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ABSTRACT

Purpose

Despite significant improvement in locoregional control in the contemporary era 
of nasopharyngeal carcinoma (NPC) treatment, patients still suffer from a significant 
risk of distant metastasis (DM). Identifying those patients at risk of DM would aid in 
personalized treatment in the future. MicroRNAs (miRNAs) play many important roles 
in human cancers; hence, we proceeded to address the primary hypothesis that there is 
a miRNA expression signature capable of predicting DM for NPC patients.

Methods and results

The expression of 734 miRNAs was measured in 125 (Training) and 121 
(Validation) clinically annotated NPC diagnostic biopsy samples. A 4-miRNA expression 
signature associated with risk of developing DM was identified by fitting a penalized 
Cox Proportion Hazard regression model to the Training data set (HR 8.25; p < 0.001), 
and subsequently validated in an independent Validation set (HR 3.2; p = 0.01). 
Pathway enrichment analysis indicated that the targets of miRNAs associated with 
DM appear to be converging on cell-cycle pathways.

Conclusions

This 4-miRNA signature adds to the prognostic value of the current “gold 
standard” of TNM staging. In-depth interrogation of these 4-miRNAs will provide 
important biological insights that could facilitate the discovery and development of 
novel molecularly targeted therapies to improve outcome for future NPC patients.
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INTRODUCTION

Nasopharyngeal carcinoma (NPC) has a unique 
set of etiological, epidemiological and biological 
characteristics that renders it distinct from other epithelial 
malignancies of the head and neck region. The primary 
curative treatment for NPC is radiotherapy (RT) for 
patients with early stage disease, and concomitant 
chemoradiotherapy (CRT) for those with locally 
advanced disease. Technical improvements in RT delivery 
such as intensity-modulated radiation therapy (IMRT), 
and increasing use of CRT have led to significantly 
improved loco-regional control (LRC) for NPC patients, 
with 5-year LRC rates now well over 90% [1]. However, 
distant metastasis (DM) rates have not improved, and late 
metastatic disease remains the major cause of mortality 
in this patient population [1]. Currently, TNM staging 
is the primary tool utilized clinically to prognosticate 
outcomes for NPC patients. Other indicators such as 
tumor volume [2], plasma Epstein–Barr Viral (EBV) 
DNA titre [3, 4], and levels of expression of various 
proteins and transcripts [5–7] have been reported to 
correlate with clinical outcome; to date however, none 
has been universally adopted in the clinical management 
of NPC patients.

MicroRNAs (miRNA) are small non-protein-coding 
RNA molecules that function to reduce the expression 
of protein coding genes at the post-transcriptional level. 
Since their identification in 1993 [8], miRNAs have 
emerged as key regulators of gene expression in nearly 
all biological processes, including cancer [9]. Additionally, 
miRNA expression signatures associated with prognosis 
have been identified in numerous malignancies [10]. 
Hence, we undertook to identify and validate a miRNA 
expression signature capable of predicting for DM in NPC 
patients.

RESULTS

Generation and validation of miRNA signature 
associated with risk of distant metastasis

Using the Lasso method to fit a penalized Cox 
Proportional Hazards (PH) model to miRNA expression 
data from the Training cohort yielded 33 variables 
(miRNAs) with non-zero coefficients (Table S1). The 
4 miRNAs most strongly associated with risk of DM 
(greatest absolute coefficient values) were combined with 
their coefficients within the penalized model to yield the 
following equation:

Risk Score =  miR-154-5pExpression*0.417 + miR-
449b-5pExpression*0.280

     -  miR-140-5pExpression*0.653 – miR-
34c-5pExpression*0.311

The RS was calculated for each patient in 
the Training cohort, allowing the patients to be 
dichotomized into either a “low risk” (< median), or 
a “high risk” (≥ median) group. A highly significant 
relationship was observed between the RS and the 
likelihood of DM whether the RS was treated as a 
continuous (Wald test; HR = 2.76, Scaled HR; 5.65; 
p = 2.8 × 10–5), or a binary (log-rank test: HR = 8.25; 
p = 8.0 × 10–4) variable (Figure 1A).

