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‘ OPPORTUNITIES AND DEMANDS IN PUBLIC HEALTH SYSTEMS ‘

Policy and Programmatic Importance of Spatial Alignment

of Data Sources

Geographic information
systems have proven instru-
mental in assessing environ-
mental impacts on individual
and community health, but
numerous methodological
challenges are associated
with analyses of highly lo-
calized phenomena in which
spatially misaligned data are
used.

In a case study based on
child care facility and traffic
data for the Los Angeles met-
ropolitan area, we assessed
the extent of facility misclas-
sification with spatially un-
reconciled data from 3 differ-
ent governmental agencies
in an attempt to identify child
care centers in which young
children are at risk from high
concentrations of toxic vehi-
cle-exhaust pollutants. Rela-
tive to geographically cor-
rected data, unreconciled
information produced a mod-
est bias in terms of aggre-
gated number of facilities at
risk and a substantial num-
ber of false positives and neg-
atives. (Am J Public Health.
2006;96:499-504. doi:10.2105/
AJPH.2005.071373)
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GEOGRAPHIC INFORMATION
systems (GIS) have proven instru-
mental in assessing environmental
impacts on individual and com-
munity health.'™ Recent studies
have begun to systematically ad-
dress technological limitations as-
sociated with GIS by enhancing
accuracy of positional, attribute,
and temporal data; by tracking
demographics and disease as geo-
graphic boundaries change over
time; by identifying the best
household and area measures of
socioeconomic status; and by de-
termining appropriate scales for
studying links between environ-
mental exposures and health out-
comes.” 2 Improved data and
advances in techniques have en-
abled epidemiological and atmos-
pheric researchers to apply GIS to
highly localized problems, but
such analyses present numerous
methodological challenges, espe-
cially when data of different pedi-
grees are not collocated at small
geographic scales.

We assessed the impact of
using geographically unrecon-
ciled traffic volume data along
with census-based street data in
a case study of child care centers
whose locations near major road-
ways could put young children at
risk from high concentrations of
toxic vehicle exhaust pollutants.
Recent epidemiological evidence
indicates a heightened preva-
lence of respiratory morbidity
and mortality among people liv-
ing near high-traffic roadways,
and childhood cancer, brain
cancer, leukemia, and preterm
and low-weight births have been

positively associated with traffic
density among those living near
such roadways.*~" Although
other environmental risk factors
may be present in high-traffic
areas, air pollution studies point
to the significance of high concen-
trations of vehicle-generated pol-
lutants such as carbon monoxide
and ultrafine particles. Typically,
pollutants decline exponentially to
near background levels within as
little as 150 m of major roadways,
with the greatest decrease occur-
ring within 50 m.**%*

Because dispersed monitoring
stations are insufficient to deter-
mine pollutant concentrations at
nonadjacent locations, and given
the expense of directly measur-
ing pollutants at multiple sites,
researchers conducting epidemi-
ological and distributional stud-
ies have used traffic volume line
data and census-based line data
to approximate exposure to
vehicle-related pollutants.>%3°~3®
However, this method can result
in exposure misclassifications if
these data sets are not precisely
“aligned” with each other in GIS
analyses. (Such discrepancies are
not uncommon in health-related
research, especially when data
from different sources are used.
Detailed statistics on misalign-
ments in this study are de-
scribed later.) Such geographic
misalignments can result from
the underlying data source, data
cleaning processes, or the origi-
nal intended scale of the data.
We examined the effects of reas-
signing attribute data from 1 ge-
ographic data source to census-

based line data on estimated ex-
posure levels of facilities geo-
coded via census-based line
data. A more general issue not
broached in this article is the
question of “georeferencing,” or
determination of spatial accu-
racy relative to the earth.
Previous studies have ad-
dressed misalignment problems
associated with geographic data
sets in different ways. One ap-
proach is to increase buffer areas
beyond the ideal criterion dis-
tance to avoid false negatives,
but this method can produce
false positives.*”*® Wilhelm and
Ritz addressed such misalign-
ments by transferring traffic
count values from the original
traffic line geography to census-
based line segments—a method
similar to that described here—
but only for a select set of neigh-
borhoods.*® Green et al.*® and
Houston et al.*” did not correct
misalignments but assumed that
discrepancies between traffic vol-
ume and census-based geogra-
phies are randomly distributed
and do not produce spatial
biases.® Although the value of
spatially aligned data was recog-
nized in these studies, none of
them included systematic com-
parisons of results from recon-
ciled and unreconciled data sets.
We evaluated the impact of
reassigning traffic counts to a
census-based geography for Los
Angeles County, which is home
to 9.5 million people and covers
approximately 12 300 km?®. Our
evaluation took the form of a
case study designed to identify
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licensed child care facilities close
to major roadways with high traf-
fic volumes. Assessments were
made at both the policy level
(“What is the prevalence of the
problem?”) and the program-
matic level (“Which facilities are
affected?”). Results suggested that
use of reconciled data provided
valuable methodological en-
hancements in terms of identifi-
cation of “at-risk” centers.

