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Abstract

Causal Inference for Case-Control Studies

by

Sherri Rose

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark van der Laan, Chair

Case-control study designs are frequently used in public health and medical research
to assess potential risk factors for disease. These study designs are particularly
attractive to investigators researching rare diseases, as they are able to sample known
cases of disease, vs. following a large number of subjects and waiting for disease onset
in a relatively small number of individuals. The data-generating experiment in
case-control study designs involves an additional complexity called biased sampling.
That is, one assumes the underlying experiment that randomly samples a unit from
a target population, measures baseline characteristics, assigns an exposure, and
measures a final binary outcome, but one samples from the conditional probability
distribution, given the value of the binary outcome. One still desires to assess the
causal effect of exposure on the binary outcome for the target population.

The targeted maximum likelihood estimator of a causal effect of treatment on the
binary outcome based on such case-control studies is presented. Our proposed case-
control-weighted targeted maximum likelihood estimator for case-control studies
relies on knowledge of the true prevalence probability, or a reasonable estimate of
this probability, to eliminate the bias of the case-control sampling design. We use
the prevalence probability in case-control weights, and our case-control weighting
scheme successfully maps the targeted maximum likelihood estimator for a random
sample into a method for case-control sampling.

Individually matched case-control study designs are commonly implemented in
the field of public health. While matching is intended to eliminate confounding,
the main potential benefit of matching in case-control studies is a gain in efficiency.
We investigate the use of the case-control-weighted targeted maximum likelihood
estimator to estimate causal effects in matched case-control study designs. We
also compare the case-control-weighted targeted maximum likelihood estimator in
matched and unmatched designs in an effort to determine which design yields the
most information about the causal effect. In many practical situations where a
causal effect is the parameter of interest, researchers may be better served using an
unmatched design.

We also consider two-stage sampling designs, including so-called nested case-
control studies, where one takes a random sample from a target population and
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completes measurements on each subject in the first stage. The second stage involves
drawing a subsample from the original sample, collecting additional data on the
subsample. This data structure can be viewed as a missing data structure on the
full-data structure collected in the second stage of the study. We propose an inverse-
probability-of-censoring-weighted targeted maximum likelihood estimator in two-
stage sampling designs. Two-stage designs are also common for prediction research
questions. We present an analysis using super learner in nested case-control data
from a large Kaiser Permanente database to generate a function for mortality risk
prediction.
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Chapter 1

Introduction: Case-Control
Studies

Case-control study designs are frequently used in public health and medical research
to assess potential risk factors for disease. These study designs are particularly
attractive to investigators researching rare diseases (i.e., the probability of having
the disease ≈ 0), as they are able to sample known cases of disease vs. following a
large number of subjects and waiting for disease onset in a relatively small number
of individuals. However, case-control sampling is a biased design. Bias occurs due to
the disproportionate number of cases in the sample vs. the population. Researchers
commonly employ the use of logistic regression in a parametric statistical model,
ignoring the biased design, and estimate the conditional odds ratio of having disease
Y given the exposure of interest A and measured covariates W .

Cases

Cohort sampling design                Case-control sampling design

Sample from 
population of 

interest

Sample from 
population of 

cases
Sample from 
population of 

controls

Controls

Figure 1.1: Case-control sampling design
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1.1 Independent Designs

Conditional estimation of the odds ratio of disease given the exposure and base-
line covariates is the prevalent method of analysis in case-control study designs.
Key publications in the area of logistic regression in parametric statistical models
for independent case-control study designs are Anderson (1972), Prentice and Pyke
(1979), Breslow and Day (1980), and Breslow (1996). Greenland (1981) and Holland
and Rubin (1988) discuss another model-based method: the use of log-linear statis-
tical models to estimate the marginal odds ratio. There are also multiple references
for standardization in case-control studies, which estimates marginal effects with
population or person-time averaging, including Rothman and Greenland (1998) and
Greenland (2004).

An existing method for causal inference in case-control study designs, discussed
by Robins (1999) and Mansson et al. (2007), involves the use of the exposure mech-
anism among control subjects as a weight to update a logistic regression of disease
status on exposure. This inverse-probability-of-treatment-weighted (IPTW) estima-
tor does not require the knowledge of prevalence probability, only that the preva-
lence probability is close to zero. The IPTW estimator presented by Robins (1999)
targets a nonparametrically nonidentifiable parameter, which indicates strong sen-
sitivity towards model misspecification for the exposure mechanism. Additionally,
the causal effect estimates of the risk difference and relative risk cannot be obtained
using this method. This IPTW estimator will be examined further in Chapter 3. We
also refer the interested reader to Newman (2006) for a related IPTW-type method.
This procedure builds on the standardization approach in order to weight exposed
and unexposed controls using a regression of A on W .

The case-control-weighted targeted maximum likelihood estimator (CCW-TMLE)
(van der Laan 2008a; Rose and van der Laan 2008, 2009; van der Laan and Rose
2011) we propose relies on knowledge of the true prevalence probability PX,0(Y =
1) ≡ q0, or a reasonable estimate of this probability, to eliminate the bias of the case-
control sampling design. We use the prevalence probability in case-control weights,
and our case-control weighting scheme successfully maps the targeted maximum
likelihood estimator (TMLE) for a random sample (van der Laan and Rubin 2006;
van der Laan and Rose 2011) into a method for case-control sampling. The CCW-
TMLE, presented in Chapter 3, is an efficient estimator for the case-control sample
when the TMLE for the random sample is efficient. In addition, the CCW-TMLE
inherits the robustness properties of the TMLE for the random sample. Additional
papers on TMLE in observational and experimental studies include Bembom and
van der Laan (2007), Moore and van der Laan (2009a,b,c), Bembom et al. (2009),
Polley and van der Laan (2009), Rosenblum et al. (2009), van der Laan and Gruber
(2010), Gruber and van der Laan (2010a,b), Rosenblum and van der Laan (2010),
Wang et al. (2010), Stitelman and van der Laan (2010, 2011a,b), and Rose and
van der Laan (2011).

We also propose the use of super (machine) learning methods (van der Laan et al.
2007) within the CCW-TMLE procedure. The super learner allows researchers to
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use multiple algorithms to outperform a single algorithm in realistic nonparametric
and semiparametric statistical models based on actual knowledge. It’s use within
CCW-TMLE will be described in Chapter 3. Super learner is a generalization
of the stacking algorithm introduced in the neural networks context by Wolpert
(1992) and adapted to the regression context by Breiman (1996), and its name was
introduced due to the theoretical oracle property and its consequences as presented
in van der Laan and Dudoit (2003). The stacking algorithm is examined in LeBlanc
and Tibshirani (1996) and the relationship to the model-mix algorithm of Stone
(1974) and the predictive sample-reuse method of Geisser (1975) is discussed. Recent
literature on aggregation and ensemble learners includes Tsybakov (2003), Juditsky
et al. (2005), Bunea et al. (2006, 2007a,b), and Dalalyan and Tsybakov (2007, 2008).
Targeted Learning, including super learner and the TMLE, while be presented in
Chapter 2.

The population under study should be clearly defined. As such, the prevalence
probability is then truly basic information about a population of interest. Given the
availability of city, state, and national databases for many diseases, knowledge of
the prevalence probability is now increasingly realistic. The literature, going back to
the 1950s, supports this. See, for example, Cornfield (1951, 1956). If the prevalence
probability is not known, an estimate can be used in the CCW-TMLE, and this
additional uncertainty can be incorporated into the standard errors (van der Laan
2008a; Rose and van der Laan 2008). In situations where data on the population
of interest may be sparse, the use of a range for the prevalence probability is also
appropriate.

The use of the prevalence probability to eliminate the bias of case-control sam-
pling design has previously been discussed as update to a logistic regression model
with the intercept update log(q0/(1 − q0)) (Anderson 1972; Prentice and Breslow
1978; Greenland 1981; Morise et al. 1996; Wacholder 1996; Greenland 2004). How-
ever, its use in practice remains limited. The intercept-adjustment is sometimes
presented as a ratio of sampling fractions: log(P (sampled | Y = 1)/P (sampled |
Y = 0)), which reduces to log(q0/(1− q0)).

The complexity of a case-control study can vary. Additional designs include indi-
vidually matched, incidence-density, and nested. A literature review for individually
matched case-control studies follows in the next section, and a CCW-TMLE for in-
dividually matched studies is presented in Chapter 4, which was adapted from Rose
and van der Laan (2009). A TMLE for general two-stage designs, including so-called
nested case-control designs, is presented in Chapter 5, which was adapted from Rose
and van der Laan (2011). A literature review for two-stage designs is presented in
Section 1.3. Chapter 3 was adapted from Rose and van der Laan (2008). Methdol-
ogy for incidence-density designs is discussed briefly in van der Laan (2008a) and
are an area of future work.
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1.2 Individually Matched Designs

In an individually matched case-control study, the population of interest is identified,
and cases are randomly sampled or selected based on particular inclusion criteria.
Each of these cases is then matched to one or more controls based on a variable
(or variables) believed to be a confounder. There is a large collection of literature
devoted to the topic of individual matching in case-control study designs, and dis-
cussion of the advantages and disadvantages of matching goes back more than 40
years. While some literature cites the purpose of matching as improving validity,
later publications (Kupper et al. 1981; Rothman and Greenland 1998) demonstrate
that matching has a greater impact on efficiency over validity. Costanza (1995)
notes that matching on confounders in case-control studies does nothing to remove
the confounding. Similarly, Rothman and Greenland (1998) discuss that matching
cannot control confounding in case-control study designs but can, in fact, introduce
bias. Methodologists in the literature stress that it is often possible and preferred
for confounders to be adjusted for in the analysis instead of matching in case-control
designs (Schlesselman 1982; Vandenbrouke et al. 2007).

Matching has a substantial impact on the study sample; most notably, it creates
a sample of controls that is not representative of exposure in the population or the
population as a whole. The effect of the matching variable can no longer be studied
directly, and the exposure frequency in the control sample will be shifted towards
that of the cases (Rothman and Greenland 1998). The matched sampling leads to
a balanced number of cases and controls across the levels of the selected matching
variables. This balance can reduce the variance in the parameter of interest, which
improves statistical efficiency. A study with a randomly selected control group may
yield some strata with an imbalance of cases and controls.

It is important to add, however, that matching in case-control studies can lead
to gains or losses in efficiency (Kupper et al. 1981; Rothman and Greenland 1998).
Matching variables are chosen a priori on the belief that they confound the rela-
tionship between exposure and disease. If controls are matched to cases based on
a variable that is not a true confounder, this can impact efficiency. For example, if
the matching variable is associated not with disease but with the exposure, this will
increase the variance of the estimator compared to an unmatched design. Here, the
matching leads to larger numbers of exposure-concordant case-control pairs, which
are not informative in the analysis, leading to an increase in variance. If the match-
ing variable is only associated with disease, there is often a loss of efficiency as well
(Schlesselman 1982). If the matching variable is along the causal pathway between
disease and exposure, then matching will contribute bias that cannot be removed in
the analysis (Vandenbrouke et al. 2007).

The number of matching variables should also be reduced to as few as possi-
ble. As the number of matching variables grows, the cases and controls will become
increasingly similar with respect to the exposure of interest, and the study may
produce a spurious result or provide no information (Breslow and Day 1980). Addi-
tionally, when matching on more than one variable, matching variables should not
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be strongly correlated with each other (Schlesselman 1982).
Cochran (1953) demonstrates the efficiency of matched designs. However, as

noted by McKinlay (1977), Cochran’s result can be misleading. Comparisons be-
tween matched and unmatched study designs are often made with equal sample sizes
and no other method of covariate adjustment. In a matched design, controls may
be discarded if they do not match a particular case on the variable or variables of
interest. Multiple controls may be discarded per case, depending on the variables
of interest (Freedman 1950; Cochran 1965; McKinlay 1977). In many cases, if the
discarded controls were available to be rejected in the matched study, they would
be available for an unmatched design in the same investigation (Billewicz 1965;
McKinlay 1977). Therefore, it is often more appropriate to compare the efficiencies
of matched case-control studies of size n to randomly selected case-control studies
of size n+number of discarded controls.

Kupper et al. (1981) performed a variety of simulations to demonstrate the im-
pact of matching on efficiency. They found that in situations where confounding was
present, the confidence intervals for matched studies were smaller than unmatched
studies unless the odds ratio and the exposure of interest were large. However, the
confidence intervals for the samples with randomly selected controls were always
shorter when the number of controls was at least twice that of the cases. This is
an important result, as efficiency is often touted as the benefit of an individually
matched case-control study design, and the discussion above that comparisons be-
tween matched case-control studies of size n should be made to randomly selected
case-control studies of size n+number of discarded controls.

The predominant method of analysis in individually matched case-control studies
is conditional logistic regression in a parametric statistical model. The logistic
regression model for matched case-control studies differs from unmatched studies in
that it allows the intercept to vary among the matched units of cases and controls.
The matching variable is not included in the model (Breslow et al. 1978; Holford
et al. 1978; Breslow and Day 1980; Schlesselman 1982). In order to estimate an
effect of exposure A with conditional logistic regression, the case and control must
be discordant on A. Additionally, if information for a variable is missing for a case
(or control), the corresponding control (or case) information is discarded (Breslow
and Day 1980; Schlesselman 1982). Rothman and Greenland (1998) and Greenland
(2004) demonstrate the use of standardization in case-control studies, which estimate
marginal effects with population or person-time averaging.

Gefeller et al. (1998) performed a literature review of case-control studies pub-
lished between 1955 and 1994 in three main epidemiology journals: American Jour-
nal of Epidemiology, International Journal of Epidemiology, and the Journal of Epi-
demiology and Community Health. They found that, among these journals, there
was a decreasing trend in the percentage of individually matched case-control stud-
ies published (71.7% in the years preceding 1981, 65.5% in 1985, 46.9% in 1989, and
46.4% in 1994), and an increasing percentage of frequency matched studies (5.0%
in the years preceding 1981, 9.1% in 1985, 16.3% in 1989, and 26.2% in 1994).
Interestingly, the percentage of case-control studies using no matching stayed rela-
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tively constant with no obvious trend (averaging 29.3%, and ranging from 23.2% to
36.7%). Unfortunately, they found substantial evidence that individually matched
studies were being performed without the appropriate matched analysis: only 74%
of studies from 1994 used conditional logistic regression if logistic regression was the
chosen method of analysis. A later analysis of medical literature in Medline, Rah-
man (2003), indicated that 5.3% of individually matched case-control studies used
an unconditional logistic regression for those selecting logistic regression models.
The review in Gefeller et al. (1998) indicates that unmatched case-control studies,
at least in epidemiology, are in the minority. This should be questioned given the
overwhelming agreement in the literature that matching is not frequently justified
for case-control study designs.

The consensus in the literature indicates that there are very few circumstances
where individual matching is indeed warranted. Case-control studies with a very
small number of cases may benefit from individual matching, as a randomly selected
control group from even a well-defined population of interest may be uninformative
on many variables of interest (Schlesselman 1982; Costanza 1995). Matching is cited
as necessary by many authors when the investigators expect the distribution of the
matching variable to differ drastically between the cases and the controls. It may be
this reason that draws many investigators towards a matched design, perhaps with-
out appropriate consideration of the disadvantages or definition of the population
of interest. Are the direct time and labor costs of individually matching controls
worth the potential gain in efficiency? Will the potential efficiency gain outweigh a
delay of x months or years in the collection of study data? Is a gain in efficiency
truly likely? Might obtaining a larger, randomly sampled group of controls be suf-
ficient to ensure coverage over the distribution of the confounder? It is therefore
important to continue to disseminate the implications of individually matched case-
control study designs to researchers, as Rothman and Greenland (1998) note that
“people match on a variable (e.g. sex) simply because it is the ‘expected thing to do’
and they might lose credibility for not matching.” When researchers make design
and analysis decisions based on these types of considerations, their research may
suffer.

1.3 Two-Stage Designs

Two-stage designs, including nested case-control studies, have been discussed and
developed in previous literature, including Neyman (1938), Cochran (1963), Mantel
(1973), Kupper et al. (1975), Liddell et al. (1977), Thomas (1977), and Breslow
et al. (1983). Advantages can include reduction in costs associated with collecting
data on the entire cohort and minimal losses in efficiency (Ernster 1994; Rothman
and Greenland 1998; Essebag et al. 2003; Hak et al. 2004; Vittinghoff and Bauer
2006).
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1.3.1 Effect estimation

Much of the literature focuses on logistic regression for effect estimation (Breslow
and Cain 1988; Flanders and Greenland 1991; Ernster 1994; Barlow et al. 1999;
Szklo and Nieto 1999). Robins et al. (1994) present the missingness framework for
two-stage designs and (double robust augmented) inverse-probability-of-treatment-
weighted estimators. We also refer to van der Laan and Robins (2003) which provides
an in-depth study and overview of double robust estimation for missing data and
causal inference data structures.

A recent paper by Wang et al. (2009) presents causal effect estimators using
estimating equation methodology where the outcome Y , exposure A, and a subset
S of covariates W are measured in the first stage (V includes Y , A, and S). They
consider the same two-stage design, where one measures V = (S, Y,A) on everyone in
the sample, and X = (S, Y,A,W ) on the subjects in the validation sample defined by
∆ = 1, where the missingness mechanism is known. The Wang et al. article focuses
on estimation of EYa under the consistency assumption Y = YA, the randomization
assumption, A is independent of Ya, given (W,S), so that EYa = ES,WEX,0(Y |
A = a, S,W ), and a parametric model for the treatment mechanism Π(S,W ) =
P (A = 1 | S,W ). We refer the interested reader to the appendix of Chapter 5 for
a detailed discussion of the relationships between the estimators presented in Wang
et al. (2009) and the TMLE we will present.

