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To obtain a structural model of a macromolecular assembly by
single-particle EM, a large number of particle images need to be
collected, aligned, clustered, averaged, and finally assembled via
reconstruction into a 3D density map. This process is limited by the
number and quality of the particle images, the accuracy of the initial
model, and the compositional and conformational heterogeneity.
Here, we describe a structure determinationmethod that avoids the
reconstruction procedure. The atomic structures of the individual
complex components are assembled by optimizing a match against
2D EM class-average images, an excluded volume criterion, geo-
metric complementarity, and optional restraints from proteomics
and chemical cross-linking experiments. The optimization relies on
a simulated annealingMonte Carlo search and a divide-and-conquer
message-passing algorithm. Using simulated and experimentally
determined EM class averages for 12 and 4 protein assemblies,
respectively, we show that a few class averages can indeed result in
accurate models for complexes of as many as five subunits. Thus,
integrative structural biology can nowbenefit from the relative ease
with which the EM class averages are determined.

integrative modeling | structural determination | computational biology

EM is an increasingly useful approach for structural charac-
terization of macromolecular assemblies (1–3). Different fla-

vors of EM include electron crystallography, single-particle EM,
and electron tomography (4), although tomography is generally
limited to resolutions worse than 20 Å. Single-particle EM can be
used with negative-stained or cryogenically frozen (cryo-EM)
samples. Cryo-EM particularly presents some attractive advan-
tages: It preserves a near-native conformation of the molecules, it
can be applied to the study of large assemblies, and it can theo-
retically achieve atomic resolution (5). Currently, the standard
way to analyze single-particle EM data is to align collected 2D
single-particle images, cluster the images, calculate a 2D class-
average image for each cluster, and finally perform 3D re-
construction to obtain a 3D density map. Pseudoatomic models
for many assemblies have been generated by fitting X-ray crys-
tallographic structures and/or comparative models of the in-
dividual components into a density map of the whole assembly (6).
Obtaining a high-resolution density map requires a large number

of single-particle images and depends critically on determining an
initial low-resolution density map as a template for reconstruction,
as well as a high signal-to-noise ratio (SNR) in the particle images
(7–10). Several methods exist to obtain the template map: random-
conical reconstruction (11), common lines determination (12–14),
and maximization of the posterior probability of observing the set
of class averages (15). A challenge for template construction arises
when the available class averages do not provide significant cov-
erage of all the orientations of the complex; in such a case, an ac-
curate template map cannot be computed. This situation is com-
mon for assemblies that have only a few preferred orientations on
the sample grid. Therefore, there is a need for a general procedure
to construct accurate assembly models based on only a few class
averages and potentially other data.
Here, we address the problem of assembling multiple subunits

of known stoichiometry into a macromolecular complex, based, in
part, on the class averages. The inputs are the experimentally de-

termined or modeled atomic structures of the assembly compo-
nents; one or more class averages; and potentially other restraints,
such as contacts and distances between neighboring proteins, de-
rived from, for example, proteomics and chemical cross-linking
experiments. Our approach relies on encoding the class averages as
spatial restraints and potentially combining them with other re-
straints into a scoring function. Each image is used to score amodel
by the degree of the match between the optimal model projection
and the image. In principle, any number of class averages can be
used, without the need for single-particle reconstruction. Models
are then obtained by sampling the scoring function. The sampling
protocol relies on a simulated annealing Monte Carlo (SA-MC)
optimization in continuous space, followed by the combination of
the SA-MC solutions with the divide-and-conquer message-pass-
ing algorithm DOMINO (16). A unique aspect of our approach is
that a complex structure is assembled from scratch without relying
on an initial structure, although class averages have already been
used to refine it (17).
We first present our benchmark results on 12 complexes. The

results demonstrate that accurate models for various types of
macromolecular assemblies can be obtained by using only a limited
number of class averages in combination with other restraints not
containing direct 3D information. Next, as an example of the utility
of the approach, we use it to compute models for the human
transferrin receptor–transferrin (TfR–Tf) complex (18), the human
C3bB protoconvertase complex (19), the bovine mitochondrial
supercomplex I1III2IV1 (20), and the type I restriction modification
complex EcoR124I from Escherichia coli (21). Finally, the appli-
cability of the method and possible improvements are discussed.

