore both sides of this implied trade-off. Is there any

additional cost implied by increasing this window size? In Fourier analysis, particularly

in STFT applications such as phase vocoders, there is one such famous compromise

between time- and frequency-domain acuity for the detection of energy packets. Will our

analysis algorithm suffer from similar constraints?

1.3.3 Dimensionality of Measurements

An early intuition held that using more microphones might provide us with more

reliable measurements, regardless of how those microphones might be arranged in space.

What is the effect of adding more dimensions to our measurements? How does the

algorithm for analysis scale with measurement vector dimensionality? In section 1.2.1.2,

we hinted at the possibility that the solutions we will seek lie within a subspace of

the state-space as it is presented to us by more conventional means, and stated that

dimensional reduction comprises an essential tool which we wield in order to solve the

problem in general. This process naturally leads to the partitioning of the larger problem

space into multiple subspaces. How do these component subspaces of the algorithm scale

with the dimensions of the measurement vector? Is there an optimal dimensionality which

our measurements must have to assure a particular level of accuracy or convergence?

If we assume the system is autonomously being excited by, e.g. ambient noise, what is

the dimensionality of that noise? What happens if this excitatory process noise lies in a

subspace of the measured system?
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1.4 A Note on Equivalence

Since we can not observe state directly in the wild, we must recall that any

transformation of state parameters might yield an observably identical– and thus equally

valid– estimated system, assuming, of course, that this transformation is carried properly

throughout the description of the system. Therefore, in our parameter estimation, we

seek to locate the system within an equivalence class. In the linear case, this equivalency

may be represented as a transformation of coordinates. How does this change for general

systems? How might the inherent uncertainty about the representation of system state

variables interfere with our ability to find nonlinear relationships between those state

variables to explain higher-degree nonlinear dynamics? Can this uncertainty be dealt

with in a practical way as we search for optimally explanatory variables?

1.5 Structure of the Dissertation

The derivation of the model begins in earnest in chapter 2. Following this

description of the synthesis technique, chapter 3 explains the analysis algorithm. Chapter

4 catalogs a number of test batteries designed to validate the analysis / synthesis pair,

directly responding to the questions posed in section 1.3. Finally, chapter 5 offers some

high-level assessment and documents future work.
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Chapter 2

General Model Derivation (Synthesis)

This chapter develops a nonlinear model with a rich internal structure, suitable

for describing a wide variety of nonlinear dynamics. We first derive the framework for

the model as a perturbation on linear systems. We then construct the model from its

simplest, most constrained form to its most general, observing how the equations increase

in dimensionality while preserving their structure.

2.1 Linear Systems

In this section, we briefly review topics related to linear models, with the intention

of establishing a notational convention. These basic concepts will provide the foundation

on top of which we will construct our nonlinear model in section 2.2.

2.1.1 Input-Output Representation

We begin by considering a linear model of the form:

A(z−1)y(k) =
B(z−1)

F(z−1)
u(k)+

γ(z−1)

D(z−1)
ξ(k) (2.1)
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where k ∈Z : y(k) is the output signal, u(k) is the input signal, and ξ(k) is an independent

and identically distributed noise sequence with expected value E (ξ) = 0 and finite

variance. [Bil13, p.18] This representation is generally called an Input-Output model.

[LS86, p.419] In this notation, the term z−1 signifies a backward shift on a signal, i.e.

z−1 p(n) = p(n−1) for all signals p. The model parameter sequences

A(z−1) =
Na

∑
n=0

anz−n = 1+a1z−1 + · · ·+aNaz−Na (2.2)

B(z−1) =
Nb

∑
n=1

bz−n = bz−1 + · · ·+bNbz−Nb

γ(z−1) =
Nγ

∑
n=0

γnz−n = 1+ γ1z−1 + · · ·+ γNγz−Nγ

D(z−1) =
Nd

∑
n=0

dnz−n = 1+d1z−1 + · · ·+dNdz−Nd

F(z−1) =
Nf

∑
n=0

fnz−n = 1+ f1z−1 + · · ·+ fNf z−Nf

describe the behavior of the system as combinations of the model term signals y(k),

u(k), and ξ(k). When z = eiωT , angular frequency ω is in the range of −π < ω ≤ π,

and T is the sampling interval, the model can be described in the frequency domain.

The stability of the system is entirely determined by the roots of the model polynomials

A(z−1),D(z−1),F(z−1), assuming these share no common factors with the polynomials

γ(z−1) and B(z−1). [Smi07, p.127] [Bil13, pp.18-19] In general, an oscillating system

will have complex roots expressible in polar form as ρeiωT . For our purposes, we will

simply define the polynomials F,D≡ 1. Note that the number of roots the model exhibits

is determined by the degree of each of the polynomials: Na,Nb,Nγ,Nd,Nf . This general

model can be expanded from the single-input, single-output case (SISO) to cases with

multiple-inputs and multiple-outputs (MIMO), with careful attention to the effects on
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model complexity and stability. [Smi07, p.86]

In many cases, some of the model terms cannot be directly observed. Depending

on the system in question, model terms may be recast as random variables, or removed

from the system entirely. In this case, ξ(k) absorbs the statistical properties of the

unknown variable. For example, if the input is unknown, but can be assumed to be

mean-zero and of finite variance, equation (2.1) might become

A(z−1)y(k) = γ(z−1)ξ(k), (2.3)

effectively by setting the model parameters B(z−1) = 0 and D(z−1) = 1, and describing

the system “input” as a random variable ξ. The model described by equation (2.3) is

commonly known as Autoregressive Moving Average or ARMA, and is quite popular in

modeling timeseries assumed to have linear dynamics. [Bil13, p.19]

We can rearrange the terms in equation (2.3) to place the current measured output

of the system y(k) as a combination of previous outputs and noise, by negating the output

model parameters, yielding the difference equation for an infinite impulse response (IIR)

filter: [Smi07, p.48]

y(k) =−A(z−1)y(k−1)+ γ(z−1)ξ(k). (2.4)

Note that the zeroth term of A(z−1), a0z0 = a0, is a gain factor which we omit for clarity,

essentially assuming a0 = 1. If there is a non-unity coefficient here, it encodes the overall

gain characteristic of the difference equation, and can be absorbed into the right-hand

side of the equation algebraically.

In this case we continue with the assumption that we do not know the input signal,

so we model it as a stochastic process. However, we could have also modeled the input

deterministically, resulting in a Autoregressive Moving Average with eXogenous inputs
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(ARMAX) model. In this case, equation (2.4) becomes an IIR filter with a noise term:

y(k) =−A(z−1)y(k−1)+B(z−1)u(k)+ γ(z−1)ξ(k) (2.5)

It is also trivial to derive the deterministic input-output transfer function of the

filter as the ratio of the two polynomials in z−1: [Smi07, p.121]

H(z) =
B(z−1)

A(z−1)
=

∑
Nb
n=0 bnz−n

∑
Na
n=0 anz−n

=
1+b1z−1 + · · ·+bNbz−Nb

1+a1z−1 + · · ·+aNaz−Na (2.6)

and the stochastic input-output transfer function in the same way:

H(z) =
γ(z−1)

A(z−1)
=

∑
Nγ

n=0 γnz−n

∑
Na
n=0 anz−n

=
1+ γ1z−1 + · · ·+ γNγz−Nγ

1+a1z−1 + · · ·+aNaz−Na (2.7)

The roots of A(z) comprise the poles of the transfer function, while those of γ(z) and B(z)

comprise the zeros. One of the advantages of assuming a linear model is the ease with

which one may convert between these and other equivalent representations of the system.

[Bil13, p.149] Another is the ease with which a relationship between models of the same

class might be computed. [Bil13, p.33]

We can write equation (2.5), with no loss of generality, as

yk = pkθ+ ek, (2.8)

simply by concatenating all the model terms– not including the current measurement yk,

but certainly including lagged output terms like yk−1 if they are significant– into the row

vector pk, and all the model parameters into the Nθ-dimensional column vector θ. For

notational convenience we have encoded our model term sequences as K-dimensional

vectors y and polynomials A . . .F as vectors of their coefficients. Note that in order for
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the multiplication to be defined, the row-vector pk must be Nθ-dimensional. [Bil13, p.65]

In this broad view, we see the model as a linear transformation of model terms.

The residual term ek is the generalized error in the model’s prediction. Note that

e may in some cases be equivalent to ξ or u, depending on the particulars of the model.

However, even when we place ξ or u into our model term vector, we must always account

for e, which then describes any deficiencies in the model.[Nor86, p.60] The analysis of

e is extremely important in solutions to the model-fitting problem, discussed further in

section 3.3.1.

2.1.2 Similarity Transformations and State-Space Representation

Any system that can be described in Input-Output form may alternately be

described in its State-Space form. [LS86, p.419] By invoking such a representation, we

acknowledge that the system behavior could be determined by some internal state, which

we may not measure directly. In our case this representation will be dependent on a

continuously varying term x, which enters the system equations as follows:

xk = Txk−1 +Buk +Cξpk (2.9)

yk =Wxk +ξmk

The system described above implies a linear relationship between measured output and

internal state. However, the concept of state may be further generalized to nonlinear

relationships as well, using functional composition instead of matrix multiplication, to

transform from state space to measurement space.
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2.1.2.1 Similarity Transformations

It will occasionally be advantageous to inspect or construct our model using

various coordinates so that certain features may become apparent or computations may

be made more efficiently. For example, we might want to change the appearance of the

state transformation matrix T , without changing the linear operator it represents. Such

a change in coordinates is one-to-one and onto, and therefore invertible, and is called a

similarity transformation. We will use this particular technique so frequently that we

introduce a shorthand notation for it. Similarity transformations can be performed on

matrices representing linear operators by matrix multiplications of the form
S
T ≡S−1TS

. The related operation to change the coordinates of a column vector is simply a linear

transformation:
S
x≡S−1x. In general, the application of a similarity transformation on a

(p,q)-tensor requires a forward multiplication on the q covariant axes and a multiplication

by its inverse on the p contravariant axes. Similarity transformations allow us to separate

the underlying operator from its representation in a particular basis. [SB97, p.227] This

notation is an extension and specialization of the more common convention of applying

a diacritic to refer to a vector, matrix, or tensor in a different space. The definitions of

system terms and parameters using this shorthand will always be explicitly defined in

the context of their derivation and usage. While this custom of explicitly defining the

transformation rules for each object may seem redundant at first, in later derivations the

practice become invaluable to a principled understanding of the problem.

The state-space model in equation (2.9) can therefore be represented by any

linear transformation S of the state vector
S
x, provided the change of basis is consistently

applied. This yields the form for the state-space model under a similarity transformation
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into a space determined by the invertible matrix S :

S
x≡ S−1x (2.10)

S
xk = S

−1TS
S
xk−1 +S

−1Buk +S
−1Cξpk

yk =WS
S
xk +ξmk

Applying this change of basis to x allows us to derive a representation of the entire

system viewed in this basis:

S
T ≡ S−1TS (2.11)

Λ≡
S
T

S
B ≡ S−1B

S
C ≡ S−1C

S
W ≡WS

Substituting these transformed terms and parameters into equation (2.10) demonstrates

the visual clarity this notational choice affords us:

S
xk = Λ

S
xk−1 +

S
Buk +

S
Cξpk (2.12)

yk =
S
W

S
xk +ξmk

2.1.2.2 The Modal Basis

A particularly elucidating view of a linear transformation T is achieved when

the the similarity transformation is defined by an eigenvector basis S of T . [Smi07,
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p.363] If the eigenvectors of T are linearly independent, then S diagonalizes T . This

represents the action of the linear operator encoded by T as a collection of the most

elementary operations: a multiplication by a scalar. [Str09, p.358] Representing the

dynamics in such a way permits us to decouple the actions of each degree of freedom in

the system. This diagonal matrix
S
T is so important to the study of systems that we give it

its own variable: Λ. The nonzero entries of this matrix are the eigenvalues of the linear

transformation. A synonym for this diagonalized state space view of a system is its modal

representation.[Smi07, p.362] Explicitly writing out some of the entries in the state

transition equations may demonstrate why this is such an important representation:

S

x1,k

x2,k

x3,k

...

xNθ,k


=



λ1 0 0 . . . 0

0 λ2 0 . . . 0
... . . . λ3

. . . ...

0 . . . 0 . . . 0

0 0 . . . 0 λNθ



S

x1,k−1

x2,k−1

x3,k−1

...

xNθ,k−1


+

S

b1

b2

b3

...

bNθ



T

uk−0

uk−1

uk−2

...

uk−Nθ


+

S

c1

c2

c3

...

cN



T

ξp1,k−1

ξp2,k−1

ξp3,k−1
...

ξpNθ,k−1


S
xk = Λ

S
xk−1 +

S
buk +

S
cξpk−1

(2.13)

In the Λ
S
xk−1 term, every coefficient in Λ multiplies only one state variable in

S
x. The eigenvalues entirely determine the locations of the poles in the system transfer

function, and furthermore, they do so independently. This is analogous to a model where

each individual feedback path is applied in parallel (in the process update step) and finally

mixed together (in the output step). Thus a modal decomposition is a generalization of the

partial fraction expansion of a filter. [Smi07, p.363] The terms S−1buk and S−1cξpk−1

encode how the input signal and process noise couple to each of the modes.

In the case of linear systems, it is important to note that any matrix of linearly-

independent eigenvectors of T forms a basis for the modal space of T . Each of the
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columns may be scaled by any complex number, or the order of the columns permuted,

and the resulting matrix is still a basis for the modal space. We have the same freedom

of choice for the ordering of the diagonal elements in Λ as well, as long as we consis-

tently apply the same permutation to the eigenvector columns as we did to the diagonal

coefficients in Λ. To form an ordered basis, we therefore apply the convention such that

the eigenvalues are sorted in descending order, according to their real component first,

the absolute value of their imaginary component second, and the sign of the imaginary

component third. This places conjugate modes next to each other, and orders them

according to their real components, e.g.:

Λ≡



λ1 0 0 . . . 0

0 λ̄1 0 . . . 0
... . . . λ3

. . . ...

