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[ Education and Clinical Practice Original Research ]
Race-Specific Spirometry Equations Do Not
Improve Models of Dyspnea and
Quantitative Chest CT Phenotypes
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BACKGROUND: Race-specific spirometry reference equations are used globally to interpret lung
function for clinical, research, and occupational purposes, but inclusion of race is under scrutiny.

RESEARCH QUESTION: Does including self-identified race in spirometry reference equation
formation improve the ability of predicted FEV1 values to explain quantitative chest CT
abnormalities, dyspnea, or Global Initiative for Chronic Obstructive Lung Disease (GOLD)
classification?

STUDYDESIGNANDMETHODS: Using data from healthy adults who have never smoked in both
the National Health and Nutrition Survey (2007-2012) and COPDGene study cohorts, race-
neutral, race-free, and race-specific prediction equations were generated for FEV1. Using
sensitivity/specificity, multivariable logistic regression, and random forest models, these
equations were applied in a cross-sectional analysis to populations of individuals who
currently smoke and individuals who formerly smoked to determine how they affected
GOLD classification and the fit of models predicting quantitative chest CT phenotypes or
dyspnea.

RESULTS: Race-specific equations showed no advantage relative to race-neutral or race-free
equations in models of quantitative chest CT phenotypes or dyspnea. Race-neutral refer-
ence equations reclassified up to 19% of Black participants into more severe GOLD classes,
while race-neutral/race-free equations may improve model fit for dyspnea symptoms relative
to race-specific equations.

INTERPRETATION: Race-specific equations offered no advantage over race-neutral/race-free
equations in three distinct explanatory models of dyspnea and chest CT scan abnormal-
ities. Race-neutral/race-free reference equations may improve pulmonary disease diagnoses
and treatment in populations highly vulnerable to lung disease.

CHEST 2023; 164(6):1492-1504
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Take-home Points

Study Question: Does including self-identified race
in the formation of spirometry reference equations
improve the ability of predicted FEV1 values to
explain quantitative chest CT abnormalities, dyspnea,
or Global Initiative for Chronic Obstructive Lung
Disease classification?
Results: Race-neutral and race-free equations reclassi-
fied up to 19% of Black individuals who smoke to worse
Global Initiative for Chronic Obstructive Lung Disease
classes in the COPDGene smoking cohort, with the
greatest effects seen in individuals with mild smoking-
related disease. The generated percent predicted FEV1

values from race-neutral and race-free spirometry
equations showed no significant improvement in model
fit of dyspnea or quantitative chest CT phenotypes
(emphysema, air trapping, airway wall thickness).
Interpretation: Race-neutral/free reference equa-
tions may improve pulmonary disease diagnoses and
treatment in populations highly vulnerable to lung
disease relative to race-specific equations.
Interpretation of spirometry results has traditionally relied
upon reference equations to provide an estimate of
“normal” lung function for an individual’s age, gender,
height—and controversially—race/ethnicity. These
equations are used for clinical, research, and occupational
purposes to diagnose pulmonary disease, assess disease
progression, and explain radiographic abnormalities, as
well as determine disability and evaluate fitness for higher
risk jobs, and thus have enormous clinical and financial
importance. The inclusion of race in these equations is
based on large cross-sectional, population-wide studies
that consistently show lower measures of lung function for
some racial/ethnic minority groups, specifically up to
10% to 15% lower FEV1 for Black individuals.

1,2 However,
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the clinical value of race adjustments has increasingly been
questioned.3-6 Although recent studies found no
prognostic benefit of race-specific equations compared
with “race-neutral” equations in mortality or respiratory
events,7-11 others continue to defend the use of race in
prediction equations.12,13 Race-specific equations are
recommended by the most recent US and European
guidelines14 and are still used in clinical care and
pulmonary research worldwide. However, applying race-
specific equations may mask developmental or acquired
lung damage among racial and ethnicminority groups15-17

and risks underdiagnosing damaged lungs in marginalized
groups at high risk of respiratory disease,18-21 thereby
exacerbating racial health inequalities.

We examined how the percent predicted FEV1 (ppFEV1)
values calculated from race-specific, race-neutral, and
race-free reference equations differentially affect
pulmonary phenotypes in two large cohorts of individuals
who smoke. First, using a selected sample of healthy adults
who have never smoked from both National Health and
Nutrition Examination Survey (NHANES) (2007-2012)
and COPDGene cohorts (e-Fig 1), we generated new race-
free equations that entirely exclude race from model
formation and race-specific prediction equations for FEV1

and FVC. Second, these equations were compared with the
Global Lung Initiative (GLI) race-specific equations,2 the
race-specific equations of Hankinson et al,1 and the race-
neutral GLI-Other (uses a universal race-correction) and
the GLI-Global (weights racial groups in the reference
population) equations.2 Third, we applied these
spirometry prediction equations and determined how they
differentially: (1) affect the Global Initiative for Chronic
Obstructive Lung Disease (GOLD) severity classification
in both the NHANES and COPDGene smoking cohorts;
and (2) model quantitative chest CT scan phenotypes and
dyspnea in the COPDGene study participants. Our intent
was to compare how the different reference equations
model clinically important pulmonary phenotypes.

