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By November 2021, COVID-19 had caused more than 5 million 
deaths globally1 and more than 29 400 in Canada.2 The clinical 
manifestations of SARS-CoV-2 infection range from being asymp-
tomatic to multiple organ failure and death. Identifying risk fac-
tors for COVID-19 severity is important to better understand etio-
logical mechanisms and identify populations to prioritize for 
screening, vaccination and medical treatment. Risk factors for 
severity of COVID-19 include male sex, older age, pre-existing 
medical conditions and being from racialized communities.3–5 
More recently, ambient air pollution has been implicated as a 
potential driver of COVID-19 severity.6–10

Long-term exposure to ambient air pollution, a major contribu-
tor to global disease burden,11 could increase the risk of severe 
COVID-19 outcomes by several mechanisms. Air pollutants can 

reduce individuals’ pulmonary immune responses and antimicrob-
ial activities, boosting viral loads.8 Air pollution can also induce 
chronic inflammation and overexpression of the alveolar 
angiotensin- converting enzyme 2 (ACE) receptor,7 the key receptor 
that facilitates SARS-CoV-2 entry into cells.12,13 Exposure to air pol-
lution contributes to chronic conditions, such as cardiovascular 
disease, that are associated with unfavourable COVID-19 progno-
sis, possibly owing to persistent immune activation and excessive 
amplification of cytokine development.10 Thus, greater exposure 
to long-term air pollution may lead to severe COVID-19 outcomes.

Reports exist of positive associations between long-term 
exposure to particulate matter with diameters equal to or 
smaller than 2.5 or 10 µm (PM2.5 and PM10), ground-level ozone 
(O3) and nitrogen dioxide (NO2), and metrics of COVID-19 severity 
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Abstract
Background: The tremendous global 
health burden related to COVID-19 
means that identifying determinants of 
COVID-19 severity is important for pre-
vention and intervention. We aimed to 
explore long-term exposure to ambient 
air pollution as a potential contributor 
to COVID-19 severity, given its known 
impact on the respiratory system.

Methods: We used a cohort of all people 
with confirmed SARS-CoV-2 infection, 
aged 20 years and older and not resid-
ing in a long-term care facility in 
Ontario, Canada, during 2020. We evalu-
ated the association between long-term 
exposure to fine particulate matter 
(PM2.5), nitrogen dioxide (NO2) and 

ground-level ozone (O3), and risk of 
COVID-19-related hospital admission, 
intensive care unit (ICU) admission and 
death. We ascertained individuals’ long-
term exposures to each air pollutant 
based on their residence from 2015 to 
2019. We used logistic regression and 
adjusted for confounders and selection 
bias using various individual and con-
textual covariates obtained through 
data linkage.

Results: Among the 151 105 people with 
confirmed SARS-CoV-2 infection in 
Ontario in 2020, we observed 8630 hos-
pital admissions, 1912 ICU admissions 
and 2137 deaths related to COVID-19. 
For each interquartile range increase in 

exposure to PM2.5 (1.70 µg/m3), we esti-
mated odds ratios of 1.06 (95% confi-
dence interval [CI] 1.01–1.12), 1.09 (95% 
CI 0.98–1.21) and 1.00 (95% CI 0.90–1.11) 
for hospital admission, ICU admission 
and death, respectively. Estimates were 
smaller for NO2. We also estimated odds 
ratios of 1.15 (95% CI 1.06–1.23), 1.30 
(95% CI 1.12–1.50) and 1.18 (95% CI 
1.02–1.36) per interquartile range 
increase of 5.14 ppb in O3 for hospital 
admission, ICU admission and death, 
respectively.

