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Outcome of acute kidney injury: 
how to make a difference?
Matthieu Jamme1,2,3* , Matthieu Legrand4 and Guillaume Geri2,3,5 

Abstract 

Background: Acute kidney injury (AKI) is one of the most frequent organ failure encountered among intensive care 
unit patients. In addition to the well-known immediate complications (hydroelectrolytic disorders, hypervolemia, drug 
overdose), the occurrence of long-term complications and/or chronic comorbidities related to AKI has long been 
underestimated. The aim of this manuscript is to briefly review the short- and long-term consequences of AKI and 
discuss strategies likely to improve outcome of AKI.

Main body: We reviewed the literature, focusing on the consequences of AKI in all its aspects and the management 
of AKI. We addressed the importance of clinical management for improving outcomes AKI. Finally, we have also pro-
posed candidate future strategies and management perspectives.

Conclusion: AKI must be considered as a systemic disease. Due to its short- and long-term impact, measures to 
prevent AKI and limit the consequences of AKI are expected to improve global outcomes of patients suffering from 
critical illnesses.
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Introduction
Acute kidney injury (AKI) is one of the most frequent 
organ failure encountered in intensive care units (ICU). 
Since his first definition by Homer W. Smith in the fifties 
[1], more than 30 different definitions have been used, 
leading to a sizeable epidemiological heterogeneity [2] 
with incidence ranging from 5 [3] to 25% [4].

Since 2004, three definitions, based on serum creati-
nine (SCr) and urine output, respectively: RIFLE [5], 
AKIN [6], and the actual KDIGO classification [7] have 
been proposed allowing homogenization of AKI defini-
tion as well as epidemiological association between AKI 
and chronic kidney disease (CKD). Based on the most 
recent KDIGO definition, AKI occurs in more than a 
third of ICU patients [8, 9].

Why physicians should worry about AKI?
Occurrence of AKI represents a sharp prognostic turn 
for patients by affecting both short- and long-term 
prognosis.

AKI and global (short and long term) prognosis
The multinational EPI-AKI study has highlighted that 
AKI was associated with short-term mortality in a 
severity-dependent manner (OR = 2.19 [1.44–3.35], 3.88 
[2.42–6.21] and 7.18 [5.13–10.04] for KDIGO stage 1, 2 
and 3, respectively) [8]. All subgroups of ICU patients 
seemed to be affected [10–15]. A poor short- and mid-
term outcome was also observed in patients with sub-
clinical AKI (defined by positive biomarkers of kidney 
injury but not meeting the current definition of AKI) 
[16].

Moreover, AKI has been repeatedly associated with 
poor long-term outcomes [17]. In a large study reporting 
1-year outcome of more than 16,000 patients discharged 
alive from the hospital and who suffered AKI in ICU, 
five profiles were identified according to the renal status 
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during ICU and hospital stay: patients with early (< 7 days 
from admission) or late (> 7  days) sustained recovery, 
relapse with (relapse no recovery) or without altered 
renal function at hospital discharge (relapse recovery) 
and sustained renal failure [18]. Patients with altered 
renal function at hospital discharge (never reversed or 
relapse no recovery) had the worst outcome. Interest-
ingly, even patients who apparently recovered from AKI 
at ICU discharge (based on serum creatinine) but with 
positive biomarkers of kidney injury had a higher risk 
of death during the year following ICU discharge. Once 
again, this suggests that beyond the impact of decrease 
renal function, kidney damage impacts long-term out-
comes [19].

AKI and chronic kidney disease (CKD)
The end of 2010s has been marked by the publication of 
several studies that highlighted an association between 
AKI and subsequent CKD occurrence. Wald et  al. have 
compared 3,769 to 13,598 matched patients treated or 
not treated with renal replacement therapy (RRT) in 
ICU and observed a higher incidence of end-stage renal 
disease with RRT (2.63 vs. 0.91/100 patient-years, haz-
ard ratio = 3.23 [2.70–3.86]) [20]. In a Swedish national 
cohort of 97,782 ICU patients, Rimes-Stigare et al. have 
reported that patients who suffered de novo AKI had an 
increased risk of CKD (adjusted incidence rate ratio = 7.6 
[95%CI 5.5–10.4]) and end-stage renal disease (ESRD) 
(adjusted incidence rate ratio = 22.5 [95% CI 12.9–39.1]) 
compared to patients without AKI during their ICU stay 
[21]. The same group identified that CKD at ICU admis-
sion and severity of AKI was associated with ESRD in 
1-year survivors [22]. Similar observations were made in 
specific subgroups like elderly [23], pediatric [24], dia-
betic [25], post-cardiac surgery [26], or resuscitated car-
diac arrest patients [27].