Study Design and Methods
Details on formation and characterization of asymptomatic
nonsmoking (nh3700 and cg419 cohorts) and smoking (nh785 and
COPDGene Phase I) cohorts are presented in e-Appendix 1,
e-Figures 1 to 3, and Table 1.
Race-Specific and Race-Neutral Prediction Models

The predicted FEV1 and lower limit of normal (LLN) values for those that
never smoked fromtheGLI equationswere obtainedusing theGLIwebsite
(https://gli-calculator.ersnet.org/index.html, version 2.0, April 2023).
Predicted and LLN FEV1 values by Hankinson et al1 (NHANES III)
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TABLE 1 ] Characteristics of the NHANES (N ¼ 3,700) and COPDGene (N ¼ 419) Healthy Cohorts Who Have Never Smoked by Race/Ethnicity

Characteristic
NHANES,

All (n¼ 3,700)

NHANES,
White

(n ¼ 1,420
[38.4%])

NHANES,
Black

(n ¼ 762
[20.6%])

NHANES,
Mexican

American (n ¼
682 [18.4%])

NHANES,
Other Hispanic

(n ¼ 473
[12.8%])

NHANES,
Other/Mixed
(n ¼ 363
[9.8%])

COPDGene,
All (n ¼ 419)

COPDGene,
White

(n ¼ 342
[81.6%])

COPDGene,
Black

(n ¼ 77
[18.4%])

Age, y 51.0 (19.0) 52.0 (21.0) 52.0 (18.0) 49.0 (11.0)a 51.0 (20.0) 49.0 (17.0)a 59.1 (15.4) 61.4 (15.4) 55.1 (9.6)a

Female, n (%) 2,160 (58.4) 803 (56.5) 446 (58.5) 396 (58.1) 302 (63.8) 213 (58.7) 239 (57.0) 194 (56.7) 45 (58.4)

Height, cm 165.1 (14.4) 168.4 (15.1) 167.7 (13.4) 160.9 (12.7)a 160.3 (14.4)a 162.1 (12.9)a 168.6 (14.0) 168.7 (14.7) 168.0 (12.7)

Weight, kg 78.8 (25.1) 81.8 (26.1) 86.5 (27.0)a 75.4 (18.9)a 75.1 (22.7)a 66.1 (19.4)a 78.0 (23.1) 76.5 (23.9) 80.0 (19.2)

BMI, kg/m2 28.7 (7.4) 28.6 (7.6) 30.4 (8.2)a 29.2 (6.0) 28.6 (6.5) 24.9 (5.5)a 27.1 (6.0) 26.8 (5.9) 28.3 (5.11)

FEV1, L 2.83 (1.11) 3.07 (1.19) 2.57 (0.98)a 2.89 (1.01)a 2.70 (1.03)a 2.65 (0.94)a 2.83 (1.11) 2.92 (1.19) 2.62 (0.85)b

FVC, L 3.55 (1.41) 3.90 (1.51) 3.16 (1.16)a 3.58 (1.32)a 3.39 (1.25)a 3.30 (1.22)a 3.55 (1.38) 3.60 (1.45) 3.16 (1.20)a

FEV1/FVC 0.80 (0.07) 0.79 (0.07) 0.81 (0.07)a 0.81 (0.06)a 0.80 (0.06)a 0.80 (0.07)a 0.80 (0.08) 0.80 (0.07) 0.82 (0.07)a

ppFEV1 GLId 99.0 (17.1) 99.8 (16.3) 98.0 (18.7)c 100.4 (16.2) 97.2 (16.4)c 96.8 (16.7)c 101.0 (18.7) 101.6 (18.6) 99.9 (16.7)

ppFEV1

GLI-Othere
102.61 (20.0) 107.1 (17.5) 90.5 (17.4)a 107.7 (17.4) 104.4 (17.6)c 96.8 (16.7)a 106.6 (20.3) 109.0 (20.0) 92.3 (16.2)a

qCT
parameters

Pi10 1.77 (0.42) 1.75 (0.41) 1.94 (0.44)c

Air trapping
(n ¼ 321)

. . . . . . 7.18 (8.90) 7.20 (8.70) 6.80 (10.01)

Percent
emphysema

. . . . . . 0.84 (1.94) 0.88 (2.16) 0.62 (1.19)c

mMRC score
(0-4)