1.3.2 Prediction

Prediction has been used most notably to generate tables for risk of heart disease
(Kannel et al. 1976; Anderson et al. 1991; Ramsay et al. 1995, 1996; Wilson et al.
1998; Jackson 2000) and breast cancer (Gail et al. 1989; Costantino et al. 1999; Tyrer
et al. 2004; Barlow et al. 2006). An existing method for prediction in parametric
statistical models with nested case-control samples is intercept adjustment discussed
in Section 1.1. The addition of log(PX,0(∆ = 1 | Y = 1)/PX,0(∆ = 1 | Y =
0)), or equivalently log(q0/(1 − q0)), to the intercept in a logistic regression yields
the true logistic regression function PX,0(Y = 1 | W ), assuming the statistical
model is correctly specified. Here ∆ denotes the indicator of inclusion in the nested
case-control sample, and the value q0 is the prevalence probability PX,0(Y = 1) =
q0 (Anderson 1972; Prentice and Breslow 1978; Greenland 1981; Wacholder 1996;
Morise et al. 1996; Greenland 2004). We will use the super learner (van der Laan
et al. 2007), also discussed in Section 1.1, to provide a more flexible method for
prediction in two-stage nested case-control data.

1.4 Conclusion

There had been relatively little work completed in the area of causal inference and
prediction for case-control study designs. Given the popularity of these designs in
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the public health and medical literature, the advances targeted learning using super
learner and TMLE offer, in conjunction with case-control weighting, are substantial.
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Chapter 2

Road Map for Targeted Learning

One of the great open problems across many fields of research has been obtaining
causal effects from data. Data are typically sampled from a population of inter-
est since collecting data on the entire population is not feasible. Frequently, the
researcher is not interested in merely studying association or correlation in this
sample data; she wants to know whether an exposure (or treatment) causes the
outcome in the population of interest. If one can show that the exposure causes the
outcome, we can then impact the outcome by intervening on the exposure.

The often quoted “ideal experiment” is one that cannot be conducted in real life.
Let us say we are interested in studying the causal effect of a toxin on death from
cancer within 5 years. In an ideal experiment, we intervene and set the exposure to
exposed for each subject. All subjects are followed for 5 years, where the outcome
under this exposure is recorded. We then go back in time to the beginning of the
study, intervene, and set all subjects to not exposed and follow them under identical
conditions until the end of the study, recording the outcome under this exposure.

Let’s assume in principle there is a system where this ideal experiment could
have been conducted. This experiment generates random variables. Say the exper-
iment is that we sample a subject (i.e., draw a random variable) from a population
and take several measurements on this subject. This experiment is repeated mul-
tiple times until we have sampled an a priori specified number (representing the
sample size) of subjects. These random variables also have a true underlying prob-
ability distribution. Our observed data are realizations of these random variables.
If we were to conduct our repeated experiment again, we would observe different
realizations of these random variables.

Any knowledge we have about how these observed data were generated is referred
to as a model. For example, it might be known that the data consist of observations
on a number of independent and identically distributed (i.i.d.) random variables. So,
our data are i.i.d. random variables, but the probability distribution of the random
variable is typically completely unknown. This is also information we incorporate
into our model. We refer to this as a nonparametric model for the probability distri-
bution of the random variable. (Do note, however, that assuming the data vector is
i.i.d. in our nonparametric model is a real assumption, although one we will always
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make in this dissertation.) Our model should always reflect true knowledge about
the probability distribution of the data, which may often be a nonparametric model,
or a semiparametric model that makes some additional assumptions. For example,
perhaps it is known that the probability of death is monotonically increasing in the
levels of exposure, and we want to include this information in our model.

The knowledge we have discussed thus far regarding our model pertains to our
observed data and what we call the statistical model. The statistical model is,
formally, the collection of possible probability distributions. The model may also
contain extra information in addition to the knowledge contained in the statistical
model. We want to relate our observed data to a causal model. We can do this with
additional assumptions, and we refer to a statistical model augmented with these
additional causal assumptions as the model for the observed data. These additional
assumptions allow us to define the system where this ideal experiment could have
been conducted. We can describe the generation of the data with nonparametric
structural equations, intervene on exposure and set those values to exposed and not
exposed, and then see what the (counterfactual) outcomes would have been under
both exposures. This underlying causal model allows us to define a causal effect of
treatment or exposure.

One now needs to specify the relation between the observed data on a unit and
the full data generated in the causal model. For example, one might assume that the
observed data corresponds with observing all the variables generated by the system
of structural equations that make up the causal model, up to background factors
that enter as error terms in the underlying structural equations. The specification of
the relation between the observed data and this underlying causal model allows one
now to assess if the causal effect of interest can be identified from the probability
distribution of the observed data. If that is not possible, then we state that the
desired causal effect is not identifiable. If, on the other hand, our causal assump-
tions allow us to write the causal effect as a particular feature of the probability
distribution of the observed data, then we have identified a target parameter of the
probability distribution of the observed data that can be interpreted as a causal
effect.

Let’s assume that the causal effect is identifiable from the observed data. Our
parameter of interest, here the causal effect of a toxin on death from cancer within
5 years, is now a parameter of our true probability distribution of the observed
data. This definition as a parameter of the probability distribution of the observed
data does not rely on the causal assumptions coded by the underlying causal model
describing the ideal experiment for generating the desired full data, and the link
between the observed data and the full data. Thus, if we ultimately do not believe
these causal assumptions, the parameter is still an interesting statistical parameter.
Our next goal becomes estimating this parameter of interest.

The open problem addressed in this dissertation is the estimation of interesting
parameters of the probability distribution of the data in case-control study designs.
This need not only be (causal) effect measures. Another problem researchers are fre-
quently faced with is the generation of functions for the prediction of rare outcomes.
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For these problems, we do not make causal assumptions, but still define our realis-
tic nonparametric or semiparametric statistical model based on actual knowledge.
We view effect and prediction parameters of interest as features of the probability
distribution of our data, well defined for each probability distribution in the non-
parametric or semiparametric model. Statistical learning from data is concerned
with efficient and unbiased estimation of these features and with an assessment of
uncertainty of the estimator.

In Chapters 3–5 we develop targeted learning for case-control studies. In this
chapter, we will develop the following concepts, as part of the general road map for
targeted learning in observational and experimental data:

Defining the data, model, and parameter. We will define our random variable,
which we observe n times, and corresponding probability distribution of interest. By
defining a structural causal model (SCM), we specify a model for underlying coun-
terfactual outcome data, representing the data one would be able to generate in an
ideal experiment. This is a translation of our knowledge about the data-generating
process into causal assumptions. We can define our target parameter in our SCM,
i.e., as a so-called causal effect of an intervention on a variable A on an outcome
Y . The SCM also generates the observed data O, and one needs to determine if the
target parameter can be identified from the distribution P0 of O alone. In particular,
one needs to determine what additional assumptions are needed in order to obtain
such identifiability of the causal effect from the observed data.

Super learning for prediction. The first step in our estimation procedure is
an initial estimate for the part of the data-generating distribution P0 required to
evaluate the target parameter. This estimator needs to recognize that P0 is only
known to be an element of a semiparametric statistical model. That is, we need
estimators that are able to truly learn from data, allowing for flexible fits with in-
creased amounts of information. Super learning provides an optimal approach to
estimation of P0 (or infinite-dimensional parameters thereof) in semiparametric sta-
tistical models. Since prediction can be a research question of interest in itself, super
learning for prediction is useful as a standalone tool as well.

TMLE. With an initial estimate of the relevant part of the data-generating distri-
bution obtained using super learning, we present the remainder of the TMLE. The
second stage of TMLE updates this initial fit in a step targeted towards making an
optimal bias–variance tradeoff for the parameter of interest, instead of the overall
probability distribution P0. This results in a targeted estimator of the relevant part
of P0, and thereby in a corresponding substitution estimator of Ψ(P0).
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2.1 Data, Model, Parameter

2.1.1 Data

The data are n i.i.d. observations of a random variable O ∼ P0, where O has
probability distribution P0. For a simple example, suppose our data structure is
O = (W,A, Y ) ∼ P0. We have a covariate or vector of covariates W , an exposure
A, and an outcome Y . The random variables O1, . . . , On might be the result of
randomly sampling n subjects from a population of patients, collecting baseline
characteristics W , assigning exposure A, and following the subjects and measuring
outcome Y . The case-control data structure for independent case-control study
designs is discussed in Chapter 3, individually matched case-control study designs
in Chapter 4, and nested two-stage designs in Chapter 5.

2.1.2 Model

We are considering the general case that one observed n i.i.d. copies of a random
variable O with probability distribution P0. The data-generating distribution P0 is
also known to be an element of a statistical model M, which we write P0 ∈ M.
A statistical model M is the set of possible probability distributions for P0; it is a
collection of probability distributions. In this dissertation, the distribution of our
data is simply known to be an element of a nonparametric statistical model M.

We specify a set of endogenous variables X = (Xj : j). In a very simple example,
we might have j = 1, . . . , J , where J = 3. Thus, X = (X1, X2, X3). We can rewrite
X as X = (W,A, Y ) if we say X1 = W , X2 = A, and X3 = Y . For each endogenous
variable Xj one specifies the parents of Xj among X, denoted Pa(Xj). We denote
a collection of exogenous variables by U = (UXj

: j). One assumes that Xj is some
function of Pa(Xj) and an exogenous UXj

:

Xj = fXj
(Pa(Xj), UXj

), j = 1 . . . , J .

The collection of functions fXj
indexed by all the endogenous variables is repre-

sented by f = (fXj
: j). Together with the joint distribution of U , these functions

fXj
, specify the data-generating distribution of (U,X) as they describe a deter-

ministic system of structural equations (one for each endogenous variable Xj) that
deterministically maps a realization of U into a realization of X. In an SCM one
also refers to some of the endogenous variables as intervention variables. The SCM
assumes that intervening on one of the intervention variables by setting their value,
thereby making the function for that variable obsolete, does not change the form of
the other functions. The functions fXj

are often unspecified, but in some cases it
might be reasonable to assume that these functions have to fall in a certain more
restrictive class of functions. Similarly, there might be some knowledge about the
joint distribution of U . The set of possible data-generating distributions of (U,X)
can be obtained by varying the structural equations f over all allowed forms, and
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the distribution of the errors U over all possible error distributions defines the SCM
for the full-data (U,X), i.e., the SCM is a statistical model for the random variable
(U,X).

The corresponding SCM for the observed data O also includes specifying the
relation between the random variable (U,X) and the observed data O, so that the
SCM for the full data implies a parameterization of the probability distribution of
O in terms of f and the distribution PU of U . This SCM for the observed data
also implies a statistical model for the probability distribution of O.We have the
functions f = (fW , fA, fY ) and the exogenous variables U = (UW , UA, UY ). The
values of W , A, and Y are deterministically assigned by U corresponding to the
functions f . We could specify our structural equation models, based on investigator
knowledge, as

W = fW (UW ),

A = fA(W,UA),

Y = fY (W,A,UY ), (2.1)

where no assumptions are made about the true shape of fW , fA, and fY . These
functions f are nonparametric.

We may assume that UA is independent of UY , given W , which corresponds with
believing that there are no unmeasured factors that predict both A and the outcome
Y : this is often called the no unmeasured confounders assumption (discussed later in
this chapter). This SCM represents a semiparametric statistical model for the prob-
ability distribution of the errors U and endogenous variables X = (W,A, Y ). We
assume that the observed data structure O = (W,A, Y ) is actually a realization of
the endogenous variables (W,A, Y ) generated by this system of structural equations.
This now defines the SCM for the observed data O. It is easily seen that any prob-
ability distribution of O can be obtained by selecting a particular data-generating
distribution of (U,X) in this SCM. Thus, the statistical model for P0 implied by
this SCM is a nonparametric model. As a consequence, one cannot determine from
observing O if the assumptions in the SCM contradict the data. One states that the
SCM represents a set of nontestable causal assumptions we have made about how
the data were generated in nature.

We can draw a causal graph from our SCM, which is a visual way to describe
some of the assumptions made by the model and the restrictions placed on the joint
distribution of the data (U,X). Causal graphs cannot encode every assumption we
make in our SCM, and, in particular, the identifiability assumptions derived from
causal graphs alone are not specific for the causal parameter of interest. Identifia-
bility assumptions derived from a causal graph will thus typically be stronger than
required. In addition, the link between the observed data and the full-data model
represented by the causal graph is often different than simply stating that O corre-
sponds with observing a subset of all the nodes in the causal graph. In this case,
the causal graph itself cannot be used to assess the identifiability of a desired causal
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Figure 2.1: A possible causal graph for (2.1)
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Figure 2.2: A causal graph for (2.1) with no assumptions on the distribution of PU

parameter from the observed data distribution.
We previously mentioned the typically nontestable causal assumptions made by

an SCM. We make the first assumption by defining the parents Pa(Xj) for each
endogenous Xj. The second is any set of assumptions about the joint distribution
PU of the exogenous variables. The assumptions made based on actual knowledge
concerning the relationships between variables [i.e., defining the parents Pa(Xj) for
each endogenous Xj] are displayed in our causal graph through the presence and
absence of directed arrows. In Fig. 2.1, the direction of the arrows is defined by the
assignment of the parents to each node, including the time ordering assumed during
the specification of (2.1). The assumptions on the distribution PU are reflected
in causal graphs through dashed double-headed arrows between the variables U .
In Fig. 2.1 there are no arrows between the U = (UW , UA, UY ). Therefore, (2.1)
included the assumption of joint independence of the endogenous variables U , which
is graphically displayed by the lack of arrows. This is not an assumption one is
usually able to make based on actual knowledge. More likely, we are able to make
few or no assumptions about the distribution of PU . For (2.1), with no assumptions
about the distribution of PU , our causal graph would appear as in Fig. 2.2.

2.1.3 Parameter

The estimation problem requires the description of a target parameter of P0 one
wishes to learn from the data. This definition of a target parameter requires spec-
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ification of a mapping Ψ one can then apply to P0. This mapping Ψ needs to be
defined on any possible probability distribution in the statistical model M. Thus
Ψ maps any P ∈ M into a vector of numbers Ψ(P ). We write the mapping as
Ψ :M→ Rd for a d-dimensional parameter. We introduce ψ0 as the evaluation of
Ψ(P0), i.e., the true value of our parameter. The statistical estimation problem is
now to map the observed data O1, . . . , On into an estimator of Ψ(P0) that incorpo-
rates the knowledge that P0 ∈M, accompanied by an assessment of the uncertainty
in the estimator. For example, with the experimental unit-specific data structure
O = (W,A, Y ) ∼ P0, the risk difference is the following function of the distribution
P0 of O:

Ψ(P0) = EW,0[E0(Y | A = 1,W )− E0(Y | A = 0,W )],

where E0(Y | A = a,W ) is the conditional mean of Y given A = a and W , with
binary A.

We can define a causal target parameter of interest as a parameter of the dis-
tribution of the full-data (U,X) in the SCM. Formally, we denote the SCM for the
full-data (U,X) by MF , a collection of possible PU,X as described by the SCM. In
other words, MF , a model for the full data, is a collection of possible distributions
for the underlying data (U,X). ΨF is a mapping applied to a PU,X giving ΨF (PU,X)
as the target parameter of PU,X . This mapping needs to be defined for each PU,X
that is a possible distribution of (U,X), given our assumptions coded by the posed
SCM. In this way, we state ΨF :MF → Rd, where Rd indicates that our parameter
is a vector of d real numbers. The SCMMF consists of the distributions indexed by
the deterministic function f = (fXj

: j) and distribution PU of U , where f and this
joint distribution PU are identifiable from the distribution of the full-data (U,X).
Thus the target parameter can also be represented as a function of f and the joint
distribution of U .

Recall our example with data structure O = (W,A, Y ) and SCM given in (2.1)
with no assumptions about the distribution PU . We can define Ya = fY (W,a, UY ) as
a random variable corresponding with intervention A = a in the SCM. The marginal
probability distribution of Ya is thus given by

PU,X(Ya = y) = PU,X(fY (W,a, UY ) = y).

The causal effect of interest for a binary A (suppose it is the causal risk difference)
could then be defined as a parameter of the distribution of (U,X) given by

ΨF (PU,X) = EU,XY1 − EU,XY0.

In other words, ΨF (PU,X) is the difference of marginal means of counterfactuals Y1

and Y0.
We will define our causal target parameter as a parameter of the distribution of

the data (U,X) under an intervention on one or more of the structural equations in
f . The intervention defines a random variable that is a function of (U,X), so that
the target parameter is ΨF (PU,X). We discussed the “ideal experiment” which we
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cannot conduct in practice, where we observe each subject’s outcome at all levels
of A under identical conditions. Intervening on the system defined by our SCM
describes the data that would be generated from the system at the different levels
of our intervention variable (or variables). For example, in our simple example, we
can intervene on the exposure A in order to observe the results of this intervention
on the system. By assumption, intervening and changing the functions fXj

of the
intervention variables does not change the other functions in f . With the SCM
given in (2.1) we can intervene on fA and set a = 1:

W = fW (UW ),

a = 1,

Y1 = fY (W, 1, UY ).

We can also intervene and set a = 0:

W = fW (UW ),

a = 0,

Y0 = fY (W, 0, UY ).

The intervention defines a random variable that is a function of (U,X), namely,
Ya = Ya(U) for a = 1 and a = 0. The probability distribution of the (X,U) under
an intervention is called the postintervention distribution. Our target parameter is
a parameter of the postintervention distribution of Y0 and Y1, i.e., it is a function of
these two postintervention distributions, namely, some difference. Thus, the SCM
for the full data allows us to define the random variable Ya = fY (W, a, UY ) for
each a, where Ya represents the outcome that would have been observed under this
system for a particular subject under exposure a. Thus, with the SCM we can carry
out the “ideal experiment” and define parameters of the distribution of the data
generated in this perfect experiment, even though our observed data are only the
random variables O1, . . . , On.