When the same miRNA signature equation was 
applied to the independent Validation cohort of 121 NPC 
patients diagnosed approximately a decade earlier, a similar 
relationship was observed (Figure 1B). When treated as a 
continuous predictor, the scaled HR was 2.27 (raw HR: 
1.7) with a Wald test p-value = 0.05. When dichotomized 
by the median from the training cohort, the HR was 
3.2, with a log-rank test p-value of 0.014. These results 
indicated that there might be a greater benefit to utilizing 
this RS as a binary variable, with an established cut-point, 
as opposed to a continuous spectrum of risk. In addition, 
when all possible combinations of 1, 2, 3, or all 4 miRNAs 
from the original model were compared, the 4-miRNA 
signature consistently demonstrated the best performance 
across all time points (Figure 1C), underscoring the robust 
prognostic power of this 4-miRNA signature.

When the 4-miRNA signature was examined further 
in miRNA-Seq expression data generated by The Cancer 
Genome Atlas (TCGA), there was a significant difference 
observed in disease-specific survival for patients with a 
“high risk” score compared to those with a “low risk” 
score (HR = 1.8; p = 0.02; Figure S1A). For comparison, 
disease-specific survival in our dataset (combined training/
validation, n = 246) is also illustrated in Figure S1B (HR 
= 1.9; p = 0.03; Figure S1A). Given that these data were 
generated from HNCs other than NPC (majority were oral 
cavity and larynx cancers), these results indicated that 
this 4-miRNA signature might be a useful prognostic tool 
across multiple tumours of the head and neck region.
Multivariate analysis

Table 2 demonstrates that after controlling for 
clinical factors such as stage, age, gender, and treatment, 
the miRNA signature RS remained significantly associated 
with risk of DM (HR = 4.0; p = 7.3 × 10–4). Similar 
results were observed when only the training set was 
used for multivariate analysis (HR = 3.4; p = 0.02; Table 
S2). Nodal stage was the only other factor significantly 
associated with DM on both univariate and multivariate 
analyses (Table 2). For this reason, the 4-miRNA signature 
RS was then combined with N-stage to define five risk 
groups, based on the visual inspection of the distant 
metastasis-free survival (DMFS) Kaplan-Meier curves 
stratified by N-stage (Figure S2). Figure 2A demonstrates 
that when patients were stratified into five distinct groups, 
as a combination of nodal stage and RS, the patients in 
the N1/N2 and the N3 Groups were respectively further 
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dichotomized by the miRNA RS, underscoring the 
ability of this 4-miRNA signature to provide improved 
risk prediction for DM in these clinically intermediate 
and high-risk groups. This improved prognostic ability 
was further corroborated when the area under the ROC 
curve was calculated as a function of follow-up time, and 
compared with clinical factors, the original 4-miRNA 
RS, and the 5-group N-Stage/miRNA risk-stratification 
(Figure 2B). The area under the ROC curves was 

consistently greatest in this 5-group stratification (except 
for Year-1, when the 4-miRNA signature alone marginally 
outperformed the 5-group model). C-statistics for each 
CoxPH model were also calculated for the combined data 
(n = 246), Training (n = 125) and Validation (n = 121) 
sets, further demonstrating the significantly greater 
prognostic value for this combined parameter (C-statistics; 
0.78, 0.83, and 0.74, respectively), compared to all other 
models (Table S3).

A. B. 

C. 

1 2 3 4 5

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Time (years)

D
M

 R
O

C
 A

U
C

4−
m

iR
NA si

gn
at

ur
e

m
iR

−1
40

−5
p

m
iR

−1
54

−5
p

m
iR

−3
4c

−5
p

m
iR

−4
49

b−
5p

Figure 1: (A&B) Kaplan-Meier curves showing NPC patients dichotomized based on risk score in (A) the training 
cohort; and (B) the validation cohort. “High Risk” is defined as a RS ≥ the median in the training cohort, and “Low Risk” is defined as a 
RS < the median in the training cohort. (C) ROC AUCs across various time points demonstrating the ability of prognostic models generated 
using all possible combinations of 1, 2, 3, or 4 miRNAs from the 4-miRNA signature to predict distant relapse in NPC patients. RS, Risk 
Score; HR, Hazard Ratio; CI, Confidence Interval; ROC, receiver operating characteristic; AUC, Area Under the Curve.
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Table 1: Clinical characteristics of the patients in the two independent cohorts
Training Set (Dx ’00–’09; 

n = 125)
Validation Set (Dx ’93–’00; 

n = 121) p-value*

Age (years)

 median 52 48

 range 14–89 16–79 0.30

Frequency (%)