. . . . . . 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Values of continuous variables are presented as medians (interquartile range). GLI ¼ Global Lung Initiative; mMRC ¼ modified Medical Research Council; NHANES ¼ National Health and Nutrition Examination Survey;
Pi10 ¼ airway wall thickness estimate based on square root of wall area of a 10 mm lumen perimeter22; ppFEV1 ¼ percent predicted FEV1; qCT ¼ quantitative chest CT.
Indicates significant difference relative to White group at: aP < .0001, bP < .001, cP < .05, according to the Kruskal-Wallis test for comparison of continuous variables between (non-Hispanic) Black and White racial/
ethnic groups in COPDGene, and analysis of variance with Tukey ad hoc comparisons for continuous variables between each racial/ethnic group relative to White participants in the NHANES data.
dGuideline-based application of GLI race/ethnic-specific reference equations. The GLI equations for White/European individuals were used to estimate ppFEV1 for the NHANES Mexican American and Other Hispanic
groups, following other studies (8). The GLI-predicted FEV1 values for the NHANES group “Other/Mixed Race” used the GLI-Other equations.
eThe GLI-Other equation was used to generate race-neutral estimates of ppFEV1 for all racial/ethnic groups.
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were calculated using published equations. For both never-smoking
data sets (the NHANES data set of 3,700 healthy individuals
[nh3700] and the COPDGene data set of 419 healthy individuals),
multivariable linear quantile regression was used to generate
predicted (median quantile) and LLN (fifth quantile) models and
associated R1 values (Table 2). The R1 value is a measure of
explained variability of the data in quantile regression and is used to
compare models.23 Predictors in the race-specific equations included
age (years), height (centimeters), gender (male/female), and self-
identified race/ethnicity. Predictors in race-free equations included
only age, height, and gender (e-Tables 1-3). A similar approach was
used to generate models for predicted and LLN values for log (FVC).
This approach generated four race-specific and four race-neutral/
race-free models for the predicted log (FEV1) and log (FVC) from
different source populations (e-Tables 1-3, Tables 2, 3). Identity and
probability density plots of the differences between the predicted
race-specific, race-neutral, and race-free models were used to explore
the effect of race in the models.

GOLD Classification Changes

Each individual in both smoking cohorts was assigned a GOLD
spirometry class (GOLD 1-4), the preserved ratio impaired
spirometry class,25 or GOLD 0 (ie, FEV1/FVC ratio > 0.7 and
ppFEV1 $ 80%) using the different race-specific and race-neutral
equations. The percentage of individuals who changed GOLD class
from the GLI standard (race-specific) was calculated in the total
data set and within each racial group for both NHANES
TABLE 2 ] Models of Predicted log (FEV1) Median and Fifth P
(N ¼ 3,700) and COPDGene (N ¼ 419)

Model
b0

(Intercept)
b1 (Age in
Years)

NHANES: log (FEV1)

Median predicted: AGH –0.30931 -0.00966

Median predicted: AGHR (White) –0.42116 –0.00922

AGHR (African American)

AGHR (Mexican American)

AGHR (Hispanic Other)

AGHR (other/mixed)

5th percentile: AGH –0.37667 –0.01069

5th percentile: AGHR (White) –0.55486 –0.01094

African American

Mexican American

Hispanic Other

Other/Mixed

COPDGene: log (FEV1)

Median predicted: AGH –0.40813 –0.00958

Median predicted: AGHR (Black) –0.37885 –0.01077

5th percentile: AGH –0.04169 –0.01084

5th percentile: AGHR (Black) –0.14623 –0.01251

The equation used to model the predicted log (FEV1) is as follows: predicted (or l
b3 þ Race code term * b4). In both cohorts, race is coded as Black (1) relative to NH
healthy individuals, race is modeled with NHW (0) as the reference group, and o
corresponding race coefficient (b4). In both cohorts, gender code term for male
values were used when available for NHANES data and always for COPDGen
compared with modeling raw FEV1 values. The racial terminology used is con
gender, and height only; AGHR ¼ models including age, gender, height, and rac

chestjournal.org
participants who formerly smoked and COPDGene participants
who currently smoke.

Modeling Pulmonary Phenotypes

Sensitivity/Specificity Modeling: Measured FEV1 values were classified
as above or below the LLN to assess the sensitivity and specificity of each
ppFEV1 reference equation tomodel abnormal chest CT scan phenotypes
in COPDGene phase I participants. Chest CT scan phenotypes were
defined as abnormal if: (1) the percent emphysema was > 5%; (2) the
percent air trapping was > 15%; or (3) the airway wall thickness
estimate based on square root of wall area of a 10 mm lumen perimeter
was > 2.5.26 The sensitivity, specificity, negative predictive value,
positive predictive value, and the area under the curve (AUC) were
calculated for each model in the overall population and within each race.
A parallel approach assessed the ability of the LLN of each model to
predict amodifiedMedical ResearchCouncil dyspnea score (mMRC)> 1.