METHODS

Data

Traffic volume data and asso-
ciated street geography data
were obtained from the Califor-
nia Department of Transporta-
tion (CalTrans). We gathered
child care facility information
from California’s Department
of Social Services, and we geo-
coded addresses to the Topologi-
cally Integrated Geographic
Encoding and Referencing
(TIGER) street file, a standard
geographical reference widely
used by public health research-
ers and social scientists. (We
used CalTrans traffic volume
data from various years depend-
ing on when traffic for each
road segment was recorded.
Child care facility and TIGER
data were from 2000.) We
transformed geographic data
into a common geographic pro-
jection, Universal Transverse
Mercator, so that we could con-
struct geographic overlays and
make consistent distance calcu-
lations. Two collective data sets
were assembled: one overlaying
the geocoded child care facilities
on the original traffic data “as
is”—without reconciling spatial
misalignments—and one overlay-
ing the facility points onto traffic
data assigned to the common
TIGER street file, thus eliminat-
ing spatial misalignments.

500 | Opportunities and Demands in Public Health Systems | Peer Reviewed | Ong et al.

CalTrans Data

We report traffic counts for
segments of CalTrans’ roadway
network, which had its origins
in US Geological Service Digital
Line Graph transportation data
and has been used in previous
studies focusing on traffic distri-
bution and impacts ?73%-35:37:38
CalTrans used a tolerance (or
geographic error) of 10 m when
transforming original US Geo-
logical Service coordinates into
the roadway data used in this
study.®® The roadway network
does not include local roads, but
this exclusion has only limited
effects on estimations of poten-
tial risk from mobile-source air
pollutants, because local roads
carry light traffic. With this re-
striction, the data set included
9230 mi (14 855 km) of roads
divided into 37 403 segments.
On the basis of seasonal fluctua-
tions, weekly variations, and
other variables, CalTrans adjusts
counts to estimate annual aver-
age daily traffic (AADT), repre-
senting the total annual volume
of vehicles divided by 365
days. Unfortunately, these
data do not include adequate
segment-level information to
geocode address locations.

TIGER Data

The US Census Bureau’s
TIGER street file is readily
available (at http://www.cen-
sus.gov/geo/www/tiger/
index.html), inexpensive, and
consistent with census tabula-
tion geographies (e.g., tracts). As
a result, the file has been widely
used by researchers, particularly
in assigning geocoded informa-
tion to census polygons (land
areas, ranging in size from
blocks and tracts to counties and
states, defined by the US Census
Bureau for the purpose of data
collection or data reporting).

This internal consistency be-
tween geocoded addresses and
census polygons allows re-
searchers to use socioeconomic
contextual information derived
from the decennial census.
TIGER objects are not necessar-
ily accurate in relationship to
their global position, and dispar-
ities vary according to geo-
graphic location.** Moreover,
there is no guarantee that ad-
dresses geocoded with TIGER
streets are properly spatially ref-
erenced to the CalTrans road
network, a problem reported in
other studies.?>*%3°

Child Care Facility Data

Data on licensed Los Angeles
child care facilities, obtained from
the California Department of So-
cial Services, included the ad-
dresses of 3430 licensed child
care centers and 3399 large fam-
ily care homes (those licensed to
care for more than 8 children).
We geocoded facility addresses
(approximate match rate: 95%)
to TIGER streets using a 10-m
offset from roadway center lines
to provide standard coordinates.
In some studies, the positional
accuracy, or correspondence to
“real-world” locations, of geo-
coded addresses can have signifi-
cant analytic impacts; however,
we were concerned only with the
internal consistency of the rela-
tive alignments of GIS data sets
to each other. Other statistical
implications of geocoding (and
the use of offsets) are well known
but were not within the scope of
thlS Smdy.19,21,25,41,42

Data Reconciliation

As mentioned earlier, the Cal-
Trans network includes heavily
traveled roadways and contains
about one third of the TIGER
network road segments (89 813
of 267579 overall segments and
13772 of a total of 43401 km).