Gender

 Male 86 (67) 56 (71)

 Female 39 (33) 23 (29) 0.52

T stage

 T1 37 (30) 37 (31)

 T2 20 (16) 30 (25)

 T3 28 (22) 24 (20)

 T4 39 (31) 28 (23) 0.26

 Unable to evaluate 1 (<1) 1 (<1)

N stage

 N0 25 (20) 24 (20)

 N1 33 (26) 50 (41)

 N2 52 (42) 38 (31)

 N3 15 (12) 8 (7) 0.05

 Unable to evaluate none 1 (<1)

TNM Stage

 I (%) 11(8) 10 (8)

 II (%) 22 (18) 37 (31)

 III (%) 41 (33) 39 (32)

 IV (%) 51 (41) 34 (28) 0.07

 Unable to evaluate none 1 (<1)

Treatment

 Radiation only 34 (15) 86 (71)

 Radiation + chemo 91 (73) 35 (29) 1.43E-11

5-year Survival %

Survival

 Overall 83% 73% 0.22

 Disease-Free 72% 66% 0.35

 Local Relapse-Free 90% 76% 0.002

 Nodal Relapse-Free 94% 88% 0.08

 Distant Relapse-Free 87% 87% 0.89

*Statistical tests: Wilcoxon rank-sum test (Age), Chi-squared test (Gender, T/N/TNM-stage, Treatment), log-rank test 
(all survival endpoints).
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Figure 3 demonstrates the ability of this 4-miRNA 
signature to predict risk of DM in advanced stage (III & 
IV) patients who were treated with RT alone (HR = 7.13; 
p = 0.003; Figure 3A), as well as those who were treated 
with CRT (HR = 3.35; p = 0.045; Figure 3B). These data 
suggest that even in NPC patients with locally-advanced 
disease, this 4-miRNA signature could potentially 
identify a low-risk group of patients, whose likelihood of 
developing DM at 5-years was so low (<10%), that adding 
CT to their RT might have no benefit to their survival 
(Figure 3A). Conversely, there remained a high-risk group, 
whose outcome could be potentially improved with the 
administration of combined CRT, since RT alone was 
associated with a 5-year risk of 45% in developing DM 
(Figure 3A), vs. 20% when treated with CRT (Figure 3B).
Random miRNA signatures

The distributions of hazard ratios and p-values 
(log-rank test) were plotted for 90,298 miRNA 
signature (90,000 randomly generated miRNA-
signatures and 298 individual miRNAs) and compared 
with that of our 4-miRNA signature and an independent 
5-miRNA signature generated by Liu et al. [11] (Figure 
S3). When compared with these random miRNA-
sets, the log-rank p-value for the 4-miRNA signature 
described herein within the validation set (p = 0.014) 
was in the lowest 2.8% with its hazard ratio (HR = 3.2) 
in the highest 4.9% (absolute values). The signature 
described by Liu et al. performed slightly worse with 
its p-value in the lowest 9.7% and its HR in the top 
10% (Figure S3).

In order to provide a more global perspective on the 
biological impact of this 4-miRNA signature, we identified 
miRNAs that were enriched in the random miRNA-sets 
that were significantly associated with distant metastasis; 
that is, signatures with p-values the same or lower than 

that of our 4-miRNA signature (p ≤ 0.014). The number 
of times each miRNA occurred in these signatures were 
then counted, normalized to the number of miRNAs 
in the signature, and then this distribution was plotted 
(Figure S4). The 15 miRNAs that appeared most frequently 
in signatures significantly associated with DM (top 5%) 
were then selected for further analysis (Figure S4).