Logistic Regression Models of Abnormal Chest CT Scan Phenotypes
and Dyspnea: Because complex demographic factors (smoking status
and history, gender, FEV1/FVC ratio, and scanner type) and the
ppFEV1 influence quantitative chest CT scan metrics,27,28

multivariable logistic regression models were generated of abnormal
chest CT scan phenotypes using these covariates and the ppFEV1

values derived from each of the race-neutral and race-specific
equations (e-Tables 4A, 4B). Models were compared by using Akaike
and Bayesian information criteria. A parallel approach was used to
model dyspnea and included covariates of FEV1/FVC ratio, pack-year
ercentile Quantile Regression Coefficients for NHANES

b2 (Female
Gender)

b3 (Height in
Centimeters) b4 (Race) R1

–0.16027 0.01177 ... 0.485

–0.14935 0.01253 Reference 0.547

–0.17048

–0.00454

–0.0219

–0.09983

–0.16976 0.01091 ... ...

–0.15568 0.01258 Reference ...

–0.19925

–0.00657

–0.03935

–0.09986

–0.17036 0.01262 ... 0.476

–0.15455 0.01294 –0.16483 0.531

–0.17910 0.00946 ... ...

–0.15592 0.01097 –0.17822 ...

ower limit of normal) FEV1 (L)¼ e(b0 þ Age * b1 þ Gender code term * b2 þ Height *

W (0) as the reference group. In data from the NHANES data set of 3,700
ther racial/ethnic groups were coded as 1 if present and multiplied by the
subjects is 0 and 1 for female subjects. The log of FEV1 (post-bronchodilator
e data) in liters was used because it optimized the explained variability
sistent with that of the published cohorts. AGH ¼ models including age,
e/ethnicity; NHANES ¼ National Health and Nutrition Examination Survey.
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TABLE 3 ] Summaries of Source Data, Covariates, and Nomenclature for Predicted FEV1 Models

Predicted FEV1 Model Type Race Source Population
Source Sample Size by Race/

Ethnicity Source Age Range Covariates Reference

GLI race-specific QR-Linear Specific International Total: n ¼ 74,187
White: n ¼ 57,395
Black: n ¼ 3,545
NE Asian: n ¼ 4,992
SE Asian: n ¼ 8,225

3-95 y AGHR 3

Hankinson OLS-Linear Specific NHANES-1999 Total n ¼ 7,429
White: n ¼ 2,281
Black: n ¼ 2,508
Mexican American: n ¼ 2,639

8-80 y AGHR 2

cg419_AGHR QR-Linear Specific COPDGene never-smoking
cohort

Total: n ¼ 419
White: n ¼ 342
Black: n ¼ 77

45-82 y AGHR Table 2

nh3700_AGHR QR-Linear Specific NHANES 2007-2012 healthy
individuals who formerly
smoked

Total: n ¼ 3,700
White: n ¼ 1,420
Black: n ¼ 762
Mexican American: n ¼ 682
Other Hispanic: n ¼ 473
Other: n ¼ 363

35-79 y AGHR Table 2

GLI-Other GAMLSS Neutral International n ¼ 74,187 3-95 y AGHa 3

GLI-Global GAMLSS Neutral International n ¼ 74,185 3-95 y AGHb 24

cg419_AGH QR-Linear Free COPDGene healthy
never-smoking

n ¼ 419 45-82 y AGH Table 2

nh3700_AGH QR-Linear Free NHANES 2007-2012 healthy
never-smoking cohort

n ¼ 3,700 35-79 y AGH Table 2

Details about models and source populations used to develop each of the race-specific, race-neutral, and race-free models used in this study. GLI-Other and GLI-Global equations are race-neutral, but are not race-free,
as they averaged race/ethnicity estimates across four major racial/ethnic groups. AGH ¼ age, gender, and height; AGHR ¼ age, gender, height, and race; cg419 ¼ COPDGene data set of 419 healthy individuals;
GAMLSS ¼ General Additive Models for Location Scale and Shape; GLI ¼ Global Lung Initiative; NE ¼ northeast; nh3700 ¼ National Health and Nutrition Examination Survey data set of 3,700 healthy individuals;
NHANES ¼ National Health and Nutrition Examination Survey; OLS ¼ ordinary least squares regression; QR ¼ quantitative regression; SE ¼ southeast.
aGLI-Other was calculated by taking “its mean and CoV adjustments the corresponding adjustments for the four main ethnic groups, averaged over group and sex”.3
bFor GLI-Global, an inverse probability weight was applied for each of the four racial groups included in the data set.
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smoking history, age, weight, height, 6-min walking distance, total lung
capacity from the CT scan,27 and the pre-/post-bronchodilator
difference of FEV1 and ppFEV1 values calculated from the different
race-neutral and race-specific equations (e-Tables 5A, 5B).

Random Forest Models: The random forest algorithm was used to
compare models of the abnormal chest CT phenotypes and
dyspnea using the same covariates as the logistic regression models
chestjournal.org
(e-Tables 4C, 4D, e-Tables 5C, 5D). The classification error rates
were compared to assess model performance using the different
race-specific and race-neutral ppFEV1 values.

