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Abstract

Generalization and Optimization in the Interpolation Regime: From Linear Models to

Neural Networks

by

Hossein Taheri

Learning with large models has driven unprecedented advancements across diverse fields

of machine learning. As model’s size grows the capacity of the model to memorize or

interpolate the dataset also increases. Learning under interpolation presents new challenges

and opportunities which are not addressed in classical statistical learning theory. In this

thesis, we explore the performance of learning methods in the interpolation regime across

various models, including linear models and neural networks. Our primary goal is to

understand how data and model characteristics influence the convergence behavior of

gradient-based methods such as gradient descent and to quantify how well these models

generalize to new data.

In the first section, we explore linear models, which are the simplest examples where

learning under interpolation can be studied. In particular, we consider empirical risk

minimization methods applied on high-dimensional generalized linear models and Gaussian-

mixtures. Our goal is to understand the optimal test error performance for such models in

an asymptotic set-up where the data-dimension is comparable to the number of training

samples. By deriving a system of equations which precisely characterises the test error

performance, we are able to find a tight lower-bound on the test error which holds for

any convex loss function and ridge-regularization parameter. We then show the bound is

tight by proposing a loss function and regularization parameter which achieves the bound.

As a corollary, we are able to approximately quantify the sub-optimality of least-squares
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depending on the data-model.

Continuing with linear models, we consider adversarial learning with high-dimensional

Gaussian-mixture models. Adversarial training, based on empirical risk minimization,

currently represents one of the main approaches for defending against adversarial attacks,

which involve small but targeted modifications to test data that result in misclassification.

We derive precise asymptotic expressions for both standard and adversarial test errors

under ℓp bounded perturbations within a Gaussian mixture model framework. Our results

yield exact error formulas that demonstrate the relationship between adversarial and

standard errors and the influence of factors such as the over-parameterization ratio, the

data model, and the attack budget.

In the next part of the thesis, we aim to extend our theoretical findings to neural

networks. Neural nets are known for their ability to memorize even complex datasets,

often achieving near-zero training loss via gradient descent optimization. Despite this

capability, they also demonstrate remarkable generalization to new data. We investigate

the generalization error (i.e., the gap between training and test errors) of neural networks

trained with logistic loss. Our main finding reveals that under a specific data-separability

condition, optimal test loss bounds are achievable if the network width is only poly-

logarithmically large with respect to the number of training samples. Moreover, our

analysis framework which is based on algorithmic stability presents improved generalization

bounds and width lower bounds compared to prior works employing alternative methods

such as uniform convergence via Rademacher complexity.

Next in chapter five, we again consider the problem of learning two-layer neural

networks in the interpolating regime, discussing the role of large-step sizes in speeding

up the training. Particularly, we consider the Normalized Gradient Descent (NGD)

algorithm where the step-size is chosen inversely proportional to the loss. NGD has

proven effective in accelerating the convergence of exponentially-tailed loss functions, such

viii



as exponential and logistic losses, particularly for linear classifiers handling separable

data. We demonstrate that for exponentially-tailed losses and two-layer neural nets,

NGD achieves a linear convergence rate of the training loss towards the global optimum,

provided the iterates identify an interpolating model. This is facilitated by our proof of

gradient self-boundedness conditions and the establishment of a log-Lipschitz property.

Additionally, we address the generalization capabilities of normalized GD for convex

objectives through an algorithmic-stability analysis, showing that it avoids overfitting

during training by providing finite-time generalization bounds.

In the final section, we consider the decentralized learning scenario where the data is

kept locally among several computing agents which are communicating their parameters

over a graph. Our study focuses on decentralized learning in overparameterized settings,

where models achieve zero training loss, specifically examining the properties of decentral-

ized gradient descent (DGD) on separable data. Our research provides new finite-time

generalization bounds for DGD, extending existing knowledge predominantly focused

on centralized learning scenarios. Additionally, we develop enhanced gradient-based

methods for decentralized learning with separable data, demonstrating significant orders

of magnitude of speed-up compared to previous methods.

These results offer new insights and tools for understanding and improving learning in

the interpolation regime across various model architectures and learning paradigms.
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Chapter 1

Introduction

1.1 Motivation

Large-scale learning with big data and large models has shown to be an inseparable

part of machine learning in the past few years, achieving breakthrough success in almost all

applications from computer vision to language modeling. Using gradient-based methods on

empirical risk minimization (ERM) techniques (e.g., logistic regression) is still the the most

popular approach for optimization and learning in these scenarios. While implementing

an optimization method for a given learning task, the statistician or machine learning

engineer is primarily interested in two outcomes: the convergence behavior of the empirical

loss and the generalization performance of the learned model to new data. Naturally,

obtaining models of small generalization error, that has sufficiently good performance on

data beyond the training set, is the ultimate goal of a machine learning task. Nevertheless,

the current understanding of the properties of large models and gradient-based optimizers

is mostly through heuristics and a theory that explains their properties is only recently

emerging.

In this thesis, we present several theoretical and empirical results on the optimization
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Introduction Chapter 1

performance and generalization power of large models, ranging from high-dimensional

linear models to neural networks for both centralized and decentralized settings. Our

results provide insights on the role of sample-size, model size, loss function and regular-

ization on the performance of learning models in the modern interpolation regime and

they complement the findings from classical statistical learning theory.

In the remaining of this chapter, we provide an overview of the content of this thesis.

1.2 Organization of chapters

Chapter 2: In the first chapter of this thesis, we start with high-dimensional linear

models which is perhaps the simplest scenario where large-models can be rigorously

studied. The study of linear models, nonetheless, provides valuable insight into the

general behavior of more complex models. We consider two linear models, namely

high-dimensional generalized linear models and Gaussian-mixtures. For the generalized

linear models, the goal is recovering the ground signal w⋆ ∈ Rd from n observations

yi = ϕ(xTi w
⋆), i ∈ [n], where ϕ : R → {±1} is a (possibly random) binary function

and xi ∈ Rd denote the data points which are i.i.d sampled from a centered Gaussian

distribution. Some examples for ϕ can be the signed model where ϕ(t) = sign(t) and the

logistic model where ϕ(t) = 1 with probability 1/(1+ exp(−t)) and ϕ(t) = −1 otherwise.

For the Gaussian-mixture model the data points are generated according to xi = yiw
⋆+ zi

where zi denotes the independent noise. We study the performance of empirical-risk

minimization (ERM) estimators ŵf,λ that solve the following optimization problem for

some convex loss function f : R → R,

ŵf,λ := arg min
w∈Rd

1

n

n∑
i=1

f(yix
⊤
i w) + λ∥w∥2. (1.1)

2



Introduction Chapter 1

When λ > 0, choosing convex loss functions such as logistic loss f(t) = log(1+exp(−t))

and quadratic loss f(t) = (1 − t)2 leads to a strongly-convex program. On the other

hand, when λ = 0 it is known (e.g. [1]) that the solution to (1.1) is unique if and only if

the over-parameterization is sufficiently small such that d/n < δ⋆f where δ∗f = 1 for the

quadratic loss and δ⋆f > 2 when f is a decreasing loss such as the logistic loss. Our results

for the case of zero regularization are valid only given the solution is unique.

Once ŵf,λ is obtained, we can measure its performance with its correlation to w⋆ or

alternatively by its test accuracy given by,

A(ŵf,λ) := Pr
x,y

(
sign(x⊤ŵf,λ) = y

)
.

Certainly, choosing loss functions and regularization parameters that result in estimators

with higher values of correlation and test accuracy are more desirable. Our goal in

this part is to understand the optimal performance in an asymptotic set-up where the

data-dimension (d) is comparable to the number of training samples (n). In particular we

are interested in answering the following questions:

How do we quantify the performance of estimators derived by ERM in Eq.(1.1)? What

is the optimal performance and how to choose the optimal loss function and regularization

parameter in the ERM problem?

In other words, we aim to precisely characterize the optimal loss f ⋆ and optimal

regularization parameter λ⋆ defined as:

(f ⋆, λ⋆) := arg max
f∈C,λ∈R+

A(ŵf,λ), (1.2)

where C denotes the set of convex and real-valued functions. To tackle the problem,

first we show the performance of ERM for any convex f and non-negative λ is derived

3
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through a system of three equations. As a demonstration, we note the following which

characterizes the error for generalized linear models with label function ϕ:

E
[
S ϕ(S)M′

f,1 (αG+ µSϕ(S); τ)
]
= −λµ, (1.3a)

τ 2 δ E
[ (

M′
f,1 (αG+ µSϕ(S); τ)

)2 ]
= α2, (1.3b)

τ δ E
[
GM′

f,1 (αG+ µSϕ(S); τ)
]
= α(1− λτδ). (1.3c)

In the above, S,G ∼ N(0, 1), M′
f,1 (x; τ) :=

dMf (x;τ)

dx
and Mf(x; τ) := minv

1
2τ
(x− v)2 +

f(v) is known as the Moreau-Envelope of the loss function f (e.g., see [2]). The above

equations are derived according to an application of Gaussian comparison inequalities

known as the Convex Gaussian Min-max Theorem (CGMT). For more information and

background about CGMT we refer the reader to [3, 4, 5]. Denoting αf,λ and µf,λ as

the solution obtained from solving the equations in (1.3), we can show that the high-

dimensional limit of the test accuracy is then obtained as

lim
d,m→∞

A(ŵf,λ) = PG,S
(
αf,λ
µf,λ

G+ Sϕ(S) > 0

)
, G, S ∼ N (0, 1).

This essentially provides an asymptotically precise formula for the performance of ERM

solutions based on the chosen loss function and regularization. In general, it can be shown

that in order to find the best possible ERM performance, we should find f ⋆ ∈ C and λ⋆ > 0

that minimizes αf⋆,λ⋆/µf⋆,λ⋆ . By exploiting an algebraic structure in the equations, we are

able to find a tight lower-bound on the desired quantity which holds for any convex loss

function and ridge-regularization parameter. We then show the bound is tight by proposing

a loss function and regularization parameter which precisely achieves the bound. This

essentially shows that the derived loss and regularization achieve the desired maximality

condition of Eq. (1.2). The proposed optimal loss and regularization parameter are

4
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derived based on different problem parameters such as over-parameterization ratio d/n,

data model ϕ and the strength of the ground signal (i.e. SNR). As a corollary, we are able

to approximately quantify the sub-optimality of quadratic loss. For instance, we show that

surprisingly quadratic loss (defined as f(t) = (1− t)2) with optimally-tuned regularization

is approximately optimal for logistic data model and “small" signal strength (i.e., small

∥w0∥), but the sub-optimality gap grows drastically as signal strength increases.

Chapter 3: Continuing with linear models, we consider the more challenging case

of adversarial learning with high-dimensional Gaussian-mixture models. Many modern

learning algorithms are known to be susceptible to small carefully crafted perturbations

which can fool the classifier to label test points incorrectly. As an example, a traffic sign

can be slightly altered such that it is misclassified by a convolutional neural network [6, 7].

One prominent method to robustify the model against such attacks is adversarial

training [6] which is based on ERM training of adversarial inputs:

ŵ = arg min
w∈Rd

max
∥δi∥q≤εtr

1

n

n∑
i=1

f
(
yi(xi + δi)

⊤w
)
+ λ∥w∥2. (1.4)

Once ŵ is obtained, the adversarial test accuracy is defined as:

A(ŵ) := Ex,y
[

max
∥δ∥q≤εts

1{y=sign(⟨x+δ,ŵ⟩)}

]
. (1.5)

In the equations above, εtr, εts represent the attack budget during training and test time,

respectively. As a side note, we remark that εtr need not be chosen equal to εts and

in fact our results show that the optimal value of εtr is generally larger than εts in the

high-dimensional regime; that is for defending against attacks of strength εts during test

time, the attack budget during training should be chosen larger than εts with the gap

increasing as d/n increases.

5
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Adversarial training in Eq. (1.4) currently represents the one of most well-known

approaches for defending against adversarial attacks, which involves small but targeted

modifications (denoted by δi) to training data as a proxy for minimizing the success

rate of attacks during test time. While this method has shown practical success, its

generalization properties in classification settings remain poorly understood. In particular,

we are interested in answering the following questions:

what is the performance of adversarial training in high-dimensional linear models?

Does adversarial training lead to degradation in test accuracy on clean data? Is there

always a trade-off between standard and adversarial accuracies?

We addresses this questions by offering a detailed analysis of the robustness of

adversarial training within the context of binary linear classification. In a similar style

as the equations presented for standard training in Eq. (1.3), here we derive precise

asymptotic behavior for both standard and adversarial test errors under ℓq bounded

perturbations where q ≥ 1. Our approach here allows the use of general Gaussian

design beyond isotropic features where xi ∼ N (0,Σ). Our results yield exact error

formulas that elucidate the relationship between adversarial and standard errors and

the influence of factors such as the over-parameterization ratio, the data model, and the

attack budget. Notably, the error curves show that the optimal value of εtr decreases

as the over-parameterization ratio d/n decreases. Perhaps surprisingly our results also

illustrate that adversarial training can improve standard accuracy across a range of values

for over-parameterization ratio.

Chapter 4: In the next part of the thesis, we consider the more challenging case of

binary classification with neural networks. We focus on a one-hidden layer network with

6
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m hidden neurons where

Φ(w, x) :=
1√
m

m∑
i=1

aiσ(x
⊤wi). (1.6)

In the above, σ : R → R is the activation non-linearity, the weight vector w ∈ Rmd is

formed by stacking all wi ∈ Rd that is the weight vector entering the i’th hidden neuron.

Moreover, ai ∈ R is the second layer weight connecting the neuron i to the output, which

is assumed to be fixed during training. The ERM in this case is defined as

min
w
F (w) :=

1

n

n∑
i=1

f(yiΦ(w, xi)), (1.7)

where f is any convex and monotonically decreasing loss such as the logistic loss.

It is a well-known fact that one hidden-layer neural networks are “universal approxi-

mators”, that is given large enough m, they can approximate any real continuous function

arbitrarily well [8]. In practice, large neural networks are renowned for their ability to mem-

orize datasets, often achieving near-zero training loss via gradient descent optimization [9].

In particular, it is often empirically observed that despite the non-convex optimization

landscape and no explicit regularization, gradient descent for neural networks of even

small width leads the objective to the global optimum. Interestingly, despite the large

overparameterization and underlying model’s complexity, these solutions also demonstrate

sufficiently good generalization capabilities to new data [10, 11]. This motivates the

following questions which are the focus of our study:

How wide should a neural network be in the interpolating regime such that convergence

to the global optimum is guaranteed? What is the convergence behavior of gradient descent

under this over-parameterization condition? How do the solutions found by gradient

descent generalize to unseen data?

7
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We address these questions by providing a refined analysis of the generalization

behavior of neural networks trained with logistic loss through the lens of algorithmic

stability. Algorithmic stability is perhaps the oldest method for studying the generalization

abilities of learning algorithms [12, 13]. In particular, we use the on-average notion of

stability [14] which bounds the expected generalization gap of gradient descent at iteration

T as follows:

E [FD (wT )− F (wT )] ≲ E

[
1

n

n∑
i=1

∥∥wT − w¬i
T

∥∥] ,
where FD is the test error and both expectations are over data sampling. Additionally,

w¬i
T denotes the output of T iterations of gradient descent when the ith training sample is

removed from the training set. Therefore, it suffices to bound the right hand side in the

equation above. While algorithmic stability has been proven useful for convex objectives

[15, 14], the extensions to non-convex objectives lead to sub-optimal results [16, 17, 18].

Our findings in this chapter, extend the algorithmic stability framework to the non-convex

case of neural networks and obtains generalization rates akin to the convex case which

hold true even for very small width networks.

We note that the objective in Eq. (1.7) can be highly non-convex depending on the

dataset. Therefore unfavorable scenarios where gradient descent may converge to a local

optimum or saddle point are plausible. To tackle this issue, in the literature it is often the

case that an NTK-separabilty condition [19] for the dataset is assumed which guarantees

that the linearization of the network around initialization can separate the dataset with

some margin. Formally speaking, the NTK separability condition assumes that for almost

surely all n training samples from the data distribution there exists w⋆ ∈ Rmd and γ > 0

8
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such that ∥w⋆∥ = 1 and for all i ∈ [n],

yi

〈
∇wΦ (w0, xi) , w

⋆
〉
≥ γ.

In other words, the above condition guarantees that at a constant distance from initializa-

tion (i.e. w0 ∈ Rmd), there exists a weight vector that can classify the training set with

some margin γ.

Our main finding in this section shows that under the NTK separability condition and

with standard Gaussian initialization, gradient descent at iteration T decays the training

loss at the rate of Õ( 1
γ2T

) and achieves rate-optimal test loss bounds of order Õ( 1
γ2n

),

if the network width is only poly-logarithmically large with respect to the number of

training samples where,

m = Ω

(
log4(n)

γ4

)
.

This departure from existing generalization outcomes using algorithmic stability, which

typically require polynomial width of order m = Ω(n2), underscores the significance of

our approach. Moreover, our analysis presents improved generalization bounds and width

lower bounds compared to prior works employing alternative methods such as uniform

convergence via Rademacher complexity. The key to this improvement lies in leveraging

the Hessian information of the objective function during gradient descent iterates. We

demonstrate that neural networks of poly-logarithmically large width trained by the

logistic loss satisfy an approximate quasi-convexity property along the gradient descent

path. To demonstrate the practical implications of our findings, we specialize our analysis

to an XOR-distributed dataset for which we present refined width conditions.

9
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Chapter 5: Continuing with neural networks in the interpolating regime, in chapter 5,

we investigate the Normalized Gradient Descent (NGD) algorithm for accelerating the

training process. Unlike ordinary GD where the step-size is typically fixed, In NGD the

step-size at iteration t is chosen as,

ηt = Θ

(
1

F (wt)

)
.

Since in the interpolating regime F (wt) is decaying to zero, the step-size in NGD is

growing unboundedly as training progresses. Previous studies on NGD focused on the

case of linear classifiers in the interpolating regime [20, 21, 22]. We essentially extend

the analysis of NGD to neural networks. While in the previous chapter, we derived the

rate of O(1/T ) for ordinary gradient descent with neural nets, here we show that under

specific separability conditions, the training rate is exponentially decaying. Moreover,

we study for the first time, the finite-time test error performance of normalized GD for

convex objectives. In particular, we provide sufficient conditions for the generalization of

NGD and derive bounds of order O(1/n) on the expected generalization error, where n is

the training-set size.

Chapter 6: In the final section, we transition from centralized to the decentralized

learning scenarios. In decentralized learning, data is kept locally among several computing

agents (also called nodes) which are communicating only their parameters over a graph.

Formally, the decentralized gradient descent method (DGD) has the following update rule

for any node ℓ ∈ [N ] at iteration t:

w
(t+1)
ℓ =

∑
k∈Neigh(ℓ)

Aℓkw
(t)
k − ηt∇Fℓ

(
w

(t)
ℓ

)
.

10
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In the above, node ℓ computes a weighted summation of its neighbors parameters and then

implements one step of gradient descent on its local loss Fℓ(w
(t)
ℓ ). Each node has access

to nℓ training points and overall DGD updates aim at minimizing the global objective

F (·) with n training points where F (w) := 1
N

∑N
ℓ=1 Fℓ(w).

Our study focuses on decentralized learning for classification tasks in over-parameterized

settings, where the model has enough capacity to perfectly classify the whole dataset

correctly and thus can achieve zero training loss. Our research provides new finite-time

generalization bounds for DGD, extending existing knowledge predominantly focused on

centralized learning scenarios. Remarkably, these bounds for DGD are nearly equivalent

in order to those of centralized learning. In particular, for logistic regression we find that

with η = 1
T 1/3 and after T iterations, DGD with n training points reaches the test loss

rate of order,

Õ

(
1

T 2/3
+

1

n

)
,

which is comparable to the rate of Õ( 1
T
+ 1

n
) for centralized settings. Additionally, we

develop enhanced gradient methods based on normalized gradient descent for decentralized

learning with separable data. Our experiments demonstrate significant improvements in

training speed and finite-time generalization performance for our proposed algorithm in a

logistic regression task with linearly separable data.
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Chapter 2

High-dimensional Linear Models: Sharp

Asymptotics and Fundamental Limits

2.1 Introduction

Empirical Risk Minimization (ERM) includes a wide family of statistical inference

algorithms that are popular in estimation and learning tasks encountered in a range of

applications in signal processing, communications and machine learning. ERM methods

are often efficient in implementation, but first one needs to make certain choices: such as,

choose an appropriate loss function and regularization function, and tune the regularization

parameter. Classical statistics have complemented the practice of ERM with an elegant

theory regarding optimal such choices, as well as, fundamental limits, i.e., tight bounds

on their performance, e.g., [23]. These classical theories typically assume that the size

m of the set of observations is much larger than the dimension n of the parameter to

be estimated, i.e., m ≫ n. In contrast, modern inference problems are typically high-

dimensional, i.e. m and n are of the same order and often n > m [24, 25, 26]. This

chapter studies the fundamental limits of convex ERM in high-dimensions for generalized

12
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linear models.

Generalized linear models (GLM) relate the response variable yi to a linear model

aTi x0 via a link function: yi = φ(aTi x0). Here, x0 ∈ Rn is a vector of true parameters

and ai ∈ Rn, i ∈ [m] are the feature (or, measurement) vectors. Following the ERM

principle, x0 can be estimated by the minimizer of the empirical risk 1
m

∑m
i=1 L

(
yi, a

T
i x
)

for a chosen loss function L. Typically, ERM is combined with a regularization term and

among all possible choices arguably the most popular one is ridge regularization, which

gives rise to ridge-regularized ERM (RERM, in short):

x̂L,λ = arg min
x∈Rn

1

m

m∑
i=1

L
(
yi, a

T
i x
)
+
λ

2
∥x∥22. (2.1)

This chapter aims to provide answers to the following questions on fundamental limits of

(2.1): What is the minimum achievable (estimation/prediction) error of x̂L,λ? How does

this depend on the link function φ and how to choose L and λ to achieve it? What is the

sub-optimality gap of popular choices such as ridge-regularized least-squares (RLS)? How

do the answers to these questions depend on the over-parameterization ratio n/m? We

provide answers to the questions above for the following two popular instances of GLMs.

Linear models: yi = aTi x0 + zi, where zi
iid∼ PZ , i ∈ [m]. As is typical, for linear models,

we measure performance of x̂L,λ with the squared error: ∥x̂L,λ − x0∥22.

Binary models: yi = f(aTi x0), i ∈ [m] for a (possibly random) link function outputing

values {±1}, e.g., logistic, probit and signed models. We measure estimation performance

in terms of (normalized) correlation (x̂TL,λ x0)
/
∥x̂L,λ∥2∥x0∥2 and prediction performance

in terms of classification error P(y ̸= sign(x̂TL,λ a)) where the probability is over a fresh

data point (a, y).

All our results are valid under the following two assumptions.

13
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Assumption 2.1.1 (High-dimensional asymptotics). Throughout the chapter, we assume

the high-dimensional limit where m,n→ ∞ at a fixed ratio δ = m/n > 0.

Assumption 2.1.2 (Gaussian features). The feature vectors ai ∈ Rn, i ∈ [m] are iid

N (0, In).

Overview of Contributions. We are now ready to summarize this chapter’s main

contributions.

• For linear models, we prove a lower bound on the squared-estimation error of RERM;

see Theorem 2.2.1. We start with a system of two nonlinear equations that is parametrized

by the loss L and the regularizer λ, and determines the high-dimensional limit of the

error for the corresponding L and λ [26, ?]. By identifying an algebraic structure in these

equations, we establish a lower bound on their solution that holds for all choices of L and

λ.

• For binary models, we first derive a system a of three nonlinear equations whose unique

solution characterizes the statistical performance (correlation or classification error) of

RERM under mild assumptions on the loss and link functions L and f ; see Theorem 2.3.1.

Previous works have only considered specific loss and link functions or no regularization.

Second, we use this system of equations to upper bound the accuracy over this class of

(L, f)-pairs; see Theorem 2.3.2.

• Importantly, we present a recipe for optimally tuning L and λ in both linear and

binary models; see Lemmas 2.2.1 and 2.3.1. For specific models, such as linear model

with additive exponential noise, binary logistic and signed data, we numerically show

that the optimal loss function is convex and we use gradient-descent to optimize it. The

numerical simulations perfectly match with the theoretical predictions suggesting that

our bounds are tight.
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• We derive simple closed-form approximations to the aforementioned bounds; see

Corollaries 2.2.1 (linear) and 2.3.1 (binary). These simple (yet tight) expressions allow

us to precisely quantify the sub-optimality of ridge-regularized least-squares (RLS). For

instance, we show that optimally-tuned RLS is (perhaps surprisingly) approximately

optimal for logistic data and small signal strength, but the sub-optimality gap grows

drastically as signal strength increases. In the Appendix, we also include comparisons to

ERM without regularization and to a simple averaging method.

2.1.1 Prior Work

Our results fit in the rapidly growing recent literature on sharp asymptotics of

(possibly non-smooth) convex optimization-based estimators, e.g., [27, 28, 29, 30, 31,

32, 33, 34, 26, 35, 36, 37, 38, 39, 40, 41, 42, 43, 42, 43, 44, 45]. Most of these works

study linear models. Extensions to generalized linear models for the special case of

regularized LS were studied in [46], while more recently there has been a surge of

interest in RERM methods tailored to binary models (such as logistic regression or SVM)

[47, 1, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57].

Out of these works relatively few have focused on fundamental limits among families

of ERM (rather than specific instances). The papers [58, 36, 59] derive lower bounds and

optimal loss functions for the squared error of (unregularized) ERM for linear models. In

a related work, [60] studies robustness of these methods to the noise distribution. More

recently, [41] performed an in-depth analysis of fundamental limits of convex-regularized LS

for linear models of structured signals. For binary models, upper bounds on the correlation

of un-regularized ERM were only recently derived in [53]. This chapter contributes to

this line work. For linear models, we build on corresponding sharp error characterizations

in [35, 37] to extend the results of [58, 36, 59] to ridge-regularized ERM. Specifically, our
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results hold for all values of δ > 0 including the, so called, overparameterized regime

δ < 1. For binary models, our contribution is twofold: (i) we present sharp asymptotic

characterizations for RERM for a wide class of loss and link functions; (ii) we use these

to extend the correlation bounds of [53] to the regularized case.

On a technical level, the sharp asymptotics are derived using the convex Gaussian

min-max Theorem (CGMT) [33, ?]. In particular, we follow the machinery introduced in

[46, 51, 52, 53, 54] that applies the CGMT to binary models and predicts the performance

in terms of a system of few nonlinear equations. Our main technical contribution here is

proving existence and uniqueness of the solutions to these equations, which is critical as it

guarantees that our performance bounds hold for a wide class of loss and link functions.

Notation. We use boldface notation for vectors. We write i ∈ [m] for i = 1, 2, . . . ,m. For

a random variable H with density p
H
(h) that has a derivative p′

H
(h), ∀h ∈ R, we define its

Fisher information I(H) := E[
(
p′
H
(h)/p

H
(h)
)2
]. We write ML (x; τ) := minv

1
2τ
(x− v)2 +

L(v), for the Moreau envelope function and proxL (x; τ) := argminv
1
2τ
(x− v)2 +L(v) for

the proximal operator of the loss L : R → R at x with parameter τ > 0. We denote the

first order derivative of the Moreau-envelope function w.r.t x as: M′
L,1 (x; τ) :=

∂ML(x;τ)
∂x

.

Finally, for a sequence of random variables Xm,n that converges in probability to some

constant c in the high-dimensional asymptotic limit of Assumption 2.1.1, we write

Xm,n
P−→ c.

2.2 Linear Models

Consider data (yi,ai) from an additive noisy linear model: yi = aTi x0 + zi, zi
iid∼

PZ , i ∈ [m].

Assumption 2.2.1 (Noise distribution). The noise variables zi are iid distributed as

Z ∼ PZ , i ∈ [m], for a distribution PZ with zero mean and finite nonzero second moment.
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For loss functions that are lower semicontinuous (lsc), proper, and convex we focus on

the following version of (2.1) that is tailored to linear models:

x̂L,λ := arg min
x∈Rn

1

m

m∑
i=1

L
(
yi − aTi x

)
+
λ

2
∥x∥2. (2.2)

We assume without loss of generality that ∥x0∥2= 1 1.

2.2.1 Background on Asymptotic Performance

Prior works have investigated the limit of the squared error ∥x̂L,λ
− x0∥2 [26, ?].

Specifically, consider the following system of two equations in two unknowns α and τ :

E
[(

M′
L,1 (αG+ Z; τ)

)2 ]
=
α2 − λ2δ2τ 2

τ 2 δ
, (2.3a)

E
[
G · M′

L,1 (αG+ Z; τ)
]
=
α(1− λδτ)

τ δ
, (2.3b)

where G ∼ N (0, 1) and Z ∼ PZ is the noise variable. It has been shown in [26, ?] that

under appropriate regularity conditions on L and the noise distribution PZ , the system of

equations above has a unique solution (αL,λ > 0, τL,λ > 0) and α2
L,λ is the HD limit of

the squared-error, i.e.,

∥x̂L,λ − x0∥22
P−→ α2

L,λ. (2.4)

Here, we derive tight lower bounds on α2
L,λ over both the choice of L and λ. Our starting

point is the asymptotic characterization in (2.4), i.e., our results hold for all loss functions

and regularizer parameters for which (2.3) has a unique solution that characterizes the
1Suppose that ∥x0∥2= r > 0. Then, the optimization problem in (2.2) can be transformed to the

case x̃0 := x0/r (hence ∥x̃0∥= 1) by setting L̃(t) := L(rt), λ̃ := r2λ and Z̃ = Z/r. This implies that the
results of Section 2.2.2 can be reformulated by replacing Z with Z̃.
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HD limit of the square-error. To formalize this, we define the following collection of loss

functions L and noise distributions PZ :

Clin :=
{
(L, PZ)

∣∣∣∀λ > 0: (2.3) has a unique bounded solution (αL,λ
> 0, τL,λ

> 0) (2.5)

and (2.4) holds
}
.

We refer the reader to [26, Thm. 1.1] and [?, Thm. 2] for explicit characterizations of

(L, PZ) that belong to Clin. We conjecture that some of these regularity conditions (e.g.,

the differentiability requirement) can in fact be relaxed. While this is beyond the scope

of this chapter, if this is shown then automatically the results of this chapter formally

hold for a richer class of loss functions.

2.2.2 Fundamental Limits and Optimal Tuning

Our first main result, stated as Theorem 2.2.1 below, establishes a tight bound on the

achievable values of α2
L,λ for all regularization parameters λ > 0 and all choices of L such

that (L, PZ) ∈ Clin.

Theorem 2.2.1 (Lower bound on αL,λ). Let Assumptions 2.1.1, 2.1.2 and 2.2.1 hold.

For G ∼ N (0, 1) and noise random variable Z ∼ PZ, consider a new random variable

Va := aG + Z, parameterized by a ∈ R. Fix any δ > 0 and define α⋆ = α⋆(δ, PZ) as

follows:

α⋆ := min
0≤x<1/δ

[
a > 0 :

δ(a2 − x2 δ2) I(Va)
(1− x δ)2

= 1

]
. (2.6)

For any L such that (L, PZ) ∈ Clin, λ > 0 and α2
L,λ denoting the respective high-dimensional

limit of the squared-error as in (2.4), it holds that αL,λ ≥ α⋆.

The proof of the theorem is presented in Section 2.5.3.2. This includes showing that
18
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the minimization in (2.6) is feasible for any δ > 0. In general, the lower bound α⋆ can be

computed by numerically solving (2.6). For special cases of noise distributions (such as

Gaussian), it is possible to analytically solve (2.6) and obtain a closed-form formula for

α⋆, which is easier to interpret. While this is only possible for few special cases, our next

result establishes a simple closed-form lower bound on α⋆ that is valid under only mild

assumptions on PZ . For convenience, let us define hδ : R>0 → R>0,

hδ(x) :=
1

2

(
1− x− δ +

√
(1 + δ + x)2 − 4δ

)
. (2.7)

The subscript δ emphasizes the dependence of the function on the oversampling ratio δ.

We also note for future reference that hδ is strictly increasing for all fixed δ > 0.

Corollary 2.2.1 (Closed-form lower bound on α2
⋆). Let α⋆ be as in (2.6) under the

assumptions of Theorem 2.2.1. Assume that pZ is differentiable and takes strictly positive

values on the real line. Then, it holds that

α2
⋆ ≥ hδ (1/I(Z)) .

Moreover, the equality holds if and only if Z ∼ N (0, ζ2) for ζ > 0.

The proof of Corollary presented in Section 2.5.3.5 shows that the gap between the

actual value of α⋆ and hδ(1/I(Z)) depends solely on the distribution of Z. Informally: the

more Z resembles a Gaussian, the smaller the gap. The simple approximation of Corollary

2.2.1 is key for comparing the performance of optimally tuned RERM to optimally-tuned

RLS in Section 2.2.3.

A natural question regarding the lower bound of Theorem 2.2.1 is whether it is tight.

Indeed, the lower bound cannot be improved in general. This can be argues as follows.

Consider the case of additive Gaussian noise Z ∼ N (0, ζ2) for which I(Z) = 1/E[Z2] =
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1/ζ2. On the one hand, Corollary 2.2.1 shows that α2
⋆ ≥ hδ(ζ

2) and on the other hand, we

show in Lemma 2.2.2 that optimally-tuned RLS achieves this bound, i.e., α2
ℓ2 ,λopt

= hδ(ζ
2).

Thus, the case of Gaussian noise shows that the bound of Theorem 2.2.1 cannot be

improved in general.

Our next result reinforces the claim that the bound is actually tight for a larger class

of noise distributions.

Lemma 2.2.1 (Optimal tuning for linear RERM). For given δ > 0 and PZ, let (α⋆ >

0, x⋆ ∈ [0, 1/δ)) be the optimal solution in the minimization in (2.6). Denote λ⋆ = x⋆

and define V⋆ := α⋆G + Z. Consider the loss function L⋆ : R → R defined as L⋆(v) :=

−M
α
2
⋆−λ

2
⋆ δ

2

1−λ⋆ δ
·log(pV⋆ )

(v; 1) . Then for L⋆ and λ⋆, the equations (2.3) satisfy (α, τ) = (α⋆, 1).

We leave for future work coming up with sufficient conditions on PZ under which

(L⋆, PZ) ∈ Clin, which would imply that the bound of Theorem 2.2.1 is achieved by choosing

L = L⋆ and λ = λ⋆ in (2.2). In Figures 2.1(Left) and 2.2(Top Left), we numerically (by

using gradient descent) evaluate the performance of the proposed loss function L⋆, in the

case of Laplacian noise, suggesting that it achieves the lower bound α⋆ in Theorem 2.2.1.

See also Figure 2.3(Left) for an illustration of L⋆.

2.2.3 The Sub-optimality Gap of RLS in Linear Models

We rely on Theorem 2.2.1 to investigate the statistical gap between least-squares (i.e.

L(t) = t2 in (2.2)) and the optimal choice of L. As a first step, the lemma below computes

the high-dimensional limit of optimally regularized RLS.

Lemma 2.2.2 (Asymptotic error of optimally regularized RLS). Fix δ > 0 and noise

distribution PZ. Let x̂ ℓ2,λ be the solution to λ-regularized least-squares. Further let αℓ2,λ

denote the high-dimensional limit of ∥x̂ ℓ2,λ − x0∥22. Then, λ 7→ αℓ2,λ is minimized at
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λopt = 2E[Z2] and

α2
ℓ2,λopt

:= hδ
(
E
[
Z2
])
.

We combine this result with the closed-form lower bound of Corollary 2.2.1 to find

that α2
⋆/α

2
ℓ2 ,λopt

∈ [ω
δ
, 1] for

ωδ :=
hδ (1/I(Z))
hδ (E [Z2])

.

The fact that ωδ ≤ 1 follows directly by the increasing nature of the function hδ and the

Cramer-Rao bound E[Z2] ≥ 1/I(Z) (see Proposition 2.5.3(c)). Moreover, using analytic

properties of the function hδ it is shown in Section 2.5.3.6 that

α2
⋆/α

2
ℓ2 ,λopt

≥ ω
δ
≥ max

{
1− δ , (I(Z)E[Z2])−1} . (2.8)

The first term in the lower bound in (2.8) reveals that in the highly over-parameterized

regime (δ ≪ 1), it holds ωδ ≈ 1. Thus, optimally-regularized LS becomes optimal. More

generally, in the overparameterized regime 0 < δ < 1, the squared-error of optimally-tuned

LS is no worse than (1− δ)−1 times the optimal performance among all convex ERM.

The second term in (2.8) is more useful in the underparameterized regime δ ≥ 1 and

captures the effect of the noise distribution via the ratio (I(Z)E[Z2])−1 ≤ 1 (which is

closely related to the classical Fisher information distance studied e.g. in [61]). From

this and the fact that I(Z) = 1/E[Z2] iff Z ∼ N (0, ζ2) we conclude that ωδ attains

its maximum value 1 (thus, optimally-tuned LS is optimal) when Z is Gaussian. For

completeness, we remark that [62] has shown that when Z ∼ N (0, ζ2), then the minimum

mean square error (MMSE) is also given by hδ(ζ2). To further illustrate that our results

are informative for general noise distributions, consider the case of Laplacian noise, i.e.,

Z ∼ Laplace(0, b2). Using E[Z2] = 2b2 and I(Z) = b−2 in (2.8) we obtain ωδ ≥ 1/2, for

all b > 0 and δ > 0. Therefore we find that optimally-tuned RLS achieves squared-error
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that is at most twice as large as the optimal error, i.e. if Z ∼ Laplace(0, b2), b > 0 then

for all δ > 0 it holds that α2
ℓ2 ,λopt

≤ 2α2
⋆. See also Figures 2.1 and 2.2 for a numerical

comparison.

2.3 Binary Models

Consider data (yi,ai), i ∈ [m] from a binary model: yi = f(aTi x0) where f is a

(possibly random) link function outputting {±1}.

Assumption 2.3.1 (Link function). The link function f satisfies νf := E [S f(S)] ̸= 0,

for S ∼ N (0, 1).2

Under Assumptions 2.1.1, 2.1.2 and 2.3.1 we study the ridge-regularized ERM for

binary measurements:

ŵL,λ := arg min
w∈Rn

1

m

m∑
i=1

L
(
yia

T
i w
)
+
λ

2
∥w∥2. (2.9)

We also assume that ∥x0∥2= 1 since the signal strength can always be absorbed in the link

function, i.e., if ∥x0∥2= r > 0 then the results continue to hold for a new link function

f̃(t) := f(rt).

2.3.1 Asymptotic Performance

In contrast to linear models where we focused on squared error, for binary models, a

more relevant performance measure is normalized correlation corr ( ŵL,λ , x0 ). Our first

result determines the limit of corr ( ŵL,λ , x0 ). Specifically, we show that for a wide class
2See Section 2.5.4.1 for further discussion.
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of loss functions it holds that

ρL,λ
:= corr ( ŵL,λ , x0 ) :=

|ŵT
L,λ x0|

∥ŵL,λ∥2∥x0∥2
P−→
√

1

1 + σ2
L,λ

, (2.10)

where σ2
L,λ := α2

L,λ/µ
2
L,λ and (αL,λ, µL,λ) are found by solving the following system of three

nonlinear equations in three unknowns (α, µ, τ), for G,S iid∼ N (0, 1) :

E
[
S f(S)M′

L,1 (αG+ µSf(S); τ)
]
= −λµ, (2.11a)

τ 2 δ E
[ (

M′
L,1 (αG+ µSf(S); τ)

)2 ]
= α2, (2.11b)

τ δ E
[
GM′

L,1 (αG+ µSf(S); τ)
]
= α(1− λτδ). (2.11c)

To formalize this, we define the following collection of loss and link functions:

Cbin :=
{
(L, f)

∣∣∣ ∀λ > 0: (2.11) has a unique bounded solution (αL,λ > 0, µL,λ, τL,λ > 0)

and (2.10) holds
}
.

(2.12)

Theorem 2.3.1 (Asymptotics for binary RERM). Let Assumptions 2.1.1 and 2.1.2

hold and ∥x0∥2= 1. Let f : R → {−1,+1} be a link function satisfying Assumption

2.3.1. Further assume a loss function L with the following properties: L is convex, twice

differentiable and bounded from below such that L′(0) ̸= 0 and for G ∼ N (0, 1), we have

E[L(G)] <∞. Then, it holds that (L, f) ∈ Cbin.

We prove Theorem 2.3.1 in Section 2.5.2. Previous works have considered special

instances of this: [48, 52] study unregularized and regularized logistic-loss for the logistic

binary model, while [53] studies strictly-convex ERM without regularization. Here, we

follow the same approach as in [52, 53], who apply the convex Gaussian min-max theorem
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(CGMT) to relate the performance of RERM to an auxiliary optimization (AO) problem

whose first-order optimality conditions lead to the system of equations in (2.11). Our

technical contribution in proving Theorem 2.3.1 is proving existence and uniqueness of

solutions to (2.11) for a broad class of convex losses. As a final remark, the solution to

(2.11) (specifically, the parameter σ2
L,λ) further determines the high-dimensional limit of

the classification error for a fresh feature vector a ∼ N (0, In) (see Section 2.5.4.2) :

EL,λ := P
(
f
(
aTx0

) (
aT ŵL,λ

)
< 0
) P−→ P (σL,λG+ Sf(S) < 0) , G, S

iid∼ N (0, 1).

(2.13)

2.3.2 Fundamental Limits and Optimal Tuning

Thus far, we have shown in (2.10) and (2.13) that σL,λ predicts the high-dimensional

limit of the correlation and classification-error of the RERM solution ŵL,λ. In fact,

smaller values for σL,λ result in better performance, i.e. higher correlation and classification

accuracy (see Section 2.5.4.2). In this section we derive a lower bound on σL,λ characterizing

the statistical limits of RERM for binary models.

Theorem 2.3.2 (Lower Bound on σL,λ). Let Assumptions 2.1.1, 2.1.2 and 2.3.1 hold.

For G,S iid∼ N (0, 1) define the random variable Ws := sG + S f(S) parameterized by

s ∈ R. Fix any δ > 0 and define

σ⋆ = σ⋆(δ, f) := min
0≤x<1/δ

[
s > 0 :

1− s2(1− s2I(Ws))

δs2(s2I(Ws) + I(Ws)− 1)
− 2x+ x2δ(1 +

1

s2
) = 1

]
.

(2.14)

For any (L, f) ∈ Cbin, λ > 0 and σ2
L,λ the respective high-dimensional limit of the error as

in (2.10), it holds that σL,λ ≥ σ⋆.
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We prove Theorem 2.3.2 in Section 2.5.4.3, where we also show that the minimization

in (2.14) is always feasible. In view of (2.10) and (2.13) the theorem’s lower bound

translates to an upper bound on correlation and test accuracy. Note that σ⋆ depends on

the link function only through the Fisher information of the random variable sG+S f(S).

This parallels the lower bound of Theorem 2.2.1 on linear models with the random variable

S f(S) effectively playing the role of the noise variable Z.

Next we present a useful closed-form lower bound for σ⋆. For convenience define the

function Hδ : R>1 → R>0 parameterized by δ > 0 as following,

Hδ(x) := 2
(
−δ − x+ δ x+

√
(−δ − x+ δ x)2 + 4δ(x− 1)

)−1

. (2.15)

Corollary 2.3.1 (Lower bound on σ⋆). Let σ⋆ be as in (2.14). Fix any δ > 0 and assume

that f(·) is such that the random variable Sf(S) has a differentiable and strictly positive

probability density on the real line. Then,

σ2
⋆ ≥ Hδ ( I(Sf(S)) ) .

Corollary 2.3.1 can be viewed as an extension of Corollary 2.2.1 to binary models.

The proof of the corollary presented in Section 2.5.4.6 further reveals that the more the

distribution of Sf(S) resembles a Gaussian distribution, the tighter the gap is, with

equality being achieved if and only if Sf(S) is Gaussian.

Our next result strengthens the lower bound of Theorem 2.3.2 by showing existence

of a loss function and regularizer parameter for which the system of equations (2.11) has

a solution leading to σ⋆.

Lemma 2.3.1 (Optimal tuning for binary RERM). For given δ > 0 and binary link

function f , let (σ⋆ > 0, x⋆ ∈ [0, 1/δ)) be the optimal solution in the minimization in (2.14).
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Denote λ⋆ = x⋆ and define W⋆ := σ⋆G+ Sf(S). Consider the loss function L⋆ : R → R

L⋆(x) := −M η(λ⋆δ−1)
δ(η−I(W⋆ ))

Q+ λ⋆δ−1
δ(η−I(W⋆ ))

log
(
p
W⋆

) (x; 1) , (2.16)

where η := 1− I(W⋆) · (σ2
⋆ − σ2

⋆λ⋆δ − λ⋆δ)− λ⋆δ and Q(w) := w2/2. Then for L⋆ and λ⋆,

the equations (2.11) satisfy (α, µ, τ) = (σ⋆, 1, 1).

Lemma 2.3.1 suggests that if L⋆ satisfies the assumptions of Theorem 2.3.1, then

σL⋆,λ⋆ = σ⋆. In Figures 2.1 and 2.2 and for the special cases of Signed and Logistic models,

we verify numerically that performance of candidates L⋆ and λ⋆ reaches the optimal errors

. This suggests that for these models, Lemma 2.3.1 yields the optimal choices for L and

λ. See also Figure 2.3(Right) for an illustration of L⋆.

2.3.3 The Sub-optimality Gap of RLS in Binary Models

We use the optimality results of the previous section to precisely quantify the sub-

optimality gap of RLS. First, the following lemma characterizes the performance of

RLS.

Lemma 2.3.2 (Asymptotic error of RLS). Let Assumptions 2.1.1, 2.1.2 and 2.3.1 hold.

Recall that νf = E[Sf(S)] ̸= 0. Fix any δ > 0 and consider solving (2.9) with the

square-loss L(t) = (t − 1)2 and λ ≥ 0. Then, the system of equations in (2.11) has a

unique solution (αℓ2,λ, µℓ2,λ, τℓ2,λ) and

σ2
ℓ2,λ

=
α2
ℓ2,λ

µ2
ℓ2,λ

=
1

2δν2f

(
1− δν2f +

2 + 2δ + λδ + δν2f ((2 + λ)δ − 6)√
4 + 4δ(λ− 2) + δ2(λ+ 2)2

)
. (2.17)

Moreover, it holds that σ2
ℓ2,λ

≥ σ2
ℓ2,λopt

:= Hδ((1 − ν2f )
−1) with equality attained for the

optimal tuning λopt = 2(1− ν2f )/(δ ν
2
f ).
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In resemblance to Lemma 2.2.2 in which RLS performance for linear measurements

only depends on the second moment E[Z2] of the additive noise distribution, Lemma 2.3.2

reveals that the corresponding key parameter for binary models is 1− ν2f . Interestingly,

the expression for σ2
ℓ2,λopt

conveniently matches with the simple bound on σ2
⋆ in Corollary

2.3.1. Specifically, it holds for any δ > 0 that

1 ≥ σ2
⋆

σ2
ℓ2 ,λopt

≥ Ωδ :=
Hδ ( I(S f(S)) )
Hδ

(
(1− ν2f )

−1
) . (2.18)

We note that Hδ(·) is strictly-decreasing in its domain for a fixed δ > 0. Furthermore,

the Cramer-Rao bound (see Prop. 2.5.3 (d)) requires that I(Sf(S)) ≥ (Var[Sf(S)])−1 =

(1 − ν2f )
−1. Combining these, confirms that Ωδ ≤ 1. Furthermore Ωδ = 1 and thus

σ2
⋆ = σ2

ℓ2 ,λopt
iff the random variable Sf(S) is Gaussian. However, for any binary link

function satisfying Assumption 2.3.1, Sf(S) does not take a Gaussian distribution (see

Section 2.5.4.1), thus (2.18) suggests that square-loss cannot be optimal. Nevertheless, one

can use (2.18) to argue that square-loss is (perhaps surprisingly) approximately optimal

for certain popular models.

For instance consider logistic link function f̃r defined as P(f̃r(x) = 1) = (1 +

exp(−rx))−1, where r := ∥x0∥2. Using (2.18) and maximizing the sub-optimality gap

1/Ωδ over δ > 0, we find that if f = f̃r=1 then for all δ > 0 it holds that

σ2
ℓ2 ,λopt

≤ 1.003 σ2
⋆.

Thus, for a logistic link function and ∥x0∥2= 1 optimally-tuned RLS is approximately

optimal! This is in agreement with the key message of Corollary 2.3.1 on the critical

role played by Sf(S), since for the logistic model and small values of r, its density is

“close” to a Gaussian. However, as signal strength increases and f̃r converges to the sign
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Figure 2.1: The lower bounds on error derived in this paper, compared to RLS for the
linear model with Z ∼ Laplace(0, 1) (Left), and for the binary Signed model (Middle) and
binary Logistic model with ∥x0∥= 10 (Right). The red squares denote the performance of
the optimally tuned RERM as derived in Lemmas 2.2.1 and 2.3.1. See Section 5.3 for
details and additional numerical results.

function (f̃r(·) → sign(·)), there appears to be room for improvement between RLS and

what Theorem 2.3.2 suggests to be possible. This can be precisely quantified using (2.18).

For example, for r = 10 it can be shown that σ2
ℓ2 ,λopt

≤ 2.442 σ2
⋆, ∀δ > 0. Lemma 2.3.1

provides the recipe to bridge the gap in this case. Indeed, Figures 2.1 and 2.2 show that

the optimal loss function L predicted by the lemma outperforms RLS for all values δ and

its performance matches the best possible one specified by Theorem 2.3.2.

2.4 Conclusion and Future work

This paper derives fundamental lower bounds on the statistical accuracy of ridge-

regularized ERM (RERM) for linear and binary models in high-dimensions. It then derives

simple closed-form approximations that allow precisely quantifying the sub-optimality

gap of RLS. In Section 2.5.6, these bounds are further used to study the benefits of

regularization by comparing (RERM) to un-regularized ERM.

Among several interesting directions of future work, we highlight the following. First,

our lower bounds make it possible to compare RERM to the optimal Bayes risk [63, 64].
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Second, it is interesting to extend the analysis to GLMs for arbitrary link functions beyond

linear and binary studied here. A third exciting direction is investigating the fundamental

limits of RERM in the presence of correlated (Gaussian) features.
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2.5 Proofs and additional results

2.5.1 Useful facts

2.5.1.1 On Moreau Envelopes

In Proposition 2.5.1, some of the differential properties of Moreau-envelope functions,

used throughout the paper are summarized (cf. [2]):

Proposition 2.5.1 (Properties of Moreau-envelopes). Let L be a lower semi-continuous

and proper function. Then

(a) The value ML (x; τ) is finite and depends continuously on (x, τ), with ML (x; τ) →

L(x) as τ → 0+ and ML (x; τ) → mint∈R L(t) as τ → +∞, for all x ∈ R.

(b) The first order derivatives of the Moreau-envelope of a function L are derived as

follows:

M′
L,1 (x; τ) :=

∂ML (x; τ)

∂x
=

1

τ
(x− proxL (x; τ)), (2.19)

M′
L,2 (x; τ) :=

∂ML (x; τ)

∂τ
= − 1

2τ 2
(x− proxL (x; τ))

2. (2.20)

Also if L is differentiable then

M′
L,1 (x; τ) = L′(proxL (x; τ)), (2.21)

M′
L,2 (x; τ) = −1

2
(L′(proxL (x; τ))

2. (2.22)

(c) Additionally, based on the relations above, if L is twice differentiable then the following
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is derived for its second order derivatives :

M′′

L,1 (x; τ) =
L′′(proxL (x; τ))

1 + τL′′(proxL (x; τ))
, (2.23)

M′′

L,2 (x; τ) =

(
L′(proxL (x; τ))

)2
L′′(proxL (x; τ))

1 + τ L′′(proxL (x; τ))
. (2.24)

The following proposition gives the recipe for inverting Moreau-envelpe of a convex

function:

Proposition 2.5.2 (Inverse of the Moreau envelope). [59, Result. 23] For τ > 0 and f a

convex, lower semi-continuous function such that g(·) = Mf (·; τ), the Moreau envelope

can be inverted so that f(·) = −M−g (·; τ) .

Lemma 2.5.1 (e.g., [53], Lemma A.1.). The function H : R3 → R defined as follows

H(x, p, τ) =
1

2τ
(x− p)2, (2.25)

is jointly convex in its arguments.

2.5.1.2 On Fisher Information

In Proposition 2.5.3 we collect some useful properties of the Fisher Information for

location. For the proofs and more details, we refer the interested reader to [65].

Proposition 2.5.3 (Properties of Fisher Information, [65]). Let X be a zero-men random

variable with probability density pX satisfying the following conditions: (i) pX(x) >

0,−∞ < x <∞; (ii) p′X(x) exists; and (iii) The following integral exists:

I(X) =

∫ ∞

−∞

(p′X(x))
2

pX(x)
dx.
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The Fisher information for location I(X) defined above satisfies the following properties.

(a) I(X) := E [(ξX(X))2] = E
[ (

p′X(X)

pX(X)

)2 ]
.

(b) For any c ∈ R, I(X + c) = I(X).

(c) For any c ∈ R, I(cX) = I(X)/c2.

(d) (Cramer-Rao bound) I(X) ≥ 1
E[X2]

, with equality if and only if X is Gaussian.

(e) For two independent random variables X1, X2 satisfying the three conditions above

and any θ ∈ [0, 1], it holds that I(X1 +X2) ≤ θ2I(X1) + (1− θ)2I(X2).

(f) (Stam’s inequality) For two independent random variables X1, X2 satisfying the

three conditions above, it holds that

I(X1 +X2) ≤
I(X1) · I(X2)

I(X1) + I(X2)
. (2.26)

Moreover equality holds if and only if X1 and X2 are independent Gaussian random

variables.

Lemma 2.5.2. Let G ∼ N (0, 1) and Z be a random variable satisfying the assumptions

of Proposition 2.5.3. For any a ∈ R, use the shorhand Va := aG+ Z. The following are

true:

(a) lima→0 a
2I(Va) = 0.

(b) lima→+∞ a2I(Va) = 1.

Proof: To show part (a), we use Proposition 2.5.3(e) with θ = 0 to derive that

lim
a→0

a2 I(Va) ≤ lim
a→0

a2 I(Z) = 0, (2.27)
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where the second step follows by the fact that I(Z) is finite for any Z satisfying the

assumption of the lemma. In order to prove part (b), we apply Proposition 2.5.3(c) to

deduce that :

lim
a→+∞

a2 I(Va) = lim
a→+∞

a2 I(aG+ Z) = lim
a→+∞

I(G+
1

a
Z) = 1, (2.28)

2.5.1.3 On Min-max Duality

Theorem 2.5.1 (Sion’s min-max theorem [66]). Let X be a compact convex subset of

a linear topological space and Y a convex subset of a linear topological space. If f is a

real-valued function on X × Y with f(x, ·) upper semicontinuous and quasi-concave on

Y, ∀x ∈ X, and f(·, y) lower semicontinuous and quasi-convex on X, ∀y ∈ Y then,

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y).

2.5.2 Asymptotics for Binary RERM: Proof of Theorem 2.3.1

In this section, we prove that under the assumptions of Theorem 2.3.1, the system of

equations in (2.11) has a unique and bounded solution.

2.5.2.1 Asymptotic Error of RERM via an Auxiliary Min-Max Optimization

As mentioned in Section 2.3, the proof of Theorem 2.3.1 has essentially two parts. The

first part of the proof uses the CGMT [?] and the machinery developed in [?, 46, 52, 67]

to relate the properties of the RERM solution to an Auxiliary Optimization (AO). The

detailed steps follow mutatis-mutandis analogous derivations in recent works [?, 46, 52, 67,

51] and are omitted here for brevity. Instead, we summarize the finding of this analysis

in the following proposition.
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Proposition 2.5.4. Consider the optimization problem in (2.9). If the min-max opti-

mization in (2.29) has a unique and bounded solution (α⋆ > 0, µ⋆, υ⋆ > 0, γ⋆ > 0), then

the values of αL,λ and µL,λ corresponding to L and λ defined in (2.66)-(2.67) are derived

by setting αL,λ = α⋆ and µL,λ = µ⋆, where

(α⋆, µ⋆, υ⋆, γ⋆) = arg min
(α,µ,υ)∈

R≥0×R×R>0

max
γ∈R>0

[
Θ(α, µ, υ, γ) :=

γυ

2
− αγ√

δ
+
λµ2

2
+
λα2

2
+

E
[
ML

(
αG+ µSf(S);

υ

γ

)]]
,

(2.29)

and G,S iid∼ N (0, 1).

The system of equations in (2.11) is derived by the first-order optimality conditions

of the function Θ based on its arguments (α, µ, υ, γ), i.e., by imposing ∇Θ = 0. In fact,

similar to [53], it only takes a few algebraic steps to simplify the four equations in ∇Θ = 0

to the three equations in (2.11).

For the rest of this section, we focus on the second part of the proof of Theorem

2.3.1 regarding existence/uniqueness of solutions to (2.11), which has not been previously

studied in our setting.

2.5.2.2 Properties of Θ : Strict Convexity-Strict Concavity and Boundedness

of Saddle Points

We will show in Lemma 2.5.4 that for proving uniqueness and boundedness of the

solutions to (2.11), it suffices to prove uniqueness and boundedness of the saddle point

(α⋆, µ⋆, υ⋆, γ⋆) of Θ. In fact, a sufficient condition for uniqueness of solutions in (2.29)

is that Θ is (jointly) strictly convex in (α, µ, υ) and strictly-concave in γ (e.g., see [53,

Lemma B.2.]). Lemma 2.5.3, which is key to the proof of Theorem 2.3.1, derives sufficient

conditions on L guaranteeing strict convexity-strict concavity of Θ as well as conditions

34



High-dimensional Linear Models: Sharp Asymptotics and Fundamental Limits Chapter 2

on L ensuring boundedness of (α⋆, µ⋆, υ⋆, γ⋆).

Lemma 2.5.3 (Properties of Θ). Let L(·) be a lower semi-continuous (lsc), proper

and convex function and λ > 0. Then the following statements hold for the function

Θ : R≥0 × R× R>0 × R>0 → R in (2.29),

(a) If L is bounded from below, then for all solutions (α⋆, µ⋆, υ⋆, γ⋆) there exists a

constant C > 0 such that α⋆ ∈ [0, C], µ⋆ ∈ [−C,C] and υ⋆ ∈ [0, C].

(b) If L is bounded from below and E[L(G)] <∞ for G ∼ N (0, 1), then there exists a

constant C > 0 such that γ⋆ ∈ [0, C].

(c) In addition to the assumptions of parts (a) and (b) assume that L′(0) ̸= 0, then

γ⋆ > 0, α⋆ > 0 and υ⋆ > 0.

(d) If L is twice differentiable and non-linear, then Θ is jointly strictly-convex in

(α, µ, υ).

(e) If L satisfies the assumptions of part (c) then Θ is strictly-concave in γ.

2.5.2.3 Proof of Lemma 2.5.3

Statement (a). Let Θ̃(α, µ, υ) := supγ∈R>0
Θ(α, µ, υ, γ). For all feasible (α, µ, υ) it

holds

Θ̃ (α, µ, υ) ≥ Θ(α, µ, υ, 1)

=
υ

2
− α√

δ
+
λ(α2 + µ2)

2
+ E

[
ML (αG+ µSf(S); υ)

]
. (2.30)

Recall that L is bounded from below, i.e., for all L(x) ≥ B, ∀x ∈ R for some real B. By

definition of Moreau-envelope function the same bound holds for ML, i.e. for all x ∈ R
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and y ∈ R>0, we have that ML (x; y) ≥ B. Using this, we proceed from (2.30) to derive

that:

Θ̃ (α, µ, υ) ≥ B +
υ

2
− α√

δ
+
λ(α2 + µ2)

2
. (2.31)

Based on (2.31) that holds for all feasible (α, µ, υ) and using the fact that λ > 0 it can

be readily shown that

lim
α→+∞

min
(µ,υ)∈R×R>0

Θ̃ (α, µ, υ) = +∞, lim
υ→+∞

min
(α,µ)∈R≥0×R

Θ̃ (α, µ, υ) = +∞,

lim
µ→±∞

min
(α,υ)∈R≥0×R>0

Θ̃ (α, µ, υ) = +∞.

Thus, the function Θ̃ (α, µ, υ) is level-bounded in R≥0 × R × R>0. This implies the

boundedness of solutions (α⋆, µ⋆, υ⋆) to (2.29) [2, Thm. 1.9], as desired.

Statement (b). Under the assumptions of the lemma, we know from part (a) that the

set of solutions to (α⋆, µ⋆, υ⋆) in (2.29) is bounded. Thus we can apply the Min-Max

Theorem 2.5.1 and flip the order of minimum and maximum to write:

min
(α,µ,υ)

∈ [0,C]×[−C,C]×(0,C]

max
γ ∈R≥0

Θ(α, µ, υ, γ) = max
γ ∈R≥0

[
Θ̂(γ) := min

(α,µ,υ)
∈ [0,C]×[−C,C]×(0,C]

Θ(α, µ, υ, γ)
]
.

(2.32)

Without loss of generality, we assume C large enough such that C > max{1, 1/
√
δ}. Then,

by choosing α = 1, µ = 0 and υ = 1/
√
δ, we find that for all γ > 0:

Θ̂(γ) ≤ Θ
(
1, 0, 1/

√
δ, γ
)
= − γ

2
√
δ
+
λ

2
+ E

[
ML

(
G;

1

γ
√
δ

)]
. (2.33)

Note that for any y ∈ R: ML

(
y; 1

γ
√
δ

)
= minx∈R

γ
√
δ

2
(x − y)2 + L(x) ≤ L(y). Thus we

36



High-dimensional Linear Models: Sharp Asymptotics and Fundamental Limits Chapter 2

derive from (2.33):

Θ̂(γ) ≤ − γ

2
√
δ
+
λ

2
+ E [L(G) ] . (2.34)

But E [L(G)] is assumed to be bounded, thus it can be concluded from (2.34) that the

function Θ̂(γ) is level-bounded, i.e.,

lim
γ→+∞

Θ̂(γ) = −∞. (2.35)

This implies boundedness of the set of maximizers γ⋆, which completes the proof.

