
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Cheminformatic Approaches to Decipher Natural Product –Target – Disease Associations

Permalink
https://escholarship.org/uc/item/37x7j671

Author
Delgadillo, David Alexander

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/37x7j671
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

SANTA CRUZ 

CHEMINFORMATIC APPROACHES TO DECIPHER NATURAL PRODUCT –

TARGET – DISEASE ASSOCIATIONS 

A dissertation submitted in partial satisfaction 

of the requirement for the degree of 

DOCTOR OF PHILOSOPHY 

in 

CHEMISTRY AND BIOCHEMISTRY 

by 

David Alexander Delgadillo 

March 2022 

The Dissertation of David Alexander 
Delgadillo is approved: 

 

Professor John B. MacMillan, Advisor 

 

Professor R. Scott Lokey, Chair 

 

Professor Laura M. Sanchez 

 

 

Peter Biehl 
Vice Provost and Dean of Graduate Studies 
 



Copyright ã by 

David A. Delgadillo 

2022



 iii 

TABLE OF CONTENTS 

List of Figures          iv 

List of Tables          vi 

List of Schemes          vii 

List of Definitions         viii 

Abstract          x 

Acknowledgements         xii 

Dedication          xvi 

 
1 SCREENING STRATEGIES FOR NATURAL       1 

PRODUCTS – TARGET – DISEASE ASSOCIATION DISCOVERY 

1.1 Brief History of Natural Products       1 

1.2 Screening Strategies for Natural Products      2 

Drug Discovery: Target-Based vs Phenotypic Screens 

1.3 Natural Products and Cancer       5 

1.4 Natural Product Fraction Library Generation (crude vs fractionation)   7 

1.5 Non-Small Cell Lung Cancer Natural Products Screen    14 

1.6 Conclusion          17 

1.7 Materials & Methods         19 

2 Isolation and Structural and Biological Characterization of Ikarugamycin  24 

2.1 Analysis of NSCLC Screening Data       25 

2.2 Isolation of the Bioactive Metabolites from SNB-040      28 
and SNE-002 for NSCLC Toxicity 

2.3 Biological Activity of Ikarugamycin       42 

2.4 Semi-Synthetic Derivatization       46 

2.9 Conclusion and Discussion        50 

2.10 Materials and Methods        52 

3 Directed-Message Passing Neural Network Application     57 
to the Natural Products Atlas 



 iv 

3. 1 Challenges in Physical High Throughput Screening Strategies   58 

3.2 Virtual Natural Products Libraries       61 

3.3 In silico Screening of Natural Products      63 

3.4 Proof of Principle Application to the Natural Products Atlas    68 

3.5 Conclusion          73 

3.6 Materials and Methods        75 

4 Application of Directed Message Passing Neural Network to Rapidly  81 
Identify Anti-Viral Natural Products 

4.1 Natural Products as a trove of bioactive compounds     82 

4.2 Onset of the SARS-CoV-2 Virus       83 

4.3 Target Selection for SARS-CoV-2       84 

4.4 In-silico Approaches to SARS-CoV-2 Drug Discovery     87 

4.5 Application of DMPNN to Identify NPs Active Against SARS-CoV-2 Proteases  88 

4.6 Conclusion          90 

4.7 Materials and Methods        94 

Epilogue          107 
 
APPENDICES          109 

Bibliography          182 
 
  



 v 

LIST OF FIGURES 
Figure 1.1 Generic representation of target-based screening      
strategies and phenotypic screening strategies.          
 
Figure 1.2 Crystal structure of PT2399 bound to HIF-2a and      
the structural similarity to the FDA-approved drug Welireg. 
 
Figure 1.3 Schematic overview of cheminformatic approaches      
to natural product drug discovery.   
 
Figure 1.4 NSCLC by histology and adenocarcinoma mutations.     
 
Figure 1.5 Selected structures that are representative of first line     
 treatments for NSCLC. 
 
Figure 1.6 The figure depicts the main druggable genetic targets     
and their involvement in the main signaling pathways in NSCLC. 
 
Figure 1.7 Representation of NSCLC cell line clustering via      
different characterizations. 
 
Figure 1.8 General bioactive natural product discovery workflow in     
the MacMillan Lab. 
 
Figure 1.9 Genomic Characterization and Chemical Sensitivities of     
NSCLC Cell Line Panel. 
 
Figure 2.1 Natural product fraction prioritization workflow.     
 
Figure 2.2 Phenotypic readout of preliminary NSCLC screen.     
 
Figure 2.3 Representation of different cytotoxicity profiles observed in     
preliminary NSCLC screen. 
 
Figure 2.4 Purification schematic for the isolation of bioactive metabolites   
identified in SNB-040. 
 
Figure 2.5 Structure of ikarugamycin, a microbial natural product.    
 
Figure 2.6 Structure of ikarugamycin analog, capsimycin D.     
 
Figure 2.7 Structure of ikarugamycin analog, capsimycin B.     
 
Figure 2.8 Structure of ikarugamycin analog, capsimycin F.     
 
Figure 2.9 Key COSY and HMBC correlations of 4.      
 
Figure 2.10 Key NOESY correlations of 4.       
 
Figure 2.11 Structure of ikarugamycin analog, capsimycin C.     
 
Figure 2.12 Structure of ikarugamycin analog, xlamenemycin C.     
 



 vi 

Figure 2.13 Structure of ikarugamycin analog, SS8201 D.     
 
Figure 2.14 Structure of Ikarugamycin analog, capsimycin E.     
 