In terms of segments included in
both data sets, CalTrans street
segments are generally not col-
linear with or well referenced to
TIGER street segments. (An
analysis of major thoroughfares
[AADT >24000] showed that
the average geographic discrep-
ancy between 2 street segments
was 13.3 m, with a standard de-
viation of 19.5 m. Differences
ranged from less than 1 m to
more than 400 m.) One of the
consequences of using the 2
layers “as is” is that child care
facilities geocoded with
TIGER geography are not accu-
rately referenced to CalTrans
segments.>>3% For convenience,
we refer to the collection of
data assembled through over-
laying the CalTrans road net-
work and the child care data as
the “unreconciled data set.”

We created a “reconciled data
set” by reassigning the traffic vol-
ume data from the CalTrans net-
work to corresponding TIGER
street segments. This allowed
both the geocoded child care fa-
cilities and the traffic data to be
spatially referenced to a common
street layer. Processing consisted
of multiple steps to reconcile
these 2 layers. The first, auto-
mated step matched streets on
the basis of proximity and associ-
ated name (or route number).
Because of the automated nature
of this process, secondary errors
resulted from (1) miscoded street
names, either in TIGER or in
CalTrans; (2) large displacements
between matching streets; and
(3) similarly named segments
being too close in proximity. Two
more rounds of visual compar-
isons were performed to correct
manually these mismatching er-
rors. Corrections consisted of re-
viewing the 2 street layers in
ArcMap 8.3 (ESRI, Redlands,
Calif), identifying TIGER streets

American Journal of Public Health | March 2006, Vol 96, No. 3



‘ OPPORTUNITIES AND DEMANDS IN PUBLIC HEALTH SYSTEMS ‘

that had not yet been matched
or identifying secondary prob-
lems, and manually correcting
the linking table between Cal-
Trans and TIGER. The time re-
quired for this processing was
approximately 130 person-hours.
A similar matching process has
been described at greater length
by Wu et al.*®

Analytic Method

Test criteria. We assessed the
impact of spatial discrepancies
between CalTrans traffic data
and reconciled TIGER data by
comparing the risk status of
child care facilities classified ac-
cording to close proximity to
heavy traffic. We determined
risk status using 2 tests based
on the different roadway net-
works. A facility is deemed to
be “at risk” when the volume of
traffic within a given criterion
distance is above a certain
threshold. However, opera-
tionalizing such criteria is prob-
lematic, because the existing lit-
erature does not provide a
standard for classifying facilities.
Nonetheless, previous studies
have identified 2 key parame-
ters: volume of traffic and dis-
tance to roadways. Volume of
traffic and risk from pollutants
have been shown to be posi-
tively correlated, as have prox-
imity and risk. We developed 2
traffic volume thresholds and 3
distance categories to examine
how different criteria interact
with geographic discrepancies
to affect risk classifications of
child care facilities.

We used vehicle miles trav-
eled (VMT)—defined as the
product of AADT and the
length of each street segment—
as our measure of traffic vol-
ume. Aggregate VMT for a site
is the sum of VMT for each seg-
ment within a circular buffer; in

March 2006, Vol 96, No. 3 | American Journal of Public Health

VMT= A,L,+A,L, + A;L;

A;: AAD T, L Length

Note. AADT =annual average daily traffic.

this study, buffers had a radius of
50 m, 100 m, or 150 m (Figure 1).
Only portions of street segments
falling within these buffers were
used to aggregate VMT for each
child care center. Two thresh-
olds were used to classify
whether a facility was in dan-
gerously close proximity to
heavy traffic: 4500 VMT as the
moderate-risk threshold and
9000 VMT as the high-risk
threshold. These thresholds
were roughly equivalent to the
maximum AADT thresholds of
25000 and 50000 used in
other studies.?**"3%% We used
the following formula to classify
the risk status of a given (here
ith) facility:

FIGURE 1—Calculating total vehicle miles traveled (VMT).