Validated miRNA target pathway enrichment 
analysis

The miRTarBase database was queried using a) the 
4 miRNAs in the prognostic signature identified herein, b) 
the 5 miRNAs described by Liu et al [11], and c) the 5% 
most frequently occurring miRNAs in random signatures 
significantly associated with distant metastasis. This 
yielded a) 52 b) 888 and c) 1557 miR-target relationships 
(Table S4). When pathway enrichment analysis was 
performed, several biological pathways were observed to 
be significantly enriched (FDR < 0.05) within the targets of 
these three sets of miRNAs (Table S5). When significantly 
enriched pathways (FDR < 0.05) were compared amongst 
these three sets, six common pathways were identified 
(Figure 4). These included five generic “cancer” pathways 
(colorectal, chronic myeloid leukemia, pancreatic, small 
cell lung cancers, and one “pathways in cancer”), and one 
functional pathway: the “Cell Cycle” KEGG pathway 
(accession: hsa04110). Given that only one miRNA 
overlapped among the three sets analyzed (miR-30e), 
these data provided strong indications that cell cycling and 
proliferation were important biological processes mediating 
the distant metastasis underlying these miRNAs. Therefore, 
we proceeded to investigate the cell cycle-related targets 
which were common to multiple miRNAs, and observed 
that 18 members of the cell cycle pathway were in fact 
targeted by multiple (at least 2) miRNAs contained in the 
three sets of signatures analyzed (Figure 5A). Figure 5B 

Table 2: Univariate and multivariate CoxPH analysis of clinical factors and miRNA-signature 
risk-score in the combined dataset from both the training and validation cohorts (n = 242)

Univariate Multivariate

HR (95% CI) p-value HR (95% CI) p-value

MiRNA RS (High 
Risk vs. Low Risk) 4.5 (2.04–9.90) 1.9 × 10–4 4.0 (1.8–8.9) 7.3 × 10–4

T stage (T1&2 
vs. T3&4) 1.7 (0.86–3.3) 0.13 1.5 (0.70–3.2) 0.30

N stage (N0&1 
vs. N2&3) 2.5 (1.2–5.0) 8.0 × 10–3 2.7 (1.2–5.7) 0.01

Age 1.0 (0.98–1.0) 0.86 1.0 (0.98–1.0) 0.93

Gender (Female 
vs. Male) 1.31 (0.60–2.9) 0.50 1.3 (0.57–2.9) 0.53

Chemotherapy 
(− vs. +) 0.97 (0.5–1.9) 0.94 0.46 (0.21–1.0) 0.05
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A. 

B. 

Figure 2: (A) Kaplan-Meier curve showing patients assigned to risk groups based on the combined N-stage and 4-miRNA signature Risk 
Score. (B) ROC AUCs over time demonstrating the ability of various clinical factors and the 4-miRNA signature RS to predict distant 
relapse in NPC patients.
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A. 

B. 

Figure 3: Kaplan-Meier curves showing distant relapse in NPC patients dichotomized based on miRNA risk score 
in advanced stage patients (Stage III/IV) treated with (A) RT alone or (B) combined CRT. ROC, receiver operating 
characteristic; AUC, Area Under the Curve; RT, radiotherapy; CRT, chemoradiotherapy; HR, Hazard Ratio; CI, Confidence Interval. 
RS, Risk Score; “High Risk” is defined as a RS ≥ the median in the training set, and “Low Risk” is defined as a RS < the median in the 
training set.
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illustrates these 18 genes in the context of the cell cycle 
pathway, with a Deduced Expression Effect (DEE) denoted 
by the colour of each miRNA-target node. These values 
were calculated using the following formula:

DEE =  the number of targeting miRNAs negatively 
associated with DM

   -  the number of targeting miRNAs positively 
associated with DM

Thus, given the inhibitory relationship between 
miRNAs and their targets, we would anticipate that those 
genes with a higher DEE would be up-regulated in patients 
at high risk of DM, whereas those with a lower DEE 
would be down-regulated in high risk patients for DM. 
When DEEs were calculated, all 18 targets had positive 

values (indicating an expected increase in expression), 
likely reflecting an enrichment in miRNAs which were 
negatively associated with DM (Figure 5B). These results 
suggest that the cell cycle pathway is activated in patients 
at risk of DM. In particular, key regulators of the cell 
cycle such as the cyclins (CCND1/D2), cyclin-dependent 
kinases (CDK4/6) and S-phase promoting transcription 
factors (E2F1/3) appeared to be particularly important, as 
indicated by their respective DEEs.