Statement (c). First, we show that γ⋆ > 0. On the contrary, assume that γ⋆ = 0. Then

based on (2.29) and Proposition 2.5.1(a),

(α⋆, µ⋆, υ⋆) = arg min
(α,µ,υ)

∈ [0,C]×[−C,C]×(0,C]

[
λα2

2
+
λµ2

2
+ min

t∈R
L(t)

]
,

implying that α⋆ = µ⋆ = 0 and Θ(α⋆, µ⋆, υ⋆, γ⋆) = mint∈R L(t). On the other hand, in

this case we find that for any γ̃ ∈ (0, C],

Θ(α⋆, µ⋆, υ⋆, γ̃) = γ̃υ⋆ +ML

(
0;
υ⋆

γ̃

)
> min

t∈R
L(t).

To deduce the inequality, we used the fact that ML (0; τ) = mint∈R t
2/(2τ) + L(t) >

mint∈R L(t) for all τ ≥ 0, provided that L(t) does not attain its minimum at t = 0. Thus,

since by assumption L′(0) ̸= 0, we deduce that Θ(α⋆, µ⋆, υ⋆, γ̃) > Θ(α⋆, µ⋆, υ⋆, γ⋆), which

is in contradiction to the optimality of γ⋆. This shows that γ⋆ > 0 for any loss function

satisfying the assumptions of the lemma. Next, we prove that α⋆ > 0. if α⋆ = 0, then
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based on the optimality of α⋆ it holds that

∂Θ

∂α

∣∣∣
(α⋆,µ⋆,υ⋆,γ⋆)

≥ 0,

thus based on (2.29),

E
[
G · M′

ℓ,1

(
µ⋆ Sf(S);

υ⋆

γ⋆

)]
− γ⋆√

δ
≥ 0. (2.36)

Since by assumption G and S f(S) are independent and E[G] = 0, we deduce from (2.36)

that γ⋆ = 0, which is in contradiction to the previously proved fact that γ⋆ > 0. This

shows that α⋆ > 0, as desired. Finally, we note that if υ⋆ = 0, then based on (2.29) and

in light of Proposition 2.5.1(a), we find that,

(α⋆, µ⋆, γ⋆) = arg min
(α,µ)

∈ [0,C]×[−C,C]

max
γ ∈ (0,C]

[
−αγ√

δ
+
λα2

2
+
λµ2

2
+ E

[
L (αG+ µSf(S))

]]
,

which based on the decreasing nature of RHS in terms of γ, implies that either γ⋆ = 0 or

α⋆ = 0. However, we proved that both γ⋆ and α⋆ are positive. This proves the desired

result υ⋆ ̸= 0 and completes the proof of this part.

Statement (d). Let w1 := (α1, µ1, τ1) and w2 := (α2, µ2, τ2) be two distinct points in

the space R≥0 × R× R>0. We consider two cases :

Case I : (α1, µ1) = (α2, µ2)

In this case, it suffices to show that for fixed α > 0 and µ and under the assumptions

of the lemma, the function E [ML (αG+ µSf(S); τ)] is strictly-convex in τ . Denote by

p(α, µ, τ) := proxL (αG+ µSf(S); τ). First, we derive second derivate of the Moreau-

envelope function with respect to τ by applying (2.24), and further use convexity of L to
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derive that :

∂2

∂τ 2
E
[
ML (αG+ µSf(S); τ)

]
= E


(
L′ (p (α, µ, τ))

)2
L′′ (p (α, µ, τ))

1 + τ L′′ (p (α, µ, τ))

 ≥ 0. (2.37)

Next we show that the inequality above is strict if L(·) is a non-linear function. First we

note that combining (2.19) and (2.21) yields that for all x ∈ R:

L′(proxL (x; τ)) =
1

τ
(x− proxL (x; τ)),

L′′(proxL (x; τ)) =
1− prox′L,1 (x; τ)

τ · prox′L,1 (x; τ)
.

Using these relations and denoting by p′(α, µ, τ) := prox′L,1 (αG+ µSf(S); τ), we can

rewrite (2.37) as following :

∂2

∂τ 2
E
[
ML (αG+ µSf(S); τ)

]
=

1

τ 3
E


(
αG+ µSf(S)− p(α, µ, τ)

)2(
1− p′(α, µ, τ)

)
p′(α, µ, τ)

(
1 + τ L′′(p(α, µ, τ))

)
 . (2.38)

It is straightforward to see that if α > 0, then αG+ µSf(S) has positive density in the

real line. Thus from (2.38) we find that :

∂2

∂τ 2
E
[
ML (αG+ µSf(S); τ)

]
= 0 ⇐⇒ ∃c ∈ R s.t. ∀x ∈ R : proxL (x; τ) = x+ c.

(2.39)
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Recalling (2.19), we see that the condition in (2.39) is satisfied if and only if :

∃c1 , c2 ∈ R : s.t. ∀x ∈ R : ML (x; τ) = c1x+ c2 . (2.40)

Using inverse properties of Moreau-envelope in Proposition 2.5.2, we derive that the loss

function L(·) satisfying (2.40) takes the following shape,

∀x ∈ R : L(x) = −M−c1I−c2 (x; τ) = c1x+
τc2

1

2
+ c2 .

where I(·) is the identity function i.e. I(t) = t, ∀t ∈ R. Therefore if L is non-linear

function as required by the assumption of the lemma, E [ML (αG+ µSf(S); τ)] has a

positive second derivative with respect to τ and consequently Θ is strictly-convex in υ.

Case II : (α1, µ1) ̸= (α2, µ2)

In this case we use definition of strict-convexity to prove the claim. First, for compactness

we define :

pi : = proxL (αiG+ µiSf(S); τi) = argmin
w

1

2τi
(αiG+ µiSf(S)− w)2 + L(w),

Ω(wi) = Ω(αi, µi, τi) :=
λµ2

i

2
+
λα2

i

2
+ E

[
ML (αiG+ µiSf(S); τi)

]

for i = 1, 2. Based on the way we defined the functions Θ and Ω, one can see that in

order to show strict-convexity of Θ in (α, µ, υ) it suffices to prove strict-convexity of Ω in

(α, µ, τ). Let θ ∈ (0, 1), and denote τθ := θτ1 + θτ2, αθ := θα1 + θα2 and µθ := θµ1 + θµ2.
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With this notation,

Ω(θw1 + θw2) ≤ (2.41)

λµ2
θ

2
+
λα2

θ

2
+ E

[
1

2τθ

(
αθG+ µθSf(S)− (θp1 + θp2)

)2
+ L

(
θp1 + θp2

)]
=
λµ2

θ

2
+
λα2

θ

2
+ E

[
H
(
αθG+ µθSf(S), θp1 + θp2, τθ

)
+ L

(
θp1 + θp2

) ]
≤ λµ2

θ

2
+
λα2

θ

2
+

E
[
θH
(
α1G+ µ1Sf(S), p1, τ1

)
+ θH

(
α2G+ µ2Sf(S), p2, τ2

)
+ L

(
θp1 + θp2

) ]
.

(2.42)

The first inequality above follows by the definition of the Moreau envelope. The equality

in the second line uses the definition of the function H : R3 → R in (2.25). Finally, the

last inequality follows from convexity of H as proved in Lemma 2.5.1.

Continuing from (2.42), we use convexity of L to find that

Ω(θw1 + θw2) ≤
λµ2

θ

2
+
λα2

θ

2
+

E
[
θH(α1G+ µ1Sf(S), p1, τ1) + θH(α2G+ µ2Sf(S), p2, τ2) + θL(p1) + θL(p2)

]
(2.43)

Additionally since λ > 0 and (α1, µ1) ̸= (α2, µ2), we find that :

λµ2
θ

2
+
λα2

θ

2
<
λ(θµ2

1 + θµ2
2)

2
+
λ(θα2

1 + θα2
2)

2
.
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Thus proceeding from (2.43) we conclude strict-convexity of the function Ω :

Ω(θw1 + θw2) <
λ(θµ2

1 + θµ2
2)

2
+
λ(θα2

1 + θα2
2)

2
+

E
[
θH(α1G+ µ1Sf(S), p1, τ1) + θH(α2G+ µ2Sf(S), p2, τ2) + θL(p1) + θL(p2)

]
= θΩ(w1) + θΩ(w2).

This completes the proof of part (d).

Statement (e). Based on the proof of part (c) and under the assumptions of the lemma

we have α⋆ ̸= 0. Thus we see that the random variable αG + µSf(S) has a positive

probability density everywhere in the desired domain of the optimization problem in

(2.29). Next, we use the result in [53, Proposition A.6], which states that if the random

variable X has a positive density everywhere and L is continuously differentiable with

L′(0) ̸= 0 then

E
[
ML (X; 1/γ)

]
is strictly concave in γ. Based on this, Θ is strictly-concave in γ. This completes the

proof of the lemma.

2.5.2.4 From (2.29) to (2.11)

The following lemma connects the min-max optimization (2.29) to the system of

equations in (2.11)

Lemma 2.5.4 (Uniqueness of solutions to (2.11)). Assume that the optimization problem

in (2.29) yields a unique and bounded solution (α > 0, µ, υ > 0, γ > 0). Then the equations

(2.11) have a unique and bounded solution (α > 0, µ, τ > 0) where τ = υ/γ.

Proof: By direct differentiation with respect to the variables (µ, α, υ, γ), the first
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order optimality conditions of the min-max optimization in (2.29) are as follows:

E
[
Sf(S)M′

ℓ,1

(
αG+ µSf(S);

υ

γ

)]
= −λµ, λα + E

[
GM′

ℓ,1

(
αG+ µSf(S);

υ

γ

)]
=

γ√
δ
,

1

γ
E
[
M′

ℓ,2

(
αG+ µSf(S);

υ

γ

)]
= −γ

2
, − υ

γ2
E
[
M′

ℓ,2

(
αG+ µSf(S);

υ

γ

)]
+
υ

2
=

α√
δ
.

(2.44)

Assumptions of the lemma imply that the saddle point of the optimization problem

in (2.29) is unique and bounded, therefore (2.44) yields a unique bounded solution

(α > 0, µ, υ > 0, γ > 0). By denoting τ = υ/γ and using the fact that M′
L,2 (x; τ) =

−1
2
(M′

L,1 (x; τ))
2 (as implied by (2.19)-(2.20)) we reach the Equations (2.11) i.e.,

E
[
S f(S) · M′

L,1 (αG+ µSf(S); τ)
]
= −λµ, (2.45a)

τ 2 δ · E
[ (

M′
L,1 (αG+ µSf(S); τ)

)2 ]
= α2, (2.45b)

τ δ · E
[
G · M′

L,1 (αG+ µSf(S); τ)
]
= α(1− λτδ). (2.45c)

The uniqueness of (α > 0, µ, τ > 0) as the solution to (2.45) follows from the uniqueness

of the solution (α > 0, µ, υ > 0, γ > 0) to (2.44). In particular if there are two distinct

solutions (α1, µ1, τ1) and (α2, µ2, τ2) to the Equations (2.45), then we reach contradiction

by noting that (α1, µ1, υ1 := α1/
√
δ, γ1 := α1/(τ1

√
δ)) and (α2, µ2, υ2 := α2/

√
δ, γ2 :=

α2/(τ2
√
δ)) are two distinct points satisfying the Equations (2.44). This completes the

proof of the lemma.

2.5.2.5 Completing the proof of Theorem 2.3.1

We are now ready to complete the proof of Theorem 2.3.1. Based on Lemma 2.5.4,

for the system of equations in (2.11) to have a unique and bounded solution, it suffices

that (α⋆ > 0, µ⋆, υ⋆ > 0, γ⋆ > 0) as the solution of (2.29) is unique and bounded. Since
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Θ is convex-concave and the optimality sets are bounded from Lemma 2.5.3(a)-(e), a

saddle point of Θ exists [68, Cor. 37.3.2]. Additionally, based on the assumptions of the

theorem and in view of Lemma 2.5.3(d),(e), Θ is jointly strictly-convex in (α, µ, υ) and

strictly-concave in γ which implies the uniqueness of (α⋆ > 0, µ⋆, υ⋆ > 0, γ⋆ > 0) as a

solution to (2.29). This completes the proof of the theorem.

As mentioned in the main body of the chapter, we conjecture that some of the technical

conditions of Theorem 2.3.1, albeit mild in their current form, can be relaxed even further.

Refining these conditions can be an interesting topic of future work, but is out of the

scope of this chapter. We mention in passing that the conclusions of Theorem 2.3.1 also

hold true if we replace the two-times differentiability condition by an assumption that

the loss is one-time differentiable and strictly convex.

2.5.3 Fundamental Limits for Linear Models: Proofs for Section

2.2

2.5.3.1 Auxiliary Results

Lemma 2.5.5 (Boundedness of τ in (2.49)). Let L(·) be a non-linear, convex and twice

differentiable function, λ > 0 and δ > 0 and the pair (α, τ) be a solution to (2.3) where

α > 0. Then, 0 < τ < 1
λδ
.

Proof: Using Stein’s lemma (aka Gaussian integration by parts) we find that

E
[
G · M′

L,1 (αG+ Z; τ)
]
= αE

[
M′′

L,1 (αG+ Z; τ)
]

Therefore the equation in the LHS in (2.3) is equivalent to

τδ E
[
M′′

L,1 (αG+ Z; τ)
]
= 1− λτδ. (2.46)
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Next we prove that under the assumptions of the lemma, E
[
M′′

L,1 (αG+ µSf(S); τ)
]

is

positive. First using properties of Morea-envelopes in (2.23), we have

E
[
M′′

L,1 (αG+ Z; τ)
]
= E

[
L′′(proxL (αG+ Z; τ))

1 + τL′′(proxL (αG+ Z; τ))

]
≥ 0. (2.47)

In particular, we see that equality is achieved in (2.47) is achieved if and only if

∀x ∈ R : M′′

L,1 (x; τ) = 0.

Or equivalently,

∃ c1 , c2 ∈ R : s.t. ∀x ∈ R : ML (x; τ) = c1x+ c2 . (2.48)

Finally, using Proposition 2.5.2 to “invert" the Moreau envelope function, we find that

the loss function L(·) satisfying (2.48) is such that

∀x ∈ R : L(x) = −M−c1I−c2 (x; τ) = c1x+
τc2

1

2
+ c2 ,

where I(·) is the identity function i.e. I(t) = t, ∀t ∈ R. But according to the as-

sumptions of the lemma, L is a non-linear convex function. Thus, it must hold that

E
[
M′′

L,1 (αG+ Z; τ)
]
> 0. Using this and the assumptions on λ and δ, the advertised

claim follows directly from (2.46).
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2.5.3.2 Proof of Theorem 2.2.1

Fix a convex loss function L and regularization parameter λ ≥ 0. Let (α > 0, τ > 0)

be the unique solution to

δτ 2 · E
[(

M′
L,1 (αG+ Z; τ)

)2 ]
= α2 − λ2δ2τ 2, (2.49a)

δτ · E
[
G · M′

L,1 (αG+ Z; τ)
]
= α (1− λδτ). (2.49b)

For convenience, let us define the function Ψ : R≥0 × [0, 1) → R:

Ψ(a, x) :=
(a2 − x2 δ2) I(Va)

(1− x δ)2
. (2.50)

Then, α⋆ > 0 as in (2.6) is equivalently expressed as

α⋆ := min
0≤x<1/δ

{
a ≥ 0 : Ψ(a, x) =

1

δ

}
. (2.51)

Before everything, let us show that α⋆ is well-defined, i.e., that the feasible set

of the minimization in (2.51) is non-empty for all δ > 0 and random variables Z

satisfying Assumption 2.2.1. Specifically, we will show that there exists a ≥ 0 such

that Ψ
(
a, a

(1+a)δ

)
= 1/δ. It suffices to prove that the range of the function Ψ̃(a) :=

Ψ
(
a, a

(1+a)δ

)
is (0,∞). Clearly, the function Ψ̃ is continuous in R≥0. Moreover, it can

be checked that Ψ̃(a) = (a2 + 2a)Ψ0(a) where Ψ0(a) := a2I(Va). By Lemma 2.5.2,

lima→0Ψ0(a) = 0 and lima→+∞Ψ0(a) = 1. Hence, we find that lima→0 Ψ̃(a) = 0 and

lima→+∞ Ψ̃(a) = +∞, as desired.

We are now ready to prove the main claim of the theorem, i.e.,

α ≥ α⋆. (2.52)
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Denote by ϕα the density of the Gaussian random variable αG. We start with the following

calculation:

E
[
G · M′

L,1 (Vα; τ)

]
= −α

∫∫
M′

L,1 (u+ z; τ)ϕ′
α(u)pZ(z)dudz

= −α
∫∫

M′
L,1 (v; τ)ϕ

′
α(u)pZ(v − u)dudv

= −α
∫

M′
L,1 (v; τ) p

′
V
(v)dv = −αE

[
M′

L,1 (Vα; τ) · ξVα (Vα)
]
, (2.53)

where for a random variable V , we denote its score function with ξV (v) := p′V (v)/pV (v)

for v ∈ R. Using (2.53) and α > 0, (2.49b) can be equivalently written as following,

1− λ δ τ = −δτ · E
[
M′

L,1 (Vα; τ) · ξVα (Vα)
]
. (2.54)

Next, by applying Cauchy-Shwarz inequality, recalling E[(ξVα (Vα))
2] = I (Vα) and using

(2.49a), we have that

(
E
[
M′

L,1 (Vα; τ) · ξVα (Vα)
])2

≤ E
[(

M′
L,1 (Vα; τ)

)2 ]
· I (Vα) =

(α2 − λ2 δ2 τ 2) I(Vα)
δτ 2

,

where we have also used the fact that τ > 0. To continue, we use (2.54) to rewrite the

LHS above and deduce that:

(
1− λ δ τ

δτ

)2

≤ (α2 − λ2 δ2 τ 2) I(Vα)
δτ 2

. (2.55)

By simplifying the resulting expressions we have proved that (α, τ) satisfy the following

inequality:
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(α2 − λ2 δ2 τ 2) I(Vα)
(1− λ δ τ)2

≥ 1

δ
. (2.56)

In the remaining, we use (2.56) to prove (2.52). For the sake of contradiction to (2.52),

assume that there exists a valid triplet (α, λ, τ) such that α < α⋆. Recall by inequality

(2.56) that α satisfies:

Ψ
(
α , λ τ

)
≥ 1

δ
. (2.57)

We show first that (2.57) holds with strict inequality. To see this, suppose that Ψ(α, λ τ) =

1/δ. From Lemma 2.5.5, it also holds that λ τ ∈ (0, 1/δ). Hence, the pair (α, λ τ) is a

feasible point in the minimization in (2.51). Combining this with optimality of α⋆ lead

to the conclusion that α⋆ ≥ α, which contradicts our assumption α < α⋆. Therefore we

consider only the case where (2.57) holds with strict inequality i.e., Ψ(α, λτ) > 1/δ.

To proceed, note that Ψ(0, x) ≤ 0 for all x ∈ [0, 1). Thus, by continuity of the function

a 7→ Ψ(a, x) for fixed x ∈ [0, 1/δ):

∃ α̃ : s.t. 0 ≤ α̃ < α, and Ψ
(
α̃ , λ τ

)
=

1

δ
. (2.58)

By recalling our assumption that α < α⋆, we can deduce that (2.58) in fact holds for

α̃ < α⋆. However, this is in contradiction with the optimality of α⋆ defined in (2.51). This

shows that for all achievable α it must hold that α ≥ α⋆. This proves the claim in (2.52)

and completes the proof of the theorem.
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2.5.3.3 Proof of Lemma 2.2.1

To prove the claim of the lemma, it suffices to show that the proposed loss function

and regularization parameter, satisfy the system of equations in (2.49) with α = α⋆. For

this purpose we show that (L, λ, α, τ) = (L⋆, λ⋆, α⋆, 1) satisfy (2.49).

First, we recognize that for the candidate optimal loss function in Lemma 2.3.1 we

have ∀v ∈ R that

M′
L⋆,1 (v; 1) = −α

2
⋆ − λ2⋆ δ

2

1− λ⋆δ
· ξV⋆(v). (2.59)

Thus by replacing the proposed parameters in (2.49a) we have :

δ E
[(

M′
L⋆,1 (V⋆; 1)

)2 ]
= δ

(
α2
⋆ − λ2⋆ δ

2

1− λ⋆ δ

)2

I (V⋆) = α2
⋆ − λ2⋆δ

2,

where for the last line we used the definitions of α⋆ and λ⋆ in the statement of the lemma.

This proves the claim for (2.49a). To show that Equation (2.49b) is satisfied we use its

equivalent expression in (2.54) and also replace (2.59) in (2.54). Specifically, this shows

that

δ E
[
G · M′

L⋆,1 (V⋆; 1)

]
= −δ α⋆ E

[
M′

L⋆,1 (V⋆; 1) · ξV⋆(V⋆)
]

=
δ α⋆ (α

2
⋆ − λ2⋆ δ

2) · I(V⋆)
1− λ⋆ δ

= α⋆(1− λ⋆ δ),

from which we conclude that Equation (2.49b) is satisfied. This completes the proof of

the lemma.
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2.5.3.4 Proof of Lemma 2.2.2

By letting L(t) = t2 we find that ML (x; τ) = x2

2τ+1
for all x ∈ R and τ ∈ R>0.

Using this in Equations (2.49) and a after a few algebraic simplifications we arrive at the

following closed-form expression for α2
ℓ2 ,λ

for all λ ≥ 0 and random variables Z with finite

second moment,

α2
ℓ2 ,λ

=
1

2

(
1− E[Z2]− δ

)
+

E[Z2](λ+ 2δ + 2) + 2(δ − 1)2 + λ(δ + 1)

2
√

(λ+ 2δ − 2)2 + 8λ
. (2.60)

Next, by using direct differentiation to optimize this over λ ≥ 0, we derive λopt = 2E[Z2]

and the resulting expression for α2
ℓ2,λopt

in the statement of the lemma.

2.5.3.5 Proof of Corollary 2.2.1

As mentioned in the main body of the chapter, the difficulty in deriving a closed-form

expression for α⋆ in (2.6) is due to the fact that in general I(Va) = I(aG+ Z) may not

be expressible in closed-form with respect to a. The core idea behind this corollary is

using Stam’s inequality (see Proposition 2.5.3) to bound I(Va) in terms of I(aG) = a−2

and I(Z). Specifically, applying (2.26) to the random variables aG and Z we find that:

I(Va) = I(aG+ Z) ≤ I(Z)
1 + a2I(Z)

. (2.61)

Substituting the RHS above in place of I(Va) in the definition of α⋆ in (2.6), let us define

α̂ as follows:

α̂ := min
0≤x<1/δ

{
a ≥ 0 :

(a2 − x2 δ2) I(Z)
(1− x δ)2(1 + a2I(Z))

≥ 1

δ

}
. (2.62)
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The remaining of proof has two main steps. First, we show that

α2
⋆ ≥ α̂2. (2.63)

Second, we solve the minimization in (2.62) to yield a closed-form expression for α̂.

Towards proving (2.63), note from the definition of α⋆ and inequality (2.61) that there

exists x⋆ ∈ [0, 1/δ) such that

1

δ
=

(α2
⋆ − x2⋆ δ

2) I(V⋆)
(1− x⋆ δ)2

≤ (α2
⋆ − x2⋆ δ

2) I(Z)
(1− x⋆ δ)2(1 + α2

⋆ I(Z))
.

Thus, the pair (α⋆, x⋆) is feasible in (2.62). This and optimality of α̂ in (2.62) lead to

(2.63), as desired.

The next step is finding a closed-form expression for α̂. Based on (2.62) and few

algebraic simplifications we have :

α̂2 = min
0≤x<1/δ

{
a2 : a2 I(Z) · (δ − (1− x δ)2) ≥ (1− x δ)2 + δ3x2I(Z)

}
= min

max{0, 1−
√
δ

δ
}≤x<1/δ

{
a2 : a2 ≥ (1− xδ)2 + δ3 x2 I(Z)

I(Z) · (δ − (1− xδ)2)

}

= min
max{0, 1−

√
δ

δ
}≤x<1/δ

{
(1− xδ)2 + δ3 x2 I(Z)
I(Z) · (δ − (1− xδ)2)

}
. (2.64)

The last equality above is true because the fraction in the constraint in the second line is

independent of a. Next, by minimizing with respect to the variable x in (2.64), we reach

α̂2 = hδ(1/I(Z)).

Finally, we know from Proposition 2.5.3(f) that equality in (2.61) is achieved if and

only if the noise is Gaussian i.e. Z ∼ N (0, ζ2) for some ζ > 0. Thus, if this is indeed the

case, then α⋆ = α̂ and the lower bound is achieved with replacing the Fisher information
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of Z i.e, I(Z) = ζ−2. This completes the proof of the corollary.

2.5.3.6 Proof of Equation (2.8)

First, we prove the bound ω
δ
≥ (I(Z)E[Z2])

−1
. Fix δ > 0 and consider the function

h̃δ(x) := hδ(x)/x for x ≥ 0. Direct differentiation and some algebra steps suffice to show

that h̃δ(x) is decreasing. Using this and the fact that 1/I(Z) ≤ E[Z2] (cf. Proposition

2.5.3 (c)), we conclude with the desired.

Next, we prove the lower bound ωδ ≥ 1−δ. Fix any δ > 0. First, it is straightforward to

compute that hδ(0) = max{1−δ, 0} ≥ 1−δ. Also, simple algebra shows that hδ(x) ≤ 1, x ≥

0. From these two and the increasing nature of hδ(x) we conclude that 1− δ ≤ hδ(x) ≤ 1,

for all x ≥ 0. The desired lower bound follows immediately by applying these bounds to

the definition of ωδ.

2.5.4 Fundametal Limits for Binary Models: Proofs for Section

2.3

2.5.4.1 Discussion on Assumption 2.3.1

As per Assumption 2.3.1, the link function must satisfy E[Sf(S)] ̸= 0. This is a rather

mild assumption in our setting. For example, it is straightforward to show that it is

satisfied for the Signed, Logistic and Probit models. More generally, for a link function

f : R → {±1} and S ∼ N (0, 1), the probability density of Sf(S) can be computed as

follows for any x ∈ R:

p
Sf(S)

(x) =
(
1 + f̂(x)− f̂(−x)

)exp(−x2/2)√
2π

, f̂(x) := P (f(x) = 1) . (2.65)
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From this and the fact that exp(−x2/2) is an even function of x, we can conclude that

Assumption 2.3.1 is valid if f̂(x) is monotonic and non-constant based on x (e.g., as in the

Signed, Logistic and Probit models) . In contrast, Assumption 2.3.1 fails if the function f̂

is even. Finally, we remark that using (2.65), it can be checked that S f(S) ∼ N (µ, ζ2)

if and only if (µ, ζ) = (0, 1), and consequently only if f̂ is an even function. Based on

these, we conclude that for all link functions f satisfying Assumption 2.3.1, the resulting

distribution of Sf(S) is non-Gaussian. Finally, we remark that νf = E[Sf(S)] is the

first Hermite coefficient of the function f and the requirement νf ̸= 0 arises in a series of

recent works on high-dimensional single-index models, e.g., [69, 70]; see also [71, 72] for

algorithms specializing to scenarios in which νf = 0.

2.5.4.2 Discussion on the Classification Error (2.13)

First, we prove that for an estimator ŵL,λ, the relation P(σL,λG + Sf(S) < 0)

determines the high-dimensional limit of classification error. Then we show that the

classification error is indeed an increasing function of σL,λ for most well-known binary

models.

For the estimator ŵL,λ obtained from (2.9), and x0 denoting the true vector with

unit norm, the parameters µL,λ and αL,λ denote the high-dimensional terms of bias and

variance,

xT0 ŵL,λ
P−→ µL,λ, (2.66)

∥ŵL,λ − µL,λ x0∥22
P−→ α2

L,λ. (2.67)

We note that by rotational invariance of Gaussian distribution we may assume without

loss of generality that x0 = [1, 0, 0, · · · , 0]T ∈ Rn. Therefore we deduce from (2.66) and
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(2.67) that

ŵL,λ(1)
P−→ µL,λ,

n∑
i=2

(ŵL,λ(i))
2 P−→ α2

L,λ.

Using these, we derive the following for the classification error :

EL,λ = P
(
f
(
aTx0

)
aT ŵL,λ < 0

)
= P

(
f (a(1)) ·

(
ŵL,λ(1)a(1) + ŵL,λ(2)a(2) + · · ·+ ŵL,λ(n)a(n)

)
< 0

)
.

Recalling Assumption 2.1.2 we have a ∼ N (0, I). Thus by denoting S,G iid∼ N (0, 1) and

assuming without loss of generality that µL,λ > 0, we derive (2.13).

Next, we show that for the studied binary models in this chapter, the high-dimensional

limit for the classification error is increasing based on effective error term σ > 0. In

particular, we find that if p
Sf(S)

(x) > p
Sf(S)

(−x) for x ∈ R>0 then it is guaranteed that

a 7→ P(aG+Sf(S) < 0) is an increasing function for a > 0. To show this, we denote by ϕ

the density of standard normal distribution and let a1 > a2 to be two positive constants,

then under the given condition on p
Sf(S)

, we deduce that,

P (Sf(S) < a1G) − P (Sf(S) < a2G) =∫ +∞

0

∫ a1g

a2g

p
Sf(S)

(x)ϕ(g) dx dg −
∫ 0

−∞

∫ a2g

a1g

p
Sf(S)

(x)ϕ(g) dx dg > 0.

This shows the desired. Importantly, we remark that in view of (2.65), this condition on

the density of Sf(S) is satisfied for many well-known binary models including Logistic,

Probit and Signed.
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2.5.4.3 Proof of Theorem 2.3.2

We need the following auxiliary result, which we prove first.

Lemma 2.5.6 (Boundedness of τ in (2.45)). Fix δ > 0 and λ > 0 and let L be a convex,

twice differentiable and non-linear function. Then all solutions τ of the system of equations

in (2.45) satisfy 0 < τ < 1
λδ

.

Proof: The proof follows directly from the proof of Lemma 2.5.5 by replacing Z with

µSf(S). Note that the Equation (2.45c) can be obtained by replacing Z with µSf(S) in

Equation (2.49b).

Next, we proceed to the proof main of Theorem 2.3.2. For convenience, let us define

the function Φ : R≥0 × [0, 1/δ) → R as following :

Φ(s, x) :=
1− s2(1− s2I(Ws))

δs2(s2I(Ws) + I(Ws)− 1)
− 2x+ x2δ(1 + s−2). (2.68)

Then, σ⋆ as in (2.14) is equivalently expressed as:

σ⋆ := min
0≤x<1/δ

{s ≥ 0 : Φ(s, x) = 1} , (2.69)

Before everything, we show that σ⋆ is well defined, i.e., the feasible set of the mini-

mization in (2.69) is non-empty for all δ > 0 and link functions f(·) satisfying Assumption

2.3.1. Specifically, we will show that for any δ > 0 there exists s ≥ 0 such that

Φ̃ := Φ(s, s
δ(1+s)

) = 1. It suffices to prove that the range of the function Φ̃ is (0,∞).

Clearly, the function is continuous in R≥0. Moreover, it can be checked that

Φ̃(s) = Φ0(s) +
2

δ(1 + s2)
, where Φ0(s) :=

1− s2I(Ws)

δ s2(s2I(Ws) + I(Ws)− 1)
. (2.70)

But, by Lemma 2.5.2, lims→0 s2 I(Ws) = 0 and lims→+∞ s2 I(Ws) = 1. Using these, we
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can show that lims→0 Φ0(s) = +∞ and lims→+∞ Φ0(s) = 0. Combined with (2.70), we

find that lims→0 Φ0(s) = +∞ and lims→+∞ s2 I(Ws) = 0. This concludes the proof of

feasibility of the minimization in (2.68).

We are now ready to prove the main claim of the theorem. Fix convex loss function L

and regularization parameter λ ≥. Let (α > 0, µ, τ > 0) be the unique solution to (2.45)

and denote σ = α/µ. We will prove that

σ ≥ σ⋆. (2.71)

The first step in the proof will be to transform the equations (2.45) in a more

appropriate form. In order to motivate the transformation, note that the performance of

the optimization problem in (2.9) is unique up to rescaling. In particular consider the

following variant of the optimization problem in (2.9) :

v̂L,λ := argmin
w

[
c1
m

m∑
i=1

L
(
c2 yia

T
i w
)
+ c1λ∥c2w∥2

]
, c1 > 0, c2 ̸= 0.

It is straightforward to see that, regardless of the values of c1 and c2 , corr ( ŵL,λ , x0 ) =

corr ( v̂L,λ , x0 ), where recall that ŵL,λ solves (2.9). Thus in view of (2.10), we see that

the error σ resulting from ŵL,λ and v̂L,λ are the same. Motivated by this observation, we

consider the following rescaling for the loss function and regularization parameter:

L̃(·) := τ

µ2
L(µ ·), λ̃ := τλ, (2.72)

From standard properties of Moreau-envelope functions it can be shown that

M′
L̃,1 (·/µ ; 1) =

τ

µ
M′

L,1 (· ; τ) .
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Using these transformations, we can rewrite the system of equations (2.45) in terms of σ,

L̃ and λ̃ as follows:

E
[
Sf(S) · M′

L̃,1 (Wσ; 1)
]
= −λ̃, (2.73a)

E
[ (

M′
L̃,1 (Wσ; 1)

)2 ]
= σ2/δ, (2.73b)

E
[
G · M′

L̃,1 (Wσ; 1)
]
= σ(1− λ̃δ)/δ. (2.73c)

where we denote Wσ := σG+ Sf(S).

Next, we further simplify (2.73) as follows. Similar to the procedure leading to (2.53),

here also we may deduce that,

E
[
G · M′

L̃,1 (Wσ; 1)
]
= −σ E

[
ξWσ(Wσ) · M′

L̃,1 (Wσ; 1)
]
.

Thus (2.73c) can be rewritten as

E
[
ξ
Wσ

(Wσ) · M′
L̃,1 (Wσ; 1)

]
= (λ̃δ − 1)/δ. (2.74)

Additionally, we linearly combine (2.73a) and (2.73c) (with coefficient σ) to yield :

E
[
Wσ · M′

L̃,1 (Wσ; 1)
]
= σ2/δ − σ2λ̃− λ̃, (2.75)

Putting together (2.73b), (2.74) and (2.75), we have shown that σ satisfies the following
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system of equations:

E
[
Wσ · M′

L̃,1 (Wσ; 1)
]
=
σ2

δ
− σ2λ̃− λ̃, (2.76a)

E
[ (

M′
L̃,1 (Wσ; 1)

)2 ]
=
σ2

δ
, (2.76b)

E
[
ξWσ(Wσ) · M′

L̃,1 (Wσ; 1)
]
= λ̃− 1

δ
. (2.76c)

Next, we will use this fact to derive a lower bound on σ. To this end, let β1 , β2 ∈ R

be two real constants. By combining (2.76a) and (2.76c) we find that

E
[
(β1Wσ + β2ξWσ(Wσ)) · M′

L̃,1 (Wσ; 1)
]
= β1(

σ2

δ
− σ2λ̃− λ̃) + β2(λ̃− 1

δ
). (2.77)

Applying Cauchy-Schwarz inequality to the LHS of (2.77) gives :

(
β1

(
σ2

δ
− σ2λ̃− λ̃

)
+ β2(λ̃− 1

δ
)

)2

≤ E
[
(β1Wσ + β2ξWσ(Wσ)))

2

]
· E
[(

M′
L̃,1 (Wσ; 1)

)2]
= E

[
(β1Wσ + β2ξWσ(Wσ)))

2

]
σ2

δ
, (2.78)

where we used (2.76b) in the last line. To simplify the expectation in the RHS of (2.78),

we use the facts that E[W 2
σ ] = σ2 + 1 and E[(ξWσ(Wσ))

2] = I(Wσ). Also by integration

by parts one can derive that E[Wσ · ξWσ
(Wσ)] = −1. Thus we arrive at the following

inequality from (2.78):

(
β1

(
σ2/δ − σ2λ̃− λ̃

)
+ β2(λ̃− 1/δ)

)2
≤ β2

1
(σ2 + 1) + β2

2
I(Wσ)− 2β1β2 . (2.79)

Now, we choose the coefficients β1 and β2 as follows: β1 = 1−λ̃δ−(σ2−σ2λ̃δ−λ̃δ) I(Wσ)

and β2 = 1. (We show later in Theorem 2.3.1, that this choice lead to an achievable lower

bound). Substituting these values in (2.79) and simplifying the resulting expressions yield
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the following inequality for σ:

1− σ2(1− σ2I(Wσ))

δσ2(σ2I(Wσ) + I(Wσ)− 1)
− 2λ̃+ λ̃2δ(1 + σ−2) ≤ 1. (2.80)

We will now finish the proof of the theorem by using (2.80) to prove (2.71). For

the sake of contradiction to (2.71), assume that σ < σ⋆. From (2.80) and the notation

introduced in (2.68), we have shown that Φ(σ, λ̃) ≤ 1. Recall from (2.72) that λ̃ = λτ .

But, from Lemma 2.5.6 it holds that λ̃ = λτ < 1
δ
. Therefore, the pair (σ, λ̃) is feasible in

the minimization problem in (2.69). By this, optimality of σ⋆ and our assumption that

σ < σ⋆ in (2.69) it must hold that Φ (σ, λ̃) < 1. But then, since lims→0 Φ (s, λ̃) = +∞ and

by continuity of the function Φ(·, x) for all fixed x ∈ [0, 1/δ), we have:

∃σ1 : s.t. 0 < σ1 < σ, and Φ(σ1, λ̃) = 1. (2.81)

Therefore Φ(σ1, λ̃) = 1 for σ1 < σ⋆, which contradicts the optimality of σ⋆ in (2.69) and

completes the proof.

2.5.4.4 Proof of Lemma 2.3.1

To prove the claim of the lemma we show that the proposed candidate-optimal loss

and regularization parameter pair (L⋆, λ⋆) satisfies the system of equations in (2.45)

with (α, µ, τ) = (σ⋆, 1, 1). In line with the proof of Theorem 2.3.2 and the equivalent

representation of (2.76) for the equations in (2.45), we show that (L⋆, λ⋆) satisfy all

three equations in (2.76) with (σ, µ, τ) = (σ⋆, 1, 1). We emphasize that since µ = τ = 1,

based on (2.72) the L⋆ and λ⋆ remain the same under these changes of parameters thus

(L̃⋆(·), λ̃⋆) = (L⋆, λ⋆).

Note that we need ML(·) to be able to assess the equations in (2.76). For this purpose
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we use inverse properties of Moreau-envelope functions in Proposition 2.5.2 to derive the

following from the definition of L⋆ in (2.16) :

ML⋆ (w; 1) = − η(λ⋆δ − 1)

δ(η − I(W⋆))
Q(w)− λ⋆δ − 1

δ(η − I(W⋆))
log
(
p
W⋆

(w)
)
.

Thus,

M′
L⋆,1 (w; 1) = − η(λ⋆δ − 1)

δ(η − I(W⋆))
w − λ⋆δ − 1

δ(η − I(W⋆))
ξ
W⋆

(w).

Using this and the fact that E[W⋆ · ξW⋆
(W⋆)] = −1 (derived by integration by parts), the

LHS of the equation (2.76a) changes to

E
[
W⋆ · M′

L⋆,1 (W⋆; 1)
]
= − η(λ⋆δ − 1)

δ(η − I(W⋆))
E
[
W 2
⋆

]
− λ⋆δ − 1

δ(η − I(W⋆))
E
[
W⋆ · ξW⋆

(W⋆)
]

= − η(λ⋆δ − 1)

δ(η − I(W⋆))
(σ2

⋆ + 1) +
λ⋆δ − 1

δ(η − I(W⋆))
=
σ2
⋆

δ
− σ2

⋆λ⋆ − λ⋆,

where for the last step, we replaced η according to the statement of the lemma.

Similarly, for the second equation (2.76b), we begin with replacing the expression for

M′
L⋆,1

(W⋆; 1) to see that

E
[(
M′

L⋆,1 (W⋆; 1)
)2]

=
(λ⋆δ − 1)2

δ2(η − I(W⋆))2
(
η2 E

[
W 2
⋆

]
+ I (W⋆) + 2η E [W⋆ · ξW⋆(W⋆)]

)
=

(λ⋆δ − 1)2

δ2(η − I(W⋆))2
(
η2 (σ2

⋆ + 1) + I (W⋆)− 2η
)
. (2.82)
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After replacing η, we can simplify (2.82) to reach the following

E
[(
M′

L⋆,1 (W⋆; 1)
)2]

=
1− σ2

⋆(1− σ2
⋆ I(W⋆))

δ2(σ2
⋆ I(W⋆) + I(W⋆)− 1)

− 2λ⋆ σ
2
⋆

δ
+ λ2⋆(1 + σ2

⋆)

=
Φ(σ⋆, λ⋆) · σ2

⋆

δ
=
σ2
⋆

δ
,

where the last two steps follow from the definition of σ⋆ in (2.14) and Φ(·, ·) in (2.68).

For the third Equation (2.76c) we deduce in a similar way that

E
[
ξ
W⋆

(W⋆) · M′
L⋆,1 (W⋆; 1)

]
= − η(λ⋆δ − 1)

δ(η − I(W⋆))
E [W⋆ · ξW⋆(W⋆)]−

λ⋆δ − 1

δ(η − I(W⋆))
I(W⋆)

= λ⋆ −
1

δ
,

confirming the RHS of Equation (2.76c). This completes the proof.

2.5.4.5 Proof of Lemma 2.3.2

Let ℓ2(t) = (1−t)2 for t ∈ R. Using the Equations in (2.45) and replacing Mℓ2 (x; τ) =

(x−1)2

2τ+1
we can solve the equations to find the closed-form formulas for (µ, α, τ) for a

fixed λ ≥ 0. For compactness, define F (·, ·) : R>0 × R>0 → R>0 where F (δ, λ) :=

λδ+
√

8λδ + (δ(λ+ 2)− 2)2. We derive the following for µℓ2,λ and αℓ2,λ and for all δ > 0,

µℓ2,λ =
4δ E[Z2]

2 + 2δ + F (δ, λ)
,

α2
ℓ2,λ

=

δ (2− 2δ − 2λδ + F (δ, λ))2 (2 + 2δ + F (δ, λ))

(
1− 8δ(E[Z2])

2
(2+F (δ,λ))

(2+2δ+F (δ,λ))2

)
2 (2− 2δ + F (δ, λ))2 (F (δ, λ)− λδ)

.

Using these, we reach σ2
ℓ2,λ

= α2
ℓ2,λ

/µ2
ℓ2,λ

as stated in (2.17). By minimizing σ2
ℓ2,λ

with

respect to λ ≥ 0 we derive λopt and the resulting σ2
ℓ2,λopt

in the statement of the lemma.

61



High-dimensional Linear Models: Sharp Asymptotics and Fundamental Limits Chapter 2

2.5.4.6 Proof of Corollary 2.3.1

The proof is analogous to the proof of Corollary 2.2.1. Here again we use Stam’s

inequality in Proposition 2.5.3 to provide a bound for I(Wσ) = I(σG+ Sf(S)) based on

I(σG) = σ−2 and I(Sf(S)). First we define

σ̂ := min
x≥0

{
s ≥ 0 :

1

δ
+

1

δs2(I(Sf(S))− 1)
− 2x+ δx2(1 + s−2) ≤ 1

}
. (2.83)

Next we use Stam’s inequality to deduce that :

I(Wσ) := I(σG+ Sf(S)) ≤ I(Sf(S))
1 + σ2I(Sf(S))

.

We can use this inequality in the constraint condition of σ⋆ in (2.14) to deduce that:

1

δ
+

1

δσ2
⋆(I(Sf(S))− 1)

− 2λ⋆ + δλ2⋆(1 + σ−2
⋆ ) ≤ 1, (2.84)

Thus we find that (σ, x) = (σ⋆, λ⋆) is a feasible solution of the constraint in (2.83),

resulting in :

σ⋆ ≥ σ̂. (2.85)
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To complete the proof of the theorem, we need to find the closed-form σ̂. Proceeding

from (2.83) we derive the following

σ̂2 = min
x≥0

{
s2 :

1

s2

(
1

δ(I(Sf(S))− 1)
+ x2δ

)
≤ 1 + 2x− 1

δ
− x2δ

}

= min
x≥0

{
s2 :

1

s2
≤ 1 + 2x− 1/δ − x2δ

1
δ(I(Sf(S))−1)

+ x2δ

}

=

(
max
x≥0

{
1 + 2x− 1/δ − x2δ

1
δ(I(Sf(S))−1)

+ x2δ

})−1

.

The first line follows by algebraic simplifications in (2.83). The second line is true since

by Cramer-Rao bound (see Proposition 2.5.3 (d)) I(Sf(S)) ≥ (V ar[Sf(S)])−1; thus

I(Sf(S)) ≥ 1. Noting that the right hand-side of the inequality is independent of σ and

can take positive values for some x ≥ 0 we conclude the last line. Optimizing with respect

to the non-negative variable x in the last line completes the proof and yields the desired

result in the statement of the corollary.

2.5.5 Comparison to a Simple Averaging Estimator

In this section, we compare the performance of optimally ridge-regularized ERM to

the following simple averaging estimator

ŵave =
1

m

m∑
i=1

yiai. (2.86)

This estimator is closely related to the family of RERM estimators studied in this

chapter. To see this, note that ŵave can be expressed as the solution to ridge-regularized
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ERM with λ = 1 and linear loss function L(x) = −x for all x ∈ R:

ŵave = arg min
w∈Rn

1

2m

m∑
i=1

∥yiai −w∥22 = arg min
w∈Rn

1

m

m∑
i=1

−yiaTi w +
1

2
∥w∥22.

Moreover, it is not hard to check that the correlation performance of ŵave is the same as

that of the solution of RLS with regularization λ approaching infinity.

It is in fact possible to exploit these relations of the estimator to the RERM family in

order to evaluate its asymptotic performance using the machinery of this chapter (i.e., by

using the Equations (2.11)). However, a more direct evaluation that uses the closed form

expression in (2.86) is preferable here. In fact, it can be easily checked that the following

limit is true in the high-dimensional asymptotic regime:

∀δ > 0 : corr ( ŵave , x0 )
P−→ 1

1 + 1
δ
ν−2
f

, (2.87)

where recall our notation νf = E[Sf(S)], S ∼ N (0, 1). The use of the simple averaging

estimator for signal recovery in generalized linear models (also, in single-index models)

has been previously investigated for example in [72].

A favorable feature of ŵave is its computational efficiency. In what follows, we use

our lower bounds on the performance of general RERM estimators, to evaluate its

suboptimality gap compared to more complicated alternatives. To begin, in view of (2.87)

and (2.10) let us define the corresponding “effective error parameter"

σ2
ave =

1

δ
ν−2
f . (2.88)

First, we compare this value with the error of regularized LS. Let ŵLS be the solution to
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unregularized LS for n > m. It can be checked (e.g., [46]) that

corr ( ŵLS , x0 )
P−→ 1

1 + σ2
LS

, where σ2
LS :=

1

δ − 1
(ν−2
f − 1). (2.89)

Directly comparing this to (2.88), we find that σ2
LS

σ2
ave

=
(

1
1−1/δ

)
(1− ν2f ), for all δ > 1. In

other words,

σ2
ave ≷ σ2

LS ⇐⇒ δ ≷ ν−2
f . (2.90)

Next, we study the performance gap of the averaging estimator from the optimal RERM.

For this, we use Corollary 2.3.1 to compare σ2
ave to the lower bound σ⋆. We find that for

any δ > 0 and any link function f satisfying the assumptions of Corollary 2.3.1:

1 ≥ σ2
⋆

σ2
ave

≥ δ ν2f ·Hδ

(
I(Sf(S))

)
. (2.91)

We complement these bounds with numerical simulations in Section 5.3.

2.5.6 Gains of Regularization

2.5.6.1 Linear models

In this section, we study the impact of the regularization parameter on the best

achievable performance. For this purpose, we compare α⋆, the best achievable performance

of ridge-regularized case, to the best achievable performance among non-regularized

empirical risk minimization with convex losses denoted by αureg. By definition of αureg,

for all convex losses L, in the regime of δ > 1 it holds that, αureg ≤ αL, 0. In [58], the

authors compute a tight lower bound on αureg and show that it is attained provided that

pZ is log-concave. Our next result bounds the ratio α2
⋆ / α

2
ureg

, illustrating the impact of
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regularization for a wide range of choices of Z ∼ D and any δ > 1.

Corollary 2.5.1. Let the assumptions of Corollary 2.2.1 hold and δ > 1. Then it holds

that:

(δ − 1)

E[Z2]
hδ

(
1

I(Z)

)
≤ α2

⋆

α2
ureg

≤ min
{
(δ − 1) I(Z), 1

}
. (2.92)

Proof: In order to obtain an upper bound for α2
⋆/α

2
ureg first we find a lower bound

for α2
ureg. We have

α2
ureg I(Vαureg

) =
1

δ
,

thus we may apply the Stam’s inequality (as stated in Proposition 2.5.3(f)) for I(Vαureg
)

to derive the following lower bound :

α2
ureg ≥

1

(δ − 1)I(Z)
. (2.93)

Also note that it holds that α2
⋆ ≤ α2

ℓ2,λopt
. Thus by recalling Lemma 2.2.2 and the fact that

the function hδ(·) ≤ 1 for all δ ≥ 0 we deduce that α2
⋆ ≤ 1. Additionally since α2

⋆ ≤ α2
ureg,

we conclude the upper bound in the statement of the Corollary. To proceed, we use the

Cramer-Rao bound (see Proposition 2.5.3(d)) for I(Vαureg) to derive the following upper

bound for α2
ureg

which holds for all δ > 1:

α2
ureg ≤

E[Z2]

δ − 1
.

This combined with the result of Corollary 2.2.1 derives the lower bound in the statement

of the corollary and completes the proof.

Importantly, based on (2.92) we find that as δ → 1 the ratio α2
⋆ / α

2
ureg reaches

zero, implying the large gap between α⋆ and αureg in this regime. In the highly under-
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parameterized regime where δ → ∞, by computing the limit in the lower bound our

bound gives

1

E[Z2] I(Z)
≤ lim

δ→∞

α2
⋆

α2
ureg

≤ 1 . (2.94)

For example, we see that in this regime when Z is close to a Gaussian distribution such

that I(Z) ≈ 1/E[Z2], then provably α⋆ ≈ αureg, implying that impact of regularization is

infinitesimal in the resulting error. We remark that for other distributions that are far

from Gaussian in the sense I(Z) ≫ 1/E[Z2] the simple lower bound in (2.94) is not tight;

this is because the bound of Corollary 2.2.1 is not tight in this case.

2.5.6.2 Binary models

In order to demonstrate the impact of regularization on the performance of ERM

based inference, we compare σ⋆ with the optimal error of the non-regularized ERM for

δ > 1 which we denote by σureg. Thus σureg satisfies for all convex losses that σureg ≤ σL,0.

The general approach for determining σureg is discussed in [53] in which the authors also

show the achievability of σureg for well-known models such as the Signed and Logistic

models.

Our next result quantifies the gap between σureg and σ⋆ in terms of the label functions

f and δ > 1.

Corollary 2.5.2. Let the assumptions of Theorem 2.3.2 hold and δ > 1. Further assume

the label function f is such that p
S·f(S)

(x) is differentiable and positive for all x ∈ R. Then

it holds that:

(δ − 1)ν2f
1− ν2f

Hδ

(
I(Sf(S) )

)
≤ σ2

⋆

σ2
ureg

≤ min

{
δ − 1

δ
· I(Sf(S))− 1

ν2f
, 1

}
. (2.95)
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Proof: To provide the bounds of the ratio σ2
⋆/σ

2
ureg

, we follow a similar argument

stated in the proof of Corollary 2.5.1. First, we use the result in [53] which states that for

σ2
ureg and all δ > 1 it holds that

σ2
ureg ≥

1

(δ − 1)(I(Sf(S))− 1)
. (2.96)

Since it trivially holds that σ2
⋆ ≤ σ2

ℓ2,λopt
and also by noting that σ2

ℓ2,λopt
as derived by

Lemma 2.3.2 satisfies σ2
ℓ2,λopt

≤ 1
δν2f

for all δ > 0 (which is followed by the fact that

Hδ(x) ≤ x
(x−1)δ

), we conclude that

σ2
⋆ ≤

1

δν2f
. (2.97)

Additionally since it trivially holds that σ2
⋆ ≤ σ2

ureg we conclude the upper bound in the

statement of the corollary. We proceed with proving the lower bound in the statement of

the corollary. For this purpose, first we derive an upper bound for σ2
ureg. Using the fact

that σ2
ureg

satisfies :

1− σ2
ureg

(1− σ2
ureg

I(Wureg))

δσ2
ureg

(σ2
ureg

I(Wureg) + I(Wureg)− 1)
= 1 (2.98)

as well as the Cramer-Rao lower bound (Proposition 2.5.3(d)) for I(Wureg) we may deduce

that :

σ2
ureg ≤

(δ − 1)ν2f
1− ν2f

. (2.99)

This combined with the lower bound on σ2
⋆ as stated in Corollary 2.3.1 proves the lower

bound in the statement of the corollary and completes the proof.

Importantly, as shown by (2.95), in the case of δ being close to 1, one can see that
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both of the bounds in (2.95) vanish. This shows the large gap between σureg and σ⋆ and

further implies the benefit of regularization in this regime. When δ → ∞ i.e. in the highly

under-parameterized regime, by deriving the limits as well as using Proposition 2.5.3 (d),

we see that (2.95) yields:

ν2f
1− ν2f

· 1

I(Sf(S))− 1
≤ lim

δ→∞

σ2
⋆

σ2
ureg

≤ 1. (2.100)

Thus in this case both the values of σ⋆ and σureg are approaching zero with the ratio

depending on the properties of Sf(S). For models such as Logistic with small signal

strength (i.e. small ∥x0∥) where I(Sf(S)) ≈ 1/(1 − ν2f ), one can derive that based on

(2.100) the ratio reaches 1, which confirms the intuition that for large values of δ the

impact of regularization is almost negligible.

2.5.7 Numerical Experiments

2.5.7.1 Details on Figure 2.1

In Fig. 2.1(Left), we compare the lower bound of Theorem 2.2.1 with the error of RLS

(see Lemma 2.2.2) for Z ∼ Laplace(0, 1) and ∥x0∥2= 1. To numerically validate that α⋆

is achievable by the proposed choices of loss function and regularization parameter in

Lemma 2.2.1, we proceed as follows. We generate noisy linear measurements with iid

Gaussian feature vectors ai ∈ R100. The estimator x̂L⋆,λ⋆ is computed by running gradient

descent (GD) on the corresponding optimization in (2.2) when the proposed optimal loss

and regularizer of Lemma 2.2.1 are used. See Figure 2.3(Left) for an illustration of the

optimal loss for this model. The resulting vector x̂L⋆,λ⋆ is used to compute ∥x̂L⋆,λ⋆ − x0∥2.

The average of these values over 50 independent Monte-carlo trials is shown in red squares.

The close match between the theoretical and empirical values suggest that the fundamental
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limits presented in this chapter are accurate even in small dimensions (also see the first

and second rows of Table 2.1).

In the next two figures, we present results for binary models. Figure 2.1(Middle) plots

the effective error parameter σ for the Signed model and Figure 2.1(Right) plots the

classification error ‘E ’ for the Logistic model with ∥x0∥2= 10. The red squares correspond

to the numerical evaluations of ERM with L = L⋆ and λ = λ⋆ (as in Lemma 2.3.1) derived

by running GD on the proposed optimal loss and regularization parameter. See Figure

2.3(Right) for an illustration of the optimal loss in this case. The solution ŵL⋆,λ⋆ of GD

is used to calculate σL⋆,λ⋆ and EL⋆,λ⋆ in accordance with (2.10) and (2.13), respectively.

Again, note the close match between theoretical and numerical evaluations (also see the

third and fourth rows of Table 2.1).

Finally, for all three models studied in Figure 2.1, we also include the theoretical

predictions for the error of the following: (i) RLS with small and large regularization (as

derived in Equations (2.60) and (2.17)); (ii) optimally tuned RLS (as predicted by Lemmas

2.2.2 and 2.3.2); (iii) optimally-tuned unregularized ERM (marked as αureg, σureg, Eureg).

The curves for the latter are obtained from [58] and [53] for linear and binary models,

respectively. We refer the reader to Sections 2.5.6.1 and 2.5.6.2 for a precise study of the

benefits of regularization in view of Theorems 2.2.1 and 2.3.2, for both linear and binary

models.

2.5.7.2 Additional Experiments

In this section, we present additional numerical results comparing the bounds of

Theorems 2.2.1 and 2.3.2 to the performance of the following: (i) Ridge-regularized Least-

Squares (RLS); (ii) optimal unregularized ERM (Section 2.5.6); (iii) a simple averaging

estimator (see Section 2.5.5). Figure 2.2(Top Left) plots the asymptotic squared error α2

of these estimators for linear measurements with Z ∼ Laplace(0, 2). Similarly, Figure
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Table 2.1: Theoretical and numerical values of α2
⋆/α

2
L,λopt (for linear models) and

σ2
⋆/σ

2
L,λopt(for binary models) for different values of δ and for some special cases studied in

this chapter. The theoretical results for α⋆ and σ⋆ correspond to Theorems 2.2.1 and 2.3.2.
The empirical values of α⋆ and σ⋆ are derived by numerically solving the optimally-tuned
RERM (as derived in Lemmas 2.2.1 and 2.3.1) by GD with n = 100. Results shown are
averages over 50 independent experiments.

δ 0.5 2 4 6 8

Z ∼ Laplace(0, 1)
Theory 0.9798 0.9103 0.8332 0.7690 0.7447

Experiment 0.9700 0.8902 0.8109 0.7530 0.7438

Z ∼ Laplace(0, 2)
Theory 0.9832 0.9329 0.8796 0.8371 0.8043

Experiment 0.9785 0.9103 0.8550 0.8316 0.7864

f = Sign
Theory 0.9934 0.8531 0.6199 0.4602 0.3618

Experiment 0.9918 0.8204 0.6210 0.4710 0.3829

f = Logistic, ∥x0∥= 10
Theory 0.9826 0.8721 0.7116 0.6211 0.5712

Experiment 0.9477 0.8987 0.7112 0.6211 0.6389

2.2(Top Right) and Figure 2.2(Bottom) plot the effective error term σ for Logistic data

with ∥x0∥2= 1, and the limiting value ρ of the correlation measure for Logistic data with

∥x0∥2= 10, respectively. The red squares represent the performance of optimally tuned

ERM (as per Lemmas 2.2.1 and 2.3.1) derived numerically by running GD, as previously

described in the context of Figure 2.1.

The numerical findings in Figures 2.1 and 2.2 validate the theoretical findings of

Sections 2.2.3 and 2.3.3, regarding sub-optimality of RLS for Laplace noise and Logistic

binary model (with large ∥x0∥) and optimality of λ-tuned RLS for Logistic model with

small ∥x0∥. Furthermore, by comparing the optimal performance of unregularized ERM

to the optimal errors of RERM in both Figures 2.1 and 2.2, we confirm the the theoretical

guarantees of Section 2.5.6 regarding the impact of regularization in the regime of small δ

for both linear and binary models.
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Figure 2.2: Fundamental error bounds derived in this chapter compared to RLS, averaging
estimator and optimal unregularized ERM for: (Top Left) a linear model with Z ∼
Laplace(0, 2), (Top Right) a binary Logistic model with ∥x0∥2= 1 , (Bottom) a binary
Logistic model with ∥x0∥2= 10 (here shown is correlation measure (2.10)). The red
squares correspond to numerical evaluation of the performance of the optimally tuned
RERM as derived in Lemmas 2.2.1 and 2.3.1; see text for details.
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Figure 2.3: Illustrations of the proposed loss functions achieving optimal performance (as
in Lemmas 2.2.1 and 2.3.1), for three special cases: a linear model with additive Laplace
noise, the binary logistic model and the binary signed model. Here, in both plots, we fix
δ = 2. The curves are appropriately shifted and rescaled to allow direct comparison to
the least-squares loss function; see text for details.

2.5.7.3 Optimal Tuning in Special Cases

Figure 2.3 depicts the candidate for optimal loss function derived in Lemmas 2.2.1 and

2.3.1, for specific linear and binary models discussed in this chapter. To allow for a direct

comparison with the least-squares loss function, the optimal losses for the linear models

are shifted such that L⋆ ≥ 0 and rescaled such that L⋆(1) = 1. Similarly, for the Logistic

model with ∥x0∥= 1, the optimal loss is rescaled such that L⋆(1) = 0 and L⋆(2) = 1.

Interestingly, for this model, L⋆, when rescaled (which results in no change in performance

by appropriately rescaling λ⋆) is similar to the least-squares loss. This confirms the

(approximate) optimality of optimally-tuned RLS for this model and further verifies the

numerical observations in Figure 2.2 (Top Right) and the theoretical guarantees of Section

2.3.3 for this model.
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Chapter 3

Adversarial Training with

High-dimensional Linear Models

3.1 Introduction

Several machine learning models ranging from simple linear classifiers to complex

deep neural networks have been shown to be prone to adversarial attacks, i.e., small

additive perturbations to the data that cause the model to predict a wrong label [73, 74].

The requirement for robustness against adversaries is crucial for the safety of systems

that rely on decisions made by these algorithms (e.g., in self-driving cars). With this

motivation, over the past few years, there have been remarkable efforts by the research

community to construct defense mechanisms, e.g., see [75, 76] for a survey. Among many

proposals in the already rich literature, perhaps the most popular approach is that of

adversarial training [6]. Among many favorable properties, adversarial training is flexible

and easy-to-adjust to different types of data perturbations and has also been shown to

achieve state-of-the-art performance in several tasks [7]. However, despite major recent

progress in the study and implementation of adversarial training, its efficacy has been
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mainly shown empirically without providing much theoretical understanding. Indeed,

many questions regarding its theoretical properties remain open even for simple models.

For instance, how does the adversarial/standard error depend on the adversary’s budget

during training time and test time? How do they depend on the over-parameterization

ratio? What is the role of the chosen loss function?

In this chapter, we consider the adversarial training problem for ℓq-norm bounded

perturbations in classification tasks, which solves the following robust empirical risk

minimization (ERM) problem:

min
θ∈Rl

m∑
i=1

max
∥δi∥q≤ εtr

L̃ (yi, fθ(xi + δi)) + λ∥θ∥22. (3.1)

Here, {(xi, yi)}i∈[m] ∈ Rn × {±1} is the training set, δi ∈ Rn are the perturbations with l

the dimension of the feature space, fθ : Rn → R is a model parameterized by a vector

θ ∈ Rl, εtr is a user-specified tunable parameter that can be interpreted as the adversary’s

budget during training, and λ is the ridge-regularization parameter. Once the robust

classifier θ̂ is obtained by (3.1), the adversarial error / robust classification error is given

by

Ex,y

[
max

∥δ∥q≤εts
1{y ̸=sign(f

θ̂
(x+δ))}

]
,

where 1{·} is the 0/1-indicator function, (x, y) ∈ Rn × {±1} is a test sample drawn from

the same distribution as that of the training dataset, εts is the budget of the adversary,

and fθ̂ uses the trained parameters θ̂ and the fresh sample x to output a label guess. The

standard classification error is given by the same formula by simply setting εts = 0.