AtRisk = 0, VMT, | < Threshold,
(1) g =11, VMT, ,, 2 Threshold,

0-50m

reconciled;
unreconciled

0-150m;
Concentric Circle:j € {0-100m;
Data Set: k € {

Threshold: me {4500 VMT;}

9000 VMT
Two tests, one based on Cal-

Trans traffic data and one based
on reconciled TIGER data, were
used to classify facility risk for
each combination of threshold
and buffer distance. We expected
the number of facilities classified
as at risk to decrease with in-
creasing threshold and with de-
creasing buffer distance.

Spatial misalignments. Spatial
misalignments between Cal-
Trans and TIGER can produce

2 opposite classification errors: a
positive classification by the Cal-
Trans test but a negative classifi-
cation by TIGER, as well as the
converse case. Of course, a facil-
ity might be correctly classified
even when the 2 networks are
misaligned if both CalTrans and
TIGER tests measure traffic
volume either above or below
the criterion threshold. We de-
fined 4 classification types ac-
cording to the scenarios de-
scribed and the ability of the
unreconciled CalTrans data to
correctly classify child care facili-
ties at risk: consistent positive,
Jalse positive, false negative, and
consistent negative. These classifi-
cations are described in Table 1.
We evaluated the effects of
misclassification resulting from
the use of unreconciled data in 2
ways. For policy considerations,
prevalence of risk is central, so
the key statistic is the ratio of at-
risk facilities to all facilities. Both
the reconciled and unreconciled
data sets involved the same de-
nominator (all geocoded child
care facilities) but different nu-
merators (facilities classified as at
risk according to each test). If spa-
tial misalignments were randomly
distributed with an expected off-
set distance of zero, false posi-
tives and false negatives would
net out, and use of unreconciled
data would not affect calculated
prevalences. Without evidence
to support such an assumption,

TABLE 1—Classifications of At-Risk Status of Child Care Facilities: Los Angeles Metropolitan Area, 2000

Interpretation

Consistent positive: at-risk facilities correctly classified by both data sets

False positive: not-at-risk facilities misclassified as at risk by unreconciled traffic network
False negative: at-risk facilities misclassified as not at risk by unreconciled traffic network
Consistent negative: not-at-risk facilities correctly classified by both data sets

Aggregate VMT: Aggregate VMT:
Unreconciled Data Reconciled Data
Above threshold Above threshold
Above threshold Below threshold
Below threshold Above threshold
Below threshold Below threshold

Note.VMT = vehicle miles traveled.
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Metropolian Area, 2000

TABLE 2—At-Risk Childcare Facilities, by Threshold and Area of Interest (n=6829: Los Angeles

Above Moderate Threshold® Above High Threshold”
Radius of Reconciled, Unreconciled, Relative Overcount, Reconciled, Unreconciled, Relative Overcount,
Circle,m No. No. (%) No. No. No. (%)
150 2202 2223 21 (0.95) 564 591 27 (4.79)
100 653 668 15(2.3) 145 148 3(2.07)
50 32 29 -3(-9.38) 10 13 3(30.0
24500 vehicle miles traveled.
®9000 vehicle miles traveled.
however, the impact of misalign- ship between risk classification discrepancies (which ranged from

ments must be determined
empirically.

From a programmatic per-
spective, the absolute and rela-
tive numbers of false positives
and false negatives are the im-
portant statistics. Limited inter-
vention budgets necessitate
identifying the facilities truly at
risk, and an excessive number
of false positives would divert
resources from programmatic
objectives. Alternatively, false
negatives would impose inter-
vention costs on sites not actu-
ally at risk. Unlike aggregating
data to estimate prevalence of
risk for policy considerations,
the costs associated with false
positives and false negatives are
cumulative rather than offset-
ting. Consequently, use of unrec-
onciled data may have greater
effects at the programmatic level
than at the policy level.

RESULTS

The results of the analysis of
risk classification and prevalence
rates are presented in Table 2. As
expected, the number of at-risk
facilities decreased when traffic
thresholds were higher and buffer
distances were smaller, regardless
of whether reconciled or unrecon-
ciled roadway data were used. It
should be noted that the relation-

502 | Opportunities and Demands in Public Health Systems | Peer Reviewed | Ong et al.

and buffer area (0:7%) was nonlin-
ear, with the aggregate number of
at-risk facilities increasing at a
greater rate than the buffer area.
Also, doubling the VMT threshold
from moderate (4500 VMT) to
high (9000 VMT) dramatically
reduced the number of at-risk fa-
cilities in most cases. Although
these patterns are not central to
our focus, they strongly suggest
that classification criteria have a
significant impact on the reported
magnitude of the risk associated
with close proximity to high levels
of traffic.