DISCUSSION

Given the continual challenge of DM in NPC 
patients, the validated prognostic 4-miRNA signature 
presented herein could prove to be a valuable tool in 

6 
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4-miRNA Signature 5-miRNA Signature 
(Liu et al.) 

5% most frequent miRNAs in random  
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Figure 4: Venn diagram showing commonly and uniquely enriched pathways across three sets of miRNA-targets.
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4-miRNA Signature 
members 

5-miRNA signature 
members (Liu et al.) Members of random miRNA-sets associated with DM 

Activating relationship: 

Degree of up-regulation Inhibitory relationship: miR-Target relationship: 

Figure 5: Cell-cycle related genes targeted by miRNAs associated with risk of distant metastasis. (A) Chart showing 
Cell-cycle related genes targeted by at least 2 of the miRNAs queried. Black boxes indicate a miRNA-target relationship. (B) Pathway 
diagram modified from the “Cell-Cycle” KEGG pathway using Cytoscape (v3.1.1) showing validated targets of miRNAs from three 
prognostic groups. Note: miRNAs with no validated “cell-cylce” targets (miR-154–5p from the 4-miRNA signature and miR-30e-5p from 
The 5-miRNA signature) were omitted from the figure. See legend for further details.
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guiding treatment decisions for these patients. To date, 
there are no clinically utilized prognostic biomarkers in 
NPC; plasma levels of EBV DNA titres have certainly 
been associated with clinical outcome, particularly in 
predicting risk of relapse when the titre remained elevated, 
or increased post-treatment [3, 4]. However, this has not 
contributed to treatment decisions, which to date, have 
relied on TNM staging, with administration of combined 
CRT for patients with locally-advanced disease. However, 
such CRT regimens are also associated with significant 
acute and long-term morbidities and even mortality, 
diluting any potential gains with these aggressive 
treatments [12–14]. Hence, the utility of this 4-miRNA 
signature, which has been validated in an independent 
cohort (Figure 1) and demonstrated to add to the 
prognostic value of the TNM staging category (Figure 2), 
is extremely promising. Furthermore, the apparent ability 
of this 4-miRNA signature to identify a low-risk group of 
patients with locally-advanced NPC, who could be cured 
with RT alone (Figure 3), suggests a potential predictive 
value of this signature, which again to date, has never been 
previously documented. However, given the inherent risk 
of bias in retrospective studies, in order to confirm the 
ability of this signature to predict treatment success for 
patients treated with RT alone, further verification in an 
additional independent cohort of randomized controlled 
trial (RCT) participants randomly designated to RT alone 
vs. CRT would be required. The successful demonstration 
of such a predictive miRNA set would potentially facilitate 
the de-escalation for patients with truly a favourable 
prognosis, thereby sparing them the increased toxicity 
of combined CRT. In contrast, patients at high-risk will 
still have a 60% probability of developing DM at 5-years, 
despite CRT; for this group of patients, the need to 
identify and evaluate novel therapeutics cannot be over-
emphasized. Indeed, identifying such targetable pathways 
could be achieved by interrogating the underlying biology 
of these miRNA signatures.

There exists another validated prognostic 5-miRNA 
signature set for NPC, generated by a group from 
Guangdong, which was associated with overall, disease-
free, and DMFS [11]. We have evaluated their 5-miRNA 
signature, compared to either our 4-miRNA signature 
alone, or each combined with N-stage, and our signatures 
appeared to demonstrate a more robust performance, based 
on direct comparisons and a ROC curve analysis (Figure 
S5, and Table S4). Specifically, comparing the HR of our 
4-miRNA signature to the HR of the 5-miRNA signature 
for DM (Figure S5A vs. S5B), our current 4-miRNA 
signature appeared to perform better, with a higher HR and 
greater statistical significance. Similarly, the greatest AUC 
in the ROC analysis was observed with our 4-miRNA 
signature combined with N-stage (Figure S5C). However, 
given significant technical, clinical and geographical 
differences between our two studies, it is impossible to 
draw any conclusions regarding the superiority of one or 

the other signature at present. Also of note, is the fact that 
there is absolutely no overlap between their 5-miRNAs 
with our 4-miRNAs. This is not surprising, again given 
the differences in platforms (in-house vs. Nanostring 
nCounter), different population cohorts, as well as 
redundancy in biological processes. This phenomenon 
has been similarly observed with other miRNA signatures 
[15, 16], as well as mRNA signatures [17]. Future analysis 
on additional independent datasets would be required to 
definitively determine the optimal signature, as well as 
the potential importance of geographical and population 
differences.