0 . . . 0 . . . 0

0 0 . . . 0 λ̄Nθ−1


& S ≡



s1,1 s̄1,1 s1,3 . . . s̄1,Nθ−1

s2,1 s̄2,1 s2,3 . . . s̄2,Nθ−1

...
...

...
...

sNθ,1 s̄Nθ,1 sNθ,3 . . . s̄Nθ,Nθ−1


(2.14)

The above definitions show the equivalences among the coefficients for clarity. We

further specify that S must be normalized such that its largest singular value is 1 and its

last row (sN,1, . . . ,sN,N) lies entirely on the real axis. Now our definition of S and Λ is

sufficiently specific that these objects are unique given a set of eigenvectors.

For oscillating systems, the values of the diagonal entries in Λ are in C. The

actions of these entries can best be understood in polar coordinates. Let ωn be the angle

of the complex eigenvalue λn, and ρn be its radius. The response of each eigenvalue can
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be expressed in the frequency domain as:



λ1 0 . . . 0

0 λ2
. . . ...

... . . . . . . 0

0 . . . 0 λN


=



ρeiω1T 0 . . . 0

0 ρeiω2T . . . ...
... . . . . . . 0

0 . . . 0 ρeiωNT


(2.15)

The eigenvalues in Λ perform an analogous role to the roots of the polynomial A in

equation (2.1). The parameters in both representations perform the action of infinitesimal

rotation and scaling necessary for the discrete-time description of vibrating systems. In

both cases, the polar representation expresses the frequency of the pole to be ωn
2πT and the

pole’s “Q-Factor” to be roughly 1
1−ρn

, for points close to the unit circle.

2.1.2.3 Similarity Transformation into RN

Another useful similarity transformation is the one which transforms the complex-

valued, pairwise conjugate modal basis described in section 2.1.2.2 into a block-diagonal,

real-valued modal basis. The transformation will expand the diagonal complex-conjugate

eigenvalue pairs in Λ into 2×2 rotation matrices R. We will refer to 2-blocks in this

coordinate system as real modes, which consist of conjugate pairs of complex states in

the S basis.

E∗ ≡E−1

R≡E∗S−1TSE

xk−1 ≡ SE
SE
x k−1 (2.16)
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We choose a unitary basis E to accomplish this change of coordinates, which we define

to be:

E(2)≡ 1√
2

1 −i

1 i

 (2.17)

in the two-state case, and with the block structure:

E(N)≡


E(2)

. . .
E(2)

 (2.18)

in the N-state case. Recall that we are only adding rows and columns in pairs. We

implicitly specify that the blocks of rotation matrixR perform a clockwise rotation.

2.1.2.4 Controllability and Observability

In the interest of making empirical identification possible, we apply the assump-

tion that the system we are modeling is fully observable at its outputs y. Furthermore,

because we would prefer not to use measurement techniques that require us to drive the

system with a particular input, we also assume the system is fully controllable at its

deterministic inputs u and stochastic inputs ξ. For the system to be observable at a given

output, the following row vectors must form an invertible matrix:



(
w1,n . . . wm,N

)
T

0

(
w1,n . . . wm,N

)
T

1

...(
w1,n . . . wm,N

)
T

N


(2.19)
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Similarly, in order for the system to be controllable at a given input, the following column

vectors must form an invertible matrix for the column vector ofB corresponding to that

input:

T
0


bm,1

...

bm,N

 , T
1


bm,1

...

bm,N

 , . . . T
M


bm,1

...

bm,N


 (2.20)

An analogous conclusion may be drawn for the row vectors in C. The dynamics of a

controllable and observable system can be characterized by its transfer function. If the

system is not totally controllable or observable, then the transfer function characterizes

the dynamics of the controllable and observable subspace of a system. [Smi07, p.354]

[Gil63]

2.2 Nonlinear Power-Preserving Systems

The designation of nonlinearity is by its very definition pathologically general.

This is in stark contrast to the designation of linearity, which is highly specific. The set

of nonlinear systems must cover the entire set of conceivable systems, minus the linear

subset. It is therefore advantageous to impose additional structural constraints on the

system dynamics, if possible, to limit the scope of model term and parameter estimation.

Energy conservation provides a simple, intuitive constraint which arguably al-

ready appears in isolated systems. Applying this constraint to the perturbations on the

linear model preserves the ability to encode the system’s stability or losses in the linear

dynamics. Since the stability conditions of the linear model are well understood, this

may be preferable to the alternative in some cases. As we will see, the conservation of

energy yields a mathematical form which readily lends itself to analysis and interpretation.
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Intuitively, the constraint isolates the perturbations on the linear model to interactions

between the modes.

2.2.1 Linear Coupling

Consider a model based on simple perturbations of the linear model described

in equation (2.3). As a trivial case, those perturbations might be constant. An example

of such a system is one that exhibits linear coupling. In linear coupling, energy flows

between two or more modes, resulting in a constant shift in the complex amplitudes of

those modes. The resultant behavior of the system is still linear, and from an analysis

perspective, the action of the coupling is indistinguishable from simply moving the

location of the poles.

This use of the term “coupling” differs from the use presented in [Smi07, p.368],

where the author describes distinct modes with repeated eigenstructure as “coupled.”

Instead, we propose the term “degenerate” to describe the case where there are repeated

eigenvalues or eigenvectors. In the scope of this document, we use the terminology

developed e.g. in [Pie74, p.47], where two coupled modes are of different eigenstructure,

and energy transfers between them.

The magnitudes and directions of energy transfer due to coupling will be repre-

sented as a linear transformation. To describe our constraint formally, let the operation

||x|| ≡
√

x1x̄1,x2x̄2, . . . ,xN x̄N , ∀x ∈ C, also known as the Euclidean norm of a vector.

In order for energy to be conserved in this model, this norm must be preserved, and

therefore, in the modal basis, the coupling matrix U must be unitary:

UU ∗ =U ∗U = I (2.21)

U ∗ =U−1
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The coupling matrix U acts as a scale-preserving linear transformation on
S
xk−1, which

is applied prior to the potentially lossy linear transformation Λ, which together describe

the change in state from time k−1 to k:

S
xk = ΛUk

S
xk−1 +

S
Buk +

S
Cξpk (2.22)

yk =
S
W

S
xk +ξmk

Here S is the eigenvector basis and Λ the matrix with λ1,λ2, . . . ,λNθ on the diagonal.

Net energy losses are still entirely encoded in ||Λ||, an effect ofU ’s structural constraint–

we have required that ||U ||= I . In a sense, the coupling matrixU is an adjacency matrix

with complex weights, describing a time-invariant, directed network of energy flows

amongst the modes.

Recall the constraints, outlined in section 2.1.2.4, that a system realization must

satisfy to be controllable and observable. With the addition of U , we now have an

additional subsystem–albeit a simple one for now–that is not guaranteed to be either. That

being said, we may relax this requirement in favor of the constraint that the uncontrollable

or unobservable subsystem merely be stable. If this weaker condition is met, the subspace

that is controllable or observable will be interpretable under the same analysis techniques

as a fully controllable or observable system. We therefore require the same constraints

on the parameters W , B, and C as outlined in section 2.1.2.4 for a system that is

controllable and observable. [Gil63]

In the presence of no additional information, the best candidate model for a

system such as (2.22) is identical to the linear case. We are unlikely to be able to isolate

the effects of U from Λ, and thus, as stated above, the system is indistinguishable from

a linear system with decoupled poles in different locations. The terms in Λ as well as

S will absorb the terms in U . However, if the model parameters have been previously
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identified, and the modal basis is known, then any later changes to the coupling of modes

may be estimated using this model, simply by plugging in the previously estimated values

for S and Λ and solving for Uk. Note that Uk may now vary in time, and indeed this is

the assumption that allows U to be observed at all.[Smi07, p.354]

Notice that the unitary structure of U is only guaranteed in a diagonalized basis.

In fact, it is the choice of basis which allows us to interpret U as an adjacency matrix

for an energy-conserving directed graph, and this choice will in turn affect the units

with which these flows are measured. That U is unitary is equivalent to the constraint

that
E
U must be orthogonal. Such a constraint would amount to precisely the same

result on the system’s dynamics, while keeping the weight coefficients in the adjacency

matrix real-valued. One might say a unitary matrix is unitarily similar to an orthogonal

matrix, and in our case we use the convention that the basis be E. In fact, we will use

several different bases to observe U ’s power-preserving constraint and its effects on the

system.

2.2.2 Nonlinear Coupling

One might imagine a simple form of nonlinear coupling wherein the inter-modal

energy flows depend upon the modal responses themselves. In this case, the same

constraint of Euclidean norm-conservation is required, and therefore U will remain

unitary. However, now Uk is a function of
S
xk−1, the previous modal state vector. To

construct such a matrix, we can use the identity

Uk ≡ eiHk (2.23)
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where the hermitian matrixHab = H̄ba . To map the previous modal state vector
S
xk−1

intoH requires the following operation:

Hk ≡−i∑
c
(
S

M c(
S
xk−1)c) (2.24)

where
S

M is a 3-tensor whose complex entries describe the effect of each modal response

on each energy flow between the modes. Substituting this expansion forHk in equation

(2.23), and placing the resulting unitary matrix Uk into equation (2.22) gives us a state-

space form for this new model:

S
xk = ΛeiHk

S
xk−1 +

S
Buk +

S
Cξpk (2.25)

yk =
S
W

S
xk +ξmk

Applying the definition ofH shown in equation (2.24), we can expand the above

system to show its non-linear dependence on terms in x:

S
xk = ΛS−1 exp(∑

c
(M c(S

S

xk−1)c))S
S
xk−1 +

S
Buk +

S
Cξpk (2.26)

Observing how S propagates through the equations, we can define the change-of-basis

on the new parameter M :

S

M f ≡∑
c
((S−1M cS)Sc f ) (2.27)

Using the simplified notation for similarity transformations first introduced in section
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2.1.2, we derive the system equations for the nonlinear model in the modal basis:

S
xk = Λexp(∑

c
(
S

M c(
S
xk−1)c))

S
xk−1 +

S
Buk +

S
Cξpk (2.28)

yk =
S
W

S
xk +ξmk

We will explore the rich form of this model by constructing incrementally more general

representations. Since we have designed the 3-tensor M to capture all the model’s

deviations from linearity, we will be especially careful to watch its expansion from the

perspective of various coordinate systems. To simplify the equations, we will also use

a general random variable ξk ≡Buk +Cξpk to model the input terms and parameters

stochastically, and furthermore assume there is no measurement noise:

S
xk = Λexp(∑

c
(
S

M c(
S
xk−1)c))

S
xk−1 +

S
ξk (2.29)

yk =
S
W

S
xk

We will add some of these terms back into the equation only once we need them.

Eventually, in chapter 3, we will consider methods for estimating its entries, given

recordings of the output signals.

2.2.3 The General Structure of M

Given that the model’s deviation from linearity is power-preserving, we would

like to develop a basis under which the inter-modal transfer of power can be observed.

We posit the real modal basis, determined by SE:

SE

M f ≡∑
c
((E∗S−1)M c(SE)(SE)c f ) (2.30)
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In this basis, the constraint that the nonlinear coupling must be power-preserving results

in the following structure in the parameter that encodes it:

SE

M abc =−
SE

M bac (2.31)

SE

M abc +
SE

M bca +
SE

M cab = 0 (2.32)

which are reminiscent of Kirchoff’s circuit laws, or other analogous laws based on

resource conservation in a network. The ab sheets of M are essentially adjacency

matrices, which determine the flow of energy from one state variable to another, with

b determining the source and a the destination of the flow. At any given time k, the

previous state vector xk−1 determines the combination of these coupling effects via the

c axis. Seen this way, the structure described in (2.31) and (2.32) is roughly equivalent

to Kirchoff’s Voltage Law in that the 2- and 3-cycles of indices describe loops in the

network, which therefore must be equipotentials.

2.2.4 The Complex-Valued Scalar Form

Consider the model’s simplest structural configuration: a complex-valued model

with a single degree of freedom, where the previous output perturbs the phase of the

current output. This view is especially clear since we are permitted to observe the effects

of U ’s structure without the added clutter of the similarity transformations that will

reveal it in the wild. The difference equation then becomes:

yk = λexp
(
(iRe(µyk−1))

)
yk−1 +ξk (2.33)

Note the model terms yk and ξk are now complex scalars, not real vectors, and no longer

need to be transformed into the state space at all, thus y = x, momentarily. Intuitively,
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this has the physical interpretation that we are measuring state directly, which in the

one-pole case would mean we are measuring both position and instantaneous velocity, or

any linear transformation of the two, or in fact, any combination of a measurable unit

and its time-derivative. λ is also a complex scalar, since the system is already effectively

diagonalized, by virtue of the fact that there is only one state. Note also how µ becomes a

complex scalar instead of a tensor, and that the hermitian matrixH from equation (2.25)

simplifies to a real scalar.

We pause for a moment to consider the interpretation of the term µ from a

computer-music perspective. By analogy to the treatment in section 2.1.2, as long

as we remain in the diagonalized basis, the effect that µ, a complex scalar, has on

model dynamics can best be understood in terms of polar coordinates. It describes a

signal-dependent phase shift in the feedback path of the one-pole filter. The magnitude,

||µ||, describes the phase shift in either direction, measured in radians. The angle,

∠µ = tan−1 Im(µ)
Re(µ) , determines the phase of the perturbation relative to the phase of the

output signal. When driven by white noise, the resulting magnitude spectra produced

by models of this form exhibit sidebands at integer multiples of ω = ∠λ, including 0, as

||µ|| increases.
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Figure 2.1: Magnitude spectrum of one pole form, ∠λ = π

2 , ||λ|| = 0.999, ∠µ = 0,
||µ||= 0. Equivalent to the linear case.
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Figure 2.2: Magnitude spectrum of one pole form, ∠λ = π

2 , ||λ|| = 0.999, ∠µ = 0,
||µ||= 0.005. Sidebands appear at integer multiples of ∠λ.
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Figure 2.3: Magnitude spectrum of one pole form, ∠λ = π

2 , ||λ|| = 0.999, ∠µ = 0,
||µ||= 0.015. Note the sidebands wrap, rather than fold, since the spectrum is single-
sided. As the spectrum broadens, the peaks diminish, and power is preserved.