The goal of this chapter is to precisely analyze the performance of adversarial training

in (3.1) for binary classification with linear models i.e., fθ(x) = ⟨θ,x⟩. In our proof

we use the Convex-Gaussian-Min-max-Theorem (CGMT) [?, ?, ?] and in particular its
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applications to the convex ERM that enables its precise analysis, e.g., [5, 55, 52, 53, 77].

However, compared to previous works, we develop a new analysis for robust optimization

with correlated data.

Our main contributions are summarized as follows:

• We precisely analyze, for the first time, the performance of adversarial training with

ℓ2 and ℓ∞ attacks in binary classification for two important data models of Gaussian

Mixtures and Generalized Linear Models. See Sections 3.3 and 3.4.

• Our approach is general, allowing us to characterize the role of feature correlation,

regularization and general ℓq attacks with q ≥ 1. In particular, our proof technique

allows for non-isotropic features, yielding novel theoretical results even for non-adversarial

convex regularized ERM settings (i.e., when εtr = εts = 0). We elaborate on our technical

approach in Section 3.3.3.

• Numerical illustrations in Section 3.3.2 show tight agreements between our theoretical

and empirical results and also allow us to draw intriguing conclusions regarding the

behavior of adversarial and standard errors as functions of key problem parameters

such as the sampling ratio δ := m/n, the budget of the adversary εts, and the robust-

optimization hyper-parameter εtr in our studied settings. Moreover, we observe interesting

phonemena by comparing our results with the Bayes optimal robust errors.

3.1.1 Prior Works

Relevant to the flavour of our results, the recent work [78] studies precise tradeoffs and

performance analysis in adversarial training with linear regression with ℓ2 perturbations

and isotropic Gaussian data. Compared to [78], our results hold for binary models,

general ℓq perturbations with q ≥ 1, non-isotropic features with mild assumptions on

the covariance matrix. Moreover, we consider regularized ERM allowing us to study the
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behavior of adversarial training in the over-parameterized regime in the limit of λ→ 0.

Similar results on the behavior of adversarial training in classification are only derived in

a concurrent work by [79]. On the one hand, compared to [79] our analysis applies to both

discriminative and generative data models, and also to the regularized ERM. Our analysis

also allows generic covariance matrices while the analysis of [79] only applies to very

specfic structures for the covariance matrix. Additionally, we examine how our formulae

on adversarial training compare with those of the Bayes robust estimator. On the other

hand, [79] extend their analysis to robust support vector machines (SVM). Note however

that we can retrieve the same results regarding the performance of adversarially-robust

SVM by evaluating our formulae on regularized ERM with logistic loss and vanishing

regularization parameter.

Our analysis of correlated features was motivated by [55], which derives sharp general-

ization gaurantees for SVM models with correlated data. Very recently, correlated features

have been considered in various settings, e.g., [80, 81, 82]. However, none of these works

studies the more challenging problem of adversarially-robust ERM as we do here. To see,

at a high-level, why this differs from standard ERM or standard SVM analysis note the

following complications in the analysis. First, because adversarial training is formulated

as a min-max optimization, it is not at all apparent that the machinery of Gaussian

comparison theorems applies. Second, the performance metric here is robust error (rather

than standard error), and we show that this changes the statistics that needs to be tracked

by the CGMT analysis. Third, the primary optimization to which we eventually apply the

CGMT involves an “effective" ℓp-regularizer (where ℓp is the dual norm of the adversary’s

ℓq-norm), which unlike previous works appears inside the argument of the loss function,

requiring new techniques to scalarize the auxiliary optimization. Specially, we do this in

the presence of non-isotropic features, which yields new results even for standard ERM

methods.
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The Adversarial Bayes risk for Gaussian-mixtures has been recently characterized

in [83, 84, 85]. Here, we combine their results with our precise asymptotics on the

practically relevant adversarial training method, allowing us to investigate fundamental

limits of the latter. The references [86, 87] discuss optimization landscape of adversarial

training, however these works do not address generalization properties of adversarial

training, as done in this chapter. The prior work [88] considers adversarial training

with linear loss in order to analyze the sample complexity of robust estimators. Instead,

here we investigate the more challenging, but practically more relevant, 0/1-loss and

its tractable approximations (e.g. hinge, logistic). Another related line of work studies

trade-offs between the standard and adversarial errors e.g., see [89, 90, 91, 85], but for

simpler algorithms and data models, rather than adversarial training and correlated

GLM/GMM, which we focus on here. The benefits of unlabeled data in robustness have

been investigated in several works, e.g. [92, 93]. An exciting direction opening up with

our analysis is investigating adversarial training performance for random features and

neural tangent models. To date, precise asymptotics for such models have been obtained

only very recently and for the simpler problem of standard ERM [94, 95, 96, 81, 97].

A preliminary version of this work appeared in [98]. The results presented in [98] only

apply to data that follow the isotropic Gaussian mixture model and only to ℓ∞ attacks.

The current manuscript significantly extends the scope of these results: First, we extend

the results for GMM to general covariance matrices (not necessarily isotropic). This is

important because it better captures data distributions in practice. We also note that the

extension is technically nontrivial, requiring several modifications in the proof compared to

the isotropic case. Second, in the journal version we describe unifying analysis and results

that applies both to discriminative and generative models. Specifically for discriminative

models, we present new results for GLM data. Third, we provide a general analysis of

ℓp-norm attacks. This extends the results of the conference version that only applied to
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ℓ∞-norm. For demonstration, we present results for ℓ2-attacks in Section 3.4. Finally, we

have extended our numerical study by introducing additional experiments in Appendix

3.7.

Notation

Letting δ(x) denote a Dirac delta mass at x, the empirical distribution of a vector

x ∈ Rn is given by 1
n

∑n
i=1 δ(xi). The empirical joint distribution of v,u ∈ Rn is given

by 1
n

∑n
i=1 δ(vi,ui). The Wasserstein-k distance between two measures ρ1, ρ2 is defined

as Wk(ρ1, ρ2) ≜
(
infρ∈P E(X,Y )∼ρ|X − Y |k

)1/k, where P denotes all couplings of ρ1 and ρ2.

We say that a sequence of probability distributions µn converges in Wasserstein-k distance

to a probability distribution µ, if Wk(µn, µ) → 0 as n→ ∞. The Gaussian Q-function is

denoted by Q(·). ⊙ denotes the element-wise multiplication. The function ∥·∥pq is denoted

by ℓpq. For a positive semi-definite matrix S we define ∥v∥S≜
√
vTSv. Finally, for a

sequence of random variables Xm,n that converges in probability to some constant c in

the proportional asymptotic limit m,n→ ∞, m/n→ δ, we write Xm,n
P−→ c.

3.2 Problem Formulation

In this section, we describe the data model, the specific form of (3.1), and the

asymptotic regime for which our results hold. After this section, it is understood that all

our results hold in the setting described here without any further explicit reference.

3.2.1 Data Model

We study two stylized models for binary classification.
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Gaussian Mixture Models. The first model is a Gaussian Mixture model (GMM)

where the conditional distribution of the feature vectors is a Gaussian with mean ±θ⋆n

(depending on the label yi ∈ {±1}) and with covariance Σn. The subscript n emphasizes

the dependence on dimension. Formally, the GMM assumes

P(yi = 1) = π ∈ [0, 1], xi|yi ∼ N (yiθ
⋆
n,Σn) . (3.2)

Generalized Linear Models. The second model is a generalized linear model (GLM)

with binary link function. Specifically, assume that the label yi ∈ {±1} associated with

the feature vector xi is generated as

yi = ψ (⟨θ⋆n,xi⟩) , xi ∼ N (0,Σn), (3.3)

for a possibly random link function ψ : R → {±1}. This includes the well-known Logistic

and Signed models, by letting P(ψ(x) = 1) = 1/(1 + exp(−x)) and ψ(x) = sign(x),

respectively.

We assume that the underlying (unknown) vector of regressors θ⋆n ∈ Rn, and the

covariance matrix Σn ∈ Rn×n, satisfy the following technical (and mild) assumptions.

Assumption 3.2.1. The minimum and maximum eigenvalues of the covariance matrices

Σn satisfy 0 < c < λmin(Σn) and λmax(Σn) < C <∞.

Assumption 3.2.2. Denoting ζn ≜ (θ⋆n
⊤Σnθ

⋆
n)

1/2 for GLM and ζ̃n ≜ (θ⋆n
⊤Σ−1

n θ⋆n)
1/2 for

GMM, we define their high-dimensional limits as ζ and ζ̃, i.e., ζn
P−→ ζ and ζ̃n

P−→ ζ̃.

Moreover, for both models we assume without loss of generality that ∥θ⋆n∥2
P−→ 1.

Assumption 3.2.3. Let Σn = UnΛnU
⊤
n be the eigen-decomposition of Σn and let

λn,i denote the i’th entry on the diagonal of Λn. Denote vn ≜ U⊤
nθ

⋆
n. Then the joint
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distribution of (
√
nθ⋆n,i, λn,i,

√
nvn,i), i ∈ [n], converges in Wasserstein-2 distance to a

probability distribution Π in R× R+ × R, i.e.,

1

n

n∑
i=1

δ(
√
nθ⋆n,i, λn,i,

√
nvn,i)

W2−→ Π.

The assumption on ∥θ⋆n∥2 is without loss of generality for GLM since ∥θ⋆n∥2 can be

absorbed in the link function ψ. Similarly for GMM, if ∥θ⋆n∥2 ̸= 1, we can always assume

normalized features x, by appropriately scaling the covariance matrix Σn. We remark that

while the Gaussian distribution assumption on feature vectors is crucial for our theoretical

analysis, our empirical results suggest that this assumption can be relaxed to include at

least the family of sub-Gaussian data distributions. We discuss this universality property

in Appendix 3.7.

3.2.2 Asymptotic Regime

We consider the high-dimensional asymptotic regime in which the size m of the training

set and the dimension n of the feature space grow large at a proportional rate. Formally,

m,n→ ∞ at a fixed ratio δ = m/n.

3.2.3 Robust Learning

Let θ̂n be a linear classifier trained on data generated according to either models

(3.2) or (3.3). As is typical, given θ̂n, a decision is made about the label of x based on

sign(⟨x, θ̂n⟩). Thus, letting y be the label of a fresh sample x, the standard error is given

by

E(θ̂n) ≜ Ex,y

[
1{y ̸=sign(⟨x,θ̂n⟩)}

]
. (3.4)

81



Adversarial Training with High-dimensional Linear Models Chapter 3

Here, the expectation is over a fresh pair (x, y) also generated according to either the GLM

or the GMM model. Next, we define the adversarial error with respect to a worst-case

ℓq-norm bounded additive perturbation. Let εts ≥ 0 be the budget of the adversary. Then,

the adversarial error is defined as follows:

Eℓq ,εts(θ̂n) ≜ Ex,y

[
max

∥δ∥q≤εts
1{y ̸=sign(⟨x+δ,θ̂n⟩)}

]
. (3.5)

Adversarial training leads to a classifier θ̂n that solves the robust optimization problem

(3.1) with L̃(y, fθ(x+ δ)) replaced by L(y⟨θ,x+ δ⟩). The loss function L : R → [0,∞) is

chosen as a convex approximation to the 0/1 loss. Specifically, throughout the chapter,

we assume that L is convex and decreasing. This includes popular choices such as the

logistic, hinge and exponential losses.

3.3 Main Results for ℓ∞ Perturbations

3.3.1 Asymptotic Behavior

In this section, we focus on the case of bounded ℓ∞-perturbations, i.e. the adversarial

error in (3.5) is considered for q = ∞. Specifically, let θ̂n be a solution to the following

robust minimization:

min
θn

m∑
i=1

max
∥δi∥∞≤ εtr√

n

L (yi ⟨xi + δi,θn⟩) + λ∥θn∥22. (3.6)

In our asymptotic setting, εtr is of constant order and the factor 1/
√
n in front of

it is the proper normalization needed to ensure that the perturbations norm ∥δi∥2, is

comparable to the norm of the true vector ∥θ⋆n∥2, i.e., both are constant in the high-

dimensional limit → n. We explain this normalization further in Section 3.3.3. Here, we

82



Adversarial Training with High-dimensional Linear Models Chapter 3

consider the case of diagonal covariance matrix (i.e., Σn = Λn). Note that this assumption

can be made without loss of generality for GMM data. Indeed, instead of features xi as

in (3.2) and mean vector θ⋆n, we can equivalently analyze features x̃i = U⊤
nxi and mean

vector θ̃⋆n := U⊤
nθ

⋆
n. For the GLM data in (3.3), we defer the general case of possibly

nondiagonal Σn to Appendix 3.8.1 where we also discuss how final expressions simplify in

the case of isotropic features.

Before presenting our main result, we need to introduce some necessary definitions.

We write

Mf (x;κ) ≜ min
v

1

2κ
(x− v)2 + f(v), (3.7)

for the Moreau envelope of a function f : R → R at x ∈ R with parameter κ > 0 [2].

We also define the following min-max optimization over eight scalar variables. Denote

v̄ ≜ (α, τ1, w, µ, τ2, β, γ, η) and define f : R8 → R as follows:

f(v̄) ≜ −γw − µ2τ2
2α

C2 − αβ2

2δτ2
− ατ2

2
+
βτ1
2

+ ηµ− η2α

2τ2C2
,

where C = ζ̃ and ζ (defined in Assumption 3.2.2) for GMM and GLM, respectively. We

introduce the following min-max objective based on the eight scalars,

min
α,τ1,w∈R+,

µ∈R

max
τ2,β,γ∈R+,

η∈R

f(v̄) + E
[
ML

(
Zα,µ − w;

τ1
β

)]

+ εtrγ E
[
Mℓ1+

r
εtrγ

ℓ22

(
αβ

τ2
√
δL
H +

αη

τ2D
T ;
αεtrγ

τ2L

)]
, (3.8)

where D ≜ ζ̃2L and ζ2 for models (3.2) and (3.3), respectively, H ∼ N (0, 1) and
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(T, L, V ) ∼ Π where Π was defined in Assumption 3.2.3. We also let for convenience

Zα,µ ≜


√
α2 + µ2ζ̃2G+ µζ̃2 for GMM,

αG+ µζS · ψ(ζS) for GLM,

. (3.9)

where G,S iid∼ N (0, 1). Notice that the objective function of (3.8) depends explicitly on

the sampling ratio δ and on the training parameter εtr. Moreover, it depends implicitly

on θ⋆n and Λn via T and L, respectively, and on the specific loss L via its Moreau

envelope. The nature of allowed perturbations (the ℓ∞-type) is reflected in (3.8), via the

Moreau-envelope of the dual-norm (the ℓ1 norm).

We are now ready to state our main result in Theorem 3.3.1, which establishes a

relation between the solutions of (3.8) and the adversarial risk of the robust classifier θ̂n.

The proof is deferred to Appendices 3.8.1 and 3.8.1.

Theorem 3.3.1. Assume that the training dataset {(xi, yi)}mi=1, is generated according to

either (3.2) or (3.3) with diagonal covariance matrices satisfying Assumptions 3.2.1-3.2.3.

Consider the robust classifiers {θ̂n}, obtained by adversarial training in (3.6). Then, the

high-dimensional limit for the adversarial error Eℓ∞,
εts√
n
(θ̂n), converges to,


Q
(
µ⋆ζ̃2−w⋆ εts/εtr√

µ⋆2ζ̃2+α⋆2

)
for GMM,

P
(
µ⋆ζ S ψ(ζS) + α⋆G < w⋆εts

εtr

)
for GLM,

(3.10)

where Q(·) denotes the Gaussian Q-function and (α⋆, µ⋆, w⋆) is the unique solution to the

scalar minimax problem (3.8).

The asymptotics for adversarial error in Theorem 3.3.1 are precise in the sense that

they hold with probability 1, as m,n→ ∞. In the following section, we demonstrate the

84



Adversarial Training with High-dimensional Linear Models Chapter 3

precise theoretical values and the corresponding numerical values.

3.3.2 Numerical Illustrations

In this section, we illustrate the theoretical predictions for various values of the different

problem parameters, including δ = m/n and the attack budgets εtr and εts. For numerical

results here, we focus on the hinge-loss i.e., L(t) = max (1− t, 0) and on the GMM with

isotropic features; thus L has a unit mass at 1. Additional experiments on GLM are given

in Appendix 3.7. We further assume that T is standard normal and fix regularization

parameter λ = 10−4. To solve (3.8), we derive the solution of the corresponding saddle-

point equations (derived in Eq. (3.60) in Appendix 3.8.1) by iterating over the equations

and finding the fixed-point solution after 100 iterations. For the numerical results, we set

n = 200 and solve the ERM problem (3.6) by gradient descent. The resulting estimator

is used to compute the adversarial test error by evaluating (3.4) on a test set of 3× 103

samples. We then average the results over 20 independent experiments. The results for

both numerical and theoretical values are depicted in Figures 3.1-3.2. Next, we discuss

some of the insights obtained from these figures.

Impact of δ on standard/adversarial errors. Figure 3.1 depicts the adversarial and

standard errors as a function of δ = m/n. We compare the results of adversarial training

with the Bayes optimal error. Formally, the Bayes Adversarial Error is defined as

Eℓq ,εts(OPT) ≜ min
f
θ

Ex,y

[
max

∥δ∥q≤εts
1{y ̸=fθ (x+δ)}

]
. (3.11)
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Figure 3.1: Adversarial/Standard test error based on δ := m/n. Solid lines correspond
to theoretical predictions while markers denote the empirical results derived by solving
ERM with vanishing regularization(r = 10−4) using gradient descent. The dashed lines
denote the Bayes adversarial error (left) and the Bayes standard error (right). Note that
the adversarial error of estimators obtained from adversarial training, approaches the
Bayes adversarial error as δ grows.

For the Gaussian-mixture model (3.2) under an ℓq attack with budget ε, the Bayes

adversarial error is derived as follows[83]:

Eℓq ,ε(OPT) = Q(∥θ⋆ − µ⋆∥Σ−1
n
), (3.12)

where µ⋆ ≜ arg min
∥µ∥q≤ε

∥θ⋆ − µ∥2
Σ−1

n
.

The dashed lines in Figure 3.1 show the Bayes Adversarial Error, derived according to

(3.12) for ε = εts/
√
n.

Note that both errors decrease as the sampling ratio δ grows, with the adversarial error

approaching the Bayes adversarial error of the corresponding value of εts. In Appendix

3.8.3, we formally prove that for ℓ2 attacks bounded by εts ∈ [0, 1], the robust error

achieved by adversarial training with any εtr ∈ [0, 1] converges to the Bayes adversarial

error in the infinite sample-size limit i.e., when δ → ∞. More generally, in light of
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Figure 3.2: Theoretical (solid lines) and Empirical (markers) results for the impact of
adversarial training on the adversarial test error for εts = 0.5 (Left) and εts = 0.9 (Middle).
The blacked dashed lines denote the Bayes adversarial error for the corresponding values
of εts. The colored dashed lines depict the optimal value of each curve. Note that the
optimal value of εtr decreases as δ grows. Right: Impact of adversarial training on the
standard test error, illustrating that adversarial training can improve standard accuracy.

comparison between the error formulae of Theorem 3.3.1 and the Bayes adversarial error,

Figure 3.1 provides a means to quantify the sub-optimality gap of adversarial training for

all values of the oversampling ratio δ > 0 and for different values of the adversary’s budget.

A related study was performed in [99], but therein the authors derive error bounds for

a simple averaging estimator. Instead, our analysis is precise and holds for the broader

case of convex decreasing losses. Next, we comment on the shape of the error curves

as a function of the sampling ratio. Note that a second sharp decrease in standard and

adversarial errors appears right after an separability threshold δ εtr√
n
,Π, which we define as

the maximum value of δ for which the data-points are (ℓ∞,
εtr√
n
)-separable (for definition,

see the discussion on Robust Separability in Section 3.5). This constantly decreasing

behavior of the error is in contrast to the corresponding behavior in linear regression with

ℓ2 perturbations and ℓ2 loss analyzed in [78], where error based on δ starts rising after the

first decrease and then again decreases as δ grows. This double-descent behavior can be

considered as extension of the more familiar double-descent behavior in standard ERM

(first observed in numerous high-dimensional machine learning models [100, 11, 101]),
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to the adversarial training case. Finally, we highlight the following observation from

Figure 3.1a: For highly over-parametrized models (very small δ), standard accuracy

remains the same for different choices of εtr. As δ grows, adversarial training (perhaps

surprisingly) seems to (also) improve the standard accuracy. However, for very large δ,

increasing εtr hurts standard accuracy. These observations are consistent and theoretically

validate corresponding findings on the role of data-set size on standard accuracy that

were empirically observed in [89] for neural network training with non-synthetic datasets

such as MNIST.

Impact of εtr on standard/adversarial errors. Adversarial and Standard error

curves based on the hyper-parameter εtr are illustrated in Figure 3.2. Note that the

adversarial error behavior based on εtr is informative about the role of the data-set size on

the optimal value of εtr. Figures 3.2a-3.2b show that the optimal value of εtr is typically

larger than εts. Also note that as δ gets smaller, larger values of εtr are preferable for

robustness. As detailed in Appendix 3.7, this behavior is also observed in real-world

experiments with the MNIST dataset. Figure 3.2c illustrates the impact of εtr on the

standard error, where similar to Figure 3.1b, we observe that adversarial training can

help standard accuracy. In particular, we observe that in the under-parameterized regime

where δ > δ εtr√
n
,Π (as we will define in Section 3.5), adversarial training with small values

of εtr is beneficial for accuracy. As δ increases, such gains diminish and indeed adversarial

training starts hurting standard accuracy.

3.3.3 Proof Sketch

The complete proof of Theorem 3.3.1 is deferred to the appendix. Here, we provide

an outline of the key steps in deriving (3.8) and (3.10).
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Reducing (3.6) to a minimization problem. For a decreasing loss function, picking

δ⋆i ≜ −yi sign(θn) εtr/
√
n, optimizes the inner maximization in (3.6). Therefore, (3.6) is

equivalent to,

min
θn

m∑
i=1

L
(
yi ⟨xi,θn⟩ −

εtr√
n
∥θn∥1

)
+ λ ∥θn∥22. (3.13)

From (3.13), we can see now why the specific normalization of εtr is needed in (3.6).

Recall that (for model (3.3), for instance), xi ∼ N (0,Σn) and ∥θ⋆n∥2
P−→ 1. For simplicity

assume here that Σn = In. For fixed θ, the argument yi⟨xi,θ⟩ behaves as ∥θ∥2Sψ(S),

where S ∼ N (0, 1). Thus, for θs that are such that ∥θ∥2= Θ(1) (which ought to be the

case for “good" classifiers in view of ∥θ⋆n∥2= 1), the term yi⟨xi,θ⟩ is an Θ(1)-term. Now,

thanks to the normalization 1/
√
n in (3.6), the second term εtr√

n
∥θ∥1 in (3.13) is also of

the same order. Here, we used again the intuition that ∥θ∥1= Θ(
√
n), as is the case for

the true θ⋆. Our analysis formalizes these heuristic explanations.

The key statistics for the adversarial error. Our key observation is that the

asymptotics of the adversarial error of a sequence of arbitrary classifiers {θn}, depend on

the asymptotics of only a few key statistics of {θn}. This is formalized in the following

lemma. The proof is deferred to Appendix 3.8.1. Similar to before, there is nothing

special here to q = ∞, so we state this result for general q.

Lemma 3.3.1. Fix q ≥ 1 and let ℓp denote the dual norm of ℓq. Let θ̃⋆n ≜ Σ
1/2
n θ⋆n for

data model (3.3) and θ̃⋆n ≜ Σ
−1/2
n θ⋆n for data model (3.2). Further, for both models, define

projection matrices Θn and Θ⊥
n as follows, Θn ≜ θ̃⋆nθ̃

⋆
n

⊤
/∥θ̃⋆n∥22, Θ⊥

n ≜ In −Θn. Further,

let ε and ε′ (possibly scaling with the problem dimensions) be the upper-bounds on norm of

the adversarial perturbation during training and test time, respectively. With this notation,

assume that the sequence of {θn} is such that the following limits are true for the statistics

89



Adversarial Training with High-dimensional Linear Models Chapter 3

∥θn∥p , ∥ΘnΣ
1/2
n θn∥2 and ∥Θ⊥

nΣ
1/2
n θn∥2,

{ε ∥θn∥p}
P→ w,

1

C
{∥ΘnΣ

1/2
n θn∥2}

P→ µ,

{∥Θ⊥
nΣ

1/2
n θn∥2}

P→ α,

where C = ζ̃ , ζ for GMM and GLM, respectively. Then, in the high-dimensional limit, the

adversarial error converges to,


Q

(
µζ̃2−w ε′/ε√
µ2ζ̃2+α2

)
for GMM,

P
(
µζS ψ(ζS) + αG− wε′/ε < 0

)
for GLM.

(3.14)

The detailed proof of the lemma is deferred to the appendix. There are essentially two

steps in establishing the result. The first is to exploit the decreasing nature of the 0/1-loss

to explicitly optimize over δi. This optimization gives rise to the dual norm ∥θn∥p. The

second step is to consider the change of variables θn ⇒ θ̃n ≜ Σ
1/2
n θn and decompose

θ̃n on its projection on Σ
1/2
n θ⋆n and its complement. In the notation of the lemma,

θ̃n = Θnθ̃n+Θ⊥
n θ̃n. The Gaussianity of the feature vectors together with orthogonality of

the two components in the decomposition of θn explain the appearance of the Gaussian

variables S and G in (3.14). When applied to ℓ∞-perturbations, Lemma 3.3.1 reduces the

goal of computing asymptotics of the adversarial risk of θ̂n to computing asymptotics of

the corresponding statistics ∥Σ−1/2
n θ̃n∥1, ∥Θnθ̃n∥2, and ∥Θ⊥

n θ̃n∥2.

Scalarizing the objective function. The previous two steps set the stage for the

core of the analysis, which we outline next. Thanks to step 1, we are now asked to

analyze the statistical properties of a convex optimization problem. On top of that,

due to step 2, the outcomes of the analysis ought to be asymptotic predictions for the
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quantities ∥Σ−1/2
n θ̃n∥1, ∥Θnθ̃n∥2 and ∥Θ⊥

n θ̃n∥2. However, note that the term ∥Σ−1/2
n θ̃n∥1

appears inside the loss function. In particular, this is a new challenge, specific to robust

optimization compared to previous analysis of standard regularized ERM. Moreover,

both of the terms ∥Σ−1/2
n θ̃n∥1 and ∥Σ−1/2

n θ̃n∥22 are not decomposable based on ∥Θnθ̃n∥2

and ∥Θ⊥
n θ̃n∥2, due to the presence of the term Σ

−1/2
n . The first step to overcome these

challenges is to identify an appropriate minimax Auxiliary Optimization (AO) problem

that is probabilistically equivalent to (3.13). The second crucial step is to scalarize the

AO based on an appropriate Lagrangian formulation. Finally, we perform a probabilistic

analysis of the scalar AO. This results in the deterministic minimax problem in (3.8). See

the appendix for details.

3.4 Main Results for ℓ2 Perturbations

When q = 2, the min-max problem is equivalent to the following, by choosing the

optimal choice δi = −yiεtrθ/∥θ∥2,

min
θn

1

m

m∑
i=1

L (yi ⟨xi,θn⟩ − εtr∥θn∥2) + λ ∥θn∥22. (3.15)

Here, we assume {Σn} to be a sequence of positive definite matrices. Denote ṽ ≜

(α, τ1, τ3, w, µ, τ2, β, γ, η) and define g : R9 → R as follows,

g(ṽ) ≜− γw − µ2τ2
2α

C2 − αβ2

2δτ2
− ατ2

2
+
βτ1
2

+ ηµ− η2α

2τ2C2
+
εtrγτ3
2

,
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where recall that C ≜ ζ̃ and ζ for GMM and GLM, respectively. With this notation, we

introduce the following min-max problem,

min
α,τ1,τ3,w∈R+

µ∈R

max
τ2,β,γ∈R+,

η∈R

g(ṽ) + E
[
ML

(
Zα,µ − w;

τ1
β

)]

+
η2α2

τ 22C
4

(
εtrγ

2τ3
+ r

)
EL

[
C4β2

η2δ
+ L̃

εtrγα+2τ3rα
τ2τ3

+ L

]
, (3.16)

where we define L̃ ≜ 1/L and L for GMM and GLM, respectively and the random

variables L and Zα,µ are defined same as in (3.8).

Theorem 3.4.1. Consider the same setting as in Theorem 3.3.1, only here assume

that q = 2 and {Σn} are positive definite matrices(not necessarily diagonal) satisfying

Assumptions 3.2.1-3.2.3. Let (α⋆, µ⋆, w⋆) be the unique solution to the minimax problem

(3.16). Then, the high-dimensional limit for the adversarial error (Eℓ2,εts(θ̂n)) converges to


Q
(
µ⋆ζ̃2−w⋆ εts/εtr√

µ⋆2ζ̃2+α⋆2

)
for GMM,

P
(
µ⋆ζSψ(ζS) + α⋆G < w⋆ εts

εtr

)
for GLM.

(3.17)

Proof of Theorem 3.4.1 is deferred to Appendix 3.8.2. Compared to Theorem 3.3.1,

note here that the asymptotic prediction only depends on the total energy of θ⋆n(which

was assumed to be 1 in Assumption 3.2.2) and not on its empirical distribution T . We

present numerical illustrations on ℓ2-attacks in Appendix 3.7, where we also discuss how

the data-set size and attack budgets, affect the adversarial and standard test errors based

on Theorem 3.4.1.

92



Adversarial Training with High-dimensional Linear Models Chapter 3

3.5 Further Discussions

Remark 3.5.1 (Training with no Regularization and Robust Separability). An instance of

special interest in practice is solving the unregularized version of the min-max problem:

min
θn

1

m

m∑
i=1

max
∥δi∥q≤ ε

L (yi ⟨xi + δi,θn⟩) . (3.18)

Following the same proof techniques as above, we can show that the formulas predicting

the statistical behavior of this unconstrained version are given by the same formulas as in

Theorem 3.3.1 with r = 0 and also provided that the sampling ration δ is large enough

so that a certain robust separability condition holds. In what follows, we describe this

condition. We start with some background on (standard) data separability. Recall, that

training data {(xi, yi)} are linearly separable if and only if ∃θ ∈ Rn such that for all

training samples yi⟨xi,θ⟩ ≥ 1. Now, we say that data are (ℓq, ε)-separable if and only if

∃θ ∈ Rn s.t. yi⟨xi,θ⟩ − ε∥θ∥p ≥ 1, ∀i ∈ [m].

Note that (standard) linear separability is equivalent to (ℓq, 0)-separability as defined

above. Moreover, it is clear that (ℓq, ε)-separability implies (ℓq, 0)-separability for any

ε ≥ 0. Recent works have shown that in the proportional limit data from the GLM

are (ℓq, 0)-separable if and only if the sampling ratio satisfies δ < δψ [1, 48, 55, 102] for

some δψ > 2. Here, the subscript ψ denotes dependence of the phase-transition threshold

δψ on the link function ψ of the GLM. We conjecture that there is a threshold δψ,ε,Π,

depending on ε, the link function ψ and the probability distribution Π such that data

are (ℓq, ε)-separable if and only if δ < δψ,ε,Π. We believe that our techniques can be used

to prove this conjecture and determine δψ,ε,Π, but we leave this interesting question to

future work. Instead here, we simply note that based on the above discussion, if such a
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threshold exists, then it must satisfy δψ,ε,Π ≤ δψ,0,Π, for all values of ε, and in fact it is a

decreasing function of ε. Now let us see how this notion relates to solving (3.6) and to our

asymptotic characterization of its performance. Recall from (3.13) that the robust ERM

for decreasing losses reduces to the minimization minθ

∑m
i=1 L(yi⟨xi,θ⟩ − ε∥θ∥p). Thus,

using again the decreasing nature of the loss, it can be checked that the solution to the

objective function above becomes unbounded for θ such that the argument of the loss is

positive for any i ∈ [m]. This is equivalent to the condition of (ℓq, ε)-separability. In other

words, when data are (ℓq, ε)-separable, the robust estimator is unbounded. Recall from

Section 3.3.3 that the minimax optimization variables w, µ, α represent the limits of ∥θ̂n∥p,

∥ΘnΣ
1/2
n θ̂n∥2, and ∥Θ⊥

nΣ
1/2
n θ̂n∥2. Thus, if θ̂n is unbounded, then w⋆, µ⋆, α⋆ are not well

defined. In accordance with this, we conjecture that the minimax problem (3.8) for r = 0

(corresponding to (3.18)) has a solution if and only if the data are not (ℓq, ε)-separable,

equivalently, iff δ > δψ,ε,Π. Equivalent results are applicable to the Gaussian-Mixture

models.

Remark 3.5.2 (On Statistical Limits in Adversarial Training). The asymptotics in (3.17)

imply that for ℓ2 perturbations and isotropic features, since w⋆ =
√
α⋆2 + µ⋆2, the errors

depend on the ratio α⋆/µ⋆. In fact, it can be seen that smaller values of the ratio lead

to smaller adversarial error. This leads to an interesting conclusion: In order to find the

hyper-parameter εtr that minimizes the adversarial error, it suffices to tune εtr to minimize

the ratio α⋆/µ⋆. A similar conclusion can be made for the case of ℓ∞ perturbations, by

noting from (3.10) that the adversarial error is characterized in a closed form in terms

of (α⋆, µ⋆, w⋆). In view of these observations, our sharp guarantees for the performance

of adversarial training open the way to answering questions on the statistical limits and

optimality of adversarial training, e.g. how to optimally tune εtr? How to optimally choose

the loss function and what is the best minimum values of adversarial error achieved by

the family of robust estimators? How do these answers depend on the adversary budget
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and/or the sampling ratio δ? Fundamental questions of this nature have been recently

addressed in the non-adversarial case based on the corresponding saddle-point equations

for standard ERM, e.g., [58, 41, 49, 103, 53, 77]. Theorems 3.3.1 and 3.4.1 are the first

steps towards such extensions to the adversarial settings.

3.6 Conclusions and Future Directions

We studied the generalization behavior of adversarial training in a binary classification

setting. In particular, we derived precise theoretical predictions for the performance of

adversarial training for the GLM and GMM. Numerical simulations validate theoretical

predictions even for relatively small problem dimensions and demonstrate the role of

all problem paramters on adversarial robustness. Finally, we remark that the current

analysis can be extended to general convex regularization functions building on our ideas.

An interesting future direction is analyzing adversarial training for Random Features

[104] and Neural Tangent Kernel [105] models. One other natural question is considering

attacks other than ℓq-norm attacks considered in this chapter.
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3.7 Additional Numerical Experiments

Experiments on ℓ2 attacks and GLM

In this section, we complement the numerical illustrations of Section 3.3.2, by consid-

ering the case of Signed measurements as well as extending to the ℓ2-perturbations case.

We focus on the Hinge-loss and for simulation results we set n = 200, λ = 0,Σn = In and

average the results over 20 experiments. Figures 3.3a-3.3b depict the adversarial/standard

errors for the signed measurements. Notably, based on Figure 3.3a, one can observe

that adversarial attacks are successful in GLM, as for a fixed δ, adversarial training does

not seem to improve noticeably the adversarial error (the error bars are obtained by

10 experiments). However, note the critical role of data-set size on both standard and

adversarial errors as depicted in Figure 3.3b. Similar to the GMM, here we also observe

that both adversarial and standard errors are decreasing based on δ in both cases of

q = 2,∞.

Figures 3.3c-3.3d depict the error curves for the GMM and q = 2. Perhaps surprisingly,

here we see that more aggressive adversarial training improves the standard error as the

error curve is strictly decreasing with respect to εtr. We also highlight that unlike the

q = ∞ case where there was a finite optimal choice of εtr, here increasing εtr, always

helps the robust accuracy. Note also the role of δ on error curves, especially by increasing

δ, both errors decrease and notably the adversarial error approaches the Bayes optimal

error. For a formal proof of this phenomenon, see also the discussion in Appendix 3.8.3.

Universality in Adversarial Robustness

Thus far, we focused on Gaussian data. One may wonder whether our theoretical

results extend to other data distributions. We conjecture that our results enjoy the

96



Adversarial Training with High-dimensional Linear Models Chapter 3

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

(a)

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

(b)

0 0.2 0.4 0.6 0.8 1 1.2
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(c)

2 3 4 5 6 7
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(d)

Figure 3.3: Adversarial and Standard Errors for the Signed model (Top) and the Gaussian-
mixture model (Bottom). The dashed lines denote the Bayes adversarial error for the
corresponding values of εts.

universality property, i.e., the same asymptotic formulas in Theorem 3.3.1 and Theorem

3.4.1, hold when data is sampled from a sub-Gaussian distribution. Figure 3.4 illustrates

the empirical results for the adversarial and standard error of Gaussian-mixture model as

well as a model obtained by the mixture of Rademacher distributions, i.e.,

xi|yi ∼ yiθ
⋆
n + ρi, P(yi = 1) = π ∈ [0, 1],
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Figure 3.4: Empirical results for Rademacher(squares) and Gaussian(circles) data dis-
tributions in a generative data model alongside the theoretical curves. Here q = ∞
and εtr = εts = 1. The perfect match between theory and experiments supports the
conjectured universality property in adversarial training.

where each entry of ρi ∈ Rn is distributed iid from Rademacher distribution. Note the

perfect agreement between theory and simulation for both standard and adversarial errors,

which supports the universality conjecture. For standard ERM, the universality property

has been studied in numerous recent works e.g., see [106, 107, 108]. Extending such

results to the adversarial training case is left for future work.

Experiments on MNIST

We present experimental results to demonstrate the adversarial error of linear clas-

sification beyond synthetic data. Specifically, we consider the ℓ∞ robust classification

with hinge-loss for the ‘0’ and ‘1’ digits of the MNIST dataset, which has a dimension of

n = 784. Both classes’ data points are shifted and normalized, so that x(0) = −x(1) and

∥x(0)∥= ∥x(1)∥= 1, where x(0),x(1) are the empirical mean vectors of each class. Figure 3.5

displays the results for the adversarial error for two attack budgets at test time, denoted

by εts. Similar to the findings in Figure 3.2a-3.2b, we observe that increasing the sample

size m leads to a decrease in the optimal εtr (which optimizes the adversarial error).
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Figure 3.5: Adversarial error in binary classification of digits ‘0’ and ‘1’ from the MNIST
dataset, while using Hinge-loss and setting q = ∞. The results shown represent the
averages from 10 experiments. Note that the optimal εtr decreases as the sample size
increases.

Furthermore, we observe that for sufficiently large m, the optimal εtr is approximately

equal to εts.

3.8 Proofs

3.8.1 Proofs for Section 3.3

In this section, we provide an asymptotic analysis for adversarial training with ℓ∞

perturbations. First, we consider the case of general Σn and then show how our theoretical

results simplify when Σn is diagonal and when Σn = In. We focus on Generalized linear

models (3.3). The corresponding analysis for Gaussian-Mixture models (3.2) is deferred

to Section 3.8.3.

We begin with proving the key statistics required for the high-dimensional asymptotics.
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Adversarial Error of an Arbitrary Estimator

In the following lemma, we characterize the asymptotic adversarial error under ℓq, q ≥ 1

perturbations of an arbitrary sequence of estimators {θn}∞n=1 (where θn ∈ Rn), in terms of

the high-dimensional limits for the key statistics ∥θn∥p, ∥ΘnΣ
1/2
n θn∥2 and ∥Θ⊥

nΣ
1/2
n θn∥2,

where p is such that 1/p+ 1/q = 1. We assume that the adversary has budget ε.

First, we formalize the adversarial test error in the next lemma, which is a restatement

of Lemma 3.3.1 specialized to GLM.

Lemma 3.8.1. The high-dimensional limit of the adversarial test error for the Generalized

Linear models with a given sequence of classifiers {θn} is given as follows,

{EGLM
ℓq ,ε (θn)}

P−→ P
(
µζ S · ψ(ζS) + αG− uε < 0

)
(3.19)

where G,S iid∼ N (0, 1) and provided that

∥∥∥Σ−1/2
n θ̃n

∥∥∥
p

P−→ u, ⟨θ̃⋆n, θ̃n⟩/∥θ̃⋆n∥22
P−→ µ,

∥∥∥Θ⊥
n θ̃n

∥∥∥
2

P−→ α,

for ℓp-norm denoting the dual of the ℓq-norm, θ̃n ≜ Σ
1/2
n θn, θ̃⋆n ≜ Σ

1/2
n θ⋆n and Θ⊥

n ∈ Rn×n

defined as follows:

Θ⊥
n ≜ In −Θn, Θn ≜

θ̃⋆nθ̃
⋆
n

⊤

∥θ̃⋆n∥22
.

Moreover, in the special case of q = 2 and Σn = In, by denoting σ ≜ α/µ, (3.19) simplifies

to,

{EGLM
ℓ2,ε

(θn)}
P−→ P

(
Sψ(S) + σG√

σ2 + 1
< ε

)
. (3.20)
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Proof: First, for θn ̸= 0 note the following chain of equalities:

max
∥δ∥q≤ε

1{y ̸=sign⟨x+δ,θn⟩} = max
∥δ∥q≤ε

1{y⟨x,θn⟩+y⟨δ,θn⟩<0}

= 1{y⟨x,θn⟩+min∥δ∥q≤ε y⟨δ,θn⟩<0}

= 1{y⟨x,θn⟩−ε∥θn∥p<0},

where in the last line we used the fact that ℓp is the dual norm of ℓq norm. Thus, we can

write

Ex,y

[
max
∥δ∥q<ε

1{y ̸=sign⟨x+δ,θn⟩}

]
= P

(
y ̸= sign (⟨x,θn⟩ − yε∥θn∥p)

)

= P
(
y⟨x,θn⟩ − ε∥θn∥p< 0

)

= P
(
y
〈
x̄,Σ1/2

n θn
〉
− ε∥θn∥p< 0

)

= P
(
y
〈
x̄,ΘnΣ

1/2
n θn

〉
+ y

〈
x̄,Θ⊥

nΣ
1/2
n θn

〉
− ε∥θn∥p< 0

)

= P
(
y
〈
x̄,Θnθ̃n

〉
+ y

〈
x̄,Θ⊥

n θ̃n

〉
− ε∥Σ−1/2

n θ̃n∥p< 0
)
,

(3.21)

Where x̄ is a standard Gaussian vector. Also, for the labels y we have,

y = ψ (⟨x,θ⋆n⟩) = ψ(⟨x̄, θ̃⋆n⟩) = ψ(⟨x̄,Θnθ̃⋆n⟩).

Now, by Gaussianity of x̄ and since ΘnΘ
⊥
n = 0n,Θn+Θ⊥

n = In, we find that ⟨x̄,Θnθ̃n⟩ and

y are both independent of ⟨x̄,Θ⊥
n θ̃n⟩. Therefore, we can replace ⟨x̄,Θ⊥

n θ̃n⟩ by ⟨¯̄x,Θ⊥
n θ̃n⟩

for some standard Gaussian vector ¯̄x independent of x̄. Then, by rotational invariance
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of ¯̄x and since y is independent of it and takes values ±1, y ¯̄x⊤Θ⊥
n θ̃n is distributed as

¯̄x⊤Θ⊥
n θ̃n. But, again by rotational invariance of the gaussian distribution, we have that

for G,S iid∼ N (0, 1),

〈
x̄,Θθ̃⋆n

〉
∼ ∥θ̃⋆n∥2 S,〈

¯̄x,Θ⊥
n θ̃n

〉
∼ ∥Θ⊥

n θ̃n∥2G,

〈
x̄,Θθ̃n

〉
=

〈
θ̃n, θ̃⋆n

〉
∥θ̃⋆n∥22

〈
x̄, θ̃⋆n

〉
∼

〈
θ̃n, θ̃⋆n

〉
∥θ̃⋆n∥22

∥θ̃⋆n∥2 S.

Next, recall that
∥∥∥θ̃⋆n∥∥∥

2
= θ⋆n

⊤Σnθ
⋆
n → ζ based on Assumption 3.2.2 and note

the lemma’s assumptions on convergence of ∥Σ−1/2
n θ̃n∥p, ⟨θ̃n, θ̃⋆n⟩/∥θ̃⋆n∥22 and ∥Θ⊥θ̃n∥2.

Combining with the above, we deduce that,

y
P−→ ψ(ζ S),

〈
x̄,Θnθ̃n

〉
P−→ µζ S,

〈
x̄,Θ⊥

n θ̃n

〉
P−→ αG. (3.22)

Putting this together with (3.21) gives the limit in (3.19) for GLM. To derive (3.20),

note that when q = 2 and Σn = In, it holds that ζ = 1 and u =
√
α2 + µ2 due to

∥θ̃n∥2= ∥Θnθ̃n +Θ⊥
n θ̃n∥2=

√
∥Θnθ̃n∥22+∥Θ⊥

n θ̃n∥22
P−→
√
α2 + µ2.

This concludes the proof.

Case I: Correlated Features with General Covariance Matrix

For all x ∈ Rn, τ, C ∈ R+ and a PD matrix S ∈ Rn×n, we define,

M(
ℓ1+C ℓ

2
2,S

) (x; τ) ≜ min
y∈Rn

1

2τ

∥∥∥S1/2 (x− y)
∥∥∥2
2
+ ∥y∥1 + C∥y∥22.. (3.23)
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Assume that the PD covariance matrix Σn and the true vector θ⋆n satisfy the following

limit for all constants c1, c2, c3, c4 ∈ R+×R+×R×R+, and the standard Gaussian vector

h ∈ Rn,

1

n
M(

ℓ1+c1ℓ
2
2,Σn

) (c2Σ−1/2
n h+ c3

√
nθ⋆n; c4

) P−→ M̄c1 (c2, c3, c4) , (3.24)

for a function M̄ : R3 → R.

Following the same notation as in (3.8), we introduce the following min-max objective

based on eight scalars,

min
α,τ1,w∈R+,

µ∈R

max
τ2,β,γ∈R+,

η∈R

f
δ,C(v̄) + EG,S

[
ML

(
αG+ µζ S ψ(ζS)− w;

τ1
β

)]

+ εtrγ M̄ r
γεtr

(
αβ

τ2
√
δ
,
αη

τ2ζ2
,
αγεtr
τ2

)
. (3.25)

Theorem 3.8.1. Assume that the training dataset {(xi, yi)}mi=1, is generated according to

Generalized Linear models (3.3) with PD covariance matrices satisfying Assumptions 3.2.1-

3.2.3. Consider the sequence of robust classifiers {θ̂n}, obtained by adversarial training in

(3.6) with a convex decreasing loss function L : R → R. Then, the high-dimensional limit

for the adversarial test error (Eℓ∞,
εts√
n
) is derived as follows,

{
EGLMℓ∞,

εts√
n

(
θ̂n

)}
P−→ P

(
µ⋆ζ S ψ(ζS) + α⋆G < w⋆εts/εtr

)
, (3.26)

where (α⋆, µ⋆, w⋆) is the unique solution to the scalar minimax problem (3.25).

Proof: Recall that for the GLM we have xi
iid∼ N (0,Σn). Therefore, the decreasing
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nature of the loss leads to the following simplification in (3.13):

θ̂n : = min
θn∈Rn

max
∥δi∥∞≤ε
i∈[m]

1

m

m∑
i=1

L (yi ⟨xi + δi,θn⟩) + λ∥θn∥22 (3.27)

= min
θn∈Rn

1

m

m∑
i=1

L(yi ⟨xi,θn⟩ − ε∥θn∥1) + λ∥θn∥22

= min
θn∈Rn,v∈Rm

vi=yix
⊤
i θn

1

m

m∑
i=1

L(vi − ε∥θn∥1) + λ∥θn∥22. (3.28)

In the last expression above, we have introduced additional variables vi. This redundancy

will allow us to write again the optimization as a minimax problem, but this time in a

different —more convenient in terms of analysis— form compared to (3.27). Specifically,

the minimization in (3.28) is equivalent to the following:

min
θn∈Rn,v∈Rm

max
u∈Rm

1

m

m∑
i=1

L(vi − ε∥θn∥1) +
1

m

m∑
i=1

ui (yi ⟨xi,θn⟩ − vi) + λ∥θn∥22. (3.29)

We introduce the variable θ̃n ≜ Σ
1/2
n θn and x̄i ≜ Σ

−1/2
n xi thus x̄i

iid∼ N (0, In). Based on

the new notation, (3.29) can be rewritten as:

min
θ̃n∈Rn,v∈Rm

max
u∈Rm

1

m

m∑
i=1

L
(
vi − ε

∥∥∥Σ−1/2
n θ̃n

∥∥∥
1

)
+

1

m

m∑
i=1

ui

(
yi

〈
x̄i, θ̃n

〉
− vi

)

+ λ
∥∥∥Σ−1/2

n θ̃n

∥∥∥2
2
. (3.30)

Next, we define the projection matrices Θn,Θ
⊥
n ∈ Rn×n based on θ̃⋆n ≜ Σ

1/2
n θ⋆n as follows,

Θn ≜
θ̃⋆nθ̃

⋆
n

⊤∥∥∥θ̃⋆n∥∥∥2
2

, Θ⊥
n ≜ In −Θn.
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Since Θn +Θ⊥
n = In, we deduce that (3.30) is equivalent to,

min
θ̃n∈Rn,v∈Rm

max
u∈Rm

1

m

m∑
i=1

L
(
vi − ε

∥∥∥Σ−1/2
n θ̃n

∥∥∥
1

)
− 1

m

m∑
i=1

uivi +
1

m

m∑
i=1

uiyi

〈
x̄i,Θnθ̃n

〉
(3.31)

+
1

m

m∑
i=1

uiyi

〈
x̄i,Θ

⊥
n θ̃n

〉
+ λ

∥∥∥Σ−1/2
n θ̃n

∥∥∥2
2
.

Splitting θ̃n based on Θn,Θ
⊥
n has two purposes. First it immediately reveals the two

terms ∥Θnθ̃n∥2 and ∥Θ⊥
n θ̃n∥2 of interest to us in view of Lemma 3.8.1 . Second, as we

will see, it allows the use of the CGMT.

For compactness we write (3.31) in vector notation,

min
θ̃n∈Rn,v∈Rm

max
u∈Rm

1⊤
m

m

(
v − ε

∥∥∥Σ−1/2
n θ̃n

∥∥∥
1
1m

)
−⟨u,v⟩

m
+

〈
u, Y X̄Θnθ̃n

〉
m

+

〈
u, Y X̄Θ⊥

n θ̃n

〉
m

+ λ
∥∥∥Σ−1/2

n θ̃n

∥∥∥2
2
, (3.32)

where

(v) ≜ [L(v1); L(v2); · · · ; L(vm)] ∈ Rm×1,

Y ≜ diag(y1, y2, · · · , ym) ∈ Rm×m,

X̄ ≜ [x̄⊤
1 ; x̄

⊤
2 ; · · · ; x̄⊤

m] ∈ Rm×n. (3.33)

Before proceeding, we recall our main tool the Convex Gaussian Min-max Theorem

[?, ?, ?] which relies on Gordon’s Gaussian Min-max theorem. The Gordon’s Gaussian

comparison inequality [3] compares the min-max value of two doubly indexed Gaussian
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processes Xw,u,Yw,u based on how their autocorrelation functions compare,

Xw,u ≜ u⊤Gw + Γ(w,u), (3.34a)

Yw,u ≜ ∥w∥2g⊤u+ ∥u∥2h⊤w + Γ(w,u), (3.34b)

where: G ∈ Rm×n, g ∈ Rm, h ∈ Rn, they all have entries iid Gaussian; the sets Sw ⊂ Rn

and Su ⊂ Rm are compact; and, Γ : Rn × Rm → R. For these two processes, define the

following (random) min-max optimization programs, which we refer to as the primary

optimization (PO) problem and the auxiliary optimization (AO).

Φ(G) = min
w∈Sw

max
u∈Su

Xw,u, (3.35a)

ϕ(g,h) = min
w∈Sw

max
u∈Su

Yw,u. (3.35b)

According to the version of the CGMT in Theorem 6.1 in [5], if the sets Sw and Su are

convex and ψ is continuous convex-concave on Sw × Su, then, for any ν ∈ R and t > 0, it

holds

P (|Φ(G)− ν| > t) ≤ 2P (|ϕ(g,h)− ν| > t) . (3.36)

In words, concentration of the optimal cost of the AO problem around µ implies concen-

tration of the optimal cost of the corresponding PO problem around the same value µ.

Moreover, starting from (3.36) and under strict convexity conditions, the CGMT shows

that concentration of the optimal solution of the AO problem implies concentration of

the optimal solution of the PO to the same value. For example, if minimizers of (3.35b)

satisfy ∥w∗(g,h)∥2 → ζ∗ for some ζ∗ > 0, then, the same holds true for the minimizers

of (3.35a): ∥w∗(G)∥2 → ζ∗ (Theorem 6.1(iii) in [5]). Thus, one can analyze the AO to

infer corresponding properties of the PO, the premise being of course that the former is
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simpler to handle than the latter.

Returning to our minimax problem (3.32), we observe that the objective is convex in

(θ̃n,v) and concave in u. Also note that the term Y X̄Θnθ̃n is independent of Y X̄Θ⊥
n θ̃n

as the entries of Y depend only on X̄Θn which is orthogonal to X̄Θ⊥
n , i.e., based on the

definition of Θn we have

yi = ψ(x⊤
i θ

⋆
n) = ψ(x̄⊤

i θ̃
⋆
n) = ψ(x̄⊤

i Θnθ̃⋆n).

Therefore, along the same lines as in the proof of Lemma 3.8.1, we can substitute

X̄Θ⊥
n by X̂Θ⊥

n for a standard Gaussian matrix X̂ that is independent of X̄ and everything

else in the objective of (3.32). Thus, we can use CGMT for PO in (3.32) with the choice

Γ
(
{θ̃n,v},u

)
≜

1⊤
m

m

(
v − ε

∥∥∥Σ−1/2
n θ̃n

∥∥∥
1
1m

)
− ⟨u,v⟩

m
+

〈
u, Y X̄Θnθ̃n

〉
m

+λ
∥∥∥Σ−1/2

n θ̃n

∥∥∥2
2
.

With this, we derive the following AO for (3.32),

min
θ̃n∈Rn,v∈Rm

max
u∈Rm

1⊤
m

m

(
v − ε

∥∥∥Σ−1/2
n θ̃n

∥∥∥
1
1m

)
− ⟨u,v⟩

m
+

〈
u, Y X̄Θnθ̃n

〉
m

+
u⊤Y g

∥∥∥Θ⊥
n θ̃n

∥∥∥
2

m
+

∥u⊤Y ∥2
〈
h,Θ⊥

n θ̃n

〉
m

+ λ
∥∥∥Σ−1/2

n θ̃n

∥∥∥2
2
, (3.37)

where g ∈ Rm, h ∈ Rn have entries i.i.d. standard normal. Note that similar to [5]

and despite the fact that we are working with finite dimensional matrices now, we will

consider the asymptotic limit at the end of the approach. Thus as the final optimization

has a bounded solution in the high-dimensional limit, we can relax the assumption of

compactness of the domain of optimization which is needed for CGMT.

To proceed, we observe that Y g ∼ N (0, 1) and ∥u⊤Y ∥2= ∥u∥2. So, next we can
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optimize w.r.t u to find that:

max
u∈Rm

−⟨u,v⟩
m

+

〈
u, Y X̄Θnθ̃n

〉
m

+
⟨u,g⟩

∥∥∥Θ⊥
n θ̃n

∥∥∥
2

m
+

∥u∥2
〈
h,Θ⊥

n θ̃n

〉
m

= max
u∈Rm,

∥u∥2√
m

=β

1

m

〈
u,−v + Y X̄Θnθ̃n + g

∥∥∥Θ⊥
n θ̃n

∥∥∥
2

〉
+
β
〈
h,Θ⊥

n θ̃n

〉
√
m

=max
β∈R+

β√
m

∥∥∥−v + Y X̄Θnθ̃n + g
∥∥∥Θ⊥

n θ̃n

∥∥∥
2

∥∥∥
2
+
β
〈
h,Θ⊥

n θ̃n

〉
√
m

.

Hence we replace this in (3.37) to simplify the objective as follows,

min
θ̃n∈Rn,v∈Rm

max
β∈R+

1⊤
m

m

(
v − ε

∥∥∥Σ−1/2
n θ̃n

∥∥∥
1
1m

)
+

β√
m

∥∥∥−v + Y X̄Θnθ̃n + g
∥∥∥Θ⊥

n θ̃n

∥∥∥
2

∥∥∥
2

+
β
〈
h,Θ⊥

n θ̃n

〉
√
m

+ λ
∥∥∥Σ−1/2

n θ̃n

∥∥∥2
2
. (3.38)

Next, our trick is to dualize the the term ε
∥∥∥Σ−1/2

n θ̃n

∥∥∥
1

inside the loss function. For

this, we first introduce an extra optimization variable w > 0 along with the constraint

w = ε
∥∥∥Σ−1/2

n θ̃n

∥∥∥
1

and then turn this into an unconstrained min-max problem. This

yields the following equivalent formulation of (3.38),

min
θ̃n∈Rn,v∈Rm

w=ε
∥∥∥Σ−1/2

n θ̃n

∥∥∥
1

max
β∈R+

1⊤
m

m
(v − w1m) +

β√
m

∥∥∥−v + Y X̄Θnθ̃n + g
∥∥∥Θ⊥

n θ̃n

∥∥∥
2

∥∥∥
2

+
β
〈
h,Θ⊥

n θ̃n

〉
√
m

+ λ
∥∥∥Σ−1/2

n θ̃n

∥∥∥2
2

(3.39)

= min
θ̃n∈Rn,v∈Rm,w∈R+

max
β,γ∈R+

1⊤
m

m
(v − w1m) + γ

(
ε
∥∥∥Σ−1/2

n θ̃n

∥∥∥
1
− w

)
+ λ

∥∥∥Σ−1/2
n θ̃n

∥∥∥2
2

+
β√
m

∥∥∥−v + Y X̄Θnθ̃n + g
∥∥∥Θ⊥

n θ̃n

∥∥∥
2

∥∥∥
2
+
β
〈
h,Θ⊥

n θ̃n

〉
√
m

. (3.40)
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The key reason behind this reformulation is to allow optimization with respect to θ̃n

which is the primary variable of interest in the objective function. As we will see, our

goal is optimizing with respect to the direction of Θ⊥
n θ̃n and Θnθ̃n, which according to

Lemma 3.8.1 comprise the terms parametrizing the adversarial error of the estimator

θ̃n. To do this, we introduce the slack variable ρ̃n for θ̃n (equivalently ρn for θn where

ρn ≜ Σ
−1/2
n ρ̃n) and rewrite the optimization problem (3.40),

min
θ̃n∈Rn,v∈Rm,w∈R+

s.t. Σ
−1/2
n θ̃n=ρn

max
β,γ∈R+

1⊤
m

m
(v − w1m) + γ

(
ε
∥∥∥Σ−1/2

n θ̃n

∥∥∥
1
− w

)
+ λ

∥∥∥Σ−1/2
n θ̃n

∥∥∥2
2

+
β√
m

∥∥∥−v + Y X̄Θnθ̃n + g
∥∥∥Θ⊥

n θ̃n

∥∥∥
2

∥∥∥
2
+
β
〈
h,Θ⊥

n θ̃n

〉
√
m

= min
ρ̃n,θ̃n∈Rn,v∈Rm,w∈R

max
β,γ∈R+,λ∈Rn

1⊤
m

m
(v − w1m)− γw + εγ

∥∥Σ−1/2
n ρ̃n

∥∥
1
+ r

∥∥Σ−1/2
n ρ̃n

∥∥2
2

+

〈
λ√
n
, ρ̃n − θ̃n

〉
+

β√
m

∥∥∥−v + Y X̄Θnθ̃n + g
∥∥∥Θ⊥

n θ̃n

∥∥∥
2

∥∥∥
2
+
β
〈
h,Θ⊥

n θ̃n

〉
√
m

.

(3.41)

In (3.41), we applied the Lagrangian method to both of terms
∥∥∥Σ−1/2

n θ̃n

∥∥∥
1
and

∥∥∥Σ−1/2
n θ̃n

∥∥∥2
2
.

This is essential to scalarizing the objective function based on Θnθ̃n and Θ⊥
n θ̃n, which is

our next step. As a remark and as we will see in Section 3.8.1, only in the special case of

Σn = In, it is possible to apply the Lagrangian to the ℓ1 norm and simply decompose

∥θ̃n∥22 as

∥θ̃n∥22 = ∥Θnθ̃n∥22 + ∥Θ⊥
n θ̃n∥22 .

Now, we can finally optimize w.r.t the direction of Θ⊥
n θ̃n. First, note that

〈
λ, ρ̃n − θ̃n

〉
=
〈
λ,Θn

(
ρ̃n − θ̃n

)〉
+
〈
λ,Θ⊥

n ρ̃n

〉
−
〈
λ,Θ⊥

n θ̃n

〉
.
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With this decomposition, we can optimize w.r.t. Θ⊥
n θ̃n as follows,

min
Θ⊥

n θ̃n∈Rn

−
〈

λ√
n
,Θ⊥

n θ̃n

〉
+

β√
m

∥∥∥−v + Y X̄Θnθ̃n + g
∥∥∥Θ⊥

n θ̃n

∥∥∥
2

∥∥∥
2
+
β
〈
h,Θ⊥

n θ̃n

〉
√
m

= min
Θ⊥

n θ̃n∈Rn,∥Θ⊥
n θ̃n∥2=α

〈
− λ√

n
+

βh√
m
,Θ⊥

n θ̃n

〉
+

β√
m

∥∥∥−v + Y X̄Θnθ̃n + αg
∥∥∥
2

= min
α∈R+

−α
∥∥∥∥−Θ⊥

nλ√
n

+
β√
m
Θ⊥
nh

∥∥∥∥
2

+
β√
m

∥∥∥− v + Y X̄Θnθ̃n + αg
∥∥∥
2
. (3.42)

By replacing (3.42) in (3.41) we have,

min
ρ̃n,Θnθ̃n∈Rn,v∈Rm,w,α∈R+

max
β,γ∈R+,λ∈Rn

1⊤
m

m
(v − w1m)− γw + εγ

∥∥Σ−1/2
n ρ̃n

∥∥
1

+

〈
λ√
n
,Θn

(
ρ̃n − θ̃n

)〉
+ r

∥∥Σ−1/2
n ρ̃n

∥∥2
2
+

〈
λ√
n
,Θ⊥

n ρ̃n

〉

− α

∥∥∥∥−Θ⊥
nλ√
n

+
β√
m
Θ⊥
nh

∥∥∥∥
2

+
β√
m

∥∥∥− v + Y X̄Θnθ̃n + αg
∥∥∥
2
. (3.43)

We replace ε with εtr/
√
n specialized to the case of q = ∞. Such normalization is

necessary to guarantee the boundedness of the solutions to (3.43) when εtr = O(1). To

continue, we will use the same trick as in [?] that x = minτ∈R+

x2

2τ
+ τ

2
for every x ∈ R+.