Results
The em2D score based on an image is 1 minus the cross-corre-
lation coefficient (ccc) between the image and the best-matching
model projection (Materials and Methods). To find this optimal
projection, a search over two translational and three rotational
registration parameters is performed (Fig. 1A). When more than
one image is available, the average em2D score (<em2D>) is
computed from the individual em2D scores. Usually, the images
are class averages obtained by classification and averaging of
single-particle images from negative stains or cryo-EM; single-
particle images from a tilt series and negative-stained samples
can also be used in principle. In our benchmark, we assume
that the sample used to produce the class averages is composi-
tionally and conformationally homogeneous. Apart from the
<em2D> score, our complete scoring function includes proteo-
mics restraints describing proximity between components of the
assembly, cross-linking restraints imposing a maximum distance
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between specific residues, geometric complementarity restraints
favoring large contact surfaces between components, and ex-
cluded volume restraints to avoid steric clashes between the com-
ponents. Models for a macromolecular assembly are generated
using a two-step sampling protocol consisting of an SA-MC op-
timization followed by discrete sampling with the DOMINO al-
gorithm (Fig. 1B).

Benchmark Preparation. The method was tested on 12 assemblies
from the Protein Data Bank (PDB), composed of two to five
subunits (Table 1). The atomic structure (native configuration) of
each complex was down-sampled to a resolution of 10 Å and
projected in three random orientations to obtain a set of simulated

class averages (Fig. S1). Misalignment of an assembly in the image
was simulated by adding random translations in the image plane
within the range of (−3,3) pixels. To simulate experimental noise,
zero-meanGaussian white noise was added to obtain an SNR of 1.
We performed 12 simulated experiments for each structure in the
benchmark set. The first 6 simulated experiments (image-re-
strained experiments) included the class averages as restraints and
differed in the number of proteomics and cross-linking restraints.
The remaining 6 simulated experiments (control experiments)
were identical to the first 6, except that they did not use the images.

Benchmark. The <em2D> score of a model correlates strongly
with the all-atom distance-root-mean-square between the model

A BFig. 1. Flow chart of the scoring and sampling
algorithms. (A) To calculate the em2D score, we
project the model in evenly spaced directions on the
hemisphere with positive y-axis values. The resulting
projections and the input images are preprocessed
and subsequently aligned in two dimensions to ob-
tain an initial coarse alignment. The best alignments
are refined using the Simplex algorithm to minimize
the squared difference between the pixels of the
image and the projection, providing the em2D score
of the image. The total score <em2D> for a model is
the average of the individual image scores. (B) Inputs
to the sampling protocol are the atomic structures of
the assembly components and all the restraints. If
chemical cross-linking data are available, we build
a graph with nodes corresponding to assembly com-
ponents and edges between cross-linked compo-
nents; the edgeweight is the number of cross-links. A
pairwise rigid-body docking is performed between
the elements connected by an edge in the maximum
spanning tree of the graph. We use the docking sol-
utions to constrain the possible moves of the components during the SA-MC sampling. The models coming from multiple SA-MC runs are improved using the
DOMINO algorithm to obtain a set of models for the macromolecular assembly.

Table 1. Results for the benchmark set of complexes modeled using simulated EM class averages as restraints and examples using
experimental class averages (entries below the horizontal line)

Column 1 shows the PDB or EMDB ID code of the complex, and column 2 shows its number of subunits. The models calculated using the class averages (white
background) are compared with those calculated without class averages (gray background); the rest of the restraints are the same (number of cross-linking
restraints, column 3). Two models are shown per complex: the model with the minimum value of the scoring function (best scored) and the model most similar
to the native configuration (best sampled). The accuracy of a model is measured by the ccc between the density map of the native configuration and the density
map of the model (columns 4 and 6), and the average placement score of the assembly subunits (columns 5 and 7). The placement score for a subunit is defined
as the (placement distance in Å, placement angle in degrees) pair, resulting from comparing the model with the native configuration, in the least-squared
superposition of all assembly atoms. The placement distance is given by the subunit centroid distance, and the placement angle is the screw rotation that
superposes the model subunit on the native subunit. The rank of a model is its position in the sorted list of values of the scoring function (columns 8 and 9).
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and the native configuration as well as with the ccc between the
density map of the native configuration and the density map of
the model (Fig. S2 A and B). In contrast, the scores for the
remaining restraints are weakly correlated with the model ac-
curacy (Fig. S2 A and B).
We applied principal component analysis (Materials and