Software: All analyses used features in the base R (version 4.0.5)
program (R Foundation for Statistical Computing). Additional
packages included rspiro (v.2), quantreg (v5.55), pROC (v1.18.0),
randomForest (v4.6-14), and rfPermute (v2.1.81).
Results
The nh3700 never-smoking, healthy cohort consisted of
38% White, 21% Black, 18% Mexican-American,
13% other Hispanic, and 10% mixed racial or “other”
race individuals (Table 1). Relative to White
participants, Black participants had similar height but a
higher median weight. All other groups had lower
median weight and height than White participants. All
racial/ethnic groups had a lower median FEV1 and FVC,
and a higher median FEV1/FVC ratio, compared with
White participants. White and Mexican-American
individuals had higher GLI race-specific ppFEV1 values
than the other ethnic groups.

The COPDGene never-smoking, healthy cohort consisted
of 18% Black and 82% White participants. Relative to
White participants, Black participants were younger, had
lower FEV1 and FVC values, and had higher FEV1/FVC
ratios, consistent with other studies.1,8 Black participants
had significantly higher airway wall thickness estimate
based on the square root of wall area of a 10 mm lumen
perimeter and lower percent emphysema relative to
White participants (e-Fig 2, Table 1). Compared with the
nh3700 never-smoking cohort, the COPDGene healthy
participants who had never smoked were older and less
racially diverse, but they were otherwise similar in
demographic, anthropometric, and spirometry
assessments (Table 1). Compared with the COPDGene
smoking cohort, the nh785 cohort of individuals who
formerly smoked was younger, with higher BMI and
higher FEV1 and FVC values, suggesting less severe
smoking-related disease (e-Fig 3).

Comparison of Models Among Those Who Never
Smoked

There was a high correlation between predicted values
generated using all race-specific equations for FEV1 and
for LLN (e-Fig 4). Probability density plots of the
differences between the FEV1 values generated using the
different race-specific equations show minor differences
in the predicted FEV1 values between Black and White
populations (e-Fig 5). These high correlations show the
validity of the generated healthy data sets and the
modeling approach. In contrast, race-neutral equations
generated higher predicted FEV1 and LLN values than
race-specific equations for the Black participants but
unchanged or minimally shifted to lower values in the
White participants of both healthy, never-smoking
cohorts (e-Figs 6, 7). Race-free models generated even
higher predicted FEV1 and LLN values than those of
GLI-Global (e-Fig 8). There were no differences between
any racial groups in the density plots of predicted FEV1

when using race-neutral equations. Including race in the
FEV1 prediction equations improved model fit as
measured by slightly higher R1 values in both never-
smoking, healthy populations, but it can also obscure
measured differences in FEV1 between White and Black
individuals in both never-smoking, healthy populations
(e-Fig 9, e-Table 1, Table 2). To a lesser extent, this effect
was also seen between White and other/mixed race
populations in the nh3700 population (e-Fig 10). Using
alternative anthropometric measurements instead of
height did not improve model fit or mitigate racial
differences (e-Fig 11).

Race-Specific vs Race-Neutral Equations in
Individuals Who Smoke: The ppFEV1 value generated
from the new race-specific equations were within 3% of
the estimates generated using GLI race-specific
equations for the total COPDGene smoking population
(e-Fig 12). In contrast, the differences between GLI race-
specific and race-neutral/race-free ppFEV1 values in
both smoking cohorts created bimodal curves with the
Black population shifted positively, corresponding to a
lower ppFEV1 by an average of approximately 7% to
11% (Figs 1A-1H); the curves in the White population
shifted negatively, which would result in slightly higher
ppFEV1 values. Similar to values seen in the healthy
never-smoking cohort, the race-free equations generated
lower ppFEV1 values than race-neutral equations in
COPDGene participants who smoked (e-Fig 13).

Model Effects on GOLD Classification

To identify the differential effects of the ppFEV1

equations on GOLD classification, we identified the
number of individuals who were reclassified using the
newly developed race-specific equations compared with
the GLI race-specific equations. In the two smoking
1497
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Figure 1 – A-L, Effects of race-specific vs race-neutral/free equations on predicted FEV1 values and GOLD reclassification. Probability density of the
differences in ppFEV1 values in NHANES and COPDGene participants who smoked between GLI race-specific and GLI-Global (A, E), GLI Race-specific
and GLI-Other (B, F); GLI race-specific and cg419_AGH (C, G), and GLI race-specific and nh3700_AGH (D, H). Differences in ppFEV1 were calculated
by subtracting each ppFEV1 estimate derived from race-neutral or race-free equations from the estimate derived from the GLI standard (race-specific)
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cohorts, the GOLD reclassification rate on average
changed 1% to 3% when the calculated ppFEV1 values
using new race-specific reference equations were
subtracted from those calculated by using GLI race-
specific reference equations (Figs 1I, 1J). When stratified
according to race, across all four race-neutral and race-
free equations, an average of 17.3% of Black participants
in the nh785 smoking cohort were reclassified to worse
GOLD classes. In the more severely diseased
COPDGene cohort (e-Fig 3), 19.0% of the Black
participants were reclassified to worse GOLD classes
using race-neutral/race-free equations. Most of these
GOLD reclassifications were transitions from GOLD
0 (ie, ppFEV1 > 80 and FEV1/FVC ratio > 0.7) to the
preserved ratio impaired spirometry class (Figs 1K, 1L).