Preliminary pathway enrichment analysis indicated 
a role in cell cycle regulation not only for the 4 miRNAs 
in this signature set, but also for those in the signature 
identified by Liu et al. [11] as well as miRNAs that were 
over-represented in random miRNA-sets observed to 
be significantly associated with DM (Figure 4). Using a 
simple formula to deduce the potential effect of miRNAs 
positively or negatively associated with DM on their 
putative targets, we observed several important mediators 
of the cell cycle to be up-regulated in patients at high risk 
of DM, attributed to down-regulation of miRNAs which 
target these genes (Figure 5B). In particular, the cyclins 
(CCN) D1 and D2, cyclin-dependent kinases (CDK) 4 
and 6, and E2F transcription factors 1 and 3 were targeted 
by a number miRNAs which were negatively associated 
with distant metastasis in our data sets. CCND1 has 
already been well-established to play an important role 
in NPC development and progression [18–20]; however 
a link between CCND1 with clinical outcome has yet to 
be reported. Interestingly, using immunohistochemistry, 
two groups have recently demonstrated that high CDK4 
expression was associated with poor clinical outcome 
in NPC patients; including increased local and distant 
recurrence [21, 22]. Moreover, cyclins D & E, E2F1 and 
CDK4 and 6, have all been previously observed to be 
associated with poor outcome in a number of other tumour 
types [23–27]. These data suggest a potentially important 
role for markers of cell cycle activation as potential 
prognostic indicators in NPC. This relationship between 
cell cycle activation and poor outcome/DM also indicates 
that cell cycle inhibition might be a useful therapeutic 
strategy in NPC.

Despite the numerous publications purporting the 
identification of prognostic miRNA signatures (reviewed 
by Nair et al [28]); none to date has been utilized in the 
clinic. We are hopeful that this 4-miRNA signature set will 
be verified and implemented, based on several strengths of 
this current NPC study: a) large sample size (both Training 
and Validation cohorts were in excess of 100 patients); 
b) uniformity of treatment at a single institution; c) identical 
DMFS in both cohorts despite the difference in time 
period and increased use of chemotherapy in the Training 
cohort; d) a single experimentalist to ensure technical 
consistency; e) the same type of tissues (both cohorts were 
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FFPE blocks); and f) consistency of the miRNA profiling 
platform. Indeed, if this 4-miRNA signature can be verified 
in yet a third independent RCT cohort, this signature could 
be theoretically readily translatable, given that FFPE 
processing is broadly utilized around the world.

In conclusion, we have successfully validated a 
4-miRNA signature that can prognosticate for DM in 
patients with NPC. This signature adds to the prognostic 
value of the current “gold standard” of the TNM staging 
categories, and there is a suggestion of its potential 
predictive role in selecting NPC patients for de-escalating 
treatment to RT alone, despite locally-advanced disease 
at presentation. Further interrogation of the underlying 
biological pathways such as cell cycle and proliferation 
could render the selection of patients who might be 
sensitive to compounds such as CDK, HDAC or EGFR 
inhibitors. Such novel molecular targeted agents have 
been demonstrated to have promising efficacy in the clinic 
[29–31], as well as in pre-clinical NPC models [32]; the 
utilization of a prognostic miRNA signature would enrich 
for potentially sensitive patients, thereby improving 
clinical outcome for future patients with NPC.

MATERIALS & METHODS

Patients and samples

Approval for this study was obtained from the 
Institutional Research Ethics Board (REB) at the Princess 
Margaret Cancer Center (PM). Diagnostic formalin-fixed 
paraffin-embedded (FFPE) blocks were collected for NPC 
patients treated at the PM who were diagnosed with NPC 
between 2000–2009 (Training cohort), and 1993–2000 
(Validation cohort) (Table 1). Patients with metastatic 
disease at the time of diagnosis were excluded. Diagnostic 
and follow-up data were collected through chart reviews; 
the clinical characteristics for these two patient cohorts 
are shown in Table 1. It is important to note that despite 
the greater utilization of CRT (which reflected clinical 
practice), and the superior LRC rates in the Training 
cohort, the 5-year distant metastasis-free survival (DMFS) 
rates for both cohorts was identical, at 87%.