Interestingly, patients who fully recover at hospital dis-
charge remain at risk of CKD 1  year afterwards, particu-
larly in the case of subsequent episodes of AKI during the 
ICU stay [18]. Of note, all these studies were retrospective 
or provided results from electronic administrative datasets 
with significant risk of bias. A major recent prospective 
study clarified the association between AKI and CKD. In 
the Assessment, Serial Evaluation, and Subsequent Seque-
lae IN Acute Kidney Injury (ASSESS-AKI) Study, a multi-
center prospective study comparing 769 patients with or 
without AKI, the authors observed that an increased uri-
nary albumine-to-creatinine (ACR) ratio at 3 months after 
discharge was the most predictive biomarker of kidney 
disease progression (HR = 1.25 [1.10–1.43] per doubling 
of urine ACR, P < 0.001). Interestingly, in multivariable 
analysis, AKI occurrence was not associated with kidney 
disease progression [28]. However, we should not neglect 

the importance of AKI in the evaluation of renal progno-
sis regards to the sensitivity analyses performed using the 
urine protein-to-creatinine ratio instead of urine ACR. 
In that case, AKI became strongly associated (HR = 2.53 
[1.21–5.25], p = 0.01) with kidney disease progression. 
Moreover, C statistic used to discriminate risk of poor renal 
outcome was better in the latter (0.84 vs 0.79).

Our current understanding is that an acute episode 
leaves an imprint (which is expected to be, biologically, of 
epigenetic nature) able to promote renal fibrosis [29, 30]. 
However, mechanisms leading to CKD in this context are 
not yet fully understood.

AKI and long‑term cardiovascular risk
In several extensive large cohort studies, AKI has been 
associated with an increased risk of a cardiovascular 
events [31–33], especially heart failure. In a recently pub-
lished meta-analysis, Otudayo et al. reported a 58%, 40%, 
and 15% increased risk of heart failure, myocardial infarc-
tion, and stroke, respectively [34]. Mechanisms leading to 
cardiovascular events are not elucidated so far. Acceler-
ated atherosclerosis might be a contributing factor [35]. 
In a translational study performed in 968 adults undergo-
ing cardiac surgery, patients with clinical AKI, and ele-
vated cardiac injury biomarkers at day 1–3 were strongly 
associated with long-term cardiovascular events. Other 
mechanisms involving mitochondrial dysregulation have 
also been suggested. Sumida et  al. showed increased car-
diomyocyte apoptosis and cardiac dysfunction after renal 
ischemia reperfusion in a mouse model. The authors also 
observed a significant increase of mitochondrial frag-
mentation in cardiomyocytes with an accumulation of an 
unique fission regulation protein: Drp1 [36].

In contrast, urinary kidney injury biomarkers at day 1–3 
were not associated with outcome [37]. These results sug-
gested that AKI was indicative of cardiovascular stress 
rather than an independent renal pathway. However, an 
association between the occurrence of cardiovascular 
events and AKI remaining after adjustment for cardiovas-
cular risk factors and preclinical data argue for a direct 
impact of AKI on cardiovascular damage [38].

This hypothesis has also been demonstrated in a murine 
experimental work highlighting the role of the galectin-3 
pathway [39]. Prud’homme et  al. have evidenced AKI 
increased galectin-3 expression, which induced cardiac 
inflammation with macrophage infiltration and cardiac 
fibrosis resulting in cardiac dysfunction.
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The three critical stages of renal management: 
before, during, and after AKI (Fig. 1)

Before AKI: prevent AKI to occur
The cornerstone of AKI prevention in ICU patients is 
the management of hemodynamics, including appropri-
ate volume of fluids, the choice of fluids and of vasoactive 
drugs. Even if the pathogenesis of AKI in ICU patients 
may rely on different mechanisms [8, 40], hemodynamic 
optimization appears essential to prevent alterations of 
renal blood flow (RBF) [41].