Thus we may rewrite the last two terms based on the squared ℓ2 norm by introducing
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two new variables τ1, τ2 ∈ R+ to obtain the following new objective,

min
ρ̃n,Θnθ̃n∈Rn,v∈Rm,w,α,τ1∈R+

max
τ2,β,γ∈R+,λ∈Rn

1⊤
m

m
(v − w1m)− γw +

εtrγ√
n

∥∥Σ−1/2
n ρ̃n

∥∥
1

+

〈
λ√
n
,Θn

(
ρ̃n − θ̃n

)〉
+ r

∥∥Σ−1/2
n ρ̃n

∥∥2
2

+

〈
λ√
n
,Θ⊥

n ρ̃n

〉

− α

2τ2n

∥∥∥∥−Θ⊥
nλ+

β√
δ
Θ⊥
nh

∥∥∥∥2
2

− ατ2
2

+
β

2τ1m

∥∥∥− v + Y X̄Θnθ̃n + αg
∥∥∥2
2
+
βτ1
2
,

(3.44)

where we also used the fact that m/n = δ. By the following chain of equations, we

simplify the maximization with respect to λ,

max
λ∈Rn

〈
λ√
n
,Θ⊥

n ρ̃n

〉
− α

2τ2n

∥∥∥∥−Θ⊥
nλ+

β√
δ
Θ⊥
nh

∥∥∥∥2
2

+

〈
λ√
n
,Θn

(
ρ̃n − θ̃n

)〉

= max
λ∈Rn

− α

2nτ2

∥∥∥∥Θ⊥
n

(
β√
δ
h− λ+

τ2ρ̃n
√
n

α

)∥∥∥∥2
2

+
τ2
2nα

∥∥∥∥Θ⊥
n

(
ρ̃n

√
n+

αβ

τ2
√
δ
h

)∥∥∥∥2
2

− αβ2

2mτ2

∥∥Θ⊥
nh
∥∥2
2
+

〈
λ√
n
,Θn

(
ρ̃n − θ̃n

)〉
(3.45)

= max
Θnλ∈Rn

max
Θ⊥

nλ∈Rn
− α

2nτ2

∥∥∥∥Θ⊥
n

(
β√
δ
h− λ+

τ2ρ̃n
√
n

α

)∥∥∥∥2
2

+
τ2
2nα

∥∥∥∥Θ⊥
n

(
ρ̃n

√
n+

αβ

τ2
√
δ
h

)∥∥∥∥2
2

− αβ2

2mτ2

∥∥Θ⊥
nh
∥∥2
2
+

〈
Θnλ√
n
,Θn

(
ρ̃n − θ̃n

)〉
(3.46)

= max
Θnλ∈Rn

τ2
2nα

∥∥∥∥Θ⊥
n

(
ρ̃n

√
n+

αβ

τ2
√
δ
h

)∥∥∥∥2
2

− αβ2

2mτ2

∥∥Θ⊥
nh
∥∥2
2
+

〈
Θnλ√
n
,Θn

(
ρ̃n − θ̃n

)〉

=
τ2
2nα

∥∥∥∥Θ⊥
n

(
ρ̃n

√
n+

αβ

τ2
√
δ
h

)∥∥∥∥2
2

− αβ2

2δτ2
. (3.47)

In deriving (3.45) we used completion of squares. In (3.46), we decompose maximization

of λ into Θnλ and Θ⊥
nλ and used the fact that Θ⊥

n +Θn = In and Θ⊥
nΘn = 0n. In the
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last line we used the fact that ∥Θ⊥
nh∥22→ n. We note that the last line is true subject to

the constraint Θnρ̃n = Θnθ̃n, which ensures boundedness of the min-max objective. We

include this constraint in the next step of the proof. Therefore, inserting (3.47) back in

(3.44) we derive,

min
ρ̃n,Θnθ̃n∈Rn,v∈Rm,w,α,τ1∈R+

s.t. Θnρ̃n=Θnθ̃n

max
γ,τ2,β∈R+

1⊤
m

m
(v − w1m)− γw +

εtrγ√
n

∥∥Σ−1/2
n ρ̃n

∥∥
1

+ r
∥∥Σ−1/2

n ρ̃n
∥∥2
2
+

τ2
2nα

∥∥∥∥Θ⊥
n

(
ρ̃n

√
n+

αβ

τ2
√
δ
h

)∥∥∥∥2
2

− αβ2

2δτ2
− ατ2

2

+
β

2τ1m

∥∥∥− v + Y X̄Θnθ̃n + αg
∥∥∥2
2
+
βτ1
2
. (3.48)

Recalling Θ⊥
n ≜ I−Θn, we can deduce

1

n

∥∥∥∥Θ⊥
n

(
ρ̃n

√
n+

αβ

τ2
√
δ
h

)∥∥∥∥2
2

=
1

n

∥∥∥∥ρ̃n√n+
αβ

τ2
√
δ
h

∥∥∥∥2
2

− ∥Θnρ̃n∥22 −
α2β2

nτ 22 δ
∥Θnh∥22

− 4
αβ

τ2
√
m
h⊤Θnρ̃n. (3.49)

Since ∥θ̃⋆n∥2
P−→ ζ where ζ = O(1) by Assumption 3.2.2, we can see that

∥Θnh∥22= O(1), h⊤Θnρ̃n = h⊤Θnθ̃n = µh⊤θ̃⋆n = O(1),

which implies that the last two terms in (3.49) vanish asymptotically and we have that,

1

n

∥∥∥∥Θ⊥
n

(
ρ̃n

√
n+

αβ

τ2
√
δ
h

)∥∥∥∥2
2

=
1

n

∥∥∥∥ρ̃n√n+
αβ

τ2
√
δ
h

∥∥∥∥2
2

− ∥Θnρ̃n∥22

=
1

n

∥∥∥∥ρ̃n√n+
αβ

τ2
√
δ
h

∥∥∥∥2
2

− µ2
∥∥∥θ̃⋆n∥∥∥2

2
.

The last line is due to the constraint in (3.48) i.e., Θnρ̃n = Θnθ̃n (or equivalently
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⟨θ̃⋆
n,ρ̃n⟩

∥θ̃⋆
n∥2

2

= µ, based on the definition of Θn and µ). Therefore by plugging this in (3.48)

and introducing the Lagrangian multiplier η ∈ R, (3.48) can be equivalently rewritten as

follows,

min
ρ̃n,Θnθ̃n∈Rn,v∈Rm,w,α,τ1∈R+

s.t. ⟨θ̃⋆
n,ρ̃n⟩

/
∥θ̃⋆

n∥2

2
=µ

max
γ,τ2,β∈R+

1⊤
m

m
(v − w1m)− γw +

εtrγ√
n

∥∥Σ−1/2
n ρ̃n

∥∥
1

+ r
∥∥Σ−1/2

n ρ̃n
∥∥2
2
+

τ2
2nα

∥∥∥∥ρ̃n√n+
αβ

τ2
√
δ
h

∥∥∥∥2
2

−
µ2τ2

∥∥∥θ̃⋆n∥∥∥2
2

2α
− αβ2

2δτ2
− ατ2

2

+
β

2τ1m

∥∥∥−v + Y X̄Θnθ̃n + αg
∥∥∥2
2
+
βτ1
2

= min
ρ̃n∈Rn,v∈Rm,
w,α,τ1∈R+,µ∈R

max
γ,τ2,β∈R+,η∈R

1⊤
m

m
(v − w1m)− γw +

εtrγ√
n

∥∥Σ−1/2
n ρ̃n

∥∥
1
+ r

∥∥Σ−1/2
n ρ̃n

∥∥2
2

+
τ2
2nα

∥∥∥∥ρ̃n√n+
αβ

τ2
√
δ
h

∥∥∥∥2
2

−
µ2τ2

∥∥∥θ̃⋆n∥∥∥2
2

2α
− αβ2

2δτ2
− ατ2

2
+

β

2τ1m

∥∥∥−v + µY X̄θ̃⋆n + αg
∥∥∥2
2

+
βτ1
2

+ η

(
µ− ⟨θ̃⋆n, ρ̃n⟩

∥θ̃⋆n∥
2
2

)
. (3.50)

Minimization w.r.t v can be written based on the moreau-envelope of :

min
v∈Rm

1⊤
m

m
(v − w1m) +

β

2τ1m

∥∥∥−v + µY X̄θ̃⋆n + αg
∥∥∥2
2

=
1

m
M
(
µY X̄θ̃⋆n + αg − w1m;

τ1
β

)
. (3.51)

Our final key step is to write the minimization with respect to ρ̃n ∈ Rn based on the

Moreau-envelope of the ℓ1 + ℓ22 norms. To this end, we rewrite the terms in (3.50)
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consisting of ρ̃n as following,

min
ρ̃n∈Rn

εtrγ√
n

∥∥Σ−1/2
n ρ̃n

∥∥
1
+ r

∥∥Σ−1/2
n ρ̃n

∥∥2
2
+

τ2
2nα

∥∥∥∥ρ̃n√n+
αβ

τ2
√
δ
h

∥∥∥∥2
2

− η

〈
θ̃⋆n, ρ̃n

〉
∥∥∥θ̃⋆n∥∥∥2

2

= min
ρ̃n∈Rn

εtrγ√
n

∥∥Σ−1/2
n ρ̃n

∥∥
1
+ r

∥∥Σ−1/2
n ρ̃n

∥∥2
2
+

τ2
2αn

∥∥∥∥∥∥∥ρ̃n
√
n+

αβ

τ2
√
δ
h− ηα

√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

θ̃⋆n

∥∥∥∥∥∥∥
2

2

− η2α

2τ2

∥∥∥θ̃⋆n∥∥∥2
2

− αβη
√
mτ2

∥∥∥θ̃⋆n∥∥∥2
2

〈
θ̃⋆n,h

〉

= min
ρ̃n∈Rn

εtrγ√
n

∥∥Σ−1/2
n ρ̃n

∥∥
1
+ r

∥∥Σ−1/2
n ρ̃n

∥∥2
2
+

τ2
2αn

∥∥∥∥∥∥∥ρ̃n
√
n+

αβ

τ2
√
δ
h− ηα

√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

θ̃⋆n

∥∥∥∥∥∥∥
2

2

− η2α

2τ2

∥∥∥θ̃⋆n∥∥∥2
2

(3.52)

= min
ρ̃n∈Rn

εtrγ

n

∥∥ρ̃n√n∥∥1 + r

n

∥∥ρ̃n√n∥∥22
+

τ2
2αn

∥∥∥∥∥∥∥Σ1/2
n

ρ̃n
√
n+

αβ

τ2
√
δ
Σ−1/2
n h− ηα

√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

Σ−1/2
n θ̃⋆n


∥∥∥∥∥∥∥
2

2

− η2α

2τ2

∥∥∥θ̃⋆n∥∥∥2
2

. (3.53)

Here, the first step follows from the completion of squares while the second step follows

from the fact that θ̃⋆n
⊤
h = O(∥θ̃⋆n∥) = O(1) and thus the last term asymptotically

vanishes. Now, note that the minimization w.r.t. ρ̃n in (3.53) is equivalent to the

following Moreau-Envelope function:

εtrγ

n
M(

ℓ1+
r

εtrγ
ℓ2
2,Σn

)
 αβ

τ2
√
δ
Σ−1/2
n h+

αη
√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

θ⋆n;
αεtrγ

τ2

 ,

114



Adversarial Training with High-dimensional Linear Models Chapter 3

where recall the definition of M(
ℓ1+C ℓ

2
2,S

) (x; τ) in (3.23). Thus, the following objective

function is derived by replacing the Moreau-envelopes in (3.50),

min
α,τ1,w∈R+,

µ∈R

max
τ2,β,γ∈R+,

η∈R

−γw − µ2τ2
2α

∥∥∥θ̃⋆n∥∥∥2
2
− αβ2

2δτ2
− ατ2

2
+
βτ1
2

+ ηµ− η2α

2τ2

∥∥∥θ̃⋆n∥∥∥2
2

+
1

m
M
(
µY X̄θ̃⋆n + αg − w1m;

τ1
β

)

+
εtrγ

n
M(

ℓ1+
r

εtrγ
ℓ2
2,Σn

)
 αβ

τ2
√
δ
Σ−1/2
n h+

αη
√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

θ⋆n;
αεtrγ

τ2

 . (3.54)

We note that based on the definition of Θn the entry i on the diagonal of Y , denoted

by yi is derived as yi = ψ (⟨xi,θ⋆n⟩) = ψ(⟨x̄i, θ̃⋆n⟩), where

〈
x̄i, θ̃⋆n

〉
∼ N

(
0,θ⋆n

⊤Σnθ
⋆
n

)
.

Therefore it yields that

µY X̄θ̃⋆n
P−→ µζ (s ⊙Ψ(ζs)) ,

where Ψ(ζs) ≜ [ψ(ζs1); · · · ;ψ(ζsm)] for the vector s ∈ Rm with i.i.d standard normal

entries si and by Assumption 3.2.2, ζ denotes the high-dimensional limit of θ⋆n
⊤Σnθ

⋆
n.

Therefore based on the separability of the Moreau-envelope M we have,

1

m
M
(
µY X̄θ̃⋆n + αg − w1m;

τ1
β

)
P−→ ES,G

[
ML

(
αG+ µζS · ψ(ζS)− w;

τ1
β

)]
,
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for S,G iid∼ N (0, 1). Also, it holds that,

1

n
M(

ℓ1+
r

εtrγ
ℓ2
2,Σn

)
 αβ

τ2
√
δ
Σ−1/2
n h+

αη
√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

θ⋆n;
αεtrγ

τ2

 P−→ M̄

(
αβ

τ2
√
δ
,
αη

τ2ζ2
;
αγεtr
τ2

)
.

(3.55)

Putting these back in (3.54), we conclude with the objective in (3.25). This completes

the proof.

Case II: Correlated Features with Diagonal Covariance Matrix (Proof of

Theorem 3.3.1)

Note that the Moreau-envelope in (3.55) is not separable in general and thus the

computation of M(
ℓ1+

r
εtrγ

ℓ22,Σn

) may not be simplified further. By assuming Σn to be

diagonal i.e., Σn = Λn with diagonal entries λn,i, i ∈ [n], it is concluded from (3.53) that

the minimization becomes separable over the entires of ρ̃n. In fact, it is inferred that in

this case:

1

n
M(

ℓ1+
r

εtrγ
ℓ2
2,Σn

)
 αβ

τ2
√
δ
Σ−1/2
n h+

αη
√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

θ⋆n;
αεtrγ

τ2


=

1

n

n∑
i=1

Mℓ1+
r

εtrγ
ℓ22

 αβ

τ2
√
δλn,i

hi +
αη

√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

θ⋆n,i;
αεtrγ

τ2λn,i

 . (3.56)

By Assumption 3.2.1, we know that λn,i ∈ (c, C), for all i ∈ [n] and all n ∈ N, where c > 0.

This results in Mℓ1+ℓ22
(·; ·) being Pseudo-Lipschitz of order 2. Thus by Assumption 3.2.3,
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the expression in (3.56) converges in probability to

EL,H,T
[
Mℓ1+

r
εtrγ

ℓ22

(
αβ

τ2
√
δL
H +

αη

τ2ζ2
T ;
αεtrγ

τ2L

)]
, (3.57)

for the standard Gaussian random variable H and (L, T ) drawn according to distribution

Π. Thus in this case, (3.54) converges to the min-max problem in (3.8). This completes

the proof of Theorem 3.3.1 for GLM.

Case III: Isotropic Features

When Σn = In, the final expressions can be further simplified, as the term ∥Σnθ̃n∥22

becomes decomposable into ∥Θnθ̃n∥22 and ∥Θ⊥
n θ̃n∥22. Here we focus on the case of q = ∞

for GLM and defer the analysis of q = 2 to Section 3.8.2. Proceeding with the same

notation as in (3.8), consider the following min-max objective,

min
α,τ1,w∈R+,

µ∈R

max
τ2,β,γ∈R+,

η∈R

f
δ,1
(v̄) + rα2 + rµ2 + EG,S

[
ML

(
αG+ µS ψ(S)− w;

τ1
β

)]

+ εtrγ EH,T
[
Mℓ1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
. (3.58)

Corollary 3.8.1. Consider the Generalized Linear models (3.3). Assume the same

settings and assumptions as in Theorem 3.8.1, only here assume that Σn = In. Then, the

high-dimensional limit for the adversarial test error (Eℓ∞,
εts√
n
) is derived as follows,

{
EGLMℓ∞,

εts√
n

(
θ̂n

)}
P−→ P

(
µ⋆ S ψ(S) + α⋆G < w⋆εts/εtr

)
, (3.59)

where (α⋆, µ⋆, w⋆) is the unique solution to the scalar minimax problem (3.58).

Proof: The proof follows the same steps as Theorem 3.8.1. Note here that ζ = 1 and

the random variable L = 1. Also, in deriving (3.41), it suffices to write the Lagrangian
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equivalent formulation only for the ℓ1 loss and write ∥θ̃n∥22= ∥Θnθ̃n∥22+∥Θ⊥
n θ̃n∥22

P−→

rα2 + rµ2, which results in (3.58).

A System of Equations.

We find solutions to the min-max problem in (3.58)(the objective of which we denote by

L̄ : R8 → R) by forming and solving ∇v̄L̄ = 0. To compute ∇v̄L̄ we leverage properties of

Moreau-envelopes and appropriately combine different equations in the system ∇v̄L̄ = 0,

so as to simplify the resulting expressions (details are provided below). This leads to

the system of eight equations (3.60). Our experiments suggest that the simplifications

that lead to these, are important for a simple iterative fixed-point scheme to obtain the
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theoretical values of (α⋆, µ⋆, w⋆).



η = β
τ1
E[Z (w + proxL (µZ + αG− w; τ1/β)) ]− 2λµ+ µτ2

α
− κβµ

τ1
,

µ = E
[
T · proxℓ1

(
αβH/(τ2

√
δ) + αηT/τ2;αεtrγ/τ2

)]
,

γ = −E
[
M′

L,1 (µZ + αG− w; τ1/β)
]
,

β2 = E
[(

M′
L,1 (µZ + αG− w; τ1/β)

)2]
,

τ1 =
1√
δ
E
[
H · proxℓ1

(
αβH

τ2
√
δ
+ αηT/τ2;αεtrγ/τ2

)]
,

α = 1
β+2λτ1

(τ1τ2 + βE [GproxL (αG+ µZ − w; τ1/β)]),

w = εtrE
[
Mℓ1

(
αβH

τ2
√
δ
+ αηT/τ2;αεtrγ/τ2

)]
− ε2trγα

2τ2
E
[ (

M′
ℓ1,1

(
αβH

τ2
√
δ
+ αηT/τ2;αεtrγ/τ2

))2 ]
,

τ 22 = α2

α2+µ2

(
β2/δ + η2 + ε2trγ

2E
[ (

M′
ℓ1,1

(
αβH

τ2
√
δ
+ αηT/τ2;αεtrγ/τ2

))2 ]
−2βεtrγ√

δ
E
[
HM′

ℓ1,1

(
αβH

τ2
√
δ
+ αηT/τ2;αεtrγ/τ2

)]
−2ηεtrγE

[
TM′

ℓ1,1

(
αβH

τ2
√
δ
+ αηTτ2;αεtrγ/τ2

)] )
,

(3.60)

where the random variable Z = S ψ(S) for GLM and Z = S + 1 for GMM, and the

constant κ = 1 and 2 for GLM and GMM, respectively. Here, the Proximal operator of a

function f : R → R, at x with parameter κ > 0, is defined as follows,

proxf (x;κ) ≜ argmin
v

1

2κ
(x− v)2 + f(v). (3.61)

Next, we explain how to derive the Equations (3.60) for GLM. The approach for GMM

is similar. Before starting, we recall useful properties of Moreau-envelops which we will

leverage in deriving the equations.
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Proposition 3.8.1 ([2]). Let L be a lower semi-continuous and proper function. De-

note M′
L,1 (x;κ) ≜ ∂ML(x;κ)

∂x
. and M′

L,2 (x;κ) ≜ ∂ML(x;κ)
∂κ

. Then the following relations

hold between first-order derivatives of Moreau-envelopes and the corresponding proximal

operator,

M′
L,1 (x; τ) =

1

τ
(x− proxL (x; τ)), (3.62)

M′
L,2 (x; τ) = − 1

2τ 2
(x− proxL (x; τ))

2. (3.63)

We proceed with the derivation of the Equations (3.60). First, we start with ∇µL to

find that,

∇µL̄ = −µτ2
α

+ η + E
[
Sψ(S) · M′

L,1

(
µSψ(S) + αG− w;

τ1
β

)]
+ 2λµ

= −µτ2
α

+ η +
β

τ1

(
µ− wE [Sψ(S)]− E

[
Sψ(S) · proxL

(
µSψ(S) + αG− w;

τ1
β

)])
+ 2λµ,

which gives rise to the equation below for finding η⋆:

η =
µτ2
α

− βµ

τ1
+
βw

τ1
E[Sψ(S)] +

β

τ1
E
[
Sψ(S) · proxL

(
µSψ(S) + αG− w;

τ1
β

)]
− 2λµ.

(3.64)

By taking derivative w.r.t η and rewriting the derivatives based on proximal operators,

we derive the equation for µ⋆:

∇ηL̄ = µ− ηα

τ2
+
εtrγα

τ2
E
[
TM′

ℓ1,1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
= µ− ηα

τ2
+
αη

τ2
E
[
T 2
]
− E

[
T · proxℓ1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
,
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which after noting that E[Z2] = 1, yields the following equation:

µ = E
[
T · proxℓ1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
. (3.65)

In order to find γ⋆, we consider ∇wL̄ to derive that:

γ = −E
[
M′

L,1

(
µSψ(S) + αG− w;

τ1
β

)]
(3.66)

To proceed, we derive ∇τ1L̄ and ∇βL̄:

∇τ1L̄ =
β

2
+

1

β
E
[
M′

L,2

(
µSψ(S) + αG− w;

τ1
β

)]
=
β

2
− 1

2β
E

[(
M′

L,1

(
µSψ(S) + αG− w;

τ1
β

))2
]

(3.67)

∇βL̄ = −αβ
δτ2

+
τ1
2
− τ1
β2

E
[
M′

L,2

(
µSψ(S) + αG− w;

τ1
β

)]
+
αεtrγ

τ2
√
δ
E
[
H · M′

ℓ1,1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]

= −αβ
δτ2

− τ1
2
+

τ1
2β2

E

[(
M′

L,1

(
µSψ(S) + αG− w;

τ1
β

))2
]

+
αεtrγ

τ2
√
δ
E
[
H · M′

ℓ1,1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
. (3.68)

(3.67) yields the equation for deriving β i.e.,

β =

(
E

[(
M′

L,1

(
µSψ(S) + αG− w;

τ1
β

))2
])1/2

. (3.69)

Next, we combine (3.67) with (3.68) with proper coefficients to simplify the equations
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yielding,

∇τ1L̄

β
+

∇βL̄

τ1
= 1− αβ

δτ1τ2
+

αεtrγ√
δτ1τ2

E
[
H · M′

ℓ1,1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
= 1− αβ

δτ1τ2
+

1√
δτ1

(
αβ

τ2
√
δ
− E

[
H · proxℓ1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)])
,

(3.70)

which yields the following equation:

τ1 =
1√
δ
E
[
H · proxℓp

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
. (3.71)

In a similar way, we derive ∇τ2L̄ and ∇αL̄:

∇τ2L̄ = −r
2µ2

2α
+
αβ2

2δτ 22
−α
2
+
η2αr2

2τ 22
− ε2trγ

2α

τ 22
E
[
M′

ℓ1,2

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
−αβεtrγ
τ 22
√
δ
E
[
H · M′

ℓ1,1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
−αηεtrγ

τ 22
E
[
T · M′

ℓ1,1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
, (3.72)

∇αL̄ =
µ2τ2
2α2

− β2

2δτ2
−τ2

2
− η2

2τ2
+ E

[
G · M′

L,1

(
αG+ µSψ(S)− w;

τ1
β

)]
+
ε2trγ

2

τ2
E
[
M′

ℓ1,2

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
+ 2λα

+
βεtrγ

τ2
√
δ
E
[
H · M′

ℓ1,1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
+
ηεtrγ

τ2
E
[
T · M′

ℓ1,1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
. (3.73)
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First, the following equation is directly followed based on (3.72):

τ 22 =
2α

α2 + µ2

(
αβ2

2δ
+
η2α

2
+
ε2trγ

2α

2
E

[(
M′

ℓ1,1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

))2
]

−αβεtrγ√
δ

E
[
H · M′

ℓ1,1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
− αηεtrγE

[
T · M′

ℓ1,1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)])
. (3.74)

In the next step, we combine (3.72) and (3.73) to derive that,

∇τ2L̄

α
+

∇αL̄

τ2
=

1

τ2
E
[
G · M′

L,1 (αG+ µSψ(S)− w; τ1/β)
]
− 1 + 2λα/τ2

=
β

τ1τ2

(
α− E [G · proxL (αG+ µSψ(S)− w; τ1/β)]

)
− 1 + 2λα/τ2.

This gives the following equation, based on the stationary point condition:

α =
(
τ1τ2 + βE

[
G · proxL (αG+ µSψ(S)− w; τ1/β)

])/
(β + 2λτ1). (3.75)

Finally, the following equation is derived directly based on ∇γL̄,

w = εtrE
[
Mℓ1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

)]
− ε2trγα

2τ2
E

[(
M′

ℓ1,1

(
αβ

τ2
√
δ
H +

αη

τ2
T ;
αεtrγ

τ2

))2
]
. (3.76)

By putting together the equations (3.64), (3.65), (3.66), (3.69), (3.71), (3.74), (3.75) and

(3.76), we end up with the system of eight equations in (3.60) for GLM. The steps required

for deriving (3.60) for GMM are in a similar fashion.
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3.8.2 Proofs for Section 3.4

Case I: Correlated Features with General Covariance Matrix (Proof of Theorem

3.4.1)

First, we note that when q = p = 2, the term ∥Σ−1/2
n ρ̃n∥p (in (3.50)) can be rewritten

as follows,

∥∥Σ−1/2
n ρ̃n

∥∥
2
= min

τ3∈R+

1

2τ3

∥∥Σ−1/2
n ρ̃n

∥∥2
2
+
τ3
2
. (3.77)

The reason behind this reformulation is to permit the analysis of the final Moreau-envelope

expression. With this, we rewrite the steps previously required to derive (3.53), as follows

min
ρ̃n∈Rn

(
εtrγ

2τ3
+ r

)∥∥Σ−1/2
n ρ̃n

∥∥2
2
+

τ2
2nα

∥∥∥∥ρ̃n√n+
αβ

τ2
√
δ
h

∥∥∥∥2
2

− η

〈
θ̃⋆n, ρ̃n

〉
∥∥∥θ̃⋆n∥∥∥2

2

= min
ρ̃n∈Rn

(
εtrγ

2τ3
+ r

)∥∥Σ−1/2
n ρ̃n

∥∥2
2
+

τ2
2αn

∥∥∥∥∥∥∥ρ̃n
√
n+

αβ

τ2
√
δ
h− ηα

√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

θ̃⋆n

∥∥∥∥∥∥∥
2

2

− η2α

2τ2

∥∥∥θ̃⋆n∥∥∥2
2

− αβη
√
mτ2

∥∥∥θ̃⋆n∥∥∥2
2

〈
θ̃⋆n,h

〉

= min
ρ̃n∈Rn

(
εtrγ

2τ3
+ r

)∥∥Σ−1/2
n ρ̃n

∥∥2
2
+

τ2
2αn

∥∥∥∥∥∥∥ρ̃n
√
n+

αβ

τ2
√
δ
h− ηα

√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

θ̃⋆n

∥∥∥∥∥∥∥
2

2

− η2α

2τ2

∥∥∥θ̃⋆n∥∥∥2
2

= min
ρ̃n∈Rn

1

n

(
εtrγ

2τ3
+ r

)∥∥ρ̃n√n∥∥22
+

τ2
2αn

∥∥∥∥∥∥∥Σ1/2
n

ρ̃n
√
n+

αβ

τ2
√
δ
Σ−1/2
n h− ηα

√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

Σ−1/2
n θ̃⋆n


∥∥∥∥∥∥∥
2

2

− η2α

2τ2

∥∥∥θ̃⋆n∥∥∥2
2

. (3.78)
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To proceed, note that Σ1/2
n = UnΛ

1/2
n U⊤

n where Un is an orthogonal matrix, therefore with

a change of variable U⊤
n ρ̃n ⇒ ρ̃n, the minimization based on ρ̃n in (3.78) is equivalent to:

min
ρ̃n∈Rn

1

n

(
εtrγ

2τ3
+ r

)∥∥ρ̃n√n∥∥22 + τ2
2αn

∥∥∥∥∥∥∥Λ1/2
n ρ̃n

√
n+

αβ

τ2
√
δ
U⊤
nh− ηα

√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

U⊤
n θ̃

⋆
n

∥∥∥∥∥∥∥
2

2

.

(3.79)

It holds that U⊤
nh ∼ h and following Assumption 3.2.3, we have

U⊤
n θ̃

⋆
n = U⊤

nΣ
1/2
n θ⋆n = Λ1/2

n U⊤
nθ

⋆
n = Λ1/2

n vn. (3.80)

Therefore optimization over ρ̃n becomes separable over its entries and (3.79) is equivalent

to

1

n

n∑
i=1

min
ρ̃n,i∈R

(
εtrγ

2τ3
+ r

)
ρ̃n,i

2 +
τ2λn,i
2αn

ρ̃n,i +
αβ

τ2
√
δλn,i

hi −
ηα

√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

vn,i


2

=
1

n

(
εtrγ

2τ3
+ r

) n∑
i=1

Mℓ22

 αβ

τ2
√
δλn,i

hi +
ηα

√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

vn,i;
εtrγα + 2τ3rα

2τ2τ3λn,i


P−→
(
εtrγ

2τ3
+ r

)
EH,V,L

[
Mℓ22

(
αβ

τ2
√
δL
H +

ηα

τ2ζ2
V ;

εtrγα + 2τ3rα

2τ2τ3L

)]
(3.81)

=

(
εtrγ

2τ3
+ r

)(
η2α2

τ 22 ζ
4

)
EL

[
ζ4β2

η2δ
+ L

εtrγα+2τ3rα
2τ2τ3

+ L

]
, (3.82)

where H is standard normal and in (3.81), we used Assumption 3.2.3, together with

the fact that ℓ22 is pseudo-Lipschitz of order 2. In deriving (3.82), we used the fact that

Mℓ22
(x; τ) = x2

τ+1
and E[H2] = E[V 2] = 1. Inserting this back in (3.50) leads to the
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following objective,

min
α,τ1,τ3,w∈R+,

µ∈R

max
τ2,β,γ∈R+,

η∈R

−γw − µ2τ2
2α

ζ2 − αβ2

2δτ2
− ατ2

2
+
βτ1
2

+ ηµ− η2α

2τ2ζ2
+
εtrγτ3
2

+ EG,S

[
ML

(
αG+ µζS · ψ(ζS)− w;

τ1
β

)]
+

(
εtrγ

2τ3
+ r

)(
η2α2

τ 22 ζ
4

)
EL

[
ζ4β2

η2δ
+ L

εtrγα+2τ3rα
τ2τ3

+ L

]
. (3.83)

This completes the proof of Theorem 3.4.1.

Case II: Isotropic Features

Here we derive the minimax objective for Σn = In. We focus here on GLM, the

extensions to GMM are achievable in light of the analysis in Section 3.8.3.

Corollary 3.8.2. Consider the Generalized Linear model (3.3). Let Σn = In and

∥θ⋆n∥2
P−→ 1. The high-dimensional limit for the adversarial test error takes the following

form,

{EGLM
ℓ2,ε

(θn)}
P−→ P

(
µ⋆Sψ(S) + α⋆G√

α⋆2 + µ⋆2
< ε

)
, (3.84)

where (α⋆, µ⋆) is the unique solution to the following min-max objective,

min
µ∈R,α,τ∈R+

max
β∈R+

L̃ ≜
βτ

2
− αβ√

δ
+ λα2 + λµ2 + EG,S

[
ML

(
µSψ(S) + αG− εtr

√
α2 + µ2; τ/β

) ]
.

(3.85)

Proof: We know that,

θ̂n = min
θn∈Rn

1

m

m∑
i=1

L(yix⊤
i θn − εtr∥θn∥2) + λ∥θn∥22.
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To proceed, we use our approach that derived (3.38), to end at a similar expression, here

for p = 2. We omit the steps as they are akin to the steps that led to (3.38). We end up

with the following objective which is the counterpart of (3.38) for q = p = 2.

min
θn∈Rn,v∈Rm

max
β∈R+

1⊤
m

m
(v − εtr∥θn∥21m) +

β√
m

∥∥−v + Y XΘnθn + g∥Θ⊥
nθn∥2

∥∥
2

(3.86)

+
βh⊤Θ⊥

nθn√
m

+ λ∥θn∥22 =

min
θn∈Rn,v∈Rm

max
β,τ∈R+

1⊤
m

m
(v − εtr∥θn∥21m) +

β

mτ

∥∥−v + Y XΘnθn + g∥Θ⊥
nθn∥2

∥∥2
2
+

βτ

2

+
βh⊤Θ⊥

nθn√
m

+ λ∥θn∥22 ,

where similar to (3.44), here also (3.86) is due to x = minτ∈R+

x2

2τ
+ τ

2
. By minimizing

w.r.t. θn and denoting α ≜ ∥Θ⊥
nθn∥2, µ ≜ ∥Θnθn∥2 we have,

min
v∈Rm,µ∈R,α∈R+

max
β,τ∈R+

1⊤
m

m

(
v − εtr

√
α2 + µ21m

)
+

β

mτ
∥−v + µY Xθ⋆n + αg∥22

+
βτ

2
− αβh√

m
+ λ∥θn∥22.

After m,n→ ∞, one can easily see that the objective simplifies to (3.85). Additionally,

by replacing (α⋆, µ⋆) derived as the solution of (3.85), in (3.20), we derive the asymptotic

error of adversary. This completes the proof

A System of Equations

Now, we present the corresponding fixed-point equations for the ℓ2 case in (3.87).

The equations are obtained by forming ∇L̃ = 0 based on three variables (α, µ, κ), where
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κ := τ/β.



EG,S
[(

M′
L,1

(
µSψ(S) + αG− εtr

√
α2 + µ2;κ

))2 ]
= α2

κ2δ
,

EG,S
[
Sψ(S) · M′

L,1

(
µSψ(S) + αG− εtr

√
α2 + µ2;κ

)]
= −2λµ

+ εtrµ√
α2+µ2

EG,S
[
M′

L,1

(
µSψ(S) + αG− εtr

√
α2 + µ2;κ

)]
,

EG,S
[
G · M′

L,1

(
µSψ(S) + αG− εtr

√
α2 + µ2;κ

)]
= −2αλ

+ εtrα√
α2+µ2

EG,S
[
M′

L,1

(
µSψ(S) + αG− εtr

√
α2 + µ2;κ

)]
+ α

δκ
.

(3.87)

Next, we show how to derive the saddle-point equations (3.87) from ∇L̃ = 0. To

derive the first equation in (3.87), we can see that based on Proposition 3.8.1,

∇τ L̃ =
β

2
− 1

2β
E
[ (

M′
L,1

(
µSψ(S) + αG− εtr

√
α2 + µ2; τ/β

))2 ]
, (3.88)

∇βL̃ =
τ

2
− α√

δ
+

τ

2β2
E
[ (

M′
L,1

(
µSψ(S) + αG− εtr

√
α2 + µ2; τ/β

))2 ]
.

After forming ∇τ L̃
β

+
∇βL̃

τ
= 0, we can deduce that α = τ

√
δ. Since we defined κ ≜ τ/β,

it follows that β = α/(κ
√
δ). Replacing this in (3.88), yields the first equation in (3.87).

The last two equations in (3.87), are obtained directly from ∇µL̃ = 0 and ∇αL̃ = 0.

For GMM (3.2), the min-max objective and the system of equations are obtained by

replacing Sψ(S) with S + 1, in (3.85) and (3.87).
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3.8.3 The Gaussian-Mixture Model Analysis

Adversarial Error of an Arbitrary Estimator

Next lemma (restatement of Lemma 3.3.1 for GMM) derives the asymptotic error of a

given sequence of estimators for the Gaussian-Mixture model.

Lemma 3.8.2. The high-dimensional limit of the Adversarial Error for the Gaussian-

Mixture model with a sequence of classifiers {θn} is given as follows,

{
EGMM
ℓq ,ε (θn)

}
P−→ Q

 µζ̃2 − εu√
α2 + µ2ζ̃2

 , (3.89)

where Q(·) denotes the Gaussian Q-function and u, µ and α are derived as follows,

∥∥∥Σ−1/2
n θ̃n

∥∥∥
p

P−→ u, ⟨θ̃⋆n, θ̃n⟩/∥θ̃⋆n∥22
P−→ µ,

∥∥∥Θ⊥
n θ̃n

∥∥∥
2

P−→ α,

for ℓp-norm denoting the dual of the ℓq-norm, θ̃n ≜ Σ
1/2
n θn, θ̃⋆n ≜ Σ

−1/2
n θ⋆n and Θ⊥

n ∈ Rn×n

defined as follows:

Θ⊥
n ≜ In −Θn, Θn ≜

θ̃⋆nθ̃
⋆
n

⊤∥∥∥θ̃⋆n∥∥∥2
2

.

Moreover, in the special case of q = 2 and Σn = In, by denoting σ ≜ α/µ, (3.89) simplifies

to,

{
EGMM
ℓ2,ε

(θn)
} P−→ Q

(
µ√

α2 + µ2
− ε

)
, (3.90)

Proof: Note that here θ̃⋆n is defined rather differently in GLM. Based on the definition

of GMM, we have x = yθ⋆n + z for z ∼ N (0n,Σn) and z = Σ
1/2
n z̄ for standard Gaussian
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vector z̄. We can write

Ex,y

[
max
∥δ∥q<ε

1{y ̸=sign⟨x+δ,θn⟩}

]
= P

(
y⟨x,θn⟩ − ε∥θn∥p< 0

)
= P

(
y⟨z,θn⟩+ ⟨θn,θ⋆n⟩ − ε∥θn∥p< 0

)
(3.91)

= P
(
y⟨z̄, θ̃n⟩+ ⟨θ̃n, θ̃⋆n⟩ − ε

∥∥∥Σ−1/2
n θ̃n

∥∥∥
p

)

= P
(
⟨z̄,Θnθ̃n⟩+ ⟨z̄,Θ⊥

n θ̃n⟩+ ⟨θ̃n, θ̃⋆n⟩ − ε
∥∥∥Σ−1/2

n θ̃n

∥∥∥
p
< 0

)
,

(3.92)

where (3.91) and (3.92) follow from the definition of the Gaussian-Mixture model and

noting that z is independent of y. Since ⟨z̄,Θ⊥
n θ̃n⟩ and ⟨z̄,Θnθ̃n⟩ are independent, we can

deduce that for G,S iid∼ N (0, 1), it holds that

〈
z̄,Θnθ̃n

〉
=

〈
θ̃⋆n, θ̃n

〉
∥∥∥θ̃⋆n∥∥∥2

2

〈
z̄, θ̃⋆n

〉
P−→ µζ̃S,

〈
z̄,Θ⊥

n θ̃n

〉
∼
∥∥∥Θ⊥

n θ̃n

∥∥∥
2
z̄

P−→ αG,

〈
θ̃n, θ̃⋆n

〉
P−→ µζ̃2.

where recall that
∥∥∥θ̃⋆n∥∥∥

2
= θ⋆n

⊤Σ−1
n θn

⋆ → ζ̃ by Assumption 3.2.2. Therefore, from

(3.92), we infer that,

{EGMM
ℓq ,ε (θn)}

P−→ P
(
µζ̃
(
S + ζ̃

)
+ αG− uε < 0

)
.

This leads to (3.89). When q = 2 and Σn = In, we have that ζ̃ = 1 and noting that
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u =
√
α2 + µ2, leads to (3.90). This completes the proof.

Proofs for the Gaussian-Mixture Model

In this section, we outline the approach to the proof of Theorem 3.3.1 for GMM.

In light of the previously described steps for GLM, here we only need to derive the

corresponding min-max scalar problem for GMM. For the Gaussian-Mixture model we

have by definition that xi ∼ N (yiθ
⋆
n,Σn). Thus, the min-max ERM can be equivalently

written as follows,

min
θn∈Rn

max
∥δi∥∞≤ε
i∈[m]

1

m

m∑
i=1

L
(
yi

〈
xi + δi,θn

〉)
+ λ ∥θn∥22

= min
θn∈Rn

1

m

m∑
i=1

L
(
yi

〈
xi,θn

〉
− ε∥θn∥1

)
+ λ ∥θn∥22

= min
θ̃n∈Rn

1

m

m∑
i=1

L
(〈

z̄i, θ̃n

〉
+
〈
θ̃n, θ̃⋆n

〉
− ε

∥∥∥Σ−1/2
n θ̃n

∥∥∥
1

)
+ λ

∥∥∥Σ−1/2
n θ̃n

∥∥∥2
2
.

= min
θ̃n∈Rn

1

m

m∑
i=1

L
(〈

z̄i,Θnθ̃n

〉
+
〈
z̄i,Θ

⊥
n θ̃n

〉
+
〈
θ̃n, θ̃⋆n

〉
− ε

∥∥∥Σ−1/2
n θ̃n

∥∥∥
1

)
+ λ

∥∥∥Σ−1/2
n θ̃n

∥∥∥2
2

(3.93)

The second step is due to the fact that θ̃⋆n ≜ Σ
−1/2
n θ⋆n, θ̃n ≜ Σ

1/2
n θn and that yi

and z̄i
iid∼ N (0, In) are independent for all i. In the last step we used the matrices

Θn ≜ θ̃⋆nθ̃
⋆
n

⊤
/∥θ̃⋆n∥22 and Θ⊥

n ≜ In − Θn, to allow scalarization w.r.t. desired quantities

α, µ and also to allow using CGMT as the random variables ⟨z̄i,Θnθ̃n⟩ are ⟨z̄i,Θ⊥
n θ̃n⟩ are

independent. Next, similar to (3.32), we can use the Lagrangian multiplier method to
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obtain that (3.93) is equivalent to

min
θ̃n∈Rn,v∈Rm

max
u∈Rm

1⊤
m

m

(
v − ε

∥∥∥Σ−1/2
n θ̃n

∥∥∥
1
1m

)
−⟨u,v⟩

m
+

〈
u, Z̄Θnθ̃n

〉
m

+

〈
u, Z̄Θ⊥

n θ̃n

〉
m

+
⟨u,1m⟩
m

〈
θ̃n, θ̃⋆n

〉
+ λ

∥∥∥Σ−1/2
n θ̃n

∥∥∥2
2
, (3.94)

The objective in (3.94) bears close similarity to its GLM counterpart in (3.32). Note

that here Z̄Θnθ̃n and Z̄Θ⊥
n θ̃n have the same role as Y X̄Θnθ̃n and Y X̄Θ⊥

n θ̃n in (3.32),

respectively. Here we also have an additional term ⟨u,1m⟩
m

⟨θ̃n, θ̃⋆n⟩ compared to (3.32). We

recall that based on the definition, it holds that ⟨θ̃n, θ̃⋆n⟩
P−→ µζ̃2. Continuing with the

same technique described in Section 3.8.1 that led to the objective (3.54), we find that

for GMM, (3.94) is equivalent to the following min-max problem (details are omitted for

brevity):

min
α,τ1,w∈R+,

µ∈R

max
τ2,β,γ∈R+,

η∈R

−γw − µ2τ2
2α

∥∥∥θ̃⋆n∥∥∥2
2
− αβ2

2δτ2
− ατ2

2
+
βτ1
2

+ ηµ− η2α

2τ2

∥∥∥θ̃⋆n∥∥∥2
2

+
1

m
M
(
µZ̄θ̃⋆n + αg + µζ̃21m − w1m;

τ1
β

)

+
εtrγ

n
M(

ℓ1+
r

εtrγ
ℓ2
2,Σn

)
 αβ

τ2
√
δ
Σ−1/2
n h+

αη
√
n

τ2

∥∥∥θ̃⋆n∥∥∥2
2

Σ−1
n θ⋆n;

αεtrγ

τ2

 . (3.95)

We have Z̄θ̃⋆n ∼ ζ̃s for a standard Gaussian vector s independent of g. This leads to

1

m
M
(
µZ̄θ̃⋆n + αg + µζ̃21m − w1m;

τ1
β

)
P−→ EG

[
ML

(√
α2 + µ2ζ̃2G+ µζ̃2 − w;

τ1
β

)]
,

for standard Gaussian random variable G. In particular, when Σn is a diagonal matrix,

we end up with the following min-max problem based on eight scalars:
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min
α,τ1,w∈R+,

µ∈R

max
τ2,β,γ∈R+,

η∈R

−γw − µ2τ2
2α

ζ̃2 − αβ2

2δτ2
− ατ2

2
+
βτ1
2

+ ηµ− η2α

2τ2ζ̃2

+ EG
[
ML

(√
α2 + µ2ζ̃2G+ µζ̃2 − w;

τ1
β

)]
+ εtrγ EL,H,T

[
Mℓ1+

r
εtrγ

ℓ22

(
αβ

τ2
√
δL
H +

αη

τ2ζ̃2L
T ;
αεtrγ

τ2L

)]
, (3.96)

as desired by Theorem 3.3.1.

Proof of Theorem 3.4.1 for GMM, follows the same steps as GLM, however note that

here, due to the definition of θ̃⋆n, (3.80) changes into

U⊤
n θ̃

⋆
n = U⊤

nΣ
−1/2
n θ⋆n = Λ−1/2

n U⊤
nθ

⋆
n = Λ−1/2

n vn. (3.97)

Thus, the resulting min-max objective has the following form,

min
α,τ1,τ3,w∈R+,

µ∈R

max
τ2,β,γ∈R+,

η∈R

−γw − µ2τ2
2α

ζ̃2 − αβ2

2δτ2
− ατ2

2
+
βτ1
2

+ ηµ− η2α

2τ2ζ̃2
+
εtrγτ3
2

+ EG
[
ML

(√
α2 + µ2ζ̃2G+ µζ̃2 − w;

τ1
β

)]

+

(
εtrγ

2τ3
+ r

)(
η2α2

τ 22 ζ̃
4

)
EL

 ζ̃4β2

η2δ
+ L−1

εtrγα+2τ3rα
2τ2τ3

+ L

 .
This together with Lemma 3.8.2, yields the proof of Theorem 3.4.1 for GMM.

The Large Sample-size Limit

In this section, we focus on the δ = m/n→ ∞ limit. In particular, we consider the

Exponential loss L(t) = exp(−t) and the isotropic Gaussian-mixture model and set r = 0.

We prove that for q = 2, when δ → ∞, the adversarial test error, exactly achieves the
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Bayes adversarial error derived by [83]. The results are summarized in the following

corollary.

Corollary 3.8.3. Consider the Gaussian-mixture model under the same settings as

Corollary 3.8.2. Let the loss function L, be the Exponenttal loss and let δ → ∞. Fix

εts < 1. Then if εtr < 1, the adversarial test error of estimators derived by adversarial

training and the Bayes adversarial test error are equal.

Proof: To see this, note that under these conditions, (3.85) takes the following form

min
µ∈R,α,τ∈R+

max
β∈R+

L̃δ→∞ =
βτ

2
+ EG

[
ML

(√
α2 + µ2G+ µ− εtr

√
α2 + µ2; τ/β

) ]
.

(3.98)

In light of Proposition 3.8.1, ML(x; ·) is a decreasing function for all x. This gives,

lim
δ→∞

β⋆(δ) = ∞, lim
δ→∞

τ ⋆(δ) = 0. (3.99)

Since limκ→∞ML (x;κ) = L(x) for all x, we deduce that,

(α⋆, µ⋆) = arg min
α∈R+,µ∈R

EG
[
exp

(
εtr
√
α2 + µ2 − µ+

√
α2 + µ2G

)]
= arg min

α∈R+,µ∈R
exp

(
εtr
√
α2 + µ2 − µ+ (α2 + µ2)/2

)
= arg min

α∈R+,µ∈R
εtr
√
α2 + µ2 − µ+ (α2 + µ2)/2,

which results in (α⋆, µ⋆) = (0, 1−εtr). Plugging these in (3.90), we derive the following for

the large sample-size limit of the generalization error of adversarial training, conditioned

on εtr < 1,

lim
δ→∞

EGMM
ℓ2,εts

(θ̂n) = Q
(
1− εts

)
. (3.100)
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On the other hand, based on [83], the Bayes adversarial error for isotropic GMM is derived

as follows,

EGMM
ℓ2,εts

(OPT) = Q

(
min

∥z∥q≤εts
∥θ⋆ − z∥2

)
.

In particular, noting that ∥θ⋆∥2
P−→ 1 (by Assumption 3.2.2) and q = 2, we find that the

Bayes adversarial error in this case is

EGMM
ℓ2,εts

(OPT)
P−→ Q

(
max{1− εts, 0}

)
. (3.101)

Comparing (3.101) with (3.100) reveals that in the infinite sample size limit, if εts < 1, by

choosing any εtr < 1, the test error of adversarial training reaches the Bayes adversarial

error. As a remark, it can be readily shown that for the general case of ∥θ⋆∥2
P−→ c, the

same results hold for εtr < c and εts < c.
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Chapter 4

Generalization and Optimization in

Interpolating Neural Networks

4.1 Introduction

Neural networks have remarkable expressive capabilities and can memorize a complete

dataset even with mild overparameterization. In practice, using gradient descent (GD) on

neural networks with logistic or cross-entropy loss can result in the objective reaching

zero training error and close to zero training loss. Zero training error, often referred to as

“interpolating” the data, indicates perfect classification of the dataset. Despite their strong

memorization ability, these networks also exhibit remarkable generalization capabilities to

new data. This has motivated a surge of studies in recent years exploring the optimization

and generalization properties of first-order gradient methods in overparameterized neural

networks, with a specific focus in the so-called Neural Tangent Kernel (NTK) regime. In

the NTK regime, the model operates as the first-order approximation of the network at a

sufficiently large initialization or at the large-width limit [105, 109]. Prior works on this

topic mostly focused on quadratic-loss minimization and their optimization/generalization
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guarantees required network widths that increased polynomially with the sample size n.

This, however, is not in line with practical experience. Improved results were obtained

more recently by [110] who have investigated the optimization and generalization of ReLU

neural networks with logistic loss, which is more suitable for classification tasks. Assuming

that the NTK with respect to the model can interpolate the data (i.e. separate them

with positive margin γ), they showed through a Rademacher complexity analysis that

GD on neural networks with polylogarithmic width can achieve generalization guarantees

that decrease with the sample size n at a rate of Õ( 1√
n
).

In this chapter, we provide rate-optimal optimization and generalization analyses of

GD for shallow neural networks of minimal width assuming that the model itself can

interpolate the data. We focus on two-layer networks with smooth activations that can

almost surely separate n training samples from the data distribution. Concretely, we

consider a realizability condition where data and initialization are such that model weights

can achieve arbitrarily small training error ε while their distance from initialization is

g(ε) for some function g : R+ → R+. Under this condition, we demonstrate generalization

guarantees of order O(g(
1
T
)2

n
). More generally, for any iteration T of GD and assuming

network width m = Ω(g( 1
T
)4), we obtain an expected test-loss rate O(g(

1
T
)2

T
+

g( 1
T
)2

n
).

Additional to the generalization bounds, we provide optimization guarantees under the

same setting by showing that the training loss approaches zero at rate O(
g( 1

T
)2

T
). We note

that these results are derived without NTK-type analyses. For demonstration and also for

connection to prior works on neural-tangent data models, we specialize our generalization

and optimization results to the class of NTK-separable data. We show this is possible

because the NTK-data separability assumption implies our realizability condition holds.

Thus, for logistic-loss minimization on NTK-separable data, we show that the expected

test loss of GD is Õ( 1
T
+ 1

n
) provided polylogarithmic number of neurons m = Ω(log4(T )).

This further suggests that a network of width m = Ω(log4(n)), attains expected test loss
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Õ( 1
n
) after T ≈ n iterations.

In contrast to prior optimization and generalization analyses that often depend on

the NTK framework, which requires the first-order approximation of the model, we build

on the algorithmic stability approach [13] for shallow neural-network models of finite

width. Although the stability analysis has been utilized in previous studies to derive

generalization bounds for (stochastic) gradient descent in various models, most results

that are rate-optimal heavily rely on the convexity assumption. Specifically, the stability-

analysis framework has been successful in achieving optimal generalization bounds for

convex objectives in [14, 111, 112]. On the other hand, previous studies on non-convex

objectives either resulted in suboptimal bounds or relied on assumptions that are not

in line with the actual practices of neural network training. For instance, [17] derived

a generalization bound of O(Tβc/(βc+1)

n
) for general β-smooth and non-convex objectives,

but this required a time-decaying step-size ηt ≤ c/t, which can degrade the training

performance. More recently, [16] explored the use of the stability approach specifically for

logistic-loss minimization of a two-layer network. By refining the model-stability analysis

framework introduced by [14], they derived generalization-error bounds provided the

hidden width increases polynomially with the sample size. In comparison, our analysis

leads to improved generalization and optimization rates and under standard separability

conditions such as NTK-separability, only requires a polylogarithmic width for both global

convergence and generalization.

Notation

We denote [n] := {1, 2, · · · , n}. We use the standard notation O(·),Ω(·) and use

Õ(·), Ω̃(·) to hide polylogarithmic factors. Occasionally we use ≲ to hide numerical

constants. The Gradient and Hessian of a function Φ : Rd1×d2 → R with respect to the
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ith input (i = 1, 2) are denoted by ∇iΦ and ∇2
iΦ, respectively. All logarithms are in base

e. We use ∥·∥ for the ℓ2 norm of vectors and the operator norm of matrices. We denote

[w1, w2] := {w : w = αw1 + (1− α)w2, α ∈ [0, 1]} the line segment between w1, w2 ∈ Rd′ .

4.2 Problem Setup

Given n i.i.d. samples (xi, yi) ∼ D, i ∈ [n] from data distribution D, we study

unconstrained empirical risk minimization with objective F̂ : Rd′ → R:

min
w∈Rd′

{
F̂ (w) :=

1

n

n∑
i=1

F̂i(w) =
1

n

n∑
i=1

f (yiΦ (w, xi))
}
. (4.1)

This serves as a proxy for minimizing the test loss F : Rd′ → R:

F (w) := E(x,y)∼D [f (yΦ(w, x))] . (4.2)

We introduce our assumptions on the data (x, y), the model Φ(·, x), and the loss function

f(·), below. We start by imposing the following mild assumption on the data distribution.

Assumption 4.2.1 (Bounded features). Assume any (x, y) ∼ D has almost surely

bounded features, i.e. ∥x∥≤ R, and binary label y ∈ {±1}.

The model Φ : Rd′ ×Rd → R is parameterized by trainable weights w ∈ Rd′ and takes

input x ∈ Rd. For our main results, we assume Φ is a one-hidden layer neural-net of m

neurons, i.e.

Φ(w, x) :=
1√
m

m∑
j=1

aj σ(⟨wj, x⟩), (4.3)

where σ : R → R is the activation function, wj ∈ Rd denotes the weight vector of the jth
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hidden neuron and aj√
m
, j ∈ [m] are the second-layer weights. For the second layer weights,

we assume that they are fixed during training taking values aj ∈ {±1}. We assume that

for half of second layer weights we have aj = 1 and for the other half aj = −1. On the

other hand, all the first-layer weights are updated during training. Thus, the total number

of trainable parameters is d′ = md and we denote w = [w1;w2; . . . ;wm] ∈ Rd′ the vector

of trainable weights. Throughout, we make the following assumptions on the activation

function.

Assumption 4.2.2 (Lipschitz and smooth activation). The activation function σ : R → R

satisfies the following for non-negative constants ℓ, L:

|σ′(u)| ≤ ℓ, |σ′′(u)|≤ L, ∀u ∈ R.

We note that the smoothness assumption which is required by our framework excludes

the use of ReLU. Examples of activation functions that satisfy the smoothness condition

include Softplus σ(u) = log(1 + eu), Gaussian error linear unit (GELU) σ(u) = 1
2
u(1 +

erf( u√
2
)), and Hyperbolic-Tangent where σ(u) = eu−e−u

eu+e−u . On the other hand, Lipschitz

assumption is rather mild, since it is possible to restrict the parameter space to a bounded

domain.

Next, we discuss conditions on the loss function. Of primal interest is the commonly

used logistic loss function f(u) = log(1 + e−u). However, our results hold for a broader

class of convex, non-negative and monotonically decreasing functions (limu→∞ f(u) = 0)

that satisfy the following:

Assumption 4.2.3 (Lipschitz and smooth loss). The convex loss function f : R → R+

satisfies for all u ∈ R

4.2.3.A: Lipschitzness: |f ′(u)|≤ Gf .
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4.2.3.B: Smoothness: f ′′(u) ≤ Lf .

Assumption 4.2.4 (Self-bounded loss). The convex loss function f : R → R+ is self-

bounded with some constant βf > 0, i.e., |f ′(u)|≤ βff(u), ∀u ∈ R.

The self-boundedness Assumption 4.2.4 is the key property of the loss that drives

our analysis and justifies the polylogarithmic width requirement, as will become evident.

Note that the logistic loss naturally satisfies Assumptions 4.2.3.A and 4.2.3.B (with

Gf = 1, Lf = 1/4), as well as, Assumption 4.2.4 with βf = 1. Other interesting examples

of loss functions satisfying those assumptions include polynomial losses, with the tail

behavior f(u) = 1/uβ for β > 0, which we discuss in Remark 4.4.1. To lighten the

notation and without loss of generality, we set Gf = Lf = βf = 1 for the rest of the

chapter. We remark that our training-loss results also hold for the exponential loss e−u.

The exponential loss is self-bounded and while it is not Lipschitz or smooth it satisfies

a second-order self-bounded property f ′′(u) ≤ f(u), which we can leverage instead; see

Appendix 4.8.1 for details.

4.3 Main Results

We present bounds on the train loss and generalization gap of gradient-descent (GD)

under the setting of Section 4.2. Formally, GD with step-size η > 0 optimizes (6.1) by

performing the following updates starting from an initialization w0:

∀t ≥ 0 : wt+1 = wt − η∇F̂ (wt).
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4.3.1 Key properties

The key challenge in both the optimization and generalization analysis is the non-

convexity of f(yΦ(·, x)), and consequently of the train loss F̂ (·). Despite non-convexity,

we derive bounds analogous to the convex setting, e.g. corresponding bounds on linear

logistic regression in [113, 114, 112]. We show this is possible provided the loss satisfies

the following key property, which we call self-bounded weak convexity.

Definition 4.3.1 (Self-bounded weak convexity). We say a function F̂ : Rd′ → R is

self-bounded weakly convex if there exists constant κ > 0 such that for all w,

λmin

(
∇2F̂ (w)

)
≥ −κ F̂ (w) . (4.4)

Recall a function G : Rd′ → R is weakly convex if ∃κ ≥ 0 such that uniformly over all

w ∈ Rd′ , λmin (∇2G(w)) ≥ −κ. If κ = 0, the function is convex. Instead, property (4.4)

lower bounds the curvature by −κG(w) that changes proportionally with the function

value G(w). We explain below how this is exploited in our setting.

To begin with, the following lemma shows that property (4.4) holds for the train

loss under the setting of Section 4.2: training of a two-layer net with smooth activation

and self-bounded loss. The lemma also shows that the gradient of the train loss is self

bounded. Those two properties together summarize the key ingredients for which our

analysis applies.

Lemma 4.3.1 (Key self-boundedness properties). Consider the setup of Section 4.2

and let Assumptions 4.2.1-4.2.2 hold. Further assume the loss is self-bounded as per

Assumption 4.2.4. Then, the objective satisfies the following self-boundedness properties

for its Gradient and Hessian:

1. Self-bounded gradient:
∥∥∥∇F̂i(w)∥∥∥ ≤ ℓR F̂i(w), ∀i ∈ [n].
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2. Self-bounded weak convexity: λmin

(
∇2F̂ (w)

)
≥ −LR2

√
m
F̂ (w).

Both of these properties follow from the self-boundedness of the convex loss f combined

with Lipshitz and smoothness of σ. The self-boundedness of the gradient is used for

generalization analysis and in particular in obtaining the model stability bound. The

self-bounded weak convexity plays an even more critical role for our optimization and

generalization results. In particular, the wider the network the closer the loss to having

convex-like properties. Moreover, the “self-bounded” feature of this property provides

another mechanism that favors convex-like optimization properties of the loss. To see

this, consider the minimum Hessian eigenvalue λmin(∇2F̂ (wt)) at gradient descent iterates

{wt}t≥1: As training progresses, the train loss F̂ (wt) decreases, and thanks to the self-

bounded weak convexity property, the gap to convexity also decreases. We elaborate on

the role of self-bounded weak convexity in our proofs in Section 4.5.

4.3.2 Training loss

We begin with a general bound on the training loss and the parameter’s norm, which

is also required for our generalization analysis.