Methods) to determine weights for the restraint terms in the
scoring function, thus maximizing the variance of the total score
obtained for the models. The weights were set to the first prin-
cipal component w = (0.60, 0.33, 0.13, 0.18, 0.08). For the final
ranking in the image-restrained experiments, however, only the
<em2D> score was used because its weight was much larger than
that for any other restraint.
We assessed the accuracy of an assembly model using the

placement score (16) (Table 1) and the ccc between the density
map of the native configuration and the density map of the
model. For all the structures in the benchmark, the top model in
the image-restrained experiments had a lower placement score
and a greater ccc than the top model in the control experiments.
On average, we found models with ccc = 0.80 using the class
averages and ccc = 0.58 without them. We declared as acceptable
a model with a placement distance ≤10 Å and a placement angle
≤36° (1/5 of the maximum rotation of 180°), based on an obser-
vation that such models tend to have a ccc >0.70 and are “visually”
similar to the native configuration (Fig. S1). Using the <em2D>
score allowed us to find an acceptable model in 8 of the 12 image-
restrained experiments. None of the best-scoring models in the
control experiments were acceptable (Table 1). Therefore, class
averages provide useful information for assembly modeling.
Using the class averages also improved the sampling as well as

the scoring. In all cases, the best-sampled model in an image-
restrained experiment has a lower placement score and a greater
ccc than its control counterpart (Table 1). The class averages did
not improve sampling for structures containing globular (PDB ID

code 1z5s) or cylindrical (PDB ID code 3pdu) components. The
models selected in these two cases had overall shape similarity to
the native configuration, with correct positions but incorrect ori-
entations (Fig. S1). For PDB ID code 3puv, the method failed to
find the native interface between the central subunits (Fig. S1).
After clustering the 100 best-scoring models for each assembly,
the best-scoring model was generally in the largest cluster, with
a few exceptions (Fig. 2A and Fig. S2C). For PDB ID codes 2uzx
and 2wvy, the best-scoring solution was not in the largest cluster
but was more accurate than the solutions in the largest cluster; for
PDB ID codes 3pdu and 3puv, both the largest cluster and the
best-scoring solution had incorrect subunit orientations. Finally,
the largest cluster from the image-restrained experiments was
more accurate and its shape more closely resembled the native
shape configuration than that from the control experiments (Fig.
2 B and C and Fig. S1). The lower bound on the positional and
orientational accuracy of an individual subunit is its positional
and orientational precision within the best-scoring cluster, re-
spectively, as measured by the SDs of the placement distance and
angle (Fig. S3A).
As the number of cross-linking restraints used for modeling an

assembly decreased, the best-scoringmodels became less accurate.
The positional accuracy was less sensitive to removing cross-link-
ing restraints than the orientational accuracy (Table 1 and Tables
S1–S5). Below a structure-specific threshold on the number of
cross-linking restraints, the class averages were not sufficient to
produce accurate models (Table S4). In the absence of cross-
linking data, the orientation of the subunits could not be recovered
(Table S5). Decreasing the number of cross-linking restraints
further deteriorated the accuracy of the models in the control
experiments (Tables S1–S5).