Such a model can be used as a sound synthesis technique, wherein the spectra

produced are the result of filter frequency modulation with operator feedback. Framed in

this way, this family of techniques has several precedents, all of which share the work of

John Chowning as an antecedent.[Cho73] While Chowning’s article famously describes

audio synthesis via frequency modulation, it does not extend the idea to perturbations of

a linear filter. However, many later authors have applied filter frequency modulation to

synthesis. A brief and by no means exhaustive list might include the following: [Cha85,

p.537] [Puc11] [SSP15] Each of these authors uses a different filter topology as its linear

39



0 5000 10000 15000 20000

0

10000

20000

30000

40000

50000

60000

Figure 2.4: Magnitude spectrum of one pole form, ∠λ = π

2 , ||λ|| = 0.999, ∠µ = 0,
||µ|| = 0.02. As ||µ|| increases, energy appears to accumulate at ω = 0 and ω = π

radians.

component. Puckette’s work, which served as an inspiration for the current endeavor,

uses unitary perturbations on a pair of delay lines with feedback. As a special case

where the delay lines are of equal length, Puckette briefly discusses the interpretation

of such a network as a complex valued, one-pole filter, perturbed by feedback.[Puc11]

In Chamberlin’s work, the filter is a modified state-variable filter, and the nonlinearity

is constrained to waveshaping with an odd function. Both of these authors primarily

apply the technique to percussion synthesis, emulating the physics of membranophones

or labelophones, whose resonant modes change in response to how they are struck

or plucked. Chamberlin, in particular, suggests the use of such a system to partially

emulate the sound of a ruler vibrating on a table. Although it is less focused on modeling

acoustical sources, Surges et al. mention frequency modulation with feedback as part of

a general framework of time-varying second-order all-pass filters, and also recommend

the use of unitary matrices to ensure stability. [SSP15]

Despite that the model has constant coefficients, its behavior is not always con-

stant over the same time-scales expected of linear systems of the same order. For certain

combinations of coefficients, it is possible for the output signal to transition suddenly

into radically different regimes of operation over a period of time. To appreciate this, we
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Figure 2.5: Complex time-domain output of one-pole form, λ = i, ||µ|| = −0.0175,
k = 0→ 99

must leave the frequency domain for a moment, and discuss the model’s behavior in the

time domain with complex-valued dependent variables. The action of the system on an

input signal is to rotate around the complex plane at a variable angular velocity centered

around ∠λ. If the conditions allow, the velocity of the rotations may pass through zero,

in cases where the nonlinear component of the system is weak, the linear component

pushes the angular velocity through zero, and continues behaving like a perturbed linear

system, albeit one with only positive frequencies. However, if ||µ|| is large enough, the

system will stop rotating altogether. This is an unstable equilibrium point in general. In

this transitional regime, the model acts as a leaky integrator–a single pole hovering near

zero Hz–on the input or stochastic variables. If enough signal accumulates, the model

eventually slips into an extremely stable operating regime at a much higher amplitude

and frequency. This happens in cases where the model has accumulated a large quantity

in a particular direction before folding over.

2.2.5 The Real-Valued Two-Pole Form

To permit real-valued measurements of the system described in equation (2.33),

we must supply a second mode, λ2, such that λ1 = λ̄2. The two-pole form of this system
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Figure 2.6: Complex time-domain output of one-pole form, ||λ|| = 0.9999, ∠λ = π

4
||µ||= 0.05, ∠µ =−π. k = 0→ 499

is somewhat close in behavior to the one-pole form. It will differ primarily in the units

used in the representation, and the two-sidedness of its spectrum. This affords possible

stability improvements for lower values of ∠λ, with simultaneously higher values of ||µ||,

as sideband energy no longer simply wraps, but folds as well.

The fact that we have added a row to the state transition equation permits us

an opportunity to navigate the formal constraints as we preserve the structure of the

model. As our state transition terms remain in modal coordinates, but our observations

do not, we begin requiring the use of the modal similarity transformation, and thus

y 6= x. Furthermore, the state transition coefficient becomes the diagonal matrix Λ. The

rest of the terms in the state update equation follow suit, increasing their dimensions

appropriately:

Sx1,k

x2,k

=

λ1 0

0 λ1

exp


i

S

µ1,1,1 µ1,2,1

µ2,1,1 µ2,2,1

µ1,1,2 µ1,2,2

µ2,1,2 µ2,2,2


abc

Sx1,k−1

x2,k−1


c



Sx1,k−1

x2,k−1

+
Sξ1,k

ξ2,k

 (2.34)
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Assuming the diagonal coefficients in Λ do not lie on the real axis, the symmetries of this

system are:
S
x1,k =

S̄
x2,k, λ1 = λ̄2,

S

ξ1 =
S̄

ξ2, and
S

M abc =
S̄

M bac. The components in
S
µ once

again describe complex weights in an energy-transfer adjacency matrix for a network of

complex modes.

The 3-tensor M is unitarily similar to a sparser, antisymmetric 3-tensor, which

we can observe by transforming into the real-valued block-diagonalized basis via the

matrix E, which we introduced in section 2.1.2.3. In 2-tensors such asR, the blocks are

2×2, in 3-tensors such as M , the blocks are 2×2×2. This change of coordinates gives

equation (2.34) the following form:

SEx1,k

x2,k

=

r1,1 r1,2

r2,1 r2,2

exp



SE

0 µ1,2,1

µ2,1,1 0

0 µ1,2,2

µ2,1,2 0


abc

x1,k−1

x2,k−1


c



SEx1,k−1

x2,k−1

+
SEξ1,k

ξ2,k

 (2.35)

The fact that M is now sparse and must be anti-symmetric reflects the number

of free parameter variables in the system given by our constraints set up in section 2.2.

Viewed as an unstructured N×N×N 3-dimensional array, M is quite an expensive term

in general– its number of coefficients grows as N3– but the unitary constraint on M

provides a more parsimonious model than the general case. Observing its actions in this

sparse representation exposes their underlying simplicity.

Again, we pause to examine the frequency-domain features of this system. To

generate figures 2.7 and 2.8, we set yk = wSE
SE
x k, and that w = 1√

2
(1,1), yielding

scalar output. The sidebands appear at positive and negative integer multiples of ∠λ1 and

∠λ2. As ||λ1|| and ||λ2|| → 1 , the series of sidebands formed by such a system becomes

reminiscent of those formed by traditional FM synthesis.
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Figure 2.7: Magnitude spectrum of two pole form, ∠λ = π

2 , ||λ|| = 0.99, µ1,2,1 =
µ1,2,2 = 0.006. Note the two sided spectrum.
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Figure 2.8: Magnitude spectrum of two pole form, ∠λ = π

2 , ||λ|| = 0.9998, µ1,2,1 =
µ1,2,2 = 0.006. Sidebands form without directly increasing ||µ||.

2.2.6 The Real-Valued Form with N > 2

We continue to extend the model by adding diagonal state elements to Λ. To

avoid adding coefficients that lie on the real axis, we must add them in conjugate pairs.
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For example, when N = 4:

SE

x1,k

x2,k

x3,k

x4,k


=

R1

R2

exp



SE

0 µ1,2,1 µ1,3,1 µ1,4,1

µ2,1,1 0 µ2,3,1 µ2,4,1

µ3,1,1 µ3,2,1 0 µ3,4,1

µ4,1,1 µ4,2,1 µ4,3,1 0

0 µ1,2,2 µ1,3,2 µ1,4,2

µ2,1,2 0 µ2,3,2 µ2,4,2

µ3,1,2 µ3,2,2 0 µ3,4,2

µ4,1,2 µ4,2,2 µ4,3,2 0

0 µ1,2,3 µ1,3,3 µ1,4,3

µ2,1,3 0 µ2,3,3 µ2,4,3

µ3,1,3 µ3,2,3 0 µ3,4,3

µ4,1,3 µ4,2,3 µ4,3,3 0

0 µ1,2,4 µ1,3,4 µ1,4,2

µ2,1,4 0 µ2,3,4 µ2,4,4

µ3,1,4 µ3,2,4 0 µ3,4,2

µ4,1,4 µ4,2,4 µ4,3,4 0


abc

SE

x1,k−1

x2,k−1

x3,k−1

x4,k−1


c



SE

x1,k−1

x2,k−1

x3,k−1

x4,k−1


+

SE

ξ1,k

ξ2,k

ξ3,k

ξ4,k



(2.36)

As we increase the number of states, the term
SE

M gains dense, 2×2 blocks on its off-

diagonal positions. In this coordinate system, these blocks are of the form of N = n1 n2

−n2 n1

 , but the tensor
SE

M loses its large-scale antisymmetry in ab-blocks along

the c axis. However, the antisymmetric structure of the diagonal blocks, which we will

call
SE
M , are left unchanged from the two-state case.
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TheN blocks enter M as follows:

SE

x1,k

x2,k

...

xN,k


=Rexp



SE

M 1,1,1 N 1,2,1 . . . N 1,N,1

N 2,1,1 M 2,2,1
. . . ...

... . . . . . . N N−1,N,1

N N,1,1 . . . N N,N−1,1 M N,N,1

... ... ... ...

M 1,1,N N 1,2,N . . . N 1,N,N

N 2,1,N M 2,2,N
. . . ...

... . . . . . . N N−1,N,N

N N,1,N . . . N N,N−1,N M N,N,N


abc

SE

x1,k−1

x2,k−1

...

xN,k−1


c



SE

x1,k−1

x2,k−1

...

xN,k−1


+

SE

ξ1,k

ξ2,k

...

ξN,k



(2.37)

While conjugate state variable pairs transfer energy among each other in the
SE
M rotation

blocks, they remain within a single real mode. Pairs of off-diagonal 2× 2× 2 blocks
SE
N abc and

SE
N bac describe the energy transfer between real modes. The pair of state

variables used in one real mode may be scaled differently from those used in another

real mode. This loss of absolute scale is a result of several parameters, which encode

how the measured modal responses differ from unity. We had implicitly assumed unity

scaling with the normalization of the eigenvector basis S, described in section 2.13, and

required for our modal coordinate system to be unique up to a linear transformation of

eigenvectors.

The differences in scale between state variables that correspond to different real

modes are encoded byB, C, andW , which we have largely ignored up until this point

in the derivation, in the interest of clarity. Recall thatB and C are the model parameters
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that couple the input term uk, and the process noise term ξk with the modes, respectively.

Finally, the model parameterW , transforms the state of the model into our observations

of it.

It is worthwhile to pause once again and consider this system from the perspective

of audio synthesis. In the complex modal basis discussed in section 2.2.4, the argument

of µ, then a complex scalar, offset the phase of the carrier signal in the single operator

frequency modulation with feedback. Now, that very same synthesis parameter is encoded

as the angle between the non-zero coefficients ∠Mnnc = tan−1 Mnnc
Mnnc+1
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Chapter 3

Parameter Estimation on the Model

(Analysis)

In this chapter, we derive a method for the estimation of the parameters of the

nonlinear model described in chapter 2. As described in section 2.2.2, we would like

to estimate the model parameters given only sensor data (possibly multi-channel) over

time. We will model the excitation signal as an independent and identically distributed

stochastic variable, ξ.

We begin by assuming a linear relationship between the parameters and the

terms. This assumption is common in signal processing and system identification, and

furthermore, economical to apply and validate in practice. Note that this is not equivalent

to assuming that the system itself is linear. We may not require the output vector y

to be linear in terms of its previous inputs, outputs, and noise measurements, but only

require y to be linear in terms of the generalized parameter vector, θ. [Bil13, p.64] This

assumption can be notated as:

y = pθ (3.1)

wherein we collect the terms– which are presumed known or fixed at this stage of the
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analysis– into p, and parameters– which are unknown– into θ. Notice the similarity

of equation (3.1) with equation (2.8). We will reintroduce the residual term, elin, in

section 3.1.1, when we will also perform an in-depth analysis of its interpretation and

decomposition.

3.1 Solving for the Linear Parameters

Since our synthesis model was presented as a perturbed linear system, we assume

that there exist terms in p which are themselves linear with respect to y. We are, after

all, looking for the simplest possible explanatory model, and a linear relationship might

offer a reasonable first-order approximation to the system. Furthermore, the estimation

of linear terms is a well-studied problem, and many robust and economical solutions

already exist. [Alp14, p.80]

The problem of parameter estimation, when applied to the model described by

the equation (3.1) has infinitely many solutions. This is because there are ostensibly

many unknowns (the parameters θ), and only one equation. Such a system is said to be

under-determined. Therefore, rather than solving the system directly, we must find an

optimal set of synthesis parameters that best describes the measurements. To determine

how well a particular choice in parameters approximates those of the measured system,

we must define an objective function that we either minimize (such as a cost or error

function), or maximize (such as an expectation or likelihood function).

We attempt to improve the estimation problem from the indeterminate scalar-

valued form in equation (3.1) by collecting observations through time. Formally, this

means increasing the number of equations M in the system, until M ≥ N, and it be-

comes over-determined. The additional rows describe the difference equation with

yk =

(
yk−0,yk−1, . . . ,yk−M

)T

as the left-hand side. The model term vector pk, to ac-

49



commodate this increase in dimension, must become the matrix P , whose row vectors

pm = pK−(m−1). The matrix form of the difference equation (2.8) can thus be written

as:

yk = P θ+elink. (3.2)

In the case where M = N, although the dimensions seem ideal, and a solution is alge-

braically defined, there is a good chance that there will be no solution. This could be

because of noise in the measurements or in the model terms, a model term we haven’t

considered, or any other inadequacy of our model, captured in this case by the column

vector ek. In this case, we use the residual term elin to denote the component of the output

not explained by the linear component of the model. So, we have gone from a case where

we have infinitely many solutions to no solutions. Clearly, there is more work to do.