Normal nasopharyngeal epithelial tissues (n = 17) 
were macro-dissected from FFPE blocks of patients who 
underwent a quadroscopy and were not diagnosed with 
NPC. These tissues were examined by at least one head 
and neck cancer (HNC) pathologist (BP-O or IW), and 
deemed to be free of malignant cells.

MiRNA expression profiling

A representative section from each block was 
stained with hematoxylin and eosin (H&E) and 
reviewed by a HNC pathologist (BP-O) to identify 
regions containing malignant cells. Samples were then 
macro-dissected to ensure that > 70% of the material 

analyzed was malignant epithelium. Specimens were 
de-paraffinized with xylene, and total RNA was extracted 
using the Recover All Total Nucleic Acid Isolation Kit 
for FFPE (Ambion, Inc), according to the manufacturer’s 
instructions. RNA was quantified and purity-assessed 
using a Nanodrop spectrophotometer (Thermo Scientific). 
No significant relationship was observed between the 
time of sample fixation (at diagnosis) and either quality or 
quantity of RNA extracted (data not shown). Two hundred 
nanograms of total RNA from each sample was analyzed 
according to the manufacturer’s instructions using the 
nCounter® Human miRNA Assay from Nanostring (v1.0) 
to measure 734 unique human and viral miRNAs. Data 
were normalized using the NanoStringNorm [33] package 
(v1.1.13) in the ‘R’ statistical computing environment 
(v2.15.2). Raw counts were background-corrected by 
subtracting the mean + 2 standard deviations of the 
negative control probes included in the assay, followed by 
variance stabilization and normalization (vsn [34]) called 
through the NanoStringNorm package.

Statistical analysis

All statistical tests were performed in the ‘R’ 
statistical computing environment (v2.15.2), with the 
exception of pathway enrichment analysis. MiRNA 
expression in tumour vs. normal samples was compared 
using Welch’s t-tests with the Benjamini & Hochberg 
false discovery rate (FDR) correction for multiple 
comparisons [35]. Prior to all regression analysis, the data 
were standardized (mean centered and standard deviation 
scaled), using the R package ‘ffmanova’ [36], to maintain 
consistency across datasets. In order to identify a signature 
associated with risk of DM, an L1 penalized (Lasso [37]) 
Cox proportional hazard (CoxPH) regression model was 
fitted to the Training cohort data using the penalized 
(v0.9–42) package [38] in R. The Lasso algorithm 
performed poorly when the proportion of 0s (expression 
below background) was high, so a cut-off of > 80% non-
zero values across samples in the training set was used 
to filter miRNAs to include in the model generation; 
resulting in 298 miRNAs remaining. Leave-one-out 
cross validation was used to determine the L1 tuning 
parameter that yielded the highest log-likelihood, and a 
penalized CoxPH regression model was fitted using this 
optimal value. After fitting, the 4 miRNAs most strongly 
associated with DM were selected for inclusion in the risk 
score (RS) equation in order to maintain the number of 
events per variable (EVP) at ~five [39]. The final equation 
was generated using the regression coefficients from the 
CoxPH model. RS was calculated for each patient in 
the Training cohort, and patients were dichotomized to 
“high risk” (RS ≥ median) or “low risk” (RS < median) 
groups. The difference in DMFS between the two groups 
was compared using the log-rank test whereas the RS 
was analyzed as a continuous predictor using the CoxPH 
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model and the Wald-test. For the continuous HRs, a scaled 
HR (D Index) [40] was also calculated using the D.index 
function in survcomp package (v1.12) to provide a closer 
comparison with HRs from binary analyses. RS and 
risk-groups were determined similarly for the Validation 
cohort, with the cut-point maintained as the median RS in 
the Training cohort and DMFS compared using the log-
rank and Wald tests as previously mentioned.