Figure 2.15 A. Volcano plot of ikarugamycin (2.5) against 40      
NSCLC cell lines and 2 HBEC cell lines. B. Overlayed cell viability  
plots of ikarugamycin against a representative set of NSCLC cell lines. 
 
Figure 2.16 IC50 curve of representative NSCLC cell lines      
against ikarugamycin (1). 
 
Figure 2.17 Collection of PTMs screened against NSCLC.     
 
Figure 2.18 Cytotoxicity assay of ikarugamycin (1) and       
propargyl-IKA against representative NSCLC cell lines. 
 
Figure 3.1 A Sequential steps applied in virtual screening workflows to     
identify bioactive natural products. B Ligand- and structure-based virtual  
screening approaches and some of their associated computational methods 
 
Figure 3.2 Representation of a message passing neural network     
(MPNN) that iteratively aggregates local chemical features for  
molecular property prediction. 
 
Figure 3.3 Representative classes of antibiotics of the modern      
era, excluding the arsenic-containing antibiotics of the early twentieth century. 
 
Figure 3.4 Schematic representation of machine learning in antibiotic     
discovery that demonstrates how the combination of in silico predictions  
and empirical investigations can lead to the discovery of new antibiotics. 
 
Figure 3.5 Cross validation of predicted natural products      
with antimicrobial characteristics. 
 
Figure 4.1 Antivirals drugs by source rom 2015 to 09/2019, n = 185.    
 
Figure 4.2 Schematic of SARS-CoV-2 replication mechanism within host.   
 
Figure 4.3 IC50 curves generated via fluorescent protein engagement assay.   
 
Figure 4.4 t-Distributed stochastic neighbor embedding (t-SNE)      
of all molecules from the training datasets and the NP Atlas, with Closthioamide. 
 
  



 vii 

LIST OF TABLES 
Table 1.1 Examples of natural products isolated from phenotypic screens.   
 
Table 2.1 1H (800 MHz) and 13C (800 MHz) spectroscopic data of 1.    
 
Table 2.2 1H (800 MHz) and 13C (800 MHz) spectroscopic data of 2.    
 
Table 2.3 1H (800 MHz) and 13C (800 MHz) spectroscopic data of 3.    
 
Table 2.4 1H (600 MHz) and 13C (100 MHz) spectroscopic data of 4.    
 
Table 2.5 1H (600 MHz) and 13C (100 MHz) spectroscopic data of 5.    
 
Table 2.6 1H (600 MHz) and 13C (100 MHz) spectroscopic data of 6.    
 
Table 2.7 1H (600 MHz) and 13C (100 MHz) spectroscopic data of 7.    
 
Table 2.8 1H (800 MHz) and 13C (800 MHz) spectroscopic data of 8.    
 
Table 2.9 Anticancer activity of PTMs against representative NSCLC cells.   
 
Table 3.1 Commercially and publicly available large natural product libraries.    
 
Table 3.3 List of hyperparameters for each respective dataset.     
 
Table 4.1 Examples of active molecules derived from drug      
repurposing for SARS-CoV-2. 
 
Table 4.2 List of publicly available drug repurposing campaigns      
for compounds against Betacoronavirus genus. 
 
Table 4.3 List of hyperparameters for each respective dataset     
 
  



 viii 

LIST OF SCHEMES 
Scheme 2.1 Reaction conditions for the selective reduction      
of 𝛂,𝛃-unsaturated carbonyls in 1. 
 
Scheme 2.2 Altered reaction conditions of Scheme 2.1.      

Scheme 2.3 Reaction conditions for the Birch reduction employed on 1.    

Scheme 2.4 Epoxidation of 1 utilizing mCPBA.       

Scheme 2.5 General reaction conditions for the Juliá-Colonna epoxidation of 1.   

Scheme 2.6 Reaction scheme of the epoxide ring opening of compound 3.   

Scheme 4.1 NPs identified with high bioactivity against key SARS-CoV-2    
proteins via in silico screening. 
 
Scheme 4.2 Several NPs with a high propensity to be active against     
SAR-CoV-2 Mpro via DMPNN. 
 
Scheme 4.3 Schematic presentation of the total synthesis of Closthioamide.   

 

  



 ix 

LIST OF DEFINITIONS 
AC50     ..........................................................................................  ½ maximal effect measured 

AKT     ............................................................................................................  protein kinase B 

ALK     .............................................................  anaplastic lymphoma receptor tyrosine kinase 

ATP      .................................................................................................  adenosine triphosphate 

BCL11A     ............................................................................. B-cell lymphoma/leukemia 11A  

COSY     .............................................................................................  correlation spectroscopy 

DMSO     .....................................................................................................  dimethyl sulfoxide 

DNA     ...................................................................................................  deoxyribonucleic acid 

EC50      ..........................................................................................................  ½ maximal effect 

EGFR     ...............................................................................  epidermal growth factor receptor 

EML4     ....................................................  echinoderm microtubule-associated protein-like 4 

FDA    ...............................................................................  US Food and Drug Administration 

GI50       ......................................................................................................  ½ growth inhibition 

HMBC     ....................................................................  heteronuclear multiple bond correlation 

HNRNPM     .......................................................  heterogeneous nuclear ribonucleoprotein M 

HPLC     ..................................................................  high performance liquid chromatography 

HSQC     ..................................................................  heteronuclear single-quantum correlation 

IC50       ...................................................................................................  ½ maximal inhibition 

LC-MS     ............................................................... liquid chromatography-mass spectrometry 

LDL      .................................................................................................  low-density lipoprotein 