Theorem 4.3.1 (Training loss – General bound). Suppose Assumptions 4.2.1-4.2.4

hold. Fix any training horizon T ≥ 0 and any step-size η ≤ 1/LF̂ where LF̂ is the

objective’s smoothness parameter. Assume any w ∈ Rd′ and hidden-layer width m such

that ∥w−w0∥2≥ max{ηT F̂ (w), ηF̂ (w0)} and m ≥ 182L2R4∥w−w0∥4. Then, the training

loss and the parameters’ norm satisfy

F̂ (wT ) ≤ 1

T

T∑
t=1

F̂ (wt) ≤ 2F̂ (w) +
5∥w − w0∥2

2ηT
, (4.5)

∀t ∈ [T ] : ∥wt − w0∥ ≤ 4∥w − w0∥.
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A few remarks are in place regarding the theorem. First, Eq. (4.5) upper bounds

the running average (also known as regret) of train loss for iterations 1, . . . , T by the

value, at an arbitrarily chosen point w, of a ridge-regularized objective with regularization

parameter inversely proportional to ηT . Because of smoothness and Lipschitz Assumption

4.2.3 of f , it turns out that the training objective is LF̂ -smooth. Hence, by the descent

lemma of GD for smooth functions, the same upper bound holds in Eq. (4.5) for the

value of the loss at time T , as well. Moreover, the theorem provides a uniform upper

bound of the norm of all GD iterates in terms of ∥w − w0∥. Notably, and despite the

non-convexity in our setting, our bounds are same up to constants to analogous bounds

for logistic linear regression in [114, 112]. As discussed in Sec. 4.3.1 this is possible thanks

to the self-bounded weak convexity property.

The condition m ≳ ∥w − w0∥4 on the norm of the weights controls the maximum

deviations of weights w from initialization (with respect to network width) required for

our results to guarantee arbitrarily small train loss. Specifically, to get the most out

of Theorem 4.3.1 we need to choose appropriate w that satisfies both the condition

m ≳ ∥w − w0∥4 and keeps the associated ridge-regularized loss F̂ (w) + ∥w − w0∥2/(ηT )

small. This combined requirement is formalized in the neural-net realizability Assumption

4.3.1 below. As we will discuss later in Section 4.4, this assumption translates into an

assumption on the underlying data distribution that ultimately enables the application of

Theorem 4.3.1 to achieve vanishing training error.

Assumption 4.3.1 (NN–Realizability). There exists a decreasing function g : R+ → R+

which measures the norm of deviations from initialization of models that achieve arbitrarily

small training error.

Formally, for almost surely all n training samples and for any sufficiently small ε > 0
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there exists w(ε) ∈ Rd′ such that

F̂ (w(ε)) ≤ ε, and g(ε) =
∥∥w(ε) − w0

∥∥ .
Since Assumption 4.3.1 holds for arbitrarily small ε, it guarantees that the model has

enough capacity to interpolate the data, i.e., attain train error that is arbitrarily small (ε).

Additionally, this is accomplished for model weights whose distance from initialization

is managed by the function g(ε). By using these model weights to select w in Theorem

4.3.1 we obtain train loss bounds for interpolating models.

Theorem 4.3.2 (Training loss under interpolation). Let Assumptions 4.2.1-4.3.1 hold.

Let η ≤ min{ 1
L
F̂
, g(1)2, g(1)

2

F̂ (w0)
} and assume the width satisfies m ≥ 182L2R4 g( 1

T
)4 for a

fixed training horizon T . Then,

F̂ (wT ) ≤ 2

T
+

5 g( 1
T
)2

2ηT
, (4.6)

∀t ∈ [T ] : ∥wt − w0∥ ≤ 4 g(
1

T
).

To interpret the theorem’s conclusions suppose that the function g(·) of Assumption

4.3.1 is at most logarithmic; i.e., g( 1
T
) = O(log(T )). Then, Theorem 4.3.2 implies that

m = Ω(log4(T )) neurons suffice to achieve train loss Õ( 1
T
) while GD iterates at all

iterations satisfy ∥wt − w0∥= O(log(T )). In Section 4.4 (see also Remark 4.3.1), we

will give examples of data separability conditions that guarantee the desired logarithmic

growth of g(·) for logistic loss minimization, which in turn imply the favorable convergence

guarantees described above. Under the same conditions we will show that the step-size

requirement simplifies to η ≤ min{3, 1/LF̂} (see Corollary 4.4.1). Finally, we remark

that Theorem 4.3.2 provides sufficient parameterization conditions under which GD with

T = Ω̃(n) iterations finds weights wT that yield an interpolating classifier and thus,
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achieve zero training error. To see this, assume logistic loss and observe setting T ≳ n in

Eq. (4.6) gives F̂ (wT ) ≤ log(2)/n. This in turn implies that every sample loss satisfies

F̂i(wT ) ≤ log(2), equivalently yi = sign (Φ(wT , xi)).

4.3.3 Generalization

Our main result below bounds the generalization gap of GD for training two-layer

nets with self-bounded loss functions. We remark that all expectations that appear below

are over the training set.

Theorem 4.3.3 (Generalization gap – General bound). Suppose Assumptions 4.2.1-4.2.4

hold. Fix any time horizon T ≥ 1 and any step size η ≤ 1/LF̂ where LF̂ is the objective’s

smoothness parameter. Let any w ∈ Rd′ such that ∥w − w0∥2≥ max{ηT F̂ (w), ηF̂ (w0)}.

Suppose hidden-layer width m satisfies m ≥ 642L2R4∥w − w0∥4. Then, the generalization

gap of GD at iteration T is bounded as

E
[
F (wT )− F̂ (wT )

]
≤ 8ℓ2R2

n
E
[
ηT F̂ (w) + 2∥w − w0∥2

]
.

A few remarks regarding the theorem are in place. The theorem’s assumptions

are similar to those in Theorem 4.3.1, which bounds the training loss. The condition

∥w − w0∥2≥ max{ηT F̂ (w), ηF̂ (w0)} needs to hold almost surely over the training data,

which is non-restrictive, as in later applications of the theorem, the choice of w arises from

Assumption 4.3.1. The condition m ≥ 642L2R4∥w − w0∥4 on the width of the network, is

also the same as that of Theorem 4.3.1 but with a larger constant. This means that the

last-iterate train loss bound from Theorem 4.3.1 (Eq. (4.5)) holds under the setting of

Theorem 4.3.3. Hence, it applies to the expected train loss E[F̂ (wT )] and, combined with

the generalization-gap bound, yields a bound on the expected test loss E[F (wT )].

To optimize the bound, a proper w must be selected by minimizing the population
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version of a ridge-regularized training objective. In interpolation settings, the procedure

for selecting w follows the same guidelines as in Assumption 4.3.1 and in a similar style

as obtaining Theorem 4.3.2.

Theorem 4.3.4 (Generalization gap under interpolation). Let Assumptions 4.2.1-4.3.1

hold. Fix T ≥ 1 and let m ≥ 642L2R4 g( 1
T
)4. Then, for any η ≤ min{ 1

L
F̂
, g(1)2, g(1)

2

F̂ (w0)
}

the expected generalization gap at iteration T satisfies

E
[
F (wT )− F̂ (wT )

]
≤

24ℓ2R2 g( 1
T
)2

n
. (4.7)

Note the width condition is similar in order to that of Theorem 4.3.2. Thus, provided

g( 1
T
) ≲ log(T ) (see Remark 4.3.1 and Section 4.4 for examples), we have generalization gap

of order Õ( 1
n
) with m = Ω(log4(T )) neurons. Combined with the training loss guarantees

from Theorem 4.3.2, we have test loss rate Õ( 1
T
+ 1

n
). This further implies that with

m ≈ log4(n) neurons and T = n iterations, the test loss reaches the optimal rate of Õ( 1
n
).

On the other hand, previous stability-based generalization bounds (e.g., [16]) required

polynomial width m ≳ T 2 and eventually obtained sub-optimal generalization rates of

order O(T
n
). We further discuss the technical novelties resulting in these improvements in

Section 4.5.

Remark 4.3.1 (Example: Linearly-separable data). Consider logistic-loss minimization,

tanh activation σ(u) = eu−e−u

eu+e−u and data distribution that is linearly separable with margin

γ, i.e., for almost surely all n samples there exists unit-norm vector v⋆ ∈ Rd such that

∀i ∈ [n] : yi⟨v⋆, xi⟩ ≥ γ. We initialize the weights to zero, i.e. w0 = 0 and show that the

realizability Assumption 4.3.1 naturally holds in this setting. To see this, for any fixed

ε > 0, set α = 2(log(1/ε))
γ
√
m

and assume m ≥ 4 log2(1/ε). With this choice, select weights

w
(ε)
j := αv⋆, aj =

1√
m

for j ∈ [1, · · · , m
2
] and w(ε)

j := −αv⋆, aj = −1√
m

for j ∈ {m
2
+1, · · · ,m}.
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Then, the model output for any sample (xi, yi) satisfies

yiΦ(w
(ε), xi) =

yi
√
m

2
(σ(α⟨v⋆, xi⟩)− σ(−α⟨v⋆, xi⟩)) = yi

√
mσ(α⟨v⋆, xi⟩)

≥
√
mσ(αγ) ≥

√
m

2
αγ = log(

1

ε
)

where the first equality uses the fact that tanh is odd, the first inequality follows by

the increasing nature of tanh and data separability, and the last inequality follows since

αγ ≤ 1 and σ(u) ≥ u/2 for all u ∈ [0, 1]. Thus, the loss satisfies F̂ (w(ε)) ≤ ε since for the

logistic function log(1 + eu) ≤ eu. Moreover, our choice of α implies g(ε) = ∥w(ε) − w0∥=

∥w(ε)∥= α
√
m = 2 log(1/ε)/γ. To conclude, the NN-Realizability Assumption 4.3.1 holds

with g(ε) = 2 log(1/ε)/γ and thus applying Theorems 4.3.2, 4.3.4 shows that with

m = Ω(log4(T )) neurons, the training loss and generalization gap are bounded by Õ( 1
γ2T

)

and Õ( 1
γ2n

), respectively. We note that the same conclusion as above holds for other

smooth activations such as Softmax or GELU.

4.4 On Realizability of NTK-Separable Data

In this section, we interpret our results for NTK-separable data by showing that our

realizability condition holds for this class. We recall the definition of NTK-separability

below [19, 115].

Assumption 4.4.1 (Separability by NTK). For almost surely all n training samples

from the data distribution there exists w⋆ ∈ Rd′ and γ > 0 such that ∥w⋆∥= 1 and for all

i ∈ [n],

yi

〈
∇1Φ(w0, xi), w

⋆
〉
≥ γ. (4.8)
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We also assume a bound on the model’s output at initialization. Similar assumptions,

but for the value of the loss, also appear in prior works that study generalization using

the algorithmic stability framework [18, 116].

Assumption 4.4.2 (Initialization bound). There exists parameter C such that ∀i ∈ [n] :

|Φ(w0, xi)|≤ C, for almost surely all n training samples from the data distribution

The next proposition relates the NTK-separability assumption to our realizability

assumption. The proofs for this section are given in Appendix 4.8.3.

Proposition 4.4.1 (Realizability of NTK-separable data). Let Assumptions 4.2.1-

4.2.2,4.4.1-4.4.2 hold. Assume f(·) to be the logistic loss. Fix ε > 0 and let m ≥ L2R4

4γ4C2 (2C+

log(1/ε))4. Then the realizability Assumption 4.3.1 holds with g(ε) = 1
γ
(2C + log(1/ε)).

In other words, there exists w(ε) such that

F̂ (w(ε)) ≤ ε, and
∥∥w(ε) − w0

∥∥ =
1

γ
(2C + log(1/ε)) . (4.9)

Having established realizability, the following is an immediate corollary of the general

results presented in the last section.

Corollary 4.4.1 (Results under NTK-separability). Let Assumptions 4.2.1-4.2.2,4.4.1-

4.4.2 hold and assume logistic loss. Suppose m ≥ 642L2R4

γ4
(2C+log(T ))4 for a fixed training

horizon T . Then for any η ≤ min{3, 1
L
F̂
}, the training loss and generalization gap are

bounded as follows:

F̂ (wT ) ≤
5(2C + log(T ))2

γ2ηT
,

E
[
F (wT )− F̂ (wT )

]
≤ 24ℓ2R2

γ2n
(2C + log(T ))2.

A few remarks are in place regarding the corollary. By Corollary 4.4.1, we can conclude
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that the expected generalization rate of GD on logistic loss and NTK-separable data as

per Assumption 4.4.1 is Õ( 1
n
) provided width m = Ω(log4(T )). Moreover, the expected

training loss is E[F̂ (wT )] = ( 1
T
). Thus, the expected test loss after T steps is ( 1

T
+ 1

n
). In

particular for T = Ω(n), the expected test loss becomes Õ( 1
n
). This rate is optimal with

respect to sample size and only requires polylogarithmic hidden width with respect to n,

specifically, m = Ω(log4(n)). Notably, it represents an improvement over prior stability

results, e.g., [16] which required polynomial width and yielded suboptimal generalization

rates of order O(T/n). It is worth noting that the test loss bound’s dependence on

the margin, particularly the 1
γ2n

-rate obtained in our analysis, bears similarity to the

corresponding results in the convex setting of linearly separable data recently established

in [114, 112]. Additionally, our results improve upon corresponding bounds for neural

networks obtained via Rademacher complexity analysis [110] which yield generalization

rates Õ( 1√
n
). Moreover, these works have a γ−8 dependence on margin for the minimum

network width, whereas in Corollary 4.4.1 this is reduced to γ−4. We also note that in

general, both γ and C may depend on the data distribution, the data dimension, or the

nature of initialization. This is demonstrated in the next section where we apply the

corollary above to the noisy XOR data distribution and Gaussian initialization.

Remark 4.4.1 (Benefits of exponential tail). We have stated Corollary 4.4.1 for the logistic

loss, which has an exponential tail behavior. For general self-bounded loss functions

and by following the same steps, we can show a bound on generalization gap of order

O( 1
n
(f−1( 1

T
))2) provided m = Ω((f−1( 1

T
))4). Hence, the tail behavior of f controls both

the generalization gap and minimum width requirement. In particular, under Assumption

4.4.1, polynomial losses with tail behavior f(u) ∼ 1/uβ result in generalization gap

O(T 2/β/n) for m = Ω(T 4/β). Thus, increasing the rate of decay β for the loss, improves

both bounds on generalization and width. This suggests the benefits of self-bounded

fast-decaying losses such as exponentially-tailed loss functions for which the dependence
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on T is indeed only logarithmic.

Example: Noisy XOR data

Next, we specialize the results of the last section to the noisy XOR data distribution

[117] and derive the corresponding margin and test-loss bounds. Consider the following

2d points,

xi = (x1i , x
2
i , · · · , xdi ) ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)} × {−1, 1}d−2,

where × denotes the Cartesian product and the labels are determined as yi = −1 if x1i = 0

and yi = 1 if x1i = ±1. Moreover, consider normalization xi = 1√
d−1

xi so that R = 1. The

noisy XOR data distribution is the uniform distribution over the set with elements (xi, yi).

For this dataset and Gaussian initialization, [110] have shown for ReLU activation that

the NTK-separability assumption holds with margin γ = Ω(1/d). In the next result, we

compute the margin for activation functions that are convex, Lipshitz and locally strongly

convex.

Proposition 4.4.2 (Margin). Consider the noisy XOR data (xi, yi) ∈ Rd×{±1}. Assume

the activation function is convex, ℓ-Lipschitz and µ-strongly convex in the interval [−2, 2]

for some µ > 0, i.e., mint∈[−2,2] σ
′′(t) ≥ µ. Moreover, assume Gaussian initialization

w0 ∈ Rd′ with entries iid N(0, 1). If m ≥ 802d3ℓ2

2µ2
log(2/δ), then with probability at least

1 − δ over the initialization, the NTK-separability Assumption 4.4.1 is satisfied with

margin γ = µ
80d

.

An interesting example of an activation function that satisfies the mentioned assump-

tions is the Softplus activation where σ(u) = log(1 + eu). This activation function has

µ = 0.1 and ℓ = 1, and it is also smooth with L = 1/4. Therefore, the results on
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generalization and training loss presented in Corollary 4.4.1 hold for it. For noisy XOR

data, Proposition 4.4.2 shows the margin in Assumption 4.4.1 is γ ≳ 1/d. Additionally,

for standard Gaussian initialization we have by Lemma 4.8.9 that with high-probability

the initialization bound in Assumption 4.4.2 satisfies C ≲
√
d. Putting these together,

and applying Corollary 4.4.1 shows that GD with n training samples reaches test loss

rate Õ(d3
n
) after T ≈ n iterations and given m = Ω̃(d6) neurons. It is worth noting that

the number of training samples can be exponentially large with respect to d. In this case

the minimum width requirement is only polylogarithmic in n.

4.5 Proof Sketches

We discuss here high-level proof ideas for both optimization and generalization bounds

of Theorems 4.3.1 and 4.3.3. Formal proofs are deferred to Appendices 4.8.1 and 4.8.2.

4.5.1 Training loss

As already discussed in Section 4.3.1, the key insight we use to obtain bounds that are

analogous to results for optimizing convex objectives, is to exploit the self-bounded weak

convexity property of the objective in Eq. (4.4). Thanks to this property, the Hessian

minimum eigenvalue λmin(∇2F̂ (wt)) becomes less negative at the same rate at which the

train loss F̂ (wt) decreases.

The technical challenge at formalizing this intuition arises as follows. Controlling

the rate at which F̂ (wt) converges to F̂ (w) for the theorem’s w requires controlling the

Hessian at all intermediate points wαt := αwt + (1− α)w, α ∈ [0, 1] between w and GD

iterates wt. This is due to Taylor’s theorem used to relate F̂ (wt) to the target value F̂ (w)
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as follows:

F̂ (w) ≥ F̂ (wt) +
〈
∇F̂ (wt), w − wt

〉
+

1

2
λmin

(
∇2F̂ (wαt)

)∥∥∥w − wt

∥∥∥2.
Thus from self-bounded weak convexity, to control the last term above we need to control

F̂ (wαt) for any intermediate point wαt along the GD trajectory. This is made possible by

establishing the following generalized local quasi-convexity property.

Proposition 4.5.1 (Generalized Local Quasi-Convexity). Suppose F̂ : Rd′ → R satisfies

the self-bounded weak convexity property in Eq. (4.4) with parameter κ. Let w1, w2 ∈ Rd′

be two arbitrary points with distance ∥w1 − w2∥ ≤ D <
√
2/κ . Set τ := (1− κD2/2)

−1.

Then,

max
v∈[w1,w2]

F̂ (v) ≤ τ ·max{F̂ (w1), F̂ (w2)}. (4.10)

Recall that quasi-convex functions satisfy Eq. (4.10) with τ = 1 and D can be

unboundedly large. The Proposition 4.5.1 indicates that our neural-net objective function

is approximately quasi-convex (since τ > 1) and this property holds locally, i.e. provided

that w1, w2 are sufficiently close.

Applying (4.10) for w1 = wt, w2 = w allows controlling F̂ (wαt) in terms of the train

loss F̂ (wt) and the target loss F̂ (w). The only additional requirement in Proposition 4.5.1

for this to hold is that

1/κ ∝
√
m ≳ ∥wt − w∥2. (4.11)

This condition exactly determines the required neural-net width. Formally, we have the

following.
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Corollary 4.5.1 (GLQC of sufficiently wide neural nets). Let Assumptions 4.2.1,4.2.2,

4.2.4 hold. Fix arbitrary w1, w2 ∈ Rd′, any constant λ > 1, and m large enough such that
√
m ≥ λLR

2

2
∥w1 − w2∥2. Then,

max
v∈[w1,w2]

F̂ (v) ≤ (1− 1/λ)−1 ·max{F̂ (w1), F̂ (w2)}. (4.12)

To conclude, using Corollary 4.5.1, we can show the regret bound in Eq. (4.5) provided

(by (4.11)) that
√
m ≳ ∥wt − w∥2 is true for all t ∈ [T ]. To make the width requirement

independent of wt, we then use a recursive argument to prove that ∥wt−w∥≤ 3∥w−w0∥.

These things put together, lead to the parameter bound ∥wt − w0∥≤ 4∥w − w0∥ and the

width requirement
√
m ≳ ∥w−w0∥2 in the theorem’s statement. We note that the GLQC

property is also crucially required for the generalization analysis which we discuss next.

4.5.2 Generalization gap

We bound the generalization gap using stability analysis [13, 17]. In particular,

we use [14, Thm. 2] that relates the generalization gap to the “on average model

stability”. Formally, let w¬i
t denote the t-th iteration of GD on the leave-one-out loss

F̂¬i(w) := 1
n

∑
j ̸=i F̂j(w). As before, wt denotes the GD output on full-batch loss F̂ . We

will use the fact (see Corollary 4.8.3) that f(yΦ(·, x)) is GF̂ -Lipschitz with GF̂ = ℓR

under Assumptions 4.2.2 and 4.2.3.A. Then, using [14, Thm. 2(a)] (cf. Lemma 4.8.6) it

holds that

E
[
F (wT )− F̂ (wT )

]
≤ 2GF̂ E

[ 1
n

n∑
i=1

∥wT − w¬i
T ∥
]
. (4.13)

In order to bound the on-average model-stability term on the right-hand side above we

need to control the degree of expansiveness of GD. Recall that for convex objectives GD
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is non-expansive (e.g. [17]), that is ∥(w − η∇F̂ (w)) − (w′ − η∇F̂ (w′))∥≤ ∥w − w′∥ for

any w,w′. For the non-convex objective in our setting, the lemma below establishes a

generalized non-expansiveness property via leveraging the structure of the objective’s

Hessian for the two-layer net.

Lemma 4.5.1 (GD-Expansiveness). Let Assumptions 4.2.1 and 4.2.2 hold. For any

w,w′ ∈ Rd′, any step-size η > 0, and wα := αw + (1 − α)w′ it holds for H(w) :=

ηLR
2

√
m
F̂ ′(w) + max

{
1, ηℓ2R2F̂ ′′(w)

}
that

∥∥∥(w − η∇F̂ (w)
)
−
(
w′ − η∇F̂ (w′)

)∥∥∥ ≤ max
α∈[0,1]

H(wα) ∥w − w′∥ ,

where we define F̂ ′(w) := 1
n

∑n
i=1|f ′(yiΦ(w, xi))| and F̂ ′′(w) := 1

n

∑n
i=1 f

′′(yiΦ(w, xi)).

This lemma can be further simplified for the class of self-bounded loss functions.

Specifically, using |f ′(u)|≤ f(u) and f ′′(u) ≤ 1 from Assumptions 4.2.4 and 4.2.3.B, we

immediately deduce the following.

Corollary 4.5.2 (Expansiveness for self-bounded losses). In the setting of Lemma 4.5.1,

further assume the loss satisfies Assumptions 4.2.3.B and 4.2.4. Provided η ≤ 1/(ℓ2R2),

it holds for all w,w′ ∈ Rd′ that

∥∥∥(w − η∇F̂ (w)
)
−
(
w′ − η∇F̂ (w′)

)∥∥∥ ≤
(
1 + η

LR2

√
m

max
α∈[0,1]

F̂ (wα)
)∥∥∥w − w′

∥∥∥ . (4.14)

In Eq. (4.14) the expansiveness is weaker than in a convex scenario, where the

coefficient would be 1 instead of 1 + ηLR2
√
m

maxα∈[0,1] F̂ (wα). However, for self-bounded

losses (i.e. |f ′(u)| ≤ f(u)) the “gap to convexity” ηLR2
√
m

maxα∈[0,1] F̂ (wα) in Corollary 4.5.2

is better than the gap from Lemma 4.5.1 for 1-Lipschitz losses (i.e. |f ′(u)| ≤ 1), which

would be ηLR2
√
m

. Indeed, after unrolling the GD iterates, the latter eventually leads to

polynomial width requirements [16].
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Instead, to obtain a polylogarithmic width, we use the expansiveness bound in Eq.

(4.14) for self-bounded losses together with the generalized-local quasi-convexity property

in Corollary 4.5.1 as follows. From Corollary 4.5.1, if m is large enough such that

√
m ≥ LR2∥wt − w¬i

t ∥2, ∀t ∈ [T ], ∀i ∈ [n],

then Eq. (4.12) holds on the GD path. This further simplifies the result of Corollary 4.5.2

applied for w = wt, w
′ = w¬i

t into

∥∥∥(wt − η∇F̂¬i(wt))− (w¬i
t − η∇F̂¬i(w¬i

t ))
∥∥∥ ≤ H̃ i

t

∥∥∥wt − w¬i
t

∥∥∥ ,
where H̃ i

t := 1 + 2ηLR2
√
m

max{F̂¬i(wt), F̂
¬i(w¬i

t )}. Now from the optimization analyses in

Sec. 4.5.1, we know intuitively that F̂¬i(wt) ≤ F̂ (wt) decays at rate Õ(1/t); thus, so does

F̂¬i(w¬i
t ). Therefore, for all i ∈ [n] the expansivity coefficient H̃ i

t in the above display is

decaying to 1 as GD progresses.

To formalize all these and connect them to the model-stability term in (4.13), note

using triangle inequality and the Gradient Self-boundedness property of Lemma 4.3.1 that

∥∥∥wt+1 − w¬i
t+1

∥∥∥ ≤
∥∥∥(wt − η∇F̂¬i(wt))− (w¬i

t − η∇F̂¬i(w¬i
t ))
∥∥∥+ ηℓR

n
F̂i(wt) .

Unrolling this display over t ∈ [T ], averaging over i ∈ [n], and using our expansiveness

bound above we show in Appendix 4.8.2 the following bound for the model stability term

1

n

n∑
i=1

∥∥wT − w¬i
T

∥∥ ≤ ηℓReβ

n

T−1∑
t=0

F̂ (wt) , (4.15)

where β ≲
(∑T

t=1 F̂ (wt) +
∑T

t=1 F̂
¬i(w¬i

t )
)
/
√
m. But, we know from training-loss bounds

in Theorem4.3.1 that
∑T

t=1 F̂ (wt) ≲ ∥w − w0∥2 (and similar for
∑T

t=1 F̂
¬i(w¬i

t )). Thus,
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β ≲ ∥w−w0∥2/
√
m. At this point, the theorem’s conditions guarantees

√
m ≳ ∥w−w0∥2,

so that β = O(1). Plugging back in (4.15) we conclude with the following stability bound:

1
n

∑n
i=1∥wT − w¬i

T ∥≲
∑T

t=0 F̂ (wt)/n. Applying the train-loss bounds of Theorem 4.3.1

once more completes the proof.

4.6 Prior Works

The theoretical study of generalization properties of neural networks (NN) is more than

two decades old [118, 119]. Recently, there has been an increased interest in understanding

and improving generalization of SGD/GD on over-parameterized neural networks, e.g.

[120, 121, 122, 16]. These results however typically require very large width where

m = poly(n). We discuss most-closely related-works below.

Quadratic loss. For quadratic loss, [123, 124, 125, 121, 126] showed that sufficiently

over-parameterized neural networks of polynomial width satisfy a local Polyak-Łojasiewicz

(PL) condition ∥∇F̂ (w)∥2≥ 2µ(F̂ (w)− F̂ ⋆), where µ is at least the smallest eigenvalue

of the neural tangent kernel matrix. The PL property in this case implies that the

training loss converges linearly with the rate F̂ (wt) = O((1 − ηµ)t) if the GD iterates

remain in the PL region. Moreover, [127, 128], have used the PL condition to further

characterize stability properties of corresponding non-convex models. Notably, [128]

derived order-optimal rates O( 1
µn
) for the generalization loss. However these rates only

apply to quadratic loss. Models trained with logistic or exponential loss on separable

data do not satisfy the PL condition even for simple interpolating linear models. Aside

from the PL condition-related results, but again for quadratic loss, [129] showed under

specific assumptions on the data translating to low-rank NTK, that logarithmic width is

sufficient to obtain classification error of order O(n−1/4). In general, they achieve error

rate O(n−1/2), but for m = Ω̃(n2).
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Logistic-loss minimization with linear models. Logistic-loss minimization is more

appropriate for classification and rate-optimal generalization bounds for GD have been

obtained recently in the linear setting, where the training objective is convex. In particular,

for linear logistic regression on data that are linearly separable with margin γ > 0, [114]

proved a finite-time test-error bound O( log
2 T

γ2T
+ log2 T

γ2n
). Ignoring log factors, this is

order-optimal with the sample size n and training horizon T. Their proof uses exponential-

decaying properties of the logistic loss to control the norm of gradient iterates, which

it cleverly combines with Markov’s inequality to bound the fraction of well-separated

datapoints at any iteration. This in turn translates to a test-error bound by standard

margin-based generalization bounds. More recently, [112] used algorithmic-stability

analysis proving same rates (up to log factors) for the test loss. Their results hold for

general convex, smooth, self-bounded and decreasing objectives under a realizability

assumption suited for convex objectives (analogous to Assumption 4.3.1). Specifically,

this includes linear logistic regression with linearly separable data. Here, we show that

analogous rates on the test loss hold true for more complicated nonconvex settings where

data are separable by shallow neural networks.

Stability of GD in NN. State-of-the-art generalization bounds on shallow neural

networks via the stability-analysis framework have appeared very recently in [16, 18, 116].

For Lipschitz losses, [16] shows that the empirical risk is weakly convex with a weak-

convexity parameter that improves as the neural-network width m increases. Leveraging

this observation, they establish stability bounds for GD iterates at time T provided

sufficient parameterization m = Ω̃(T 2). Since the logistic loss is Lipschitz, these bounds

also apply to our setting. Nevertheless, our work improves upon [16] in that: (i) we

require significantly smaller width, poly-logarithmic rather than polynomial, and (ii) we

show Õ(1/n) test loss bounds in the realizable setting, while their bounds are O(T/n).

Central to our improvements is a largely refined analysis of the curvature of the loss via
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identifying and proving a generalized quasi-convexity property for neural networks of

polylogarithmic width trained with self-bounded losses (see Section 4.5 for details). Our

results also improve upon the other two works [18, 116], which both require polynomial

widths. However, we note that these results are not directly comparable since [18, 116]

focus on quadratic-loss minimization. See also Appendix ??.

Uniform convergence in NN. Uniform bounds on the generalization loss have been

derived in literature via Rademacher complexity analysis [130]; see for example [131, 132,

133, 134, 135] for a few results in this direction. These works typically obtain the bounds

of order O( R√
n
), where R depends on the Rademacher complexity of the hypothesis space.

Recent works by [110] also utilized Rademacher complexity analysis to obtain test loss rates

of O(1/
√
n) under an NTK separability assumption (see also [19]) with polylogarithmic

width requirement for shallow and deep networks, respectively. Instead, while maintaining

minimal width requirements, we obtain test-loss rates Õ(1/n), which are order-optimal.

Our approach, which is based on algorithmic-stability, is also different and uncovers new

properties of the optimization landscape, including a generalized local quasi-convexity

property. On the other hand, the analysis of [110] applies to ReLU activation and bounds

the test loss with high-probability over the sampling of the training set. Instead, we

require smooth activations similar to other studies such as [129, 136, 137, 19, 16, 18, 116]

and we bound the test loss in expectation over the training set.

Convergence/implicit bias of GD. Convergence and implicit bias of GD for logis-

tic/exponential loss functions on linear models and neural networks have been investigated

in [113, 138, 20, 139, 140, 136]. In particular, [139, 141] have shown for homogeneous

neural-networks that GD converges in direction to a max-margin solution. While certainly

powerful, this implicit-bias convergence characterization becomes relevant only when the

number T of GD iterations is exponentially large. Instead, our convergence bounds apply

for finite T (on the order of sample size), thus are more practically relevant. Moreover,
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their results assume a GD iterate t0 such that F̂ (wt0) ≤ log(2)/n. Similar assumption

appears in [136], which require initialization F̂ (w0) ≤ 1/n1+C for constant C > 0. Our

approach is entirely different: we prove that sufficient parameterization benefits the loss

curvature and suffices for GD steps to find an interpolating model and attain near-zero

training loss, provided data satisfy an appropriate realizability condition.

4.7 Conclusions

In this chapter we study smooth shallow neural networks trained with self-bounded

loss functions, such as logistic loss. Under interpolation, we provide minimal sufficient

parameterization conditions to achieve rate-optimal generalization and optimization

bounds. These bounds improve upon prior results which require substantially large over-

parameterization or obtain sub-optimal generalization rates. Specifically, we significantly

improve previous stability-based analyses in terms of both relaxing the parameterization

requirements and obtaining improved rates. Although our focus was on binary classification

with shallow net- works, our approach can potentially be extended to other architectures

such as transformers; for preliminary results in this direction see [142]. Extending our

results to the stochastic case by analyzing SGD is another important future direction.

Moreover, while our current treatment relies on smoothness of the activation function

to exploit properties of the curvature of the training objective, we aim to examine the

potential of our results to extend to non-smooth activations. Finally, our generalization

analysis bounds the expectation of the test loss (over data sampling) and it is an important

future direction extending these guarantees to a high-probability setting.
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4.8 Proofs

4.8.1 Training Loss Analysis

This section includes the proofs of the results stated in Section 4.3.2.

Proof of Theorem 4.3.1

We begin with proving the general train-loss and parameter-norm bounds of Theorem

4.3.1. In fact, we state and prove a slightly more general statement of the theorem which

includes non-smooth and non-Lipschitz losses (such as expoential loss) that satisfy a

second order self-bounded property described below.

Assumption 4.8.1 (2nd order self-boundedness). The convex loss function f : R → R+

satisfies the 2nd order self-boundedness property, i.e.

f ′′(u) ≤ f(u),∀u ∈ R.

Theorem 4.8.1 (General statement of Theorem 4.3.1). Let Assumptions 4.2.1-4.2.2

hold. Assume the loss function satisfies self-bounded Assumption 4.2.4. Moreover, suppose

either Assumption 4.2.3 or Assumption 4.8.1 hold. Fix any T ≥ 0. Let the step-size

satisfy the assumptions of the descent lemma (Lemma 4.8.1). Assume any w and m

such that ∥w − w0∥2≥ max
{
ηT F̂ (w), ηF̂ (w0)

}
and m ≥ 182L2R4∥w − w0∥4. Then, the

training loss and the parameters’ norm satisfy

1

T

T∑
t=1

F̂ (wt) ≤ 2F̂ (w) +
5∥w − w0∥2

2ηT
, (4.16)

∀t ∈ [T ] : ∥wt − w0∥≤ 4∥w − w0∥.
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To prove Theorem 4.8.1, we first state our descent lemma for both self-bounded losses

and lipschitz-smooth losses.

Lemma 4.8.1 (Descent lemma). Let Assumptions 4.2.1-4.2.2 hold. Assume the loss func-

tion satisfies self-boundedness Assumptions 4.2.4,4.8.1. Then, for any η < 1

R2 F̂ (wt)
min{ 1

ℓ2+L
, 1√

Lℓ
}

the descent property holds, i.e.,

F̂ (wt+1) ≤ F̂ (wt)−
η

2
∥∇F̂ (wt)∥2.

Moreover, if f satisfies Assumption 4.2.3 then the descent property holds for any η ≤ 1/LF̂

where LF̂ := ℓ2R2 + LR2
√
m

is the smoothness parameter of the training objective.

Proof: Due to self-boundedness Assumption 4.8.1, as well as Assumptions 4.2.1-

4.2.2 the objective is also self-bounded according to Corollary 4.8.3, i.e., ∥∇2F̂ (w)∥≤(
ℓ2R2 + LR2

√
m

)
F̂ (w), ∥∇F̂ (w)∥≤ ℓR F̂ (w).

By Taylor’s expansion, there exists a w′ ∈ [wt, wt+1] such that,

F̂ (wt+1) = F̂ (wt) +
〈
∇F̂ (wt), wt+1 − wt

〉
+

1

2

〈
wt+1 − wt,∇2F̂ (w′) (wt+1 − wt)

〉
≤ F̂ (wt) +

〈
∇F̂ (wt), wt+1 − wt

〉
+

1

2
max

v∈[wt,wt+1]

∥∥∥∇2F̂ (v)
∥∥∥ · ∥wt+1 − wt∥2

≤ F̂ (wt)− η∥∇F̂ (wt)∥2+
η2
(
ℓ2R2 + LR2

√
m

)
2

max
v∈[wt,wt+1]

F̂ (v) ·
∥∥∥∇F̂ (wt)∥∥∥2 .

By Corollary 4.8.1, for
√
m ≥ η2Lℓ2R4F̂ 2(wt) ≥ LR2∥η∇F̂ (wt)∥2= LR2∥wt+1 − wt∥2 it

holds that

max
v∈[wt,wt+1]

F̂ (v) ≤ 2max{F̂ (wt), F̂ (wt+1)},
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which yields

F̂ (wt+1) ≤ F̂ (wt)− η∥∇F̂ (wt)∥2+η2
(
ℓ2R2 +

LR2

√
m

)
max

{
F̂ (wt), F̂ (wt+1)

}
· ∥∇F̂ (wt)∥2.

(4.17)

We note that the condition on m simplifies to m ≥ 1 if η ≤ 1√
LℓR2

1

F̂ (wt)
.

Back to (4.17), if F̂ (wt+1) ≥ F̂ (wt) by our condition η < 1
ℓ2R2+LR2/

√
m

1

F̂ (wt)
it holds

that

F̂ (wt+1) ≤ F̂ (wt) + η∥∇F̂ (wt)∥2
(
F̂ (wt+1)

F̂ (wt)
− 1

)

≤ F̂ (wt) + ηℓ2R2F̂ 2(wt)

(
F̂ (wt+1)

F̂ (wt)
− 1

)
.

Since η < 1
ℓ2R2

1

F̂ (wt)
,

F̂ (wt+1) < F̂ (wt) + F̂ (wt)

(
F̂ (wt+1)

F̂ (wt)
− 1

)

= F̂ (wt+1) ,

which is a contradiction. Thus it holds that F̂ (wt+1) < F̂ (wt). Continuing from Eq. (4.17)

with the assumption η < 1
ℓ2R2+LR2/

√
m

1

F̂ (wt)
, we conclude that

F̂ (wt+1) ≤ F̂ (wt)− η∥∇F̂ (wt)∥2+
1

2
η2
(
ℓ2R2 +

LR2

√
m

)
F̂ (wt) · ∥∇F̂ (wt)∥2

≤ F̂ (wt)−
η

2
∥∇F̂ (wt)∥2.

This completes the proof for self-bounded losses.

Next, suppose f is 1-smooth and 1-Lipschitz. Then, as per Corollary 4.8.3, F̂ is
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smooth with the constant

LF̂ := ℓ2R2 +
LR2

√
m
.

Following similar steps as in the beginning of proof and assuming step-size η ≤ 1/LF̂ we

immediately conclude that,

F̂ (wt+1) ≤ F̂ (wt)− η∥∇F̂ (wt)∥2+
η2LF̂
2

∥∇F̂ (wt)∥2

≤ F̂ (wt)−
η

2
∥∇F̂ (wt)∥2.

This completes the proof.

As a remark, the descent property implies that the loss decreases by each step, i.e.,

F̂ (wt) ≤ F̂ (w0). Thus for self-bounded losses the condition η < 1

R2 F̂ (w0)
min{ 1

ℓ2+L
, 1√

Lℓ
}

is sufficient. We also note that the Lipschitz-smoothness and 2nd order self-bounded

assumptions are only required for the descent lemma above, which results in conditions

on the step-size based on the properties of loss. In the rest of the proof we only use the

self-bounded Assumption 4.2.4 in order to use the self-bounded weak convexity property

of the objective (see Def. 4.3.1).

Next lemma finds a general relation for the training loss in terms of an arbitrary point

w ∈ Rd′ and the fluctuations of loss between w and GD iterates wt.

Lemma 4.8.2. Let Assumptions 4.2.1-4.2.2 hold. Assume the loss function satisfies the

self-bounded Assumption 4.2.4. Moreover, suppose F̂ and step-size η are such that the

following descent condition is satisfied for all t ≥ 0:

F̂ (wt+1) ≤ F̂ (wt)−
η

2
∥∇F̂ (wt)∥2. (4.18)
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Then, for any w ∈ Rd′ it holds that

1

T

T∑
t=1

F̂ (wt) ≤ F̂ (w) +
∥w − w0∥2

ηT
+

1

2

LR2

√
m

1

T

T−1∑
t=0

max
α∈[0,1]

F̂ (wαt) ∥w − wt∥2,

where we set wαt := αwt + (1− α)w.

Proof:

Fix any w. By Taylor, there exists wαt, α ∈ [0, 1] such that

F̂ (w) = F̂ (wt) +
〈
∇F̂ (wt), w − wt

〉
+

1

2

〈
w − wt,∇2F̂ (wαt) (w − wt)

〉
≥ F̂ (wt) +

〈
∇F̂ (wt), w − wt

〉
+

1

2
λmin

(
∇2F̂ (wαt)

)
∥w − wt∥2

≥ F̂ (wt) +
〈
∇F̂ (wt), w − wt

〉
− 1

2

LR2

√
m
F̂ (wαt) ∥w − wt∥2.

The last line is true by Corollary 4.8.3. Thus, for any w,

F̂ (w) ≥ F̂ (wt) +
〈
∇F̂ (wt), w − wt

〉
− 1

2

LR2

√
m

max
α∈[0,1]

F̂ (wαt) ∥w − wt∥2.

Plugging this in (4.18) gives

F̂ (wt+1) ≤ F̂ (w)−
〈
∇F̂ (wt), w − wt

〉
− η

2

∥∥∥∇F̂ (wt)∥∥∥2 + 1

2

LR2

√
m

max
α∈[0,1]

F̂ (wαt) ∥w − wt∥2

= F̂ (w) +
1

η

(
∥w − wt∥2−∥w − wt+1∥2

)
+

1

2

LR2

√
m

max
α∈[0,1]

F̂ (wαt) ∥w − wt∥2.

(4.19)

where the second line follows by completion of squares using wt+1 − wt = −η∇F̂ (wt).

Telescoping the above display for t = 0, . . . , T − 1, we arrive at the desired.

Next, when m is large enough so that we can invoke the generalized-local quasi-

convexity property, the bound of Lemma 4.8.2 takes the following convenient form
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Lemma 4.8.3. Let the assumptions of Lemma 4.8.2 hold. Assume w and m such that
√
m ≥ 2LR2∥w − wt∥2 for all t ∈ [T − 1] then

1

T

T∑
t=1

F̂ (wt) ≤ 2F̂ (w) +
2∥w − w0∥2

ηT
+
F̂ (w0)

2T
. (4.20)

Proof: We invoke Corollary 4.8.1 with λ = 4 to deduce that for all t ∈ [T − 1]

max
α∈[0,1]

F̂ (wαt) ≤
4

3
max{F̂ (w), F̂ (wt)} <

4

3
F̂ (wt) +

4

3
F̂ (w). (4.21)

Noting the assumption on m and recalling Lemma 4.8.2,

1

T

T∑
t=1

F̂ (wt) ≤ F̂ (w) +
∥w − w0∥2

ηT
+

1

2

LR2

√
m

1

T

T−1∑
t=0

max
α∈[0,1]

F̂ (wαt) ∥w − wt∥2

≤ 4

3
F̂ (w) +

∥w − w0∥2

ηT
+

1

3T

T−1∑
t=0

F̂ (wt)

≤ 4

3
F̂ (w) +

∥w − w0∥2

ηT
+

1

3T

T∑
t=0

F̂ (wt).

Arranging terms yields the desired result.

Finally, using the about bounds on the training loss, we can bound the parameter-norm

using a recursive argument presented in the lemma below.

Lemma 4.8.4 (Iterates-norm bound). Suppose the assumptions of Lemma 4.8.2 hold.

Fix any T ≥ 0 and assume any w and m such that

∥w − w0∥2≥ max{ηT F̂ (w), ηF̂ (w0)}. (4.22)
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and

√
m ≥ 18LR2∥w − w0∥2, (4.23)

Then, for all t ∈ [T ],

∥wt − w∥≤ 3∥w − w0∥. (4.24)

Proof: Denote At = ∥wt − w∥. Start by recalling from (4.19) that for all t:

A2
t+1 ≤ A2

t + ηF̂ (w)− ηF̂ (wt+1) + η
LR2

2
√
m

max
α∈[0,1]

F̂ (wαt)A
2
t . (4.25)

We will prove the desired statement (4.24) using induction. For t = 0, A0 = ∥w−w0∥.

Thus, the assumption of induction holds. Now assume (4.24) is correct for t ∈ [T − 1], i.e.

At ≤ 3∥w − w0∥,∀t ∈ [T − 1]. We will then prove it holds for t = T .

The first observation is that by induction hypothesis
√
m ≥ 18LR2∥w−w0∥2≥ 2LR2A2

t

for all t ∈ [T − 1]. Thus, for all t ∈ [T − 1], the condition of the generalized local quasi-

convexity Corollary 4.5.1 holds for λ = 4 implying (see also (4.21))

∀t ∈ [T − 1] : max
α∈[0,1]

F̂ (wαt) ≤
4

3
F̂ (wt) +

4

3
F̂ (w).

Using this in (4.25) we find for all t ∈ [T − 1] that

A2
t+1 ≤ A2

t + ηF̂ (w)− ηF̂ (wt+1) + η
LR2 · A2

t

2
√
m

(
4

3
F̂ (wt) +

4

3
F̂ (w)

)
≤ A2

t + ηF̂ (w)− ηF̂ (wt+1) + η

(
1

3
F̂ (wt) +

1

3
F̂ (w)

)

where in the second inequality we used again that
√
m ≥ 2LR2A2

t . We proceed by
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telescoping the above display over t = 0, 1, . . . , T − 1 to get

A2
T ≤ A2

0 +
4

3
ηT F̂ (w) +

1

3
ηF̂ (w0) +

1

3
η
T−1∑
t=0

F̂ (wt)− ηF̂ (wT )

≤ A2
0 +

4

3
ηT F̂ (w) +

2

3
ηF̂ (w0) +

1

3
η

T∑
t=1

F̂ (wt),

where the second line follows by nonegativity of the loss.

Now, to bound the last term above, observe that the condition of Lemma 4.8.3 holds

since
√
m ≥ 2LR2A2

t for all t ∈ [T − 1] by induction hypothesis. Hence, using (4.20), we

conclude that

A2
T ≤ A2

0 +
4

3
ηT F̂ (w) +

2

3
ηF̂ (w0) +

1

3
ηT

(
2F̂ (w) +

2A2
0

ηT
+
F̂ (w0)

2T

)

=
5

3
A2

0 + 2ηT F̂ (w) +
5

6
ηF̂ (w0)

≤ 5

3
∥w − w0∥2+2∥w − w0∥2+

5

6
∥w − w0∥2=

9

2
∥w − w0∥2 =⇒ AT ≤ 3∥w − w0∥.

(4.26)

In the last inequality, we used the assumptions of the lemma on ∥w − w0∥ and A0 =

∥w − w0∥. This completes the proof.

Completing the proof of Theorem 4.8.1.

The proof follows from combining the bounds on the training loss and parameters’

growth from Lemmas 4.8.3-4.8.4 and noting that with condition on ∥w − w0∥2 from

Lemma 4.8.4 we have F̂ (w0) ≤ ∥w − w0∥2/η to derive (4.16). Moreover, we have

∥wt − w0∥≤ ∥wt − w∥+∥w − w0∥≤ 4∥w − w0∥.
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Proof of Theorem 4.3.2

Here we prove training loss bound for interpolating NN as asserted by Theorem 4.3.2.

Similar to the previous section, we prove a more general result where the loss is not

necessarily Lipschitz or smooth. We are now ready to prove Theorem 4.3.2 for general

self-bounded losses. In particular, Theorem 4.3.2 follows directly from the next result by

choosing f to be Lipschitz and smooth.

Theorem 4.8.2 (General statement of Theorem 4.3.2). Suppose Assumptions 4.2.1-

4.2.2, 4.2.4 hold. Moreover, assume the objective and data satisfy the Assumption 4.3.1.

Let the step-size satisfy the assumptions of Descent Lemma 4.8.1. Moreover, assume

η ≤ min{g(1)2, 1
L
F̂
, g(1)

2

F̂ (w0)
} and m ≥ 182L2R4 g( 1

T
)4 for a fixed training horizon T . Then,

F̂ (wT ) ≤ 2

T
+

5 g( 1
T
)2

2ηT
,

∀t ∈ [T ] : ∥wt − w0∥ ≤ 4 g(
1

T
).

Proof: According to Assumption 4.3.1, for any sufficiently small ε > 0, there exists

a w(ε) such that F̂ (w(ε)) ≤ ε and ∥w(ε) − w0∥= g(ε). Pick ε = 1/T . With the condition

η ≤ min{g(1)2, g(1)2/F̂ (w0)} we have

max
{
ηT F̂ (w(1/T )), ηF̂ (w0)

}
≤ g(1)2 ≤ g(

1

T
)2 = ∥w(1/T ) − w0∥2,

where in the second inequality we used the fact that g is a decreasing function. The

desired result is obtained by Theorem 4.8.1.

Generalized local quasi-convexity property

In the remainder of this section, we prove the generalized local quasi-convexity property.
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Proposition 4.8.1 (Restatement of Proposition 4.5.1). Suppose F̂ : Rd′ → R satisfies

the self-bounded weak convexity property in Eq. 4.4 with parameter κ. Let w1, w2 ∈ Rd′

be two arbitrary points with distance ∥w1 − w2∥ ≤ D <
√
2/κ . Set τ := (1− κD2/2)

−1.

Then,

max
v∈[w1,w2]

F̂ (v) ≤ τ ·max{F̂ (w1), F̂ (w2)}. (4.27)

Proof: Assume the claim of the proposition is incorrect, then

max
v∈[w1,w2]

F̂ (v) > τ ·max{F̂ (w1), F̂ (w2)} > max{F̂ (w1), F̂ (w2)}. (4.28)

Define w⋆ := argmaxv∈[w1,w2] F̂ (v). Note that w⋆ is an interior point. Thus by the

optimality condition it holds

〈
∇F̂ (w⋆), w1 − w2

〉
= 0. (4.29)

By Taylor’s approximation theorem for two points w1, w ∈ Rd′ , there exists a wβ ∈

[w,w1], such that

F̂ (w1) = F̂ (w) +
〈
∇F̂ (w), w1 − w

〉
+

1

2

〈
w − w1,∇2F̂ (wβ) (w − w1)

〉
(4.30)

Pick w = w⋆ = α⋆w1 + (1− α⋆)w2 in Eq. (4.30), and note that

〈
∇F̂ (w⋆), w1 − w⋆

〉
= −(1− α⋆)

〈
∇F̂ (w⋆), w1 − w2

〉
= 0.
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Therefore,

F̂ (w1) = F̂ (w⋆) +
1

2

〈
w⋆ − w1,∇2F̂ (wβ) (w⋆ − w1)

〉
≥ F̂ (w⋆) +

1

2
λmin(∇2F̂ (wβ))

∥∥∥w⋆ − w1

∥∥∥2
≥ F̂ (w⋆)−

1

2
κ F̂ (wβ)

∥∥∥w⋆ − w1

∥∥∥2.
where in the last line we used the self-bounded weak convexity property i.e., λmin

(
∇2F̂ (wβ)

)
≥

−κF̂ (wβ).

This leads to

F̂ (w1) ≥ F̂ (w⋆)−
(1− α⋆)

2

2
κ F̂ (wβ)

∥∥∥w1 − w2

∥∥∥2
> F̂ (w⋆)−

1

2
κ F̂ (wβ)

∥∥∥w1 − w2

∥∥∥2.
Note that wβ ∈ [w⋆, w1] ⊂ [w1, w2], thus F̂ (wβ) ≤ F̂ (w⋆) by definition of w⋆. Therefore,

F̂ (w⋆) <
1

1− 1
2
κ ∥w1 − w2∥2

F̂ (w1)

≤ 1

1− 1
2
κD2

F̂ (w1),

which is in contradiction with (4.28). This proves the statement of the proposition.

Specializing this property to two-layer neural networks yields the following.

Corollary 4.8.1 (Restatement of Corollary 4.5.1). Let Assumptions 4.2.1,4.2.2, 4.2.4

hold. Fix arbitrary w1, w2 ∈ Rd′, any constant λ > 1, and m large enough such that
√
m ≥ λLR

2

2
∥w1 − w2∥2. Then,

max
v∈[w1,w2]

F̂ (v) ≤ (1− 1/λ)−1 ·max{F̂ (w1), F̂ (w2)}. (4.31)
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Proof: By our assumptions and Corollary 4.8.3 the objective’s Hessian satisfies

λmin

(
∇2F̂ (w)

)
≥ −LR

2

√
m
F̂ (w).

Invoking Proposition 4.8.1 with κ := LR2
√
m

concludes the claim.

4.8.2 Generalization Error Analysis

This section includes the proofs of the generalization results stated in Section 4.3.3.

Proof of Theorem 4.3.3

We prove the generalization gap of Theorem 4.3.3 for Lipshitz-smooth losses. The

proof follows the steps of our proof sketch in Sec. 4.5.2.

First, the proofs of exansiveness of GD in NN (Lemma 4.5.1) and the corresponding

model stability bound are given next.

Lemma 4.8.5 (GD-Expansivieness). Let Assumptions 4.2.1-4.2.2 hold. For any w,w′

and wα = αw + (1− α)w′ it holds that

∥∥∥(w − η∇F̂ (w)
)
−
(
w′ − η∇F̂ (w′)

)∥∥∥ ≤ max
α∈[0,1]

H(wα) ∥w − w′∥ ,

H(w) := η
LR2

√
m
F̂ ′(w) + max

{
1, ηℓ2R2F̂ ′′(w)

}
,

where we define F̂ ′(w) := 1
n

∑n
i=1|f ′(yiΦ(w, x1))| and F̂ ′′(w) := 1

n

∑n
i=1 f

′′(yiΦ(w, x1)).

Proof: Fix u : ∥u∥= 1 and define gu : Rd′ → R:

gu(w) := ⟨u,w⟩ − η⟨u,∇F̂ (w)⟩.
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Note ∥∥∥w −∇F̂ (w)− (w′ −∇F̂ (w′))
∥∥∥ = max

∥u∥=1
|gu(w)− gu(w

′)| .

For any w,w′, we have

gu(w)− gu(w
′) =

∫ 1

0

u⊤
(
I − η∇2F̂ (w′ + α(w − w′))

)
(w − w′)dα

≤ max
α∈[0,1]

∥∥∥(I − η∇2F̂ (w′ + α(w − w′))
)∥∥∥∥∥∥w − w′

∥∥∥. (4.32)

For convenience denote wα := αw + (1 − α)w′ and Aα := ∇2F̂ (wα). Then, for any

α ∈ [0, 1] we have that

∥∥∥I − η∇2F̂ (wα)
∥∥∥ = max

{
|1− ηλmin(Aα)|, |1− ηλmax(Aα)|

}
. (4.33)

For convenience, let β := 1√
m
LR2F̂ ′(wα) ≥ 0 and note from Lemma 4.8.11 that

λmin(Aα) ≥ −β. Using this, we will show that

|1− ηλmin(Aα)| ≤ max{1 + ηβ, ηλmax(Aα)}. (4.34)

To show this consider two cases. First, if ηλmin(Aα) ∈ [−ηβ, 1], then

|1− ηλmin(Aα)| = 1− ηλmin(Aα) ≤ 1 + ηβ.

On the other hand, if ηλmin(Aα) ≥ 1, then

|1− ηλmin(Aα)| = ηλmin(Aα)− 1 ≤ ηλmin(Aα) ≤ ηλmax(Aα),

which shows (4.34).
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Next, we will show that

|1− ηλmax(Aα)| ≤ max{1 + ηβ, ηλmax(Aα)}. (4.35)

We consider again three cases. First, if ηλmax(Aα) ∈ [0, 1], then

|1− ηλmax(Aα)| = 1− ηλmax(Aα) ≤ 1.

Second, if ηλmax(Aα) ≥ 1

|1− ηλmax(Aα)| = ηλmax(Aα)− 1 ≤ ηλmax(Aα).

Otherwise, it must be that −β ≤ λmin(Aα) ≤ λmax(Aα) ≤ 0. Thus,

|1− ηλmax(Aα)| = 1− ηλmax(Aα) ≤ 1− ηλmin(Aα) ≤ 1 + ηβ.

To complete the proof of the lemma combine (4.33) with (4.34) and (4.35):

∥I − η∇2F̂ (wα)∥≤ max{1 + ηβ, ηλmax(Aα)},

and further use from Lemma 4.8.11 that ηλmax(Aα) ≤ ηℓ2R2F̂ ′′(w) + ηβ.

For the stability analysis below, recall the definition of the leave-one-out (loo) training

loss for i ∈ [n]: F̂¬i(w) := 1
n

∑
j ̸=i F̂j(w). With these, define the loo model updates of GD

on the loo loss:

w¬i
t+1 := w¬i

t − η∇F̂¬i(w¬i
t ), t ≥ 0, w¬i

0 = w0.

Theorem 4.8.3 (Model stability bound). Suppose Assumptions 4.2.1, 4.2.2, 4.2.3, 4.2.4
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hold. Fix any time horizon T ≥ 1 and any step size η > 0. Set the regret and the

leave-one-out regrets of GD updates as follows:

Reg :=
1

T

T∑
t=1

F̂ (wt) and Regloo :=
1

T
max
i∈[n]

T∑
t=1

F̂¬i(w¬i
t ).

Suppose that the width m is large enough so that it satisfies the following two conditions:

√
m ≥ 4LR2max

{
∥wt − w0∥2, ∥w¬i

t − w0∥2
}
, ∀i ∈ [n], t ∈ [T ] , (4.36)

and

√
m ≥ 6LR2ηT max {Reg, Regloo} . (4.37)

Then, the leave-one-out model stability is bounded as follows:

1

n

n∑
i=1

∥∥∥wT − w¬i
T

∥∥∥ ≤ 2ηℓR

n

(
F̂ (w0) + T · Reg

)
.

Proof: Using self-boundedness Assumption 4.2.4 together with Corollary 4.5.2 it

holds for all i ∈ [n]:

∥∥∥wt+1 − w¬i
t+1

∥∥∥ ≤
∥∥∥(wt − η∇F̂¬i(wt)

)
−
(
w¬i
t − η∇F̂¬i(w¬i

t )
)∥∥∥+ η

n

∥∥∥∇F̂i(wt)∥∥∥
≤
∥∥∥(wt − η∇F̂¬i(wt)

)
−
(
w¬i
t − η∇F̂¬i(w¬i

t )
)∥∥∥+ ηℓR

n
F̂i(wt)

≤
(
1 + η

LR2

√
m

max
α∈[0,1]

F̂¬i(w¬i
αt)

) ∥∥∥wt − w¬i
t

∥∥∥+ ηℓR

n
F̂i(wt), (4.38)

where we denote for convenience w¬i
αt = αwt + (1− α)w¬i

t .

Moreover, by the theorem’s condition in Eq. (4.36), it holds for all t ∈ [T ] and all
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i ∈ [n] that

√
m ≥ 2LR2(∥wt − w0∥2+∥w¬i

t − w0∥2) ≥ LR2
∥∥wt − w¬i

t

∥∥2 .
Thus, we can apply Corollary 4.5.1 for λ = 2, which gives the following generalized-local

quasi-convexity property for the loo objective:

max
α∈[0,1]

F̂¬i(w¬i
αt) ≤ 2max

{
F̂¬i(wt), F̂

¬i(w¬i
t )
}
.

In turn applying this back in (4.38) we have shown that

∥∥∥wt+1 − w¬i
t+1

∥∥∥ ≤
(
1 + η

2LR2

√
m

max
{
F̂¬i(wt), F̂

¬i(w¬i
t )
})∥∥∥wt − w¬i

t

∥∥∥+ ηℓR

n
F̂i(wt)

(4.39)

To continue, denote for convenience

βit := η
2LR2

√
m

max
{
F̂¬i(wt), F̂

¬i(w¬i
t )
}

and ρ := ηℓR,

so that:

∥∥∥wt+1 − w¬i
t+1

∥∥∥ ≤
(
1 + βit

) ∥∥∥wt − w¬i
t

∥∥∥+ ρ

n
F̂i(wt), ∀i ∈ [n], t ∈ [T ] .

By unrolling the iterations over t ∈ [T ] and noting w0 = w¬i
0 , we obtain the following for
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the leave-one-out parameter distance at iteration T :

∥∥∥wT − w¬i
T

∥∥∥ ≤ ρ

n

T−1∑
t=0

(
T−1∏
τ=t+1

(1 + βiτ )

)
F̂i(wt)

≤ ρ

n

T−1∑
t=0

exp

(
T−1∑
τ=t+1

βiτ

)
F̂i(wt)

≤ ρ

n

T−1∑
t=0

exp

(
T−1∑
τ=1

βiτ

)
F̂i(wt) = exp

(
T−1∑
τ=1

βiτ

)
ρ

n

T−1∑
t=0

F̂i(wt)

≤ ρ

n
exp

(
max
j∈[n]

T−1∑
τ=1

βjτ

)
T−1∑
t=0

F̂i(wt), ∀i ∈ [n] . (4.40)

It remains to bound β := maxi∈[n]
∑T−1

τ=1 β
i
τ . We do this as follows:

β =
2ηLR2

√
m

max
i∈[n]

{
max

{
T∑
t=1

F̂¬i(wt) ,
T∑
t=1

F̂¬i(w¬i
t )

}}

≤ 2ηLR2

√
m

max
i∈[n]

{
max

{
T∑
t=1

F̂ (wt) ,
T∑
t=1

F̂¬i(w¬i
t )

}}

=
2ηLR2

√
m

max

{
T∑
t=1

F̂ (wt) , max
i∈[n]

T∑
t=1

F̂¬i(w¬i
t )

}

=
2ηLR2

√
m

T max {Reg , Regloo} ≤ 2/3 ,

where: (i) in the first inequality we used nonnegativity of f(·) to conclude for any i ∈ [n]

and any w that F̂¬i(w) ≤ F̂ (w); (ii) in the last line, we recalled the definition of the

regret terms and we used the theorem’s condition (4.43) on large enough m.

Using this in (4.40) and averaging over i ∈ [n] yields

1

n

∑
i∈[n]

∥∥∥wT − w¬i
T

∥∥∥ ≤ ρeβ

n

T−1∑
t=0

1

n

n∑
i=1

F̂i(wt)

≤ ηℓRe2/3

n

T−1∑
t=0

F̂ (wt) .
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The advertised bound follows by using e2/3 ≤ 2 and writing

1

T

T−1∑
t=0

F̂ (wt) ≤
1

T

T∑
t=0

F̂ (wt) =
F̂ (w0)

T
+ Reg.

To bound the generalization gap in terms of model stability we rely on the following

result.

Lemma 4.8.6 ([14]). Suppose the sample loss f(·, z) is GF̂ -Lipschitz for almost surely

all data points z ∼ D. Then, the following relation holds between expected generalization

loss and model stability at any iterate T ,

E
[
F (wT )

]
− E

[
F̂ (wT )

]
≤ 2GF̂ E

[ 1
n

n∑
i=1

∥wT − w¬i
T ∥
]
. (4.41)

With the two results above, we are ready to prove Theorem 4.3.3.

Theorem 4.8.4 (Restatement of Theorem 4.3.3). Suppose Assumptions 4.2.1- 4.2.4 hold.