Application to the Human TfR–Tf Complex. Tf delivers iron as Fe3+

to cells by endocytosis of the complex formed after its binding to

A

B

C

D

Fig. 2. Clusters of the 100 best-scoring models for each structure in the benchmark. (A) Size of the largest cluster (asterisk on top of a bar indicates that the
best-scoring model is part of the cluster). (B) Placement distance of the models in the cluster. (C) Placement angle of the models in the cluster. The error bars in
B and C correspond to 1 SD. (D) Simulated density map for the native configuration of six structures in the benchmark set compared with the simulated
density map generated by the 10 best-scoring solutions in the largest cluster. Each component of the assembly appears in a different color.
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the TfR. The atomic structure of the TfR–Tf complex, consisting
of two Tfs bound to a single TfR, has been determined by fitting
the crystallographic structures of Tf and TfR into a density map
from cryo-EM (18).We built models for TfR-Tf using 10 cryo-EM
class averages as restraints, as well as two proximity and four
cross-linking restraints (Fig. 3 A and B). The class averages in-
dicate a preferred orientation of the cryofrozen complex, and
therefore represent a perfect example of the type of problems that
our method addresses. The best-scoring model had a ccc with the
experimental density map of 0.85, but one molecule of Tf had the
N- and C-terminal domains swapped (with a placement score of
4.0 Å, 52°) (Fig. 3 B and D). After clustering, the largest cluster
(35 elements: placement score of 8.6 ± 0.9 Å, 13 ± 1°) contained
the correct positions and orientations. The size and accuracy were
similar to those of the largest cluster for the simulated data of
PDB ID code 1suv (37 elements: placement score of 5.6 ± 0.5 Å,
10 ± 2°). The clustering also produced two smaller clusters, cor-
responding to configurations with one (26 elements: placement
score of 17.5 ± 0.5 Å, 60 ± 1°) and two (24 elements: placement
score of 25.5 ± 0.5 Å, 158 ± 2°) swaps of the Tf N- and C-terminal
domains. Removing the image restraints produced models of
significantly lower accuracy (Table 1 and Fig. S1).

Other Examples. We further illustrate our method by using exper-
imental negative-stain and cryo-EM class averages as restraints to
build accurate models for three additional protein assemblies in
the Electron Microscopy Data Bank (EMDB): the human proto-
convertase C3bB (EMDB ID code 1583) (19), the bovine mito-
chondrial supercomplex I1III2IV1 (EMDB ID code 1876) (20),
and the type I restriction modification complex EcoR124I from E.
coli (EMDB ID code 1890) (21) (Table 1 and Fig. S4).

Comparison with the MultiFit Algorithm. We compared models for
four sample assemblies with experimentally determined class

averages with models obtained by simultaneous rigid fitting of
the subunits into the assembly 3D EM density map, using the
MultiFit algorithm (16). As expected, the use of 3D information
was advantageous. The MultiFit algorithm produced more ac-
curate models, with a slight improvement in the subunits’ posi-
tions and a larger improvement in their orientations (Table S6).

Discussion
An integrative approach to structure determination combines
spatial restraints derived from multiple experimental techniques
together with theoretical and statistical knowledge (22–25). Here,
we propose including spatial restraints derived from EM class
averages into such an integrative approach. As a result, structural
determination can benefit from incomplete EM data (e.g., EM
images without sufficient angular coverage to perform a full sin-
gle-particle reconstruction). We define the<em2D> score to rank
candidate models according to their similarity to the class aver-
ages and describe a sampling algorithm suitable for finding as-
sembly models that fit these images.
Our benchmark demonstrates that including image restraints

improves the accuracy of the scoring function as well as the
thoroughness of configurational sampling. Sampled models had
more accurate component positions and orientations than the
models obtained without the images, as was apparent from the im-
proved ccc between the density maps of the models and the
density maps of the native configurations (Table 1). Furthermore,
using the <em2D> score alone produces more accurate models
than using the rest of the restraints combined (Table 1). Due to
the weak correlation between the accuracy and other types of
restraints used here (proteomics, cross-linking, geometric com-
plementarity, and excluded volume), the information contained
in the class averages is critical for computing accurate models. In
particular, a few cross-linking restraints that otherwise would not
produce acceptable models may be all that is required in addition