LD50     ..................................................................................................  ½ maximal lethal dose  

miRNA     ..............................................................................................  micro ribonucleic acid 

mRNA     ........................................................................................ messenger ribonucleic acid 

mTOR     ................................................................................  mammalian target of rapamycin 

NFκB     .........................................................................................................  nuclear factor κB 

NMR     ...................................................................  nuclear magnetic resonance spectroscopy 



 x 

NOESY     ................................................................... nuclear Overhauser effect spectroscopy 

PI3K     ............................................................................................  phosphoinositide 3-kinase 

RNA     ............................................................................................................  ribonucleic acid 

siRNA    ...............................................................................  small interfering ribonucleic acid 

TOCSY     ...................................................................................  total correlation spectroscopy 

DMPNN     …………………………………………….   directed-message passing neural network 



 xi 

ABSTRACT 
 

CHEMINFORMATIC APPROACHES TO DECIPHER NATURAL PRODUCT –
TARGET – DISEASE ASSOCIATIONS 

By David Alexander Delgadillo 

Cancer is the second leading cause of death in the United States, with many of those 

deaths attributed to lung cancer. NSCLC accounts for nearly 85% of all lung cancer cases, 

making NSCLC a leading cause of cancer-related death in the United States. A chemistry-

driven de novo discovery strategy utilizing cheminformatics recently identified ikarugamycin 

(IKA) as a potent and selective inhibitor of cellular proliferation amongst NSCLC cell lines. 

However, a detailed characterization of IKA and several analogs has yet to be performed within 

the context of NSCLC. This work aimed to further investigate the relationship between IKA 

analogs and the effect that structural diversity may have on the potency and selectivity of its’ 

antiproliferative properties concerning NSCLC. The chemical characterization and biological 

cytotoxicity profiling of IKA and its’ analogs against several NSCLC cell lines will drive the 

development of IKA towards clinical relevance. Biological evaluation of several IKA analogs 

revealed that the double bond within the 5-6-5 ring moiety is crucial to selective antiproliferative 

activity against NSCLC HCC44, H23, and Calu-1. All selective analogs exhibited an IC50 value 

within the 0.09-1.00 µM range. Along with the strong toxicity trends we have already observed, 

IKA also appears to be interacting with a novel biological target outside of the commonly acted 

on genes (i.e., EGFR, ALK, BRAF, ROS1). This work also explored strategies to embed 

synthetic handles for future click pull-down experiments for target identification. 

Concurrently, this thesis contains work on the utilization of the NP Atlas as a compound 

repository for virtual drug screening – a first of its kind. To address the emerging viral epidemic 

of SARS-CoV-2, I employed the open-source Chemprop algorithm to train a Directed-Message 

Passing Neural Network (DMPNN) to identify key chemical descriptors that can be attributed 

to disrupting the viral replication mechanism. I utilized open-source screening data provided by 

the National Center for Biotechnology Information (NCBI) to train the DMPNN and 



 xii 

subsequently utilized the trained neural network to score compounds found within the NP Atlas. 

Through this process, I was able to identify and validate the targeted interaction between 

closthioamide and the main protease of SARS-CoV-2. This work serves as a proof of principle 

for adjacent computational drug discovery strategies that may help scientist prioritize their 

efforts and lower the cost of resources necessary to screen libraries that are greater than 

24,000 molecules. 
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CHAPTER ONE 

 

SCREENING STRATEGIES FOR NATURAL PRODUCTS – TARGET – DISEASE 

ASSOCIATION DISCOVERY
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1.1 Brief History of Natural Products 

The relationship between natural products and human health has long existed and was 

born of survival. Humans have turned to nature to find the earliest forms of medicine and have 

continued to explore the expansive chemical space that nature has provided. Natural products, 

in the context of this dissertation, are described as bioactive chemical compounds sourced 

from microorganisms, plants, and animals. These compounds are secondary metabolites that 

are not directly involved in development or reproduction but are understood to have co-evolved 

with their source organism to help navigate biotic and abiotic stresses or changes.1 Through 

this evolution, nature has managed to construct diverse sets of complex chemical entities with 

potent and selective bioactivity. It was only within the last 250 years that we began to 

understand how these natural products exerted their medicinal effects.1 Technological 

advancements in analytical techniques, such as chromatography and spectroscopy allow us to 

narrow down the medicinal effects of extracts to a singular chemical entity. Developments of 

atomic theory have allowed scientists to better understand how the structure of these chemical 

entities relates to their biological activity. Natural products continue to be a rich source of 

bioactive molecules that have tremendous importance to human health. Many of the 

therapeutics that form the cornerstones of modern medicine have been directly influenced by 

the study and characterization of natural products. 

 The importance of natural products is best captured by the Nobel Prize in Physiology 

or Medicine awarded to Dr. Selman Waksman in 1952 for the discovery of streptomycin and 

its’ bioactivity against Mycobacterium tuberculosis.2 This discovery illuminated the powerful 

therapeutic potential of compounds isolated from natural sources and solidified their 

importance in combating human diseases. The strong hold of natural products research was 

fortified by the 2015 Nobel Prize in Physiology or Medicine awarded to Drs. Youyou Tu, William 

Campbell, and Satoshi Ōmura for the discovery of the anti-malarial artemisinin and the anti-

parasitic avermectin.3,4 Although great strides have been made in the fight against human 
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disease, the emergence of new diseases and increasing antibiotic drug resistance serve as a 

reminder that natural products research must continue and novel screening strategies must 

emerge. 