Fix any time horizon T ≥ 1 and any step size η ≤ 1/LF̂ where LF̂ is the objective’s

smoothness parameter. Let any w ∈ Rd′ such that ∥w − w0∥2≥ max{ηT F̂ (w), ηF̂ (w0)}.

Suppose hidden-layer width m satisfies m ≥ 642L2R4∥w − w0∥4. Then, the generalization

gap of GD at iteration T is bounded as

E
[
F (wT )− F̂ (wT )

]
≤ 8ℓ2R2

n
E
[
ηT F̂ (w) + 2∥w − w0∥2

]
,

where all expectations are over the training set.

Proof: The proof essentially follows by combining Theorem 4.8.3 with Theorem

4.3.1. Note that the assumptions of Theorem 4.3.1 are met. Thus, the regret and
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parameter-norm are bounded as follows:

Reg ≤ 2F̂ (w) +
5∥w − w0∥2

2ηT
and max

t∈[T ]
∥wt − w0∥ ≤ 4∥w − w0∥ . (4.42)

We can also use Theorem 4.3.1 to the leave-one-out objective F̂¬i and the corresponding

loo GD updates w¬i
t . This bounds the loo regret and the norm of the loo parameter, as

follows:

Regloo ≤ 2F̂ (w) +
5∥w − w0∥2

2ηT
and max

i∈[n]
max
t∈[T ]

∥w¬i
t − w0∥ ≤ 4∥w − w0∥ .

We use these two displays to show that m is by assumption large enough so that Eqs.

(4.36) and (4.43) hold. Indeed, we have

√
m ≥ 64LR2∥w − w0∥2= 4LR2 (4∥w − w0∥)2 ≥ 4LR2max

{
∥wt − w0∥2, ∥w¬i

t − w0∥2
}

and

√
m ≥ 64LR2∥w − w0∥2 > 6LR2 · 5∥w − w0∥2

> 6LR2 · (2ηT F̂ (w) + 5∥w − w0∥2/2)

≥ 6LR2ηT max {Reg, Regloo} .

In the second display we also used the theorem’s assumption that ∥w − w0∥2≥ ηT F̂ (w).
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Thus, we can apply Theorem 4.8.3 to find that

1

n

n∑
i=1

∥∥∥wT − w¬i
T

∥∥∥ ≤ 2ℓR

n

(
ηF̂ (w0) + ηT · Reg

)
≤ 2ℓR

n

(
ηF̂ (w0) + 2ηT F̂ (w) + 5∥w − w0∥2/2

)
≤ 2ℓR

n

(
2ηT F̂ (w) + 7∥w − w0∥2/2

)

where in the penultimate line we used (4.42) and in the last line we used the theorem’s

assumption that ∥w − w0∥2≥ ηF̂ (w0).

To conclude the proof, simply take expectations over the train set on the above display

and apply Lemma 4.8.6 recalling GF̂ = ℓR.

Proof of Theorem 4.3.4

Here we prove the generalization gap for interpolating neural networks as per Theorem

4.3.4.

Theorem 4.8.5 (Restatement of Theorem 4.3.4). Let Assumptions 4.2.1-4.3.1 hold. Fix

T ≥ 1 and let m ≥ 642L2R4 g( 1
T
)4. Then, for any η ≤ min{ 1

L
F̂
, g(1)2, g(1)

2

F̂ (w0)
} the expected

generalization gap at iteration T satisfies

E
[
F (wT )− F̂ (wT )

]
≤

24ℓ2R2 g( 1
T
)2

n
. (4.43)

Proof: According to Assumption 4.3.1, for any sufficiently small ε > 0, there exists

w(ε) such that F̂ (w(ε)) ≤ ε and ∥w(ε) − w0∥= g(ε). Recall from Theorem 4.3.3 that,

E
[
F (wT )− F̂ (wT )

]
≤ 8ℓ2R2

n

(
ηT F̂ (w) + 2∥w − w0∥2

)
. (4.44)

In particular let ε = 1/T and replace w with w(ε). This is possible since after T ≥ 1
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steps and with the decreasing nature of g and the condition on step-size it holds that

∥w(1/T ) − w0∥2= g(1/T )2 ≥ g(1)2 ≥ max{ηT F̂ (w(1/T )), ηF̂ (w0)}. Thus continuing from

(4.44) we have,

E
[
F (wT )− F̂ (wT )

]
≤ 8ℓ2R2

n

(
η + 2g(

1

T
)2
)
.

Recalling η ≤ g(1)2 ≤ g( 1
T
)2 leads to the claim of the theorem.

4.8.3 Proofs for Section 4.4

We first prove proposition 4.4.1, which we repeat here for convenience.

Proposition 4.8.2 (Restatement of Proposition 4.4.1). Let Assumptions 4.2.1-4.2.2,4.4.1-

4.4.2 hold. Assume f(·) to be the logistic loss. Fix ε > 0 and let m ≥ L2R4

4γ4C2 (2C+log(1/ε))4.

Then the realizability Assumption 4.3.1 holds with g(ε) = 1
γ
(2C + log(1/ε)). In other

words, there exists w(ε) such that

F̂ (w(ε)) ≤ ε, and
∥∥w(ε) − w0

∥∥ =
1

γ
(2C + log(1/ε)) . (4.45)

Proof: By Taylor there exists w′ ∈ [w,w0] such that,

yiΦ(w, xi) = yiΦ(w0, xi) + yi

〈
∇1Φ(w0, xi), w − w0

〉
+

1

2
yi

〈
w − w0,∇2

1Φ(w
′, xi)(w − w0)

〉
(4.46)

Pick w = w(ε) := w0 +
w⋆

γ
(2C + log(1/ε)) for w⋆ defined in Assumption 4.4.1. Since

∥w⋆∥= 1, we automatically derive the desired for ∥w(ε) − w0∥. Next, we show that

F̂i(w
(ε)) ≤ ε. Based on Lemma 4.8.10, ∥∇2

1Φ(w
′, xi)∥≤ LR2

√
m
. Continuing from Eq. (4.46),
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we deduce the following,

yiΦ(w, xi) ≥ − |yiΦ(w0, xi)|+ yi
〈
∇1Φ(w0, xi), w

(ε) − w0

〉
− 1

2

∥∥∥∇2
1Φ(w

′, xi)
∥∥∥∥∥w(ε) − w0

∥∥2
≥ −C + 2C + log(1/ε)− LR2

2γ2
√
m
(2C + log(1/ε))2

≥ log(1/ε).

The last step is due to the condition on m. The inequality above implies that F̂i(w) :=

f(yiΦ(w, xi)) ≤ log(1 + ε) ≤ ε, and thus F̂ (w) ≤ ε as desired. This completes the proof.

With this, we may now prove Corollary 4.4.1.

Corollary 4.8.2 (Restatement of Corollary 4.4.1). Let Assumptions 4.2.1-4.2.2,4.4.1-

4.4.2 hold and assume logistic loss. Suppose m ≥ 642L2R4

γ4
(2C+log(T ))4 for a fixed training

horizon T . Then, for any η ≤ min{3, 1
L
F̂
} the training loss and generalization gap are

bounded as follows:

F̂ (wT ) ≤
5(2C + log(T ))2

γ2ηT
,

E
[
F (wT )− F̂ (wT )

]
≤ 24ℓ2R2

γ2n
(2C + log(T ))2.

Proof: The given assumption on m satisfies the conditions of Proposition 4.4.1

for ε = 1
T
, g(1/T ) = 1

γ
(2C + log(T )). We can apply the results of our optimization

and generalization results from Theorems 4.3.2 and 4.3.4 for a fixed T which satisfies

T ≥ 1. Note that we can assume without loss of generality that γ ≤ 1 which implies that

g(1)2 = 4C2/γ2 ≥ 4. Moreover, for logistic loss it holds g(1)2/F̂ (w0) ≥ 4C2

γ2 log(1+eC)
≥ 3

for all C ≥ 1. Therefore the condition on step-size simplifies to η ≤ min{3, 1/LF̂}. This

completes the proof.
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Proof of Proposition 4.4.2

The proof of Proposition 4.4.2 has the following steps: First, we consider an infinite-

width NTK separability assumption (Assumption 4.8.2) and show in Lemma 4.8.7 that it

is equivalent with high-probability to the NTK-separability in Assumption 4.4.1 given

logarithmic number of neurons. We then prove that the noisy-XOR dataset satisfies

Assumption 4.8.2 for convex and locally strongly-convex activations. The result of

Proposition 4.4.2 then follows by combining the two lemmas.

Assumption 4.8.2 (Infinite-width NTK-separability). There exists w(·) : Rd → Rd and

γ > 0 such that ∥w(z)∥2≤ 1 for all z ∈ Rd, and for all (x, y) ∼ D,

y

∫
Rd

σ′ (⟨z, x⟩) · ⟨w(z), x⟩ dµN(z) ≥ γ,

where µN(·) denotes the standard Gaussian measure.

Lemma 4.8.7. Let {(xi, yi)} be any dataset of size ñ under Assumption 4.2.1, satisfying

the separability condition of Assumption 4.8.2 with some margin γ̃ > 0. Consider

initialization w0 ∈ Rd′ where w0 ∼ N(0, Id′). Then, with probability at least 1 − δ the

dataset is separable under Assumption 4.4.1 with margin at least γ = γ̃ − ℓR√
2m

log1/2(ñ/δ),

i.e., there exists unit norm w⋆ such that for all i ∈ [ñ] : yi⟨∇1Φ(w0, xi), w
⋆⟩ ≥ γ.

Proof: By the model’s gradient we have for any w⋆ ∈ Rd′ ,

ϕi := yi

〈
∇1Φ(w0, xi), w

⋆
〉
= yi

m∑
j=1

aj√
m
σ′(⟨w0,j, xi⟩)⟨xi, w⋆j ⟩. (4.47)

Let w⋆j =
aj√
m
w(w0,j). Then ∥w⋆∥≤ 1 and by Hoeffding’s inequality it holds for all t ≥ 0,

Pr
(
ϕi ≥ γ̃ − t

)
≥ 1− exp

(
−2t2m

ℓ2R2

)
. (4.48)
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This leads to the desired result with an extra union bound over i ∈ [ñ].

Lemma 4.8.8. Consider the noisy XOR data distribution {(x̄i, yi)} and two-layer neural

network with a convex activation which is µ-strongly convex in [−2, 2] i.e., mint∈[−2,2] σ
′′(t) ≥

µ for some µ > 0. Then the separability assumption 4.8.2 is satisfied with margin γ = µ
40d
.

Proof: The proof is essentially similar to [110, Prop. 5.3] and thus we follow their

notation and omit the details for brevity. While their proof relies rather crucially on the

ReLU activation, it can be appropriately modified to obtain a similar margin bound under

our different assumptions on the activation function. To see this, note that due to convexity

of activation function, the integrand in the line above Eq. (D.4) is non-negative. Therefore,

we can lower-bound the integral (which evaluates the margin) by restricting A1 to |p1|< 1.

With this restriction we can use the local strong convexity of activation function to

lower-bound the margin, i.e., to uniformly lower-bound yi
∫
Rd σ

′ (⟨z, xi⟩) · ⟨w̄(z), xi⟩ dµN(z)

for all i ∈ [n]. Specifically, note that with strong convexity in [−2, 2], Eq. (D.4) in

[110] changes to ≥ 2p1
d−1

U(p1)mint∈[−2,2] σ
′′(t) ≥ 2p1µ

d−1
U(p1) where U(t) :=

∫ t
−t φ(τ)dτ is the

probability that a standard Gaussian random variable falls in [−t, t]. This leads to the

final value for margin being 2µ
d−1

∫
p1 U(p1) 1 [p ∈ A1] dµN (p) ≥ 8µ

(2πe)3/2(d−1)

∫ 1

0
p31dp1 ≥

µ
40d
,

as desired.

Proposition 4.8.3 (Restatement of Proposition 4.4.2). Consider the noisy XOR data

distribution {(x̄i, yi)}. Assume the activation function is convex, ℓ-Lipschitz and µ-strongly

convex in the interval [−2, 2] for some µ > 0, i.e., mint∈[−2,2] σ
′′(t) ≥ µ. Moreover, assume

Gaussian initialization w0 ∈ Rd′ with entries iid N(0, 1). If m ≥ 802d3ℓ2

2µ2
log(2/δ), then

with probability at least 1− δ over the initialization, the NTK-separability Assumption

4.4.1 is satisfied with margin γ = µ
80d

.

Proof: The claim follows by combining the last two lemmas. In particular, we

derive the infinite width NTK-separability for the entire data distribution (of size 2d) with
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margin γ̃ = µ
40d

and by the assumption on width and noting ñ = 2d, we have γ-separability

by NTK for the entire distribution with probability 1−δ where γ = γ̃− ℓR√
2m

log1/2(ñ/δ) =

µ
40d

− ℓR
√
d√

2m
log1/2(1/δ) ≥ µ

80d
. This completes the proof.

Finally, we show how to control the parameter C that bounds the model output at

Gaussian initialization.

Lemma 4.8.9 (Initialization bound). Let Assumption 4.2.1 hold and assume the activation

function to be ℓ-Lipschitz. Consider initialization w0 ∈ Rd′ where w0 ∼ N(0, Id′). Given

any δ ∈ (0, 1), then with probability at least 1− δ, it holds for all i ∈ [ñ] that

|Φ (w0, xi)| ≤ ℓR
√
2 log(2ñ/δ). (4.49)

Proof: Recall that if a function ϕ : Rd′ → R is G-Lipschitz then for Gaussian vector

Z = (Z1, Z2, · · · , Zd′) where each component is i.i.d. standard Gaussian Zi ∼ N(0, 1), it

holds for all t ≥ 0 that Pr[|ϕ(Z)− E[ϕ(Z)]|≥ t] ≤ 2 exp(− t2

2G2 ). Note that according to

Lemma 4.8.10, Φ(·, xi) is (ℓR)-Lipschitz for any data point xi. Therefore, with the given

initialization for w0, we have

Pr
[∣∣∣Φ(w0, xi)− E[Φ(w0, xi)]

∣∣∣ ≥ t
]
≤ 2 exp

(
− t2

2ℓ2R2

)
.

It also holds that E[Φ(w0, xi)] = 0. This is true since for half of second layer weights aj = 1

and for the rest aj = −1. Thus, we have Pr [|Φ(w0, xi)|≥ t] ≤ 2 exp(− t2

2ℓ2R2 ). A union

bound yields that uniformly over i ∈ [ñ], we have Pr [|Φ(w0, xi)|≥ t] ≤ 2ñ · exp(− t2

2ℓ2R2 )

which concludes the claim of lemma.
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4.8.4 Gradients and Hessian calculations

Definitions

Assume IID data (x, y) ∼ D, x ∈ Rd, y ∈ {±1}. Denote for convenience z := yx.

Suppose two-layer neural network model

Φ(w, xi) =
1√
m

∑
j∈[m]

ajσ(⟨wj, x⟩) (4.50)

aj ∈ {±1}, j ∈ [m] and first-layer weights trained by GD on

F̂ (w) =
1

n

∑
i∈[n]

f(yiΦ(w, xi)) =:
1

n

∑
i∈[n]

f(w, zi) . (4.51)

for loss function f : R → R.

For convenience define

F̂ ′(w) =
1

n

∑
i∈[n]

|f ′(yiΦ(w, xi))| (4.52a)

F̂ ′′(w) =
1

n

∑
i∈[n]

|f ′′ (yiΦ(w, xi))| (4.52b)

Model’s Gradient/Hessian

Lemma 4.8.10. The following are true for the model (4.50) under Assumption 4.2.2.

1. ∥∇1Φ(w, x)∥≤ ℓR.

2. ∥∇2
1Φ(w, x)∥≤ LR2

√
m

.
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Proof: Direct calculation yields that,

∇1Φ(w, x) =
1√
m



a1σ
′(⟨w1, x⟩)x

·

·

amσ
′(⟨wm, x⟩)x


Noting that σ′(·) ≤ ℓ,

∥∇1Φ(w, x)∥2 =
1

m

m∑
j=1

d∑
i=1

(x(i)σ′(⟨wj, x⟩))2 (4.53)

≤ ℓ2∥x∥2

≤ ℓ2R2.

For the Hessian,

∂2Φ(w, x)

∂wij∂wkℓ
=

1√
m
x(j)x(ℓ)aiσ

′′(⟨wi, x⟩)1{i=k}. (4.54)

Thus,

∇2
1Φ(w, x) =

1√
m

diag
(
a1σ

′′(⟨w1, x⟩)xxT , . . . , amσ′′(⟨wm, x⟩)xxT
)

for any unit norm vector u ∈ Rmd, define ūi := [u(i−1)m+1 : uim] ∈ Rd. Moreover,
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define the matrix ∇2
wi
Φ(w, x) ∈ Rd×d such that [∇2

wi
Φ(w, x)]jℓ =

∂2Φ(w,x)
∂wij∂wiℓ

∥∥∥u⊤∇2
1Φ(w, x)

∥∥∥2 = m∑
i=1

∥∥∥u⊤i ∇2
wi
Φ(w, x)

∥∥∥2
≤

m∑
i=1

∥∥∥∇2
wi
Φ(w, x)

∥∥∥2∥ūi∥2
≤

m∑
i=1

L2

m
∥x∥4∥ūi∥2

≤ L2R4

m
.

This completes the proof.

Objective’s Gradient/Hessian

Lemma 4.8.11. Let Assumption 4.2.2 hold. Then, the following are true for the loss

gradient and Hessian:

1. ∥∇F̂ (w)∥≤ ℓR F̂ ′(w).

2. ∥∇2F̂ (w)∥≤ ℓ2R2F̂ ′′(w) + LR2
√
m
F̂ ′(w).

3. λmin

(
∇2F̂ (w)

)
≥ −LR2

√
m
F̂ ′(w).

Proof: The loss gradient is derived as follows,

∇F̂ (w) = 1

n

n∑
i=1

f ′(yiΦ(w, xi))yi∇1Φ(w, xi)

188



Generalization and Optimization in Interpolating Neural Networks Chapter 4

Recalling that yi ∈ {±1}, we can write

∥∥∥∇F̂ (w)∥∥∥ =
1

n

∥∥∥ n∑
i=1

f ′(yiΦ(w, xi))yi∇1Φ(w, xi)
∥∥∥

≤ 1

n

n∑
i=1

|f ′(yiΦ(w, xi))|
∥∥∥∇1Φ(w, xi)

∥∥∥.
≤ ℓRF ′(w). (4.55)

For the Hessian of loss, note that

∇2F̂ (w) =
1

n

n∑
i=1

f ′′(yiΦ(w, xi))∇1Φ(w, xi)∇1Φ(w, xi)
⊤ + f ′(yiΦ(w, xi))yi∇2

1Φ(w, xi).

(4.56)

It follows that

∥∥∥∇2F̂ (w)
∥∥∥ =

∥∥∥∥∥ 1n
n∑
i=1

f ′(yiΦ(w, xi))yi∇2
1Φ(w, xi) + f ′′(yiΦ(w, xi))∇1Φ(w, xi)∇1Φ(w, xi)

⊤

∥∥∥∥∥
≤ 1

n

n∑
i=1

|f ′(yiΦ(w, xi))|
∥∥∥∇2

1Φ(w, xi)
∥∥∥+ |f ′′(yiΦ(w, xi))|

∥∥∥∇1Φ(w, xi)∇1Φ(w, xi)
⊤
∥∥∥

≤ 1

n

n∑
i=1

|f ′(yiΦ(w, xi))|
∥∥∥∇2

1Φ(w, xi)
∥∥∥+ |f ′′(yiΦ(w, xi))|

∥∥∥∇1Φ(w, xi)
∥∥∥2

≤ LR2

√
m
F ′(w) + ℓ2R2F ′′(w). (4.57)

To lower-bound the minimum eigenvalue of Hessian, note that f is convex and thus

f ′′(·) ≥ 0. Therefore the first term in (4.56) is positive semi-definite and the second term
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can be lower-bounded as follows,

λmin(∇2F̂ (w)) ≥ −

∥∥∥∥∥ 1n
n∑
i=1

yif
′(yiΦ(w, xi))∇2

1Φ(w, xi)

∥∥∥∥∥
≥ − 1

n

n∑
i=1

|yif ′(yiΦ(w, xi))|
∥∥∥∇2

1Φ(w, xi)
∥∥∥

≥ −LR
2

√
m
F ′(w).

Corollary 4.8.3 (Self-boundedness of Objective). Let Assumption 4.2.2 hold.

If the loss satisfies Assumptions 4.2.4 (with βf = 1) and 4.8.1, then

1. ∥∇F̂ (w)∥≤ ℓR F̂ (w).

2. ∥∇2F̂ (w)∥≤
(
ℓ2R2 + LR2

√
m

)
F̂ (w).

3. λmin

(
∇2F̂ (w)

)
≥ −LR2

√
m
F̂ (w).

If in addition the loss satisfies Assumptions 4.2.3.A and 4.2.3.B with Lf = Gf = 1, then

6. ∥∇F̂ (w)∥≤ ℓR.

7. ∥∇2F̂ (w)∥≤ ℓ2R2 + LR2
√
m
.

Proof: For self-bounded losses we have F̂ ′(w) ≤ F̂ (w) and F̂ ′′(w) ≤ F̂ (w). If the

loss is 1-Lipschitz and 1-smooth we have F̂ ′(w) ≤ 1 and F̂ ′′(w) ≤ 1. Thus, the claims

immediately follow from Lemma 4.8.11.
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Chapter 5

Fast Convergence in Learning Neural

Networks with Separable Data

5.1 Introduction

5.1.1 Motivation

A wide variety of machine learning algorithms for classification tasks rely on learning

a model using monotonically decreasing loss functions such as logistic loss or exponential

loss. In modern practice these tasks are often accomplished using over-parameterized

models such as large neural networks where the model can interpolate the training data,

i.e., it can achieve perfect classification accuracy on the samples. In particular, it is often

the case that the training of the model is continued until achieving approximately zero

training loss [143].

Over the last decade there has been remarkable progress in understanding or improving

the convergence and generalization properties of over-parameterized models trained by

various choices of loss functions including logistic loss and quadratic loss. For the quadratic
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loss it has been shown that over-parameterization can result in significant improvements in

the training convergence rate of (stochastic)gradient descent on empirical risk minimization

algorithms. Notably, quadratic loss on two-layer ReLU neural networks is shown to satisfy

the Polyak-Łojasiewicz(PL) condition [127, 144, 126]. In fact, the PL property is a

consequence of the observation that the tangent kernel associated with the model is

a non-singular matrix. Moreover, in this case the PL parameter, which specifies the

rate of convergence, is the smallest eigenvalue of the tangent kernel[126]. The fact that

over-parameterized neural networks trained by quadratic loss satisfy the PL condition,

guarantees that the loss convergences exponentially fast to a global optimum. The global

optimum in this case is a model which “perfectly” interpolates the data, where we recall

that perfect interpolation requires that the model output for every training input is

precisely equal to the corresponding label.

On the other hand, gradient descent using un-regularized logistic regression with linear

models and separable data is biased toward the max-margin solution. In particular, in

this case the parameter converges in direction with the rate O(1/log(t)) to the solution

of hard margin SVM problem, while the training loss converges to zero at the rate

Õ(1/t) [138, 113]. More recently, normalized gradient descent has been proposed as a

promising approach for fast convergence of exponentially tailed losses. In this method,

at any iteration the step-size is chosen proportionally to the inverse of value of training

loss function [20]. This results in choosing unboundedly increasing step-sizes for the

iterates of gradient descent. This choice of step-size leads to significantly faster rates for

the parameter’s directional convergence. In particular, for linear models with separable

data, it is shown that normalized GD with decaying step-size enjoys a rate of O(1/
√
t)

in directional parameter convergence to the max-margin separator [20]. This has been

improved to O(1/t) with normalized GD using fixed step-size [21].

Despite remarkable progress in understanding the behavior of normalized GD with
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separable data, these results are only applicable to the implicit bias behavior of “linear

models”. In this chapter, we aim to discover for the first time, the dynamics of learning a

two-layer neural network with normalized GD trained on separable data. We also wish

to realize the iterate-wise test error performance of this procedure. We show that using

normalized GD on an exponentially-tailed loss with a two layered neural network leads

to exponentially fast convergence of the loss to the global optimum. This is comparable

to the convergence rate of O(1/t) for the global convergence of neural networks trained

with exponentially-tailed losses. Compared to the convergence analysis of standard GD

which is usually carried out using smoothness of the loss function, here for normalized

GD we use the Taylor’s expansion of the loss and use the fact the operator norm of the

Hessian is bounded by the loss. Next, we apply a lemma in our proof which shows that

exponentially-tailed losses on a two-layered neural network satisfy a log-Lipschitzness

condition throughout the iterates of normalized GD. Moreover, crucial to our analysis

is showing that the ℓ2 norm of the gradient at every point is upper-bounded and lower-

bounded by constant factors of the loss under given assumptions on the activation function

and the training data. Subsequently, the log-Lipschitzness property together with the

bounds on the norm of Gradient and Hessian of the loss function ensures that normalized

GD is indeed a descent algorithm. Moreover, it results in the fact that the loss value

decreases by a constant factor after each step of normalized GD, resulting in the promised

geometric rate of decay for the loss.

5.1.2 Contributions

In Section 5.2.1 we introduce conditions –namely log-Lipschitz and self-boundedness

assumptions on the gradient and the Hessian– under which the training loss of the

normalized GD algorithm converges exponentially fast to the global optimum. More
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importantly, in Section 5.2.2 we prove that the aforementioned conditions are indeed

satisfied by two-layer neural networks trained with an exponentially-tailed loss function.

This yields the first theoretical guarantee on the convergence of normalized GD for non-

linear models. We also study a stochastic variant of normalized GD and investigate its

training loss convergence in Section 5.2.4.

In Section 5.2.3 we study, for the first time, the finite-time test loss and test error

performance of normalized GD for convex losses. In particular, we derive bounds of order

O(1/n) on the expected generalization error of normalized GD, where n is the training-set

size.

5.1.3 Prior Works

The theoretical study of the optimization landscape of over-parameterized models

trained by GD or SGD has been the subject of several recent works. The majority of these

works study over-parameterized models with specific choices of loss functions, mainly

quadratic or logistic loss functions. For quadratic loss, the exponential convergence rate

of over-parameterized neural networks is proved in several recent works e.g., [127, 144,

145, 125, 132, 146, 121, 147, 126]. These results naturally relate to the Neural Tangent

Kernel(NTK) regime of infinitely wide or sufficiently large initialized neural networks

[105] in which the iterates of gradient descent stay close to the initialization. The NTK

approach can not be applied to our setting as the parameters’ norm in our setting is

growing as Θ(t) with the NGD updates.

The majority of the prior results apply to the quadratic loss. However, the state-of-the-

art architectures for classification tasks use unregularized ERM with logistic/exponential

loss functions. Notably, for these losses over-parameterization leads to infinite norm

optimizers. As a result, the objective in this case does not satisfy strong convexity or the
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PL condition even for linear models. The analysis of loss and parameter convergence of

logistic regression on separable data has attracted significant attention in the last five years.

Notably, a line of influential works have shown that gradient descent provably converges

in direction to the max-margin solution for linear models and two-layer homogenous

neural networks. In particular, the study of training loss and implicit bias behavior

of GD on logistic/exponential loss was first initiated in the settings of linear classifiers

[148, 149, 138, 113, 20]. The implicit bias behavior of GD with logistic loss in two-layer

neural networks was later studied by [150, 140, 141]. The loss landscape of logistic loss for

over-parameterized neural networks and structured data is analyzed in [151, 136], where

it is proved that GD converges to a global optima at the rate O(1/t). The majority of

these results hold for standard GD while we focus on normalized GD.

The generalization properties of GD/SGD with binary and multi-class logistic regres-

sion is studied in [114, 152] for linear models and in [123, 153, 115] for neural networks.

Recently, [154] studied the generalization error of decentralized logistic regression through

a stability analysis. For our generalization analysis we use an algorithmic stability analysis

[13, 17, 14]. However, unlike these prior works we consider normalized GD and derive the

first generalization analysis for this algorithm.

The benefits of normalized GD for speeding up the directional convergence of GD for

linear models was suggested by [20, 21]. This chapter contributes to this line of work.

Compared to the prior works which are focused on implicit behavior of linear models, we

study non-linear models and derive training loss convergence rates. We also study, the

generalization performance of normalized GD for convex objectives.
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Notation

We use ∥·∥ to denote the operator norm of a matrix and also to denote the ℓ2-norm of

a vector. The Frobenius norm of a matrix W is shown by ∥W∥F . The Gradient and the

Hessian of a function F : Rd → R are denoted by ∇F and ∇2F . Similarly, for a function

F : Rd × Rd′ → R that takes two input variables, the Gradient and the Hessian with

respect to the ith variable (where i = 1, 2) are denoted by ∇iF and ∇2
iF , respectively.

For functions F,G : R → R, we write F (t) = O(G(t)) when |F (t)|≤ mG(t) after t ≥ t0

for positive constants m, t0. We write F (t) = Õ(G(t)) when F (t) = O(G(t)H(t)) for a

polylogarithmic function H. Finally, we denote F (t) = Θ(G(t)) if |F (t)|≤ m1G(t) and

|F (t)|≥ m2G(t) for all t ≥ t0 for some positive constants m1,m2, t0.

5.1.4 Problem Setup

We consider unconstrained and unregularized empirical risk minimization (ERM) on

n samples,

min
w∈Rd̃

F (w) :=
1

n

n∑
i=1

f (yiΦ(w, xi)) . (5.1)

The ith sample zi := (xi, yi) consists of a data point xi ∈ Rd and its associated label

yi ∈ {±1}. The function Φ : Rd̃×Rd → R represents the model taking the weights vector

w and data point x to approximate the label. In this section, we take Φ as a neural

network with one hidden layer and m neurons,

Φ(w, x) :=
m∑
j=1

ajσ(⟨wj, x⟩).

Here σ : R → R is the activation function and wj ∈ Rd denotes the input weight

vector of the jth hidden neuron. w ∈ Rd̃ represents the concatenation of these weights
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i.e., w = [w1;w2; . . . ;wm]. In our setting the total number of parameters and hence

the dimension of w is d̃ = md. We assume that only the first layer weights wj are

updated during training and the second layer weights aj ∈ R are initialized randomly

and are maintained fixed during training. The function f : R → R is non-negative and

monotonically decreases such that limt→+∞ f(t) = 0. In this section, we focus on the

exponential loss f(t) = exp(−t), but we expect that our results apply to a broader class

of loss functions that behave similarly to the exponential loss for large t, such as logistic

loss f(t) = log(1 + exp(−t)).

We consider activation functions with bounded absolute value for the first and second

derivatives.

Assumption 5.1.1 (Activation function). The activation function σ : R → R is smooth

and for all t ∈ R

|σ′′(t)|≤ L.

Moreover, there are positive constants α, ℓ such that σ satisfies for all t ∈ R,

α ≤ σ′(t) ≤ ℓ.

An example satisfying the above condition is the activation function known as

smoothed-leaky-ReLU which is a smoothed variant of the leaky-ReLU activation σ(t) =

ℓt I(t ≥ 0) + αt I(t ≤ 0), where I(·) denotes the 0–1 indicator function.

Throughout the chapter we let R and a denote the maximum norm of data points

and second layer weights, respectively, i.e.,

R := max
i∈[n]

∥xi∥ , a := max
j∈[m]

|aj| .
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Throughout the chapter we assume R = Θ(1) w.r.t. problem parameters and a = 1
m

.

We also denote the training loss of the model by F , defined in (5.1) and define the

train error as misclassification error over the training data, or formally by F0−1(w) :=

1
n

∑n
i=1 I(sign(Φ(w, xi)) ̸= yi).

Normalized GD. We consider the iterates of normalized GD as follows,

wt+1 = wt − ηt∇F (wt). (5.2)

The step size is chosen inversely proportional to the loss value i.e., ηt = η/F (wt), implying

that the step-size is growing unboundedly as the algorithm approaches the optimum

solution. Since the gradient norm decays proportionally to the loss, one can equivalently

choose ηt = η/∥∇F (wt)∥.

5.2 Main Results

For convergence analysis in our case study, we introduce a few definitions.

Definition 5.2.1 (log-Lipschitz Objective). The training loss F : Rd̃ → R satisfies the

log-Lipschitzness property if for all w,w′ ∈ Rd̃,

max
v∈[w,w′]

F (v) ≤ F (w) · c̃w,w′ ,

where [w,w′] denotes the line between w and w′ and we define

c̃w,w′ := exp (c(∥w − w′∥+∥w − w′∥2)) where the positive constant c is independent of

w,w′.

As we will see in the following sections, log-Lipschitzness is a property of neural
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networks trained with exponentially tailed losses with c = Θ( 1√
m
). We also define the

property “log-Lipschitzness in the gradient path” if for all wt, wt−1 in Eq. (5.2) there

exists a constant C such that,

max
v∈[wt,wt+1]

F (v) ≤ C F (wt).

Definition 5.2.2 (Self lower-bounded gradient). The loss function F : Rd̃ → R satisfies

the self-lower bounded Gradient condition for a function, if these exists a constant µ such

that for all w,

∥∇F (w)∥≥ µF (w).

Definition 5.2.3 (Self-boundedness of the gradient). The loss function F : Rd̃ → R

satisfies the self-boundedness of the gradient condition for a constant h, if for all w

∥∇F (w)∥≤ hF (w).

The above two conditions on the upper-bound and lower bound of the gradient norm

based on loss can be thought as the equivalent properties of smoothness and the PL

condition but for our studied case of exponential loss. To see this, note that smoothness

and PL condition provide upper and lower bounds for the square norm of gradient. In

particular, by L-smoothness one can deduce that ∥∇F (w)∥2≤ 2L(F (w)−F ⋆) (e.g., [155])

and by the definition of µ-PL condition ∥∇F (w)∥2≥ 2µ(F (w)− F ⋆) [156, 157].

The next necessary condition is an upper-bound on the operator norm of the Hessian

of loss.

Definition 5.2.4 (Self-boundedness of the Hessian). The loss function F : Rd̃ → R
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satisfies the self-boundedness of the Hessian property for a constant H, if for all w,

∥∇2F (w)∥≤ H F (w),

where ∥·∥ denotes the operator norm.

It is worthwhile to mention here that in the next sections of the chapter, we prove

all the self lower and upper bound in Definitions 5.2.1-5.2.4 are satisfied for a two-layer

neural network under some regularity conditions.

5.2.1 Convergence Analysis of Training Loss

The following theorem states that under the conditions above, the training loss

converges to zero at an exponentially fast rate.

Theorem 5.2.1 (Convergence of Training Loss). Consider normalized gradient descent

update rule with loss F and step-size ηt. Assume F and the normalized GD algorithm

satisfy log-Lipschitzness in the gradient path with parameter C, as well as self-boundedness

of the Gradient and the Hessian and the self-lower bounded Gradient properties with

parameters h,H and µ, respectively. Let ηt = η
F (wt)

for all t ∈ [T ] and for any positive

constant η satisfying η ≤ µ2

HCh2
. Then for the training loss at iteration T the following

bound holds:

F (w
T
) ≤ (1− ηµ2

2
)TF (w0). (5.3)

Remark 5.2.1. The proof of Theorem 5.2.1 is provided in Appendix 5.5.1, where we use a

Taylor expansion of the loss and apply the conditions of the theorem. It is worth noting

that the rate obtained for normalized GD in Theorem 5.2.1 is significantly faster than the

rate of Õ( 1
T
) for standard GD with logistic or exponential loss in neural networks (e.g.,
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[151, Thm 4.4], and [158, Thm 2]). Additionally, for a continuous-time perspective on the

training convergence of normalized GD, we refer to Proposition 5.5.1 in the appendix,

which presents a convergence analysis based on normalized Gradient Flow. The advantage

of this approach is that it does not require the self-bounded Hessian property and can

be used to show exponential convergence of normalized Gradient Flow for leaky-ReLU

activation.

5.2.2 Two-Layer Neural Networks

In this section, we prove that the conditions that led to Theorem 5.2.1 are in fact

satisfied by a two-layer neural network. Consequently, this implies that the training loss

bound in Eq.(5.3) is valid for this class of functions. We choose f(t) = exp(−t) for simpler

proofs, however an akin result holds for the broader class of exponentially tailed loss

functions.

First, we start with verifying the log-Lipschitzness condition (Definition 5.2.1). In

particular, here we prove a variation of this property for the iterates of normalized GD

i.e., where w,w′ are chosen as wt, wt+1. The proof is included in Appendix 5.5.2.1.

Lemma 5.2.1 (log-Lipschitzness in the gradient path). Let F be as in (5.1) for the

exponential loss f and let Φ be a two-layer neural network with the activation function

satisfying Assumption 5.1.1. Consider the iterates of normalized GD with the step-size

ηt =
η

F (wt)
. Then for any λ ∈ [0, 1] the following inequality holds:

F (wt + λ(wt+1 − wt)) ≤ exp(λc)F (wt), (5.4)

for a positive constant c independent of λ,wt and wt+1.
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As a direct consequence, it follows that,

max
v∈[wt,wt+1]

F (v) ≤ C F (wt), (5.5)

for a numerical constant C.

The next two lemmas state sufficient conditions for F to satisfy the self-lower bound-

edness for its gradient (Definition 5.2.2). The proofs are deferred to Appendices 5.5.2.2-

5.5.2.3.

Lemma 5.2.2 (Self lower-boundedness of gradient). Let F be as in (5.1) for the exponen-

tial loss f and let Φ be a two-layer neural network with the activation function satisfying

Assumption 5.1.1. Assume the training data is linearly separable with margin γ. Then F

satisfies the self-lower boundedness of gradient with the constant µ = αγ√
m

for all w, i.e.,

∥∇F (w)∥≥ µF (w).

Next, we aim to show that the condition ∥∇F (w)∥≥ µF (w), holds for training data

separable by a two-layer neural network during gradient descent updates. In particular,

we assume the Leaky-ReLU activation function taking the following form,

σ(t) =


ℓ t t ≥ 0,

α t t < 0.

(5.6)

for arbitrary non-negative constants α, ℓ. This includes the widely-used ReLU activation

as a special case. Next lemma shows that when the weights are such that the neural

network separates the training data, the self-lower boundedness condition holds.

Lemma 5.2.3. Let F be in (5.1) for the exponential loss f and let Φ be a two-layer neural

network with activation function in Eq.(5.6). Assume the first layer weights w ∈ Rd̃ are
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such that the neural network separates the training data with margin γ. Then F satisfies

the self- lower boundedness of gradient, i.e, ∥∇F (w)∥≥ µF (w), where µ = γ.

A few remarks are in place. The result of Lemma 5.2.3 is relevant for w that can

separate the training data. Especially, this implies the self lower-boundedness property

after GD iterates succeed in finding an interpolator. However, we should also point

out that the non-smoothness of leaky-ReLU activation functions precludes the self-

bounded Hessian property and it remains an interesting future direction to prove the self

lower-boundedness property with general smooth activations. On the other hand, the

convergence of normalized "Gradient-flow" does not require the self-bounded Hessian

property, as demonstrated in Proposition 5.5.1. This suggests that Lemma 5.2.3 can be

applied to prove the convergence of normalized Gradient-flow with leaky-ReLU activations.

It is worth highlighting that we have not imposed any specific initialization conditions in

our analysis as the self-lower bounded property is essentially sufficient to ensure global

convergence.

Next lemma derives the self-boundedness of the gradient and Hessian (c.f. Definitions

5.2.3-5.2.4) for our studied case. The proof of Lemma 5.2.4 (in Appendix 5.5.2.4) follows

rather straight-forwardly from the closed-form expressions of gradient and Hessian and

using properties of the activation function.

Lemma 5.2.4 (Self-boundedness of the gradient and Hessian). Let F be in (5.1) for the

exponential loss f and let Φ be a two-layer neural network with the activation function

satisfying Assumption 5.1.1. Then F satisfies the self-boundedness of gradient and Hessian

with constants h = ℓR√
m
, H := LR2

m2 + ℓ2R2

m
i.e.,

∥∇F (w)∥≤ hF (w), ∥∇2F (w)∥≤ HF (w).

We conclude this section by offering a few remarks regarding our training convergence
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results. We emphasize that combining Theorem 5.2.1 and Lemmas 5.2.1-5.2.4 achieves

the convergence of training loss of normalized Gradient Descent for two-layer networks.

Moreover, in Appendix 5.5.4, we refer to Proposition 5.5.1 which presents a continuous

time convergence analysis of normalized GD based on Gradient Flow. This result is

especially relevant in the context of leaky-ReLU activation, where Proposition 5.5.1

together with Lemma 5.2.3 shows exponential convergence of normalized Gradient-flow.

Finally, we remark that experiments of the training performance of normalized GD are

deferred to Section 5.3.

5.2.3 Generalization Error

In this section, we study the generalization performance of normalized GD algorithm.

Formally, the test loss for the data distribution D is defined as follows,

F̃ (w) := E(x,y)∼D

[
f(yΦ(w, x))

]
.

Depending on the choice of loss f , the test loss might not always represent correctly the

classification performance of a model. For this, a more reliable standard is the test error

which is based on the 0− 1 loss,

F̃0−1(w) := E(x,y)∼D

[
I(y ̸= sign(Φ(w, x)))

]
.

We also define the generalization loss as the gap between training loss and test loss.

Likewise, we define the generalization error based on the train and test errors.

With these definitions in place, we are ready to state our results. In particular, in this

section we prove that under the normalized GD update rule, the generalization loss at

step T is bounded by O(T
n
) where recall that n is the training sample size. While, the
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dependence of generalization loss on T seems unappealing, we show that this is entirely

due to the fact that a convex-relaxation of the 0− 1 loss, i.e. the loss function f , is used

for evaluating the generalization loss. In particular, we can deduce that under appropriate

conditions on loss function and data (c.f. Corollary 5.2.1), the test error is related to the

test loss through,

F̃0−1(wT
) = O(

F̃ (w
T
)

∥w
T
∥
).

As we will see in the proof of Corollary 5.2.1, for normalized GD with exponentially tailed

losses the weights norm ∥w
T
∥ grows linearly with T . Thus, this relation implies that the

test error satisfies F̃0−1(wT
) = O( 1

n
). Essentially, this bound on the misclassification error

signifies the fast convergence of normalized GD on test error and moreover, it shows that

normalized GD never overfits during its iterations.

It is worthwhile to mention that our generalization analysis is valid for any model

Φ such that f(yΦ(·, x)) is convex for any (x, y) ∼ D. This includes linear models i.e.,

Φ(w, x) = ⟨w, x⟩ or the Random Features model [159], i.e., Φ(w, x) = ⟨w, σ(Ax)⟩ where

σ(·) is applied element-wise on its entries and the matrix A ∈ Rm×d is initialized randomly

and kept fixed during train and test time. Our results also apply to neural networks

in the NTK regime due to the convex-like behavior of optimization landscape in the

infinite-width limit.

We study the generalization performance of normalized GD, through a stability analysis

[13]. The existing analyses in the literature for algorithmic stability of L̃−smooth losses,

rely on the step-size satisfying ηt = O(1/L̃). This implies that such analyses can not

be employed for studying increasingly large step-sizes as in our case ηt is unboundedly

growing. In particular, the common approach in the stability analysis [17, 14] uses the “non-

expansiveness” property of standard GD with smooth and convex losses, by showing that

for η ≤ 2/L̃ and for any two points w, v ∈ Rd̃, it holds that ∥w−η∇F (w)−(v−η∇F (v))∥≤
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∥w − v∥. Central to our stability analysis is showing that under the assumptions of self-

boundedness of Gradient and Hessian, the normalized GD update rule satisfies the

non-expansiveness condition with any step-size satisfying both η ≲ 1
F (w)

and η ≲ 1
F (v)

.

The proof is included in Appendix 5.5.3.1.

Lemma 5.2.5 (Non-expansiveness of normalized GD). Assume the loss F to satisfy

convexity and self-boundedness for the gradient and the Hessian with parameter h ≤ 1

(Definitions 5.2.3-5.2.4). Let v, w ∈ Rd. If η ≤ 1
h·max(F (v),F (w))

, then

∥w − η∇F (w)− (v − η∇F (v))∥≤ ∥w − v∥.

The next theorem characterizes the test loss for both Lipschitz and smooth objectives.

Before stating the theorem, we need to define δ. For the leave-one-out parameter w¬i
t and

loss F¬i(·) defined as

w¬i
t+1 = w¬i

t − ηt∇F¬i(w¬i
t ),

and

F¬i(w) :=
1

n

n∑
j=1
j ̸=i

f(w, zj),

we define δ ≥ 1 to be any constant which satisfies for all t ∈ [T ], i ∈ [n], the following

F¬i(w¬i
t ) ≤ δ F¬i(wt).

While this condition seems rather restrictive, we prove in Lemma 5.5.1 in Appendix

5.5.3.3 that the condition on δ is satisfied by two-layer neural networks with sufficient
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over-parameterization. With these definitions in place, we are ready to state the main

theorem of this section.

Theorem 5.2.2 (Test loss). Consider normalized GD update rule with ηt = η
F (wt)

where

η ≤ 1
hδ

. Assume the loss F to be convex and to satisfy the self-bounded gradient and Hessian

property with a parameter h (Definitions 5.2.3-5.2.4). Then the following statements hold

for the test loss: (i) if the loss F is G-Lipschitz, then the generalization loss at step T

satisfies

E[F̃ (w
T
)− F (w

T
)] ≤ 2GT

n
.

(ii) if the loss F is L̃-smooth, then the test loss at step T satisfies,

E[F̃ (w
T
)] ≤ 4E[F (w

T
)] +

3L̃2T

n
,

where all expectations are over training sets.

The proof of Theorem 5.2.2 is deferred to the Appendix. As discussed earlier in this

section, the test loss dependence on T is due to the rapid growth of the ℓ2 norm of wt.

As a corollary, we show that the generalization error is bounded by O( 1
n
). For this, we

assume the next condition.

Assumption 5.2.1 (Margin). There exists a constant γ̃ such that after sufficient iterations

the model satisfies |Φ(wt, x)|≥ γ̃∥wt∥ almost surely over the data distribution (x, y) ∼ D.

Assumption 5.2.1 implies that the absolute value of the margin is γ̃ i.e., |Φ(wt,x)|
∥wt∥ ≥ γ̃

for almost every x after sufficient iterations. This assumption is rather mild, as intuitively

it requires that data distribution is not concentrating around the decision boundaries.

For the loss function, we consider the special case of logistic loss f(t) = log(1+exp(−t))
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for simplicity of exposition and more importantly due to its Lipschitz property. The use

of Lipschitz property is essential in view of Theorem 5.2.2.

Corollary 5.2.1 (Test error). Suppose the assumptions of Theorem 5.2.2 hold. Consider

the neural network setup under Assumptions 5.1.1 and 5.2.1 and let the loss function f

be the logistic loss. Then the test error at step T of normalized GD satisfies the following:

E[F̃0−1(wT
)] = O(

1

T
E[F (w

T
)] +

1

n
)

The proof of Corollary 5.2.1 is provided in Appendix 5.5.3.4. In the proof, we use that

∥wt∥ grows linearly with t as well as Assumption 5.2.1 to deduce F̃0−1(wT
) = O(

F̃ (w
T
)

T
).

Hence, the statement of the corollary follows from Theorem 5.2.2 (i). Finally, we remark

the expected test error is decreasing with the rate 1/n, which is optimal in the realizable

setting we consider in this chapter.

5.2.4 Stochastic Normalized GD

In this section we consider a stochastic variant of normalized GD algorithm, Assume

zt to be the batch selected randomly from the dataset at iteration t. The stochastic

normalized GD takes the form,

wt+1 = wt − ηt∇Fzt(wt), (5.7)

where ∇Fzt(wt) is the gradient of loss at wt by using the batch of training points zt at

iteration t. We assume ηt to be proportional to 1/F (wt). Our result in this section states

that under the following strong growth condition [160, 161], the training loss converges at

an exponential rate to the global optimum.
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Assumption 5.2.2 (Strong Growth Condition). The training loss F : Rd̃ → R satisfies

the strong growth condition with a parameter ρ,

Ez[∥∇Fz(w)∥2] ≤ ρ∥∇F (w)∥2.

Notably, we show in Appendix 5.5.5.1 that the strong growth condition holds for our

studied case under the self-bounded and self-lower bounded gradient property.

The next theorem characterizes the rate of decay for the training loss. The proof and

numerical experiments are deferred to Appendices 5.5.5.2 and 5.6, respectively.

Theorem 5.2.3 (Convergence of Training Loss). Consider stochastic normalized GD up-

date rule in Eq.(5.7). Assume F satisfies Assumption 5.2.2 as well as the log-Lipschitzness

in the GD path, self-boundedness of the Gradient and the Hessian and the self-lower bounded

Gradient properties (Definitions 5.2.1-5.2.4). Let ηt = η/F (wt) for all t ∈ [T ] and for

any positive constant η satisfying η ≤ µ2

HCρh2
. Then for the training loss at iteration T the

following bound holds:

F (w
T
) ≤ (1− ηµ2

2
)TF (w0).

5.3 Numerical Experiments

In this section, we demonstrate the empirical performance of normalized GD. Figure

5.1 illustrates the training loss (Left), the test error % (middle), and the weight norm

(Right) of GD with normalized GD. The experiments are conducted on a two-layer neural

network with m = 50 hidden neurons with leaky-ReLU activation function in (5.6) where

α = 0.2 and ℓ = 1. The second layer weights are chosen randomly from aj ∈ {± 1
m
}

and kept fixed during training and test time. The first layer weights are initialized from
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Figure 5.1: Comparison of the training loss, test error (in percentage), and weight norm
(i.e., ∥wt∥) between gradient descent and normalized gradient descent algorithms. The
experiments were conducted on two classes of the MNIST dataset using exponential loss
and a two-layer neural network with m = 50 hidden neurons. The results demonstrate the
performance advantages of normalized gradient descent over traditional gradient descent
in terms of both the training loss and test error.

standard Gaussian distribution and then normalized to unit norm. We consider binary

classification with exponential loss using digits “0” and “1” from the MNIST dataset

(d = 784) and we set the sample size to n = 1000. The step-size are fine-tuned to η = 30

and 5 for GD and normalized GD, respectively so that each line represents the best of

each algorithm. We highlight the significant speed-up in the convergence of normalized

GD compared to standard GD. For the training loss, normalized GD decays exponentially

fast to zero while GD converges at a remarkably slower rate. We also highlight that ∥wt∥

for normalized GD grows at a rate Θ(t) while it remains almost constant for GD. In

fact this was predicted by Corollary 5.2.1 where in the proof we showed that the weight

norm grows linearly with the iteration number. In Figure 5.2, we generate two synthetic

dataset according to a realization of a zero-mean Gaussian-mixture model with n− 40

and d = 2 where the two classes have different covariance matrices (top) and a zero-mean
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Figure 5.2: The left plot depicts two synthetic datasets, each consisting of n = 40
data points. On the right, we present the training loss results of gradient descent and
normalized gradient descent algorithms applied to a two-layer neural network with m = 50
(top) and 100 (bottom) hidden neurons.

Gaussian-mixture model with n = 40, d = 5 (only the first two entires are depicted in

the figure) where Σ1 = I,Σ2 =
1
4
I (Bottom). Note that none of the datasets is linearly

separable. We consider the same settings as in Figure 5.1 and compared the performance

of GD and normalized GD in the right plots. The step-sizes are fine-tuned to η = 80, 350

and 30, 20 for GD and normalized GD, respectively. Here again the normalized GD

algorithm demonstrates a superior rate in convergence to the final solution.

5.4 Conclusions

We presented the first theoretical evidence for the convergence of normalized gradient

methods in non-linear models. While previous results on standard GD for two-layer neural

networks trained with logistic/exponential loss proved a rate of Õ(1/t) for the training

loss, we showed that normalized GD enjoys an exponential rate. We also studied for
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the first time, the stability of normalized GD and derived bounds on its generalization

performance for convex objectives. We also briefly discussed the stochastic normalized

GD algorithm. As future directions, we believe extensions of our results to deep neural

networks is interesting. Notably, we expect several of our results to be still true for deep

neural networks. Extending the self lower-boundedness property in Lemma 5.2.3 for

smooth activation functions is another important direction. Another promising avenue

for future research is the derivation of generalization bounds for non-convex objectives by

extending the approach used for GD (in [158]) to normalized GD.
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5.5 Proofs

5.5.1 Proof of Theorem 5.2.1

Based on the conditions of the theorem we have,

max
v∈[wt,wt+1]

F (v) ≤ C F (wt),

∥∇2F (w)∥ ≤ HF (w) and ∥∇F (w)∥∈ [µF (w), hF (w)]

Then by Taylor’s expansion and using the assumptions of the theorem we can deduce,

F (wt+1) ≤ F (wt) + ⟨∇F (wt), wt+1 − wt⟩+
1

2
max

v∈[wt,wt+1]
∥∇2F (v)∥·∥wt+1 − wt∥2

≤ F (wt)− ηt∥∇F (wt)∥2+
η2t
2

max
v∈[wt,wt+1]

∥∇2F (v)∥·∥∇F (wt)∥2

≤ F (wt)− ηt∥∇F (wt)∥2+
η2tH

2
max

v∈[wt,wt+1]
F (v) · ∥∇F (wt)∥2

≤ F (wt)− µ2ηt(F (wt))
2 +

η2tHCh
2

2
(F (wt))

3

Let ηt = η
F (wt)

,

F (wt+1) ≤ (1− ηµ2 +
HCh2η2

2
)F (wt)

Then condition on the step-size η ≤ µ2

HCh2
, ensures that 1− ηµ2 + HCh2η2

2
≤ 1− ηµ2

2
. Thus,

F (wt+1) ≤ (1− ηµ2

2
)F (wt).

Thus F (w
T
) ≤ (1− ηµ2

2
)TF (w0). This completes the proof.
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5.5.2 Proofs for Section 5.2.2

5.5.2.1 Proof of Lemma 5.2.1

For a sample point x ∈ Rd and two weight vectors w,w′ ∈ Rd̃, since the activation

function satisfies σ′ < ℓ, σ′′ < L, we can deduce that,

|Φ(w, x)− Φ(w′, x)| = |
m∑
j=1

ajσ(⟨wj, x⟩)− ajσ(⟨w′
j, x⟩)|

≤
m∑
j=1

|aj|·|σ(⟨wj, x⟩)− σ(⟨w′
j, x⟩)|

By L-smoothness of the activation function and recalling that σ′(·) ≤ ℓ we can write,

σ(⟨wj, x⟩)− σ(⟨w′
j, x⟩) ≤ σ′(⟨w′

j, x⟩)⟨wj − w′
j, x⟩+

L

2
|⟨wj − w′

j, x⟩|2

≤ |σ′(⟨w′
j, x⟩)|·|⟨wj − w′

j, x⟩|+
L

2
|⟨wj − w′

j, x⟩|2

≤ ℓ∥wj − w′
j∥∥x∥+

L

2
∥wj − w′

j∥2∥x∥2

≤ ℓR∥wj − w′
j∥+

LR2

2
∥wj − w′

j∥2.

Since by assumption |aj|≤ a,

|Φ(w, x)− Φ(w′, x)| ≤
m∑
j=1

|aj|(ℓR∥wj − w′
j∥+

LR2

2
∥wj − w′

j∥2)

≤ aR
m∑
j=1

(ℓ∥wj − w′
j∥+LR∥wj − w′

j∥2).
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Hence, for a label y ∈ {±1} we have

−yΦ(w, x) + yΦ(w′, x) ≤ |Φ(w, x)− Φ(w′, x)|

≤ aR

m∑
j=1

(ℓ∥wj − w′
j∥+LR∥wj − w′

j∥2).

Noting the use of exponential loss and by taking exp(·) of both sides,

f(yΦ(w, x))

f(yΦ(w′, x))
= exp (−yΦ(w, x) + yΦ(w′, x))

≤ exp
(
aR

m∑
j=1

(ℓ∥wj − w′
j∥+LR∥wj − w′

j∥2)
)

≤ exp
(
aR(

√
mℓ∥w − w′∥+LR∥w − w′∥2)

)
(5.8)

Thus for any two points w,w′ it holds,

f(yΦ(w, x)) ≤ f(yΦ(w′, x)) · exp
(
aR(

√
mℓ∥w − w′∥+LR∥w − w′∥2)

)
(5.9)

Therefore, for a sample loss with (xi, yi) ∈ Rd × {±1} and v ∈ [wt, wt+1] i.e, v =
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wt + λ(wt+1 − wt) for some λ ∈ [0, 1], we have,

f(yiΦ(v, xi)) = f(yiΦ(wt + λ(wt+1 − wt), xi))

≤ f(yiΦ(wt.xi)) · exp
(
aR(

√
mℓ∥v − wt∥+LR∥v − wt∥2)

)
= f(yiΦ(wt.xi)) · exp

(
aR(

√
mℓλ∥wt+1 − wt∥+LRλ2∥wt+1 − wt∥2)

)
= f(yiΦ(wt.xi)) · exp

(
aR(

√
mℓληt∥∇F (wt)∥+LRλ2η2t ∥∇F (wt)∥2)

)
= f(yiΦ(wt.xi)) · exp

(
aR(

√
mℓλ

η

F (wt)
∥∇F (wt)∥+LRλ2(

η

F (wt)
)2∥∇F (wt)∥2)

)
≤ f(yiΦ(wt.xi)) · exp

(√
maR ℓλhη + aLR2λ2h2η2

)
,

where for the last step we used the assumption that ηt = η
F (wt)

for any constant η ≤ µ2

HCh2

and the assumption that ∥∇F (w)∥≤ hF (w). This proves the inequality (5.4) in the

statement of the lemma.

To derive (5.5), note that since λ ≤ 1,

max
v∈[wt,wt+1]

f(yiΦ(v, xi)) = max
λ∈[0,1]

f(yiΦ(wt + λ(wt+1 − wt), xi))

≤ f(yiΦ(wt.xi)) · exp
(√

maRℓλhη + aLR2λ2h2η2
)

Noting that this holds for all i ∈ [n], we deduce that the following holds for the training

loss:

max
v∈[wt,wt+1]

F (v) ≤ 1

n

n∑
i=1

max
v∈[wt,wt+1]

f(yiΦ(v, xi))

≤ F (wt) · exp
(√

maRℓλhη + aLR2λ2h2η2
)
.

Recalling that a ≤ 1
m

and choosing C = exp(Rℓλhη√
m

+ LR2λ2h2η2

m
) leads to (5.5) and completes
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the proof.

5.5.2.2 Proof of Lemma 5.2.2

For the lower bound on the gradient norm, we can write

∥∇F (w)∥ =
1

n
∥

n∑
i=1

f(yiΦ(w, xi))yi∇1Φ(w, xi)∥

where ∀w ∈ Rd̃, x ∈ Rd the gradient of Φ with respect to the first argument satisfies the

following:

∇1Φ(w, x) = [xa1σ
′(⟨w1, x⟩);xa2σ′(⟨w2, x⟩); · · · ;xamσ′(⟨wm, x⟩)] ∈ Rd̃.

Equivalently, we can write

∥∇F (w)∥ = sup
v∈Rd̃,∥v∥2=1

〈 1
n

n∑
i=1

f(yiΦ(w, xi))yi∇1Φ(w, xi), v
〉

Choose the candidate vector v as follows

v̄ = [a1w
⋆; a2w

⋆; · · · ; amw⋆] ∈ Rd̃ v = v̄/∥v̄∥,

where w⋆ is the max-margin separator that satisfies for all i ∈ [n], yi⟨xi,w⋆⟩
∥w⋆∥ ≥ γ, where γ

denotes the margin. We have ∥v̄∥= ∥ã∥∥w∗∥ where ã ∈ Rm is the concatenation of second
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layer weights aj. Recalling σ′(·) ≥ α,

∥∇F (w)∥ ≥ 1

∥ã∥∥w∗∥
1

n

n∑
i=1

f(yiΦ(w, xi)) · yi⟨xi, w⋆⟩
( m∑
j=1

a2jσ
′(⟨wj, xi⟩)

)
≥ ∥ã∥α

n

n∑
i=1

f(yiΦ(w, xi)) ·
yi⟨xi, w⋆⟩
∥w∗∥

≥ ∥ã∥α · (min
j∈[n]

yj⟨xj, w⋆⟩
∥w∗∥

) · 1
n

n∑
i=1

f(yiΦ(w, xi))

≥ ∥ã∥αγ · F (w).

This completes the proof of the lemma.

5.5.2.3 Proof of Lemma 5.2.3

Recall that,

∥∇F (w)∥2 = sup
v∈Rd̃,∥v∥2=1

〈 1
n

n∑
i=1

f(yiΦ(w, xi))yi∇1Φ(w, xi), v
〉

where,

∇1Φ(w, x) = [xa1σ
′(⟨w1, x⟩);xa2σ′(⟨w2, x⟩); · · · ;xamσ′(⟨wm, x⟩)] ∈ Rd̃

Also, assume w ∈ Rd̃ separates the dataset with margin γ, i.e., for all i ∈ [n]

yiΦ(w, xi)

∥w∥
≥ γ.
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choose

v =
w

∥w∥

then

∥∇F (w)∥ ≥
〈 1
n

n∑
i=1

f(yiΦ(w, xi))yi∇1Φ(w, xi), v
〉

=
1

∥w∥
1

n

n∑
i=1

f(yiΦ(w, xi)) · yi
m∑
j=1

aj⟨wj, xi⟩σ′(⟨wj, xi⟩)

Based on the activation function,

⟨wj, xi⟩σ′(⟨wj, x⟩) =


ℓ⟨wj, xi⟩ ⟨wj, xi⟩ ≥ 0

α⟨wj, xi⟩ ⟨wj, xi⟩ < 0.

which is equal to σ(⟨wj, xi⟩).

Thus,

∥∇F (w)∥ ≥ 1

∥w∥
1

n

n∑
i=1

f(yiΦ(w, xi)) · yi
m∑
j=1

ajσ(⟨wj, xi⟩)

=
1

n

n∑
i=1

f(yiΦ(w, xi)) ·
yiΦ(w, xi)

∥w∥

≥ F (w) · γ

This completes the proof.
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5.5.2.4 Proof of Lemma 5.2.4

Recall that,

F (w) :=
1

n

n∑
i=1

f(yiΦ(w, xi)),

Φ(w, x) :=
m∑
j=1

ajσ(⟨wj, x⟩)

where xi ∈ Rd, wj ∈ Rd, aj ∈ R, w = [w1w2...wm] ∈ Rd̃. Then noting the exponential

nature of the loss function we can write,

∥∇F (w)∥ =
1

n

∥∥∥ n∑
i=1

f ′(yiΦ(w, xi))yi∇1Φ(w, xi)
∥∥∥

≤ 1

n

n∑
i=1

f(yiΦ(w, xi)∥∇1Φ(w, xi)∥.