Hemodynamic management
Appropriate volume replacement should be performed as 
early as possible while keeping in mind that fluid over-
load was reported to be associated with poor prognosis 
in AKI patients [42, 43]. This apparent antagonist obser-
vation probably highlights the higher severity of AKI 
patients requiring higher volume of fluids and the criti-
cal role of the timing of fluid administration during the 
course of critical illness. Since the first alarming pub-
lications about the nephrotoxicity of artificial colloids 
[44, 45], although probably less harmful in less severe 
patients [46], crystalloids are the solutions of choice for 
ICU patients [47, 48]. Indirect and observational results 
suggested better renal outcomes with so-called bal-
anced solutes [49, 50]. This could have been explained 
by the deleterious effects of hyperchloremia acidosis 
induced by a highly concentrated solution in chlorine 
[51]. If these observations could not be verified by the 
randomized clinical trial SPLIT (relative risk for AKI 
occurrence within 90  days = 1.04 [0.80–1.36], p = 0.77), 

the absence of sample size calculation added to the non-
control administration of the solutes before admission to 
ICU limited the interpretation of this results [52]. In the 
Isotonic Solutions and Major Adverse Renal Events Trial 
(SMART) in ICU and non-ICU patients, a protective 
renal effect favoring the use of balanced solution with 
an absolute reduction in the risk of major adverse kid-
ney events by 1.1 [1.092–1.107] % for ICU patients and 
0.9 [0.889–0.911] % for non-ICU patients [53, 54] was 
observed. However, it is important to note that the frailty 
index calculated for the SMART studies, which is a com-
plementary means to the p value for the interpretation of 
the results of the clinical trials, was very low. This obser-
vation suggesting a low robustness of the results [55]. But 
frailty index can also be interpreted as the reflection of 
a consistent choice of the size of the population stud-
ied for the size of the effect observed. Finally, its use is 
recently debated because it has been proven to lack the 
ability of the frailty index to quantify deviations from a 
model’s null assumptions [56]. While the case of balanced 
crystalloids vs normal saline is not closed, accumulating 
evidence strongly suggest that (1) normal saline is not 
superior to balanced solution and (2) balanced solution 
are likely to be superior to normal saline in acutely and 
critically ill patient. Pending ongoing trials, this justifies 
in our view the use of balanced solutions as first line flu-
ids in ICU patients.

Besides the choice of solute, the concept of the optimal 
mean arterial pressure target has been advocated for a 
long time. In the EPI-AKI study, factors associated with 
AKI included a past medical history of hypertension or 
shock at ICU admission, with higher ssimplified acute 

Fig. 1 The three steps of renal management. Green, yellow and red boxes represented interventions with, respectively, surely, possibly and 
insufficient level of evidence of benefit. AKI, acute kidney injury; mABP, mean arterial blood pressure; RRT, renal replacement therapy; SRAA, renin 
angiotensin aldosterone system
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physiology score 3 [8]. These results are in line with those 
of the SEPSIS-PAM trial [57]. SEPSIS-PAM was a rand-
omized controlled trial (RCT) targeting a mean arterial 
pressure of either 65 or 85 mmHg. It evidenced a signifi-
cantly lower proportion of severe AKI and rate of renal 
replacement therapy in patients with chronic hyper-
tension in the higher blood pressure group (31 vs. 42%, 
p = 0.04) [57]. This relationship had been demonstrated 
in physiological studies which strongly suggested that 
glomerular filtration rate (GFR) and RBF can vary widely 
across mean arterial pressure (mABP) ranges, but, how-
ever, the impact of raising mABP on renal hemodynamic 
varies on an individual basis [58]. In the 65 trial, a strat-
egy of permissive hypotension strategy vs. usual care in 
patients aged 65 years or older and admitted to ICU for 
vasodilatory hypotension was tested. No difference was 
observed with respect to the incidence of RRT, including 
among the subgroup of patient with a history of hyper-
tension [59]. However, such a lack of difference should 
be interpreted with caution due to the small difference 
of mABP levels between groups (respectively mABP of 
67 [64–70] mmHg and mABP of 73 [69–76] mmHg). In 
another ICU population, renal adverse events were less 
frequently observed in the high target patients (4 vs. 
9%, p = 0.002) in an RCT including patients admitted to 
the ICU for acute intracerebral hemorrhage [60]. Taken 
together, these findings do not support yet a wide use of 
higher mABP targets in patients with shock to protect 
the kidney. However, physiological studies strongly sug-
gest that glomerular filtration rate and renal blood flow 
can vary widely across mABP ranges and the impact of 
raising mABP on renal hemodynamic varies on an indi-
vidual basis [58].