 

1.2 Screening Strategies for Natural Product Drug Discovery: Target-Based Screens vs 

Phenotypic Screens 

 
Figure 1.1 Generic representation of target-based screening strategies and phenotypic 
screening strategies. 
 

 

  Decades of screening methods including natural product samples have been 

employed in industry and academia alike. The usefulness of crude natural product extracts in 

primary screening has decreased as assay techniques became more complex, more target-

based, and more high-throughput. This has led to the increased use of prefractionated natural 

product libraries in high throughput screening efforts.5,6 High throughput screening is described 

as the use of automated equipment to rapidly test large compound libraries for biological activity 

at the model organism, cellular, pathway, or molecular level. High throughput screening can be 

divided into two main paradigms: target-based screening and phenotypic screening (Figure 

1.1). Target-based screening takes significant work at the front end to validate the physiological 
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benefit in the disease context. However, a major advantage is that knowledge of the molecular 

target and/or mechanisms allows drug discovery tools, such as mutational analysis, 

crystallography, computational modeling, and a variety of other techniques to deduce how a 

drug interacts with the target. This enables the efficient creation of structure-activity 

relationships, biomarkers, and subsequent generations of the medication acting on the target. 

 

 
Figure 1.2 Crystal structure of PT2399 bound to HIF-2a and the structural similarity to the 

FDA-approved drug Welireg. 

 

 

 A notable example of successful target-based HTS is the discovery of the HIF-2 

antagonist PT2399 (Figure 1.2). Hypoxia inducible factors (HIF-1, HIF-2, and HIF-3) 

accumulate in the cell nucleus under low oxygen conditions (hypoxia), such as those found in 

solid tumors. This accumulation upregulates the transcription of several genes that allow for 

the cell to adapt to the low oxygen conditions, thereby further supporting the growth and 

metastasis solid tumors. NMR-based ligand binding assays of drug fragments and HTS 

screens looking for disruption of protein/protein interactions paved the way for scientists to 

identify compounds that could disrupt the endogenous HIF-2a-HIF-1b heterodimer. The 

identified HIF-2a ligand was then subject to medical chemistry optimization to yield PT2399, 
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which has been further optimized and is now being marketed as Welireg (belzutifan) for adult 

patients with von Hippel-Lindau disease.7–9 

 Although target-based screening has allowed for many advances in modern drug 

discovery, high attrition rates in Phase II and III clinical trials attributed to poor target selection, 

poor drug efficacy, and narrow scope have limited the approach. Unbiased phenotypic 

screening allows for the bioactivities of natural products to be evaluated a the cellular, tissue, 

or whole organism level. In addition, phenotypic screening has the capability of identifying 

various compounds with diverse structural characteristics that interact with potentially unknown 

biological targets or that exhibit novel mechanisms of action. On account of this, several 

phenotypic events associated with a given disease have been exploited in the phenotypic 

screening of natural products and are summarized in Table 1.1. 

Table 1.1 Examples of natural products isolated from phenotypic screens.	

Phenotypic 
Screen 

Isolated	
Natural	
Products 

Representative	
Structure 

Biological 
Activity 

 

 

Cytotoxicity 

 

 

Romidepsin 

 

HDAC 

Inhibition10,11 

Salinosporamide A 

 

Proteosome 

Inhibition12 

Pateamine 

 

Translation 

Inhibition 

Via eIF4A13 

Immuno-

suppression 
FK506 

 

Immuno-

suppressive activity 

by targeting 

FABP/CaN14,15 
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Filopodia 

protrusion 

inhibition 

Glucopiericidin A 

 

Cancer metastasis 

inhibition by 

functional targeting 

of GLUT-116 

 

 

1.3 Natural Products and Cancer 

 Since the passing of the National Cancer Act of 1971, cancer remains a leading cause 

of morbidity and mortality on a global scale. To date, natural products or their derivatives 

account for more than 57% of small molecule cancer therapeutics17. Paclitaxel (Taxol), for 

example, was developed from the bark of the Pacific yew tree and is one of the most regularly 

used chemotherapy medications18. Although many cancer drug discovery efforts have moved 

towards synthetic compound libraries or bioconjugate strategies, the screening of natural 

products against cancer remains crucial to discovering bioactive pharmacophores and 

identifying novel oncogenic drug targets. 

 Given the complexity of cancer genomics, natural product drug discovery efforts have 

often elected to conduct phenotypic screens in order to identify potential drug leads. Since the 

identification of taxol, several cell-based phenotypic assays have emerged in an effort to isolate 

novel anticancer therapeutics. The ability for scientists to develop novel anti-cancer screens 

would not be as accessible as it is today without the US National Cancer Institute (NCI). The 

NCI compiled a panel of 60 cell lines each possessing a diverse histology and representing 

seven types of human cancers (brain, colon, leukemia, lung, melanoma, ovarian, and renal).337 

The establishment and characterization of this panel has enabled the developments of assays 

measuring cell proliferation and/or death that can be interrogated through various readouts, 

such as 3H-thymadine uptake, metabolic activity indicators, and trypan blue exclusion.338 For 

example, the natural product glucopiericidin A (GPA) was isolated while screening microbial 

samples in a filopodia protrusion inhibition assay. Filopodia are cell membrane projections that 

contribute to tumor metastasis. The phenotypic assay was designed to identify novel inhibitors 

of the protrusions and to characterize the molecular mechanism that implicates filopodia 
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protrusion in tumor metastasis. Kitagawa et al. utilized human epidermal A431 cells that are 

over express epidermal growth factor (EGF) receptors and exhibit filopodial protrusion within 

30 minutes.16 The bioassay guided isolation led the group to identify GPA and piericidin A (PA) 

as strong inhibitors of filopodial protrusion that acted synergistically. 