We would ideally like to see each individual’s outcome at all possible levels of
exposure A. The study is only capable of collecting Y under one exposure, the expo-
sure the subject experiences. For our binary exposure in the example above, we have
(Ya : a), with a ∈ A, and whereA is the set of possible values for our exposure. Here,
this set is simply {0, 1}, but in other examples it could be continuous or otherwise
more complex. Thus, in our example, for each realization u, which might correspond
with an individual randomly drawn from some target population, by intervening on
(2.1), we can generate so-called counterfactual outcomes Y1(u) and Y0(u). These
counterfactual outcomes are implied by our SCM; they are consequences of it. That
is, Y0(u) = fY (W, 0, uY ), and Y1(u) = fY (W, 1, uY ), where W = fW (uW ) is also
implied by u. The random counterfactuals Y0 = Y0(U) and Y1 = Y1(U) are random
through the probability distribution of U . Our target parameter is a function of the
probability distributions of these counterfactuals: E0Y1 − E0Y0.
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Establishing identifiability. We want to be able to write ΨF (PU,X,0) as Ψ(P0) for
some parameter mapping Ψ. Since the true probability distribution of (U,X) can
be any element in the SCM MF , and each such choice PU,X implies a probability
distribution P (PU,X) of O, this requires that we show that ΨF (PU,X) = Ψ(P (PU,X))
for all PU,X ∈ MF . This step involves establishing possible additional assumptions
on the distribution of U , or sometimes also on the deterministic functions f , so that
we can identify the target parameter from the observed data distribution. Thus,
for each probability distribution of the underlying data (U,X) satisfying the SCM
with these possible additional assumptions on PU , we have ΨF (PU,X) = Ψ(P (PU,X))
for some Ψ. O is implied by the distribution of (U,X), such as O = X or O ⊂ X,
and P = P (PX,U), where P (PU,X) is a distribution of O implied by PU,X . Let us
denote the resulting full-data SCM by MF∗ ⊂ MF to make clear that possible
additional assumptions were made that were driven purely by the identifiability
problem, not necessarily reflecting reality. We now have that for each PU,X ∈MF∗,
ΨF (PU,X) = Ψ(P ), with P = P (PU,X) the distribution ofO implied by PU,X (whereas
P0 is the true distribution of O implied by the true distribution PU,X,0).

Theorems exist that are helpful to establish such a desired identifiability result.
For example, if O = X, and the distribution of U is such that, for each s, As
is independent of Ld, given Pa(As), then the well-known g-formula expresses the
distribution of Ld in terms of the distribution of O:

P (Ld = l) =
R∏
r=1

P (Lr = lr | Pad(Lr)) = Pad(lr)),

where Pad(Lr) are the parents of Lr with the intervention nodes among these parent
nodes deterministically set by intervention d.

This so-called sequential randomization assumption can be established for a par-
ticular independence structure of U by verifying the backdoor path criterion on the
corresponding causal graph implied by the SCM and this independence structure on
U . The backdoor path criterion states that for each As, each backdoor path from As
to an Lr node that is realized after As is blocked by one of the other Lr nodes. One
might be able to generate a number of independence structures on the distribution
of U that provide the desired identifiability result. That is, the resulting model for
U that provides the desired identifiability might be represented as a union of models
for U that assume a specific independence structure. If there is only one intervention
node, i.e., S = 1, so that O = (W,A, Y ), the sequential randomization assumption
reduces to the randomization assumption (also known as the no unmeasured con-
founders assumption). The randomization assumption states that treatment node
A is independent of counterfactual Ya, conditional on W : Ya⊥A | Pa(A) = W . We
note that different such subsets of X may provide a desired identifiability result.

If we return to our example and the structural equation models found in (2.1),
the union of several independence structures allows for the identifiability of our
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Figure 2.3: Causal graphs for (2.1) with various assumptions about the distribution
of PU

causal target parameter E0Y1 − E0Y0 by meeting the backdoor path criterion. The
independence structure in Fig. 2.2 does not meet the backdoor path criterion, but
the two in Fig. 2.3 do. Thus in these two graphs the randomization assumption
holds: A and Ya are conditionally independent given W , which is implied by UA
being independent of UY , given W . It should be noted that Fig. 2.1 is a special
case of the first graph in Fig. 2.3, so the union model for the distribution of U only
represents two conditional independence models.

Commit to a statistical model and target parameter. The identifiability
result provides us with a purely statistical target parameter Ψ(P0) on the distribu-
tion P0 of O. The full-data model MF∗ implies a statistical observed data model
M = {P (PX,U) : PX,U ∈ MF∗} for the distribution P0 = P (PU,X,0) of O. This now
defines a target parameter Ψ : M → Rd. The statistical observed data model for
the distribution of O might be the same for MF and MF∗. If not, then one might
consider extending the Ψ to the larger statistical observed data model implied by
MF , such as possibly a fully nonparametric model allowing for all probability distri-
butions. In this way, if the more restricted SCM holds, our target parameter would
still estimate the target parameter, but one now also allows the data to contradict
the more restricted SCM based on additional doubtful assumptions.

We can return to our example and define our parameter, the causal risk differ-
ence, in terms of the corresponding statistical parameter Ψ(P0):

ΨF (PU,X,0) = E0Y1 − E0Y0 = E0[E0(Y | A = 1,W )− E0(Y | A = 0,W )] ≡ Ψ(P0),

where the outer expectation in the definition of Ψ(P0) is the mean across the strata
for W . This identifiability result for the additive causal effect as a parameter of
the distribution P0 of O required making the randomization assumption stating
that A is independent of the counterfactuals (Y0, Y1) within strata of W . This
assumption might have been included in the original SCM MF , but, if one knows
there are unmeasured confounders, then the model MF∗ would be more restrictive
by enforcing this “known to be wrong” randomization assumption.

Another required statistical assumption is that P0(A = 1,W = w) > 0 and
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P0(A = 0,W = w) > 0 are positive for each possible realization w of W . Without
this assumption, the conditional expectations of Y in Ψ(P0) are not well defined.

To be very explicit about how this parameter corresponds with mapping P0 into
a number:

Ψ(P0) =
∑
w

[∑
y

yP0(Y = y | A = 1,W = w)

−
∑
y

yP0(Y = y | A = 0,W = w)

]
P0(W = w),

where

P0(Y = y | A = a,W = w) =
P0(W = w,A = a, Y = y)∑
y P0(W = w,A = a, Y = y)

is the conditional probability distribution of Y = y, given A = a,W = w, and

P0(W = w) =
∑
y,a

P0(Y = y, A = a,W = w)

is the marginal probability distribution of W = w. This statistical parameter Ψ
is defined on all probability distributions of (W,A, Y ). The statistical model M is
nonparametric and Ψ :M→ R.

Interpretation of target parameter. The observed data parameter Ψ(P0) can
be interpreted in two possibly distinct ways:

1. Ψ(P0) with P0 ∈M augmented with the truly reliable additional nonstatistical
assumptions that are known to hold (e.g., MF ). This may involve bounding
the deviation of Ψ(P0) from the desired target causal effect ΨF (PU,X,0) under
a realistic causal modelMF that is not sufficient for the identifiability of this
causal effect.

2. The truly causal parameter ΨF (PU,X) = Ψ(P0) under the more restricted SCM
MF∗, thereby now including all causal assumptions that are needed to make
the desired causal effect identifiable from the probability distribution P0 of O.

The purely statistical (noncausal) parameter given by interpretation 1 is often
of interest, such as EW,0[E0(Y | A = 1,W ) − E0(Y | A = 0,W )], which can be
interpreted as the average of the difference in means across the strata for W . With
this parameter we can assume nothing, beyond the positivity assumption, except
perhaps time ordering W → A → Y , to have a meaningful interpretation of the
difference in means. Since we do not assume an underlying system, the SCM for
(U,X) and thereby Ya, or the randomization assumption, the parameter is a statis-
tical parameter only. This type of parameter is sometimes referred to as a variable
importance measure.
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2.2 Targeted Maximum Likelihood Learning

Targeted maximum likelihood super learning allows us to avoid reliance on unrealis-
tic (parametric) statistical models, define interesting parameters, and target the fit
of the data-generating distribution to the parameter of interest. The incorporation
of super learning in the TMLE means that every effort is made to achieve minimal
bias and the asymptotic semiparametric efficiency bound for variance. We discuss
both procedures below.

Effect Estimation vs. Prediction. Both causal effect and prediction
research questions are inherently estimation questions. In the first, we
are interested in estimating the causal effect of A on Y adjusted for
covariates W . For prediction, we are interested in generating a function
to input the variables (A,W ) and predict a value for Y . These are
separate and distinct research questions. However, many (causal) effect
estimators, such as TMLE, involve prediction steps within the procedure.

2.2.1 Super Learner

The first step in the TMLE is an initial estimate of the data-generating distribution
P0, or the relevant part that is needed to evaluate the target parameter. This is
the first place where we will use super learner. An estimator maps the O1, . . . , On

observations into a value for the parameter it targets. We can view estimators
as mappings from the empirical distribution Pn of the data set, where Pn places
probability 1/n on each observed Oi, i = 1, . . . , n. We want to use an algorithm to
estimate the function Q̄X,0 : (A,W ) → Q̄X,0(A,W ) (where Q̄X,0(A,W ) = EX,0(Y |
A,W )). However, there are multiple “algorithms” to choose from, and we want to
use the best estimator. We select this best estimator in terms of a loss function,
which assigns a measure of performance to a candidate function Q̄ when applied
to an observation O. For binary Y , both the L2 loss L(O, Q̄) = (Y − Q̄(A,W ))2

and negative log loss L(O, Q̄) = − log(Q̄(A,W )Y (1− Q̄(A,W ))1−Y ) target the same
function Q̄X,0(A,W ) = PX,0(Y = 1 | A,W ). We will use the L2 loss because of its
desirable boundedness properties.

We can now define Q̄X,0(A,W ) = EX,0(Y | A,W ) as the minimizer of the ex-
pected squared error loss:

Q̄X,0 = arg minQ̄EX,0L(O, Q̄),

where L(O, Q̄) = (Y − Q̄(A,W ))2. EX,0L(O, Q̄), which we want to be small, evalu-
ates the candidate Q̄, and it is minimized at the optimal choice of Q̄X,0. We want
the estimator of the regression function Q̄X,0 whose realized value minimizes the
expectation of the squared error loss function.
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How do we find out which algorithm among a collection or library of algorithms
yields the smallest expected loss, or, equivalently, which one has the best perfor-
mance with respect to the dissimilarity implied by the loss function? A library
consists of various algorithms, such as random forests or parametric logistic re-
gression. We can use these algorithms to build a library of algorithms consisting
of all weighted averages of these regressions. It is reasonable to expect that one of
these weighted averages might perform better than one of the regressions/algorithms
alone. This simple principle allows us to map a collection of candidate algorithms
into a library of weighted averages of these algorithms. Each weighted average is a
unique candidate algorithm in this augmented library.

The entire data set (learning set) is fit using each of the algorithms in our col-
lection of algorithms. The learning set is then split into V groups of size ∼ n/V .
We follow V -fold cross-validation, and for any given fold, V − 1 sets will comprise
the training set and the remaining 1 set is the validation set. The observations in
the training set are used to construct (or train) the algorithms. The observations
in the validation set are used to assess the performance (i.e., risk) of the candidate
algorithms applied to the corresponding training set. The validation set rotates
V times such that each set is used as the validation set once. Each algorithm is
applied to the observations in the training set, and risk is estimated with the ob-
servations in the validation set. The risks obtained from the V validation sets are
averaged to obtain the cross-validated risk for each algorithm. We then propose a
family of weighted combinations of the algorithms and determine which combina-
tion minimizes the cross-validated risk over the family of weighted combinations.
This family of weighted combinations includes only those that sum up to one and
where each weight is positive or zero. The weighted combination with the smallest
cross-validated risk is the best estimator according to our criteria: minimizing the
estimated expected squared error loss function. (This cross-validated risk criterion
can be applied to arbitrary loss functions.) The super learner returns a function
that we can use for prediction in new data sets. We also use cross-validation to
evaluate the overall performance of the super learner itself, by running the super
learner within each of the V folds, and calculating a cross-validated risk.

Demonstrations of the super learner’s superior finite sample performance in sim-
ulations and publicly available data sets, as well as asymptotic results, are discussed
in van der Laan et al. (2007), Polley and van der Laan (2010), and van der Laan
and Rose (2011). In brief, the asymptotic results prove that in realistic scenarios
(where none of the algorithms are a correctly specified parametric statistical model),
the cross-validated selector performs asymptotically as well as the oracle, which we
define as the best estimator given the algorithms in the collection of algorithms. Con-
sequently, super learner performs asymptotically as well as the best choice among
the family of weighted combinations of estimators. Thus, by adding more com-
petitors, we only improve the performance of the super learner. The asymptotic
equivalence remains true if the number of algorithms in the library grows very fast
with sample size.
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2.2.2 TMLE

The TMLE is a general procedure for estimation of a target parameter of the data-
generating distribution in semiparametric models. It marries the locally efficient
double robust properties of estimating function based methodology and the proper-
ties of maximum likelihood estimation. TMLEs are loss-based well-defined, efficient,
unbiased substitution estimators of the target parameter of the data-generating dis-
tribution. The estimator is a two-step procedure where one first obtains an estimate
of the data-generating distribution P0, or the relevant portion Q0 of P0. The second
stage updates this initial fit in a step targeted toward making an optimal bias–
variance tradeoff for the parameter of interest Ψ(Q0), instead of the density P0.

Suppose that, given n i.i.d. observations X1, . . . , Xn, P ∗X,n is a TMLE of PX,0,
and ΨF (P ∗X,n) is the corresponding TMLE of ψF0 . Specifically, let LF (PX)(X) be a
full-data loss function (e.g., log-likelihood loss function) so that

PX,0 = arg min
PX∈MF

E0L(PX)(X).

Let P 0
X,n be an initial estimator of PX,0, possibly a LF -loss based super learner

(van der Laan et al. 2007). In addition, let {PX(ε) : ε} be a parametric working
submodel of MF through PX at ε = 0 so that its score at ε = 0 equals, or spans,
the full-data efficient influence curve:

d

dε
L(PX(ε)(X)

∣∣∣∣
ε=0

= DF (PX)(X), a.e.

Such a TMLE P ∗X,n is then defined as follows. For k = 1, . . . , K, one computes the
amount of fluctuation:

εkn = arg min
ε
P F
n L

F (P k−1
X,n (ε)),

for P k−1
X,n , and one sets P k

X,n = P k−1
X,n (εkn). Here P F

n is defined as the empirical dis-
tribution of the full-data X1, . . . , Xn, and, for a function f of X and probability
distribution P , we used the notation Pf ≡

∫
f(x)dP (x) This updating process is

iterated until convergence is achieved, i.e., K is chosen so that εKn ≈ 0. The final
update PK

X,n is denoted with P ∗X,n, and is called the TMLE of PX,0. By the score
condition on the working fluctuation model, it follows that

PnD
F (P ∗X,n) = 0.

The TMLE will be explained in further detail in subsequent chapters in the context
of CCW-TMLE. We also refer to Chapter 1 for additional literature on TMLE, and
van der Laan and Rose (2011) for an expanded introduction to targeted learning.
We will follow the road map for targeted learning (Fig. 2.4) in Chapters 3–5 with
case-control data.
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DATA
The data are n i.i.d. observations of random variable O. O has 

probability distribution P0.

MODEL
The statistical model M is a set of possible probability distributions 
of O. P0 is in M. The model is a statistical model for P0 augmented 

with possible additional nontestable causal assumptions.

TARGET PARAMETER
The parameter Ψ(P0) is a particular feature of P0, where Ψ maps the 

probability distribution P0 into the target parameter of interest.  DE
FI

NI
NG

 T
HE

 R
ES

EA
RC

H 
Q

UE
ST

IO
N

SUPER LEARNER
The first step in our estimation procedure is an initial estimate of the 
relevant part Q0 of P0  using the machine learning algorithm super 

learner.

ES
TI

M
AT

IO
N

TARGETED MAXIMUM LIKELIHOOD ESTIMATION 
With an initial estimate of the relevant part of the data-generating 

distribution obtained using super learning, the second stage of TMLE 
updates this initial fit in a step targeted toward making an optimal 
bias–variance tradeoff for the parameter of interest, now denoted 

Ψ(Q0), instead of the overall probability distribution.

BEGIN

INFERENCE
Standard errors are calculated for the estimator of the target 

parameter using the influence curve or resampling-based methods 
to assess the uncertainty in the estimator.

IN
FE

RE
NC

E

INTERPRETATION
The target parameter can be interpreted as a purely statistical 
parameter or as a causal parameter under possible additional 

nontestable assumptions in our model.

END

Figure 2.4: Road map for targeted learning
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Chapter 3

Targeted Learning in Independent
Case-Control Designs

Our proposed CCW-TMLE for case-control studies targets the parameter of interest
and relies on knowledge of the true prevalence probability, or a reasonable estimate
of this probability, to eliminate the bias of the case-control sampling design. We use
the prevalence probability in case-control weights, and our case-control weighting
scheme successfully maps the TMLE for a random sample into a method for case-
control sampling. The CCW-TMLE is an efficient estimator for the case-control
sample when the TMLE for the random sample is efficient. In addition, the CCW-
TMLE inherits the robustness properties of the TMLE for the random sample.

3.1 Data, Model, and Target Parameter

Let us define a simple example with X = (W,A, Y ) ∼ PX,0 as the full-data ex-
perimental unit and corresponding distribution PX,0 of interest, which consists of
baseline covariates W , exposure variable A, and a binary outcome Y that defines
case or control status. Our target parameter of interest might be the causal risk
difference, which we denote

ψFRD,0 = ΨF (PX,0) = EX,0[EX,0(Y | A = 1,W )− EX,0(Y | A = 0,W )]

= EX,0(Y1)− EX,0(Y0)

= PX,0(Y1 = 1)− PX,0(Y0 = 1)

for binary A, binary Y , and counterfactual outcomes Y0 and Y1, where F indicates
“full data.” Other common parameters of interest include the causal relative risk
and the causal odds ratio, given by

ψFRR,0 =
PX,0(Y1 = 1)

PX,0(Y0 = 1)
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and

ψFOR,0 =
PX,0(Y1 = 1)PX,0(Y0 = 0)

PX,0(Y1 = 0)PX,0(Y0 = 1)
.

We describe the case-control design as first sampling (W1, A1) from the condi-
tional distribution of (W,A), given Y = 1 for a case. One then samples J controls
(W j

0 , A
j
0) from (W,A), given Y = 0, j = 1, . . . , J . The observed data structure in

independent case-control sampling is then defined by

O =
(
(W1, A1), (W j

0 , A
j
0 : j = 1, . . . , J)

)
∼ P0, with

(W1, A1) ∼ (W,A | Y = 1),

(W j
0 , A

j
0) ∼ (W,A | Y = 0),

where the cluster containing one case and J controls is considered the experimental
unit. Therefore, a case-control data set consists of n independent and identically dis-
tributed observations O1, . . . , On with sampling distribution P0 as described above.
The statistical model MF , where the prevalence probability PX,0(Y = 1) ≡ q0 may
or may not be known, implies a statistical model for the distribution of O consisting
of (W1, A1) and controls (W j

2 , A
j
2), j = 1, . . . , J .