Noting that σ′(·) ≤ ℓ,

∥∇1Φ(w, x)∥2=
m∑
j=1

d∑
i=1

(ajx(i)σ
′(⟨wj, x⟩))2 ≤

ℓ2∥x∥2

m

Thus ∀w ∈ Rd̃ and h = ℓR√
m

∥∇F (w)∥≤ hF (w).

For the Hessian, note that since |σ′′(·)|≤ L and

∇2
1Φ(w, x) =

1

m
diag

(
a1σ

′′(⟨w1, x⟩)xxT , . . . , amσ′′(⟨wm, x⟩)xxT
)
, (5.10)
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then the operator norm of model’s Hessian satisfies,

∥∇2
1Φ(w, x)∥2≤ L2R4a2.

Thus, for the objective’s Hessian ∇2F (w) ∈ Rd̃×d̃, we have

∥∇2F (w)∥ = ∥ 1
n

n∑
i=1

f(yiΦ(w, xi))yi∇2
1Φ(w, xi) + f(yiΦ(w, xi))∇1Φ(w, xi)∇1Φ(w, xi)

⊤∥

≤ 1

n

n∑
i=1

f(yiΦ(w, xi))(∥∇2
1Φ(w, xi)∥+∥∇1Φ(w, xi)∇1Φ(w, xi)

⊤∥)

=
1

n

n∑
i=1

f(yiΦ(w, xi))(∥∇2
1Φ(w, xi)∥+∥∇1Φ(w, xi)∥22)

≤ (
LR2

m2
+
ℓ2R2

m
)F (w).

Denoting H := LR2

m2 + ℓ2R2

m
, we have ∥∇2F (w)∥≤ HF (w). This concludes the proof.

5.5.3 Proofs for Section 5.2.3

5.5.3.1 Proof of Lemma 5.2.5

Define G(w, v) : Rd̃ × Rd̃ → R as follows,

G(w, v) := F (w)− ⟨∇F (v), w⟩

Note that

∥∇2
1G(w, v)∥= ∥∇2F (w)∥≤ hF (w).
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Thus by Taylor’s expansion of G around its first argument and noting the self-boundedness

of Hessian and the convexity of F , we have for all w, w̃ ∈ Rd,

G(w, v) ≤ G(w̃) + ⟨∇1G(w̃, v), w − w̃⟩+ 1

2
max
v∈[w,w̃]

∥∇2F (v)∥∥w − w̃∥2

≤ G(w̃) + ⟨∇1G(w̃, v), w − w̃⟩+ h

2
max
v∈[w,w̃]

F (v)∥w − w̃∥2

≤ G(w̃) + ⟨∇1G(w̃, v), w − w̃⟩+ h

2
max(F (w), F (w̃))∥w − w̃∥2.

Taking minimum of both sides

min
w∈Rd

G(w, v) ≤ min
w∈Rd

G(w̃, v) + ⟨∇1G(w̃, v), w − w̃⟩+max(F (w), F (w̃))
h∥w − w̃∥2

2

≤ G(w̃, v)− r∥∇1G(w̃, v)∥2+max(F (w̃ − r∇1G(w̃, v)), F (w̃))
hr2∥∇1G(w̃, v)∥2

2

≤ G(w̃, v)− (r − 2r2hF (w̃))∥∇1G(w̃, v)∥2. (5.11)

In the second step, we chose w = w̃− r∇1G(w̃, v) for a positive constant r. Moreover, for

the last step we used the following inequality (which we will prove hereafter) that holds

under r ≤ 1
h(max(F (v),F (w̃)))

,

F (w̃ − r∇1G(w̃, v)) ≤ 4F (w̃). (5.12)

The inequality in (5.12) can be proved according to the following steps. First consider

the convexity of F and the self-boundedness of Hessian to derive the Taylor’s expansion
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of F in the following style:

F (w̃ − r∇1G(w̃, v)) = F (w̃ − r∇F (w̃) + r∇F (v))

≤ F (w̃ − r∇F (w̃)) + r⟨∇F (w̃ − r∇F (w̃)),∇F (v)⟩

+
hM(w, v)

2
r2∥∇F (v)∥2, (5.13)

where we define,

M(w, v) := max(F (w̃ − r∇F (w̃) + r∇F (v)), F (w̃ − r∇F (w̃))). (5.14)

We have that if r ≤ 1/(hF (w̃)), then

F (w̃ − r∇F (w̃)) ≤ F (w̃)

Now, suppose that the assumption in (5.12) is false and on the contrary F (w̃−r∇1G(w̃, v)) >

4F (w̃), then

M(w, v) = F (w̃ − r∇1G(w̃, v)).

By using Cauchy-Shwarz inequality in (5.13) together with the self-boundedness properties
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we deduce that

F (w̃ − r∇1G(w̃, v))

≤ F (w̃) + r∥∇F (w̃ − r∇F (w̃))∥∥∇F (v)∥+hr
2

2
∥∇F (v)∥2F (w̃ − r∇1G(w̃, v))

≤ F (w̃) + rh2F (w̃ − r∇F (w̃))F (v) + r2h3

2
F 2(v)F (w̃ − r∇1G(w̃, v))

≤ F (w̃) + rh2F (w̃)F (v) +
r2h3

2
F 2(v)F (w̃ − r∇1G(w̃, v))

≤ 2F (w̃) +
1

2
F (w̃ − r∇1G(w̃, v)),

The last step is derived by the condition on r and the fact that h ≤ 1. The last inequality

leads to contradiction. This proves (5.12). Thus, continuing from (5.11) and assuming

r ≤ 1
2hF (w̃)

F (v)− ⟨∇F (v), v⟩ ≤ F (w̃)− ⟨∇F (v), w̃⟩ − r

2
∥∇F (w̃)−∇F (v)∥2

Exchanging v and w̃ in the above and noting that under our assumptions it holds that

r ≤ 1
2hF (v)

, we can write

F (w̃)− ⟨∇F (w̃), w̃⟩ ≤ F (v)− ⟨∇F (w̃), v⟩ − r

2
∥∇F (w̃)−∇F (v)∥2

Combining these two together, we end up with the following inequality:

r∥∇F (w̃)−∇F (v)∥≤ ⟨∇F (v)−∇F (w̃), v − w̃⟩.
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Therefore ∀w, v ∈ Rd if η ≤ 2r (which the RHS itself is smaller than 1
hmax(F (v),F (w))

),

∥w − η∇F (w)− (v − η∇F (v))∥2 = ∥v − w∥2−2η⟨∇F (v)−∇F (w), v − w⟩

+ η2∥∇F (v)−∇F (w)∥2

≤ ∥v − w∥2−
(
2ηr − η2

)
∥∇F (v)−∇F (w)∥2

≤ ∥v − w∥2.

This completes the proof.

5.5.3.2 Proof of Theorem 5.2.2

Fix i ∈ [n] and let w¬i
t ∈ Rd be the vector obtained at the step t of normalized GD

with the following iterations,

w¬i
k+1 = w¬i

k − ηk∇F¬i(w¬i
k ),

where ηk denotes the step-size at step k which satisfies ηk ≤ 1
hF¬i(w¬i

k )
for all k ∈ [t− 1].

Also, we define the leave-one-out training loss for i ∈ [n] as follows:

F¬i(w) :=
1

n

n∑
j=1
j ̸=i

f(w, zj).
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In words, w¬i
t is the output of normalized GD at iteration t when the ith sample is left

out while the step-size is chosen independent of the i th sample. Thus, we can write

E[F̃ (wt)− F (wt)] =
1

n

n∑
i=1

E[f(wt, z)− f(w¬i
t , z)] +

1

n

n∑
i=1

E[f(w¬i
t , zi)− f(wt, zi)]

≤ 2G

n

n∑
i=1

E[∥wt − w¬i
t ∥] (5.15)

Since the loss function is non-negative, F¬i(wt) ≤ F (wt) for all i. Thus, by assumption of

the theorem the step-size satisfies ηt ≤ 1
hδF (wt)

≤ 1
hδF¬i(wt)

, ∀i ∈ [n]. By the definition of

δ, this choice of step-size guarantees that ηt ≤ 1
hF¬i(w¬i

t )
. Recalling that δ ≥ 1, we deduce

that ηt ≤ 1
hmax(F¬i(wt),F¬i(w¬i

t ))
, which allows us to apply Lemma 5.2.5. In particular, by

unrolling wt+1 and w¬i
t+1, and using our result from Lemma 5.2.5 on the non-expansiveness

of normalized GD we can write,

∥∥∥wt+1 − w¬i
t+1

∥∥∥ =
∥∥∥wt − 1

n
ηt

n∑
j=1

∇f(wt, zj)− w¬i
t +

1

n
ηt

n∑
j ̸=i

∇f(w¬i
t , zj)

∥∥∥
=
∥∥∥wt − ηt∇F¬i(wt)−

1

n
ηt∇f(wt, zi)− w¬i

t + ηt∇F¬i(w¬i
t )
∥∥∥

≤
∥∥∥wt − ηt∇F¬i(wt)− w¬i

t + ηt∇F¬i(w¬i
t )
∥∥∥+ 1

n
ηt∥∇f(wt, zi)∥

≤
∥∥∥wt − w¬i

t

∥∥∥+ 1

n
ηt

∥∥∥∇f (wt, zi)∥∥∥
≤
∥∥∥wt − w¬i

t

∥∥∥+ 1

n
hηtf(wt, zi). (5.16)

This result holds for all i ∈ [n]. By averaging over all training samples,

1

n

n∑
i=1

∥wt+1 − w¬i
t+1∥≤

1

n

n∑
i=1

∥wt − wit∥+
h

n
ηtF (wt).
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Thus, by telescoping sum over t, for the last iteration we have,

1

n

n∑
i=1

∥w
T
− w¬i

T
∥≤ h

n

T−1∑
t=0

ηtF (wt)

Next, we recall (5.15) which allows us to bound the generalization gap,

E[F̃ (w
T
)− F (w

T
)] ≤ 2Gh

n

T−1∑
t=0

ηtF (wt)

≤ 2GT

n
.

This completes the poof for L- Lipschitz losses.

For L̃-smooth losses, the following relation holds between test and train loss and the

leave-one-out distance (e.g., see [152, Lemma 7], [14, Theorem2]):

E[F̃ (w)] ≤ 4E[F (w)] +
3L̃2

n

n∑
i=1

E[∥w − w¬i∥2]. (5.17)

Note the dependence on ∥w − w¬i∥2. Recalling (5.16), we had

∥∥wt+1 − w¬i
t+1

∥∥ ≤
∥∥wt − w¬i

t

∥∥+ 1

n
ηt h f(wt, zi)

By telescoping summation,

∥w
T
− w¬i

T
∥≤ h

n

T−1∑
t=0

ηtf(wt.zi)
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this gives the following upper bound on the averaged squared norm,

1

n

n∑
i=1

∥w
T
− w¬i

T
∥2 ≤ h2

n3

n∑
i=1

(
T−1∑
t=1

ηtf(wt.zi))
2

≤ h2

n3
(
n∑
i=1

T−1∑
t=0

ηtf(wt.zi))
2

=
h2

n
(
T−1∑
t=0

ηt
n

n∑
i=1

f(wt.zi))
2

=
h2

n
(
T−1∑
t=0

ηtF (wt))
2.

Hence, replacing these back in (5.17),

E[F̃ (w
T
)] ≤ 4E[F (w

T
)] +

3L̃2h2

n
(
T−1∑
t=0

ηtF (wt))
2

≤ 4E[F (w
T
)] +

3L̃2

n
T.

This gives the desired result for L̃-smooth losses in part (ii) of the lemma and completes

the proof.

5.5.3.3 On δ in Theorem 5.2.2

Lemma 5.5.1. Assume the iterates of normalized GD with η ≤ 1/h, zero initialization

(w.l.o.g) and m = βT 2 hidden neurons for any constant β > 0. Then δ in the statement

of Theorem 5.2.2 is satisfied with δ = exp(2Rℓ√
β
+ 4LR2

β
).
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Proof: By the log-Lipschitzness property in (5.9) and recalling a = 1/m,

F¬i(w¬i
T ) ≤ F¬i(wT ) · exp

( Rℓ√
m
∥w¬i

T − wT∥+
LR2

m
∥w¬i

T − wT∥2
)

≤ F¬i(wT ) · exp
( Rℓ√

m
(∥w¬i

T ∥+∥wT∥) +
2LR2

m
(∥w¬i

T ∥2+∥wT∥2)
)
. (5.18)

Now we note that the weight-norm can be upper bounded as following:

∥wT∥ =
∥∥∥wT−1 −

η

F (wT−1)
∇F (wT−1)

∥∥∥
=
∥∥∥w0 − η

T−1∑
t=0

∇F (wt)
F (wt)

∥∥∥
≤ η

T−1∑
t=0

∥∥∥∇F (wt)
F (wt)

∥∥∥
≤ ηhT.

Similarly, we can show that ∥w¬i
T ∥≤ ηhT . Therefore by m = βT 2 and (5.18),

F¬i(w¬i
T ) ≤ F¬i(wT ) · exp

( Rℓ√
m
(∥w¬i

T ∥+∥wT∥) +
2LR2

m
(∥w¬i

T ∥2+∥wT∥2)
)

≤ F¬i(wT ) · exp
(2Rℓ√

m
(ηhT ) +

4LR2

m
η2h2T 2

)
≤ F¬i(wT ) · exp

(2Rℓ√
β

+
4LR2

β

)
,

where the last step follows by ηh ≤ 1 as per assumptions on the step-size. This completes

the proof.
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5.5.3.4 Proof of Corollary 5.2.1

First, note that if F (w) < δ, then ∥w∥≥ 1
ℓR
(log(1

δ
)− σ0), where σ0 = |σ(0)|, since if

the lower-bound on ∥w∥ is incorrect then,

F (w) =
1

n

n∑
i=1

exp(−yiΦ(w, xi))

≥ 1

n

n∑
i=1

exp(−∥w∥∥xi∥−σ0)

≥ 1

n

n∑
i=1

exp(− log(1/δ))

= δ.

where we used,

yΦ(w, x) =
m∑
j=1

yajσ(⟨wj, x⟩)

≤
m∑
j=1

|aj|·|σ(⟨wj, x⟩)|

≤
m∑
j=1

|aj|(σ0 + ℓ|⟨wj, x⟩|)

≤ σ0||ã||1+ℓ∥x∥2
m∑
j=1

|aj|·∥wj∥

≤ σ0∥ã∥1+ℓ∥x∥2∥ã∥2∥w∥2

This is true due to ℓ-Lipschitz activation and our assumption that ∥ã∥1≤ m∥ã∥∞= 1,

where ã ∈ Rm is the concatenation of second layer weights.

Now, note that due to the convergence of training loss there exists a τ > 0 such that
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at iteration t the following holds:

F (wt) ≤ (1− τ)tF (w0).

Hence the weight’s norm at iteration t satisfies,

∥wt∥≥
t

R
log(

1

1− τ
)− σ0

R
= Θ(t). (5.19)

For the test error, by defining F to be the set of data points labeled incorrectly by Φ(wt, ·),

we can write

E(x,y)∼D[f(yΦ(wt, x))] = lim
n→∞

1

n

n∑
i=1

f(yiΦ(wt, xi))

≥ lim
n→∞

1

n

∑
i∈F

f(yiΦ(wt, xi))

= lim
n→∞

1

n

∑
i∈F

f(−|Φ(wt, xi)|)

= lim
n→∞

1

n

∑
i∈F

log(1 + exp(|Φ(wt, xi)|))

≥ 1

3
∥wt∥· lim

n→∞

1

n

∑
i∈F

|Φ(wt, xi)|
∥wt∥

≥ 1

3
γ∥wt∥E(x,y)∼D[I(sign(Φ(wt, x)) ̸= y)]

= Θ(t)E(x,y)∼D[I(sign(Φ(wt, x)) ̸= y)]

Where we used the fact that log(1+exp(t)) ≥ 1
3
t and the one to the last line inequality

is due to Assumption 5.2.1 i.e., |Φ(wt,xi)|
∥wt∥ ≥ γ with high probability over (xi, yi)

iid∼ D.

Hence the test error satisfies,

E[I(y ̸= sign(Φ(wt, x)))] = O(
F (wt)

t
).
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This together with the test loss bound in Theorem 5.2.2 yields the statement of the

corollary and completes the proof.

5.5.4 Normalized Gradient Flow

Proposition 5.5.1 (Normalized GD in continuous time). Let the loss function F satisfy

self-lower boundedness of the gradient with parameter µ (Definition 5.2.2) and the self-

bounded gradient property with parameter h (Definition 5.2.3). Consider normalized gradi-

ent descent with the Gradient flow differential equation given by d
dt
wt = −∇F (wt)/F (wt).

Then the training loss at time T satisfies

F (w0) · exp(−h2T ) ≤ F (w
T
) ≤ F (w0) · exp(−µ2T ).

Proof: Based on the assumptions, we have

ẇt :=
d

dt
wt = −∇F (wt)

F (wt)
.

Then,

d

dt
F (wt) = ∇F (wt)⊤ẇt = −∥∇F (wt)∥2

F (wt)

By self-lower bounded property we have d
dt
F (wt) ≤ −µ2F (wt). Thus,

d

dt
log(F (wt)) =

d
dt
F (wt)

F (wt)
≤ −µ2.
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By integrating from t = 0 to t = T one can deduce that,

log(F (w
T
))− log(F (w0)) ≤ −µ2T.

This leads to the desired upper-bound for F (w
T
). A similar approach by using the

self-bounded gradient property leads to the lower bound. This concludes the proof.

5.5.5 Proofs for Section 5.2.4

5.5.5.1 On the Strong Growth Condition

Proposition 5.5.2. Under the self-bounded gradient property (Definitions 5.2.2-5.2.3)

there exists a ρ such that the strong growth condition is satisfied i.e.,

Ez[∥∇Fz(w)∥2] ≤ ρ∥∇F (w)∥2.

Proof: By the self-bounded gradient property and noting the non-negativity of f we

have,

Ez[∥∇Fz(w)∥2] ≤ h2E[(Fz(w))2]

≤ h2n(F (w))2

≤ h2n

µ2
∥∇F (w)∥2.

This completes the proof.
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5.5.5.2 Proof of Theorem 5.2.3

Following the proof of Theorem 5.2.1 and noting the log-Lipschitzness and the self-

bounded Hessian property we derive that,

F (wt+1) ≤ F (wt) + ⟨∇F (wt), wt+1 − wt⟩+
1

2
HC F (wt) ∥wt+1 − wt∥2

= F (wt)− ηt⟨∇F (wt),∇Fzt(wt)⟩+
1

2
HCη2tF (wt)∥∇Fzt(wt)∥2 (5.20)

Taking expectation with respect to zt and using self-boundedness property yields,

Ezt [F (wt+1)] ≤ F (wt)− ηt∥∇F (wt)∥2+
1

2
HCη2tF (wt)Ezt [∥∇Fzt(wt)∥2]

≤ F (wt)− ηt∥∇F (wt)∥2+
1

2
ρHCη2tF (wt)∥∇F (wt)∥2

≤ F (wt)− µ2ηt(F (wt))
2 +

1

2
ρHh2Cη2t (F (wt))

3

Let ηt = η
F (wt)

, since η ≤ µ2

HCρh2

Ezt [F (wt+1)] ≤ F (wt)(1− ηµ2 +
1

2
ρHh2Cη2)

≤ (1− ηµ2

2
)F (wt).

This completes the proof.
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5.6 Experiments on stochastic normalized GD
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Figure 5.3: (Top) Training loss and Test error of stochastic normalized GD (Eq.(5.7))

on linear classification with signed measurements y = sign(x⊤w⋆) with d = 50, n = 100.

Here ‘b‘ denotes the batch-size and ‘η‘ is the fine-tuned step-size. (Bottom) Training loss

of stochastic normalized GD on the dataset depicted in the left figure (d = 2, n = 40) for

a two-layer neural network with m = 50 hidden neurons.

In this section, we evaluate the performance of stochastic normalized GD in Eq.(5.7) for

linear and non-linear models. In Figure 5.3 (Top), we consider binary linear classification on

signed data with the exponential loss and plot the training loss and test error performance

based on iteration number. b denotes the batch-size from the sample dataset size of

n = 100. The weight vector is initialized at zero for all curves (w0 = 0d). The right plot

shows the test error for the same setup, where the optimal test error (F̃ ⋆
0−1 ≈ 0.17) is

reached at various iteration numbers for each batch-size. In particular, for b = 10(yellow
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line) stochastic normalized GD achieves the final test accuracy at almost the same time

as the full-batch normalized GD (black line) while using 1/10 th gradient computations.

Figure 5.3 (Bottom) depicts the synthetic dataset of size n = 40 in R2 alongside with

the training loss performance for each choice of batch-size b. Here we used a leaky-ReLU

activation function as in Eq.(5.6) with ℓ = 1, α = 0.2.
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Chapter 6

Decentralized Learning in the

Interpolation Regime

6.1 Introduction

6.1.1 Motivation

Machine learning tasks often revolve around inference from data using empirical risk

minimization (ERM):

min
w∈Rd

F̂ (w) :=
1

n

n∑
i=1

f (w, xi) . (6.1)

Here f : Rd × Rd′ → R is a loss function and xi := yiai, where (ai, yi)
n
i=1

iid∼ D represent

features and labels, sampled from a distribution D. In large scale machine learning, due to

privacy concerns and communication constraints, data points are often distributed on a set

of local computing agents. Decentralized learning methods aim at minimizing the global

loss function (6.1) while agents communicate their parameters on an underlying connected
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graph. The most ubiquitous of these algorithms is Decentralized Gradient Descent (DGD).

Here the ℓ th agent runs a step of gradient descent followed by an averaging step in which

every agent replaces its parameter with the average of its neighbors [162]:

w
(t+1)
ℓ =

∑
k∈Nℓ

Aℓkw
(t)
k − ηt∇F̂ℓ(w(t)

ℓ ). (6.2)

The superscripts signify the iteration number and Aℓk refers to the averaging weights used

by agent ℓ for the parameter of agent k ∈ Nℓ where Nℓ is the set of neighbors of agent ℓ.

The global loss F̂ is the average of local loss functions F̂ℓ, ℓ ≤ N , where each F̂ℓ is formed

as the average empirical risk evaluated on the local training dataset Sℓ of the ℓ th agent:

F̂ (w) =
1

N

N∑
ℓ=1

F̂ℓ(w), F̂ℓ(w) =
1

nℓ

∑
xj∈Sℓ

f(w, xj), (6.3)

where nℓ denotes the dataset size of agent ℓ. Convergence properties of the train loss F̂ (·)

in DGD have been studied extensively in literature, e.g., [162, 163, 164, 165, 166]. The

bulk of these studies build upon classical optimization theory [155] suited for studying

the train loss per iteration. In particular, it is well-stablished in the literature that DGD

converges at the rate 1
T

∑T
t=1 F̂ (w̄

(t))− F̂ ⋆ = O( 1√
T
) for smooth convex functions [163].

Here w̄(t) is the average of local parameters w(t)
ℓ . Our results in Sections 6.2.1-6.2.2 show

a rate of F̂ (w̄(T )) = O( (log T )
2

T
) and ∥W (T ) − W̄ (T )∥2F= O( (log T )

4

T 2 ) for the training loss and

consensus error of DGD over separable data with “exponentially tailed” losses.

The study of generalization performance of DGD algorithms in the literature is mostly

limited to empirical observations e.g., [167, 168, 169], making the theory behind test

error performance largely unexplored. Moreover, the traditional wisdom in convergence

analysis of DGD algorithms assumes the existence of a finite norm minimizer, which is

often the case for ERM with non-separable training data, e.g. [170]. However, modern
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machine learning models operate in over-parameterized settings where the model perfectly

interpolates the training data, i.e., it achieves perfect accuracy on the training data

[143]. Understanding the challenges imposed by over-parameterization and the behavior

of gradient descent on separable data has been the subject of several recent works

[138, 113, 132, 20, 140, 114, 22, 21, 152]. Yet, they are all focused on centralized GD,

while here we study the impact of the consensus error of DGD on both training and

generalization errors.

Our first goal is to complement prior general results on the convergence of training

loss in DGD by considering specific, but commonly encountered, settings in ERM over

separable data. This includes the analysis of non-smooth objectives such as the exponential

loss, analysis of logistic regression in the separable regime where the optimum is achieved

at infinity, and analysis of objectives satisfying the PL condition. The second goal

is to study, for the first time in these settings, convergence rates of the DGD test loss

F (w̄(t)) := Ex∼D[f(w̄
(t), x)]. Finally, we leverage recent advances in the study of centralized

learning with separable data to design fast algorithms for decentralized learning. We

discuss our contributions below.

Contributions. In Sections 6.2.1 and 6.2.3, we derive convergence rates for the training

and test loss of DGD over separable data. Our results hold for convex losses satisfying

realizability and self-boundedness, as well as, convex losses satisfying self-boundedness

and the PL condition. In Section 6.2.2, we prove under additional self-boundedness

assumptions on the Hessian and gradient, which hold for exponentially tailed losses, that

the test loss bound can be improved to approximately match the test loss bounds of

centralized GD. When specialized to decentralized logistic regression on separable data,

our results provide the first generalization guarantees of DGD. In Section 6.2.4, we propose

two algorithms for speeding up the convergence of decentralized learning under separable
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data. Numerical experiments demonstrate that our proposed algorithms significantly

improve both the train test error of decentralized logistic regression.

6.1.2 Further related works

Decentralized learning. Over the last few years there have been numerous research

works which consider the convergence of first order methods for decentralized learning;

an incomplete list includes [162, 163, 164, 165, 167, 171, 172, 173, 170, 174, 175, 176].

While DGD is suboptimal for strongly-convex objectives [163, 166], alternative algorithms,

namely EXTRA and Grading Tracking, for achieving exponential rate appeared in

[177, 178] and were studied further in [179, 174]. More recently, [180] proposes accelerated

methods for improving generalization and training accuracy of decentralized algorithms;

however, their study of generalization error is empirical. The concurrent works [181, 182]

study the generalization bounds of decentralized methods for Lipschitz convex losses (see

also [183, 184]). However, we consider exponentially tailed losses under the separable

data regime and prove faster convergence and generalization rates under these conditions.

Compared to these works, we also propose improved algorithms for learning with separable

data. Finally, we highlight that our rates on the train loss are comparable to [170, Theorem

2]. While [170] also derives convergence of DGD train loss on separable data, their analysis

is valid only for bounded optimizers. In contrast, we derive training loss bounds which

are true for the case of unbounded optimizers as is the case for logistic regression over

separable data.

Implicit bias of GD. An early work on the behavior of ERM with vanishing regu-

larization on separable data appeared in [148]. Closely related, a line of recent works

[138, 113, 20, 141, 21, 114, 152] studies the parameter convergence, as well as training

and test loss convergence, of gradient descent on separable data, showing that for (a class

240



Decentralized Learning in the Interpolation Regime Chapter 6

of) monotonic losses the solution to ERM and the max-margin solution are the same

in direction., i.e., ∥ŵ(t) − ŵ
MM

∥→ 0. Here ŵ(t) := w(t)/∥w(t)∥ and ŵ
MM

:= w
MM
/∥w

MM
∥,

where the vector w
MM

is the solution to the hard-margin support vector machine problem,

w
MM

:= arg min
w∈Rd

∥w∥ s.t. yiw
⊤ai ≥ 1, ∀i ∈ [n].

Notably, [113, 138] characterized the rate of directional convergence to be ∥ŵ(T )− ŵ
MM

∥=

O(1/log(T )) and for the training loss to be F̂ (w(T )) = O( 1
ηT
). Recently, Shamir [114]

and Schliserman and Koren [152] showed that the test loss of GD for logistic regression

on linearly separable data satisfies F (w(T )) = Õ( 1
ηT

+ 1
n
) signifying that overfitting

does not happen during the iterates of GD. In Section 6.2.2 (Remark 6.2.5), we show

that the test loss of DGD with logistic regression on linearly separable data satisfies

E[F (w̄(T ))] = Õ( 1
ηT

+ 1
n
+ η2), where the expectation is taken over training samples chosen

i.i.d. from the dataset. As we explain, the term η2 captures the impact of consensus error

(i.e., decentralization) on the generalization rate.

While directional convergence is significantly slow for gradient descent, following

the update rule w(t+1) = w(t) − ηt
∇F̂ (w(t))

∥∇F̂ (w(t))∥ , it can be improved to 1/
√
t with decaying

ηt at rate 1/
√
t for linear models [20]. Furthermore [185] proved improved training

convergence of this algorithm for two-layer neural networks, suggesting the benefits

extend to non-linear settings. These results apply to centralized optimization scenarios.

However, in decentralized learning settings, the local loss functions are kept private and

any information about the global loss, such as its gradient ∥∇F̂ (w̄(t))∥ is hidden from

the agents. In Section 6.2.4, we propose algorithms which address these challenges and

extend the normalized GD update rule to decentralized learning scenarios. Furthermore,

we prove the asymptotic convergence of normalized local parameters w(t)
i /∥w

(t)
i ∥ to the

solution of centralized GD.
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Notation We use ∥·∥ to denote the ℓ2-norm of vectors and the operator norm of matrices.

The Frobenius norm of a matrix W is shown by ∥W∥F . The set {i ∈ N : i ≤ N} is

denoted by [N ]. The gradient and hessian of a function F : Rd → R are denoted by ∇F (·)

and ∇2F (·), respectively. For functions f, g : R → R, we write f(t) = O(g(t)) when

|f(t)|≤Mg(t) after t ≥ t0 for positive constants M, t0. Finally, we write f(t) = Õ(g(t))

when f(t) = O(g(t)h(t)) for a polylogarithmic function h.

6.2 Main Results

Throughout this chapter we make the following standard assumption on the mixing

matrix A = [Aij]N×N corresponding to the underlying connected network.

Assumption 6.2.1 (Mixing matrix). The mixing matrix A ∈ RN×N is symmetric, doubly

stochastic with bounded spectrum i.e., |λi(A)|∈ (0, 1] and λ2(A) < 1.

First, we state a lemma which relates the generalization loss of DGD at iteration t

to its train loss and consensus error up to iteration t. The lemma is derived based on a

stability analysis [13, 17, 14]. Specifically we use a self-boundedness and a realizability

assumption [152] which makes the stability analysis feasible for settings such as logistic

regression on separable data. Additionally, we assume convexity and L-smoothness of the

loss function. Formally, we assume the following, where for simplicity, we use the short-

hand fx(w) := f(w, x) for the loss incurred at a generic x ∈ D in the data distribution

D.

Assumption 6.2.2 (Convexity). The loss functions fx : Rd → R are convex and

differentiable, satisfying, fx(w) ≤ fx(v) + ⟨∇fx(w), w − v⟩.

Assumption 6.2.3 (Smoothness). The loss functions fx : Rd → R are L-smooth and

differentiable, i.e. fx(w) ≤ fx(v) + ⟨∇fx(v), w − v⟩+ L
2
∥w − v∥2.
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Assumption 6.2.4 (Self-boundedness of the gradient). The loss functions fx : Rd → R

satisfy the self-boundedness property with the parameters c > 0 and α ∈ [1
2
, 1], i.e.,

∥∇fx(w)∥≤ c (fx(w))
α .

Assumption 6.2.4 is weaker than Assumption 6.2.3, since an L-smooth non-negative

function f satisfies ∥∇f(w)∥2≤ 2L(f(w) − f ⋆) ≤ 2Lf(w), where f ⋆ := infw f(w) ≥

0. However, we make use of the smoothness property whenever it suits the analysis,

particularly to bound training loss.

Additionally, we make the following assumptions: All local parameters are initiated at

zero i.e, w(1)
ℓ = 0 for all ℓ ≤ N . We assume for simplicity of exposition, that each agent

has access to n/N (nℓ = n/N) samples from the dataset. The general case can be treated

with minor modifications. We also assume that fx(w) ≥ 0 for all w and the minimum of

each loss is zero i.e., f ⋆i = 0.

Before our key lemma, we introduce a few necessary notations. We define matrix

W (t) ∈ RN×d as the concatenation of all agents’ parameters at iteration t, i.e., W =

[w
(t)
1 , · · · , w

(t)
N ]⊤. We also denote by w̄(t) := 1

N

∑N
ℓ=1w

(t)
ℓ the average of local parameters,

and denote by W̄ (t) = [w̄(t), · · · , w̄(t)] ∈ RN×d its concatenated matrix.

Lemma 6.2.1 (Key lemma, Informal version). Let Assumptions 6.2.1-6.2.4 hold. Consider

the iterates of decentralized gradient descent in Eq.(6.2) with a fixed positive step-size
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η ≤ 2
L
. Then, for the test loss F at iteration T ≥ 1, it holds that

E
[
F (w̄(T ))

]
≲ E

[
F̂ (w̄(T ))

]
+
η2L2c2T 2

n3−2α
E
[
(
1

T

T∑
t=1

F̂ (w̄(t)))2α
]

+
η2L4

N
E
[
(
T∑
t=1

∥W (t) − W̄ (t)∥F )2
]
, (6.4)

where the expectation is over the training set of n i.i.d samples.

The precise statement and the proof of Lemma 6.2.1 are deferred to Appendix 6.5.1.

Lemma 6.2.1 bounds the test loss with respect to the train loss and the consensus error.

In the following sections, we show how Lemma 6.2.1 yields test loss bounds on DGD by

establishing bounds on the train loss and consensus errors under different assumptions on

the loss function.

It is worth remarking that Eq. (6.4) is in fact valid not only for DGD, but also for

Decentralized Gradient Tracking (DGT). DGT is another popular algorithm for distributed

learning that can accelerate train error convergence over DGD by modifying the update

in Eq. (6.2) such that each agent keeps a running estimate of the global gradient [178].

The reason why (6.4) continues to hold for DGD is that the proof of Lemma 6.2.1 only

relies on the updates of the “averaged” parameter w̄(t) := 1
N

∑N
ℓ=1wℓ and that the update

rule of w̄(t) for both DGD and DGT is derived as w̄(t) = w̄(t−1) − η
N

∑N
ℓ=1∇F̂ℓ(w

(t−1)
ℓ ).

Thus, starting with Eq.(6.4) one can also obtain test loss bounds of DGT after replacing

appropriate bounds of DGT for the training loss and consensus error. We leave this to

future work.
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6.2.1 Convergence with general convex losses

The upper-bound in Eq.(6.4) shows how the consensus error and train loss of DGD

affect the test loss.

The next lemma bounds the training loss and consensus error of DGD for general

convex losses. The proof is deferred to Appendix 6.5.2.1

Lemma 6.2.2 (Training bounds for convex losses). Under Assumptions 6.2.1-6.2.3, for

any w ∈ Rd and for a fixed step-size

η <
1

L
min

{
1− α1,

√
1− α1

2α2

}
,

where α1 ∈ (3/4, 1), α2 > 4 are parameters that depend only on the mixing matrix, the

train loss and consensus error of DGD (6.2) satisfy:

1

T

T∑
t=1

F̂ (w̄(t)) ≤ 2∥w∥2

ηT
+ 4F̂ (w), (6.5)

1

NT

T∑
t=1

∥W (t) − W̄ (t)∥2F ≤ α2η
2L2

1− α1

(
2∥w∥2

ηT
+ 4F̂ (w)).

To bound the training loss for functions f(·) where the optimum is attained at infinity

we need a realizability assumption. In particular, we choose w ∈ Rd (in Lemma 6.2.2)

using the following.

Assumption 6.2.5 (Realizability). The loss functions fx : Rd → R satisfy the realizability

condition, i.e. ∃ decreasing function ρ : R+ → R+ such that for every ε > 0 there exists

ŵ ∈ Rd with ∥ŵ∥≤ ρ(ε) that satisfies fx(ŵ) ≤ ε.

The set of Assumptions 6.2.2-6.2.5 covers classification over linearly separable data

with logistic loss, in addition to losses with other exponential-type tails exp(−wr) and

polynomial tail w−r, for r > 0.
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Remark 6.2.1 (Training loss of DGD on separable data). The realizability assumption

as stated appeared recently in [152] (and was implicitly used in [113, 114]). It can be

checked that for linearly separable training data with margin γ, loss functions with an

exponential tail such as logistic loss satisfy this assumption with ρ(ε) = 1
γ
log(1

ε
) (e.g., see

Proposition 6.6.3 and [152, Lemma 4]). Based on Lemma 6.2.2, this leads to the following

bound for DGD training loss for all ε > 0,

1

T

T∑
t=1

F̂ (w̄(t)) ≤ 2 log(1/ε)2

γ2ηT
+ 4ε. (6.6)

In particular, choosing ε = 1/T , gives a rate of O( (log T )
2

ηT
), surprisingly matching up to

logarithmic factors the corresponding rate for centralized GD in [113, Theorem 1.1].

Remark 6.2.2. The bounds of Lemma 6.2.2 are true for any dataset {xi}i∈[n] provided

that Assumptions 6.2.2 and 6.2.3 hold for all fx = fxi = f(w, xi) := fi(w), i ∈ [n].

Similarly, (6.6) holds provided Assumption 6.2.5 is true over the training set (i.e. provided

the training dataset is separable). However, bounding the test loss in Lemma 6.2.1,

requires bounding the expectation over all datasets of the train/consensus errors. This is

guaranteed by Assumptions 6.2.2-6.2.5 as they hold for any point x in the distribution.

Theorem 6.2.1 (Test loss with convex losses). Under Assumptions 6.2.1-6.2.5, by

choosing

η <
1

L
√
T
min

{
1− α1,

√
1− α1

2α2

}
where α1 ∈ (3/4, 1), α2 > 4 are parameters that depend only on the mixing matrix and
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assuming ε ≤ ρ(ε)2

ηT
, the test error of DGD for iteration T ≥ 1 satisfies:

1

T

T∑
t=1

E
[
F (w̄(t))

]
=

O
(ρ(ε)2√

T
+
L2c2ρ(ε)4α

n3−2α
T 1−α +

L4ρ(ε)2√
T

)
, (6.7)

where the expectation is over the training set of n i.i.d samples.

Remark 6.2.3 (DGD with logistic regression never overfits). The proof of Theorem 6.2.1 is

delayed to Appendix 6.5.2.2. As in Remark 6.2.1, we take logistic regression on separable

data with margin γ > 0 as our case study. For logistic regression (as well as other loss

functions with an exponential tail), it can be verified that the self-boundedness assumption

holds with α = 1. Similar to Remark 6.2.1 it holds that ρ(ε) = 1
γ
log(1

ε
), thus choosing

ε = 1/
√
T results in a test loss rate Õ( 1√

T
+ 1

n
) by Eq.(6.7). This indicates that the

upper-bound decreases at a rate of Õ( 1√
T
) until after T = n2 · (max( 1

Lc
, L
c
))4 iterations

where the upper bound essentially reduces to Õ(L
2c2

n
). Additionally, the fact that the

upper-bound is decreasing proves that with appropriate choice of step-size, overfitting

never happens along the path of DGD at any iteration.

Remark 6.2.4 (Log factors). The attentive reader will have recognized in Remarks 6.2.1

and 6.2.3 that due to the “ρ(ε) = O(log(T ))” factor, the upper bound on the test loss in

Eq. (6.7) increases (very) slowly with log4(T ). Note that this term becomes dominant

only when T is exponentially large with respect to the sample size n and the margin γ.

Our experiments in Sec. 6.3.2 confirm this slow logarithmic increase late in the training

phase. Analogous behavior, but for centralized GD training, are discussed in [138, 152].
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6.2.2 On the convergence of DGD with exponentially-tailed losses

In this section, we show that our guarantees can be improved for exponentially tailed

losses. First, we note that the bounds in Lemma 6.2.2 and Theorem 6.2.1 hold for the

average loss across iterations t ≤ T . It is straight-forward to see that if DGD is a descent

algorithm i.e., F̂ (w̄(t+1)) ≤ F̂ (w̄(t)) for all t ≤ T , then F̂ (w̄(T )) ≤ 1
T

∑T
t=1 F̂ (w̄

(t)); thus

implying that the upper-bounds on training and test loss hold for the last iterate of DGD.

We will prove that DGD is indeed a “descent algorithm” for a class of convex losses which

include popular choices such as the logistic loss and even non-smooth choices including

the exponential loss. Moreover, we show that the consensus error of Lemma 6.2.2 as well

as the test loss bounds of Theorem 6.2.1 can be improved compared to the results of the

previous section.

In particular, we use the following assumptions together with the self-boundedness

gradient assumption (Assumption 6.2.4) with α = 1 as well as the convexity assumption.

Assumption 6.2.6 (Self-bounded Hessian). The local losses F̂ℓ : Rd → R satisfy the

following for the Hessian matrices ∇2F̂ℓ and a positive constant h,

∥∇2F̂ℓ(w)∥≤ h F̂ℓ(w).

Assumption 6.2.7 (Self-lowerbounded gradient). The global loss satisfies for a constant

τ that

∥∇F̂ (w)∥≥ τ F̂ (w).

Assumptions 6.2.2, 6.2.4, 6.2.6 and 6.2.7 include linear classification with non-smooth

losses such as the exponential loss, losses with super-exponential tails (exp(−xr), r > 1)

and the logistic loss; e.g., see Proposition 6.6.1 in the appendix.

Theorem 6.2.2 (Last iterate convergence of DGD). Consider DGD with the loss functions
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and mixing matrix satisfying Assumptions 6.2.1,6.2.2,6.2.6,6.2.7 and Assumption 6.2.4

with α = 1 and c = h. Assume that the step-size satisfies η < δ

F̂ (1)
, for a constant δ

depending only on the mixing matrix and on τ, h, then DGD is a descent algorithm i.e,

for all t ≥ 1 it holds that F̂ (w̄(t+1)) ≤ F̂ (w̄(t)). Moreover, the train loss and the consensus

error of DGD at iteration T satisfy the following for all w ∈ Rd,

F̂ (w̄(T )) ≤ 4F̂ (w) +
2∥w∥2

ηT
,∥∥W (T ) − W̄ (T )

∥∥2
F
= O

(
h2η2F̂ 2(w) +

h2∥w∥4

T 2

)
. (6.8)

The proof of Theorem 6.2.2 is included in Appendix 6.5.3.1. In the following remark,

we discuss the implications of this result.

Remark 6.2.5 (Improved rates). While similar to Lemma 6.2.2, for logistic regression we

have F̂ (w̄(T )) = Õ( 1
ηT

+ 1
T
), for the consensus error rate we have by applying Theorem

6.2.2 and noting that ρ(ε) = log(1/ε)/γ ,

∥∥W (T ) − W̄ (T )
∥∥2
F
= O

(
h2η2ε2 +

h2(log(1/ε))4

γ4T 2

)
.

After choosing ε = 1/T , we have the improved rate ∥W (T ) − W̄ (T )∥2F= Õ( 1
T 2 ), which is

superior over the rate Õ( 1
T
) for general convex losses with constant η (Lemma 6.2.2). For

the test loss, employing Lemma 6.2.1 with the new rates for the consensus error leads to

the following rate for DGD with logistic regression,

E
[
F (w̄(T ))

]
= Õ

( 1

ηT
+

1

n
+ η2

)
. (6.9)

In accordance to Remark 6.2.2, we can conclude the above from Lemma 6.2.1 provided

Assumptions 6.2.4 and 6.2.7. Thus, the bounds of Theorem 6.2.2 remain true for all
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training sets within the data distribution. We note that the resulting bound in (6.9) is

a superior rate for the test loss of logistic regression, compared to the rate of Remark

6.2.3. Concretely, setting η = 1/T 1/3 gives a rate of Õ(1/T 2/3 + 1/n), faster than the

Õ(1/
√
T +1/n) rate in Remark 6.2.3. On the other hand, it is slightly slower compared to

its centralized counterpart Õ(1/T + 1/n) in [114, 152]. As revealed by Lemma 6.2.1, the

additional η2 factor in (6.9) captures impact of the consensus term, which is unavoidable

in decentralized learning.

6.2.3 Convergence under the PL condition

Next, we show how our previous results change when the global loss satisfies the µ-PL

condition. Formally, the PL condition [156, 157] is defined as follows.

Assumption 6.2.8 (PL condition). The loss function F̂ : Rd → R satisfies the Polyak-

Lojasiewic(PL) condition with parameter µ > 0: ∥∇F̂ (w)∥2≥ 2µ(F̂ (w)− F̂ ⋆).

The next lemma shows that DGD enjoys an exponential rate under the PL condition

and smoothness. and data separability (i.e., F̂ ⋆ = 0). See Appendix 6.5.4.1 for a proof.

Lemma 6.2.3 (Train loss under the PL condition). Let Assumptions 6.2.1,6.2.3 and 6.2.8

hold and let the step-size η ≤ min{1−α1

µ
, 1
2L2

√
(1−α1)µ

α2
, 1
L
}, where the constants α1 ∈ (3/4, 1)

and α2 > 4 depend only on the mixing matrix. Define ζ := 1− ηµ
2
, then under the data

separability assumption, the iterates of DGD satisfy for all t ≥ 1,

F̂ (w̄(t)) ≤ ζt−1F̂ (w̄(1)),

1

N

∥∥W (t) − W̄ (t)
∥∥2
F
≤ 2α2η

2L2F̂ (w̄(1))

1− α1

ζt−1.

We use this lemma combined with our key lemma 6.2.1 to obtain the test loss bound

in the next theorem. The proof is provided in Appendix 6.5.4.2.
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Theorem 6.2.3 (Test loss under the PL condition). Let Assumptions 6.2.1-6.2.4 hold.

Further assume 6.2.8 holds for all training sets in the distribution. Let η and ζ be as in

Lemma 6.2.3. Then the iterates of DGD satisfy for all T ≥ 1,

E
[
F (w̄(T ))

]
= O

(
ζT +

L2c2

n3−2αµ2α
(ηT )2−2α +

η2L4

µ2

)
.

Remark 6.2.6. The bound above involves (ηT )2−2α. When α < 1, as in the case of smooth

functions such as highly over-parameterized Least-squares f(w, x) = (1− w⊤x)2 where

d≫ n, the bound becomes vacuous as it is increasing with T . This suggests the existence

of overfitting in DGD under such scenarios; with the optimal value of T achieved at

the very early steps of training. See Appendix 6.7.1 for experiments that confirm this

behavior.

6.2.4 Improved Algorithms: Fast Distributed Logistic Regression(FDLR)

In this section, we consider decentralized learning with exponentially tail losses on

separable data and propose modifications to the DGD algorithm for improving the

convergence rates based on the normalized GD mechanism.

Our first proposed algorithm –Fast Distributed Logistic Regression(FDLR)– is sum-

marized in Algorithm 1. Each agent keeps two local variables wℓ, vℓ ∈ Rd which are also

communicated to neighbor agents at each round. In matrix notation, Algorithm 1 has

the following updates:

W (t+1) = A(W (t) − ηṼ (t)),

V (t+1) = AV (t) +∇F̂ (W (t+1))−∇F̂ (W (t)).

As in (6.2), A ∈ RN×N is the mixing matrix of the undirected network of agents, which
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Algorithm 1: FDLR

Input: Initial values w(1)
ℓ , v

(1)
ℓ ∈ Rd for all agents ℓ ∈ [N ], step size ηt and mixing

matrix A = [Aℓk]N×N
1 for t = 1, . . . , T all agents ℓ ∈ [N ] in parallel do

2 w
(t+ 1

2
)

ℓ = w
(t)
ℓ − ηt

v
(t)
ℓ

∥v(t)ℓ ∥

3 send and receive local variables w(t+ 1
2
)

ℓ and v(t)ℓ

4 w
(t+1)
ℓ =

∑
k∈Nℓ

Aℓkw
(t+ 1

2
)

k

5 v
(t+1)
ℓ =

∑
k∈Nℓ

Aℓkv
(t)
k +∇F̂ℓ(w(t+1)

ℓ )−∇F̂ℓ(w(t)
ℓ )

Algorithm 2: FDLR with Nesterov momentum

Input: Initial values w(1)
ℓ , v

(1)
ℓ , z(1) ∈ Rd for all agents ℓ ∈ [N ], hyper-parameters

ηt, γt and mixing matrix A = [Aℓk]N×N
1 for t = 1, . . . , T all agents i ∈ [N ] in parallel do

2 z
(t+1)
ℓ = γt(z

(t)
ℓ +

v
(t)
ℓ

∥v(t)ℓ ∥
)

3 w
(t+ 1

2
)

ℓ = w
(t)
ℓ − ηt(z

(t+1)
ℓ +

v
(t)
ℓ

∥v(t)ℓ ∥
)

4 send and receive local variables w(t+ 1
2
)

ℓ and v(t)ℓ

5 w
(t+1)
ℓ =

∑
k∈Nℓ

Aℓkw
(t+ 1

2
)

k

6 v
(t+1)
ℓ =

∑
k∈Nℓ

Aℓkv
(t)
k +∇F̂ℓ(w(t+1)

ℓ )−∇F̂ℓ(w(t)
ℓ )

satisfies the regularity conditions in Assumption 6.2.1. FurthermoreW (t), V (t),∇F̂ (W (t)) ∈

RN×d are formed by stacking w(t)
ℓ , v

(t)
ℓ and local gradients ∇F̂ℓ(w(t)

ℓ ) for all ℓ ∈ [N ] as

their rows. The matrix Ṽ (t) ∈ RN×d is formed by concatenation of the vectors v(t)ℓ /∥v
(t)
ℓ ∥

as its rows. In step (2) of Algorithm 1, every agent ℓ runs in parallel an update rule

which resembles the distributed gradient descent update rule (aka Eq. (6.2)), with the

difference that the local gradient ∇F̂ℓ(w(t)
ℓ ) is replaced by v(t)ℓ /∥v

(t)
ℓ ∥. In the next step,

agents send their local parameters w(t)
ℓ , v

(t)
ℓ to their neighbors. Step (4) is the consensus

step at which agent ℓ computes a weighted average of w(t+1/2)
k sent from neighbor agents

k, in order to update w(t)
ℓ . Step (5) uses the newly computed local gradient ∇F̂ℓ(w(t+1)

ℓ )
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and the gradient computed in the previous step to updates the local parameter v(t)ℓ . The

purpose behind introducing the variable v(t)ℓ is to estimate the global gradient. This idea

is previously used in the gradient tracking algorithm (e.g. see [178]) and the idea also

relates to stochastic variance reduced gradient (SVRG) [186]. The following theorem

proves that for exponentially decaying loss functions and separable data, FDRL with

time-decaying step-size ηt = 1/
√
t converges successfully in direction to the solution of

centralized gradient descent. The proof is provided in Appendix 6.5.5.

Theorem 6.2.4 (Asymptotic convergence of FDLR). Let the sequence {w(t)
ℓ } be generated

by FDRL(Algorithm 1) trained with logistic or exponential loss on a separable dataset with

ηt = O(1/
√
t). Then, for all ℓ ∈ [N ], limt→∞w

(t)
ℓ /∥w

(t)
ℓ ∥ = w

MM
/∥w

MM
∥, where w

MM
is

the solution to max-margin problem.

Based on the above result, we anticipate that FDRL has good test performance. In

fact, we will show in Section 6.3 that FDRL achieves good test performance orders of

magnitude faster than DGD. To get some insight on this and also on the nature of

the FDLR updates consider the infinite time limit. In this limit, when the matrix A

satisfies the mixing Assumption 6.2.1, it can be checked that V (∞) = 1
n
11⊤∇F̂ (W (∞)).

Hence, as t → ∞ the variables v(t)ℓ for all agents converge to the same global gradient∑N
ℓ=1∇F̂ℓ(w

(t)
ℓ ). Realizing this, we can see that Step (2) of FDLR is asymptotically

approximating a normalized GD update, i.e., for large t, each agent performs an update

w
(t+1/2)
ℓ ≈ w

(t)
ℓ − ηt

∑N
ℓ=1 ∇F̂ℓ(w

(t)
ℓ )

∥
∑N

ℓ=1 ∇F̂ℓ(w
(t)
ℓ )∥2

. Previously, normalized gradient descent has been used

to speed up convergence in centralized logistic regression over separable data[20]. Here,

we essentially extend this idea to a decentralized setting and argue that FDLR is the

canonical way to do so. In particular, the idea of introducing additional variables vℓ that

keep track of the global gradient is critical for the algorithm’s success. That is, a naive

implementation with updates w(t+1/2)
ℓ = w

(t)
ℓ − ηt∇F̂ℓ(w(t)

ℓ )/∥∇F̂ℓ(w(t)
ℓ )∥2 based only on
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the local gradients would fail. At the other end, just introducing variables vℓ without

performing a normalized gradient update (i.e. implementing gradient tracking) also fails

to give significant speed ups over DGD. See Section 6.3 for experiments in support of this

claim.

We also present a yet improved Algorithm 2, which combines FDLR with Nesterov

Momentum. The key innovation of Algorithm 2 compared to FDLR is its step (3), where

now the local parameter w(t)
ℓ is updated by a weighted average (z(t+1)

ℓ ) of normalized

gradients from previous iterations. Similar to our previous remarks regarding FDLR,

extending the Nesterov accelarated variant of normalized GD for centralized logistic

regression [22] to the distributed setting is more subtle as now each agent has access only

to local gradients. Our experiments in Section 6.3 verify the correctness of the proposed

implementation of Algorithm 2 as it achieves significant speed ups over both DGD and

FDLR.

6.3 Numerical Experiments

In this section, we present numerical experiments to verify our theoretical results and

demonstrate the benefits of our proposed algorithms. We begin with a numerical study of

the performance of FDLR.

6.3.1 Experiments on FDLR

In Fig. 6.1(Left), we compare the performance of FDLR and its momentum variant

to DGD and gradient tracking (GT) for exponential loss with signed measurements (i.e.,

y = sign(a⊤w⋆) for samples a, labels y and the true vector of regressors w⋆) with n = 100,

d = 25. The underlying graph is selected as an Erdos-Rènyi graph with N = 50 agents

and connectivity probability pc = 0.3. On the y−axis, directional convergece represents
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the distance of normalized w
(t)
ℓ to the normalized final solution for agent ℓ = 1, i.e.,

∥ w
(t)
1

∥w(t)
1 ∥

− w
MM

∥w
MM

∥∥ (see Theorem 6.2.4). The hyper-parameters ηt, γt are fine-tuned for each

algorithm to represent the best of each algorithm and the final values are ηt = 0.1, 0.05, 0.5

and 0.2 for Distributed GD, GT, Alg. 1 and Alg. 2, respectively and γt = 0.8 for Alg. 2.

Our algorithms significantly outperform the well-known distributed learning algorithms

in directional convergence to the final solution. Regardless, in this case we noticed that

the gain obtained by including the momentum is small. In Fig. 6.1(Right), we consider a

binary classification task on a real-world dataset (two classes of the UCI WINE dataset

[187]) where d = 13 and n = 107. We compare the performance of FDLR (blue line) and

its momentum variant (red line) with DGD and DGT on an Erdos-Rènyi graph with

N = 10 and pc = 0.4. The hyper-parameters are fine-tuned to ηt = 12, 1, 0.9, 2 for DGD,

DGT, Alg. 1 and Alg. 2 respectively, and γt = 0.88 for Alg. 2. Notably, while Alg. 1

significantly outperforms both DGD and DGT, the benefits of adding the momentum are

also significant in this case as Alg. 2 demonstrates a faster rate of convergence than Alg.

1.

The two plots in Fig. 6.2 (Left) illustrate the train and test errors of DGD/DGT and

our proposed algorithms for the same setting as Fig. 6.1(Left) with n = 800 and d = 50.

Here the hyper-parameters are fine-tuned to be ηt = 0.01, 0.01, 0.4, 0.5 for DGD,DGT,

Alg. 1 and Alg. 2, respectively and γt = 0.5 for Alg. 2. Fig. 6.2(Right) shows the training

and test losses. Here, we use the same dataset with N = 10, pc = 0.4 and an exponential

loss. The hyper-parameters are fine-tuned to ηt = 0.01, 0.012, 0.4, 0.6 and γt = 0.9. Both

of our algorithms outperform the commonly used DGD and DT, in both training error

and test error performance. Also, the gains of adding the momentum are significant,

since FDLR with Nesterov momentum (Algorithm 2) reaches an approximation of its final

test accuracy in 50 iterations, while the same happens for FDLR with approximately

300 iterations. An interesting phenomenon in Fig. 6.2 (see also Fig. 6.3(Right)) is
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Figure 6.1: Directional parameter convergence of our proposed Algorithms 1-2 compared
to the vanilla distributed gradient descent and gradient tracking algorithms on (Left)
synthetic data y = sign(a⊤w⋆) and (Right) on two classes from the UCI WINE dataset.
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Figure 6.2: Training/test misclassification errors and train/test losses for our proposed
algorithms compared to the decentralized gradient descent and gradient tracking algorithms
on synthetic data y = sign(a⊤w⋆) with n = 800, d = 50.

the behavior of test loss: while during the starting phase the test loss is monotonically

decreasing, after sufficient iterations the test loss starts increasing. This behavior of test

loss is indeed captured by the bounds on the test loss of DGD in Theorems 6.2.1-6.2.2

and Remarks 6.2.3-6.2.5. In particular, the increase in test loss is observed in the bound

for the test loss O( (log T )
2

√
T

+ (log T )2

n
) in Remark 6.2.3, where the presence of the term

(log T )2

n
suggests that the bound after sufficient iterations starts to slowly increase. See
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Figure 6.3: Consensus error, train loss and test loss for DGD with exponential loss
and linearly separable data. Left and middle plots verify the rates Õ(1/t2) and Õ(1/t)
(Theorem 6.2.2 and Remark 6.2.5) for consensus error and training loss of DGD. Right
plot shows test loss for DGD and GD show approximately similar convergence behavior
under separable data.

also Remark 6.2.4.

6.3.2 Experiments on convergence of DGD

Next, we investigate the convergence behavior of DGD for the train loss and the

consensus error. We consider the same network topology, mixing matrix and data

setup as in the last figure. Left and middle plots in Fig. 6.3 show the consensus error

1
N
∥W (t) − W̄ (t)∥2F and the train loss F̂ (w̄(t)) in solid lines, for two over-parameterization

ratios d/n. We recall that d and n represent the dimension of the ambient space and

the dataset size, respectively. The dashed lines help to show for each solid line, the

approximate rate of convergence after sufficient number of iterations. Notably, we observe

that the convergence rates on the consensus error (Õ(1/t2)) and on the train error (Õ(1/t))

stated in Remark 6.2.5 are attained in both cases (recall that Õ(·) hides logarithmic

factors). Fig. 6.3 (Right) depicts the Test loss of DGD for d/n = 0.05. For comparison,

the corresponding curve for centralized GD is also shown. Here step-sizes are fine-tuned

to represent the best of each algorithm. In agreement with our findings in Remark

6.2.5, we observe approximately similar behavior between the convergence behavior of

two algorithms. As before, the slight increase in the curves of test loss are due to the
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logarithmic factors in test loss upperbouds.

6.4 Conclusions

We studied the behavior of train loss and test loss of decentralized gradient descent

(DGD) methods when training dataset is separable. To the best of our knowledge, this

yields the first rigorous guarantees for the generalization error of DGD in such a setting.

For the same setting, we also proposed fast algorithms and empirically verified that they

accelarate both training and test accuracy. We believe our work opens several directions,

with perhaps the most exciting one being the analysis of non-convex objectives. We are

also interested in extending our results to other distributed settings such as federated

learning [188] and Gradient Tracking e.g., [178].
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6.5 Proofs

In this section, we present the proofs of all theorems and lemmas stated in the main

body. We organize the appendix as follows,

The formal statement and proof of Lemma 6.2.1 are included in Appendix 6.5.1.

The proofs for Section 6.2.1 are included in Appendix 6.5.2.

The proofs for Section 6.2.2 are included in Appendix 6.5.3.

The proofs for Section 6.2.3 are included in Appendix 6.5.4.

The proof of Theorem 6.2.4 is included in Appendix 6.5.5.

Auxiliary results on our assumptions are included in Appendix 6.6.

Finally, we conduct complementary experiments in Appendix 6.7.

Notation

Throughout the appendix we use the following notations:

w̄ :=
1

N

N∑
ℓ=1

wℓ, W̄ := [w̄, w̄, · · · , w̄]⊤ ∈ RN×d,

W := [w1, · · · , wN ]⊤ ∈ RN×d,

F̂ (W ) :=
1

N

N∑
ℓ=1

F̂ℓ(wℓ),

∇F̂ (w) := 1

n

n∑
i=1

∇f(w, xi),

∇F̂ (W ) := [∇F̂1(w1),∇F̂2(w2), · · · ,∇F̂N(wN)]⊤ ∈ RN×d,

∇̄F̂ (W ) :=
1

N

N∑
ℓ=1

∇F̂ℓ(wℓ),

∇F̂ℓ(wℓ) :=
N

n

∑
xj∈Sℓ

∇f(wℓ, xj).
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where recall that d is the dimension of ambient space, n is the total sample size, N is the

number of agents and each agent has access to n/N samples.

6.5.1 Proof of Lemma 6.2.1

Lemma 6.5.1 (Formal statement of Lemma 6.2.1). Consider the iterates of decentralized

gradient descent in Eq.(6.2) with a fixed positive step-size η ≤ 2
L
. Let Assumptions

6.2.1-6.2.4 hold. Then for the test loss F at iteration T ≥ 1, it holds that

E
[
F (w̄(T ))

]
≤ 4E

[
F̂ (w̄(T ))

]
+

9L2c2η2T 2

n3−2α
E

( 1

T

T∑
t=1

F̂ (w̄(t))

)2α
 (6.10)

+
9L4η2

N
E

( T∑
t=1

∥W (t) − W̄ (t)∥F

)2
+

9L4η2

N

1

n

n∑
i=1

E

( T∑
t=1

∥W (t)
¬i − W̄

(t)
¬i ∥F

)2
 .

where the expectation is over training samples and W (t)
¬i , W̄

(t)
¬i denote the parameter

matrix and averaged parameter matrix at iteration t for the DGD algorithm when the i-th

data sample is left out.

Proof: The proof relies on algorithmic stability[13, 17]. Specifically, we build on the

framework introduced by [14] (and also used recently by [152]). Unlike these works, our

analysis is for decentralized gradient descent.

We define w(t)
ℓ,¬i as the parameter of agent ℓ resulting from decentralized gradient

descent at iteration t, when the ith training sample i ≤ n is left out during training. We

emphasize that the ith sample may or may not belong to the dataset of agent ℓ.