 
Figure 1.3 Schematic overview of cheminformatic approaches to natural product drug 

discovery. 

 

 

 Although PA was previously identified as a mitochondrial complex I inhibitor, GPA 

exhibited considerably weaker inhibition against mitochondrial respiration. This led the team to 

utilize chemical genomic screening to elucidate the mode of action of GPA and metabolomics 

(CE-TOFMS) as a method of target identification – a first of its kind. Their analysis identified 

glucose transporter 1 (GLUT1) as the functional target of GPA. The story of GPA highlights the 

utility of unbiased phenotypic screens in cancer therapeutic research and showcases how 

omics-based methods, including chemical genomics339, proteomics340, and metabolomics341, 

can be used to uncover new therapeutic targets (Figure 1.3). The unbiased phenotypic 

screening of natural products can provide a number of unique bioactive small molecules. Target 
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identification of these bioactive natural products with omics-based methods allows us to 

annotate potentially new therapeutic targets and protein candidates. This enables the 

deconvolution of the mode of action of the natural product and functional annotation of the 

target proteins in specific biological systems. Based on the newly identified structural and 

biological characterization of bioactive molecules, new synthetic small molecules can be 

discovered. Collectively, this approach raises the importance of unbiased phenotypic screening 

of natural products for therapeutic applications. 

 

1.4 Non-Small Cell Lung Cancer Overview 

 Lung cancer accounts for the highest mortality rate amongst both men and women in 

the USA. Non-small cell lung cancer (NSCLC) is group of genetic diseases with three major 

subgroups19 (Figure 1.4). Based on advances in genomic and mutational analysis, it is now 

recognized that up to 60% of adenocarcinomas and 50% to 80% of squamous cell carcinomas 

(SCC) have a known oncogenic driver mutation20,21 (Figure 1.4). These driver mutations 

eventually cause unregulated growth, proliferation, and rapidly generate resistance to therapy. 

The genetic and epigenetic mutations that give rise to cancer also present vulnerabilities in 

cancer cells that serve as potential targets for therapeutic intervention. 

 
Figure 1.4 NSCLC by histology and adenocarcinoma mutations. 
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 Historically, NSCLC has been treated with platinum-based doublets. The typical 

survival rate of patients that only receive chemotherapy is approximately 6%, whereas those 

who are eligible to receive immune-based therapies ranges from 15% to 50%. Clinical trials of 

second-line treatments, such as pemetrexed and docetaxel, have generated overall response 

rates of 9.1% and 8.8%, respectively22–24. There are now a number of therapeutic pathways 

with specific oncoprotein inhibitors that target lung cancers addicted to these oncogenic driver 

mutations. The main therapeutic pathways and their associated drugs (Figure 1.5) are 

described below. 

 

Figure 1.5 Selected structures that are representative of first-line treatments for NSCLC. 

 

1.4.1 Sensitizing EGFR Mutations 

 EGFR mutations are the most prevalent among nonsmokers and former light smokers. 

In 45 percent of patients, deletions in exon 19 and point mutations in exon 21 (L858R) are the 

most prevalent EGFR gene alterations. Osemertinib is a medication that is currently in use. 
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(Tagrisso; AstraZeneca) (Figure 1.5), which is the current standard of care for first-line 

treatment; dacomitinib (Vizimpro; Pfizer); afatinib (Gilotrif; Boehringer Ingelheim); erlotinib 

(Tarceva; Genentech); and gefitinib (Iressa; AstraZeneca).25 

Additionally, the use of osimertinib has recently moved to the adjuvant setting for stage 

IB-IIIA NSCLCs that have a sensitizing EGFR mutation.26 Tumors with EGFR mutations do not 

respond to immune checkpoint inhibitors (ICIs) except for the atezolizumab (Tecentriq; 

Genentech) quadruplet regimen.25 

 

1.4.2 EGFR Exon 20 Insertion Mutations 

EGFR exon 20 insertion mutations account for 4% to 10% of all EGFR mutations. 

Patients with EGFR exon 20 mutations have previously had poor results when treated with 

existing EGFR tyrosine kinase inhibitors (TKIs). Amivantamab, a bispecific antibody directed 

against MET receptors and EGFR, was examined in patients who had progressed on or after 

platinum-based treatment. In the phase 1 CHRYSALIS study (NCT02609776), amivantamab 

elicited an ORR of 40% (3.7% were complete responses and 36.3% were partial responses). 

Immature data for median OS and PFS have been shown to be 22.8 months and 8.3 months, 

respectively. 

 

1.4.3 ALK Rearrangements 

ALK fusions are caused by a rearrangement in the ALK gene, which codes for a 

tyrosine kinase, and another gene product, most often EML4. The fusion product is a 

constitutively active kinase that promotes cellular proliferation and survival.20 

Tumors with ALK mutations do not respond to ICIs.20 Current drugs include alectinib 

(Alecensa; Genentech), the standard of care for first-line treatment; brigatinib (Alunbrig: 

Takeda Oncology); ceritinib (Zykadia; Novartis); crizotinib (Xalkori; Pfizer) (Figure 1.5); and 

lorlatinib (Lorbrena; Pfizer). 
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1.4.4 ROS1 Rearrangements 

In terms of molecular function, the ROS1 tyrosine kinase is quite similar to ALK. ROS1 

mutations are more common in people who do not have EGFR mutations, KRAS mutations, or 