This coupling formulation is useful when proving theoretical results for the case-
control weighting methodology (van der Laan 2008a), and those results show that the
following is also true. If independent case-control sampling is described as sampling
nC cases from the conditional distribution of (W,A), given Y = 1, and sampling
nCo controls from (W,A), given Y = 0, the value of J used to weight each control
is then nCo/nC. This simple ratio J = nCo/nC can be used effectively in practice.
We also stress that the formulation as described here does not describe individually
matched case-control sampling, which we describe in Chapter 4.

3.2 CCW-TMLE

We discuss a CCW-TMLE for the causal risk difference with X = (W,A, Y ) ∼ PX,0
and O =

(
(W1, A1), (W j

0 , A
j
0 : j = 1, . . . , J)

)
∼ P0. The full-data efficient influence

curve DF (Q0, g0) at PX,0 is given by

DF (Q0, g0) =

(
I(A = 1)

g0(1 | W )
− I(A = 0)

g0(0 | W )

)
(Y − Q̄0(A,W ))

+ Q̄0(1,W )− Q̄0(0,W )−ΨF (Q0), (3.1)

where Q0 = (Q̄0, QW,0), QW,0 is the true full-data marginal distribution of W ,
Q̄0(A,W ) = EX,0(Y | A,W ), and g0(a | W ) = PX,0(A = a | W ). The first term
will be denoted by DF

Y and the second term by DF
W , since these two terms represent
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components of the full-data efficient influence curve that are elements of the tangent
space of the conditional distribution of Y , given (A,W ), and the marginal distribu-
tion of W , respectively. That is, DF

Y is the component of the efficient influence curve
that equals a score of a parametric fluctuation model of a conditional distribution
of Y , given (A,W ), and DF

W is a score of a parametric fluctuation model of the
marginal distribution of W . Note that DF

Y (Q, g) equals a function H∗(A,W ) times
the residual (Y − Q̄(A,W )), where

H∗(A,W ) =

(
I(A = 1)

g(1 | W )
− I(A = 0)

g(0 | W )

)
.

3.2.1 Case-Control-Weighted Estimators for Q0 and g0

We can estimate the marginal distribution of QW,0 with case-control-weighted max-
imum likelihood estimation:

Q0
W,n = arg min

QW

n∑
i=1

(
q0L

F (QW )(W1,i) +
1− q0

J

J∑
j=1

LF (QW )(W j
2,i)

)
,

where LF (QW ) = − logQW is the log-likelihood loss function for the marginal dis-
tribution of W . If we maximize over all distributions, this results in a case-control-
weighted empirical distribution that puts mass q0/n on the cases and (1− q0)/(nJ)
on the controls in the sample.

Suppose that based on a sample of n i.i.d. observations Xi we would have esti-
mated Q̄0 with loss-based learning using the log-likelihood loss function LF (Q̄)(X) =
−log Q̄(A,W )Y (1− Q̄(A,W ))1−Y . Given the actual observed data we can estimate
Q̄0 with super learning and the case-control weights for observations i = 1, . . . , n,
which corresponds with the same super learner but now based on the case-control-
weighted loss function:

L(Q̄)(O) ≡ q0L
F (Q̄)(W1, A1, 1) +

1− q0

J

J∑
j=1

LF (Q̄)(W j
2 , A

j
2, 0).

Let LF (Q) = LF (QW ) +LF (Q̄) be the full-data loss function for Q = (Q̄, QW ), and
let L(Q, q0) = q0L

F (Q)(W1, A1, 1)+((1−q0)/J)
∑J

j=1 L
F (Q)(W j

2 , A
j
2, 0) be the corre-

sponding case-control-weighted loss function. We haveQ0 = arg minQEP0L(Q, q0)(O),
so that indeed the case-control-weighted loss function for Q0 is a valid loss function.
Similarly, we can estimate g0 with loss-based super learning based on the case-
control-weighted log-likelihood loss function:

L(g)(O) ≡ −q0 log g(A1 | W1)− 1− q0

J

J∑
j=1

log g(Aj2 | W
j
2 ).

We now have an initial estimator Q0
n = (Q0

W,n, Q̄
0
n) and g0

n.
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3.2.2 Parametric Submodel for Full-Data TMLE

Let Q0
W,n(ε1) = (1 + ε1D

F
W (Q0

n))Q0
W,n be a parametric submodel through Q0

W,n, and
let

Q̄0
n(ε2)(Y = 1 | A,W ) = expit

(
log

Q̄0
n

(1− Q̄0
n)

(A,W ) + ε2H
∗
n(A,W )

)
be a parametric submodel through the conditional distribution of Y , given A,W ,
implied by Q̄0

n. This describes a submodel {Q0
n(ε) : ε} through Q0

n with a two-
dimensional fluctuation parameter ε = (ε1, ε2). We have that d/dεLF (Q0

n(ε)) at
ε = 0 yields the two scores DF

W (Q0
n) and DF

Y (Q0
n, g

0
n), and thereby spans the full-data

efficient influence curve DF (Q0
n, g

0
n), a requirement for the parametric submodel for

the full-data TMLE. This parametric submodel and the loss function LF (Q) now
defines the full data TMLE, and this same parametric submodel with the case-
control loss function defines the CCW-TMLE.

3.2.3 Obtaining a Targeted Estimate of Q0

We define

εn = arg min
ε

n∑
i=1

q0L
F (Q0

n(ε))(W1i, A1i) +
1− q0

J

J∑
j=1

LF (1−Q0
n(ε))(W j

2i, A
j
2i)

and let Q1
n = Q0

n(εn). Note that ε1,n = 0, which shows that the case-control-
weighted empirical distribution of W is not updated. Note also that ε2,n is obtained
by performing a case-control-weighted logistic regression of Y on H∗n(A,W ), where
Q̄0
n(A,W ) is used as an offset, and extracting the coefficient for H∗n(A,W ). We

then update Q̄0
n with logitQ̄1

n(A,W ) = logitQ̄0
n(A,W ) + ε1nH

∗
n(A,W ). This updating

process converges in one step in this example, so that the CCW-TMLE is given by
Q∗n = Q1

n.

3.2.4 Estimator of the Target Parameter

Lastly, one evaluates the target parameter ψ∗n = ΨF (Q∗n), where Q∗n = (Q̄1
n, Q

0
W,n),

by plugging Q̄1
n and Q0

W,n into our substitution estimator to get the CCW-TMLE
of ψF0 :

ψ∗n =

{
1

n

n∑
i=1

(
q0Q̄

1
n(1,W1,i) +

1− q0

J

J∑
j=1

Q̄1
n(1,W j

2,i)

)

−

(
q0Q̄

1
n(0,W1,i) +

1− q0

J

J∑
j=1

Q̄1
n(0,W j

2,i)

)}
.
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3.2.5 Calculating Standard Errors

The variance of our estimator is well approximated by the variance of the influence
curve, divided by sample size n. Let ICF be the influence curve of the full-data
TMLE. We also showed that one can define ICF as the full-data efficient influence
curve given in (3.1). The case-control-weighted influence curve for the risk difference
is then estimated by

ICn(O) = q0IC
F
n (W1, A1, 1) + (1− q0)

1

J

J∑
j=1

ICF
n (W j

2 , A
j
2, 0).

An estimate of the asymptotic variance of the standardized TMLE viewed as a
random variable, using the estimate of the influence curve ICn(O), is given by
σ2
n = 1

n

∑n
i=1 IC

2
n(Oi).

3.3 Simulations

In the following simulation studies, we compare the CCW-TMLE to two other esti-
mators to examine finite sample performance.

CCW-MLE. Case-control-weighted estimator of Q̄0 mapped to causal effect esti-
mators by averaging over the case-control-weighted distribution of W . This
is a case-control-weighted maximum likelihood substitution estimator of the
g-formula (CCW-MLE) first discussed in van der Laan (2008a) and Rose and
van der Laan (2008).

CCW-TMLE. The targeted case-control-weighted maximum likelihood substitu-
tion estimator of the g-formula discussed in this chapter and in van der Laan
(2008a) and Rose and van der Laan (2008).

IPTW estimator. Presented in Chapter 1, Robins (1999) and Mansson et al.
(2007) discuss, under a rare disease assumption, the use of an “approximately
correct” IPTW method for case-control study designs. It uses the estimated
exposure mechanism among control subjects to update a logistic regression
of Y on A. This estimator targets a nonparametrically nonidentifiable pa-
rameter, which indicates strong sensitivity to model misspecification for the
exposure mechanism. Estimates of the risk difference and relative risk cannot
be obtained using this method.

We limit our simulations in this chapter to the odds ratio since the IPTW estimator
can only estimate this parameter.

Simulation 1. This first simulation study was based on a population of N =
120,000 individuals, where we simulated a one-dimensional covariate W , a binary
exposure A, and an indicator Y . These variables were generated according to the
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following rules: W ∼ U(0, 1), PX,0(A | W ) = expit(W 2−4W + 1), and PX,0(Y = 1 |
A,W ) = expit(1.2A − sinW 2 + A sinW 2 + 5A logW + 5 logW − 1). The resulting
population had a prevalence probability of q0 = 0.035, and exactly 4,165 cases. We
sampled the population using a varying number of cases and controls, and for each
sample size we ran 1,000 simulations. The true value for the odds ratio was given by
OR = 2.60. For methods requiring an initial estimator of the conditional mean of Y ,
it was estimated using a correctly specified logistic regression and also a misspecified
logistic regression with A and W as main terms. For methods requiring a fit for
exposure mechanism, it was estimated using a correctly specified logistic regression
and also a misspecified logistic regression with only the main term W .

Since we realistically generated A dependent on W , this led to substantial in-
creases in efficiency in the targeted estimator when the initial estimator was mis-
specified and sample size grew, as it also adjusts for the exposure mechanism. This
emphasizes the double robustness of the targeted estimators, and suggests that one
should always target in practice. It is not surprising that when Q̄n(A,W ) was cor-
rectly specified, the relative efficiency of the targeted estimator (CCW-TMLE) was
similar to its nontargeted counterpart (CCW-MLE). One should recall that correct
specification in practice is unlikely and also note that this data structure is overly
simplistic compared to real data. Even with this simple data structure, the IPTW
estimators had the poorest overall efficiency. Mean squared errors (MSEs) and rel-
ative efficiencies (REs) for the causal odds ratio are provided in Table 3.1. When
examining bias, it is clear that the IPTW estimators had the highest level of bias
across all sample sizes, as observed in the bias plot displayed in Fig. 4.1. The CCW-
MLE and CCW-TMLE with misspecified initial Q̄n(A,W ) had more bias than their
correctly specified counterparts.

Simulation 2. Our second set of simulations was based on a population of N =
80,000 individuals. The population had a binary exposure A, binary disease status
Y , and a one-dimensional covariate W . These variables were generated according
to the following rules: W ∼ U(0, 1), PX,0(A | W ) = expit(−5 sinW ), and PX,0(Y =
1 | A,W ) = expit(2A− 25W +A×W ). The resulting population had a prevalence
probability of q0 = 0.053, and exactly 4,206 cases. The true value for the odds ratio
was given by OR = 3.42. The parameter was estimated using the same general
methods as in the previous section, albeit with different fits for Q̄n(A,W ) and
gn(A | W ). The initial fit for each method requiring an estimate of Q̄0(A,W )
was estimated using a correctly specified logistic regression. For methods requiring
a fit for exposure mechanism, it was estimated using a correctly specified logistic
regression and also a misspecified logistic regression with W as a main term.

Results across the two case-control-weighted methods were nearly identical, indi-
cating again that when Q̄n(A,W ) is correct and q0 is known, one may be well served
by either of these methods. However, the IPTW method for odds ratio estimation
was extremely inefficient in comparison. We theorized in van der Laan (2008a), and
Mansson et al. (2007) demonstrated, that the IPTW procedure has a strong sensi-
tivity to model misspecification. This result was observed in simulation 1, although
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Figure 3.1: Simulation 1 bias results. Bias results for the CCW-TMLE with mis-
specified gn(A | W ) and the correctly specified CCW-MLE were excluded since val-
ues were the same as those for the TMLE with correctly specified Q̄n(A,W ) and
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Table 3.1: Results for the odds ratio in simulations 1 and 2. M is for misspecified
Q̄n(A,W ) or gn(A | W ) fit, C is for correctly specified Q̄n(A,W ) or gn(A | W ).
When two letters are noted in the “Fit” column, the first letter refers to Q̄n(A,W )
and the second to gn(A | W )

nC 250 500 500 1000 1000
Simulation 1 Fit nCo 250 500 1000 1000 2000

IPTW MSE M 1.76 1.75 3.39 1.80 3.40
IPTW RE C 0.91 0.89 1.69 0.89 1.69

C 1.27 3.65 14.64 8.44 32.12
CCW-MLE RE M 3.07 5.72 14.54 7.83 18.93

CC 1.27 3.62 14.58 8.40 32.03
CCW-TMLE RE CM 1.26 3.62 14.57 8.40 31.97

MC 1.96 4.63 16.68 9.52 31.91

nC 100 250 250 500
Simulation 2 Fit nCo 250 250 500 500

IPTW MSE M 404.40 3667.56 306.42 2433.62
IPTW RE C 1.0 1.2 1.0 1.2

CCW-MLE RE C 290 4200 570 5800

CC 280 4100 570 5700
CCW-TMLE RE CM 290 4100 570 5700

Table 3.2: Standard error illustration in simulation 2. OR is odds ratio, SE is
standard error, CI is confidence interval, p is p-value. Results are for one data
set of 1000 individuals with 500 cases and 500 controls randomly sampled from the
population in simulation 2, true OR = 3.42

Odds Ratio Fit OR SE CI p

C 64.98 22.44 [21.00, 108.96] 0.004
IPTW M 64.64 4.66 [55.50, 73.77] < 0.001

C/C 3.39 0.24 [2.93, 3.85] < 0.001
CCW-TMLE RE C/M 3.39 0.24 [2.92, 3.86] < 0.001

the results here are more extreme. Results can be seen in Table 3.1 and Fig. 3.2.

Standard errors, confidence intervals, and p-values. Continuing with the
simulated population from simulation 2, we provide an example of the use of in-
fluence curves in the estimation of standard errors for CCW-TMLE. We sampled
one data set with size n = 1000 from the population, with equal numbers of cases
and controls, and estimated the odds ratio. Recall that the true value for the odds
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ratio was given by OR = 3.42. Standard error estimates for the IPTW estimator
were calculated by bootstrapping the case and control samples 1000 times. The
results are presented in Table 3.2, including odds ratio estimates, standard errors,
confidence intervals, and p-values. Here, we compare only the CCW-TMLE and the
IPTW estimator. (CCW-MLE was excluded as we wished to draw attention to the
use of the influence curve for standard error estimation. Standard errors for the
non-targeted maximum likelihood method can also be calculated using bootstrap-
ping.) The IPTW estimators are more biased and considerably less efficient than
the CCW-TMLEs.

Remark: intercept-adjusted maximum likelihood estimation. intercept-
adjusted maximum likelihood estimation, discussed in Chapter 1, and case-control-
weighted maximum likelihood estimation are both options for the initial fit Q̄n(A,W ).
Issues became apparent when using intercept-adjusted maximum likelihood estima-
tion in our CCW-TMLE framework. In multiple simulation settings, we found
that when Q̄n(A,W ) was misspecified using an intercept-adjusted fit, the predicted
probabilities were substantially biased compared to the misspecified case-control-
weighted maximum likelihood probabilities. This additional bias can be understood
intuitively since the update to the logistic regression is static regardless of the spec-
ification used, and the parameters of the regression (excluding the intercept) are
not adjusted by this update. For a correctly specified initial fit this is not a prob-
lem, but when Q̄n(A,W ) is realistically misspecified, it leads to substantial bias.
Conversely, the case-control-weighted logistic regression estimate incorporates the
case-control weights each time it fits an estimate. Thus, for misspecified Q̄n(A,W ),
case-control-weighted predicted probabilities will likely be closer to the truth than
intercept-adjusted estimates. See Figure 3.3 for an illustration.
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Figure 3.3: Example: Predicted probabilities for a misspecified Q̄n(A,W )
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CCW-TMLE using an intercept-adjusted initial fit improved, with regard to bias,
on its non-targeted counterpart for misspecified Q̄n(A,W ). However, the additional
bias for misspecified Q̄n(A,W ) and intercept-adjusted logistic regression led to much
slower convergence to the true values of the risk difference, relative risk, and odds ra-
tio. CCW-TMLE with misspecified Q̄n(A,W ) fit with case-control-weighted logistic
regression became consistent for reasonable sample sizes. Coverage probabilities for
CCW-TMLE using an intercept-adjusted initial fit for misspecified Q̄n(A,W ) also
diverged substantially from 95% (as low as 65%) for reasonable sample sizes due to
the bias of the estimators. When Q̄n(A,W ) was correctly specified, the intercept-
adjusted methods performed as well as the case-control-weighted methods. However,
since correct specification of Q̄n(A,W ) is unlikely in practice, this is a significant
drawback, and we did not include intercept adjustment in our simulations presented
above.

Simulation 3. Our third simulation study was designed to illustrate the perfor-
mance of CCW-TMLE when q0 is estimated. We examine MSE, coverage probabil-
ities, and percentage of rejected tests. The simulation was based on a population
of N = 120, 000 individuals, and we simulated a 1-dimensional covariate W , bi-
nary exposure A, and indicator Y . The variables were generated according to the
following rules: W ∼ U(0, 1), PX,0(A = 1 | W ) = expit(W 2 − 4W + 1), and
PX,0(Y = 1 | A,W ) = expit(A − sinW 2 + A sinW 2 + 7A × logW + 5 logW − 1).
The resulting population had a prevalence probability q0 = 0.032, and exactly 3, 834
cases. We ran 1000 simulations and sampled 500 cases and 500 controls for vary-
ing levels of the estimated prevalence probability qn = (0.02, 0.03, 0.04). The true
value for the odds ratio was given by OR = 1.851. As in previous simulations, we
used both correctly specified and misspecified fits for Q̄n(A,W ) and gn(A | W ).
The misspecified Q̄n(A,W ) included A and W as main terms and the misspecified
gn(A | W ) included only W .