Policy Concerns

More germane to our focus is a
comparison between the relative
and aggregate number of at-risk
facilities calculated via the 2 street
geographies. For most permuta-
tions of threshold and buffer size,
the reconciled data identified fewer
at-risk sites than did the unrecon-
ciled data, the exception being the
moderate threshold at 50 m. As a
percentage of facilities identified by
reconciled data, the relative num-
ber of discrepancies tended to de-
crease with increasing buffer size;
here the exception was the high
threshold for 100 m. This pattern
suggests that the offset error be-
tween the reconciled and unrecon-
ciled data sets was not randomly
distributed; otherwise, the relative

1% to 30%) would have been
close to zero in all cases.

The most restrictive buffer
(50 m) tended to result in the
highest relative errors (an under-
count of 9% with the moderate
threshold and an overcount of
30% with the high threshold),
but such a small buffer is useful
only in identifying facilities in im-
mediate proximity to the largest
pollution sources (freeways and
major thoroughfares). Larger
buffers tend to capture more of
the at-risk facilities from moder-
ately large or multiple sources.
Also, for these larger buffers, the
reconciled data showed improve-
ment over the unreconciled data,
although this improvement was
not as large as that associated
with the 50-m buffer.

In policy terms, these findings
demonstrate that errors due to
spatial misalighment are not ran-
domly distributed; consequently,
estimation of the number of
child care facilities at risk is bi-
ased when unreconciled data
are used at the specified buffer
distances. With a 150-m buffer,
the distance at which vehicle-
related air pollutants drop close
to “background” concentrations,
the bias was small, and the un-
reconciled data may have been
sufficiently accurate to gauge
the overall magnitude of the

problem. This buffer size, how-
ever, identifies facilities that are
at a low level of exposure. The
finding of the nonlinear increase
in the count with greater crite-
rion distance indicates that
padding the buffer area to ac-
count for spatial misalignment
could artificially produce a sub-
stantial overcount.

Programmatic Concerns

The problem of discrepancies
in classification and the im-
provements shown with recon-
ciled data are even greater when
we examine the number of false
positives and false negatives,
which are reported in Table 3
along with consistent positives.
Absolute values are presented
in the top panel, and the bottom
panel reports classification rates
as percentages of the total num-
ber of at-risk facilities for each
combination of threshold and
radius identified in the recon-
ciled data set.

For the least restrictive risk
criteria (150 m, moderate
threshold), 12.5% (5.8% as false
negative and 6.7% as false posi-
tive) of 2202 at-risk facilities
(identified through reconciled
data) were misclassified when
unreconciled data were used.
For the 100-m bulffer, the result-
ing misclassifications were 25%
with the moderate threshold
and 48% with the high thresh-
old. For the smallest buffer, the
corresponding misclassification
rates were 97% and 110%.
Overall, the absolute number
of misclassified facilities in-
creased with increasing circle
size; however, the misclassifica-
tion rate (as a percentage of
correctly identified at-risk facil-
ities) generally decreased as cir-
cle size increased. Essentially,
although the unreconciled data
involved fewer total misses as
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buffer size decreased, the odds
of facilities being incorrectly
identified increased.

The results for the disaggre-
gated statistics on classification
type revealed that spatial mis-
alignment creates significant dis-
crepancies in risk classification.
The problem becomes increas-
ingly severe as criteria become
more restrictive. This trend is
capped by the case of the high
threshold at 50 m, for which the
unreconciled data incorrectly
identified more sites than they
correctly identified. Such in-
stances in which a given list of
at-risk sites can be trusted less
than half of the time are a signif-
icant problem from a program-
matic perspective. Even in cases
in which the problem of discrep-
ancies is not as large, they still
can represent an economically
inefficient increase in allocating
scarce funds, weakening the ef-
fectiveness of targeting limited
resources. In fact, considering
the case of the moderate thresh-
old for 150 m (a distance at
which pollutants are still consid-
ered a risk), in which “only”
12.5% of facilities were misclas-
sified, 275 child care sites were
either missed or incorrectly
identified as at risk, a significant

March 2006, Vol 96, No. 3 | American Journal of Public Health

number of locations when lim-
ited resources for enforcement
and remediation are available.
Clearly, the reconciled data set
makes its greatest contribution
at the programmatic level.