Interpretation: Chronic exposure to air 
pollution may contribute to severe out-
comes after SARS-CoV-2 infection, par-
ticularly exposure to O3.
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(e.g., mortality and case fatality rate).8–10 However, most studies 
to date have used ecological and cross-sectional designs, owing 
to limited access to individual data, which leads to ambiguity in 
interpreting the results, thus hindering their influence on pol-
icy.6,14 Ecological designs do not allow for disentangling the rela-
tive impacts of air pollution on individual susceptibility to infec-
tion and disease severity.14 Residual confounding by factors such 
as population mobility and social interactions is also problem-
atic. Therefore, a cohort study with data on individuals with 
SARS-CoV-2 is a more appropriate design.6,14 Studies that have 
used individual data were conducted in specific subpopula-
tions15,16 or populations with few severe cases,17 or had limited 
data on individual exposure to air pollutants.18 In Canada, 1 eco-
logical study found a positive association between long-term 
exposure to PM2.5 and COVID-19 incidence,19 but no published 
study has explored the association between air pollution and 
COVID-19 severity.

We aimed to examine the associations between long-term 
exposure to 3 common air pollutants (PM2.5, NO2 and O3) and 
key indicators of COVID-19 severity, including hospital admis-
sion, intensive care unit (ICU) admission and death, using a 
large prospective cohort of people with confirmed SARS-CoV-2 
infection in Ontario, Canada, in 2020. The air contaminants 
PM2.5, NO2 and O3 are regularly monitored by the Canadian gov-
ernment, and are key pollutants that are considered when set-
ting air-quality policies. They originate from varying sources 
(NO2 is primarily emitted during combustion of fuel, O3 is pri-
marily formed in air by chemical reactions of nitrogen oxides 
and volatile organic compounds, and PM2.5 can be emitted dur-
ing combustion or formed by reactions of chemicals like sul-
phur dioxide and nitrogen oxides in air) and they may affect 
human health differently.20,21,22 

Methods

Study population and data sources
We constructed a population-based cohort comprising all people 
with confirmed SARS-CoV-2 infection aged 20 years or older and 
who did not reside in a long-term care facility in Ontario, Canada, 
throughout 2020. We excluded residents of long-term care facil-
ities, given that their profile of frailty and air pollution exposure 
differs from that of the general population. We used data from 
Ontario’s Case and Contact Management System and the Ontario 
Laboratories Information System, which recorded specimen col-
lection date (date of diagnosis), demographics and socioeco-
nomic status of people with SARS-CoV-2 infection, as well as the 
incidence of COVID-19–related hospital admission, ICU admis-
sion and death.23,24 We followed up outcomes until their occur-
rence or May 2021, whichever came first. 

Covariates and exposures
We obtained information on key factors that might confound 
the association between air pollution and COVID-19 severity 
(detailed list of data sources in Appendix 1, eTable 1, available 
at www.cmaj.ca/lookup/doi/10.1503/cmaj.220068/tab-related 
-content). Briefly, we obtained data on health care access and 

pre-existing conditions of individuals, using hospital discharge 
data from the Canadian Institute for Health Information Dis-
charge Abstract Database and physician service claims in the 
Ontario Health Insurance Plan database. We linked the cohort to 
Ontario’s Registered Persons Database, a registry of all Ontario 
residents with a health insurance number, to obtain individuals’ 
annual residential address over the 5 years before 2020. We also 
obtained their neighbourhood-level socioeconomic status 
through linkage with Census data; details are described else-
where.25 We used annual exposure surfaces of PM2.5, NO2 and O3 
developed previously, which showed good performance in 
evalu ations: the PM2.5 surface exhibited R2 = 0.73 in long-term 
cross-validation with measurements; 26 the NO 2 model 
accounted for 73% of the variability in annual measurements;27 
and the O3 model’s proportion of correct predicted values 
ranged from 65% to 93%, depending on the time of day28 
(Appendix 1, Section 1). Using these surfaces and individuals’ 
annual residential address, we calculated their long-term expos-
ures to air pollutants as the average postal code–specific annual 
concentrations at their residential addresses in the 5 years 
before the pandemic (2015 to 2019). 

Statistical analysis
Data sets were linked using unique encoded identifiers and ana-
lyzed at ICES. We applied multivariable logistic regression mod-
els to investigate the associations between long-term exposure 
to 3 ambient air pollutants (PM2.5, O3 and NO2) and 3 indicators of 
severity of COVID-19 (COVID-19–related hospital admission, ICU 
admission and death) separately after assessing relevant 
assumptions. We estimated odds ratios (ORs) to approximate 
risk ratios because these 3 outcomes were relatively rare. In this 
study, we focused on cumulative incidence of the outcomes over 
the entire follow-up period.