A

B

C

D

Fig. 3. Model for the TfR–Tf complex. (A) Class
averages used for modeling, corresponding to the
10 most populated class averages from the cryo-EM
study. (B) Proximity restraints (colored ellipses) and
cross-linking restraints (connected circles) used for
modeling. Tf-1, first molecule of Tf (red); Tf-2, sec-
ond molecule of Tf (green); TfR-A, first monomer of
the receptor (gold); TfR-B, second monomer of the
receptor (blue). (C) Comparison of the experimental
cryo-EM density map (Left) with the simulated
density map (8 Å) of the 10 best-scoring solutions in
the largest cluster (Right). (D) Fitting of the best-
scoring model into the experimental cryo-EM den-
sity map. The N- and C-terminal domains of Tf-1 are
swapped with respect to the correct configuration
(red arrow).
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to the class averages to determine the relative orientations of the
subunits accurately (Table 1). Integrating additional restraints
into our scoring and sampling protocol is straightforward. EM
class averages are expected to be generally helpful when other
data do not include complete 3D shape information (e.g., fluo-
rescence resonant energy transfer spectroscopy, small angle X-ray
scattering, ion mobility spectrometry).
For the TfR–Tf complex example, we were able to generate and

identify accurate models using two proximity restraints, four cross-
linking restraints, and restraints from 10 experimental cryo-EM
class averages (Fig. 3). The results observed using simulated class
averages for the TfR–Tf complex were similar to those obtained
with experimental images, increasing our confidence in the simu-
lated benchmark. Finding the correct positions and orientations of
the N- and C-terminal domains of Tf presented a challenge in the
original work (18). In our modeling, we computed three clusters of
solutions with the correct positions and orientations, one domain
swap, and two domain swaps, respectively. Because the sizes and
scores of the clusters were comparable, we could not pick the correct
solution, given the used information. In the original work, the correct
solution was identified based on additional negative-stain class
averages of complexes of isolated Tf N- and C-domains with TfR.
Although our approach is less limited by incomplete and noisy

EM data than single-particle reconstruction, our scoring function
may still not be able to distinguish between a large number of
different models, or the sampling algorithm may not find the
best-scoring solution. In the former case, the variability of the
ensemble of good-scoring solutions may be a reasonable lower
bound on the accuracy (Fig. S3A). In the latter case, sufficient
sampling is indicated when additional sampling does not gener-
ate structurally distinct good-scoring solutions (Fig. S3B). In-
sufficient sampling results in best-scoring models corresponding
to local minima of the scoring function, producing many clusters
of small size (Fig. S3C).
Many factors can affect the quality of the EM images, including

the contrast transfer function of themicroscope, noise, distortions
of the assembly shape due to the stain, conformational or com-
positional heterogeneities, and lack of characteristic views of the
assembly in the images. Noise and stain distortions are not se-
verely limiting, because obtaining class averages with an improved
SNR is often possible by collecting more single-particle images.
However, images of an assembly in characteristic orientations,
resulting in the unique projections of the assembly, are critical for
the success of the method. Therefore, globular assemblies are
more difficult to determine accurately based on class averages
(e.g., PDB ID codes 1z5s and 3pdu in Table 1). Here, we have
not addressed using class averages of an assembly in different
configurations or of varied composition.
In principle, the <em2D> score can be improved by removing

the assumption that all pixels in all images are affected by the same
noise. This goal can be achieved by assigning specific noise σj to
each pixel (Eq. 2), if known. When computing the <em2D> score
using class averages, σj could be obtained from the variance images
that are calculated together with the class averages. However, this
generalization would be computationally costly because the
images could then not be aligned using a Fourier method.
We expect our approach to be helpful for determining the

structures of macromolecular assemblies that show preferred
orientations during EM experiments as well as assemblies on the
lower end of the EM size spectrum, where obtaining a density
map using single-particle reconstruction generally takes consid-
erably longer than obtaining a relatively small number of class-
average images.

Materials and Methods
Representation. We assume that experimentally determined or computa-
tionally predicted atomic models are available for all components of the
assembly. Different model representations are used to calculate different
types of restraints. First, 10 residues are represented with a single bead for
computing the proximity and excluded volume restraints. Second, one resi-
due is represented with a bead for computing cross-linking restraints. Third,

atoms are projected onto the closest grid point on a 1-Å cubic lattice for
computing the geometric complementarity restraint. Fourth, the original
atomic resolution is used for computing the em2D restraint.