DISCUSSION

With the development of less
costly and more user-friendly
software, decreased costs of com-
puting power, and increased
availability of geographically
coded data, GIS is proving to be
a useful tool in studying the po-
tential health effects of spatially
localized environmental hazards.
Such trends will continue into
the future, encouraging and facil-
itating more spatially oriented
analyses. An important task for
improving the usefulness of this
approach is identifying problems
associated with merging data.
One of the strengths of the tech-
nology is its capacity to overlay
and analyze information from
disparate sources, but this is
also a potential weakness in that
there is no assurance that data
sets are properly aligned. This
problem is not new to the broader
GIS field, but it is worth explor-
ing in the context of public
health research.

TABLE 3—Classification of At-Risk Status of Child Care Facilities: Los Angeles Metropolitan Area, 2000
Above Moderate Threshold Above High Threshold
Consistent False False Consistent False False
Radius of Circle, m Positive Negative Positive Positive Negative Positive
Absolute no.
150 2075 127 148 512 52 79
100 578 75 90 112 33 36
50 15 17 14 6 4 7
Classification rate, %°
150 94.2 5.8 6.7 90.8 9.2 14.0
100 88.5 115 13.8 77.2 22.8 24.8
50 46.9 53.1 43.8 60.0 40.0 70.0
“Percentage of total facilities classified as at risk according to the reconciled data set for each threshold and radius.

Our findings reveal some seri-
ous discrepancies when data sets
are not spatially aligned and
suggest that use of unreconciled
data has policy and program-
matic implications. Of course, it
is impossible to say whether our
results can be generalized to
other data sets and spatial analy-
ses. Moreover, the Los Angeles
metropolitan area may have
unique land-use and siting rules
that affect the number of at-risk
child care facilities. Despite these
limitations, the discrepancies be-
tween the facilities identified by
the reconciled and unreconciled
data sets are sufficiently large
that our findings should raise a
red flag for all public health re-
searchers using GIS.

Explicitly, we found that by
reconciling traffic volume data
with other geographical data on
siting of child care centers in Los
Angeles County, we could im-
prove estimations of the centers
at risk from mobile source pollu-
tants. This data reconciliation al-
tered the results from both the
policy and the programmatic per-
spective. In terms of policy, we
found that the actual numbers of
sites considered at risk according
to our measures were marginally
lower than revealed in a similar

analysis involving unreconciled
data. From a programmatic per-
spective, we found that using un-
reconciled data produced a dra-
matic miscount of those sites
incorrectly classified as at risk as
well as those misclassified as safe.

We have several recommenda-
tions. At a minimum, researchers
should assess how well various
GIS data sets are spatially refer-
enced to each other. This assess-
ment would include evaluating
data from the same agency but
for different time periods. Even
TIGER geography changes with
time as errors are identified and
corrected. If data sets are not
corrected, it is important to de-
termine whether they should be
geographically reconciled. Unfor-
tunately, there is no simple rule
for determining when it is neces-
sary to absorb the costly task of
eliminating spatiotemporal dis-
crepancies. This issue must be
considered on a case-by-case
basis. (As one reviewer noted, a
potentially important empirical
question with policy implications
is whether the magnitude of the
spatial discrepancy between 2
data sets varies systematically
across neighborhoods according
to socioeconomic status. If such a
pattern exists, any analysis of so-
cioeconomic status disparities in
exposure to air pollutants involv-
ing unreconciled data would pro-
duce systematically biased re-
sults. The direction of the bias is
an empirical issue that requires
additional research.)

Our findings do point to 1
guideline: scale matters. The more
localized the effect (“pollution
footprint”), the more likely it is
that an analysis will benefit from
such reconciliation. Regardless
of the decision, it is important for
researchers to explicitly discuss
spatial referencing issues related
to the data sets they are using,
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which will provide readers with a
sense of any potential limitations
of the findings produced. Al-
though it is important for individ-
ual researchers to seriously con-
sider these issues, there is also a
need for the field as a whole to
develop and adopt standards for
geographical data. High-quality
GIS data represent a collective
good that would enhance future
public health research. ®
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