In order to determine whether all 4 miRNAs are 
integral to the prognostic ability of the signature, all possible 
combinations using 4, 3, 2, or 1 of the miRNAs from the 
model (15 sets in total) were compared based on the AUC of 
their respective DM ROC curves, across multiple time points; 
calculated using the ‘survivalROC’ package (v1.0.3) [41].

Multivariate analysis was performed by including 
the 4-miRNA signature risk-group assignment (“high 
risk” or “low risk”) for each patient adjusted with clinical 
variables (T-Stage, N-Stage, gender, age, treatment) 
in a CoxPH model fitted to the combined Training and 
Validation datasets (n = 242; one patient removed due to 
unevaluable nodal stage, three patients removed due to 
unevaluable tumour stage). The two variables observed 
to be significantly associated with DM in this model (the 
4-miRNA signature RS, and N-stage) were then combined 
to create five risk groups: 1. N0; 2. N1/2 & Low-RS; 3. 
N1/2 & High-RS; 4. N3 & Low-RS; and 5. N3 & High-
RS. The area-under the curve (AUC) was calculated for 
the receiver operating characteristic (ROC) curves across 
multiple time points using the ‘survivalROC’ package 
(v1.0.3) [41] and the C-statistics for various predictive 
models were calculated using the ‘survConcordance’ 
function in the ‘survival’ package (v2.37–4) [42] for R. 
A depiction of the signature generation and validation 
workflow is depicted in (Figure S6).

Random miRNA signatures

It has been demonstrated that particular disease types 
and data sets are prone to random prognostic relationships 
beyond what would be expected by random chance [43–45]. 
In order to address this potential issue in our own data set, 
10,000 random miRNA sets for each size from 2–10 members 
(total = 90,000) were selected from the pool of miRNAs 
expressed above background in > 80% of samples (298 
miRNAs). A CoxPH model was then fitted to the Training 
cohort data using each set of randomly selected miRNAs with 
DM as the endpoint. A Risk Score was calculated using the 
coefficients from the model, and high vs. low risk patients 
(dichotomized using the median RS in the Training set) 
were then compared in the Validation set using the log-rank 
test. The resulting p-values and HRs from these randomly-
generated signatures as well as all individual miRNAs 
included in the analysis (totaling 90,298 signatures) were then 
compared to our 4-miRNA signature, as well as the 5-miRNA 
signature generated by Liu et al [11]. Signatures with p-
values the same or lower than that of our 4-miRNA signature 

(p = 0.014) were then interrogated to determine which 
miRNAs appeared most frequently within signatures 
significantly associated with a risk of DM. The number of 
occurrences was tabulated and normalized to the number 
of miRNAs in the signature; the top 5% most frequently 
occurring miRNAs were then selected for further pathway 
enrichment analysis.

TCGA data retrieval and analysis

Level 3 (Reads-per-million; RPM) miRNA-Seq and 
Level 1 clinical data were downloaded from the Broad 
Institute Firehose (stddata run 2013_11_14) repository for 
data generated by TCGA. At the time of analysis, there 
were 260 HNSCC samples with miRNA-seq values and 
sufficient follow-up data to determine disease specific 
survival status. RPM data were log2 transformed and 
standardized (mean centered, standard deviation scaled) 
before Risk Scores were calculated using the 4-miRNA 
equation described above. Patients were dichotomized into 
“low risk” (<median RS) vs. “high risk” (≥median RS) 
groups, and then compared using the log-rank test.

Target identification and pathway analysis

Validated targets of the 4 miRNAs in our signature, the 
5 miRNAs in the signature generated by Liu et al [11], and 
the top 5% most frequently occurring miRNAs in random 
signatures significantly associated with distant metastasis 
(Figure S4) were downloaded from the manually curated 
database of validated miRNA targets, miRTarBase (http://
mirtarbase.mbc.nctu.edu.tw; release 4.5) [46]. The union of 
the targets for each miRNA set was inputted into the Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID; v6.7) [47] for pathway enrichment analysis. For all 
DAVID analyses, KEGG, Panther, Reactome and Biocarta 
databases were queried. To ensure that the enrichment 
observed was not due to bias in the validated target database, 
a complete list of validated targets for all human miRNAs 
was downloaded from the miRTarBase database, and used as 
the background for enrichment analysis.
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