Quantitative Chest CT Scan and Dyspnea

Three distinct models were used to compare the utility
of the ppFEV1 and respective LLN values from race-
specific and race-neutral equations to model abnormal
chest CT scan phenotypes and increased dyspnea (ie,
mMRC score > 1). The sensitivity and specificity of
each ppFEV1 reference equation to model any
abnormal chest CT scan findings were within 9%.
Furthermore, the equations generated overlapping
receiver-operating characteristic curves and thus
similar AUC values. This univariate analysis showed
no clinically relevant advantage of the race-specific
equations over race-neutral equations to model chest
CT scan abnormalities (e-Fig 14, Figs 2A, 2B).

The multivariable logistic regression models of
abnormal chest CT scan phenotypes showed similar
Akaike and Bayesian information criteria values using
the race-specific and race-neutral equations in the total
COPDGene phase I cohort as well as in the Black and
White cohorts individually (e-Tables 4A, 4B, Fig 2C).

Finally, a supervised random forest approach was used
to model the presence of any abnormal chest CT
phenotype in the total COPDGene phase I population.
Classification error rates differed minimally across
equations in the total, Black, and White populations,
equation. Red lines ¼ all COPDGene PI participants; blue lines ¼ Black phas
reclassification rates of the three race-specific (Hankinson, cg419AGHR, and n
and nh3700_AGH) prediction equations were subtracted from the standard
participants in the nh785 smoker cohort (I) and the COPDGene PI cohort (J)
FEV1/FVC ratio > 0.7 and ppFEV1 > 80%. PRISm class is defined as FEV1/F
reclassified of total Black population) are shown in Black nh785 participants
(L) from the GLI race-specific equations by GOLD class transitions (rows) a
gender, height, and race; cg419 ¼ COPDGene dataset of 419 healthy individ
Initiative; GOLD ¼ Global Initiative for Chronic Obstructive Lung Disease; n
3,700 healthy individuals; NHANES ¼ National Health and Nutrition Exam
ratio impaired spirometry.

chestjournal.org
and they also differed minimally between each of the
quantitative chest CT scan phenotypes. There were no
instances in which the race-specific equations
offered any significant decrease in classification errors
over the race-neutral or race-free equations
(e-Tables 4C, 4D, Fig 2D).

Findings from models assessing dyspnea revealed
trends similar to the models of quantitative chest CT
phenotypes. Specifically, the sensitivity/specificity,
receiver-operating characteristic, and AUC values
were nearly identical using race-specific and race-
neutral/race-free equations and their respective LLNs
(e-Fig 15, Figs 3A, 3B). In univariate analysis, the
sensitivity and AUC values of the ppFEV1 models
were higher in White relative to Black COPDGene
participants, regardless of whether race-specific or
race-neutral/race-free ppFEV1 models were used
(e-Fig 15). The Akaike information criterion values
from the multivariable logistic regression models of
dyspnea were lower using the race-neutral or race-free
vs race-specific ppFEV1 values in the total COPDGene
phase I population; this finding suggests improved
model fit, but the clinical significance of this difference
is unclear (e-Tables 5A, 5B, Fig 3C). Finally,
classification error rates in the supervised random
forest models were within 1% of each other using race-
neutral/race-free vs race-specific equations, indicating
no advantage in predicting dyspnea using race-specific
equations in the total COPDGene phase I population
or in analyses stratified according to race
(e-Tables 5C, 5D, Fig 3D). The similarity in model fit
when using GLI-Global vs race-free equations is
unsurprising considering the very similar predicted
FEV1 distributions in identity and density plots of
healthy populations (e-Figs 8, 16).