Scoring. The em2D score quantifies the similarity between a model and a set
of EM images (Fig. 1A). An EM image d is a projection of the density map of
the assembly s, corrupted by additive noise n (i.e., d= s+n). The Bayes
theorem states that the probability of a model X, given the observed data
d is (15, 26, 27):

PðXjdÞ =
PðdjXÞPðXÞ

PðdÞ ∝ PðdjXÞ: [1]

The proportionality between the posterior probability P(Xjd) and the
likelihood P(djX) applies because P(X) and P(d) do not change the ranking of
different models X, given image d. Thus, maximizing the posterior proba-
bility is equivalent to maximizing the likelihood. When the noise is modeled
by a Gaussian distribution N(0, σj) affecting each pixel independently, the
log-likelihood is:

−log PðdjXÞ= − log ∏
M

j= 1
exp

"
−1
2

�
dj −pj

σ

�2
#

=
1
2σ2

XM
j= 1

�
dj −pj

�2
; [2]

where p is the projection of the model X, j indicates the overlapping pixels of
the image and the model projection, and M is the number of pixels. The
specific noise σj is presumed to be constant for all images. We define the
em2D score as the minimal difference between the image and a model
projection (28, 29):

em2D=minα

XM
j =1

�
dj −pjðαÞ

�2
=2M; [3]

where α represents the five registration parameters, including the three
Euler angles of rotation ðΦ; θ;ψÞ and the in-plane translation distances ðu; vÞ.
It follows from Eqs. 2 and 3 that computing the em2D score is equivalent to
minimizing the log-likelihood. If both the image and the projection are
normalized to the mean of 0 and SD of 1, the em2D score is 1 minus the ccc
between the image and the optimal model projection (1 − ccc). Thus, the
em2D score is 0 if the model matches the image perfectly (e.g., for the native
configuration and a noise-free image) and 1 if there is no correlation be-
tween the projection of the model and the image (e.g., for an image with
only noise). In practice, model errors and/or image noise invariably results in
em2D > 0, with the best possible value of 1− ðSNR=ð1+SNRÞÞ1=2 for an image
with the SNR and its perfectly matching noise-free projection (30). When
more than one image of a macromolecule in a single configuration is
available, minimizing the log-likelihood of observing all images is equivalent
to minimizing the average <em2D>.

The em2D score of a model is calculated in three steps: preprocessing,
a coarse search, and a refined search in the vicinity of the coarse solutions. The
preprocessing starts by generating k (typically 20≤ k≤ 100) projections of the
model, with directions of projection uniformly distributed in the hemisphere
with positive y-axis values. The direction of projection provides an estimation
of the first two registration parameters of α ðΦ; θÞ . A projection p is calculated
as the sum of projected 3D Gaussian functions centered on each atom, with
weights depending on atom type and projection resolution (31); for efficiency,
the Gaussian functions are preprojected and stored in memory. The autocor-
relation function (ACF) in the polar coordinates and fast Fourier transform
(FFT) of the ACF are calculated for each projection. In addition, the FFT of each
image is computed. In the coarse search, each projection pj is alignedwith each
image di, resulting in the estimated values of the registration parameters
ðψ ;u; vÞ of αij, using a rotational alignment based on the ACF followed by
translational alignment based on the FFT (4, 32). In the refinement step, the k
vectors αij for image di obtained from the coarse search are sorted by
descending value of the corresponding ccc, and the first l≤k of them are re-
fined (typically, l = 2). Each αij is refined by the Simplex algorithm to maximize
the ccc between image di and projection pj (28). The vector αij that gives the
maximum ccc after the refinement is used to compute the em2D score. Cal-
culating the em2D score of a model scales linearly with the number of class
averages used as restraints.