ALK gene fusions. The response to ICIs is shortened, with ORRs of just 17%.20 Current drugs 

include crizotinib, a preferred first-line treatment; ceritinib; entrectinib (Rozlytrek; Genentech) 

(Figure 1.5), a preferred first-line treatment; and lorlatinib, which is reserved for second-line 

treatment.20 

 

1.4.5 BRAF V600E Mutations 

BRAF is a serine/threonine kinase in the MAP/ERK kinase pathway. BRAF gene 

mutations are linked to more aggressive tumor histology and a worse prognosis. Patients who 

have BRAF mutations react to ICIs at a rate of 24%.20 Current targeted agents for these 

mutations include dabrafenib (Tafinlar; Novartis) plus trametinib (Mekinist; Novartis), which is 

preferred; or vemurafenib (Zelboraf; Genentech) monotherapy.20 

 

1.4.6 NTRK1/2/3 Gene Fusions 

TRK proteins (TRKA, TRKB, and TRKC) encoded by NTRK genes play a crucial role 

in the cellular development, differentiation, and death of peripheral and central nervous system 

neurons. NTRK fusions occur at a rate ranging from 0.2 to 4% in NSCLC..27,28 It is unknown 

whether there are ethnic-related or social behavior-related predilections for NTRK mutations.29 

Current therapies include larotrectinib (Vitrakvi; Bayer) and entrectinib. 

 

1.4.7 MET exon 14 (METex14) Skipping Mutations 

METex14 skipping mutations are detected in around 3% of NSCLC cases and are 

more common in females, adults 70 years or older, nonsmokers, and patients with pulmonary 

sarcomatoid cancer. METex14 skipping mutations are linked with a poor prognosis, and unlike 

KRAS and BRAF mutations, the response to immunotherapy is shortened to ORRs of 16% to 
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17%. Current guideline-recommended agents include capmatinib (Tabrecta; Novartis) (Figure 

1.5), tepotinib (Tepmetko; EMD Serono), and crizotinib. Additionally, the investigational drug 

savolitinib (AZD6094; AstraZeneca) is a selective MET inhibitor that is being studied.20 

 

1.4.8 RET Rearrangements 

RET rearrangements occur when the RET gene combines with another gene, resulting 

in a fusion RET protein that is overexpressed and promotes cellular proliferation. RET fusions 

are oncogenic drivers in 1% to 2% of NSCLC diagnosis. 

Immunotherapy response is minimal with responses of 6%. The current agents that 

can be used include selpercatinib (Retevmo; Eli Lilly and Company), a preferred treatment; 

pralsetinib (Gavreto; Blueprint Medicines and Genentech), a preferred treatment; and 

cabozantinib and vandetanib (Caprelsa; Sanofi Genzyme).30–33 

 

1.4.9 PD-1/PD-L1 Axis 

ICIs that target PD-1/PD-L1 axis work by reversing tumor-mediated inactivation of T 

cells and improving immune antitumor response. Classwise, PD-1 receptor inhibitors include 

nivolumab (Opdivo;Bristol Myers Squibb), pembrolizumab (Keytruda; Merck), and more 

recently cemiplimab (Libtayo; Regeneron Pharmaceuticals and Sanofi Genzyme), whereas 

atezolizumab and durvalumab (Imfinzi; AstraZeneca) inhibit PD-L1.34 

ICIs are primarily utilized in patients who do not have driver mutations and have almost 

removed the need for chemotherapy alone in the first-line context, except in situations where 

immunotherapy is contraindicated. ICIs are now used in all first-line NSCLC regimens in this 

context. Pembrolizumab, atezolizumab, or cemiplimab can also be treated as monotherapy 

when PD-L1 expression is 50% or higher.34–36 

 

 

1.4.10 HER2 Mutations 
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HER2 (or ERBB2) differs from EGFR (ERBB1) in that it does not have an endogenous 

ligand. It promotes oncogenesis through heterodimerization with other members of the ERBB 

family that then activate various kinase pathways. Despite a rough start with other anti-HER2 

agents, TDM-1 or ado-trastuzumab emtansine and trastuzumab deruxtecan have shown much 

higher ORRs.37–39 

 

1.4.11 KRAS 

KRAS is a G protein with GTPase activity that is involved in the MAP/ERK pathway; 

point mutations in the KRAS gene are prevalent at codon 12. KRAS mutations indicate poor 

survival and nonresponsiveness to EGFR TKIs. Furthermore, KRAS mutations do not appear 

to impact chemotherapeutic effectiveness and, unlike many other driver mutations, appear to 

react to immunotherapy. 

Despite years of research on the subject, attempts at inhibiting KRAS met with failure. 

However, more recently, hope has been restored due to presented data from a phase 2 trial 

(NCT03600883) of sotorasib (Lumakras; Amgen), a TKI that inhibits the KRAS G12C mutation 

by binding to KRAS in its inactive GDP state. The KRAS G12C mutation occurs in 

approximately 13% of patients with NSCLC, and therefore accounts for roughly half of all KRAS 

mutations.40 
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Figure 1.6 The figure depicts the main druggable genetic targets and their 

involvement in the main signaling pathways in NSCLC. 
 