Because uncertainty exists regarding the mechanisms of 
how long-term exposure to air pollution might affect COVID-19 
severity and data availability varies across studies, it has been 
suggested that different variables should be controlled for to 
reduce confounding in observational studies of COVID-19 
severity.14,16,29 We applied the “disjunctive cause criterion,” 
which includes any pre-exposure covariate that is a cause of 
the exposure or the outcome, or both.30 Additionally, we 
adjusted for contextual factors that correlate with air pollution 
and may also affect the probability of testing for SARS-CoV-2 in 
an attempt to account for selection bias.31 This is because 
inclusion in the study cohort required that a person test posi-
tive for SARS-CoV-2 infection, which is affected by the severity 
of symptoms, thus creating a collider between exposure and 
outcome (see Appendix 1, eFigure 1 for a directed acyclic graph 
depicting this possible selection bias).32 Using literature on air 
pollution and health in Canada,33,34 evidence about the drivers 
of COVID-19 severity3–5,16 and recently identified contextual fac-
tors associated with testing positive for SARS-CoV-2 infection in 
Ontario,35 we considered 5  sequential models with different 
sets of covariates (model specifications in Appendix 1, Section 2), 
with Model 5 as the full model (see Appendix 1, eFigure 2 for 
the directed acyclic graph). Briefly, we adjusted for date of 
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diagnosis, demographics (sex and age), being part of an out-
break, being an essential worker, neighbourhood income, 
health care access (number of outpatient visits in 2019, influ-
enza vaccination status and distance to nearest health ser-
vices), neighbourhood socioeconomic status (average house-
hold size and the Ontario Marginalization Index), and other 
contextual factors (rurality, population density and health 
regions). Because the Ontario Marginalization Index encom-
passes 4 dimensions of socioeconomic status using dissemina-
tion area–level Census data, we excluded Census variables that 
are included in the Ontario Marginalization Index, to avoid 
multicollinearity.36 The same set of models was applied for all 
combinations of exposure and outcome.

We conducted sensitivity analyses (see details in Appendix 1, 
Section 3) considering 10  alternative models in which we 
explored additional sets of covariates and different exposure 
windows. We also evaluated whether the exposure–outcome 
association departed from linearity using restricted cubic 
spline, estimated the controlled direct effect by further adjust-
ing for pre-existing conditions, excluded events that occurred 
more than 90 days after initial diagnosis, restricted to events 
that occurred after May 24, 2020 (when testing became avail-
able to asymptomatic people),37 and excluded people with 
extreme exposures (> 99% or < 1%). We conducted all analyses 
using SAS (EG 7.11).

Ethics approval
Use of ICES data in this study was authorized under section 45 of 
the Personal Health Information Protection Act of Ontario, which 
does not require review by a Research Ethics Board. 

Results

Among 151 105 people recorded as being infected with SARS-CoV-2 
in Ontario in 2020 (Figure 1), we identified 8630 (5.7%), 1912 (1.3%) 
and 2137 (1.4%) COVID-19–related hospital admissions, ICU admis-
sions and deaths, respectively. The median times between first diag-
nosis and hospital admission, ICU admission and death were 5 days, 
8 days and 15 days, respectively. The medians (interquartile ranges 
[IQRs]) of long-term exposure to air pollutants were 7.64 µg/m3 
(6.43–8.13), 7.75 ppb (6.15–8.65) and 44.80 ppb (42.41–47.38) for 
PM2.5, NO2 and O3, respectively. Cohort characteristics are summar-
ized by outcome in Table 1 and by exposure in Appendix 1, eTable 2.

Higher exposure to PM2.5 was associated with an increased risk of 
both hospital and ICU admission in Models 1 to 3 (Appendix 1, 
eFigure 3). Adjustment for neighbourhood socioeconomic status 
attenuated the associations toward the null. In the final model 
adjusting for additional contextual factors (Figure 2), we obtained 
ORs of 1.06 (95% confidence interval [CI] 1.01–1.12) and 1.09 (95% CI 
0.98–1.21) per IQR increase of 1.70 µg/m3 for hospital admission and 
ICU admission, respectively (Appendix 1, eTable 4). Although death 
was positively associated with PM2.5 in Models 1 to 4, we did not 
observe an effect in the fully adjusted model (OR 1.00 [95% CI 
0.90–1.11]).