Our complete scoring function F iswem2dem2d +wcfc +wdfd +wgfg +wefe,
where w= ðwem2d ;wc ;wd ;wg;weÞ are the weights for the five different re-
straint types. The proximity term fc is a sum of all proximity restraints, each
one of which is calculated as a harmonic upper-bound function kðd −d0Þ2=2
of the shortest distance d between beads of the two involved components.
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The harmonic function is set to 0 when d < d0 = 10 Å and k = 0.0656 Å−2.
Similarly, the term fd is a sum of all distance restraints between a pair of
residues, where each individual restraint is calculated as a harmonic upper-
bound function with d0 = 30 Å and k = 0.148 Å−2. The term fg corresponds to
the sum of all geometric complementarity restraints (33), and fe is a sum of all
excluded volume restraints, each one of which is calculated as a harmonic
lower-bound function that is set to 0 when d > d0 = 2 and has k = 2 Å. To
compute the weights w, we selected all models for all benchmark structures
with a placement score better than (10 Å, 36°) and performed a principal
component analysis on the values of the restraints ðem2d; fc ; fd ; fg; feÞ. The
first eigenvector was selected as the weight w.

Sampling. We search for the models of the macromolecular assembly that
minimally frustrate the restraints using an SA-MC optimization in continuous
space, followed by further optimization with the divide-and-conquer mes-
sage-passing algorithm DOMINO (16) as follows.

First, if cross-linking data are available, we build a graph with nodes
corresponding to the assembly components and edges between the cross-
linked components; the edge weight is the number of cross-links. The
component with the largest number of connections in the maximum span-
ning tree of the graph is used as an anchor, and its coordinates are fixed. Each
edge in the maximum spanning tree triggers a pairwise docking between the
two connected components, in the order of decreasing edge weight. A
pairwise docking is performed with HEXDOCK (34). Only solutions satisfying
the cross-linking restraints are stored, flagging as the receptor the compo-
nent with the largest edge weight.

Second, we run a number of independent SA-MC optimizations (N, typically
500), each of which starts with random positions of the assembly compo-
nents. In a single independent run, ∼100,000 MC moves of two types are
applied with approximately even probability, iterating through a simulated
annealing schedule with increasing and decreasing temperatures (see the
configuration files of the benchmark). In the first type of a move, one of the
stored pairwise docking solutions is randomly chosen and used to propose
a new relative position for the ligand component relative to its receptor. In
the second type, all components are reoriented randomly for up to 180° and
displaced randomly for up to a subunit size in an attempt to compensate for
docking inaccuracy.

Third, we attempt to improve on the N final SA-MC solutions by a divide-
and-conquer DOMINO algorithm (16). Briefly, the DOMINO algorithm identifies

subsets of these solutions that can be assembled self-consistently into a better
scoring output solution. In more detail, the DOMINO algorithm proceeds in
four steps. First, the scoring function is represented as a graph, where the
nodes are the variables to be sampled (here, the positions and orientations of
the assembly components) and the edges are the pairwise terms acting on
these variables. Second, the set of variables is decomposed into overlapping
subsets that are “loosely” coupled (i.e., subsets contain common variables);
these subsets are represented as nodes in a junction tree where edges are
drawn between subsets containing the same variables. Third, the possible dis-
crete states for each subset are generated by the m best SA-MC solutions
according to the <em2D> score (typically, 50<m< 100). Finally, the DOMINO
algorithm uses message passing to gather self-consistent combinations of these
subset states, and thus to obtain final good-scoring solutions. We decrease the
DOMINO algorithm running time and memory requirements by keeping only
the 2,000 best-scoring configurations from each gathering step, which results in
a 100- to 1,000-fold increase in speed without significantly affecting the ac-
curacy of the final solutions.

Finally, we cluster the 100 best-scoring solutions from the DOMINO al-
gorithm using the betweenness centrality clustering algorithm (35), with the
all-atom rmsd between the models as the metric.

The method is implemented in the EMageFit module of our open source
package IMP (http://integrativemodeling.org/) (25) (Version 15319 of the SVN
repository of the package). The benchmark and scripts are available at ftp://
salilab.org/javi/benchmark_em2d.tgz.

To compare using 2D class averages vs. 3D density maps, we used a version
of the MultiFit algorithm (16) modified to include cross-linking restraints in
the scoring function. MultiFit applies inferential optimization on a discrete
sampling grid to determine the best-scoring positions and orientations of
multiple subunits, given their structures, the assembly density map, and the
cross-linking restraints. MultiFit is implemented in the MultiFit module of IMP.
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