To summarize, targeted treatments and immunotherapies have transformed the 

treatment of NSCLC. The use of molecular and immunological tools and ideas has resulted in 

significant breakthroughs in lung cancer diagnosis. In addition to the epidermal growth factor 

receptor (EGFR), other molecular targets, such as microRNAs, HER3, and immune checkpoint 

inhibitors, are being discovered on a regular basis, spurring the development of new 

therapeutics. Many clinical trials for targeted therapy and immunotherapy drugs are now 

underway, with promising and exciting findings to date. These trials will aid in the definition of 

the role of targeted therapy in the treatment of lung cancer, including the role of immune 

monotherapies, combination immunotherapies, and combinations of targeted therapies with 

immunotherapies, as well as the optimal timing of these therapies and whether they should be 

used in early-stage versus late-stage disease. Targeted therapy may one day shift the 

treatment paradigm for lung cancer, giving patients with few treatment options a hopeful 

outcome. The hunt for predictors of response to targeted medications continues to be an 

important subject in clinical research. The ultimate curative option for NSCLC may lie in our 

ability to couple therapies (either targeted therapies or immunotherapies) with well annotated 

molecular biomarkers. 
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1.5 Non-Small Cell Lung Cancer Screen 

 Although several oncogenic mutational pathways have been characterized (Figure 

1.6), the current number of actionable mutations only account for roughly 20% of the known 

oncogenic genome. NSCLC is a highly heterogeneous disease with a mean non-synonymous 

mutation burden of ~250 mutations/tumor. The heavy mutational burden presents a challenge 

to understanding the molecular drivers that give rise to this disease, thus posing a complex 

challenge for novel therapeutic discovery efforts.  

 
Figure 1.7 Representation of NSCLC cell line clustering via different characterizations. Cell 

lines may be clustered according to similar genomic signatures, such as somatic mutations 

(EML4-ALK fusion), copy number variations, or gene expression (EGFR; treated with 

crizotinib). NSCLC cell lines may also be clustered based on their chemical sensitivities. 

 

 

 In order to address the complex issue of NSCLC drug discovery, our lab participated 

in a large collaborative effort to design a chemistry-driven screen for the nomination of patient-

matched therapeutic interventions. To discover and exploit new vulnerabilities in cancer, 

(including those which may not be classical “driver mutations”)41, it is necessary to: A) identify 

them among the many random changes that occur in a cancer cell; B) have a clinically useful 

biomarker signifying their presence; and C) an agent to specifically target them. Our screen 

took an unbiased approach to this problem (Figure1.7): we first utilized our own natural product 

fraction library to identify a natural product agent that is toxic to a subset of well annotated 

somatic mutations
copy number variation
gene expression
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NSCLC cell lines, but not to immortalized normal human lung epithelial (and other non-cancer) 

cells; secondly, we identify tumor molecular correlates that successfully predict sensitivity to 

the natural product in our preclinical NSCLC models. This creates a novel observation from 

which we can use bioinformatics to study the cellular responses to the toxic agent to generate 

hypotheses for the mechanism of action of the agent.42 

 

 

 

1.5.1 Natural Product Fraction Library Generation 

 
Figure 1.8 General bioactive natural product discovery workflow in the MacMillan Lab. 
 

 

 The MacMillan lab natural product fraction library has been developed through various 

sample collections of unique marine derived Actinomycetes, Firmicutes, and other non-

traditional microbial sources as well as hydrothermal vent associated anaerobic bacteria and 

Actinomycetes. The collected samples then undergo strain isolation that are then cultured in-

house by mimicking the native conditions of the organism. The isolated strains are then 

fermented in large scale liquid fermentation cultures. Following the ideal growth curve for the 

given strain, XAD-7 resin is introduced to collect the excreted bacterial metabolites. The resin 

harboring the bacterial metabolites is then filtered from the fermentation broth and washed with 
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acetone, which releases the metabolites from the resin to produce a liquid suspension of 

natural products. The acetone is then dried down to yield a crude extract that is then subject to 

fractionation via liquid chromatography (Figure 1.8).  Each fraction has been characterized by 

LC-UV-MS and has been logged into our Anti-Base repository. The library currently consists of 

greater than 6,500 natural product fractions from over 3000 different organisms representing 

10 different orders and over 200 genera. The chemical diversity of this library contains 

polyketides, alkaloids, terpenes and hybrid structures of the like. 

 

1.5.2 Panel of Non-Small Cell Lung Cancer Cell Lines 

 
Figure 1.9 Genomic Characterization and Chemical Sensitivities of NSCLC Cell Line Panel. A 
p-values (Pearson) comparing tumors (MDACC, orange; TCGA, purple) and cell lines colored 
by source. B Number of mutations called in the matched (red) and unmatched (blue) subsets. 
C NSCLC sensitivity (ED50) to POPS rank ordered by row. D APC clustering by similarity of 
POPS ED50 responses. Nodes are colored according to cluster membership. E APC clustered 
by similarity of POPS ED50 responses (as in D). Nodes are colored according to cluster 
membership defined by RNA-seq-based APC. F APC clustering across all datasets. Cell lines 
are ordered according to cluster membership in chemical APC. Each cell line is colored 
according to cluster membership in the indicated datasets. Reprinted with permission from 
Elsevier. 
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 Next, in our approach to identifying selective natural product toxins, we employed the 

world’s largest and best-characterized panel of lung cancer cell lines, xenografts, and 

immortalized normal lung epithelial cells established by Dr. John Minna and Dr. Adi Gazdar. 