For NO2, we found similar patterns in results of sequential models 
(1–4) as for PM2.5. In the fully adjusted model, we obtained ORs of 1.09 
(95% CI 0.97–1.21) per IQR increase of 2.50 ppb NO2 for ICU admis-
sion, while we did not observe an effect for hospital admission (OR 
1.01 [95% CI 0.95–1.07]) or death (OR 1.02 [95% CI 0.91–1.15]). 

For O3, we found no evidence for an association in the par-
tially adjusted models (Models 1–4). In the fully adjusted model, 

Excluded

• Redundant records  n = 63

• Living in Ontario for less than 3 years  n = 3047

• Age < 20 yr  n = 22 938

• Residing in long-term care facility  n = 11 826

• With missing value in covariates 

  other than exposure*  n = 1144 

Individuals with confirmed 

SARS-CoV-2 infection

n = 190 123

Final study cohort

n = 151 105

Separately excluded missing

• PM
2.5  

n = 3844

• NO
2  

n = 3883

• O
3  

n = 4409

Analytical cohort for PM
2.5

n = 147 261

Analytical cohort for NO
2

n = 147 222

Analytical cohort for O
3

n = 146 697

Figure 1: Flow chart showing the creation of the cohort. Note: *Based on covariates included in the final model (Model 5). 
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Table 1 (part 1 of 2): Demographics, socioeconomic status, health behaviour and characteristics of infection in study cohort 
(all adults with SARS-CoV-2 infection in Ontario, Canada, in 2020) and in subcohorts experiencing COVID-19–related 
outcomes

Characteristic

No. (%)* of people in 
entire cohort

n = 151 105

No. (%)* of people 
admitted to hospital  

n = 8630

No. (%)* of people 
admitted to ICU  

n = 1912

No. (%)* of people  
who died
n = 2137

Demographics

    Male 74 043 (49.0) 4827 (55.9) 1258 (65.8) 1268 (59.3)

    Age, yr, median (IQR) 44 (31–57) 69 (56–81) 65 (56–74) 80 (71–88)

Characteristics of SARS-CoV-2 infection

    Outbreak-related† 26 382 (17.5) 2032 (23.5) 249 (13.0) 851 (39.8)

Essential worker‡ 22 441 (14.9) 492 (5.7) 115 (6.0) 31 (1.50%)

Socioeconomic status

    Neighbourhood income in 2016

      1st quintile (lowest) 36 695 (24.3) 2611 (30.3) 559 (29.2) 628 (29.4)

      2nd quintile 33 363 (22.1) 1978 (22.9) 459 (24.0) 503 (23.5)

      3rd quintile 33 002 (21.8) 1664 (19.3) 369 (19.3) 432 (20.2)

      4th quintile 26 555 (17.6) 1300 (15.1) 291 (15.2) 307 (14.4)

      5th quintile (highest) 21 490 (14.2) 1077 (12.5) 234 (12.2) 267 (12.5)

Health care access

    No. of outpatient visits 
    in 2019, median (IQR)

2 (1–5) 6 (2–11) 5 (2–10) 7 (3–12)

    Influenza vaccination 27 876 (18.4) 2928 (33.9) 661 (34.6) 887 (41.5)

    Normalized distance to 
    nearest health services, 
    mean ± SD§

0.02 ± 0.04 0.03 ± 0.05 0.02 ± 0.04 0.03 ± 0.04

Neighbourhood-level (dissemination area) socioeconomic status

    Average household 
    size, median (IQR)

3 (3) 3 (2–3) 3 (2–3) 3 (2–3)

    Ontario Marginalization Index: ethnic concentration

      1st quintile (lowest) 8904 (5.9) 623 (7.2) 114 (6.0) 176 (8.2)