3.1.1 The Least Squares Residual

The method of Least Squares was first developed by Karl Friedrich Gauss, circa

1809. [Nor86, p.60] The goal of ordinary least squares is to find an optimal solution of the

form θ̂ =
(
θ̂1, θ̂2, . . . , θ̂N

)T
to the system of equations P θ = y, where no direct solution

exists. [Str09, p.218] The residual e is a column vector whose coefficients contain the

projection of θ into the nullspace of P T:



elinK−0

elink−1

...

elink−(M−1)


=



yk−0

yk−1

...

yk−(M−1)


−



p1,1 p1,2 . . . p1,N

p2,1 p2,2 . . . p2,N

...
... . . . ...

pM,1 pM,2 . . . pM,N





θ̂1

θ̂2

...

θ̂Nθ


elink = yk−P θ̂ = yk− ŷk (3.3)

where ŷk = P θ̂ is the estimated value of yk, given θ̂. For just a moment, we assume P
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is square, so that all operations are defined.

3.1.2 Ordinary Least Squares

The column vector elink provides a convenient distance measure between the

estimated and actual values of yk. Assuming yk is centered at zero, the total sum of

squares of the residual approximates the amount of measured variance not explained by

the model.

E
(
elin

Telin

)
= E

(
M

∑
m=0

elin
2
m

)
= E

(
||y−P θ̂||2

)
(3.4)

The mean squared error (MSE), E
(
eTe

)
is the error measure we choose to minimize,

both because of its extremely tractable and interpretable form, and also because it

penalizes large errors at a higher rate than small errors. Note that this second criterion

may also be a liability if there are large outliers in the dataset. [Nor86, p.61] Nonetheless,

via equation (3.4) our optimization problem can now be formally specified as:

θ̂ = argmin
θ

E
(
||y−P θ̂||2

)
(3.5)

We proceed by taking the gradient of the MSE with respect to θ. This results in the

familiar closed-form solution, otherwise known as the normal equations:

θ̂ =
(
P TP

)−1
P Ty (3.6)

Note that, assuming the distribution of P is mean-zero, this form describes the unknowns

in relation to the approximated auto-covariance, P TP , and the approximated cross-

covariance, P Ty, as M→ ∞.

The technique of least squares can be readily applied to the parameter estimation

of linear systems by directly estimating the non-trivial elements in the linear state
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transition matrix T . Because we have only collected terms concerning previously

observed outputs y, this matrix T is similar to one whose non-trivial elements consist of

the negated coefficients of the polynomial A(z). Furthermore, if the input term matrix

Uk has been collected, an analogous process may be used to derive a matrix similar to

WB, assuming the conditions described in equations (2.20) and (2.19) have been met.

In the present usage, the general term matrix P might be substituted with :

Yk ≡



y1,k−M−1 y2,k−M−1 . . . yN,k−M−1

y1,k−M y2,k−M . . . yN,k−M

...
...

...

y1,k y2,k . . . yN,k


(3.7)

where the columns of Y might contain output measurements which have been lagged

in time, and if they are available, distributed in space. We will discuss the effects of

generalizing the full algorithm to multiple input, multiple output (MIMO) systems a bit

later in section 3.1.3, and will explore the impact of increasing system dimensionality on

predictive acuity in chapter 4. By equating the term matrix with previous measurements,

we use ordinary least squares to find a estimated autoregressive parameter matrix, which

in our previous construction in chapter 2 we had called the state transition matrix T .

This estimated state transition matrix is similar to a matrix with the following general

construction:

T̂ = (Y T
k−1Yk−1)

−1Y T
k−1Yk (3.8)

and is the basis for the technique known as linear predictive coding (LPC). Note that the

columns of Yk must be mean-centered. If the columns contain DC information, LPC will

express this by placing a pair of poles on the real axis. This essentially wastes two poles

of the analysis, and if there are insufficient remaining poles to describe the AC behavior
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of the signal, the accuracy of these remaining poles will be compromised. Thus, in order

for equation (3.8) to give unbiased estimates, we remove the DC component from the

columns of Yk. However, in later parts of the analysis, particularly looking ahead to

section 3.3, we will need to add the bias term back.

In canonical audio DSP literature, this technique is typically applied to describe

SISO systems, however the inclusion of spatially distributed measurements is germane to

other applications, and, as we shall observe, has much to offer the audio use case as well.

If we similarly populate the output term matrix Yk with lagged and spatially distributed

output measurements, the result of equation (3.8) will be numerically very close to:

T̂ ∼

0 I

Θ̂

 (3.9)

with very small additional variance. The identity block, offset by a block of zeros,

performs the time-shifting operation of copying the previous measurements (of dimension

M) a single time-step into the past. The prediction block at the bottom, comprised of the

coefficients of output polynomial A, predicts the same number of measurements that

the time-shifting block discards. The literature occasionally absorbs the negative sign

present from the difference equation (2.4) into the autoregressive parameter coefficients,

whereas we simply leave the negative sign in the difference equation for clarity.

The picture in equation (3.9) is only approximate. The coefficients which ought

to contain zeros, in the time-shifting block for example, generally contain very small

values instead. In practice, it might be prudent to send these very small values to zero, as

they may negatively impact numerical precision. The deviation from sparseness can be

viewed as average corrections (over the entire analysis window) which the system must

apply in order to adequately predict earlier time-steps from their predecessors. This can
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be a sign of nonlinearity or of cross-covariances in ξ. In the linear case, these deviations

are due solely to the expected value of ξ, which we specified should approach zero as

K→∞. To ignore the near-zero terms is to assume that the length of the analysis window

is sufficiently large for the product Y T
k−1Yk−1 to approximate the autocovariance matrix

of Yk−1. If we only needed to predict the most recent output of the system given the most

recent information, we might ignore these corrections. In the general case, however, we

would like to know how the current estimate of the system relates to prior measurements,

and this deviation in ξ provides us with important information.

We are now in a position to offer a view of the linear residual elin as a function of

the measured terms, and its relationship to the higher order terms:

Yk = T̂ Yk−1 +elink (3.10)

elink = h.o.t.+ξk (3.11)

We will subsequently decompose this linear residual term further to extract any higher-

order terms that it might contain. To accomplish this, we must examine T̂ . In the case

where we analyze the measurements of M microphones, looking for N linear parameters,
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T̂ has the following structure:

T̂ =



0 . . . 0 1 0 . . . 0

0 0 0 1 . . . ...
...

... . . . . . . . . . 0

0 . . . 0 . . . 0 0 1

︸ ︷︷ ︸
M

â11 â12 â13 . . . â1N

...
...

...
...

âM1 âM2 âM3 . . . âMN︸ ︷︷ ︸
N




N−M

M

(3.12)

Notice that the time-shifting block will disappear entirely if M = N. This condition is

satisfied when the number of linear features matches the number of microphones being

used to measure the system, which in general may be quite rare. This is because a real

oscillating system exhibits modal behavior in families of modes, which themselves are

arrayed in infinite series. However, the dimensionality of the problem– and thus, the

time and space complexity of the algorithm– grows more quickly with N than it does

with K. In general, the higher frequency modes become progressively more damped as

their frequency increases, resulting in the familiar 1
f curve. As a result, these extremely

well-damped modes may have a time constant far too small to measurably impact the

dynamics of the system. Furthermore, since time is a dimension over which error can

accumulate, unlike space, some very interesting properties are theoretically possible

when the number of measurements per time-step - M - increases.
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3.1.3 State-Space Representation of OLS Estimates

From the estimated state transition matrix T̂ , we can derive approximations of Λ,

S,R, and
SE
x :

Λ̂ = Ŝ−1T̂ Ŝ (3.13)

R̂=E∗Λ̂E (3.14)

SE
x =E∗S−1y (3.15)

By diagonalizing the linear state variables, we find a basis for analyzing the linear

contributions to the system behavior independently. We opt for the real-valued, block-

diagonal representation which transforms the eigenvalue matrix Λ̂ into the rotation matrix

R̂ using the same conventions we specified in section 2.1.2.3: our rotations are active,

in the clockwise direction, applied by pre-multiplication with the state vector, and our

coordinate system is right-handed.

We currently ignore the effect ofW on our measurements. Our initial assumption

that an autoregressive analysis of our measurements at the system’s outputs can result in

an unbiased estimate of the state vector disregards the possibility that the independent

components of the linear state may have been recorded at different levels. In general

this is a shortcoming of LPC, which functionally fits an all-pole filter cascade to the

system measurements. This is because in a purely autoregressive model, these variations

in cross-modal power level may be interpreted as variations of filter damping, if the

variations are large enough to disrupt the spectral envelope. [RP92, p.310] Without

adding zeros to the transfer function, this is the best we can do, if there is a component of

the system output measurements that relies on time lags, rather than spatial distribution.

The sensitivity to variations of this kind increases considerably ifW is a row-vector. In

this case, a recursive technique such as Prony’s method may be employed to obtain a
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complete estimate of the transfer function, including zeros. [p.393]smith2007

Interestingly enough, theoretically this limitation could also be mitigated for

nonlinear systems if we employ the same number of microphones as there are linear state

variables. Under this condition, the expression of power variations is entirely encoded

in the magnitude of the column vectors in the eigenbasis. In the purely linear case,

where the state variable estimates are scale-invariant, we are unable to retrieve this latent

information. However, in a complete pass of the algorithm we currently present, we

retrieve these scale factors in the process of solving for M̂ . In fact, because of the

structural constraints we apply to M̂ , the search for these scale factors becomes essential

in assuring the stability of the estimates. We call this scaling basis V , and a technique

for estimating it is presented in section 3.3.4.

3.2 Linearization of the Parameters

Since our model was designed in section 2.2.2 as a net-power-preserving transfor-

mation, the mean-squared error is an appropriate function to minimize during parameter

estimation. If the model were linear with respect to the parameters, we could exploit the

ordinary least-squares formulation to derive some information about the system, if not

solve it outright. However, it is evident from equations (2.24) and (2.33) that our model

is not linear in the parameters. Because of this, the initial task will consist of deriving a

sufficiently accurate approximation to the model which satisfies this constraint. Once the

model is linearized with respect to θ, we begin fitting estimates for parameters, starting

from first-order estimates and subsequently turning our attention to higher-order terms.
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3.2.1 A 1st-Order Nonlinear Approximation

We linearize the exponential term in our model about x = 0 with a first-order

Taylor series approximation. The error is:

1+ x− ex =
x2

2
+O

(
x3) (3.16)

This suggests that such an approximation may yield a reasonable linearization with

respect to the parameters provided |xk| is small. The resulting estimate for the unitary

coupling term U is:

Uk ≈ I+∑
c
(
S

M c(
S
xk−1)c) (3.17)

Applying the above approximation to the system described in equation (2.29) results in

the following linear-in-the-parameters system:

S
xk ≈Λ(

S
xk−1 +∑

bc
(
S

M bc(
S
xk−1)c(

S
xk−1)b))+

S
ξk (3.18)

yk =
S
W

S
xk

At this point, we can define a complex-valued basis for our first-order nonlinear approx-

imation of the system, under which the state transition matrix T is diagonalized. We

observe explicitly how the similarity transformation encoded by S is applied to each

object of interest in the system:

S
xk ≈ S−1TS

S
xk−1 +∑

abc
((S−1T )aM abc(S

S
xk−1)c(S

S
xk−1)b)+S

−1ξk (3.19)
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Once again, applying the simplification in terms introduced in equation (2.11) and again

in equation (2.27) results in the following:

S
xk ≈ΛS

S
xk−1 +∑

abc
((ΛS−1)aM abc(S

S
xk−1)c(S

S
xk−1)b)+

S
ξk (3.20)

Which shows us how M transforms under the change-of-basis defined by S to form
S

M .

Note the convenient similarity to the exponential form described in equation (2.27). From

this representation in equation (3.20) above, we can derive the block-diagonal form:

SE
x k ≈E∗S−1TSE

SE
x k−1 +∑

abc
(E∗S−1TaM abc(SE

SE
x k−1)c(SE

SE
x k−1)b)+

SE
ξk

The transformation rules remain salient for this change-of-basis as well. Consolidating

the transformations on the state transition matrix and defining R as in equation (2.16)

yields:

SE
x k ≈R

SE
x k−1 +∑

abc
(R(E∗S−1)aM abc(SE

SE
x k−1)c(SE

SE
x k−1)b)+

SE
ξk (3.21)

which is the form that permits us to view the effects of the similarity transformation into

the block-diagonal real-valued basis on M in our first-order nonlinear approximation:

SE
x k ≈R

SE
x k−1 +∑

abc
(Ra

SE

M abc(
SE
x k−1)c(

SE
x k−1)b)+E

∗S−1
SE
ξk (3.22)

We can now see that this approximate system is still nonlinear in the state variables

x and in the linear rotation matrixR. However, it is now linear in the nonlinear coupling

tensor
SE

M abc. Our strategy moving forward will be to hold fixed the values for which

the solution is nonlinear, while optimizing the parameters for which it is linear. In the

case ofR and
SE

M abc, recursion is not necessarily required, although holding
SE

M abc fixed
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might help improve the estimates ofR slightly. We will discover in section 3.3.4.2 that

recursion is actually required for the estimation of an additional parameter, V , which

scales the state variables so they can interact meaningfully.