When examining the MSE results for the odds ratio across the range of val-
ues for qn, one can see deviations away from the values obtained for the true q0.
However, it is important to note that the coverage probabilities (the percentage of
simulations where the estimated confidence interval contained the true odds ratio)
were not highly variant and remain near 95%. This provides preliminary evidence
that the CCW-TMLE performs well with estimated values of q0. The percentage of
rejected tests (α = 0.05) across the range of q0 was also relatively stable. Results
are displayed in Table 3.3. Simulations that resample q0 from its sampling distribu-
tion could also be used to get an estimate of the total uncertainty surrounding the
parameter of interest, but they are not explored here. An analytic equivalent to this
resampling can be found in the appendix of van der Laan (2008a). This theorem
demonstrates that one can incorporate the standard error of the estimate qn into
the confidence interval for the parameter of interest.
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Table 3.3: Results for the odds ratio in simulation 3. CP is coverage probability, and
%RT is percent rejected tests (α = 0.05). Results are for 1000 simulations of 1000
individuals with 500 cases and 500 controls randomly sampled from the population
in Simulation 3, true OR = 1.851

q0 qn
Fit 0.032 0.020 0.030 0.040

C/C 0.35 0.74 0.39 0.24
MSE C/M 0.35 0.74 0.39 0.24

M/C 0.19 0.28 0.20 0.16

C/C 0.94 0.95 0.94 0.92
CP C/M 0.97 0.97 0.97 0.95

M/C 0.92 0.94 0.93 0.91

C/C 0.33 0.32 0.33 0.34
%RT C/M 0.21 0.23 0.22 0.20

M/C 0.02 0.01 0.02 0.03

3.4 Discussion

Case-control weighting provides a framework for the analysis of case-control study
designs using TMLEs. We observed that the “approximately correct” IPTW method
was outperformed by CCW-TMLE under conditions similar to a practical setting
in two simulation studies. The CCW-TMLE yields a fully robust and locally effi-
cient estimator of causal parameters of interest. Model misspecification within this
framework, with known or consistently estimated exposure mechanism, still results
in unbiased and highly efficient CCW-TMLEs. Further, in practice we recommend
the use of super learner for the estimation of Q̄0. We also introduced the CCW-
MLE, which provides an alternative for practitioners without the statistical support
to implement the CCW-TMLE. We showed striking improvements in efficiency and
bias in all methods incorporating knowledge of the prevalence probability over the
IPTW estimator, which does not use this information.
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Chapter 4

Targeted Learning in Individually
Matched Case-Control Designs

Individually matched case-control study designs are common in public health and
medicine, and conditional logistic regression in a parametric statistical model is the
tool most commonly used to analyze these studies. In an individually matched
case-control study, the population of interest is identified, and cases are randomly
sampled. Each of these cases is then matched to one or more controls based on
a variable (or variables) believed to be a confounder. The main potential benefit
of matching in case-control studies is a gain in efficiency, not the elimination of
confounding. Therefore, when are these study designs truly beneficial? Given the
potential drawbacks, including extra cost, added time for enrollment, increased bias,
and potential loss in efficiency, the use of matching in case-control study designs
warrants careful evaluation.

In this chapter, we focus on individual matching in case-control studies where the
researcher is interested in estimating a causal effect and certain prevalence probabil-
ities are known or estimated. In order to eliminate the bias caused by the matched
case-control sampling design, this technique relies on knowledge of the true preva-
lence probability q0 ≡ PX,0(Y = 1) and an additional value:

q̄0(M) ≡ q0
PX,0(Y = 0 |M)

PX,0(Y = 1 |M)
,

where M is the matching variable. We will compare the use of CCW-TMLEs in
matched and unmatched case-control study designs as we explore which design yields
the most information for the causal effect of interest.

4.1 Data, Model, and Target Parameter

We define X = (W,M,A, Y ) ∼ PX,0 as the experimental unit and corresponding
distribution PX,0 of interest. Here X consists of baseline covariates W , an exposure
variable A, and a binary outcome Y , which defines case or control status. We can
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define ψF0 = ΨF (PX,0) ∈ Rd of PX,0 ∈ MF as the causal effect parameter, and for
binary exposure A ∈ {0, 1} we define the risk difference, relative risk, and odds ratio
as in the previous chapter. The observed data structure in matched case-control
sampling is defined by

O =
(
(M1,W1, A1), (M j

0 = M1,W
j
0 , A

j
0 : j = 1, . . . , J)

)
∼ P0, with

(M1,W1, A1) ∼ (M,W,A | Y = 1) for cases and

(M j
0 ,W

j
0 , A

j
0) ∼ (M,W,A | Y = 0,M = M1) for controls.

Here M ⊂ W , and M is a categorical matching variable. The sampling distribution
of data structure O is described as above with P0. Thus, the matched case-control
data set contains n independent and identically distributed observations O1, . . . , On

with sampling distribution P0. The cluster containing one case and the J controls is
the experimental unit, and the marginal distribution of the cluster is specified by the
population distribution PX,0. The model MF , which possibly includes knowledge
of q0 or q̄0(M), then implies models for the probability distribution of O consisting
of cases (M1,W1, A1) and controls (M1,W

j
2 , A

j
2), j = 1, . . . , J .

4.2 CCW-TMLE for Individual Matching

CCW-TMLEs for individually matched case-control studies incorporate knowledge
of q0 and q̄0(M), where q̄0(M) is defined as

q̄0(M) ≡ q0
PX,0(Y = 0 |M)

PX,0(Y = 1 |M)
= q0

q0(0 |M)

q0(1 |M)
.

Implementation of CCW-TMLE in individually matched studies echos the proce-
dure for independent (unmatched) case-control studies, with the exception that the
weights now differ. We summarize this procedure assuming the knowledge presented
in the previous chapter. We focus on the risk difference ψFRD,0 = EX,0[EX,0(Y | A =
1,W )− EX,0(Y | A = 0,W )] as an illustrative example.

Implementing CCW-TMLE for Individually Matched Data

Step 0. Assign weights q0 to cases and q̄0(M)/J to the corresponding J
controls.

Step 1. Estimate the conditional probability of Y given A and W using
super learning and assigned weights. The estimate of PX,0(Y = 1 |
A,W,M) ≡ Q̄0(A,W,M) is Q̄0

n(A,W,M). Let Q0
n be the estimate

of the conditional mean and the case-control-weighted empirical
distribution for the marginal distribution of W , representing the
estimator of Q0 = (Q̄0, QW,0).
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Step 2. Estimate the exposure mechanism using super learning and
weights. The estimate of PX,0(A | W,M) ≡ g0(A | W,M) is
gn(A | W,M).

Step 3. Determine a parametric family of fluctuations Q0
n(ε)

of Q0
n with fluctuation parameter ε, and a case-control-

weighted loss function Lq0(Q) = q0L
F (Q)(M1,W1, A1, 1) +

(q̄0(M)/J)
∑J

j=1 L
F (Q)(M1,W

j
2 , A

j
2, 0) such that the derivative of

LF (Q0
n(ε)) at ε = 0 equals the full-data efficient influence curve

at any initial estimator Q0
n = (Q̄0

n, Q
0
W,n) and gn. Since initial

Q0
Wn is the empirical distribution (i.e., case-control-weighted

nonparametric maximum likelihood estimation), one only needs
to fluctuate Q̄0

n and the fluctuation function involves a choice of
clever covariate chosen such that the above derivative condition
holds. Calculate the clever covariate H∗n(A,W,M) for each subject
as a function of gn(A | W,M):

H∗n(A,W,M) =

(
I(A = 1)

gn(1 | W,M)
− I(A = 0)

gn(0 | W,M)

)
.

Step 4. Update the initial fit Q̄0
n(A,W,M) from step 1 using the covari-

ate H∗n(A,W,M). This is achieved by holding Q̄0
n(A,W,M) fixed

while estimating the coefficient ε for H∗n(A,W,M) in the fluctuation
function using case-control-weighted maximum likelihood estima-
tion. Let εn be this case-control-weighted parametric maximum like-
lihood estimator. The updated regression is given by Q̄1

n = Q̄0
n(εn).

No iteration is necessary since the next εn will be equal to zero.
The CCW-TMLE of Q0 is now Q∗n = (Q̄1

n, Q
0
Wn), where only the

conditional mean estimator Q̄0
n was updated.

Step 5. Obtain the substitution estimator of the target parameter by
application of the target parameter mapping to Q∗n:

ψ∗n =

{
1

n

n∑
i=1

(
q0Q̄

1
n(1,W1,i,M1,i) +

q̄0(M)

J

J∑
j=1

Q̄1
n(1,W j

2,i,M1,i)

)

−

(
q0Q̄

1
n(0,W1,i,M1,i) +

q̄0(M)

J

J∑
j=1

Q̄1
n(0,W j

2,i,M1,i)

)}
.

Step 6. Calculate standard errors, p-values, and confidence intervals
based on the influence curve of the CCW-TMLE ψ∗n. The influence
curve can be selected to be the case-control-weighted full-data effi-
cient influence curve (just as we defined the case-control-weighted
full-data loss function).
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4.3 Simulations

In the following simulation studies, we compare the CCW-TMLE in independent
and individually matched study designs.

Simulation 1. Our first simulation study is designed to illustrate the differences
between independent case-control sampling and matched case-control sampling in
“ideal” situations where control information is not discarded (e.g., data collection
is expensive, and covariate information is only collected when a control is a match).
This simulation also demonstrates the use of weights q0 and (1− q0) 1

J
with matched

data, to represent situations where q̄0(M) is not known. The population contained
N = 35,000 individuals, where we simulated a 9-dimensional covariate W = (Wi :
i = 1, . . . , 9), a binary exposure (or “treatment”) A, and an indicator Y . These
variables were generated according to the following rules: PX,0(Wi = 1) = 0.5,
PX,0(A = 1 | W ) = expit(W1 +W2 +W3− 2W4− 2W5 + 2W6− 4W7− 4W8 + 4W9),
and PX,0(Y = 1 | A,W ) = expit(1.5A+W1− 2W2− 4W3−W4− 2W5− 4W6 +W7−
2W8 − 4W9).

Both the exposure mechanism and the conditional mean of Y given its parents
were generated with varied levels of association with A and Y in order to investigate
the role of weak, medium, and strong association between a matching variable Wi

and A and Y . The corresponding associations can be seen in Table 4.1. For example,
W1 was weakly associated with both A and Y . Matching is only potentially beneficial
when the matching variable is a true confounder.

Table 4.1: Simulated covariates

Y
Association Weak Medium Strong

Weak W1 W2 W3

A Medium W4 W5 W6

Strong W7 W8 W9

Another illustration of the varied association levels can be seen in Table 4.2,
where we display the probability an individual in the population was a case given
Wi = w, all the nonmatching covariates (Z), and A. For example, let’s say matching
variable W2 is age with 1 representing <50 years old and 0 representing ≥50 years
old. In this population, it was not very likely (0.013) that someone who is < 50
years old will become a case, while someone who is ≥50 years old has a much higher
chance of becoming a case (0.047), given Z and A. Therefore, W2, W5, and W8

represent situations where the distribution of Wi among cases and controls is very
different. The covariates W3, W6, and W9 represent situations where this difference
is even more extreme.

The simulated population had a prevalence probability of q0 = 0.030 and exactly
1,045 cases, and the true value of the odds ratio was given by OR = 2.302. We
sampled the population using a varying number of cases nC = (200, 500, 1000)
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in both matched and unmatched designs, and for each sample size we ran 1000
simulations. In each sample, the same cases were used for both designs. Controls
were matched to cases in our matched simulations based on one variable (Wi) for
both 1:1 and 1:2 designs. The causal odds ratio was estimated using a CCW-TMLE
with correctly specified case-control-weighted logistic regressions.

The matched and unmatched designs performed similarly with respect to bias for
the nine covariates, as shown in Figs. 4.1 and 4.2. There were consistent increases in
efficiency when the association between Wi and Y was high (W3, W6, and W9), when
comparing matched to independent. Results when the association with Wi and Y
was medium (W2, W5, and W8) were not entirely consistent, although covariates W5

and W8 did show increases in efficiency for the matched design for all or nearly all
sample sizes. These results are in line with the consensus found in the literature:
that matching may produce gains in efficiency when the distribution of the matching
variable differs drastically between the cases and the controls. Efficiency results for
the odds ratio can be seen in Table 4.3.

Simulation 1 also demonstrates the use of weights q0 and (1−q0) 1
J

with matched
data, for situations where q̄0(M) is unknown. This weighting scheme provided a
reasonable approximation, yielding larger standard errors, but similar levels of bias
for covariates with a weak association with Y . As association with Y increased,
the estimate of the odds ratio became more biased. Bias results are presented in
Figs. 4.1 and 4.2 and efficiency results are presented in Rose and van der Laan (2009).

Simulation 2. The second simulation study was designed to address less ideal more
common situations where control information is discarded. Controls were sampled
from the population of controls in simulation 1 until a match on covariate Wi was
found for each case. Nonmatches were returned to the population of controls. The
number of total controls sampled to find sufficient matches was recorded for each
simulation. This was the number of randomly sampled controls that was used for the
corresponding independent case-control simulation. The mean number of controls
sampled to achieve 1:1 and 1:2 matching at each sample size is noted in Table 4.4 as
nCo. For example, in order to obtain 200 controls matched on covariate W1 in a 1:1
design, an average of 404 controls had to be sampled from the population. Thus,
an average of 404 controls were used in the corresponding independent design.

CCW-TMLE was performed for both designs with correctly specified case-control-
weighted logistic regression estimators for the exposure mechanism and conditional
mean of Y given A and W . The independent design outperformed the matched
design with respect to efficiency and bias for all sample sizes and both 1:1 and 1:2
matching. This was not surprising given the mean number of controls in each of
the independent unmatched designs was, on average, about two times the number
of controls for the matched design. Additionally, as association between Wi and
Y increased, there was a trend that the number of controls necessary for complete
matching also increased. A similar trend between A and Wi was not apparent. Bias
results do not vary greatly with association between Wi and A or Y . Efficiency
results can be seen in Table 4.4. Bias results are displayed in Fig. 4.3.
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Table 4.2: Simulated covariates: probabilities

Wi PX,0(Y = 1 | Wi = 1, Z, A) PX,0(Y = 1 | Wi = 0, Z, A)

W1 0.039 0.021
W2 0.013 0.049

W3 0.003 0.060
W4 0.021 0.040
W5 0.013 0.047

W6 0.003 0.061
W7 0.040 0.023
W8 0.013 0.046

W9 0.004 0.066

Table 4.3: Results for the odds ratio in simulation 1. nC is number of cases

1:1 1:2
nC 200 500 1000 200 500 1000

W1 Matched MSE 2.67 0.77 0.30 0.98 0.32 0.14
Independent RE 1.09 1.05 1.03 0.97 0.97 1.00

W2 Matched MSE 2.63 0.70 0.33 1.07 0.40 0.15
Independent RE 1.01 0.93 1.18 1.00 1.21 1.07

W3 Matched MSE 1.95 0.59 0.23 0.93 0.29 0.13
Independent RE 0.80 0.78 0.79 0.90 0.88 1.00

W4 Matched MSE 2.20 0.64 0.30 1.05 0.32 0.14
Independent RE 0.77 1.07 1.11 1.00 0.94 0.93

W5 Matched MSE 2.10 0.61 0.28 0.98 0.30 0.14
Independent RE 0.82 0.80 0.93 0.91 0.83 1.00

W6 Matched MSE 2.28 0.61 0.24 0.92 0.27 0.12
Independent RE 0.74 0.97 0.80 0.95 0.84 0.86

W7 Matched MSE 2.55 0.69 0.30 1.08 0.32 0.16
Independent RE 1.11 0.96 1.00 0.98 1.00 1.23

W8 Matched MSE 2.00 0.61 0.22 0.86 0.25 0.11
Independent RE 0.78 0.88 0.76 0.90 0.78 0.85

W9 Matched MSE 1.77 0.58 0.24 0.71 0.24 0.12
Independent RE 0.72 0.91 0.77 0.63 0.75 0.92
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Table 4.4: Results for the odds ratio in simulation 2. nC is number of cases and
nCo is mean number of controls for the independent case-control design

1:1 1:2
nC 200 500 1000 200 500 1000

nCo 404 1006 2010 804 2011 4026
W1 Matched MSE 2.90 0.76 0.28 1.00 0.27 0.14

Independent RE 2.89 2.24 2.14 2.12 1.70 2.16

nCo 404 1009 2016 808 2016 4031
W2 Matched MSE 2.91 0.77 0.30 1.15 0.36 0.16

Independent RE 2.91 2.72 2.13 2.32 2.21 2.49

nCo 406 1016 2033 812 2034 4065
W3 Matched MSE 1.99 0.48 0.22 0.84 0.28 0.11

Independent RE 1.82 1.43 1.65 1.81 1.78 1.85

nCo 403 1006 2010 806 2012 4023
W4 Matched MSE 2.47 0.67 0.29 1.09 0.28 0.13

Independent RE 2.38 2.09 2.20 2.29 1.91 2.03

nCo 406 1010 2019 810 2019 4040
W5 Matched MSE 2.41 0.63 0.25 0.92 0.29 0.12

Independent RE 2.24 2.00 1.92 1.95 1.89 2.10

nCo 411 1025 2046 819 2045 4094
W6 Matched MSE 2.08 0.64 0.23 0.88 0.27 0.13

Independent RE 2.13 1.99 1.69 1.92 1.70 2.23

nCo 402 1001 2000 801 1999 4000
W7 Matched MSE 2.71 0.72 0.30 1.09 0.34 0.15

Independent RE 2.54 2.42 2.18 2.19 2.25 2.18

nCo 407 1014 2028 811 2027 4055
W8 Matched MSE 2.28 0.56 0.23 0.97 0.25 0.11

Independent RE 2.35 1.76 1.71 1.99 1.59 1.68

nCo 413 1030 2059 824 2061 4121
W9 Matched MSE 1.97 0.54 0.22 0.80 0.26 0.12

Independent RE 1.91 1.77 1.69 1.62 1.69 1.84
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Figure 4.1: Simulation 1 bias for 1:1 matching. CCD I is “Case-Control Design I”
referring to the independent case-control design, CCD II is “Case-Control Design
II” referring to the matched case-control design with q̄0(M) weighting, and CCD II
(w) is the matched design with (1− q0) weighting
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Figure 4.2: Simulation 1 bias for 1:2 matching. CCD I is “Case-Control Design I”
referring to the independent case-control design, CCD II is “Case-Control Design
II” referring to the matched case-control design with q̄0(M) weighting, and CCD II
(w) is the matched design with (1− q0) weighting
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Figure 4.3: Simulation 2 bias. CCD I is “Case-Control Design I” referring to the
independent case-control design and CCD II is “Case-Control Design II” referring
to the matched case-control design
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4.4 Discussion

The main benefit of a matched case-control study design is a potential increase in
efficiency. However, an increase in efficiency is not automatic. If one decides to
implement a matched case-control study design, selection of the matching variable
is crucial. Numerous publications in the literature indicate that matching on non-
confounding variables is not beneficial, including Kupper et al. (1981): “The futility
of matching in [nonconfounding situations] is clear...matching on [the variable] will
have absolutely no effect on the distribution of the exposure variable in the diseased
and nondiseased groups.” In practice, it may be difficult to ascertain the strength
of the association between the matching variable, the exposure of interest, and the
outcome.