      2nd quintile 13 289 (8.8) 866 (10.0) 191 (10.0) 285 (13.3)

      3rd quintile 19 572 (12.9) 1219 (14.1) 273 (14.3) 360 (16.8)

      4th quintile 31 936 (21.1) 1936 (22.4) 422 (22.1) 478 (22.4)

      5th quintile (highest) 77 404 (51.2) 3986 (46.2) 912 (47.7) 838 (39.2)

  Ontario Marginalization Index: residential instability

      1st quintile (lowest) 42 724 (28.2) 1720 (19.9) 410 (21.4) 315 (14.7)

      2nd quintile 25 362 (16.8) 1267 (14.7) 311 (16.3) 312 (14.6)

      3rd quintile 23 172 (15.3) 1281 (14.8) 317 (16.6) 347 (16.2)

      4th quintile 24 028 (15.9) 1583 (18.3) 347 (18.1) 381 (17.8)

      5th quintile (highest) 35 819 (23.7) 2779 (32.2) 527 (27.6) 782 (36.6)

  Ontario Marginalization Index: material deprivation

      1st quintile (lowest) 25 642 (17.0) 1313 (15.2) 263 (13.8) 335 (15.7)

      2nd quintile 26 421 (17.5) 1368 (15.9) 267 (14.0) 365 (17.1)

      3rd quintile 29 948 (19.8) 1599 (18.5) 381 (19.9) 403 (18.9)

      4th quintile 31 872 (21.1) 1844 (21.4) 426 (22.3) 453 (21.2)

      5th quintile (highest) 37 222 (24.6) 2506 (29.0) 575 (30.1) 581 (27.2)
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O3 exposure was associated with an increased risk for all 
3 outcomes, with ORs of 1.15 (95% CI 1.06–1.23), 1.30 (95% CI 
1.12–1.50) and 1.18 (95% CI 1.02–1.36) per IQR increase of 
5.14  ppb for hospital admission, ICU admission and death, 
respectively.

In sensitivity analyses, we found estimates similar to those of the 
main model when adjusting for additional covariates, using different 
exposure windows, restricting to events that occurred within 90 days 
of diagnosis (enrolment date), excluding people with extreme expos-
ures, and accounting for the effect mediated through pre-existing 

Table 1 (part 2 of 2): Demographics, socioeconomic status, health behaviour and characteristics of infection in study cohort 
(all adults with SARS-CoV-2 infection in Ontario, Canada, in 2020) and in subcohorts experiencing COVID-19–related 
outcomes

Characteristic

No. (%)* of people in 
entire cohort

n = 151 105

No. (%)* of people 
admitted to hospital  

n = 8630

No. (%)* of people 
admitted to ICU  

n = 1912

No. (%)* of people  
who died
n = 2137

  Ontario Marginalization Index: dependency

      1st quintile (lowest) 52 603 (34.8) 2214 (25.7) 509 (26.6) 384 (18.0)

      2nd quintile 34 309 (22.7) 1812 (21.0) 426 (22.3) 376 (17.6)

      3rd quintile 25 055 (16.6) 1477 (17.1) 348 (18.2) 364 (17.0)

      4th quintile 20 955 (13.9) 1411 (16.3) 333 (17.4) 430 (20.1)

      5th quintile (highest) 18 183 (12.0) 1716 (19.9) 296 (15.5) 583 (27.3)

Other contextual factors for spatial heterogeneity in quality of care

    Rural area¶ 2887 (1.9) 175 (2.0) 44 (2.3) 36 (1.7)

    Neighbourhood-level 
    population density per 
    km2, median (IQR)

3886 (1904–7002) 4075 (2050–7793) 3986 (2000–7407) 3744 (1957–7601)

  Health region unique** ID

      2253 35 587 (23.6) 1244 (14.4) 232 (12.1) 238 (11.1)

      2270 16 347 (10.8) 842 (9.8) 173 (9.0) 232 (10.9)

      3501 8593 (5.7) 397 (4.6) 66 (3.5) 123 (5.8)

      3502 5056 (3.3) 382 (4.4) 92 (4.8) 128 (6.0)