During shock, it has been well demonstrated that a 
decrease in blood pressure below the limit of renal self-
regulatory capacity lead to an almost linear drop in RBF. 
While norepinephrine remains the first-choice vasopres-
sor to maintain arterial perfusion, its direct effects on 
RBF remains controversial. On one hand, norepinephrine 
has been shown to decrease RBF in healthy volunteers 
and its nephrotoxic impact is frequently used in funda-
mental research on animal models to promote AKI [61, 
62]. On the other hand, in distributive shock, the use of 
norepinephrine restores RBF [58, 63]. Vasopressin has 
been suggested to improve renal outcomes in preliminary 
reports. However, vasopressin has not yet been shown 
superior to norepinephrine in preventing AKI in ICU 
patients [64–66].

Improve the oxygen supply/need balance
Numerous other procedures aiming to improve intra-
renal perfusion or oxygenation have been evalu-
ated, including renal vasodilators, control of renal 

hypercatabolism, anti-inflammatory, and antioxidants 
drugs. Among them, dopamine is undoubtedly the most 
extensively studied one. Its administration at low doses 
(< 5  µg/kg/min) inducing special in dopaminergic and 
β-adrenergic effect and therefore causes renal vasodila-
tation. However, despite intensive research for more 
than 30  years, date remain largely inconclusive to pre-
vent occurrence of AKI [67]. Other vasodilators agents, 
like fenoldopam, B-type natriuretic peptide, and levosi-
mendan, have failed to show any renal benefit [68–71]. 
Erythropoietin, steroids, tight glucose control, and 
numerous metabolic interventions have also been used 
to prevent kidney damage in various conditions. Except 
for the control of blood glucose level for which conflict-
ing results have been obtained [72, 73], no renal benefit 
has been observed with these metabolic interventions as 
well [74–76].

Bundles
Beyond a single intervention, "bundles" have been pro-
posed to prevent AKI [77, 78]. Bundles are a small, 
straightforward set of evidence-based practices that have 
been proven to improve patient outcomes when per-
formed collectively and reliably (Fig.  2). This seems to 
allow better recognition [79] and reduce the risk of AKI 
progression [80]. Implementation of bundles has been 
able to demonstrate a reduction in the incidence of AKI 
in specific settings such as nephrotoxic AKI or post-car-
diac surgery [81, 82]. Whether implementing those bun-
dles in general ICU population or in sepsis could prevent 
AKI is still unknown.

During the AKI: improving early recovery from AKI
Activation of the PGC1α‑NAD pathway
While no specific treatment of AKI is yet available, 
numerous advances in the understanding of the mecha-
nisms leading to AKI in ischemic or septic conditions 
have been made over the last years. Among them, the 
PPAR Gamma Coactivator 1 alpha Nicotinamide Ade-
nine Dinucleotide (PGC1α-NAD) pathway is one of the 
most promising targets for AKI. As renal proximal tubu-
lar cells are one of the most energy or ATP demanding 
cells in the body, they are very dependent on mitochon-
drial function. An increase in the expression of PGC1α 
in renal epithelial cells subjected to ischemic stress was 
found protective, with a rise of NAD + [83, 84]. Further-
more, decrease expression of PGC1α was observed on 
human kidney biopsies in patients with AKI [84]. PPAR 
agonists have been proposed to prevent AKI induced by 
cisplatin or ischemia–reperfusion [85, 86]. The first class 
tested was fibrates, with mixed results [85, 86]. Another 
approach was to increase the oxidation of fatty acid (AF) 
by improving the transport of AF in the mitochondrial 
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matrix using association with carnitine and an activa-
tor of the carnitine palmitoyl-transferase 1 also called 
enzyme of the carnitine shuttle [87]. However, these are 
essentially preclinical data with no evaluation in patients. 
Nicotinamide (Nam), the amine form of Vitamin B3 
(niacin), was identified as a potential stimulator of the 
production of NAD + [88]. After promising preclinical 
experiments, the administration of Nam was evaluated 
in the prevention of postoperative AKI in cardiac surgery 
in a single center trial with encouraging results [89]. In 
this phase 1 pilot study, 37 patients after cardiac surgery 
were randomly assigned in three groups: placebo, nicoti-
namide 1 g per day and 3 g per day. The areas under the 
curve of all longitudinal SCr measured after randomiza-
tion were higher in placebo group vs patients received 
nicotinamide supplementation. While these results 
deserve to be reassessed in larger samples with more 
suitable outcome, emerging data linking the NAD + equi-
librium to AKI resistance opens a new exciting chapter in 
AKI research [88, 90].