Our simulations confirmed the consensus in the existing literature: that in situa-
tions where the distribution of the matching covariate is drastically different between
the case and control populations, matching may provide an increase in efficiency.
Our simulations indicated that PX,0(Y = 1 | Wi = 1, Z, A), for matching variable Wi

and covariate vector Z, may need to be very small for an increase in efficiency using
a matched design. These results were true, however, only for simulations where
no control subjects were discarded ; it is very common for matched study designs to
discard controls (Freedman 1950; Cochran 1965; Billewicz 1965; McKinlay 1977).
We showed that in practical situations (e.g., when controls are discarded), an un-
matched design is likely to be a more efficient, less biased study design choice. Our
simulations also indicated that when q̄0(M) is unknown, (1 − q0) 1

J
may provide a

reasonable approximation, although this should be examined further. We did not
address matching in cohort studies, and concentrated solely on case-control studies.
However, matching in cohort studies was briefly addressed in van der Laan (2008a),
and applying our methods in cohort studies is an area of future research.
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Chapter 5

Targeted Learning in Two-Stage
Designs

We consider two-stage sampling designs where one takes a random sample from a
target population and measures V on each subject in the first stage. The second
stage involves drawing a subsample from the original sample, collecting additional
data on the subsample. The decision regarding selection into the subsample can be
influenced by V . This data structure can be viewed as a missing data structure on
the full-data structure X collected in the second-stage of the study.

5.1 Effect Estimation

Specifically, the observed data structure on a randomly sampled subject can be
represented as O = (V,∆,∆X), where V is included in X, and ∆ denotes the
indicator of inclusion in the second-stage sample. The sample is then represented as
n i.i.d. copies O1, . . . , On of O. One particular type of two-stage sample is a so-called
“nested case-control” sample where the outcome Y is included in V and subjects are
sampled conditional on Y . We propose an inverse-probability-of-censoring-weighted
targeted maximum likelihood estimator (IPCW-TMLE) for the estimation of target
estimands, such as causal effects, in two-stage sampling designs.

As previously discussed, a TMLE is a general procedure for estimation of a target
parameter of the data-generating distribution in semiparametric models, and, in
particular, can be used for any censored data structure. It is a two-step method
where one first obtains an estimate of the data-generating distribution, and then
in the second step updates the initial fit in a bias-reduction step targeted toward
the parameter of interest, instead of the overall density. The TMLE unifies the
locally efficient double robust properties of estimating function based methodology
with the properties of maximum likelihood estimation. TMLEs are loss-based well-
defined, efficient, unbiased substitution estimators of the target parameter of the
data-generating distribution. In this chapter, we present general IPCW-TMLEs,
and then apply it to nested case-control samples in simulations.
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5.1.1 IPCW-TMLE in Two-Stage Samples

Recall that we consider two-stage sampling designs where one takes a random sample
from a target population, measures V on each subject in this first stage, and draws
a subsample where one collects additional data. Inclusion in the subsample can
be influenced by V . This data structure is a missing-data structure on the full-
data structure X collected in the second-stage. The observed data structure is
O = (V,∆,∆X), where V is included in X, and ∆ denotes the indicator of inclusion
in the second-stage sample. The sample can then be represented as n i.i.d. copies
O1, . . . , On of O.

Let PX,0 be the true probability distribution of X, and let MF be a statistical
model for PX,0. Let ΨF :MF → Rd be the target parameter of the full-data distri-
bution, so that ψF0 = ΨF (PX,0) is the parameter of the true probability distribution
of X. We will denote the efficient influence curve of ΨF at a full-data distribution
PX with DF (PX).

Let g∆,0(δ | X) = PX,0(∆ = δ | X) be the conditional probability distribution
of ∆, given X. We assume the missing at random (MAR) assumption which states
that g∆,0(δ | X) = g∆,0(δ | V ), i.e., ∆ is independent of X, given V . For notational
convenience, let Π0(V ) ≡ g∆,0(1 | V ). This missingness mechanism might be known,
a model might be available, or no further assumptions are made beyond MAR.
Either way, the missingness mechanism can be estimated from the data (∆i, Vi),
i = 1, . . . , n, extracted from the observations Oi, i = 1, . . . , n.

The statistical modelM for the probability distribution P0 of O is now defined in
terms of the full-data statistical model and the model on the missingness mechanism.
The efficient influence curve of ΨF (PX,0) as an identifiable parameter of P0 will be
denoted with D∗(P0) = D∗(PX,0,Π0). We wish to estimate ψF0 based on a sample
of n i.i.d. observations O1, . . . , On from P0 ∈M.

5.1.2 IPCW-TMLE

Given the TMLE developed for the full-data structure, we propose estimating ψ0

based on O1, . . . , On with an IPCW-TMLE. This IPCW-TMLE is simply defined
by the above procedure with the addition of weights ∆i/Πn(Vi) for observations
i = 1, . . . , n, where Πn(V ) is an estimator of Π0(V ) ≡ g∆,0(1 | V ). Thus, this
IPCW-TMLE involves the following steps:

IPCW initial estimator. Computing an initial IPCW-loss based estimator P 0
X,n

(e.g., using super learning) based on, for example, the IPCW-loss function

L(PX)(O) ≡ ∆

Πn(V )
LF (PX)(X).

Typically, this initial estimator is obtained by providing the initial estimator
of PX,0 in the full-data TMLE the IPCW weights.
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IPCW-TMLE. For k = 1, . . . , K, one computes the amount of fluctuation:

εkn = arg min
ε
PnL(P k−1

X,n (ε))

= arg min
ε

1

n

n∑
i=1

∆i

Πn(Vi)
LF (P k−1

X,n (ε))(Xi),

for P k−1
X,n , and one sets P k

X,n = P k−1
X,n (εkn). This updating process is iterated until

convergence is achieved, i.e., K is chosen so that εKn ≈ 0. The final update is
denoted with P ∗X,n, and is called the IPCW-TMLE of PX,0.

Estimator of the target parameter. Finally, one evaluates the target parame-
ter ψ∗n = ΨF (P ∗X,n). This is the TMLE of ψF0 .

As is apparent from the above definition of IPCW-TMLE, IPCW-TMLE is a tar-
geted minimum-loss-based estimator (also TMLE), the generalization of TMLE
(van der Laan 2008b; van der Laan and Rose 2011), but with a loss function de-
fined as IPCW full-data loss function, and a parametric submodel PX(ε) with score
(∆/Π0(V ))DF (PX) at ε = 0.

Since it solves the IPCW full-data efficient influence curve equation, the IPCW-
TMLE has an influence curve equal to (∆/Π0(V ))DF (P 1

X) if Π0 is known, and P 1
X

denotes the limit of P ∗X,n (see next section). Double robustness properties of the
full-data efficient influence curve are immediately inherited by the IPCW-TMLE. If
Π0(V ) is consistently estimated with a maximum likelihood estimator, the influence
curve of the IPCW-TMLE equals (∆/Π0(V ))DF (P 1

X) minus its projection on the
tangent space of the model used for Π0. As shown below, if we use a nonparametric
maximum likelihood estimator for Π0 and the full-data model is nonparametric,
then the IPCW-TMLE solves the actual efficient influence curve equation, so that
the IPCW-TMLE is efficient if P 1

X = PX,0. As with any asymptotically linear
estimator, an estimate of the asymptotic variance

√
n(ψ∗n − ψF0 ) is given by the

empirical variance of the estimated influence curve.

IPCW Full-Data Efficient Influence Curve Equation

By the score condition on the working fluctuation model and εKn = 0, it follows that
this IPCW-TMLE solves the ICPW full-data efficient influence curve equation:

0 =
1

n

n∑
i=1

∆i

Πn(Vi)
DF (P ∗X,n)(Xi) = 0.

If the full-data TMLE is double robust or has other robustness properties, then
these properties will be inherited by this IPCW-TMLE under the assumption that
Πn is a consistent estimator of Π0. If V is discrete (with finite support), then we
propose using a nonparametric estimator Πn of Π0.
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In this case, we have the following important result. If the full-data model is
nonparametric, V is discrete, and the missingness mechanism is estimated nonpara-
metrically, then it follows that the IPCW-TMLE actually solves the true efficient
influence curve equation. The latter implies that, under appropriate regularity con-
ditions, and if P ∗Xn is consistent for PX,0, the IPCW-TMLE will be an asymptotically
efficient estimator of ψ0.

Proof of Result. Consider the statistical modelM for the observed missing data
structure O implied by a nonparametric full-data modelMF , the MAR assumption,
possibly a model for the missingness mechanism Π0, and V is discrete. Let Ψ :M→
R be the statistical target parameter of interest defined by Ψ(PPX ,Π) = ΨF (PX). The
efficient influence curve of of Ψ at P0 = PPX0,Π0 can be represented as

D∗(PX,0,Π0)(O) =
∆

Π0(V )
DF (PX,0)−

{
∆

Π0(V )
− 1

}
E0(DF (PX,0) | ∆ = 1, V ),

where DF (PX,0) is the efficient influence curve of the full-data parameter ΨF :
MF → R.

The IPCW-TMLE P ∗X,n solves 0 = Pn∆/ΠnD
F (P ∗X,n) for any choice of estimator

Πn of Π0. If Πn is a nonparametric estimator of Π0, then it follows that we also have

0 = Pn

{
∆

Πn(V )
− 1

}
En(DF (P ∗X,n) | ∆ = 1, V ),

for any choice of estimator of the regression E0(DF (P ∗X,n) | ∆ = 1, V ). As a con-
sequence, it follows that for nonparametric estimators Πn of Π0, and IPCW-TMLE
P ∗X,n, the IPCW-TMLE solves the efficient influence curve equation:

0 = PnD
∗(P ∗X,n,Πn).

We also note that, if we fit Π0 with a logistic regression, use it as an offset, and add
a covariate En(DF (P 0

X,n) | ∆ = 1, V )/Πn(V ) to update this logistic regression fit of
Π0, iterate this updating process of the missingness mechanism until convergence,
then the resulting fit Π∗n will also solve:

0 = Pn

{
∆

Π∗n(V )
− 1

}
En(DF (P 0

X,n) | ∆ = 1, V ).

This follows from the well known fact that the score of a univariate linear logistic
regression working model logit Π(δ) = logit Π + δC for the coefficient δ in front of
the univariate covariate C(V ), equals C(V )(∆ − Π(δ)(V )). For such clever fits of
the missingness mechanism we also have that (Π∗n, P

∗
X,n) solves the efficient influence
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curve estimating equation:

0 = Pn
∆

Π∗n(V )
DF (P ∗X,n)−

{
∆

Π∗n(V )
− 1

}
En(DF (P 0

X,n) | ∆ = 1, V ),

so that double robustness and asymptotic efficiency can still be derived.
The latter type of IPCW-TMLE is slightly more complex than the regular IPCW-

TMLE since it now also requires fitting the regression En(DF (P ∗X,n) | ∆ = 1, V ).
However, this represents a minor increase in complexity since it only involves running
a mean regression of the outcome DF (P ∗X,n)(Xi) on Vi among the observations with
∆i = 1.

Risk Difference Example

In this section we demonstrate the IPCW-TMLE for the simple full-data structure
X = (W,A, Y ), with covariate vector W , binary exposure (or treatment) A, and
binary outcome Y . The observed data structure for a randomly sampled subject is
O = (V,∆,∆X), where V = Y . The target parameter of the full-data distribution
of X is given by ΨF (PX,0) = EX,0[EX,0(Y | A = 1,W )−EX,0(Y | A = 0,W )] and the
full-data statistical model MF is nonparametric. The full-data efficient influence
curve DF (Q0, g0) at PX,0 is given by

DF (Q0, g0) =

(
I(A = 1)

g0(1 | W )
− I(A = 0)

g0(0 | W )

)
(Y − Q̄0(A,W ))

+Q̄0(1,W )− Q̄0(0,W )−ΨF (Q0),

where Q0 = (Q̄0, QW,0), QW,0 is the true full-data marginal distribution of W ,
Q̄0(A,W ) = EX,0(Y | A,W ), and g0(a | W ) = PX,0(A = a | W ). The first term
will be denoted by DF

Y and the second term by DF
W , since these two terms represent

components of the full-data efficient influence curve that are elements of the tangent
space of the conditional distribution of Y , given A,W , and the marginal distribution
of W , respectively. That is, DF

Y is the component of the efficient influence curve
that equals a score of a parametric fluctuation model of a conditional distribution
of Y , given (A,W ), and DF

W is a score of a parametric fluctuation model of the
marginal distribution of W . Note that D∗Y (Q, g) equals a function H∗(A,W ) times
the residual (Y − Q̄(A,W )), where

H∗(A,W ) =

(
I(A = 1)

g(1 | W )
− I(A = 0)

g(0 | W )

)
.

IPCW initial estimator. We can estimate the marginal distribution of QW,0 with
IPCW-MLE

Q0
W,n = arg min

QW

n∑
i=1

LF (QW )(Wi)
∆i

Πn(Yi)
,
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where LF (QW ) = − logQW is the log-likelihood loss function for the marginal
distribution of W . Note that QW,n is a discrete distribution that puts mass
1/{nΠn(Yi)} on each observation Wi in the sample for which Wi is observed
(i.e., ∆i = 1). Suppose that, based on a sample of n i.i.d. observations
Xi, we estimated Q̄0 with loss-based learning using the log-likelihood loss
function LF (Q̄)(X) = −log Q̄(A,W )Y (1 − Q̄(A,W ))1−Y . Given the actual
observed data, we can estimate Q̄0 with super learning and weights ∆i/Πn(Yi)
for observations i = 1, . . . , n, which corresponds to the same super learner but
now based on the IPCW-loss function

L(Q̄)(O) ≡ ∆

Πn(Y )
LF (Q̄)(X).

Let LF (Q) = LF (QW )+LF (Q̄) be the full-data loss function for Q = (Q̄, QW )
and let L(Q,Π) = LF (Q)∆/Π be the corresponding IPCW-loss function.

Similarly, we can estimate g0 with loss-based super learning based on the
IPCW-log-likelihood loss function

L(g)(O) ≡ ∆

Πn(Y )
(− log g(A | W )).

This now provides an initial estimator Q0
n = (Q0

W,n, Q̄
0
n) and g0

n. This estimator
was obtained using the same algorithm for computing the initial estimator for
the full-data TMLE, but now assigning weights ∆i/Πn(Yi) to each observation.
In essence, a full-data loss function LF (Q) for Q0 used to obtain an initial
estimator for the full-data TMLE has been replaced by the IPCW-loss function
L(Q,Πn) = LF (Q)∆/Πn, and, similarly, a full-data loss function LF (g) =
− log g has been replaced by L(g,Πn) = LF (g)∆/Πn.

Parametric submodel for full-data TMLE. Let

Q0
W,n(ε1) = (1 + ε1D

F
W (Q0

n))Q0
W,n

be a parametric submodel through Q0
W,n, and let

Q̄0
n(ε2)(Y = 1 | A,W ) = expit

(
log

Q̄0
n

(1− Q̄0
n)

(A,W ) + ε2H
∗
n(A,W )

)
be a parametric submodel through the conditional distribution of Y , given
A,W , implied by Q̄0

n. This describes a submodel {Q0
n(ε) : ε} through Q0

n

with a two-dimensional fluctuation parameter ε = (ε1, ε2). We have that
d/dεLF (Q0

n(ε)) at ε = 0 yields the two scores DF
W (Q0

n) and DF
Y (Q0

n, g
0
n), and

therefore spans the full-data efficient influence curve DF (Q0
n, g

0
n), a require-

ment for the parametric submodel for the full-data TMLE. This paramet-
ric submodel and the loss function LF (Q) now defines the full-data TMLE
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and this same parametric submodel with the IPCW-loss function L(Q,Π) =
LF (Q)∆/Π defines the IPCW-TMLE.

The IPCW-TMLE. Define

εn = arg min
ε
Pn

∆

Πn

LF (Q0
n(ε)),

and let Q1
n = Q0

n(εn). Note ε1,n = 0 which shows that the IPCW empirical
distribution of W is not updated. Note also that ε2,n is obtained by performing
an IPCW logistic regression of Y on H∗n(A,W ) where Q̄0

n(A,W ) is used as
an offset, and extracting the coefficient for H∗n(A,W ). We then update Q̄0

n

with logit Q̄1
n(A,W ) = logit Q̄0

n(A,W ) + ε1nH
∗
n(A,W ). The updating process

converges in one step in this example, so that the IPCW-TMLE is given by
Q∗n = Q1

n.

Estimator of the target parameter. Lastly, one evaluates the target parameter
ψ∗n = ΨF (Q∗n), where Q∗n = (Q̄1

n, Q
0
W,n), by plugging Q̄1

n and Q0
W,n into our

substitution estimator

ψ∗n =
1

n

n∑
i=1

{
∆i

Πn(Yi)

(
Q̄1
n(1,Wi)− Q̄1

n(0,Wi)
)}

.

This is the IPCW-TMLE of ψF0 .