      3503 6632 (4.4) 414 (4.8) 112 (5.9) 90 (4.2)

      3504 11 211 (7.4) 750 (8.7) 170 (8.9) 205 (9.6)

      3505 938 (0.6) 44 (0.5) 7 (0.4) 10 (0.5)

      3509 6912 (4.6) 386 (4.5) 101 (5.3) 81 (3.8)

      3510 939 (0.6) 67 (0.8) 14 (0.7) 15 (0.7)

      3511 8327 (5.5) 527 (6.1) 116 (6.1) 118 (5.5)

      3512 1966 (1.3) 141 (1.6) 30 (1.6) 32 (1.5)

      3513 552 (0.4) 49 (0.6) 18 (0.9) 13 (0.6)

      3514 526 (0.3) 31 (0.4) 9 (0.5) ≤ 5 (0.1)

      3895 47 519 (31.4) 3356 (38.9) 772 (40.4) 849 (39.7)

Note: ICU = intensive care unit, IQR = interquartile range, SD = standard deviation.
*Unless otherwise specified.
†We define an infection as outbreak-related if it is linked to a declared outbreak of SARS-CoV-2 infection. This field represents all outbreaks, as determined by the local public health 
unit, and is not limited to outbreaks in any particular setting.
‡We define individuals as essential workers if they satisfy any of the following criteria: work in an adult or youth addiction setting, work in an adult developmental services residential 
setting, work as animal or animal product handlers, work in violence against women or anti–human trafficking residential site, work in children’s residential setting, work in another type 
of congregate care setting not specifically listed, work in correctional facility, provide custodial services, work as dental hygienists, work as doctors, work as educational staff, work as farm 
workers, work as first responders, work as grocery workers, work as health care workers, work as shelter staff or homeless workers, work in a hospital, work in long-term care home, work 
as laboratory workers with infectious agents and materials, work as medical technicians in a clinic or hospital setting, work as midwife, work in a mine, work on a mink farm, work as 
municipal workers, work as nurses, work as personal support workers, work as respiratory therapists, work in a retirement home, work as rotational worker, work as veterinarians, work in 
a child-care centre or in a type of supportive housing. 
§We define distance to nearest health services as the distances of a dissemination block to any dissemination block with a health care facility. The original distance was normalized. 
¶We define rural as communities with a rurality index of Ontario (2008 version) > 40, which considers population and travel time to referral centres.
**We define health region as a combination of Ontario Local Health Integration Networks and public health unit. The following general regions correspond to each health region 
unique ID: 2253-York region, 2279-Peel region, 3501-Erie St. Clair region, 3502-South West region, 3503-Waterloo Wellington region, 3504-Hamilton Niagara Haldimand Brant region, 
3505-Central West region, 3509-Central East region, 3510-South East region, 3511-Champlain region, 3512-North Simcoe Muskoka region, 3513-North East region, 3514-North West 
region, 3895-Toronto region.
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conditions caused by air pollution (Appendix 1, eFigure 4). The asso-
ciations increased for O3 but attenuated for NO2 and PM2.5 in the 
period after May 24 (Appendix 1, Section 3). We observed no evi-
dence of departure from linearity for the air pollutant–outcome 
associations based on likelihood ratio tests.

Interpretation

We observed that people with SARS-CoV-2 infection who lived in 
areas of Ontario with higher levels of common air pollutants 
(PM2.5, NO2 and O3) were at elevated risk of being admitted to the 
ICU after we adjusted for individual and contextual confounding 
factors, even when the air pollution level was relatively low. In 
addition, we found that chronic exposure to PM2.5 and O3 was 
associated with elevated risk of COVID-19–related hospital 
admission, and exposure to O3 was also associated with elevated 
risk of death due to COVID-19. These results suggest that chronic 
exposure to air pollution before SARS-CoV-2 infection may con-
tribute to COVID-19 severity, particurlarly chronic exposure to O3.