3.3 Solving for the Nonlinear Parameters

The task of estimating the parameters of the system described in equation (3.22)

can also be described as an optimization problem. Formally, we choose to represent it as

the minimization:

argmin
SE

M

E

∣∣∣∣∣
∣∣∣∣∣
(

SE
x̂ k−

(
R̂

SE
x̂ k−1 +∑

abc

(
R̂a

SE

M abc(
SE
x̂ k−1)c(

SE
x̂ k−1)b

)))∣∣∣∣∣
∣∣∣∣∣
2


(3.23)

Note we continue minimizing the MSE in the hopes of leveraging the expedient and often

robust framework of OLS as described in section 3.1.2. Recall that in order to apply this

technique, we will need to hold certain approximate objects fixed as we optimize others.

In the previous section, we determined a method for getting an initial estimate of

the linear terms and parameters. Subsequently, we determined a method for converting our

nonlinear system into a linear-in-the-parameters approximation. We can now substitute

the unknown linear terms and parameters for those initial estimates, and given those,

derive a method for estimating the nonlinear parameters. In order to estimate the nonlinear

parameters, we must first determine the nonlinear terms, which will be nonlinear functions

of the linear terms x. To solve for any of these unknowns will require us to examine the

linear residual in closer detail.
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3.3.1 Decomposition of the Linear Residual

The linear residual, elin, contains components which result from various failures

of the linear approximation of the system to explain the dynamics of the system at large.

Rearranging the difference equation (3.22) results in a convenient form of the residual in

terms of the variables we will hold constant.

SE
x̂ k− R̂

SE
x̂ k−1 ≈∑

abc

(
R̂a

SE

M abc(
SE
x̂ k−1)c(

SE
x̂ k−1)b

)
(3.24)

SE
elin k =

SE
x̂ k− R̂

SE
x̂ k−1 (3.25)

Above, we have omitted the noise term ξ for clarity. As the orthography would suggest,

this residual is related by a change of basis to the linear residual in the measurements

space, elin, which is calculated via:

elin = Yk− ÂYk−1 (3.26)

Notice how in this form, the scale is preserved. This turns out to be an essential property

when calculating an estimate of model fitness and the contribution to fitness that each

successive refinement yields. If we cannot reduce the variance of elin with subsequent

nonlinear approximations of the system, then perhaps the system is dominated by linear

dynamics and noise.

Meanwhile, we continue to isolate the unknown terms to result in a form com-

patible with the OLS construction described in section 3.1.2. To do so, we must inverse
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filter the residual vector timeseries with our estimate ofR:

SE
e k ≈∑

abc
R̂a

SE

M abc(
SE
x̂ k−1)c(

SE
x̂ k−1)b (3.27)

R̂−1SE
e k ≈∑

bc

SE

M abc(
SE
x̂ k−1)c(

SE
x̂ k−1)b (3.28)

This inverse filtering step provides us with another opportunity for failure, as any errors in

the estimation ofR will certainly bubble up into our decomposition of the linear residual.

For this reason, our estimate of the linear component must be robust. While LPC may

be suitable for directly estimating the linear component of the state update equations,

other techniques may be more appropriate when the system under study is sufficiently

nonlinear. Furthermore, a parametric approximation of the order of the linear basis may

be inappropriate for certain applications. We discuss the ramifications of these cases in

section 3.4.

3.3.2 Nonlinear Least Squares

The form of equation (3.28) is sufficiently close to the linear-in-the-parameters

form first described in section 3.1.2 that we can derive a non-recursive construction of

this stage of the optimization simply by permuting some of the coefficients. Once again,

we will need to convert from an underdetermined system with infinitely many solutions,

to an overdetermined system with no solution. This time, however, rather than solving a

single system of N simultaneous equations, we must solve N systems of N simultaneous

equations.

3.3.2.1 The Underdetermined Form

We now form the equation for the state vector in terms of a nonlinear function

of the previous state vector p̃, an unknown matrix of parameters Θ̃, and the nonlin-
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ear residual ẽ. We intentionally use a notation as visually reminiscent as possible to

the underdetermined form of the linear-in-the-parameters model described in equation

(3.1):

ỹ = p̃Θ̃+ ẽ (3.29)

given the following definitions:

ỹ ≡
(
R̂−1SE

elin k

)T

(3.30)

p̃≡ (q1 . . .qN2) (3.31)

Θ̃≡


µ111 . . . µN11

... . . .

µ1NN µNNN

 (3.32)

That the term coefficients q populate the term vector p is a consequence of our choice in

notation for the nonlinear transformation on the terms, which will be derived shortly in

section 3.3.2.2.

Notice that the dimensions of the multilinear regression problem we have set up

require that the left-hand side, here notated as ỹ, be transposed. The column space of

this system represents each independent system of N equations which Θ̃ must solve.

ỹ = p̃Θ̃+ ẽ



ỹ1 = p̃θ̃(:1)+ ẽ

ỹ2 = p̃θ̃(:2)+ ẽ

...

ỹN = p̃θ̃(:N)+ ẽ

(3.33)
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3.3.2.2 Nonlinear Transformation of Model Terms

As mentioned in the previous section, we must define a nonlinear transformation

on the state vector x that isolates the nonlinear action of our linear-in-the-parameters

approximation of the system. Referring to the right-hand side of the residual definition in

equation (3.28), we find the terms enter as a homogeneous quadratic in N variables:

Qk(a,b) ≡ (
SE
x̂ ak)(

SE
x̂ bk) (3.34)

To simplify the notation further, we apply a vector-valued indexing function along the

second index of Q. In our definition, we state that the row space of Q corresponds to

each time step.

Q≡



SE
x 11

SE
x 11

SE
x 11

SE
x 21 . . . . . .

SE
x N1

SE
x N1

SE
x 12

SE
x 12

SE
x 12

SE
x 22 . . . . . .

SE
x N2

SE
x N2

...
...

...
SE
x 1K

SE
x 1K

SE
x 1K

SE
x 1K . . . . . .

SE
x NK

SE
x NK


(3.35)

Practically speaking, the entire matrixQ need not be computed. If each row is

mapped into a quadratic matrix which results from the outer product of
SE
x , only the

upper or lower triangular region need be calculated. If the matrix is to be constructed and

held entirely in memory (not recommended for large scale computations), the remaining

coefficients may be copied from their redundant locations.

Also note that since these terms are quadratics,Q will not be mean zero. It turns

out that this is not required for the machinery of OLS to function properly in this context.

In fact, removing the offset to center the signals about 0 results in erroneous calculations

of
SE

M̂ , and should therefore be avoided.
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Finally, we note that a second estimate ofR could be derived by simply adding

the appropriate number of columns toQ with x̂ in each, however this is not our concern

presently. We will discuss such an extension to the technique in section 5.2.

3.3.2.3 The Overdetermined Form

Our next task is to form a block of the auto-covariance estimate matrix of quadratic

state variable terms, which itself is comprised of quartic terms:

G(ab)(cd) ≡∑
K
Qk(a,b)Qk(c,d) (3.36)

= ∑
K



Qk(1,1)Qk(1,1) Qk(1,1)Qk(1,2) . . . . . . Qk(1,1)Qk(N,N)

Qk(1,2)Qk(1,1) Qk(1,2)Qk(1,2) . . . . . . Qk(1,2)Qk(N,N)

... . . .

... . . .

Qk(N,N)Qk(1,1) Qk(N,N)Qk(1,2) . . . . . . Qk(N,N)Qk(N,N)


(3.37)

The same considerations regarding the redundancy of this construction as were observed

in the construction of equation (3.35) apply here. We once again leverage a vector-valued

index, this time along both indices of G .

These N2xN2 blocks are then copied into the N3xN3 block-wise auto-covariance

estimate matrixG, along the diagonal. This redundant structure reflects the fact that we
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are solving N systems of N dimensions each:

G=



G

G
. . .

G


(3.38)

G(abc)(de f ) =



g(111)(111) g(111)(112) . . . . . . . . . g(111)(NNN)

g(112)(111) g(112)(112) . . . . . . . . . g(112)(NNN)

...
...

...
...

...
...

...
...

...

g(NNN)(111) g(NNN)(112) . . . . . . . . . g(NNN)(NNN)


(3.39)

Both indices intoG are 3-vectors of dimension NxNxN. It is worth noting here that if a

single block G were invertible, we could greatly reduce the complexity of the algorithm.

We will turn back to this idea in section 3.3.3.

We must now define a function to map the cross-covariance estimates of the

nonlinearly transformed previous state variables with the current inverse filtered residual.

The most challenging aspect of this step in practice is the task of keeping indices properly
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ordered.

f(abc) = ∑
Kd

(
r−1)

ad

SE
ê dkQk(bc) (3.40)

f =



f(111)

f(112)
...
...

f(NNN)


(3.41)

Just as in our notation forG in the derivation above in equation (3.38), we use a 3-vector

notation for indexing into the row dimension of this vector.

Finally, we are poised to suggest a multilinear regression equation for the solution

of the coefficients in
SE

M̂ :

SE
µ̂ abc =

(
G−1F

)
(abc) (3.42)

= ∑
de f

g−1
(abc)(de f ) f(de f ) (3.43)

Unfortunately, however, this suggestion is inadequate as G is often singular, and in

general very poorly conditioned. Once again, we find ourselves with no solutions, despite

having formed the estimates in precisely the same fashion as the linear estimates in

section 3.1.2.

3.3.3 Linear-in-the-Parameters Optimization with Constraints

In the previous section, we discussed the possible application of a multilinear

regression solution to the normal equations of our linear-in-the-parameters system approx-

imation. This solution is unsatisfactory because equation (3.42) is poorly conditioned in

67



general. In this section we discuss a principled technique for the efficient solution of this

step of the algorithm.

3.3.3.1 Degeneracy of the Overdetermined Form

In our derivation, G is in general nearly singular, as are the diagonal blocks G

that comprise it. This is because the solutions to this system,
SE

M̂ , reside in a subspace of

M .

3.3.3.2 Finding a Basis for a Subspace of M

To form a basis for the subspace of controllable and observable choices of
SE

M ,

we choose sparse 3-tensors which satisfy the constraints (2.31) and (2.32). We access

the components of each tensor using a 3-vector in a manner identical to equation (3.40),

thus treating each tensor as if it is a vector of dimension N3. These emerge in two

subtypes: those with either two or three unique nonzero indices. Vectors specified by

2-permutations of indices may be constructed by the following function:

a 6= b

Π(ab;1)de f =


1 d = a,e = f = b

−1 e = a,d = f = b

0 otherwise

(3.44)

Where choices of a and b specify each permutation of 2 indices permitted by the dimen-

sionality of M . We might choose the 3-tensors satisfying (2.31) and (2.32) with three
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unique indices de f to take the form:

a 6= b 6= c

Π(abc;1)de f =


1 (def) = (abc), or (def) = (cab)

−1 (def) = (bac), or (def) = (acb)

0 otherwise

(3.45)

Although the 3-tensors resulting from functions (3.44) and (3.45) span the subspace of

observable and controllable
SE

M , they do not form a basis of the subspace. An orthonormal

basis of this subspace may be defined as follows. Given a 6= b:

Π(ab;1)de f =



1√
2

d = a,e = f = b

− 1√
2

e = a,d = f = b

0 otherwise

(3.46)

We have applied a scaling factor defined by
(√

∑N3
(
Π(ab;1)de f

)2
)−1

.

Given a < b < c, the remaining orthonormal basis vectors are:

Π(abc;1)de f =



1
2 (def) = (abc), or (def) = (cab)

−1
2 (def) = (bac), or (def) = (acb)

0 otherwise

(3.47)

Π(abc;2)de f =
1√
12

(
Π(bca;1)−Π(cab;1)

)
(3.48)

We recognize that Π is by no means unique. In fact, we could add coefficients from

any totally antisymmetric tensor to our vectors and observe no functional change in
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the resulting analysis. However, this basis is one whose nullspace spans the subspace

of totally antisymmetric tensors. Even in this quality Π is not unique. There are 6

choices of bases sufficient for describing possible coordinate systems which have an

antisymmetric component of zero. We could indeed have chosen a different basis– e.g.

Π(bca;1)– in equation (3.47). An additional set of alternative orthogonal bases could be

derived by negating the components of Π or its alternatives. Numerically, we could have

found this basis by applying Gram-Schmidt to a basis spanning the nullspace of totally

antisymmetric tensors. However, since this basis is only a function of the dimensionality

of M , and not dependent on the data itself, we only need to solve it once for a given

system dimension. Furthermore, the orthogonalization step in certain implementations

of Gram-Schmidt is notoriously unstable. We therefore opt for a general, closed-form

solution.

Using this basis, we project
SE

M into the subspace as follows:

SE

M ′
d =

N

∑
abc

(
Πd,(abc)

SE

M abc

)
(3.49)

We similarly projectG and F into the subspace:

G′ = ΠGΠT (3.50)

F ′ = ΠF (3.51)

The dimensionality of this subspace is 2
((N

2

)
+
(N

3

))
or N(N2−1)/3.

3.3.3.3 Solving for M within a Well-Conditioned Subspace

Now that we have transformed our poorly conditioned N3 dimensional system

into a well conditioned system of dimension N(N2−1)/3, we can proceed to solve for
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the parameter tensor M ′ like so:

SE

M̂ ′
d =G′−1

F ′ (3.52)

We can then recover the resulting estimate of M with the operation:

SE

M̂ abc =

ΠT
SE

M̂ ′


(abc)

(3.53)

The operation in equation (3.53) applies our structural constraints that
SE

M must satisfy

onto any estimate
SE

M̂ . This operation will minimize the total distance, orthogonal to the

space of acceptable M̂ , between the components of its input and its resulting constrained
SE

M̂ . Note that minimizing the MSE in modal space does not guarantee an optimal

parameter estimate in the space of the measurements.

3.3.4 Determining a Norm for M

The regression defined in equation (3.52) will result in the unique estimate of

M ′ that minimizes the MSE of the state space. In the case whereW is orthogonal, this

error measure is sufficient to describe the fitness to the measured output characteristics of

the system. In the more general case, such an assumption is restrictive. This is because

pairs of columns of S may be scaled and rotated by arbitrary complex numbers while S

retains the property that it diagonalizes the linear state transition matrix T . Therefore,

the power in a given modal state variable pair can be estimated down to a scale factor.