Right Censoring

Suppose our full-data structure is a right-censored data structure and we conduct
a nested case-control study. For example, we have that X might be defined as
X = (W,A, T̃ ,Ξ, Y ∗), where W are covariates, A is an exposure of interest, T̃ =
min(T,C), T is the time to the event, C denotes a censoring variable, Ξ = I(T̃ = T )
is a failure indicator, and Y ∗ = (T̃ ≤ t,Ξ = 1) is an indicator of having an observed
failure by endpoint t. Our missing data structure is given by O = (∆,∆X, T̃ ,Ξ, Y ∗),
where ∆ = 1 denotes membership in the nested case-control sample.

A special feature of this right censored data structure is that one will define a
case based on a binary random variable Y ∗ that is not the outcome of interest. For
example, Y ∗ could represent observed death by year 5, which would be denoted
Y ∗ = (T̃ ≤ 5 years,Ξ = 1). It is important to stress that the definition of a case
(Y ∗ = 1) in a nested case-control study within a right censored data structure is
therefore different than without right censoring. Let’s say our parameter of interest
ΨF (PX,0) is the causal risk difference under causal assumptions: EX,0[PX,0(T > 5 |
A = 1,W )− PX,0(T > 5 | A = 0,W )].

We define the TMLE for the full-data structure and we then use the IPCW-
TMLE for actual missing data structure. In other words, we need a TMLE of ψF0
based on X, and then IPCW-TMLE is defined as well. The TMLE of the additive
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causal effect of treatment on survival, and other parameters, based on the right-
censored data structure is presented elsewhere (Moore and van der Laan 2009a,c;
Stitelman and van der Laan 2010; van der Laan and Rose 2011).

Effect Modification

Nested case-control studies within clinical trials and observational studies are in-
creasingly popular when researchers are interested in effect modification (Rothman
and Greenland 1998; Essebag et al. 2003, 2005; Prentice and Qi 2006; Vittinghoff
and Bauer 2006; Polley and van der Laan 2009). This is of particular importance
when the candidate patient characteristic effect modifier of the treatment effect
is difficult or expensive to measure (Vittinghoff and Bauer 2006). The Women’s
Health Initiative is an example of a well known study where the investigators’ effect
modification research question led to a nested case-control study design within a
randomized controlled trial (Prentice and Qi 2006). Researchers were interested in
studying SNPs associated with coronary heart disease, stroke and breast cancer and
hormone treatments in their placebo controlled combined hormone trial cohort of
over 16,000 women. SNPs were collected among the subjects that were assigned to
the case-control sample nested within the cohort sample.

The general approach involves defining our full-data structure, for example, X =
(W,A∗, A, Y ), and our observed data O = (V,∆,∆X), where again V is in X. We
are interested in studying the effect modification of a variable denoted A∗. Our
full-data parameter of interest might be

ψ̃F0 = E0[Q̄0(1, 1)− Q̄0(1, 0)− Q̄0(0, 1) + Q̄0(0, 0)],

where Q̄0(a∗, a) = E0(Y | A∗ = a∗, A = a,W ). The full-data TMLE involves first
running an initial regression of Y on A∗, A, and W . We note that A and A∗ are
implicitly assumed to have finite support. The targeting step requires a parametric
working submodel to fluctuate the initial estimator and a choice of loss function.
We use a clever covariate that will define this parametric working submodel. The
clever covariate for Q̄∗0(a∗, a) is given by

H∗(a∗, a) =
I(A∗ = a∗, A = a)

g0(a∗, a | W )
,

where g0(a∗, a | W ) = PX,0(A = a | W )PX,0(A∗ = a∗ | A = a,W ), and PX,0(A =
a | W ) may be known, as in a clinical trial, but PX,0(A∗ = a∗ | A = a,W ) must
be fitted. The clever covariate for the difference parameter ψ̃F0 is the corresponding
difference of clever covariates. As loss function one can use the least squares loss
function, in which case the working submodel is a linear regression of Y on H∗

using the initial estimator as offset. If Y is binary, or continuous in (0, 1) (e.g.,
after a linear transformation), then one can use the more robust quasi-log-likelihood
loss function (Gruber and van der Laan 2010b). In the latter case, the working
submodel is a logistic linear regression of Y on H∗, using the initial estimator as
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offset. Therefore, one can target the parameter with a single clever covariate, or
one can target all four parameters with a four dimensional clever covariate, and
look at multiple differences. This now defines the full-data TMLE for the desired
target parameter ψ̃F0 . The desired IPCW-TMLE for the observed data is obtained
by assigning weights ∆i/Πn(Yi) to each observation, or equivalently, by replacing
the full-data loss function in the full-data TMLE by the IPCW-loss function.

5.1.3 Simulations

We present several simulation studies to examine the performance of the IPCW-
TMLE. First, we generate simulated nested case-control samples within real cohort
data. We then study the IPCW-TMLE in simulated cohorts.

SPPARCS Simulations

The National Institute of Aging funded Study of Physical Performance and Age-
Related Changes in Sonomans (SPPARCS) is a population-based, census-sampled,
study of the epidemiology of aging and health (Tager et al. 1998). Participants
of this longitudinal cohort were recruited if they were aged 54 years and over and
were residents of Sonoma, CA or surrounding areas. Study recruitment of 2092
persons occurred between May 1993 and December 1994 and follow-up continued
for approximately 10 years. One area of particular research interest for this data has
been the effect of vigorous leisure-time physical activity (LTPA) on mortality in the
elderly, which has been studied in a previous collaboration (Bembom and van der
Laan 2008) using marginal structural models. LTPA was calculated from answers to
a detailed questionnaire where performed vigorous physical activities are assigned
standardized intensity values in metabolic equivalents (METs). The recommended
level of energy expenditure for the elderly is 22.5 METs.

The full-data structure is X = (W,A, Y ), where Y = I(T ≤ 5 years), T is time
to the event death, A is a binary categorization of LTPA, and W are potential
confounders. These variables are further defined in Table 5.1. The observed data
structure on a randomly sampled subject can be represented as O = (V,∆,∆X),
where V is in X. Of note is the lack of any right censoring in this longitudinal
cohort. The outcome (death within or at five years after baseline interview) and
date of death was recorded for each subject. This information was available from a
variety of sources, including death certificates. Our parameter of interest is the risk
difference ψF0 = PX,0(Y1 = 1)− PX,0(Y0 = 1), the average treatment effect of LTPA
on mortality five years after baseline interview.

The cohort was reduced to a size of n = 2066, as 26 subjects were missing LTPA
values and/or self-rated health score (1.2% missing data). The prevalence of death
was 13%, and the number of cases in the cohort sample was nC = 269. The TMLE
was estimated on the full cohort sample, and the results are displayed in Table 5.2.
Within TMLE, the machine learning Deletion/Substitution/Addition (DSA) algo-
rithm (Sinisi and van der Laan 2004) was used to obtain an estimate of the functions
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Q̄0 = PX,0(Y = 1 | A,W ) and g0 = PX,0(A | W ) since the functional form of the
data was unknown. Alternatively, one could also use an ensemble approach, such
as super learning. The estimated parameter of interest was highly significant, and
indicates that physical activity at or above recommended levels decreases five-year
mortality risk in this population by 5.4%.

Nested case-control simulations. We used this cohort study to simulate nested
case-control study designs where an estimate of the missingness weights were ob-
tained from the full cohort. Members of the nested case-control sample are denoted
with ∆ = 1. Our observed data structure was defined as O = (V,∆,∆X) and we
had V = Y . Therefore, the missing data structure ignored those individuals with
∆ = 0, except for the purpose of estimating Π0(V ).

Control individuals were randomly sampled from among those still alive five
years from baseline interview, and assigned the value ∆ = 1. This was a simplified
approach compared to an incidence-density design where individuals are sampled
from those still at risk of death at the time a case becomes a case. Sampling was
performed with various numbers of controls relative to the number of cases (2nC,
3nC, and 4nC). The empirical values for PX,n(∆ = 1 | Y = 0), were 0.299, 0.446,
and 0.608 for the three sample sizes. All cases (Y=1) were sampled with probability
1.

The cohort was resampled 1000 times. In each of the 1000 cohort resamples, one
nested case-control study was extracted; those individuals with (∆ = 1), allowing
for ties (Bureau et al. 2008). The estimated values Πn(V ) used in the weight vector
were taken from their respective cohort resample. The IPCW-TMLE was estimated

Table 5.1: SPPARCS variables

Variable Description

Y Death occurring within 5 years of baseline
A LTPA score ≥ 22.5 METs at baseline

Health self-rated as “excellent”
Health self-rated as “fair”
Health self-rated as “poor”
Current smoker
Former smoker

W Cardiac event prior to baseline
Chronic health condition at baseline
x ≤ 60 years old
60 < x ≤ 70 years old
80 < x ≤ 90 years old
x > 90 years old
Female
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Table 5.2: SPPARCS cohort results. The TMLE was estimated in the SPPARCS
cohort. Sample size was 2066, with 269 deaths five years from baseline interview
and 1797 nondeaths. RD is risk difference, SE is standard error, and p is p-value

Estimate SE p

RD -0.054 0.012 < 0.001

Table 5.3: SPPARCS simulated nested case-control results. IPCW-TMLEs were
estimated in the nested case-control samples, and TMLEs were estimated in the
cohort samples. RD is risk difference, SE is standard error, RE is relative efficiency
compared to cohort RD, nC = 269 is number of cases, and nCo is number of controls

Sample size Estimate RE

Cohort RD 2,066 -0.055 1.000

nCo = 2nC -0.101 0.319
Nested case-control RD nCo = 3nC -0.056 0.567

nCo = 4nC -0.051 0.789

in each of the 1000 nested case-control samples, and the TMLE was estimated in the
cohort samples. The DSA algorithm was used to obtain estimates of the functions Q̄0

and g0. The relative efficiency of the nested case-control parameters are compared
to the cohort parameter in Table 5.3, as well as average values for the parameter
of interest. Relative efficiency of the nested case-control design improved as the
number of controls increases. With an average of 4 controls per case (approximately
1076 of the 1797 available noncase subjects), the relative efficiency of the nested
case-control design reached 78.9%.

Simulated Cohort

In the SPPARCS data simulations, we did not know the true value of the param-
eter of interest. It was important to have a completely objective way of defining
the truth, and to then assess the performance of our estimator with respect to the
truth. Therefore, we repeat the same simulation study, but now from a population
we fully understand, as we know the value of the true ψF0 . The cohort was sampled
from the target population of 1,000,000 individuals. We simulated a five-dimensional
covariate W = (Wj : j = 1, . . . , 5), a binary exposure A, and indicator Y , where
1 indicated disease (or in the case of the SPPARCS data, death by 5 years from
baseline interview). These variables were generated according to the following rules:

Wj ∼ U(0, 1),

g0(A | W ) = expit(W1 +W2 +W3 +W4),
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Table 5.4: Simulation data nested case-control results. IPCW-TMLEs were esti-
mated in the nested case-control samples and TMLEs were estimated in the cohort
samples. RD is risk difference, SE is standard error, RE is relative efficiency com-
pared to cohort RD, nC = 296 is number of cases, and nCo is number of controls

Sample size Estimate RE

Cohort RD 2,066 -0.063 1.000

nCo = 2nC -0.045 0.411
Nested case-control RD nCo = 3nC -0.068 0.725

nCo = 4nC -0.069 0.788

Table 5.5: Randomized controlled trial simulation data nested case-control results.
IPCW-TMLEs were estimated in the nested case-control samples and TMLEs were
estimated in the full trial samples. SE is standard error, RE is relative efficiency
compared to cohort RD, nC = 647 is number of cases, and nCo is number of controls

Sample size Estimate RE

Full trial ψ̃F 10,000 0.016 1.000

nCo = 2nC 0.024 0.142

Nested case-control ψ̃F nCo = 3nC 0.022 0.253
nCo = 4nC 0.019 0.517
nCo = 5nC 0.016 0.864

Q̄0(A,W ) = expit(A− 4W1 + AW1 − 1.5W2 + sin(W5)).

The true value for the risk difference was RD = −0.061 and the prevalence of
death was 13.3%. One cohort sample was taken with 2,066 individuals, and the
estimated value of death prevalence was 14.3%. The number of cases in the cohort
sample was nC = 296. Controls were randomly sampled from among the noncases
in the original cohort at various sample sizes relative to the number of cases (2nC,
3nC, and 4nC), and assigned the value ∆ = 1. Noncases that were not sampled
were assigned the value ∆ = 0. The values for PX,n(∆ = 1 | Y = 0) were 0.330,
0.506, and 0.674 for the three sample sizes. All cases were assigned ∆ = 1. Logistic
regression was used to estimate the functions Q̄0 and g0 since the functional form
was known.

The relative efficiency of the nested case-control parameters are compared to
the cohort in Table 5.4, as well as average values for the parameter of interest. As
before, relative efficiency of the nested case-control design improves as the number
of controls increases. With an average of 4 controls per case, the nested design
reaches a relative efficiency of 78.4%.
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Simulated Clinical Trial

For a simulated clinical trial, 10,000 subjects were sampled and assigned a treatment
A. The outcome of disease was assigned with PX,0(Y = 1 | W,A) = expit(3A −
4W1 + W3 − 12W4 − 2W5 + 2A sin(W3)). Of the 10,000 subjects, 647 individuals
developed disease (6.47%). The value of the effect modification parameter of interest
in the full trial was ψ̃F0 = 0.016. The full-data in the randomized controlled trial
cohort was analyzed with a TMLE.

We proposed that the effect modifier of interest, W3 ≡ A∗ was only measured
in a nested case-control sample. Controls were randomly sampled from among the
noncases in the original cohort at various sample sizes relative to the number of cases
(2nC, 3nC, 4nC, and 5nC), and assigned ∆ = 1. Noncases that were not sampled
were assigned ∆ = 0. The values for PX,n(∆ = 1 | Y = 0) were 0.141, 0.210, 0.280,
and 0.350 for the four sample sizes. All subjects with Y = 1 were assigned ∆ = 1.

An IPCW-TMLE was used to analyze the nested case-control samples. Multino-
mial regression was used with main terms to estimate the function Q̄0, representing
a misspecified model. Due to the double robustness of the TMLE and IPCW-TMLE
procedures, the estimates of the parameter of interest are consistent even when Q̄0

is misspecified. The values for g0(A∗ | W ) were known since it was a randomized
controlled trial. Results are displayed in Table 5.5. The relative efficiency of the
nested case-control design improves as the number of controls increases, and with
38.8% of the total trial participants we reach an efficiency of 86.4%.

5.1.4 Discussion

Two-stage sampling designs, including nested case-control sampling, are popular in
many fields, including epidemiology. They have the potential to reduce the costs
associated with collecting data on the full cohort with minimal losses in efficiency
(Ernster 1994; Rothman and Greenland 1998; Hak et al. 2004; Vittinghoff and Bauer
2006), as discussed in Chapter 1. We introduced the IPCW-TMLE for estimation
of causal effects in two-stage sampling designs, with a focus on nested case-control
sampling designs. In general, TMLE methodology can be used in conjunction with
procedures that handle censoring, missingness, measurement error, and other per-
sistent issues found in public health and medicine, in addition to adjusting for the
missingness due to the two-stage sampling design.

Our simulated nested case-control studies within the SPPARCS data demon-
strated 78.9% efficiency with an average of 4 controls per case. We had 78.4%
efficiency in our simulated nested case-control studies within a simulated cohort,
again with an average of 4 controls per case. These results coincided with the con-
clusions of Ury (1975), which noted that as a general rule, 4 controls per case yields
a relative efficiency of 80.0%. We also demonstrated the use of IPCW-TMLEs for
nested case-control study designs within randomized controlled trials when inter-
ested in an effect modification research question. With less than 40% of the trial
subjects, we reached an efficiency of 86.4% compared to the full trial.
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Maintainers of large comprehensive databases that include adverse events often
require researchers to pay for access, and cost almost always increases as the sample
size requested increases. Thus, nested case-control studies are also a natural design
for studies of safety with pharmaceutical drugs. The IPCW-TMLE is maximally
efficient in these scenarios as no covariate information on the noncase-control obser-
vations is discarded. With the increase in popularity of nested case-control study
designs in longitudinal cohorts and randomized controlled trials, the IPCW-TMLE
procedure provides an additional tool to yield unique biological and public health
discovery.

5.2 Prediction

Risk scores are calculated to identify those patients at the highest level of risk for
an outcome. In some cases, interventions are implemented for patients at high
risk. In population-based studies of the comparative effectiveness of treatments,
patients may be matched or stratified based on their predicted risk of a disease
or death. Standard practice for risk score prediction relies heavily on parametric
regression. Generating a good estimator of the function of interest using parametric
regression can be a significant challenge. High-dimensional data are increasingly
common in epidemiology, and researchers may have dozens, hundreds, or thousands
of potential predictors that are possibly related to the outcome. The complexity of
the parametric regression may increase to the point that there are more unknown
parameters than observations. Also, the best estimator of the true functional may
be described by a complicated function not easily approximated by main terms or
interaction terms.

The analysis of full cohort data for risk prediction is frequently not feasible,
often due to the cost associated with purchasing access to large comprehensive
databases, storage and memory limitations in computer hardware, or other practical
considerations. Thus, researchers frequently conduct nested case-control studies
instead of analyzing the full cohort, particularly when their prediction research
question involves a rare outcome. This type of two-stage design introduces bias
since the proportion of cases in the sample is not the same as the population. This
complication may have contributed to the relative lack of prediction studies for rare
diseases.

As previously discussed, an existing method for prediction in parametric statis-
tical models with nested case-control samples is intercept adjustment. Traditional
risk score approaches for prediction (e.g., logistic regression in a parametric sta-
tistical model) are not effective when based on case-control study data since the
study design produces a biased sample. This complication may have contributed
to the relative lack of prediction studies for rare diseases. Many published findings
for prediction in rare diseases are based on the stratification of case-control samples
(Whiteman and Green 2005; van der Steeg et al. 2007).

We consider a two-stage sampling design in which one takes a random sample
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from a target population and measures Y , the outcome, on each subject in the
first stage. The second stage involves drawing a subsample from the original sam-
ple, collecting additional data on the subsample. The decision regarding selection
into the subsample is influenced by Y . This data structure can be viewed as a
missing-data structure on the full data structure X collected in the second stage
of the study. Using nested case-control data from a Kaiser Permanente database,
we generate a function for mortality risk score prediction using super learner and
inverse-probability-of-missingness weights to correct the bias introduced by the sam-
pling design.