Previous ecological studies found positive associations 
between long-term exposure to PM2.5, NO2 and O3, and COVID-19 
mortality and case fatality rate.29,38,39 In other, more limited, 
cohort studies, Bowe and colleagues found a relative risk of 1.09 
(95% CI 1.07–1.11) per 1.70 µg/m3 increase in PM2.5 concentration 

for hospital admission among American veterans who received a 
diagnosis of COVID-19,16 while Bozack and colleagues15 found 
rela tive risks of 1.23 (95% CI 1.00–1.53) for ICU admission and 1.20 
(95% CI 1.03–1.39) for death, but no association with NO2 among 
people admitted to hospital with COVID-19. Using slightly differ-
ent methods, a cohort study in Spain and a cohort study in the 
Mexico City metropolitan area also found a positive association 
between PM2.5 and COVID-19 severity.17,18 Our estimates are similar 
in direction of association but more modest, probably owing to 
differences in study population and our ability to adjust for many 
individual and contextual confounders. Given the ongoing pan-
demic, our findings that underscore the link between chronic 
exposure to air pollution and more severe COVID-19 could have 
important implications for public health and health systems.

Our study has several strengths. Our cohort captured major 
severe outcomes among all Ontario adults positive for SARS-
CoV-2 infection who were not living in long-term care institu-
tions. A recent modelling study identified little disparity in the 
officially reported COVID-19 death count and estimated excess 
mortality during the pandemic in Canada,40 suggesting adequate 
surveillance. Using historical residential addresses in our assess-
ment of exposure minimized concerns regarding exposure mis-
classification due to population mobility. We systematically con-
sidered confounding and selection bias, and estimates from the 
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Figure 2: Association between average exposure to air pollutants and severe outcomes of SARS-CoV-2 infection in odds ratio per interquartile range 
(IQR)* increase in exposure for the final model (Model 5). Note: ICU = intensive care unit. *Interquartile range represents the difference between 75th 
and 25th percentile of the exposure.
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sequential models supported our covariate adjustment strategy. 
For example, because residing in rural areas is often associated 
with lower PM2.5 exposure41 and was associated with lower odds 
of getting tested for SARS-CoV-2 infection in Ontario,35 restricting 
the study population to people with positive tests might lead to 
an artificially diminished association between PM2.5 and COVID-19 
severity (Appendix 1, eFigure 1). The slight increases in ORs from 
Model 4 to Model 5 in most combinations of exposures and out-
comes might have resulted from the adjustment for selection 
bias by including rurality (and several other contextual factors) in 
this step. Consistent results from the main model and sensitivity 
analyses also alleviated our concerns about differential results 
due to selection bias, residual confounding, duration of the 
expos ure and outcome misclassification.

Limitations
Race and ethnicity have been shown to be associated with COVID-
19 severity,4 likely mediated through social determinants of health, 
but we did not adjust for either race or ethnicity in this study. One 
study35 showed that the association between race and ethnicity 
and the probability of testing positive for SARS-Cov-2 infection 
diminished after adjusting for social determinants of health (e.g., 
being an essential worker), which we accounted for in this study. 
We believe it is unlikely that confounding related to race and eth-
nicity could entirely account for the associations observed. 

Because we used average ambient air pollution levels at 
 people’s residential addresses as surrogates for individual expos-
ure, some exposure misclassification is likely, owing to individ-
uals’ activity patterns, such as travel to work. However, studies 
have found minimal bias, or bias toward the null, from such 
exposure misclassification.42,43 Generalization of our results, from 
all people with confirmed SARS-CoV-2 infection to all infected 
people, requires the assumption of similar associations between 
exposure to air pollution and severity of COVID-19 for those 
tested and not tested. Such an assumption is commonly made in 
studies evaluating vaccination effectiveness against clinical 
SARS-CoV-2 infections with a test-negative design.44,45 

Finally, we focused on the period before widespread vaccina-
tion against SARS-CoV-2 or the use of effective medications in 
patients with COVID-19. 

Conclusion
Using a cohort of all people with confirmed SARS-CoV-2 infection 
during 2020, we found empirical evidence that chronic exposure 
to air pollution may contribute to severe outcomes after SARS-
CoV-2 infection, particularly exposure to O3. However, uncertainty 
still remains in the mechanisms of how long-term air pollution 
might affect COVID-19 severity, which calls for future research.
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