We define w̄(t)
¬i ∈ Rd

w̄
(t)
¬i :=

1

N

N∑
j=1

w
(t)
j,¬i,
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as the average of all agents’ parameters at iteration t, when the ith sample is left out of

the algorithm. Thus, the parameter matrices W (t)
¬i , W̄

(t)
¬i ∈ RN×d are defined as follows,

W
(t)
¬i := [w

(t)
1,¬i, w

(t)
2.¬i, · · · , w

(t)
N,¬i],

W̄
(t)
¬i := [w̄

(t)
¬i , w̄

(t)
¬i , · · · , w̄

(t)
¬i ].

The first step in the proof is to bound the term 1
n

∑n
i=1∥w̄(t) − w̄

(t)
¬i ∥2. By definition of

DGD in Eq.(6.2), we have the following update rule for the averaged parameter,

w̄(t+1) = w̄(t) − η∇̄F̂ (W (t)).

Analogously,

w̄
(t+1)
¬i = w̄

(t)
¬i − η∇̄F̂ (W (t)

¬i ) = w̄
(t)
¬i −

η

n

N∑
ℓ=1

∑
xj∈Sℓ,xj ̸=xi

∇f(w(t)
ℓ,¬i, xj).

Thus by adding and subtracting ∇̄F̂ (W̄ (t)) and ∇̄F̂ (W̄ (t)
¬i ), we have

∥w̄(t+1) − w̄
(t+1)
¬i ∥

=
∥∥∥w̄(t) − η∇̄F̂ (W (t))− (w̄

(t)
¬i − η∇̄F̂ (W (t)

¬i ))
∥∥∥

=
∥∥∥w̄(t) − η∇̄F̂ (W̄ (t)) + η(∇̄F̂ (W (t))− ∇̄F̂ (W̄ (t)))

− (w̄
(t)
¬i − η∇F̂ (W̄ (t)

¬i )) + η∇̄F̂ (W (t)
¬i )− η∇F̂ (W̄ (t)

¬i )
∥∥∥

≤
∥∥∥w̄(t) − η∇̄F̂ (W̄ (t))− (w̄

(t)
¬i − η∇̄F̂ (W̄ (t)

¬i ))
∥∥∥

+ η
∥∥∥∇̄F̂ (W (t)

¬i )−∇F̂ (W̄ (t)
¬i )
∥∥∥+ η

∥∥∥∇̄F̂ (W (t))−∇F̂ (W̄ (t))
∥∥∥.
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For the last term, using smoothness, we can write

∥∥∥∇̄F̂ (W (t))−∇F̂ (W̄ (t))
∥∥∥ =

1

N

∥∥∥ N∑
ℓ=1

∇F̂ℓ(w(t)
ℓ )−∇F̂ℓ(w̄(t))

∥∥∥
≤ 1

N

N∑
ℓ=1

∥∥∥∇F̂ℓ(w(t)
ℓ )−∇F̂ℓ(w̄(t))

∥∥∥
≤ L

N

N∑
ℓ=1

∥w(t)
ℓ − w̄(t)∥

≤ L√
N
(
N∑
ℓ=1

∥w(t)
ℓ − w̄(t)∥2)1/2 = L√

N
∥W (t) − W̄ (t)∥F .

The second term is upper-bounded similarly. Using these bounds, splitting the gradient

∇F̂ (W̄ (t)) = 1
n

∑
i′ ̸=i f(w̄

(t), xi′) +
1
n
f(w̄(t), xi), using smoothness and convexity ∥w +

η∇f(w)− v − η∇f(v)∥≤ ∥w − v∥ for η ≤ 2/L [155] and employing Assumption 6.2.4 we

can write

∥w̄(t+1) − w̄
(t+1)
¬i ∥≤ ∥w̄(t) − η∇F̂ (W̄ (t))− (w̄

(t)
¬i − η∇F̂ (W̄ (t)

¬i ))∥

+
ηL√
N
∥W (t)

¬i − W̄
(t)
¬i ∥F+

ηL√
N
∥W (t) − W̄ (t)∥F

≤ 1

n

∑
i′ ̸=i

∥w̄(t) − η∇f(w̄(t), xi′)− w̄
(t)
¬i + η∇f(w̄(t)

¬i , xi′)∥+
1

n
∥w̄(t) − η∇f(w̄(t), xi)− w̄

(t)
¬i ∥

+
ηL√
N
∥W (t)

¬i − W̄
(t)
¬i ∥F+

ηL√
N
∥W (t) − W̄ (t)∥F

≤ ∥w̄(t) − w̄
(t)
¬i ∥+

η

n
∥∇f(w̄(t), xi)∥+

ηL√
N
∥W (t)

¬i − W̄
(t)
¬i ∥F+

ηL√
N
∥W (t) − W̄ (t)∥F

≤ ∥w̄(t) − w̄
(t)
¬i ∥+

cη

n
(f(w̄(t), xi))

α +
ηL√
N
∥W (t)

¬i − W̄
(t)
¬i ∥F+

ηL√
N
∥W (t) − W̄ (t)∥F .
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By summing over t ∈ [T ],

∥w̄(T+1) − w̄
(T+1)
¬i ∥≤ cη

n

T∑
t=1

(f(w̄(t), xi))
α +

ηL√
N

T∑
t=1

∥W (t)
¬i − W̄

(t)
¬i ∥F

+
ηL√
N

T∑
t=1

∥W (t) − W̄ (t)∥F .

We define for the ease of notation the following two consensus terms,

e(T ) :=
( T∑
t=1

∥W (t) − W̄ (t)∥F
)2

and e
(T )
¬i :=

( T∑
t=1

∥W (t)
¬i − W̄

(t)
¬i ∥F

)2
. (6.11)

Thus the bound for the squared term can be written as follows

∥w̄(T+1) − w̄
(T+1)
¬i ∥2 ≤ 3c2η2

n2

(
T∑
t=1

(
f(w̄(t), xi)

)α)2

+
3η2L2

N
e(T ) +

3η2L2

N
e
(T )
¬i .

By averaging over i ∈ [n] and noting that α ∈ [1/2, 1] so that xα is concave, we

conclude that

1

n

n∑
i=1

∥w̄(T+1) − w̄
(T+1)
¬i ∥2≤ 3c2η2

n3

n∑
i=1

(
T∑
t=1

(
f(w̄(t), xi)

)α)2

+
3η2L2

Nn

n∑
i=1

e
(T )
¬i +

3η2L2

N
e(T )

≤ 3c2η2T 2

n3

n∑
i=1

(
1

T

T∑
t=1

f(w̄(t), xi)

)2α

+
3η2L2

Nn

n∑
i=1

e
(T )
¬i +

3η2L2

N
e(T )

≤ 3c2η2T 2(1−α)

n3−2α

(
T∑
t=1

F̂ (w̄(t))

)2α

+
3η2L2

Nn

n∑
i=1

e
(T )
¬i +

3η2L2

N
e(T ).

Thus we have for iteration T :

1

n

n∑
i=1

∥w̄(T ) − w̄
(T )
¬i ∥2≤

3c2η2T 2

n3−2α

(
1

T

T∑
t=1

F̂ (w̄(t))

)2α

+
3η2L2

Nn

n∑
i=1

e
(T )
¬i +

3η2L2

N
e(T ).

(6.12)
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Next we use [152, Lemma 7] (see also [14, Theorem 2]), which states that for the L-smooth

loss f , the test error of the output w of an algorithm taking as input a dataset (x1, . . . , xn)

size n, satisfies the following,

E[F (w)] ≤ 4E[F̂ (w)] +
3L2

n

n∑
i=1

E[∥w − w¬i∥2],

where expectations are taken over the training set (x1, x2, · · · , xn). We replace w with

w̄(T ) and by using (6.12) (which we can do because it holds true for all datasets since

Assumptions 6.2.1-6.2.4 hold for every sample x in the distribution),

E[F (w̄(T ))] ≤ 4E[F̂ (w̄(T ))] +
3L2

n

n∑
i=1

E[∥w̄(T ) − w̄
(T )
¬i ∥2]

≤ 4E[F̂ (w̄(T ))] +
9L2c2η2T 2

n3−2α
E[(

1

T

T∑
t=1

F̂ (w̄(t)))2α]

+
9L4η2

Nn

n∑
i=1

E[e(T )¬i ] +
9L4η2

N
E[e(T )].

This leads to (6.10) and completes the proof.

Finally, we explain the informal version of the lemma presented in the main body

(Lemma 6.2.1). Compared to the bound in Eq. (6.10), the informal Lemma 6.2.1

combines the consensus-error term e(T ) with the average leave-one-out consensus-error

term 1
n

∑
i∈[n] e

(T )
¬i (recall the definitions in (6.11)). It is convenient doing that for the

following reason. To apply Lemma 6.5.1, we need upper bounds on e(T ) and e
(T )
¬i (for

specific assumptions on the function class that is optimized). We do this in the section that

follows. It turns out that the bounds we obtain for the consensus-error term e(T ) also holds

for the leave-one-out consensus error terms e(T )¬i , i ≤ [n]. The reason for that is that our

bounds are not affected by the sample-size, but rather they depend crucially only on the

smoothness parameter of the train loss. It is easy to see that the smoothness parameter
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of the leave-one-out train loss 1
n

∑
i′ ̸=i f(w, xi′) is upper-bounded by the smoothness

parameter of 1
n

∑
i′ f(w, xi′). See Remark 6.5.1 for more details.

6.5.2 Proofs for Section 6.2.1

Lemma 6.5.2 (Recursions for the consensus error). Let the step-size η ≤ (1 − λ)/4L

where λ := max((|λ2(A)|, |λN(A)|))2. The consensus error of DGD under Assumptions

6.2.1,6.2.3 satisfies the following:

∥W (t) − W̄ (t)∥2F< α1∥W (t−1) − W̄ (t−1)∥2F+α2Nη
2L2F̂ (w̄(t−1)), (6.13)

where α1 :=
3+λ
4
, α2 := 4( 2

1−λ − 1).

Proof: Denoting A∞ := limt→∞At = 1
N
11T , it holds by Assumption 6.2.1,

∥AW − W̄∥2F = ∥(A− A∞)(W − W̄ )∥2F=
N∑
i=1

∥(A− A∞)(Wi − W̄i)∥2

≤
N∑
i=1

∥A− A∞∥2∥Wi − W̄i∥2≤ max(λ22(A), λ
2
N(A)) · ∥W − W̄∥2F , (6.14)

whereWi is the i th column ofW . By Assumption 6.2.1, λ = max((|λ2(A)|, |λN (A)|))2 < 1.

For the consensus error, we can write,

∥W (t) − W̄ (t)∥2F = ∥W (t) − W̄ (t−1) − W̄ (t) + W̄ (t−1)∥2F

≤ ∥W (t) − W̄ (t−1)∥2F

= ∥AW (t−1) − η∇F̂ (W (t−1))− W̄ (t−1)∥2F

≤ (1 + β)∥AW (t−1) − W̄ (t−1)∥2F+(1 + β−1)η2∥∇F̂ (W (t−1))∥2F ,

where the second step is due to ∥X − X̄∥F≤ ∥X∥F [169, 170]. The last line holds for any
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β > 0, due to ∥a+ b∥2≤ (1 + β−1)∥a∥2+(1 + β−1)∥b∥2.

Based on this inequality and by noting (6.14) and using the L−smoothness assumption,

we can deduce that,

∥W (t)−W̄ (t)∥2F≤ (1 + β)λ∥W (t−1) − W̄ (t−1)∥2F+(1 + β−1)η2∥∇F̂ (W (t−1))∥2F

≤ (1 + β)λ∥W (t−1) − W̄ (t−1)∥2F+2(1 + β−1)η2∥∇F̂ (W (t−1))−∇F̂ (W̄ (t−1))∥2F

+ 2(1 + β−1)η2∥∇F̂ (W̄ (t−1))∥2F (6.15)

≤ (1 + β)λ∥W (t−1) − W̄ (t−1)∥2F+2(1 + β−1)η2L2∥W (t−1) − W̄ (t−1)∥2F

+ 4(1 + β−1)η2LNF̂ (w̄t−1),

where the last step is due to L−smoothness and the non-negativity of F̂ℓ, i.e.

∥∇F̂ (W̄ (t−1))∥2F =
N∑
ℓ=1

∥∇F̂ℓ(w̄(t−1))∥2≤ 2L
N∑
ℓ=1

(F̂ℓ(w̄
(t−1))− F̂ ⋆

ℓ ) ≤ 2LNF̂ (w̄(t−1)).

Thus,

∥W (t) − W̄ (t)∥2F< ((1 + β)λ+ 2(1 + β−1)η2L2)∥W (t−1) − W̄ (t−1)∥2F

+ 4(1 + β−1)η2LN F̂ (w̄(t−1)).

Next, choose β = (1− λ)/(2λ). Then, it follows from the assumption η ≤ (1− λ)/4L that

(1 + β)λ+ 2(1 + β−1)η2L2 < (3 + λ)/4 = α1,

4(1 + β−1) < 4(2/(1− λ)− 1) = α2.

This concludes the lemma.

By telescoping summation over the iterates t = 1, · · · , T of the consensus error in

266



Decentralized Learning in the Interpolation Regime Chapter 6

Eq.(6.13), we end up with the consensus error at iteration T . The final expression is

stated in the next lemma.

Lemma 6.5.3. Under the assumptions of Lemma 6.5.2, it holds for T > 1 that,

∥W (T ) − W̄ (T )∥2F< αT−1
1 ∥W1 − W̄1∥2F+(α2η

2LN)
T−1∑
t=1

αt−1
1 F̂ (w̄(T−t)).

Lemma 6.5.4. Under the assumptions of Lemma 6.5.2 and the zero initialization as-

sumption for all agents, the average consensus error satisfies,

1

NT

T∑
t=1

∥W (t) − W̄ (t)∥2F≤
α2η

2L

(1− α1)T

T−1∑
t=1

F̂ (w̄(t)).

Proof: By Lemma 6.5.3 and the zero initialization and non-negativity assumptions,

we have

1

NT

T∑
t=1

∥W (t) − W̄ (t)∥2F ≤ α2η
2L

T

T∑
t=2

t−1∑
τ=1

ατ−1
1 F̂ (w̄(t−τ)) ≤ α2η

2L

T

T−1∑
τ=1

ατ−1
1

T−τ∑
t=1

F̂ (w̄(t))

≤ α2η
2L

T

T−1∑
τ=1

ατ−1
1

T−1∑
t=1

F̂ (w̄(t)) ≤ α2η
2L

(1− α1)T

T−1∑
t=1

F̂ (w̄(t)).

Lemma 6.5.5. Under Assumptions 6.2.2,6.2.3 and for all w ∈ Rd, the DGD updates

satisfy the following recursions:

2η − 4Lη2

T

T−1∑
t=1

F̂ (w̄(t)) ≤ ∥w̄(1) − w∥2

T
+ 2ηF̂ (w) +

2L2η2 + ηL

NT

T−1∑
t=1

∥W (t) − W̄ (t)∥2F

Proof: We start by upper bounding the following quantity:

∥w̄(t+1) − w∥2 = ∥w̄(t) − η∇̄F̂ (W (t))− w∥2

= ∥w̄(t) − w∥2+η2∥∇̄F̂ (W (t))∥2−2η⟨w̄(t) − w, ∇̄F̂ (W (t))⟩
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For the second term above, using L−smoothness and non-negativity of the loss, we obtain:

∥∇̄F̂ (W (t))∥2 = ∥∇̄F̂ (W (t))−∇F̂ (w̄(t)) +∇F̂ (w̄(t))∥2

≤ 2∥∇̄F̂ (W (t))−∇F̂ (w̄(t))∥2+2∥∇F̂ (w̄(t))∥2

≤ 2L2

N

N∑
i=1

∥w(t)
ℓ − w̄(t)∥2+4LF̂ (w̄(t)).

For the third term, by using L−smoothness and convexity properties we can write,

⟨w̄(t)−w, ∇̄F̂ (W (t))⟩ = 1

N

N∑
ℓ=1

⟨w̄(t) − w,∇F̂ℓ(w(t)
ℓ )⟩

=
1

N

N∑
ℓ=1

⟨w̄(t) − w
(t)
ℓ ,∇F̂ℓ(w

(t)
ℓ )⟩+ 1

n

N∑
ℓ=1

⟨w(t)
ℓ − w,∇F̂ℓ(w(t)

ℓ )⟩

≥ 1

N

N∑
ℓ=1

(F̂ℓ(w̄
(t))− F̂ℓ(w

(t)
ℓ ))− L

2
∥w(t)

ℓ − w̄(t)∥2+ 1

N

N∑
ℓ=1

(F̂ℓ(w
(t)
ℓ )− F̂ℓ(w))

= F̂ (w̄(t))− F̂ (w)− L

2N
∥W (t) − W̄ (t)∥2F .

Combining these inequalities we derive the following:

∥w̄(t+1) − w∥2≤ ∥w̄(t) − w∥2+η2
(
2L2∥W (t) − W̄ (t)∥2F/N + 4LF̂ (w̄(t))

)
− 2η

(
F̂ (w̄(t))− F̂ (w)− L

2
∥W (t) − W̄ (t)∥2F/N

)
.

Summing these equations for t = 1, 2, ..., T − 1,

∥w̄(T ) − w∥2≤∥w̄(1) − w∥2+
T−1∑
t=1

2L2η2 + ηL

N
∥W (t) − W̄ (t)∥2F

+
T−1∑
t=1

(4Lη2 − 2η)F̂ (w̄(t)) + 2
T−1∑
t=1

ηF̂ (w).
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We conclude that,

2η − 4Lη2

T

T−1∑
t=1

F̂ (w̄(t)) ≤ ∥w̄(1) − w∥2

T
+

2L2η2 + ηL

NT

T−1∑
t=1

∥W (t) − W̄ (t)∥2F+2ηF̂ (w).

6.5.2.1 Proof of Lemma 6.2.2

Lemma 6.5.6 (Restatement of Lemma 6.2.2). Under Assumptions 6.2.1-6.2.4 and zero

initialization, for any w ∈ Rd and for a fixed step-size η < min{1−α1

L
, 1
L

√
1−α1

2α2
}, where

α1 ∈ (3/4, 1), α2 > 4 are parameters that depend only on the mixing matrix, the following

holds for the train loss and consensus error of DGD:

1

T

T∑
t=1

F̂ (w̄(t)) ≤ 2∥w∥2

ηT
+ 4F̂ (w), (6.16)

1

NT

T∑
t=1

∥W (t) − W̄ (t)∥2F ≤ α2η
2L

(1− α1)
(
2∥w∥2

ηT
+ 4F̂ (w)). (6.17)

Proof: Recalling the initialization w
(1)
ℓ = 0 ⇒ w̄(1) = 0 and using η < 1/(4L), we

deduce from Lemma 6.5.5 that,

1

T

T−1∑
t=1

F̂ (w̄(t)) ≤ ∥w∥2

ηT
+ 2F̂ (w) +

2L2η + L

NT

T−1∑
t=1

∥W (t) − W̄ (t)∥2F

By Lemma 6.5.4,

1

T

T−1∑
t=1

F̂ (w̄(t)) ≤ ∥w∥2

ηT
+ 2F̂ (w) +

(2L2η + L)α2η
2L

T (1− α1)

T−1∑
t=1

F̂ (w̄(t)) (6.18)

≤ ∥w∥2

ηT
+ 2F̂ (w) +

1

2T

T−1∑
t=1

F̂ (w̄(t)).

where the condition on η on the lemma’s statement ensures that (2L2η+L)α2η
2L/(1−α1) <

1/2. This gives the statement of the lemma for the training loss in Eq.(6.16). Appealing
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again to Lemma 6.5.4 for the consensus error yields (6.17).

Remark 6.5.1 (Bounds for leave-one-out consensus error). The bound in Eq. (6.17) also

applies to the leave-one-out consensus-error term 1
T

∑T
t=1∥W

(t)
¬i − W̄

(t)
¬i ∥2F . To see this

starting from Lemma 6.5.4 note that we still have

1

T

T∑
t=1

∥W (t)
¬i − W̄

(t)
¬i ∥2F≤

α2η
2LN

(1− α1)T

T−1∑
t=1

F̂¬i(w̄¬i,t), (6.19)

where we denote the leave-one-out train loss F̂¬i(w) :=
1
n

∑
i′ ̸=i f(w, xi′). This is true

because the smoothness parameter of F̂¬i(w) is (1 − 1/n)L ≤ L. Moreover, applying

Lemma 6.5.5 to the leave-one-out loss (and using again that it’s smoothness parameter is

upper bounded by L), we have for all w that

2η − 4Lη2

T

T−1∑
t=1

F̂¬i(w̄
(t)
¬i ) ≤

∥w̄(1)
¬i − w∥2

T
+ 2ηF̂¬i(w) +

2L2η2 + ηL

NT

T−1∑
t=1

∥W (t)
¬i − W̄

(t)
¬i ∥2F

But, from the initialization assumption w̄
(1)
¬i = 0 and also F̂¬i(w) ≤ F̂ (w) since the

functions are assumed non-negative. Hence, and also using (6.19), shows that

2η − 4Lη2

T

T−1∑
t=1

F̂¬i(w̄
(t)
¬i ) ≤

∥w∥2

T
+ 2ηF̂ (w) +

(2L2η2 + ηL)α2η
2L

T (1− α1)

T−1∑
t=1

F̂¬i(w̄¬i,t).

Note that after using η < 1/(4L) this is exactly analogous to Eq. (6.18) for the train

loss, which leads to the same bound F̂¬i(w̄
(t)
¬i ) ≤ 2||w||2

ηT
+ 4F̂ (w) for the leave-one-out

loss. Plugging this back to Eq. (6.19) shows that the bound in (6.17) also holds for the

leave-one-out consensus term.
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6.5.2.2 Proof of Theorem 6.2.1

We are ready to prove Theorem 6.2.1 by combining our results from Lemmas 6.2.2

and 6.2.1. We state the proof for general choice of step-size η. In particular, Theorem

6.2.1 follows by the next theorem after choosing η = O(1/
√
T ).

Theorem 6.5.1 (Theorem 6.2.1 for general η). Consider DGD under Assumptions 6.2.1-

6.2.5, and choose η < min{1−α1

L
, 1
L

√
1−α1

2α2
}. The following bound holds for the averaged

test error of DGD with separable data up to iteration T , assuming ε ≤ ρ(ε)2/ηT ,

1

T

T∑
t=1

F (w̄(t)) = O

(
ρ(ε)2

ηT
+
L2c2ρ(ε)4α

n3−2α
(ηT )2−2α + L4ρ(ε)4η3T

)
.

Proof: By Lemma 6.2.1,

E
[
F (w̄(t))

]
= O

(
E
[
F̂ (w̄(t))

]
+
L2c2η2t2

n3−2α
E
[
(
1

t

t∑
τ=1

F̂ (w̄(τ)))2α
]

+
L4η2

N
E
[
(

t∑
τ=1

∥W (τ) − W̄ (τ)∥)2
])
.

Thus, by Lemma 6.2.2,

1

T

T∑
t=1

E
[
F (w̄(t))

]
=

O

(
∥w∥2

ηT
+ F̂ (w) +

L2c2η2

n3−2α

1

T

T∑
t=1

t2(
∥w∥2

ηt
+ F̂ (w))2α +

L4η4

N

1

T

T∑
t=1

t2(
∥w∥2

ηt
+ F̂ (w))

)
.

By Assumption 6.2.5 and assuming ε ≤ ρ(ε)2/ηT , the statement of the theorem follows.
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6.5.3 Proofs for Section 6.2.2

Lemma 6.5.7 (Iterates of consensus error). Consider DGD with the loss functions and

mixing matrix satisfying Assumptions 6.2.1,6.2.2, 6.2.6 and Assumption 6.2.4 with α = 1

and c = h. By choosing ηt−1 ≤ 1−λ
4hNM(t−1)

the consensus error at iteration t > 1 satisfies

∥∥W (t) − W̄ (t)
∥∥2
F
< β1

∥∥W (t−1) − W̄ (t−1)
∥∥2
F
+ β2η

2
t−1h

2N2F̂ 2(w̄(t−1)) (6.20)

where we define

β1 := (3 + λ)/4, β2 := (4/(1− λ)− 2), λ := max{|λ2(A)|2, |λN(A)|2}

and

M(t−1) := max{F̂ (W (t−1)), F̂ (w̄(t−1))}.

Proof: By Lemma 6.5.2 and the inequality (6.15), the consensus error satisfies for

any β > 0,

∥∥∥W (t) − W̄ (t)
∥∥∥2
F
< (1 + β)λ

∥∥∥W (t−1) − W̄ (t−1)
∥∥∥2
F

(6.21)

+ 2(1 + β−1)η2t−1

∥∥∥∇F̂ (W (t−1))−∇F̂ (W̄ (t−1))
∥∥∥2
F
+ 2(1 + β−1)η2t−1

∥∥∥∇F̂ (W̄ (t−1))
∥∥∥2
F
.
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For the second term in (6.21), we have the following chain of inequalities,

∥∥∥∇F̂ (W (t−1))−∇F̂ (W̄ (t−1))
∥∥∥2
F

=
N∑
ℓ=1

∥∇F̂ℓ(w(t−1)
i )−∇F̂ℓ(w̄(t−1))∥2

≤
N∑
ℓ=1

max
vℓ∈[w

(t−1)
ℓ ,w̄(t−1)]

∥∇2F̂ℓ(vℓ)∥2∥w(t−1)
ℓ − w̄(t−1)∥2 (6.22)

≤ h2
N∑
ℓ=1

max
vℓ∈[w

(t−1)
ℓ ,w̄(t−1)]

(F̂ℓ(vℓ))
2∥w(t−1)

ℓ − w̄(t−1)∥2 (6.23)

= h2
N∑
ℓ=1

( max
vℓ∈[w

(t−1)
ℓ ,w̄(t−1)]

F̂ℓ(vℓ))
2∥w(t−1)

ℓ − w̄(t−1)∥2

≤ h2
N∑
ℓ=1

max{F̂ 2
ℓ (w

(t−1)
ℓ ), F̂ 2

ℓ (w̄
(t−1))}∥w(t−1)

ℓ − w̄(t−1)∥2 (6.24)

≤ h2max{max
k≤N

F̂ 2
k (w

(t−1)
k ),max

k≤N
F̂ 2
k (w̄

(t−1))}
N∑
ℓ=1

∥w(t−1)
ℓ − w̄(t−1)∥2

≤ h2N2M2
(t−1)

∥∥∥W (t−1) − W̄ (t−1)
∥∥∥2
F
. (6.25)

The Taylor’s remainder theorem gives (6.22) and vi ∈ [w
(t−1)
i , w̄(t−1)] denotes a point

that lies on the line connecting w(t−1)
i and w̄(t−1). Also, (6.23) is valid due to the self-

boundedness of the Hessian stated in Assumption 6.2.6. The inequality (6.24) follows by

the assumption of convexity of F̂i, due to the fact that for a convex function f : Rd → R

and any two points w1, w2 ∈ Rd, it holds that maxv∈[w1,w2] f(v) ≤ max{f(w1), f(w2)}. To

derive (6.25), we used maxi≤N F̂i(wi) ≤ NF̂ (W ) and maxi≤N F̂i(w̄) ≤ N · F̂ (w̄), which

hold since the loss functions are non-negative.

In order to derive an upper-bound on the last term in (6.21), we use Assumption 6.2.4
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(with α = 1, c = h):

∥∥∥∇F̂ (W̄ (t−1))
∥∥∥2
F
=

N∑
ℓ=1

∥∥∥∇F̂ℓ(w̄(t−1))
∥∥∥2 ≤ h2

N∑
ℓ=1

(F̂ℓ(w̄
(t−1)))2 ≤ h2N2F̂ 2(w̄(t−1)).

Replacing the upper-bounds back in (6.21), we conclude

∥∥∥W (t) − W̄ (t)
∥∥∥2
F
< ((1 + β)λ+2(1 + β−1)η2t−1h

2N2M2
(t−1))

∥∥∥W (t−1) − W̄ (t−1)
∥∥∥2
F

+ 2(1 + β−1)η2t−1h
2N2F̂ 2(w̄(t−1)).

Choose β = 1−λ
2λ

. Then by lemma’s assumption ηt−1 ≤ 1−λ
4hNM(t−1)

, we can verify the

following two inequalities:

(1 + β)λ+ 2(1 + β−1)η2t−1h
2N2M2

(t−1) ≤
3 + λ

4
,

2(1 + 1/β) ≤ 4

1− λ
− 2.

This concludes the proof.

By recursively evaluating (6.20), we obtain a bound on the consensus error at iteration

T , which we present next.

Lemma 6.5.8 (Last iterate consensus error). Under the assumptions and notations of

Lemma 6.5.7, the consensus error at iteration T satisfies

∥∥∥W (T ) − W̄ (T )
∥∥∥2
F
< βT−1

1

∥∥∥W (1) − W̄ (1)
∥∥∥2
F
+ β2h

2N2

T−1∑
t=1

βt−1
1 η2

T−t
F̂ 2(w̄T−t).

The next lemma obtains a sandwich relation between F (w̄(T )) and F̂ (W (T )). This

is convenient as it allows replacing M(t) := max(F̂ (W (t)), F̂ (w̄(t))) by either of the two

terms with only paying a constant factor of two. See also the remark after the statement
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of the theorem.

Lemma 6.5.9. Under the assumptions and notations of Lemma 6.5.7, with zero initial-

ization W (1) = W̄ (1) = 0 and by choosing ηt ≤ (1−λ)
√
1−β1

8h2NM(t)

√
β2

for t ∈ [T − 1], it holds at

iteration T that

1

2
F̂ (w̄(T )) ≤ F̂ (W (T )) ≤ 2F̂ (w̄(T )). (6.26)

Proof: First, we prove F̂ (W (T )) ≤ 2F̂ (w̄(T )). If F̂ (W (T )) ≤ F̂ (w̄(T )), there is nothing

to prove. Thus, assume F̂ (W (T )) ≥ F̂ (w̄(T )). Then by applying Taylor’s remainder

theorem, the self-boundedness Assumption 6.2.4 with c = h, α = 1, convexity of F̂ , Lemma

6.5.8 and the restriction on the step-size, in respective order, we have the following

inequalities,

F̂ (W (T )) ≤ |F̂ (W (T ))− F̂ (w̄(T ))|+F̂ (w̄(T ))

≤ max
v∈[W̄ (T ),W (T )]

∥∇F̂ (v)∥·∥W (T ) − W̄ (T )∥+F̂ (w̄(T ))

≤ h · max
v∈[W̄ (T ),W (T )]

F̂ (v) · ∥W (T ) − W̄ (T )∥+F̂ (w̄(T ))

≤ h ·max{F̂ (W (T )), F̂ (w̄(T ))} · ∥W (T ) − W̄ (T )∥+F̂ (w̄(T ))

≤ F̂ (W (T ))
(
β2h

4N2

T−1∑
t=1

βt−1
1 η2

T−t
F̂ 2(w̄T−t)

)1/2
+ F̂ (w̄(T ))

≤ 1

2
F̂ (W (T )) + F̂ (w̄(T )).

Thus F̂ (W T ) ≤ 2F̂ (w̄(T )). By exchanging W (T ) and w̄(T ) and in a similar style we derive

F̂ (W T ) ≥ 1
2
F̂ (w̄(T )). This completes the proof of the lemma.

Remark 6.5.2. Lemma 6.5.8 above requires tuning ηt ∝ 1/M(t) := 1/max(F̂ (W (t)), F̂ (w̄(t))).

Lemma 6.5.9 shows that abiding by this choice for t = 1, . . . , T − 1 and any T > 1 guar-
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antees F̂ (W (T )) ≤ 2F̂ (w̄(T )). Hence, M(T ) ≥ 2F̂ (w̄(T )). Since this holds for all T and

at t = 1, F̂ (W (1)) = F̂ (w̄(1), it follows by recursion that Lemma 6.5.8 holds provided

ηt ∝ 1/F̂ (w̄(t)). We use observation in the proofs below.

We are ready to prove Theorem 6.2.2. First, we prove that DGD is a descent algorithm

in the next lemma.

Lemma 6.5.10 (Descent lemma). Consider DGD under the assumptions and notations

of Lemma 6.5.7. Moreover, let Assumption 6.2.7 hold, then by choosing ηt ≤ δ

F̂ (w̄(t))
for

t ≤ T , where

δ := 1
/
max

{4h3N
τ 2

, h2,
6h2β2
1− β1

,
4h2

√
β2

τ(1− β1)

}
, (6.27)

DGD is a descent algorithm, i.e., for all T ≥ 1.

F̂ (w̄(T+1)) ≤ F̂ (w̄(T )).

Proof: With the self-boundedness assumption on the Hessian (Assumption 6.2.6)

and applying the Taylor’s remainder theorem for step T + 1 of DGD, we obtain the
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following,

F̂ (w̄(T+1))

≤ F̂ (w̄(T )) + ⟨∇F̂ (w̄(T )), w̄(t+1) − w̄(T )⟩+ 1

2
max

v∈[w̄(T ),w̄(T+1)]
∥∇2F̂ (v)∥∥w̄(T+1) − w̄(T )∥2

≤ F̂ (w̄(T ))− η
T
⟨∇F̂ (w̄(T )), ∇̄F̂ (W (T ))⟩+

η2
T

2
max

v∈[w̄(T ),w̄(T+1)]
∥∇2F̂ (v)∥∥∇̄F̂ (W (T ))∥2

≤ F̂ (w̄(T ))− η
T
⟨∇F̂ (w̄(T )), ∇̄F̂ (W (T ))⟩+

hη2
T

2
max

v∈[w̄(T ),w̄(T+1)]
F̂ (v)∥∇̄F̂ (W (T ))∥2

≤ F̂ (w̄(T ))− η
T
⟨∇F̂ (w̄(T )), ∇̄F̂ (W (T ))⟩+

hη2
T

2
max{F̂ (w̄(T )), F̂ (w̄(T+1))}∥∇̄F̂ (W (T ))∥2,

(6.28)

where for the third step we used

∥∇2F̂ (w)∥ ≤ 1

N

N∑
ℓ=1

∥∇2F̂ℓ(w)∥≤
h

N

N∑
ℓ=1

F̂ℓ(w) = h F̂ (w).

In the next step of the proof, we upper-bound the second and third terms in (6.28). For

the second term, by noting that 2⟨a, b⟩ = ∥a∥2+∥b∥2−∥a− b∥2, we can write

⟨∇F̂ (w̄(T )), ∇̄F̂ (W (T ))⟩ = 1

2
∥∇F̂ (w̄(T ))∥2+1

2
∥∇̄F̂ (W (T ))∥2−1

2
∥∇F̂ (w̄(T ))− ∇̄F̂ (W (T ))∥2.

(6.29)

By recalling (6.25) and Lemma 6.5.8 (which we can apply because of Remark 6.5.2), we

find an upper-bound the last term in (6.29) as follows,

∥∇F̂ (w̄(T ))− ∇̄F̂ (W (T ))∥2 = 1

N2
∥∇F̂ (W (T ))−∇F̂ (W̄ (T ))∥2F

≤ h2M2
(T )∥W (T ) − W̄ (T )∥2F

≤ h4M2
(T )N

2β2

T−1∑
t=1

βt−1
1 η2

T−t
F̂ 2(w̄T−t). (6.30)
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Returning back to (6.28), thus far we have derived the following,

F̂ (w̄(T+1)) ≤ F̂ (w̄(T ))− η
T

2
∥∇F̂ (w̄(T ))∥2−ηT

2
∥∇̄F̂ (W (T ))∥2

+
1

2
η
T
h4N2M2

(T )β2

T−1∑
t=1

βt−1
1 η2

T−t
F̂ 2(w̄T−t)

+
hη2

T

2
∥∇̄F̂ (W (T ))∥2·max{F̂ (w̄(T )), F̂ (w̄(T+1))}. (6.31)

We aim to prove that F̂ (w̄(T+1)) ≤ F̂ (w̄(T )) for all T ≥ 1. If F̂ (w̄(T+1)) > F̂ (w̄(T )),

applying (6.31) with the assumption ηt < δ

F̂ (w̄(t))
yields,

F̂ (w̄(T+1)) ≤ F̂ (w̄(T ))− η
T

2
∥∇F̂ (w̄(T ))∥2+ 1

2(1− β1)
η
T
δ2h4N2M2

(T )β2

+
hη2

T

2
∥∇̄F̂ (W (T ))∥2·F̂ (w̄(T+1)). (6.32)

Note that it holds due to (6.30) that,

∥∇̄F̂ (W (T ))∥2 ≤ 2∥∇F̂ (w̄(T ))∥2+2∥∇̄F̂ (W (T ))−∇F̂ (w̄(T ))∥2

≤ 2∥∇F̂ (w̄(T ))∥2+ 2

1− β1
δ2h4N2M2

(T )β2.

Replacing this in (6.32) and noting that M(T ) ≤ 2F̂ (w̄(T )) by Lemma 6.5.9, we can simplify

the inequality (6.32) as follows,

F̂ (w̄(T+1))

≤ F̂ (w̄(T )) + η
T
∥∇F̂ (w̄(T ))∥2(hη

T
F̂ (w̄(T+1))− 1

2
)

+ C ′h2N2δ2η
T
F̂ 2(w̄(T )) (1 + η

T
F̂ (w̄(T+1)))

≤ F̂ (w̄(T )) + η
T
h2F̂ 2(w̄(T ))((hη

T
+ δ2η

T
N2C ′)F̂ (w̄(T+1))− τ 2

2h2
+ δ2N2C ′),
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where for the ease of notation we define C ′ := 4h2β2(1 − β1)
−1. Recalling ηT < δ

F̂ (w̄(T ))

and noting that by the assumption of the lemma δ ≤ τ2

4h3
, δ < 1

h2
and δ < τ

2hN
√
C′ we

conclude that,

F̂ (w̄(T+1)) ≤ F̂ (w̄(T )) +
τ

2h
F̂ (w̄(T ))(

F̂ (w̄(T+1))

F̂ (w̄(T ))
− 1).

Dividing both sides by F̂ (w̄(T )) leads to the contradiction due to the fact that τ ≤ h and

thus τ/2h < 1. Thus F̂ (w̄(T+1)) ≤ F̂ (w̄(T )). This completes the proof.

6.5.3.1 Proof of Theorem 6.2.2

Theorem 6.5.2 (Restatement of Theorem 6.2.2). Consider DGD with the loss functions

and mixing matrix satisfying Assumptions 6.2.1, 6.2.2, 6.2.6, 6.2.7 and Assumption 6.2.4

with α = 1 and c = h. Assume that the step-size satisfies η < δ

F̂ (1)
for δ defined in (6.27).

Also, recall positive constants β1, β2 depending only on the mixing matrix as defined in

Lemma 6.5.7. Then DGD is a descent algorithm i.e, for all T ≥ 1 it holds that

F̂ (w̄(T+1)) ≤ F̂ (w̄(T )).

Moreover, the train loss and the consensus error of DGD at iteration T satisfy the following

for all w ∈ Rd,

F̂ (w̄(T )) ≤ 4F̂ (w) +
2∥w∥2

ηT
, (6.33)

1

N2
∥W (T ) − W̄ (T )∥2F ≤ 8β2h

2

1− β1
(4η2F̂ 2(w) +

∥w∥4

T 2
). (6.34)

Proof: First, we note that by Lemma 6.5.10, under the assumption ηt ≤ δ/F̂ (w̄(t))

for t ≤ T , we have F̂ (w̄(T+1)) ≤ F̂ (w̄(T )). Thus fixing η ≤ δ/F̂ (w̄(1)), ensures that
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F̂ (w̄(T+1)) ≤ F̂ (w̄(T )), for all T .

Next, we derive the train loss and consensus error under the assumptions of the

theorem. Start with,

∥w̄(t+1) − w∥2= ∥w̄(t) − w∥2+η2∥∇̄F̂ (W (t))∥2−2η⟨w̄(t) − w, ∇̄F̂ (W (t))⟩. (6.35)

For the second term, by self-boundedness of gradient, we can write,

∥∇̄F̂ (W (t))∥= 1

n
∥

n∑
ℓ=1

∇F̂ℓ(w(t)
ℓ )∥≤ h

n

n∑
ℓ=1

F̂ℓ(w
(t)
ℓ ) = hF̂ (W (t)).

For the third term in (6.35), we have,

−⟨w̄(t) − w, ∇̄F̂ (W (t))⟩ = − 1

N

N∑
ℓ=1

⟨w̄(t) − w,∇F̂ℓ(w(t)
ℓ )⟩

= − 1

N

N∑
ℓ=1

⟨w̄(t) − w
(t)
ℓ ,∇F̂ℓ(w

(t)
ℓ )⟩ − 1

N

N∑
ℓ=1

⟨w(t)
ℓ − w,∇F̂ℓ(w(t)

ℓ )⟩

≤ 1

N

N∑
ℓ=1

∥w(t)
ℓ − w̄(t)∥∥∇F̂i(w(t)

ℓ )∥− 1

N

N∑
ℓ=1

⟨w(t)
ℓ − w,∇F̂ℓ(w(t)

ℓ )⟩

≤ 1

N

N∑
ℓ=1

∥w(t)
ℓ − w̄(t)∥∥∇F̂ℓ(w(t)

ℓ )∥+ 1

N

N∑
ℓ=1

(F̂ℓ(w)− F̂ℓ(w
(t)
ℓ )) (6.36)

≤ h

N

N∑
ℓ=1

F̂ℓ(w
(t)
ℓ )∥w(t)

ℓ − w̄(t)∥+ 1

N

N∑
ℓ=1

(F̂ℓ(w)− F̂ℓ(w
(t)
ℓ )) (6.37)

≤ hF̂ (W (t))∥W (t) − W̄ (t)∥F + F̂ (w)− F̂ (W (t)).

Here (6.36) follows by convexity of F̂i, and (6.37) follows by the assumption on self-

boundedness of the gradient.
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Thus, the inequality (6.35) can be written as follows,

∥w̄(t+1) − w∥2≤ ∥w̄(t) − w∥2+η2h2F̂ 2(W (t)) + 2ηhF̂ (W (t))∥W (t) − W̄ (t)∥F (6.38)

+ 2ηF̂ (w)− 2ηF̂ (W (t)).

Moreover, by Lemma 6.5.8 and the assumption on η,

∥W (t) − W̄ (t)∥F≤ (β2h
2

T−1∑
t=1

βt−1
1 η2

T−t
F̂ 2(w̄T−t))

1/2 ≤ 1

4h

and

ηF̂ (W (t)) ≤ 1

2h2
.

Thus (6.38) changes into,

∥w̄(t+1) − w∥2≤ ∥w̄(t) − w∥2−ηF̂ (W (t)) + 2ηF̂ (w).

Telescoping sum leads to

1

T

T∑
t=1

F̂ (W (t)) ≤ 2F̂ (w) +
∥w̄(1) − w∥2

ηT
. (6.39)

By Lemma 6.5.9, we have F̂ (w̄(t)) ≤ 2F̂ (W (t)). Finally, as we proved in the beginning,

DGD is a descent algorithm, implying

F̂ (w̄(T )) ≤ 1

T

T∑
t=1

F̂ (w̄(t))

In view of (6.39), this yields the claim of the theorem for the train loss (6.33). Finally,
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appealing to Lemma 6.5.8, gives (6.34). This completes the proof of the theorem.

6.5.4 Proofs for Section 6.2.3

Lemma 6.5.11 (Train loss under PL condition). Let Assumptions 6.2.1,6.2.3 and 6.2.8

hold, and let

η ≤ min{ 1
µ
,
√

(1−α1)µ
4L4α2

, 1
L
} and ζ̄ := max{1+α1

2
, 1− ηµ

2
}, where α1 :=

3+λ
4
, α2 := 4( 2

1−λ − 1)

same as in Lemma 6.5.2, Then for t ≥ 1

F̂ (w̄(t)) ≤ ζ̄t−1F̂ (w̄(1)). (6.40)

Proof: By L− smoothness we have

F̂ (w̄(t+1)) ≤ F̂ (w̄(t))− η⟨∇F̂ (w̄(t)), ∇̄F̂ (W (t))⟩+ η2L

2
∥∇̄F̂ (W (t))∥2

= F̂ (w̄(t))− η − η2L

2
∥∇̄F̂ (W (t))∥2−η

2
∥∇F̂ (w̄(t))∥2+η

2
∥∇̄F̂ (W (t))−∇F̂ (w̄(t))∥2

≤ F̂ (w̄(t))− η

2
∥∇F̂ (w̄(t))∥2+η

2
∥∇̄F̂ (W (t))−∇F̂ (w̄(t))∥2

≤ F̂ (w̄(t))− η

2
∥∇F̂ (w̄(t))∥2+ηL

2

N
∥W (t) − W̄ (t)∥2F .

By µ−PL condition we have,

F̂ (w̄(t+1)) ≤ (1− ηµ)F̂ (w̄(t)) +
ηL2

N
∥W (t) − W̄ (t)∥2F .

By Lemma 6.5.2,

1

N
∥W (t) − W̄ (t)∥2F< α2η

2L

t−1∑
i=1

αi−1
1 F̂ (w̄(t−i)). (6.41)
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which results in,

F̂ (w̄(t+1)) ≤ (1− ηµ)F̂ (w̄(t)) + α2L
3η3

t−1∑
i=1

αi−1
1 F̂ (w̄(t−i)).

By induction assume F̂ (w̄(t)) ≤ ζ̄t−1F̂ (w̄(1)) then using the assumptions on ζ̄ and η yield

the following inequalities,

F̂ (w̄(t+1)) ≤ (1− ηµ)ζ̄t−1F̂ (w̄(1)) + α2η
3L3F̂ (w̄(1))

t−1∑
i=1

αi−1
1 ζ̄t−i−1

≤ (1− ηµ)ζ̄t−1F̂ (w̄(1)) + α2η
3L3F̂ (w̄(1))

ζ̄t−2

1− α1/ζ̄

= (1− ηµ+ α2η
3L3/(ζ̄ − α1))ζ̄

t−1F̂ (w̄(1))

≤ (1− ηµ+ 2α2η
3L3/(1− α1))ζ̄

t−1F̂ (w̄(1))

≤ (1− ηµ+ ηµ/2)ζ̄t−1F̂ (w̄(1))

≤ ζ̄tF̂ (w̄(1)).

This completes the proof of the lemma.

6.5.4.1 Proof of Lemma 6.2.3

Lemma 6.5.12 (Restatement of Lemma 6.2.3). Let Assumptions 6.2.1,6.2.3 and 6.2.8

hold and let the step-size η ≤ min{1−α1

µ
, 1
2L2

√
(1−α1)µ

α2
, 1
L
}, where the constants α1 ∈ (0, 1)

and α2 > 0 are defined same as in Lemma 6.5.11. Define ζ := 1 − ηµ
2
, then under the

data separability assumption, the iterates of DGD satisfy for all t ≥ 1,

F̂ (w̄(t)) ≤ ζt−1F̂ (w̄(1)),

1

N
∥W (t) − W̄ (t)∥2F ≤ 2α2η

2L2F̂ (w̄(1))

1− α1

ζt−1.
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Proof: The bound on the train loss follows directly by Lemma 6.5.11, after noting

that η ≤ 1−α1

µ
implies 1+α1

2
≤ 1 − ηµ/2. The consensus error is derived by (6.41) and

using the bound on F̂ (w̄(t)).

6.5.4.2 Proof of Theorem 6.2.3

Theorem 6.5.3 (Restatement of Theorem 6.2.3). Let Assumptions 6.2.1-6.2.4 and 6.2.8

hold, and let η and ζ be as in Lemma 6.5.11. Then the iterates of DGD under the data

separability assumption satisfy for all T ≥ 1,

E
[
F (w̄(T ))

]
= O

(
ζT +

L2c2

n3−2αµ2α
(ηT )2−2α +

η2L4

µ2N

)
.

Proof: By simplifying Lemma 6.2.1 using the convergence bounds in Lemma 6.5.12,

we end up with the following,

E
[
F (w̄(T ))

]
= O

(
ζT +

L2c2η2

n3−2α(1− ζ)2α
T 2−2α +

η2L4

(1−
√
ζ)2N

)
.

Based on the definition of ζ, we have ( η
1−ζ )

2α = ( 2
µ
)2α and η2

(1−
√
ζ)2

≤ 4
µ2

. This proves the

statement of the theorem.

6.5.5 Proof of Theorem 6.2.4

Theorem 6.5.4 (Restatement of Theorem 6.2.4). Consider FDRL(Algorithm 1) on

separable dataset, and choose η = O(1/
√
t). Then for all ℓ ∈ [N ]

lim
t→∞

w
(t)
ℓ

∥w(t)
ℓ ∥

=
w

MM

∥w
MM

∥
,

where recall that wMM denotes the solution to hard-margin SVM problem.

284



Decentralized Learning in the Interpolation Regime Chapter 6

Proof: Replace v
(t)
ℓ

∥v(t)ℓ ∥
in step 2 of Algorithm 1 by arbitrary perturbations ε(t)ℓ of unit

norm. Then note that the sequence {w(t)
ℓ } generated by step 2 is identical to decentralized

GD with η∥ε(t)ℓ ∥→ 0. Thus by [163, Lemma 1], consensus is asymptotically achieved for

all ℓ ∈ [N ], i.e.,

lim
t→∞

∥w(t)
ℓ − w̄(t)∥= 0.

Thus

lim
t→∞

∥w(t+1)
ℓ − w

(t)
ℓ ∥= lim

t→∞
∥w̄(t+1) − w̄(t)∥= lim

t→∞
η∥ε̄(t)∥= 0.

This implies that for all i ∈ [N ] we have limt→∞∥∇F̂ℓ(w(t+1)
ℓ )−∇F̂ℓ(w(t)

ℓ )∥= 0, thus by

appealing again to [163, Lemma 1] and applying it to step (5) of Algorithm 1, we find

that,

lim
t→∞

∥v(t)ℓ − v̄(t)∥= 0.

Aggregations of gradients in step (5) imply that v̄(t) = 1⊤∇L(W (t))
N

→ ∇F̂ (w̄(t)). Thus step

(2) of FDLR for every agent i converges to w̄(t) − η ∇F̂ (w̄(t))

∥∇F̂ (w̄(t))∥ , i.e.,

∥∥∥(w(t)
ℓ − η

v
(t)
ℓ

∥v(t)ℓ ∥

)
−
(
w̄(t) − η

∇F̂ (w̄(t))

∥∇F̂ (w̄(t))∥

)∥∥∥t→∞
=⇒0.

Thus for all ℓ, the sequence {w(t)
ℓ } converges to the solution of normalized GD, i.e., the

max-margin separator w
MM
, for linearly separable datasets ([20, Theorem 5]). This leads

to the statement of the theorem.
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6.6 Auxiliary Results

Proposition 6.6.1 (Bounds on the exponential loss). Consider linear classification with

the exponential loss f(w, (a, y)) = exp(−y ·w⊤a) over linearly separable dataset (ai, yi)ni=1

with binary labels yi and with maxi∥ai∥≤ r for a constant r. The training loss in this case

satisfies for all w ∈ Rd,

∥∇F̂ (w)∥∈ [c′F (w), cF (w)], ∥∇2F̂ (w)∥≤ hF (w), (6.42)

for constants c, c′ and h independent of w.

Proof: Using F̂ (w) = 1
n

∑n
i=1 exp(−yi · w⊤ai), one can deduce that,

∇F̂ (w) = − 1

n

n∑
i=1

yiai exp(−yiw⊤ai),

∇2F̂ (w) =
1

n

n∑
i=1

aia
⊤
i exp(−yiw⊤ai).

Therefore it holds that,

∥∇F̂ (w)∥ =
1

n
∥

n∑
i=1

yiai exp(−yiw⊤ai)∥

≤ 1

n

n∑
i=1

∥yiai exp(−yiw⊤ai)∥

=
1

n

n∑
i=1

∥yiai∥exp(−yiw⊤ai) ≤ rF̂ (w).

A similar approach for the Hessian of F̂ results in the following inequality,

∥∇2F̂ (w)∥≤ r2F̂ (w).
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Moreover, due to linear separability there exists a w⋆ ∈ Rd such that,

yiw
⋆⊤ai

∥w⋆∥
≥ γ, ∀i ∈ [N ],

where γ > 0 denotes the margin. Therefore, using the supremum definition of norm we

can write,

∥∇F̂ (w)∥ =
1

n

∥∥∥∥∥
n∑
i=1

yiai exp(−yiw⊤ai)

∥∥∥∥∥
= sup

v∈Rd

s,t. ∥v∥=1

〈
1

n

n∑
i=1

yiai exp(−yiw⊤ai), v

〉

≥

〈
1

n

n∑
i=1

yiai exp(−yiw⊤ai),
w⋆

∥w⋆∥

〉

≥ 1

n

n∑
i=1

γ · exp(−yiw⊤ai)

= γF̂ (w).

This completes the proof.

Proposition 6.6.2 (Bounds on the logistic loss). Consider linear classification with the

logistic loss f(w, (a, y)) = log(1+ exp(−y ·w⊤a)) over linearly separable dataset (ai, yi)ni=1

with binary labels yi and with maxi∥ai∥≤ r for a constant r. The training loss in this case

satisfies for all w ∈ Rd,

∥∇F̂ (w)∥∈ [c′Φ(w), cF (w)], ∥∇2F̂ (w)∥≤ hF (w),

for Φ(w) := 1
n

∑n
i=1

exp(−yi w⊤ai)
1+exp(−yi w⊤ai)

and constants c, c′ and h independent of w.
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Proof: The training loss is now F̂ (w) = 1
n

∑n
i=1 log(1 + exp(−yi · w⊤ai)). Thus,

∇F̂ (w) = 1

n

n∑
i=1

(−yiai)
exp(−yiw⊤ai)

1 + exp(−yi · w⊤ai)
,

∇2F̂ (w) =
1

n

n∑
i=1

aia
⊤
i

exp(−yiw⊤ai)

(1 + exp(−yiw⊤ai))2
.

By considering the norm and noting that exp(t)/(1 + exp(t)) ≤ log(1 + exp(t)),

∥∇F̂ (w)∥ =
1

n

∥∥∥∥∥
n∑
i=1

(−yiai)
exp(−yiw⊤ai)

1 + exp(−yi · w⊤ai)

∥∥∥∥∥
≤ 1

n

n∑
i=1

∥yiai∥
exp(−yiw⊤ai)

1 + exp(−yi · w⊤ai)

≤ r

n

n∑
i=1

log(1 + exp(−yiw⊤ai)) = rF̂ (w).

Likewise, since exp(t)/(1+exp(t))2 ≤ 2 log(1+exp(t)), we can conclude that the operator

norm of the Hessian satisfies,

∇2F̂ (w) ≤ 2r2F̂ (w).

This completes the proof of upper-bounds for the gradient and Hessian. For the lower-

bound on gradient note that by using the supremum definition of norm and recalling the
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max-margin separator satisfies yiw
⋆⊤ai

∥w⋆∥ ≥ γ for the margin γ > 0 and all i ∈ [n], we obtain,

∥∇F̂ (w)∥ =
1

n

∥∥∥∥∥
n∑
i=1

yiai
exp(−yiw⊤ai)

1 + exp(−yi · w⊤ai)

∥∥∥∥∥
= sup

v∈Rd

s,t. ∥v∥=1

〈
1

n

n∑
i=1

yiai
exp(−yiw⊤ai)

1 + exp(−yi · w⊤ai)
, v

〉

≥

〈
1

n

n∑
i=1

yiai
exp(−yiw⊤ai)

1 + exp(−yi · w⊤ai)
,
w⋆

∥w⋆∥

〉

≥ 1

n

n∑
i=1

γ
exp(−yiw⊤ai)

1 + exp(−yi · w⊤ai)
.

This yields the lower bound γΦ(w) on the norm of gradient and completes the proof.

Proposition 6.6.3 (Realizability of the exponential and logistic loss [152]). On linearly

separable data with margin γ > 0, the exponential loss function satisfies the realizability

assumption (Assumption 6.2.5) with ρ(ε) = − 1
γ
log(ε), where γ denotes the margin.

Moreover, the logistic loss function satisfies the realizability assumption with ρ(ε) =

− 1
γ
log(exp(ε)− 1).

6.7 Additional Experiments

6.7.1 Experiments on over-parameterized Least-squares

In Fig. 6.4, we conduct experiments for highly over-parameterized Least-squares

(f(w, x) = (1− w⊤x)2), where d is typically significantly larger than n to ensure perfect

interpolation of dataset. Note that, the train loss is not strongly-convex in this case,

instead it satisfies the PL condition(Assumption 6.2.8). Notably, as predicted by Lemma

6.2.3, we notice the linear convergence of the train loss and the consensus error in Fig. 6.4

(Left). On the other hand, for the test loss, we observe its remarkably fast convergence
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Figure 6.4: Consensus error, train loss and test loss for DGD with over-parameterized
least-squares(square loss). The test loss achieves its optimum at the very early stages of
DGD.

(after approximately 50 iterations) to the optimal value, which is followed by a sharp

increase in the subsequent iterations.

6.7.2 On the update rule of FDLR

In the final section of this chapter, we state a remark regarding the update rule of

FDLR. Recall the update rule of DGD,

w
(t+1)
ℓ =

∑
k∈Nℓ

Aℓkw
(t)
k − ηt∇F̂ℓ(w(t)

ℓ ). (6.43)

Notably, we expect FDLR to be perhaps the simplest approach for accommodating

normalized gradients in decentralized learning setting since in DGD the agents only have

access to their local gradients. In particular consider a Normalized DGD algorithm with

the same update as in (6.43) but with ∇F̂i(w(t)
i ) replaced by ∇F̂i(w(t)

i )/∥∇F̂i(w(t)
i )∥, i.e.,
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Figure 6.5: Normalized DGD with the update rule in Eq.(6.44) for different step-sizes
η compared to DGD (Eq.(6.43)) and to FDLR (Alg 1). The step-sizes for DGD and
FDLR are fine-tuned so that best of each algorithm is depicted. Normalized DGD cannot
outperform DGD while FDLR is significantly faster than DGD. Here we consider linear
classification with the exponential loss function and the dataset is generated according to
signed measurements with Gaussian features and n = 100, d = 50.

w
(t+1)
ℓ =

∑
k∈Nℓ

Aℓkw
(t)
k − ηt

∇F̂ℓ(w(t)
ℓ )

∥∇F̂ℓ(w(t)
ℓ )∥

(6.44)

The Normalized DGD algorithm above does not lead to faster convergence. This is

due to the fact that in DGD the local gradient norm ∥∇F̂i(w(t)
i )∥ can be different than

the global gradient norm ∥∇F̂ (w(t)
i )∥. Thus even if with the update rule (6.44) the local

parameters w(t)
i converge to the global optimal solution, still the update rule for the

averaged parameter w̄(t) is different than the update rule of centralized normalized GD.

Our numerical experiment in Fig. 6.5 demonstrates the incapability of Normalized DGD in

speeding up DGD. In particular, we note that for any choice of step-size Normalized DGD

does not lead to acceleration compared to DGD whereas FDLR massively outperforms

DGD.
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A note about convergence rates of DGD

As mentioned in the chapter’s introduction, many prior works on investigate con-

vergence of DGD and of its stochastic variant decentralized stochastic gradient descent

(DSGD) under various assumptions, e.g. [167, 168, 169, 170] and many references therein.

Most recently, [170] has presented a powerful unifying analysis of DSGD under rather

weak assumptions. Specialized to convex L-smooth functions for which there exists w∗

such that ∥∇fi(w∗)∥= 0 (i.e. interpolation) [170, Thm. 2] shows a rate of O(LR0/T )

for average DSGD updates. Here, R0 = ∥w1 − w∗∥2. Ignoring logarithmic factors, this

rate is the same as what we obtained in (6.6) (as a consequence of Lemma 6.2.2) for

DGD specifically applied to logistic loss over separable data. However, our result does

not directly follow from [170, Thm. 2]. The reason is that logistic loss on separable data

does not attain a bounded estimator. In fact, we believe the log2 T dependence of the

rate that shows up in our analysis (see Eq. (6.5)), is a consequence of the infinitely

normed-optimizers in our setting and we expect the bound to be tight as suggested by

our experiments (see Fig 6.3) and in agreement with convergence bounds for logistic

regression on separable data in the centralized case derived recently in [113, Theorem. 1.1].

On the other hand, the results of [170] are applicable to finite optimizers, which yields

O(1/T ) convergence rates without log factor. Besides the above, in Theorem 6.2.2, we

prove novel last-iterate (as opposed to averaged in the literature) convergence bounds for

the train loss and faster consensus error rates of Õ(1/T 2). This is possible by leveraging

additional Hessian self-bounded (Assumption 6.2.6) and self-lower-boudned (Assumption

6.2.7) assumptions, which hold for example for the exponential loss. Finally, we recall that

our main focus is on studying finite time generalization bounds for DGD (e.g. Theorem

6.2.1), which to the best of our knowledge are new in this setting. Having discussed

these, it is worth noting that the analysis of [170] applies under a relaxed assumption
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on the mixing matrix (see [170, Assumption 4]) than the corresponding assumptions

(e.g. Assumption 6.2.1) in the literature. For example, this relaxed assumption covers

decentralized local SGD (with multiple local updates per iteration) as a special case and

is interesting to extend our results (on logistic regression over separable data) to such

settings.
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Conclusions

In this thesis, we have explored various aspects of learning in the interpolation regime across

linear models and neural networks. Our findings provide both theoretical insights and

practical implications for improving the performance of these models in over-parameterized

settings.

For linear models, we derived sharp guarantees that accurately predict the performance

of high-dimensional linear classifiers. These precise results allowed us to design optimal

loss functions and regularization parameters, thereby achieving the theoretical lower

bound on test error. We extended this framework to the adversarial training scenario,

deriving exact asymptotic expressions for both standard and adversarial test errors under

ℓp-bounded perturbations in Gaussian mixture models.

In the context of neural networks, we established non-asymptotic bounds on the

training and test error performance in the interpolating regime. Our analysis revealed

an exponential improvement in the lower bound on network width necessary for optimal

performance. Additionally, the resulting generalization bounds enhance the results

obtained from well-established methods such as uniform convergence, providing a more

refined understanding of neural network behavior in over-parameterized settings.
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Finally, we studied the behavior of train loss and test loss of decentralized gradient

descent (DGD) methods in the interpolation regime and proposed two algorithms for

speeding up the training.

As a future direction, we aim to extend our sharp analysis framework to more

complex neural network architectures, such as deep neural networks and transformers.

Additionally, we hope to derive the fundamental limits for adversarial training, offering

precise characterizations for the optimal loss, regularization and attack budget that could

guide the development of robust learning models. Another potential direction is to extend

our algorithmic-stability analysis from neural networks to more complex architectures

and training paradigms, such as next-token prediction in transformers.
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