Renal replacement therapy: the right time to the right 
patient
The modality and the timing of initiation of RRT impact 
renal outcome. Concerning the modalities, it has been 
historically suggested that continuous techniques is asso-
ciated with better hemodynamic stability [91]. Continu-
ous RRT (CRRT) appear to result into fewer hypotension 
episodes during RRT sessions, allowing better renal per-
fusion, and, therefore, better recovery of renal function 

[92], potentially due to lower ultrafiltration rate and 
lower osmotic shifts compared to IHD [93]. After iden-
tifying 6,627 patients treated by RRT in ICU and survi-
vors at day 90, Wald et  al. were able to compare 2,004 
patients treated with CRRT with 2,004 patients treated 
with intermittent hemodialysis (IHD) using a propensity 
score matching. Patients treated with IHD vs. CRRT were 
at higher risk of ESRD at 90  days (8.2 per 100 patient-
years vs. 6.5 per 100 patient-year; HR = 0.75 [0.65–0.87]) 
[94]. However, these results were not confirmed in a 
subsequent study, which included 638 patients admit-
ted to a single tertiary care academic medical center 
for 8  years and treated with RRT. After applying a con-
ditional logistic regression model stratified by propen-
sity score for CRRT, there was no significant higher risk 
of dialysis dependence at day 90 (OR = 1.19 [0.91–1.55] 
for CRRT, p = 0.20) and day 365 (OR = 0.93 [0.72–1.20] 
for CRRT, p = 0.55). Even if a difference favoring CRRT 
at day 90 was observed (186/244 (76.2%) for CRRT 
patients vs. 66/101 (65.3%) for IHD patients, p = 0.05), 
this association did not remain significant at day 365 
[95]. Exploration of the French electronic health record 
revealed an association between the use of IHD and the 
risk of developing CKD among ICU patients [96]. The 
KDIGO guidelines suggest the use of CRRT for patients 
with unstable hemodynamics but with moderate level of 
evidence [7], since available RCTs were not designed to 
address the impact on renal outcome [97]. While the tim-
ing of renal replacement therapy does not affect survival 
in critically ill patients [98–102], data suggest potential 

Fig. 2 Acute kidney injury bundles of care (derived from the KDIGO AKI management guidelines). Grey boxes indicate action to establish according 
to KDIGO severity stages. AKI, acute kidney injury; RRT, renal replacement therapy
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harm of a liberal use of RRT on renal recovery. No differ-
ence in renal recovery was observed at day 90 in both the 
ELAIN study (9/67 (13.4%) for the early group vs. 8/53 
(15.1%) for the delayed group, p = 0.80) and the IDEAL-
ICU trial (2/101 (2%) for the early group vs. 3/110 (3%) 
for the delayed group, p > 0.90) [99, 102]. Recently, a 
higher RRT dependence among survivors at day 90 was 
observed in the STARRT-AKI study (85/814 (10.4%) for 
the accelerated group vs. 49/815 (6.0%) for the standard 
group). Concerning long-term outcome, analysis from 
the extended 1  year follow-up of the ELAIN study sug-
gested better prognosis of early initiation of RRT whether 
in terms of mortality (absolute difference −  19.6 (−  32; 
− 7.2) %, p < 0.01) or recover of renal function (absolute 
difference = − 34.8 (− 54.6; − 15) %, p = 0.001) [103].