The relative power of each mode, and the phase relationships between those modes, are

indeterminate, arbitrary and unobservable in the linear case. However, in the case where

nonlinear coupling may be present, the power relationships between modal pairs are vital

71



to determining
SE

M , whose off-diagonal blocks of 2x2x2 encode interactions between

modes.

We could define V in terms of the relationship between the eigenvector basis S

andW , assuming knowledge of the latter:

Ŝ = V −1
S
W (3.54)

where V is a diagonal, square matrix with complex conjugates down the diagonal. This

relation assumes thatW is square, so that operations are defined. In general, this relation

will hold for each row in S and
S
W .

3.3.4.1 The Energy Basis

The diagonal matrix V rescales the variables in the eigenbasis such that each

mode is represented in the same units. If we apply this rescaling in the real-valued block

diagonalized basis, the resulting state variables represent the instantaneous energy states

of each of the system’s degrees of freedom:

x= SE
E
V

SE
E
V
x (3.55)

Applying this change of basis in the usual fashion and propagating it throughout the

approximated state update equations (3.22) results in:

SE
E
V
x k ≈

(
E
V

)−1

R
E
V

SE
E
V
x k−1 + ∑

abc

(((
E
V

)−1

R
E
V

(
E
V

)−1
)

a

SE

M abc

(
E
V

SE
E
V
x k−1

)
b

(
E
V

SE
E
V
x k−1

)
c

)
(3.56)
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We have dropped the noise term for clarity above. It is:
SE

E
V
ξk =

(
E
V

)−1

E∗S−1ξk.

Finally, we have a definition of how M transforms with V :

SE
E
V

M f ≡

((
E
V

)−1

E∗S−1

)
M c

(
SE

E
V

)(
SE

E
V

)
f c

(3.57)

The metric which defines the complex-valued energy basis can be decomposed into its

polar coordinates for further analysis. The relative magnitudes of V have an impact

on the measured outputs of the system, whereas the relative phases simply perform a

rotation of the basis vectors, leaving the resulting system dynamics unaffected in the

measurements. Meanwhile, in the real-valued energy basis,
E
V is block-diagonal:

E
V =



 a1 b1

−b1 a1


. . .  aN/2 bN/2

−bN/2 aN/2




(3.58)

Since W is generally unknown, the relation described in equation (3.54) is merely a

theoretical construction. In practice, V must be estimated given only measurement terms

and the parameters we have estimated thus far.

3.3.4.2 Solving for V

At this point, we have found a biased estimate of M̂ using a low-order approxi-

mation of the model. However, there are differences between this simplified form and the

form we presented in chapter 2, with an upper bound described in equation 3.16. This

low-order approximation has served its purpose. We now return back to the exponential
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form as we continue refining the approximation. The exponential form of the biased

resynthesis error is:

eexpk =ŜE

(
ŜE
xk − R̂exp

(
SE

M̂ ŜE
x k−1

)
ŜE
x k−1

)
(3.59)

=ŜE

(
ŜE
x k|k−

ŜE
x k|k−1

)

It may be helpful to consider the biased resynthesis error to be a special case where V̂ is

the identity matrix. The goal of this stage of the parameter estimation is to minimize the

resynthesis error by removing this bias in V̂ , which is an artifact of our sensor placement,

and not an intrinsic property of the system.

Effectively, we need only find the relative weights to apply to each of the modes

that minimizes the resynthesis error. The optimization problem can be framed as:

argmin
E

V̂

E


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ŜE

E

V̂

ŜE
E

V̂
xk − R̂exp

SE
E

V̂

M̂ ŜE
E

V̂
xk−1

ŜE
E

V̂
xk−1


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

 (3.60)

We propose an iterative solution, which tests successive candidates of V in the pattern of

a breadth-first binary search.

Although equation (3.57) describes how to transform
SE

M with a given choice

of V̂ , this definition assumes that such a transformation is orthogonal. Unfortunately,

orthogonal transformations in the energy basis have no effect on the resynthesis error.

The residual error is also invariant to global scale factors applied to V̂ . Furthermore,

the coefficients appear in pairs corresponding to the modal variables. Because of these

structural invariants, we can safely constrain our search to the positive reals, in general

only searching for (N/2)−1 free parameters.
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3.3.5 Cross-Model Error Measures

It is clear from the above discussion that the parameters we wish to estimate are

not unique. This poses some challenges if we wish to compare our estimates to either

ground truth, earlier estimates, or other systems entirely. For this reason, we require the

definition of principled error measures which can be compared without recourse to the

larger context of the model that yields them.

The RMS of the nonlinear resynthesis error E
(
||eexp||2

)
is a poor approximation

of overall parametric fit for a number of reasons. First, it cannot be used for comparison

across different models if those models have different variances. Moreover, E
(
||eexp||2

)
contains contributions from ξ, which is intended to describe any dynamics the model

fails to explain. In general, a perfectly accurate parameter estimate should not cause a

measure like E
(
||eexp||2

)
to disappear completely. The lower bound on this measure is

E
(
||WξT||2

)
. In a simulation context, where directly calculated accuracy assessments

are required, this component could be removed from the resynthesis error term to result

in the purely deterministic component of the resynthesis error.

3.3.5.1 Measuring incremental improvements in fitness

In section 3.1.2, we discussed the framework for OLS as an optimization tech-

nique via an error function:

E
(
||y−P θ̂||2

)
= E

(
||Yk− ÂYk−1||2

)
(3.61)

This error function is used similarly to that of the nonlinear OLS stage of the algo-

rithm, described in section (3.23), except that the nonlinear MSE is not specified in the

measurement space. Thus, the true nonlinear counterpart to equation (3.61) is equation

(3.60), which incorporates the complete transform from state space to measurement space.
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The ratio between linear and nonlinear MSE gives us a measure of the improvement in

variance between the linear and nonlinear estimates:

e∆ ≡ 20log10

 E
(
||elin||2

)
E
(
||eexp||2

)
 (3.62)

We will use this measure to determine the benefit afforded us by the additional complexity

of the nonlinear parameter estimation. Since the estimation of the nonlinear parameters

is recursive in nature, the measure e∆a can be calculated repeatedly for each eexpa which

accompanies each recursion.

3.3.5.2 Index of Nonlinearity

While the improvement metric e∆ offers insight about the performance of the

algorithm across various stages of analysis, it does not provide a measurement of an

intrinsic property of the model. Another dimensionless quantity may be derived using

similar means which provides such a cross-model description of the overall nonlinearity

of the model in question:

Φ≡ 20log10



E


∣∣∣∣∣∣
∣∣∣∣∣∣SE E

V

Rexp

SE
E
V

M SE
E
V
x 1:k−1

SE
E
V
x 1:k−1−R

SE
E
V
x 1:k−1

−E (y)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

E
(
||y2:k−E (y)||2

)


(3.63)

This dimensionless coefficient is an unbiased measure of the portion of the total variance

attributed to nonlinear dynamics. Note that equation (3.63) implicitly distinguishes

among linear, nonlinear, and stochastic components of the output. In practice, when the

only term given is Y , we can still calculate an approximate Φ̂.
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3.4 Considerations for RectangularW

The above derivation assumedW was square and invertible. When the system

exhibits a different number of modes than the number of sensors used to capture its

dynamics,W is rectangular. It may often happen that the modes outnumber the sensor

channels. In this case, it is often difficult to estimate the linear parameters from the

measurements if the system is sufficiently nonlinear.

One aspect of the derivation that breaks down in this case is equation (3.54),

which we can solve for V :

vii =
1
N

N

∑
j

((
WET)

ji

S ji

)
, 0 otherwise (3.64)

when W is square. In fact, in the ideal case, we notice that each coefficient in the

component-wise quotient
(
WET)

ji /S ji is constant along j. Each row ofW effectively

describes the mixture of modal signals present in each sensor channel, presumably as a

result of spatial orientation of the sensors. We assume these mixtures remain constant.

Since the columns of S each describe a linear evolution in time, we can expect to see

powers of Λ appear in blocks of S corresponding to simultaneous measurements.

We can leverage this Vandermonde-like structure to estimate V when W is

rectangular:

vii =
1
N

N

∑
j



(
WETΛ0)(
WETΛ1)

...(
WETΛL)


ji

S ji
, 0 otherwise (3.65)

where L is the number of time lags. Each block has the same dimensions as W . The

columns along j are once again constant, as the structure of S is compensated by the
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powers of Λ in the blocks of the denominator.

The closed-form expression in equation (3.65) is of limited utility in cases where

there is no principled way to estimate or measureW . In field conditions, we do not know

W a priori. However, we still can apply knowledge of S’s structure to analyses where

the eigenbasis is a poor estimate of the basis for the linear parameters in the system.

When analyzing sufficiently noisy or nonlinear signals, errors may build up in

the regions of the eigendecomposition which correspond to lagged measurements. This

happens because the lagged measurements do not contain corrections from the most

current noise ξ. Since the eigenvalues essentially track spectral peaks in the signal, we

might imagine applying a spectral peak-finding algorithm, perhaps based on a STFT, the

eigenvalues of which could be leveraged to synthesize a basis for the linear parameters:

Ŝalt ≡



Ŝ(1:M,:)Λ̂
0
alt

Ŝ(1:M,:)Λ̂
1
alt

...

Ŝ(1:M,:)Λ̂
L
alt


(3.66)

where Λ̂alt is the diagonal eigenvalue matrix which is supplied to the algorithm.

This variant on the algorithm might also be used for updates to the nonlinear

analysis when it is known that the activated modes have not changed their spatial orienta-

tion. By decoupling the later stages of analysis from an initial, potentially unstable linear

prediction, this variation allows for a broader utility, with potentially greater robustness

to noise.
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Chapter 4

Validation and Assessment

This chapter documents several test suites conducted on hundreds of simulated

systems as described in Chapter 2, and recorded systems as described in Chapter 1.

The collected dataset is expansive, and we document a mere fraction of the findings

here, prioritizing the questions we outlined in Chapter 1. The entire dataset will be

made available in the coming months. Section 4.1 presents the assessment based on

synthesized data, and section 4.2 chronicles the attempt to apply this analysis technique

to field measurements, collected from the recording sessions described in section 1.1.1.

4.1 Retrieval of Parameters from Synthesized Measure-

ments

A number of test suites were designed to validate the analysis techniques de-

scribed in chapter 3. In addition to simple validation, further data was collected to

calculate high-level cross-model coefficients such as Nonlinearity Index (c.f. section

3.3.5.2) and improvement metrics. Since the parameter space is quite large, the models

were randomly generated within constraints for each system tested. Clearly, both param-
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eters intrinsic (e.g. Λ, M , etc) and extrinsic (e.g. W ) to the system affect these metrics,

and must be varied across models in the hopes of gathering a complete understanding of

the parameter space.

For convenience, the taxonomy is as follows: Battery, (Suite,) Trial, Test. Each

Battery has an associated research question. In certain cases, like Battery 1, we have

multiple Suites which test aspects of a larger topic. Trials are associated with the

independent variable(s) under study. Finally, we have three Tests for each system. All

groupings are numbered starting with zero.

Our first battery, described in section 4.1.1, does not correspond to a research

question asked at the outset of this document in section 1.3. We simply did not have

a vocabulary for talking about M , and had hoped we could prescribe Φ as a synthesis

parameter. However, the implementation of such an idea turns out to be more compli-

cated because of the multivariate nature of M and its interactions with Λ and ξP . We

therefore prepended an additional battery, essentially exploratory in nature, to observe

the interactions among these three variables.

Following this initial exploration, we continue to ask our research questions as

posed in section 1.3. In short, these tested the algorithm’s ability to perform as a function

of sampling rate, analysis window size, and number of simultaneous measurements. Each

question has a dedicated test battery, which consists of several trials. These trials are

each performed on a uniquely synthesized timeseries. Unless otherwise specified, the

model parameters vary randomly within ranges. By default, Λ consists of poles with an

angle no greater than π

4 and radii no less than 0.9999, and M a basic tensor of magnitude

0.01. We used windows 100000 samples in length unless otherwise noted.

Generally speaking, within each trial, 3 separate tests were performed. The

first test explicitly calculated the norm V from a priori knowledge of the measurement

transformation W as in section 3.3.4, while deriving all other parameters and bases
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empirically. The second calculated all parameters and bases from observations, with the

eigenbasis derived via LPC as in section 3.1.3. The third assumed a priori knowledge

of the eigenvalues, which might simulate the exogenous parameter usage described in

section 3.4. Depending on the suite in which these trials were situated, certain tests may

have been omitted or altered to maintain relevance to the larger context.

The results of these tests are differentiated from one another through subscripts.

For example, in the case of the nonlinear exponential error measure eexp, the results of

test 0 (withW known a priori) will be denoted eexp0, the results of test 1 (with all bases

empirically derived) will be denoted eexp1, and the results of test 2 (with S known a priori)

will be denoted eexp2. An analogous notation will be used for other metrics such as Φ.

4.1.1 Battery 0: Linear Q versus Nonlinear
∣∣∣∣M ∣∣∣∣2

4.1.1.1 Methods

When the system under scrutiny is entirely linear, there is a tendency for LPC to

fail if the spectral peaks are insufficiently pronounced. Since the linear component of the

analysis algorithm might derive its basis from LPC, it follows that a thorough validation

would investigate the effect of Q on the algorithm’s accuracy.

However, if the linear filter quality is increased, the nonlinearity will also become

more pronounced, because it is scale-dependent. Since we have no principled way of

specifying Φ a priori, we first needed to find an empirical description of the relationship

between
∣∣∣∣M ∣∣∣∣2, Q, and Φ.