Discussion
This study investigates the role of race-specific, race-
neutral, and race-free ppFEV1 reference equations in
evaluating disease severity and pulmonary phenotypes.
Using three different modeling approaches, we show that
e I participants; gray lines ¼ White phase I participants. Average GOLD
h3700AGHR) and three race-neutral/race-free (GLI-Other, cg419_AGH,
GLI equation in the combined Black/White cohort, Black, and White
, reported as the average percent reclassified. GOLD 0 class is defined as
VC ratio < 0.7 and ppFEV1 < 80%. GOLD reclassification rates (percent
who formerly smoked (K) and Black COPDGene particiants who smoke
nd models (columns). AGH ¼ age, gender, and height; AGHR ¼ age,
uals; COPDGene PI ¼ COPDGene Study Phase I; GLI ¼ Global Lung
h3700 ¼ National Health and Nutrition Examination Survey data set of
ination Survey; ppFEV1 ¼ percent predicted FEV1; PRISm ¼ preserved
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Figure 2 – A, ROC curves of any abnormal quantitative chest CT phenotypes: (1) percent emphysema > 5%; (2) percent air trapping > 15%; and (3)
airway wall thickness if the airway wall thickness estimate based on square root of wall area of a 10 mm lumen perimeter. B, Sensitivity, specificity,
AUC and AUC confidence intervals (CI) of the ROC curve of the ppFEV1 to predict any abnormal chest CT scan phenotype in the COPDGene phase I
cohort. The sensitivity and specificity analyses used the lower limit of normal or the fifth percentile for each of the models. C, AIC from the multivariable
logistic regression models of any abnormal quantitative CT phenotype with the following covariates: FEV1/FVC ratio, smoking history (pack-years),
scanner maker, smoking status, gender, and ppFEV1. The AIC value generated from the models using the different race-specific and race-neutral
equations for the ppFEV1 are listed for the total cohort and also for the Black and White participants individually. D, Supervised random forest models
of the abnormal chest CT scan phenotypes were generated using the same covariates as the logistic regression models. The classification error rates of the
models using the different race-specific and race-neutral equations for the ppFEV1 are listed for the total cohort and also for the Black and White
individuals individually. The randomForest (v4.6-14) and rfPermute (v2.1.81) packages were used to obtain the classification error rates, mean decrease
in accuracy, and P values. The default settings were used with ntree and nrep set to 500. AGH ¼ age, gender, and height; AGHR ¼ age, gender, height,
and race; AUC ¼ area under the curve; AIC ¼ Akaike information criterion; cg419 ¼ COPDGene data set of 419 healthy individuals; GLI ¼ Global
Lung Initiative; nh3700 ¼ National Health and Nutrition Examination Survey data set of 3,700 healthy individuals; ppFEV1 ¼ percent predicted
FEV1; ROC ¼ receiver-operating characteristic.
race-specific equations offer no advantage relative to
either race-neutral or race-free equations in modeling
quantitative chest CT scan phenotypes or dyspnea in two
independent smoking cohorts. Specifically, we found that,
compared with race-specific equations, race-neutral/race-
free equations reclassified up to 19.0% of Black
participants into more severe GOLD classes, and they
may improve models of dyspnea. Use of race-neutral/
race-free equations may result in additional pulmonary
1500 Original Research
disease diagnoses, as well as more aggressive treatment in
populations highly vulnerable to lung disease.

Our findings are in line with other recent studies that
found no prognostic benefit of race-specific over race-
neutral spirometry reference equations.7-11 Specifically,
two studies found that the use of a race-neutral
equation better predicted survival than race-specific
equations using the NHANES III and 2007 to 2012
[ 1 6 4 # 6 CHE ST D E C EM B E R 2 0 2 3 ]
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Figure 3 – A, ROC curves of dyspnea in COPDGene PI participants who smoked as predicted by ppFEV1. Each colored line corresponds to a ROC curve
using ppFEV1 values derived from the listed race-specific and race-neutral model equations. B, Sensitivity, specificity, and AUC of the ROC curve of the
ppFEV1 to predict dyspnea (ie, mMRC score > 1). C, AIC from the multivariable logistic regression models of dyspnea (ie, mMRC score > 1), with the
following covariates: FEV1/FVC ratio, smoking history (pack-y), scanner maker, smoking status, gender, and the ppFEV1. D, Classification error rates are
presented from supervised random forest models of dyspnea (ie, mMRC score> 1), which were generated using the same covariates as the logistic regression
models, for the total COPDGene PI cohort, and for White and Black participants individually. AGH ¼ age, gender, and height; AGHR ¼ age, gender,
height, and race; AUC¼ area under the curve; AIC¼ Akaike information criterion; COPDGene PI¼ COPDGene phase I; cg419¼ COPDGene data set of
419 healthy individuals; GLI ¼ Global Lung Initiative; mMRC ¼ modified Medical Research Council; nh3700 ¼ National Health and Nutrition Ex-
amination Survey data set of 3,700 healthy individuals; ppFEV1 ¼ percent predicted FEV1; ROC ¼ receiver-operating characteristic.
data sets, consistent with earlier findings.9,29 Similarly,
Baugh et al7 found that race-neutral equations
improved prediction of respiratory symptom burden in
individuals who smoke at risk for COPD. Another
prospective study identified no benefits of race-specific
equations for predicting symptom burden or mortality
from chronic lower respiratory disease in a mixed-race
population.8 Finally, Liu et al10 noted that race-specific
equations relative to race-neutral equations may be
underdiagnosing emphysema among Black participants.
chestjournal.org
Others justify the ongoing use of race/ethnicity to
determine spirometry reference values, citing risk of
discriminatory hiring practices, denial of health
insurance,13 or risk of overdiagnosis of lung disease in
Black individuals and underdiagnosis in White
individuals.12 We believe that these risks are of lesser
potential harm than the risk of underdiagnosing the
group with the highest rate of respiratory illness, which
already receives poorer pulmonary care.30,31 There is an
urgent moral obligation to reduce risk to the group most
1501
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historically harmed and also most at risk for lung
disease. In terms of discriminatory hiring, our primary
concern is for the health of the individuals who may be
at risk of exacerbating illness if granted hazardous jobs.
All patients, regardless of race or baseline lung function,
should be evaluated prior to being granted a hazardous
job, and followed up longitudinally with risk counseling.
Clinicians should also not rely on a single predicted
spirometry value for risk assessment and instead gather
longitudinal measures and contextualize clinical findings
with lifetime exposure data, particularly for patients with
borderline values.