After AKI: Preventing the long‑term consequences
The maladaptive repair concept and the evolution 
to the renal fibrosis
For a long time, the suspected renal lesion of AKI was 
acute tubular necrosis (ATN), otherwise described as 
transient with full recovery. It is now well established 
that that the repair after ATN is ultimately imperfect, 
culminating in the concept of "maladaptive repair." This 
"maladaptive repair" initiates fibrogenesis even when 
morphology and renal function have apparently returned 
to normal. Similarly, increasing evidence in kidney trans-
plants suggests that ischemic episodes are connected to 
transplant fibrosis [104]. So far, four significant pathways 
have been identified to trigger fibrosis after an episode 
of transient AKI: (a) the epigenetic silencing of RASAL1, 
a proliferation inhibitor, in myofibroblasts; (b) the cell 
cycle arrest in G2/M in tubular epithelial cells (the G2/M 
phase is where the epithelial cell function is closer to a 
mesenchymal one); (c) down-regulation of FA oxydatoin 
in tubular epithelial cells [105–107]; and the activation 
of the renin–angiotensin–aldosterone system (SRAA) 
[108–110].

Blocking the renin–angiotensin system to prevent 
fibrinogenesis
Activation of the SRAA is a key pathway for the develop-
ment of chronic cardiovascular disease.

Angiotensin II (AngII) has been shown to induce 
cytokine secretion by tubular cells and promoting the 
accumulation of inflammatory cells in both the tubular 
and glomerular compartments [108]. The MD2/TLR4/
MyD88 plays a pivotal role in mediating the proinflam-
matory effects of AngII [109]. Further damage to the 
kidney may arise from the activation of the coagulation 
cascade and leucocyte adhesion in microvessels [111]. 
Reciprocally, antagonization of AngII confers renal 
protection in a model of subtotal nephrectomy in rats 

[110]. Unsurprisingly, AngII has been widely utilized to 
enhance the onset of renal injury in animal models. Addi-
tionally, robust data suggest that AngII is a crucial con-
tributor to the progression of renal fibrosis and chronic 
kidney disease via tissue inflammation and matrix pro-
tein deposition [109]. Conversely, some experimental 
work has suggested a deficit in SRAA activity, contribut-
ing to vasoplegia during distributive shock [112]. AngII 
has been investigated to restore the arterial pressure in 
patients on high doses of vasopressors in a recent RCT 
[113]. However, the long-term assessment, in particular 
concerning the occurrence of CKD in survivors, has not 
yet been carried out, particularly in patients treated for 
an extended period of time [114].

On the other hand, several observational data suggest a 
beneficial effect of blocking the SRAA in patients recov-
ering from AKI. In a cohort of 611 patients with AKI 
during ICU stay and discharged alive from ICU, the pres-
ence of SRAA inhibitor at ICU discharged was associated 
with lower mortality with a propensity score-matched 
hazard ratio of 0.48 [0.27–0.85], p < 0.01) [115]. Similar 
results were observed in another large Canadian cohort, 
including 46,253 patients who suffered AKI during hos-
pitalization. Blocking SRAA was associated with better 
outcomes at 2 years (HR = 0.85 [0.81–0.89], p < 0.01) but 
was not associated with ESRD or composite outcome 
composed by ESRD or sustained doubling of serum cre-
atinine [116]. These results were not observed in an ancil-
lary study of the AKIKI trial, which failed to evidence 
any beneficial association between SRAA blockers and 
2-years outcomes in KDIGO3 survivors [117]. Of note, 
this study was likely to lack power. No increased risk of 
recurrent hospitalized AKI was observed after the new 
use of SRAA blockers suggesting that starting or resum-
ing these medications is safe after AKI [118, 119].

Follow‑up
While the reassessment of patients 3  months after AKI 
is highly recommended by KDIGO guidelines [7], several 
studies have highlighted the fact that only a small propor-
tion of patients ultimately benefit from this reassessment. 
Available data show that less than 30% of patients who 
suffered AKI during hospitalization are reassessed within 
the first year after discharge, including patients with 
CKD or pre-existing diabetes [120, 121], despite the cur-
rent recommendation by nephrologists [122]. However, 
such a follow-up seems to impact the outcome through 
the optimization of treatments, detection, and preven-
tion of cardiovascular diseases and prevention of new 
episodes of AKI. In an Ontario population-based cohort 
study, 3,877 patients who suffered AKI treated by renal 
replacement therapy and discharged alive from the hos-
pital were evaluated depending on the completion of a 



Page 7 of 11Jamme et al. Ann. Intensive Care           (2021) 11:60  

follow-up consultation [123]. A visit with a nephrologist 
within 90 days after discharge was associated with a 24% 
decrease in mortality after 2 years of follow-up. However, 
with the increase in hospitalization rates complicated by 
AKI, the general application of reassessment may exceed 
existing capacity of nephrology programs. Given the 
poor outcome of AKI survivors, RCT and prospective 
observational studies, as the ongoing French PREDICT 
multicenter study [124], are needed to determine which 
subpopulations of patients would benefit most from 
these interventions.