For this battery we used 7 different systems, each with up to 16 variants : 4

different Q scale-factors, and 4 different M scale-factors. These were then plotted

together against Φ and eexp in figures 4.1 and 4.2, respectively.
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4.1.1.2 Results

We can see from figure 4.1 that the most consistent increase in Φ is caused by

an increase in
∣∣∣∣M ∣∣∣∣2, while the effect of Q on Φ depends entirely on the system’s

particulars. This makes intuitive sense: if the nonlinearity is not along a direction in

the subspace also occupied by Λ, then the nonlinearity index might even be inversely

proportional to Q, as more of the system’s behavior becomes dominated by the linear

component.

Next, we varied the same two parameters and observed the change in eexp. We

can see from figure 4.2 that the relationship between these these two parameters and the

resynthesis error term is not simple. System 3 (shown in cyan), for example, appears

to enter into a regime of increased resynthesis error when
∣∣∣∣M ∣∣∣∣2 increases past 0.004,

regardless of Q.

In general, however, as Q increases, resynthesis error decreases. One might pre-

sume this has to do with increased accuracy in eigendecomposition estimation, however,

we can see a similar pattern from Test 2, which uses an exogenously supplied Λ, c.f.

figure 4.3.
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Figure 4.1: Battery 0, Test 1. Y-axis shows Φ. Each color corresponds to a unique
coupling topology under study. While each system’s response to an increase in

∣∣∣∣M ∣∣∣∣2
seems to be distinct, there is in general a trend correlating

∣∣∣∣M ∣∣∣∣2 with Φ for each
system.
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Figure 4.2: Battery 0, Test 1. Y-axis shows eexp. Each coupling topology is associated
with a different color. Notice how the individual system trends are more complex.
Generally speaking, the variance of eexp is smaller than that of Φ .

4.1.2 Battery 1: Error as a Function of Sampling Rate

The analysis techniques are effected by an increase in sampling frequency in a

number of ways which can be difficult to disentangle. Since the amount of information

in the signal is fixed as soon as the synthesis is run, a simple upsampling procedure is an

insufficient method for simulating this.

One particularly meaningful and controllable side-effect of upsampling is the

slowing of the linear system dynamics. This is quantitatively recreated by adjusting Λ

such that the associated time-constants are increased as a linear function of the upsampling

ratio. For a doubling of the sampling frequency, Λ effectively becomes Λ
1
2 . This is

generally a welcome effect, as a slower system permits more measurements to be made

85



0.005 0.004 0.003 0.002 0.001 0

-45

-40

-35

-30

-25

-20

-15

1

0.99998

0.99996

0.99994

0.9999

0.99992

Figure 4.3: Battery 0, Test 2. Y-axis shows eexp, for exogenously supplied eigenbasis.
The pattern is similar to figure 4.2

per unit time, and thus a clearer picture of the underlying dynamics may generally result.

The rate at which the system is sampled also has an impact on our measurement

of the noise term ξ. This effect is due to the commonly observed 1
f spectral shaping

of many forms of noise. Its appearance is hypothesized to have a negative impact on

the ability to discern a valid eigendecomposition, since such a curvature is likely to be

interpreted as a single real pole at DC. Furthermore, as this effect serves to dampen

higher frequencies in the signal, the activity of the system in those higher frequency

ranges will be harder to classify.

We begin by testing both of these effects on the accuracy of parameter estimation,

while simultaneously observing secondary effects such as convergence. In this suite, 40

models in total were studied, each of order N = 4, with 20 allocated for the first battery

and 20 for the second. Since this suite required the variation of intrinsic parameters,
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each trial required a complete resynthesis of signal data. For both batteries, 3 trials were

conducted on each model, wherein the requisite parameter was adjusted by factors of

two. For each trial, the standard 3 tests were performed, as per the introductory notes of

this chapter. For all tests, the number of microphones was presumed to equal the linear

dimensionality of the system dynamics.

4.1.2.1 Battery 1, Suite 0: Slowing the Linear Dynamics in Λ

4.1.2.1.1 Methods

To slow down the linear component of the model dynamics, we note that Λ̃a =Λ
1
a ,

where Λ̃a is the identical linear transformation to Λ with a time constant scaled by a.

This test battery subjected 20 different models to two trials and a control, examining the

effects of doubling and quadrupling the system time constant. The error term eexp and the

nonlinearity index Φ are calculated for each of the three tests defined above in section

4.1.

4.1.2.1.2 Results

-40 -35 -30 -25 -20
-50

-40

-30

-20

-10

0

10

estimate error dB

n
o

n
lin

e
a

ri
ty

 i
n

d
e

x
 d

B

Figure 4.4: Battery 1, Suite 0: Scatterplot showing resynthesis error versus nonlinearity
index. Red: Trial 0 (Λ), Green: Trial 1 (Λ

1
2 ), Blue: Trial 2 (Λ

1
4 )
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Table 4.2: A Table containing the results of Battery 1, Suite 0 . Trial 0 uses control Λ,
Trial 1 uses Λ

1
2 , Trial 2 uses Λ

1
4 . Test 0 uses exogenous V , Test 1 is pure estimates,

Test No. 2 uses exogenous Λ

Trial
No.

Test
No.

Λ̃a Mean Φ

(dB)
Std Φ

(dB)
Mean eexp

(dB)
Std eexp

(dB)
0 0 Λ -25.0883 12.9993 -31.074 4.6930
1 0 Λ

1
2 -14.9944 10.6851 -28.536 5.7966

2 0 Λ
1
4 -7.3818 8.5215 -28.129 5.6321

0 1 Λ -24.1092 12.4313 -31.793 3.5652
1 1 Λ

1
2 -14.8823 10.1898 -29.621 4.6303

2 1 Λ
1
4 -7.3103 8.2407 -29.454 4.3216

0 2 Λ -23.5788 12.2210 -31.974 3.3465
1 2 Λ

1
2 -12.2585 9.3199 -16.658 4.2177

2 2 Λ
1
4 -7.2653 8.5285 -12.685 3.9706

4.1.2.2 Battery 1, Suite 1: Reducing High-Frequency Information in ξ

4.1.2.2.1 Methods

To simulate the spectral curvature in common forms of noise, a single real pole

was placed on ξ prior to applying the nonlinear filterbank. The center frequency of

this pole was varied each of the two trials. To isolate the effects of the 1-pole filter

from any overall gain change in ξ, make-up gain was applied post filtering. Although

this pre-processing filter will attenuate a portion of the high-frequency dynamics of the

system in general, it cannot be commuted with the nonlinear contribution to dynamics.

Thus, this pre-processing only simulates the action of upsampling in the presence of

bandlimited noise, and not the presence of roll-off in the measurements.

4.1.2.2.2 Results

The mean estimated resynthesis error for the two trials does not diverge signif-

icantly from the control. There appears to be an effect on the variance of this metric,

however. The resynthesis errors in Trial 1, with fc = π appear to vary much less than
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Table 4.3: A Table containing the results of Battery 1, Suite 1 . Trial No. 0 is unfiltered,
Trial No. 1 fc = π, Trial No. 2 fc =

π

2 . Test 0 uses exogenous V , Test 1 is pure
estimates, Test No. 2 uses exogenous Λ

Trial
No.

Test
No.

fc Mean Φ

(dB)
Std Φ

(dB)
Mean eexp

(dB)
Std eexp

(dB)
0 0 N/A -29.600 13.988 -30.819 6.6419
1 0 π -31.116 12.949 -32.299 4.9423
2 0 π

2 -28.154 14.654 -31.402 6.8217
0 1 N/A -29.322 13.500 -31.121 6.1208
1 1 π -30.479 12.832 -32.828 4.5717
2 1 π

2 -28.060 13.761 -31.790 6.3179
0 2 N/A -28.937 13.742 -32.414 5.1248
1 2 π -30.231 12.796 -33.451 4.4199
2 2 π

2 -27.924 13.699 -32.501 6.3220

those of Trial 2, with fc =
π

2 . We look for any correlation between Φ and resynthesis

error by plotting the two parameters against each other in a scatterplot.
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Figure 4.5: Battery 1, Suite 1. Scatterplot showing resynthesis error versus nonlinearity
index. Red: Control (no filter on ξ), Green: Trial 1 (ξ filter fc = π), Blue: Trial 2 (ξ
filter fc =

π

2 )
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4.1.3 Battery 2, Suite 0: In-Sample Error and Improvement as a

Function of Analysis Window

4.1.3.1 Methods

It is intuitive that the analysis algorithms presented might benefit from as much

data as can be supplied. Therefore, it would seem that the length of the timeseries

analyzed should be as long as possible. However, the increase in complexity with respect

to the timeseries provides us with an incentive to limit its length. That said, it is unclear

the extent to which the accuracy will benefit from increased length versus an increased

number of simultaneous measurements. Therefore, it is necessary to conduct a test battery

wherein the accuracy as a function of window size can be determined.

To this end, 10 separate systems were synthesized, upon which 10 analysis trials

were performed. Each trial used a different number of timesteps to conduct its analysis,

comprised of the now-familiar 3 individual variants of the analysis algorithm. The

possible window sizes were 98, 195, 391, 781, 1563, 3125, 6250, 12500, 25000, and

50000. For Suite 0, analysis was performed over the entire window and residuals were

calculated on the same data. Therefore, Suite 0 measures in-sample error.

4.1.3.2 Results

The results appear to indicate that the peak expected in-sample performance of the

algorithm and the peak expected in-sample contribution of the nonlinear estimation step

to that accuracy do not occur at the same window size. The trend for window sizes below

391 samples tells a different story. Recall that Suite 0 measured in-sample residuals.

These low-error levels are likely the result of overfit.
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Figure 4.6: Battery 2, Suite 0: In-Sample E (e∆) as a Function of window size. The
region between Trial 5 and 8 (3125 - 25000 samples) appears to maximize the improve-
ment best.
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Figure 4.7: Battery 2, Suite 0: In-Sample Resynthesis Error E (eexp) as a Function of
window size.

4.1.4 Battery 2, Suite 1: Out-of-Sample Error and Improvement as

a Function of Analysis Window

4.1.4.1 Methods

To take out-of-sample measures, we rely on the ground truth recording of state

and total RMS of the signal over a much longer domain– 100000 samples– than was used

in the Trials in Suite 0. Since we are using the ground truth state vector sequence, we
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can derive a sample-by-sample error analogous to the one used in Battery 2, Suite 0, but

measuring the system’s performance on new examples of the same system.

4.1.4.2 Results

Figure 4.8: Battery 2, Suite 1: Out-of-Sample E (eexp) as a Function of window size.
Note the optimal region is different from 4.7.

The results clearly show an optimal region for out-of-sample resynthesis acuity

between 781 - 3125 samples. In this region, not only has the expected resynthesis error

been minimized, but furthermore the variance appears to be well under control. This

suggests our results will be more consistent in this range as well.

4.1.5 Error as a Function of Channels

4.1.5.1 Methods

A battery of tests was designed to determine the effect of the number of micro-

phones on the analysis. The synthesized signals were generated using N = 6 so that the

following microphone configurations could be used: 1, 2, 3, and 6. Microphone configu-

rations with 4 or 5 channels were avoided at this time for simplicity. The arrangement

of the microphones, encoded by W , was held fixed across these trials, with each trial
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virtually muting or unmuting a subset of the microphone recordings. This assuages the

confounding effects ofW on the analysis.

4.1.5.2 Results
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Figure 4.9: Battery 3: E (eexp) as a function of microphone quantity. Note the di-
minishing returns as microphones are added. Each color corresponds to a particular
system.

The results show a diminishing improvement in accuracy as the number of mics is

increased to N. There also appears to be a decrease in standard deviation, which suggests

more reliable analyses.
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4.2 Retrieval of Parameters from Field Measurements

4.2.1 Methods

Two batteries of tests were applied to the white noise recordings described in

section 1.1.1.2.2. In the first battery, we applied the LPC-based linear analysis, whereas

in the second, we supplied an a priori estimate of Λ and used the techniques described in

section 3.4. Each trial in these batteries comprised of a single test, wherein the nonlinear

parameters were estimated using the algorithm. It is hypothesized that this analysis

technique is sensitive to the order of the analysis, the length of the window used, and

the offset into the data. Thus, the first battery varied each of these parameters to find an

optimal combination of parameters. Since Λ̂ was supplied to the analysis routine in the

second battery, only the length and offset of the analysis window were varied.

4.2.2 Results

The results for Battery 1 are shown in figure 4.10. This demonstrates, among

other facts, that the LPC-based linear analysis is fairly unstable. The number of valid data

points, including even suboptimal ones, is much smaller than the total number of trials

performed. Unfortunately, applying LPC to highly nonlinear data occasionally results in

the placement of a pair of poles on the real axis, which results in a singular eigenbasis.

Only the analyses based on valid eigenbases are shown.

Furthermore, in figure 4.10, we can see that many analyses, though valid, are

suboptimal, because either eexp is positive, or e∆ is negative. If eexp is positive, then the total

variance explained by the nonlinear estimate is greater than the total recorded variance of

the system, which obviously suggests the nonlinear estimate is incorrect. If e∆ is negative,

then the linear component of the analysis explains the system dynamics more optimally

than the nonlinear component. Both of these measures could be used as a validation
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method for the analysis parameters, and placement into any except for the lower-right

quadrant of figure 4.10 indicates a poor selection of those parameters.
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Figure 4.10: A scatterplot of e∆ vs eexp for LPC-based analysis (Battery 1). The optimal
region is the lower right quadrant. Colors (in rainbow order) represent Φ.

The results of the Battery 2 are showin in figure 4.11. As is evidenced from

the much more crowded scatterplot, the analysis is valid for all datapoints because

the eigenbasis is given and invertible. However, unfortunately, the number of optimal

analyses has not changed much. This suggests that one or more parameters have still

been poorly selected.
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Figure 4.11: A scatterplot of e∆ vs eexp for exogenous-Λ̂ analysis (Battery 2). The
optimal region is the lower right quadrant. Colors (in rainbow order) represent Φ.
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Chapter 5

Conclusion

5.1 Research Questions

In the preceding chapters, an algorithm for analysis and synthesis of nonlinear

systems has been derived and validated. We now present a brief account of the assessment,

an anecdote regarding the genesis of this project, and an overview of possible future

research directions.