Our data, along with the growing base of similar
literature,7-10 support discontinuation of use of race-
specific equations, particularly in clinical settings.
Although including race or genetic ancestry may
minimally improve model fit,32 which may be of interest
in certain epidemiologic research contexts, the use of
race-specific equations has no demonstrable clinical
benefit in improving diagnosis or classification of lung
disease. Conversely, there is risk of clinical harm in
continuing the use of race-specific equations for Black
and other/mixed race patients who may be
underdiagnosed for lung disease, as also shown in other
studies.7,20,21 In particular, we found that a shift away
from race-specific equations has a bigger impact on the
mild end of the spectrum of GOLD classification, which
may enable clinicians to catch more early-stage disease
among Black patients, potentially preventing more
disease progression. Moreover, these equations reinforce
false assumptions about genetic differences between
groups, while obscuring the role of environmental
factors.4

The assumption that Black individuals have innately
lower lung capacity dates back to slavery era
observations.33 This assumption has carried through to
modern medicine where biological differences are
prioritized over social or environmental factors.
Mounting evidence shows that racial/ethnic minority
groups are disproportionately exposed to respiratory
toxins via air pollution,34 occupational hazards,35 and
harmful prenatal and childhood exposures, including
preterm birth, very low birth weight, in utero smoke
exposure, and childhood respiratory illnesses.15,16,36,24

Social stressors, such as community or family
violence,37-39 and socioeconomic disadvantage19 have
also been linked with worse lung function in early life
and are likely interacting with genetic and epigenetic
effects. These exposures are influenced by structural
inequalities that shape living conditions among
1502 Original Research
marginalized groups. Until we see strong and specific
genetic evidence for innate racial differences in lung
function, we believe it is not justified to use different
criteria to diagnose non-White individuals. These social/
environmental factors contribute to reduced lung
function among minority racial/ethnic groups, and race-
specific equations can mask their damaging effects. Use
of ancestry instead of race in these equations would not
solve this problem, as ancestral alleles track with the
same environmental factors as race.7 Even if there were
ancestral anthropometric differences, the consequences
of these variations are not clearly linked to disease or
dysfunction. Furthermore, not all individuals are likely
to fit the average expectation for the group,5 particularly
when the racial/ethnic populations used to create these
equations originally were relatively small and not
necessarily all healthy.1

Interpretation
As this debate continues, race-specific equations are still
recommended by the most recent US and European
guidelines14 and are used in clinical care and pulmonary
research worldwide. Although recent studies
recommend the race-neutral GLI-Other equation for
universal use,7,8 and the latest race-neutral GLI “Global”
equation (based on an equally weighted and more
balanced racial/ethnic dataset than GLI-Other),40 these
equations are not race free as GLI-Other applies a
universal race correction, and GLI-Global uses weights
to balance racial/ethnic diversity. These approaches both
still consider race in their formation, and thus assume
racial differences in respiratory physiology in healthy
individuals, as opposed to the race-free approach. Our
findings suggest that race-free equations may serve
equally well, at least for adults aged > 35 years.

The primary strengths of our study are its careful
selection of healthy individuals for developing race-free
reference equations by eliminating asymptomatic
individuals with abnormal airway physiology and the
consistent findings across two distinct and relatively
large data sets with variable racial/ethnic proportions,
using multiple modeling techniques. However, our
findings should be interpreted in light of certain
limitations. The Black population sample in the
COPDGene data was relatively small, and the available
data sets were not representative of all racial/ethnic
groups. Socioeconomic and environmental factors were
outside the scope of our study but are clearly important
variables to examine in future studies.19,35,41,42 Although
our analyses were cross-sectional, and thus cannot
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address directions of effect, we always used a distinct
data set to test the fit of equations developed in an
independent data set. Future studies should also use
prospective longitudinal data to improve the predictive
potential of these equations.

With rising awareness of structural racism and
misconceptions about race in medicine,43-46 this is a
critical moment for pulmonary clinicians to reconsider
the value of continuing to use race when interpreting
spirometry measures. The effect of adding race as a
covariate only marginally improves the fit for some
models with the risk of introducing bias driven by
environment and social factors. In light of these
concerns, along with the large amount of unexplained
variability and the dynamic nature of self-identified race,
we maintain that continued use of race-specific
equations is not justified. The findings presented here
contribute to the growing literature that we hope will be
considered when revisions to clinical guidelines are
made.
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