Perspectives on AKI research: an incredible 
playground in terms of epidemiology, basic 
science, and translational research
In recent years, due to the generalization of big databases, 
artificial intelligence (AI) techniques have been increas-
ingly crucial in critical care. AKI is not exempt from 
the application of AI techniques, in particular, to pre-
dict AKI occurrence or aggravation [125–129]. A deep 
learning model developed on electronic health records 
from 703,782 adult patients could predict 55.8% of all 
episodes of AKI, 90.2% of all AKI required dialysis, with 
a lead time of up to 48 h and a ratio of 2 false alerts for 
every real alert [125]. However, the major limitation of 
these models is that the prediction of AKI is derived from 
variations in SCr, which remains an imperfect marker for 
renal function [130].

To date, the search for new biological (plasmatic or 
urinary NGAL, KIM-1, Cystatin C, TIMP-2, IGFBP7) or 
non-biological (intra-renal Doppler flow indices) marker 
of kidney injury represent an essential part of the lit-
erature with contradictory results. Rather than helping 
in the diagnosis of AKI, they can be useful in predict-
ing the most severe forms of AKI [131] or detect kidney 
injury in patients not meeting the current definition of 
AKI (i.e. so-called sub-clinical AKI). If both RCTs AKIKI 

and IDEAL-ICU did not demonstrate any survival ben-
efit according to the time to onset of RRT for all patients 
with stage 3 AKI, the high mortality rate observed in 
patients who underwent RRT later justifies the need to 
identify persistent AKI [98, 99]. In a multicenter inter-
national prospective observation study, Hoste et  al. had 
identified for the first time a new urinary biomarker, the 
C–C motif chemokine ligand 14  (CCL14), with good dis-
crimination (AUC = 0.83 [0.78–0.87]) [132]. If the discov-
ery of  CCL14 as a predictor of persistent AKI is not the 
first one to suggest the role of monocytes/macrophages 
in the pathophysiology of AKI, especially in sepsis [133], 
it offers the opportunity to identify new approaches of 
AKI therapy. Moreover, the promise of early intervention 
able to improve renal outcome in infraclinic AKI must be 
encouraged by the development of biomarkers research.

The impact of strategies of RRT on renal recovery 
remains poorly understood and should be explored. 
Finally, strategies to prevent long-term development of 
both chronic and cardiovascular diseases require full 
attention to limits the AKI “scar”.

Finally, behind therapeutic innovations, next years will 
bring out new endpoints that will allow us to better define 
endpoints of interest in the setting of AKI (Table 1), bet-
ter report the prevalence of AKI/CKD/ESRD and overall 
survival, and improve our tools to measure actual real-
time GFR, functional renal reserve and kidney damage.

Conclusion
AKI is highly prevalent among ICU patients and has been 
associated with short- and long-term outcomes. Several 
therapeutic strategies can either prevent or mitigate the 
consequences of AKI. Future research should now iden-
tify sub-phenotypes of AKI with different response to 
available treatments, tools for earlier and better recogni-
tion of kidney damage and renal function and innovative 

Table 1 Classical and potential endpoint used to evaluate efficacy of AKI procedure

AKI acute kidney injury, GFR glomerular filtration rate, ICU intensive care unit, RRT  renal replacement therapy, CKD chronic kidney disease

Classical outcome Potential outcome

Prevention AKI prevalence Real time GFR

Change of biomarker

Clinical management ICU death Time free of RRT 

Dialysis dependency at discharge AKI as competitive event to 
death/complicatoin

Recovery of renal function

Functional renal reserve

Follow-up Long-term survival Measure of GFR

End-stage kidney disease Patient-related quality of life

CKD
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therapeutic strategies with the ultimate goal of improving 
patient-centered outcomes.
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