5.1.1 Bandwidth of Measurements

How does sampling rate affect our ability to estimate the model dynamics? In the

range of parameters studied, slowing the linear dynamics seems to reduce eexp, but these

returns diminish substantially with subsequent upsampling. The effect of expanding the

measured bandwidth further beyond that of the excitatory noise ξ appears only to impact

our estimate of Φ in any meaningful sense, leaving eexp unchanged.
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5.1.2 Window Size

How does the covariance window size affect our ability to estimate the model

dynamics? The results for mean in-sample resynthesis error suggest that the overall peak

improvement in expected accuracy as a function of window size was observed at 62500

time-steps. However, the results for mean in-sample nonlinear improvement suggest

the benefits of using the nonlinear parameter estimation steps are most significant at or

just above this size. This points to an optimal range of window sizes between 4000 and

10000.

For out-of-sample error, we observed an optimal range between 781 - 3125

samples. Although trial 9 shows a modest improvement over trial 8, we can disregard it

as an option because of the much more consistently accurate out-of-sample measurements

which are available at far lower computational cost. Recall that each trial increment

represents a doubling of term data to be processed.

These results actually suggest that, for previous batteries, overall accuracy in de-

termining both linear and nonlinear contributions to system dynamics might be improved

by reducing the window size. Furthermore, these findings suggest that the linear and

nonlinear portions of the solution might benefit from analyzing different timescales.

5.1.3 Dimensionality of Measurements

How does the measurement dimensionality affect our ability to estimate the model

dynamics? The results suggest an overall improvement may be expected as channels are

added, however the greatest improvement was observed between 1 and 2 dimensions,

with increasingly modest improvements in both accuracy and reliability of estimates with

subsequent increases in dimensionality.
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5.1.4 Parameter Estimation of Recordings

One way to assess the accuracy of a given analysis is to generate synthetic model

output and compare it with the recorded data. This comparison could comprise a number

of different tests, but since ostensibly our goal is to generate computer music, perhaps

the most relevant test is to listen to the results directly. We selected 4 estimates from each

battery which are within the optimal region, and resynthesized the model dynamics using

the estimated parameters. For the purposes of this document, we include spectrograms of

the recordings as well as links to the audio.

A disclaimer: they are not pretty. The precise reason for this lack of musicality is

unclear at the time of this writing. However, the analysis signal from which the models

were derived appears to suffer from the same lack of aesthetic beauty. Perhaps the linear

components of the system are simply too damped, or the system nonlinearities are too

strong.

Although these results may not be the most musical examples of the synthesis

technique, they do offer us a glimmer of possibility for future explorations in analy-

sis/resynthesis. At the time of this writing, the most compelling examples of the synthesis

technique apply parameter sets derived from user interaction. A few of these will also be

included as spectrograms and recordings.

5.2 Future Work

This dissertation has produced more questions than answers. Future work will

attempt to address some of these new questions, most likely after a re-implementation

of the algorithms using C++. The affordances of modern C++ will result in a flexible,

efficient and maintainable library, well-suited to real-time processing in an environment

like PureData, SuperCollider, or as an audio plugin. Current prototypes made use of
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Figure 5.1: A scatterplot of e∆ vs eexp for exogenous-Λ̂ analysis (Battery 2). This plot
shows the datapoints selected because they lie in the optimal region. Colors (in rainbow
order) represent Φ.

the Octave scientific computing platform, and as a result these prototypes are slow and

inappropriate for musical exploration. The C++ implementation process will begin with

the synthesis technique so that new parameter ranges and control paradigms can be

expermimented with.

Future work will also include attempting to integrate the analysis technique

with more robust linear estimation techniques, such as [Smi07]. Recall that we defined

in section 3.4 a method for estimating the nonlinear least-squares parameters given

exogenously provided Λ̂. Assuming we can determine the best basis for decomposing the

measurements into state-space, we can apply the technique as presented in this section in

tandem with any linear estimation technique. Of particular interest are techniques such as

[LS86][p.32], which are capable of tracking time-varying estimates of Λ̂ and associated

state-variables. This family of techniques operate by modeling Λ̂ as a random variable,
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and encompasses the Kalman filter as a special case.

Still more questions arise when attempting to place the linear and quadratic prob-

lems into a single least-squares framework. So far, these questions remain unanswered,

and this is no major impediment, since the current method appears to give satisfactory

results while keeping these estimation problems separate. However, if it were possible to

combine the two, the estimated Λ̂ parameters and associated terms such as
SE

E
V
x , which

are, ultimately, estimates themselves, could be updated given this step in the algorithm

and the results fed back into the linear estimation steps. This feedback might allow us to

recurse toward a better estimate of Λ̂ as well as a better estimate of V̂ . The difficulty of

this approach comes from the dimension reduction step described in section 3.3.3.

Another line of inquiry relates back to the instrumentation devised to make the

recordings and performances described in section 1.1.1. Rather than simply increasing

the number of scalar field measurements, the advantage concomitant with increasing the

dimensionality of the measurements might also be achieved by increasing the dimensions

of each measurement. A simple way to achieve this involves using PIN photodiodes

with two axes of photoelectric response. These measurements might simply be treated as

unstructured additional coefficients in our calculations, or they might be used to derive

entirely new algorithms which operate on sets of complex measurements. Although

preserving this structure will pose still new challenges, some authors (C.F. [MG09, p.

13]) suggest that such techniques handily improve performance metrics in real-world

data.

5.3 Inspiration

The idea for this algorithm came from an admittedly unlikely place: watching a

spider build a web. Paralyzed with arachnophobia, I observed the structural threads of the
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web vibrating pleasantly both as a result of the spider as she worked and the wind lightly

bowing laterally across their tiny surfaces. I recalled from a biology class that most

species of spiders actually cannot see particularly well, and I pondered how odd it was

that such an animal, a high opportunistic predator in its niche, could come to have such

a shortcoming. I imagined that these spiders must have a particularly well-developed

listening ability, not for vibrations in air, but those in their webs. These networks of sheer

fibers must act as their prosthetic ears.

Naturally, I wondered how I could tap into the sounds that the spiders could hear.

At that point, a large stratum of my creative output revolved around amplifying solid

objects using piezoelectric contact microphones and hydrophones. One basic rule-of-

thumb for these techniques is that the structural wave medium to be measured should

be at least as massive as the microphone itself. As such, I had spent a good deal of my

time working with instruments made of materials like metal, wood, and bone. This new

line of inquiry would clearly require the development of some new tools. I began to

do some cursory research into arachnology, firstly to validate my hypothesis about the

ecological need for spiders to hear through their webs, and if so, to determine what sort

of microphone I would need to purchase or construct.

As it would happen, my hypothesis was essentially substantiated within the litera-

ture. Furthermore, several papers described the variations in spider auditory processing

systems- located primarily at the base of each leg– which seemed to be correlated with

the variations in web architecture. For example, spider species who build disorderly

“cobwebs”- including the infamous black widow, among others- generally had better

temporal acuity than their cousins who build iconic “orb-webs”, who instead appear quite

adept at distinguishing between adjacent frequencies. Whereas inter-leg time differences

might provide more useful information for an erratic web with more damped modes,

more orderly webs with more underdamped modes might suggest a frequency-domain
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analysis on the part of the animal.

Numerous measurement methods were proposed in the literature. Many of them

were impractical for my particular use-case. Several papers made mention of optical

techniques as an in-vivo method for measurement. Simultaneously, I began to think

of other possible amplification subjects uniquely suited to optical microphones. Many

of them shared the property that the implements of piezoelectric amplification would

overwhelm their dynamics. I thought mainly of extremely light objects or liquids. While

only a single spatial point of measurement was typically discussed in the entomology

literature, I began to dream of a vast network of microphones, recording the smallest

deviations in displacement, over a wide bandwidth. I also began to dream of simulating

and analyzing those deviations, perhaps as a way to see into the underlying dynamics

which had previously been hidden.

This inspiration sparked a long journey that has encompassed research and ex-

periments in optics, detours into both analog instrumentation and embedded systems,

and numerous forays into linear algebra and digital signal processing. This document

serves as a field guide to my experiences in some of these topics. That I can reach this

journey’s end with more questions than I had at its inception is testament to the fact

that journeys themselves do not neatly begin and end. These paths of inquiry merely

change into new ones, each seemingly more infuriating and fascinating than the next,

uncountable transitions which hide this condition’s underlying salience. And yes, I’m

still terrified of spiders.
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Final notes

A.1 In Tableau

Π =



−Π(2,1;1)111 . . . −Π(2,1;1)N11 . . . −Π(2,1;1)NN1 . . . −Π(2,1;1)NNN

Π(1,2;1)111 . . . Π(1,2;1)N11 . . . Π(1,2;1)NN1 . . . Π(1,2;1)NNN

−Π(3,1;1)111 . . . −Π(3,1;1)N11 . . . −Π(3,1;1)NN1 . . . −Π(3,1;1)NNN

Π(1,3;1)111 . . . Π(1,3;1)N11 . . . Π(1,3;1)NN1 . . . Π(1,3;1)NNN

...
...

...
...

−Π(N,1;1)111 . . . −Π(N,1;1)N11 . . . −Π(N,1;1)NN1 . . . −Π(N,1;1)NNN

Π(1,N;1)111 . . . Π(1,N;1)N11 . . . Π(1N;1)NN1 . . . Π(1,N;1)NNN

−Π(3,2;1)111 . . . −Π(3,2;1)N11 . . . −Π(3,2;1)NN1 . . . −Π(3,2;1)NNN

Π(2,3;1)111 . . . Π(2,3;1)N11 . . . Π(2,3;1)NN1 . . . Π(2,3;1)NNN

...
...

...
...

−Π(N,2;1)111 . . . −Π(N,2;1)N11 . . . −Π(N,2;1)NN1 . . . −Π(N,2;1)NNN

Π(2,N;1)111 . . . Π(2,N;1)N11 . . . Π(2,N;1)NN1 . . . Π(2,N;1)NNN

Π(3,4;1)111 . . . Π(3,4;1)N11 . . . Π(3,4;1)NN1 . . . Π(3,4;1)NNN

−Π(4,3;1)111 . . . −Π(4,3;1)N11 . . . −Π(4,3;1)NN1 . . . −Π(4,3;1)NNN

...
...

...
...

...
...

...
...

−Π(N,N−1;1)111 . . . −Π(N,N−1;1)N11 . . . −Π(N,N−1;1)NN1 . . . −Π(N,N−1;1)NNN

Π(N−1,N;1)111 . . . Π(N−1,N;1)N11 . . . Π(N−1,N;1)NN1 . . . Π(N−1,N;1)NNN

Π(1,2,3;1)111 . . . Π(1,2,3;1)NNN

(Π(3,1,2;1)−Π(2,3,1;1))111 . . . (Π(3,1,2;1)−Π(2,3,1;1))NNN

Π(1,2,4;1)111 . . . Π(1,2,4;1)NNN

(Π(4,1,2;1)−Π(2,4,1;1))111 . . . (Π(4,1,2;1)−Π(2,4,1;1))NNN

...
...

Π(1,2,N;1)111 . . . Π(1,2,N;1)NNN

(Π(N,1,2;1)−Π(2,N,1;1))111 . . . (Π(N,1,2;1)−Π(2,N,1;1))NNN

Π(1,3,4;1)111 . . . Π(1,3,4;1)NNN

(Π(4,1,3;1)−Π(3,4,1;1))111 . . . (Π(4,1,3;1)−Π(3,4,1;1))NNN

...
...

Π(1,3,N;1)111 . . . Π(1,3,N;1)NNN

(Π(N,1,3;1)−Π(3,N,1;1))111 . . . (Π(N,1,3;1)−Π(3,N,1;1))NNN

...
...

Π(1,N−1,N;1)111 . . . Π(1,N−1,N;1)NNN

(Π(N,1,N−1;1)−Π(N−1,N,1;1))111 . . . (Π(N,1,N−1;1)−Π(N−1,N,1;1))NNN

...
...

Π(N−2,N−1,N;1)111 . . . Π(N−2,N−1,N;1)NNN

(Π(N,N−2,N−1;1)−Π(N−1,N,N−2;1))111 . . . (Π(N,N−2,N−1;1)−Π(N−1,N,N−2;1))NNN


(A.1)
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A.2 Spectrograms
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Figure A.1: Spectrogram of Test 00.00 (detail, showing 0→5 kHz). On the left is the
signal from vibrometer “A”, and on the right, the signal from vibrometer “B”.
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Figure A.2: Spectrogram of Test 00.01 (detail, showing 0→5 kHz). On the left is the
signal from vibrometer “A”, and on the right, the signal from vibrometer “B”.
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Figure A.3: Spectrogram of Test 00.02 (detail, showing 0→5 kHz). On the left is the
signal from vibrometer “A”, and on the right, the signal from vibrometer “B”.
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Figure A.4: Spectrogram of Test 00.03. On the left is the signal from vibrometer “A”,
and on the right, the signal from vibrometer “B”.

111



Figure A.5: Spectrogram of Test 00.04 (detail, showing 04→25 Hz). On the left is the
signal from vibrometer “A”, and on the right, the signal from vibrometer “B”.
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Figure A.6: Spectrogram of Test 01.00 (detail, showing approx. 52s). On the left is the
signal from vibrometer “A”, and on the right, the signal from vibrometer “B”.
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Figure A.7: Spectrogram of Test 01.01 (detail, showing approx. 52s). On the left is the
signal from vibrometer “A”, and on the right, the signal from vibrometer “B”.
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Figure A.8: Spectrogram of Test 01.02 (detail, showing approx. 52s). On the left is the
signal from vibrometer “A”, and on the right, the signal from vibrometer “B”.
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