5.2.1 Data, Model, and Parameter

Kaiser Permanente Northern California provided medical services to approximately
3 million members during the study period. They served 345,191 persons over the
age of 65 in the 2003 calendar year, and 13,506 of these subjects died the subsequent
year. The death outcome was ascertained from California death certificate filings.
Disease and diagnosis variables, which we refer to in this paper simply as medical
flags, were obtained from Kaiser Permanente clinical and claims databases. There
are 184 medical flags covering a variety of diseases, treatments, conditions, and other
reasons for visits. Gender and age variables were obtained from Kaiser Permanente
administrative databases.

A nested case-control sample was extracted from the Kaiser Permanente database
for computational ease. All 13,506 cases from the 2003–2004 data were sampled with
probability 1, and an equal number of controls were sampled from the full database
with probability 0.041 for a total of 27,012 subjects. Approval from the institutional
review board at Kaiser Permanente Northern California for the protection of human
subjects was obtained.

Formally, we define the full data structure as X = (W,Y ) ∼ PX,0, with covariate
vector W = {W1, . . .W186} and binary outcome Y , indicating death in 2004. The
observed data structure for a randomly sampled subject is O = (Y,∆,∆X) ∼ P0,
where Y is included in X and ∆ denotes the indicator of inclusion in the second-stage
sample (nested case-control sample). The parameter of the full-data distribution
of X is given by Q̄0 = EX,0(Y | W ) and the full-data statistical model MF is
nonparametric.

5.2.2 Loss Function

Had our sample been comprised of n i.i.d. observations Xi, we would have esti-
mated Q̄0 = EX,0(Y | W ) with loss-based learning using loss function LF (X, Q̄).
Given the actual observed data, we can estimate Q̄0 with super learning and weights
∆i/PX,n(∆i = 1 | Yi) for observations i = 1, . . . , n, which corresponds with the same
super learner, but now based on the inverse-probability-of-missingness(/censoring)-
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weighted loss function:

L(O, Q̄) =
∆

PX,n(∆ = 1 | Y )
LF (X, Q̄).

We define our parameter of interest as: Q̄0 = arg minQ̄E0L(O, Q̄), where Q̄ is a
possible function in the parameter space of functions that map an input W into a
predicted value for Y . E0L(O, Q̄), the expected loss, evaluates the candidate Q̄, and
it is minimized at the optimal choice of Q̄0.

5.2.3 Data Analysis

We implemented super learning with observation weighting in R (R Development
Core Team 2010) to obtain our estimate of Q̄0 using our observed data. Using a
server with dual quad-core Intel E5420 processors running at 2.50GHz and 64GB
of memory, our analysis using the SuperLearner and CV.SuperLearner functions
from the SuperLearner package in R took 21 hours. CV.SuperLearner calculated
the cross-validated risk for the super learner algorithm.

Observation weights within the super learner were assigned based on the inverse
probability of missingness, wi = ∆i/PX,n(∆i = 1 | Yi) thus cases were given observa-
tion weights equal to 1 and controls were given observation weights of 1/0.041 = 24.
One could further stabilize the weights by standardizing them to sum to 1: in other
words, we would divide the above wi by

∑n
i=1 ∆i/PX,n(∆ = 1 | Yi). Recall that

the super learner allows a researcher to use multiple algorithms to outperform a
single algorithm in nonparametric and semiparametric statistical models by tak-
ing a weighted average of the algorithms. Any algorithm that allows observation
weighting can be used with super learner in nested case-control data.

The collection of 16 algorithms included in this analysis can be found in Ta-
ble 5.6. We implemented dimension reduction among the covariates as part of each
algorithm, retaining only those covariates associated with Y in a univariate regres-
sion (p< 0.10). After screening, 135 covariates remained. Algorithms with different
options (e.g., degree, size, etc.) were considered distinct algorithms. The selec-
tion of these algorithms was based on investigator knowledge, the ability to take
observation weights, and computational speed.

A summary of the nested case-control variables can be found in Table 5.7. All
187 variables, except death, were evaluated from 2003 records. The majority of
the sample is female, with 45.2% male. The age category with the largest num-
ber of members was 70 to 79, with 41.0%. (For presentation, age is summarized
categorically in Table 5.7, although the variable is continuous and was analyzed as
a continuous variable. All other variables are binary.) The top ten most preva-
lent medical flags in the sample were: screening/observation/special exams, other
endocrine/metabolic/nutritional, hypertension, minor symptoms, postsurgical sta-
tus/aftercare, major symptoms, history of disease, other musculoskeletal/connective
tissue, cataract, and other dermatological disorders. The majority of medical flags
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Table 5.6: Collection of algorithms

Algorithm Description

glm.1 Main terms logistic regression
glm.2 Main terms logistic regression with gender × age interaction
glm.3 Main terms logistic regression with gender × age2 interaction
glm.4 Main terms logistic regression with gender × age3 interaction
glm.5 Main terms logistic regression with age2 term
glm.6 Main terms logistic regression with age3 term
glm.7 Main terms logistic regression with age × covariate interaction

for remaining main terms
glm.8 Main terms logistic regression with gender × covariate interaction

for remaining main terms
glm.9 Main terms logistic regression with age × covariate and

gender × covariate interaction
bayesglm Bayesian main terms logistic regression
glmnet.1 Elastic net, α = 1.00
glmnet.5 Elastic net, α = 0.50
gam.2 Generalized additive regression, degree = 2
gam.3 Generalized additive regression, degree = 3
nnet.2 Neural network, size = 2
nnet.4 Neural network, size = 4

(47.2%) had a prevalence of less than 1%. Twenty medical flags had a prevalence of
0%. These variables were excluded from our analysis as they provide no information.
We remind the reader that these percentages do not reflect estimates of prevalence
in the population given the biased sampling design.

The super learning algorithm for predicting death (risk score) in the nested
case-control sample performed as well as or outperformed all single algorithms in
the collection of algorithms. With a cross-validated MSE (i.e., the cross-validated
risk, not to be confused with risk score) of 3.336e-2, super learner improved upon the
worst algorithms by 17% with respect to estimated cross-validated MSE. MSEs in
the collection of algorithms ranged from 3.336e-2 to 3.913e-2. While the collection of
algorithms was somewhat limited, which isn’t optimal from a theoretical perspective,
we see some benefits in relative efficiency. Results are presented in Table 5.8 where
relative efficiency for each of the k algorithms is defined as RE=cross validated
MSE(k)/cross validated MSE(super learner).

When examining R2 values, the super learner had the largest R2 compared to
the collection of algorithms with an R2 = 0.113, although ten of the algorithms ap-
proached this value. Super learner had an 11.3% gain relative to using the marginal
probability (i.e., assigning probability of death 0.039 to each observation). The al-
gorithms in the collection had R2 values ranging from 0.112 to −0.041. (Negative
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Table 5.7: Characteristics of Northern California Kaiser Permanente members aged
65 years and older in nested case-control sample, 2003

Variables No. %

Death (in 2004) 13,506 50.0
Male 12,213 45.2
Age, yearsa

65 to <70 5,193 19.2
70 to <80 11,077 41.0
80 to <90 8,525 31.6
≥ 90 2,217 8.2

Most prevalent medical flags No. %

Screening/observation/special exams 23,597 87.4
Other endocrine/metabolic/nutritional 10,633 39.4
Hypertension 10,612 39.3
Minor symptoms, signs, findings 9,748 36.1
Postsurgical status/aftercare 9,447 35.0
Major symptoms, abnormalities 8,251 30.5
History of disease 7,376 27.3
Other musculoskeletal/connective tissue 7,359 27.2
Cataract 5,976 22.1
Other dermatological disorders 5,692 21.1

Medical flag prevalence No. %

Zero 20 10.8
0 < x < 1% 67 36.4
1 ≤ x < 10% 72 39.1
≥10% 25 13.6
a Age is summarized categorically although the variable

is continuous.
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R2 values indicate that the marginal prevalence probability is a better predictor of
mortality than the algorithm. Values for R2 can fall outside the range [0,1] when
calculated in cross-validated data.) See Table 5.8. While the performance of the
super learner improved upon the collection of algorithms with respect to R2 values,
it should be noted that the overall prediction power of this data set is somewhat
limited with the best R2 = 0.113.

5.2.4 Discussion

Alternatives to parametric approaches to risk score prediction include the flexible
approach super learning that provides improved performance in realistic nonpara-
metric and semiparametric statistical models for high dimensional data. The algo-
rithm provides a system to combine many estimators into an improved estimator
and returns a function we can use for prediction in new data sets. Cross-validation
of the individual algorithms and the super learner prevents overfitting and the se-
lection of a fit that is too biased. Our criterion for estimator selection is based on
an a priori established benchmark (e.g., cross-validated MSE). Thus, researchers are
not limited to logistic regression in misspecified statistical models for prediction in
case-control study designs.

Super learning allows for the use of observation weighting in order to generate
prediction functions with nested case-control data, as well as data from other two-

Table 5.8: Results from super learner analysis

Algorithm CV MSE RE R2

SuperLearner 3.336e-2 – 0.113

glm.1 3.350e-2 1.004 0.109
glm.2 3.350e-2 1.004 0.109
glm.3 3.349e-2 1.004 0.109
glm.4 3.348e-2 1.004 0.109
glm.5 3.348e-2 1.004 0.109
glm.6 3.348e-2 1.004 0.109
glm.7 3.458e-2 1.037 0.080
glm.8 3.443e-2 1.032 0.084
glm.9 3.533e-2 1.059 0.060
bayesglm 3.778e-2 1.132 -0.005
glmnet.1 3.337e-2 1.000 0.112
glmnet.5 3.336e-2 1.000 0.112
gam.2 3.349e-2 1.004 0.109
gam.3 3.349e-2 1.004 0.109
nnet.2 3.913e-2 1.173 -0.041
nnet.4 3.913e-2 1.173 -0.041
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stage sampling designs, case-control designs, and general biased sampling designs.
We introduced a more flexible method for prediction in two-stage nested case-control
data. This method is an application of the general loss-based super learner, and the
appropriate loss function is selected. It corresponds with an inverse-probability-
of-missingness full-data loss function. The method involves observation weights
wi = ∆i/Pn(∆i = 1 | Yi) to eliminate the bias of the sampling design, where these
weights are determined by the inverse probability of missingness. For nested case-
control studies, this is equalivalent to using case-control weights, with cases assigned
the weight qn (an estimate of q0 obtained from the full cohort) and controls assigned
a weight of (1 − qn)/J , where J is the average number of controls per case. Thus
the choice of loss function can also be presented as the case-control-weighted loss
function presented in the preceding two chapters.

In our nested case-control Kaiser Permanente data, super learner performed as
well as or outperformed all algorithms in the collection of algorithms. While the
overall predictive power of this data set was limited (R2 = 0.113), the utility of super
learning is still apparent. In Rose and van der Laan (2011), larger improvements in
cross-validated MSE were seen in other real data sets. The minimal improvement
of the super learner in this analysis is not unexpected since the outcome is rare
in the population of interest. This can be understood intuitively since any large
improvement in predicting death by an algorithm among “case” subjects is averaged
over the entire sample.

It is not possible to know with certainty a priori which single algorithm will per-
form the best in any given data set. Even when the result is a negligible improvement
relative to the best algorithms in the collection, the super learner provides a tool for
researchers to run many algorithms and return a prediction function with the best
cross-validated MSE, avoiding the need to commit to a single algorithm.

For example, even in this analysis, had the logistic regression with main terms
and age covariate and gender covariate interactions for each covariate (glm.9) been
the a priori selected single algorithm, with R2 = 0.060, its performance is poor
compared to that of the super learner. Several other algorithms were considerably
worse thanglm.9 and also could have been the single a priori selected algorithm. In
other words, the use of the super learner prevents poor a priori algorithm choices.

One might counter that their procedure would involve implementing multiple
algorithms, using cross-validation and selecting the one algorithm with the best
cross-validated MSE. This procedure is itself a super learning algorithm, referred to
as the discrete super learner. The discrete super learner algorithm must then also be
cross-validated in order to assess its performance. Once a discrete super learner has
been implemented, only the relatively trivial calculation of the weight vector needs
to be completed to implement the super learner. Super learning is an effective
method for prediction, but recall that it also has applications in effect estimation.
As discussed in recent epidemiology articles (Sudat et al. 2010; Snowden et al. 2011;
Rose et al. 2011), researchers are frequently concerned about parametric model
misspecification within effect estimation procedures and may wish to implement
methods such as super learning. Super learning can be applied to a broad range of
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applied problems in epidemiology and medicine. Risk score prediction, designs based
on propensity score matching, and incorporation into effect estimation procedures
are just a few of these areas. The study presented in this paper further demonstrates
the promise of the super learner illustrated in previous publications (van der Laan
et al. 2007; Polley and van der Laan 2009).

Appendix: Wang et al. and IPCW-TMLE

Let’s consider the model for the observed data O = (V,∆,∆X) implied by a non-
parametric full-data model for the distribution of X, and known PX,0(∆ = 1 | V ).
In that case, the IPCW-TMLE we propose is locally efficient if PX,0(∆ = 1 | V ) is
nonparametrically estimated or is estimated in a targeted way as specified in our
article, and will be inefficient otherwise. If the full-data model is not nonparametric,
then our proposed IPCW-TMLE will not be locally efficient, even if PX,0(∆ = 1 | V )
is estimated nonparametrically.

If X = (S, Y,A,W ), and one only assumes the consistency and randomzation
assumption, then the statistical model for the distribution of X is indeed nonpara-
metric. Thus, in that statistical model, the proposed IPCW-TMLE of EY (a) will
be efficient if S, Y,A are discrete and PX,0(∆ = 1 | S, Y,A) is estimated nonpara-
metrically or in targeted manner. However, as in Wang et al., if one also assumes a
parametric model for the treatment mechanism, then the statistical model for the
full-data is not nonparametric. As a consequence of this choice of full-data model,
the efficient influence curve does not exist in closed form, and has smaller variance
than the efficient influence curve for the nonparametric full-data model, (and there
exists a whole class of double robust influence curves/estimating functions), so that
the Cramer-Rao lower bound in their more restricted model is smaller than the
Cramer-Rao lower bound for the nonparametric full-data model our IPCW-TMLE
aims to achieve. For such a nonparametric full-data model, their locally efficient
estimator solves the actual efficient influence curve estimating equation while the
IPCW-TMLE solves the inefficient IPCW-full-data efficient equation.

Wang et al. also consider the subclass of influence functions/estimating func-
tions generated by the nonparametric full-data model corresponding with a satu-
rated parametric model for the treatment mechanism, and they refer to the optimal
influence function in this subclass as the efficient double robust estimating func-
tion. Their efficient double robust estimating function equals the efficient influence
curve for the observed data model implied by nonparametric full-data model, i.e.,
the efficient influence curve of our model. As a consequence, their efficient double
robust estimator (based on solving the efficient double robust estimating equation)
and our double robust TMLE are both locally efficient for the observed data model
corresponding with the nonparametric full-data model. If the full-data model is
nonparametric, V is continuous, and we do not use the targeted estimator of the
missingness mechanism then our proposed IPCW-TMLE is not locally efficient,
while their efficient double robust estimator will be locally efficient.
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Chapter 6

Concluding Remarks

Causal inference methods and nonparametric and semiparametric estimators for
case-control studies had been previously underdeveloped in the literature. Given
the popularity of these designs in the public health and medical literature, the
impact of CCW-TMLE, the method proposed in this thesis, is significant. Case-
control studies are attractive to investigators researching rare diseases where they
are able to sample known cases instead of following a large number of subjects and
waiting for disease onset among only a few individuals. Application areas include
general epidemiology, many branches of medicine including cancer, and genomics.

The dearth of methodology for case-control studies may be due to the data-
generating experiment involving an additional complexity called biased sampling.
That is, one assumes the underlying experiment that randomly samples a unit from
a target population, measures baseline characteristics, assigns an exposure, and
measures a final binary outcome, but we sample from the conditional probability
distribution, given the value of the binary outcome. And yet, we still desire to assess
the causal effect of exposure on the binary outcome for the target population.

After presenting a thorough literature review of related existing methodology in
Chapter 1, we presented the targeted learning framework in Chapter 2. The CCW-
TMLE is presented in Chapter 3, and it relies on knowledge of the true prevalence
probability, or a reasonable estimate of this probability, in case-control weights to
eliminate the bias of the sampling design. This case-control weighting scheme maps
the TMLE for a random sample into a method for case-control sampling. Our sim-
ulation studies demonstrated that an existing method, the “approximately correct”
IPTW estimator, has greater bias and is less efficient than the CCW-TMLE, in
some cases, to an extreme degree. We also presented the CCW-MLE, which also
had improved performance over the IPTW estimator.

Individual matching in case-control studies has, at times, been implemented pos-
sibly due to a misunderstanding of the true benefits of such a design. These designs
are quite common, and while matching is intended to eliminate confounding, the
main potential benefit of matching in case-control studies is a gain in efficiency.
In Chapter 4, we presented and investigated the use of CCW-TMLE in matched
case-control study designs. We also compare the CCW-TMLE in matched and un-

71



matched designs in an effort to determine which design yields the most information
about the causal effect. Our simulations supported the literature: in many practical
situations researchers may be better served using an unmatched design.

Lastly, in Chapter 5, we considered two-stage sampling designs, including so-
called nested case-control studies, where one takes a random sample from a target
population and completes measurements on each subject in the first stage. The
second stage involves drawing a subsample from the original sample, collecting ad-
ditional data on the subsample. This data structure is truly a missing data structure
on the full-data structure collected in the second stage of the study. We proposed
an IPCW-TMLE and an inverse-probability-of-censoring-weighted super learner for
two-stage sampling designs. Our IPCW-TMLE simulations demonstrated that one
can achieve nearly 80% efficiency (compared to an analysis of the full data) in ob-
servational data using a two-stage design with an average of 4 controls per case. We
also presented an analysis using super learner in nested case-control data from a
large Kaiser Permanente database to generate a function for mortality risk predic-
tion where the inverse-probability-of-censoring-weighted super learner performed as
well as or better than the candidates included in collection of algorithms.

The road map for targeted learning provides a recipe for researchers to
investigate parameters they truly care about under realistic assumptions
using various study designs, including case-control study designs.
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