The phenotypic variation of the NSCLC and immortalized bronchial epithelial cell lines was 

evaluated using legacy whole-genome transcription array data (Figure 1.9 A). Whole-exome 

sequencing (WES), RNA sequencing (RNA-Seq), tiled SNP arrays, reverse phase protein array 

(RPPA), and heavy carbon tracing was employed to provide a high-resolution molecular 

characterization of the cell lines. The panel mutational variation of the cell panel was also 

compared to the B cells of patients and categorized based on whether or not they matched 

(Figure 1.9 B). The chemical sensitivities of the cells, in respect to the screened compounds, 

were ranked by potency and activity (Figure 1.8 C). Cell lines that exhibited similar chemical 

sensitivity profiles were clustered together (Figure 1.8 D) and the clusters were then overlaid 

with their respective gene expression profiles (Figure 1.8 E and F). In summary, our group 

was able to devise a tiered high-throughput screening strategy to screen large chemical 

libraries across several highly annotated NSCLC cell lines.43 The isolation, chemical 

characterization, and biological evaluation of a hit produced by this screen will be discussed in 

Chapter 2. 

 

1.6 Conclusion 

 The establishment and utilization of natural product libraries remain a critical source 

for drug discovery efforts. Coupled with focused high throughput assays and bioinformatics, 

natural products provide an unrivaled path toward generating novel drug-target-disease 

associations. Although these strategies may produce natural products that have been 

previously isolated, they can provide scientists with novel chemical probes to better understand 

the molecular mechanisms that underpin these diseases. The remaining challenges for natural 

product drug discovery lie within our ability to quickly isolate, characterize, and re-supply active 

compounds to researchers investigating the utility of compounds from nature. Developments 
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in analytical techniques, such as microcrystalline electron diffraction, and biosynthetic gene 

cluster (BGC) engineering are poised to help relieve some of the final challenges faced by the 

natural products chemistry field. Nevertheless, natural products continue to push our 

understanding of chemistry and the roles in which it facilitates our everyday lives. 
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1.7 Materials and Methods 

 

1.7.1 General Procedures  

Low-resolution/ESI-MS data were measured using an Agilent 1200 series LC/MS 

system with a reversed phase C18 column (Phenomenex Kinetex C18 Evo, 30 mm X 4.6 mm, 

2.6 µm) at a flow rate of 0.3 mL/min. 

 

1.7.2 Cell Lines 

Most NSCLC lines used in this study were part of the NCI and HCC (Hamon Cancer 

Center at UT Southwestern) series of cell lines, with the exception of THLE-2, THLE-3, A427, 

A549, Calu.1, Calu.6 (American Type Culture Collection; ATCC), Cal.12T (Deutsche 

Sammlung von Mikroorganismen und Zellkulturen GmbH; DSMZ), DFCI.024, DFCI.032 (Dana 

Farber Cancer Institute, courtesy of Pasi Jänne), EKVX, Hop62 (NCI-60 panel), PC9 (Johns 

Hopkins University School of Medicine, courtesy of Bert Vogelstein). Cell lines from these 

collections were cultured in RPMI 1640 (GIBCO, 2.05mM L-glutamine) supplemented with 5% 

FBS (GIBCO) and 1% penicillin/streptomycin (GIBCO). Normal bronchiole epithelia-derived 

cell lines (Ramirez et al., 2004) were grown in ACL4 (RPMI 1640 supplemented with 0.02 

mg/ml insulin, 0.01 mg/ml transferrin, 25 nM sodium selenite, 50 nM hydrocortisone, 10 mM 

HEPES, 1 ng/ml EGF, 0.01 mM ethanolamine, 0.01 mM O-phosphorylethanolamine, 0.1 nM 

triiodothyronine, 2 mg/ml BSA, 0.5 mM sodium pyruvate) with 2% FBS and 1% 

penicillin/streptomycin. Normal liver lines, THLE-2 and THLE-3, were grown in the Bronchial 

Epithelial Cell Growth Medium (Lonza, CC-3170) supplemented with 10% FBS and 1% 

penicillin/streptomycin. All cell lines were maintained in a humidified environment in the 

presence of 5% CO2 at 37°C. All cell lines were were DNA fingerprinted (Powerplex 1.2 Kit, 

Promega) and mycoplasma free (myco kit, Boca Scientific). All chemicals beginning with the 

prefix SW are from the UT Southwestern Chemical Library. THZ1 was obtained from 
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Calbiochem, ciliobrevin from Tocris, GSK923295 from SellekChem, HET-0016 from Santa 

Cruz Biotechnology, nocodazole from Sigma-Aldrich. 

 

1.7.3 Genomic Characterization 

SNP Arrays 

Whole-genome single nucleotide polymorphism (SNP) array profiling was done using 

the Illumina Human1M-Duo DNA Analysis BeadChip (Illumina). Cell line DNA was hybridized 

according to manufacturer instructions. Processing was first performed using Illumina 

BeadStudio to generate the ‘Log R Ratio’ which measures the relative probe intensity 

compared with normal diploid controls. The package DNAcopy in the R statistical software 

environment was then used to segment the data. Final copy number variation was interpreted 

as the log2 segmented copy number values. 

 

RNAseq and Whole Exome Sequencing 

FastQC (Babraham Bioinformatics Institute) was used to check the sequencing quality, 

and high-quality reads were mapped to the human reference genome (hg19) along with the 

gene annotation data (genecode v19) from Genecode database using STAR (v2.4.2). RSeQC 

was applied for assessing RNA sample quality Gene-level expression was reported in 

fragments per kilobase per million reads (FPKM) by Cufflinks. 

 

Illumina BeadChip Microarray 

Raw Illumina HumanWG-6 v3.0 BeadChip files were obtained from the Gene 

Expression Omnibus using accession number GEO: GSE32026 and normalized as described 

previously (Kim et al., 2016). Briefly, Data were background-corrected using the ‘MBCB’ 

package in R, which provides a model-based background correction method similar to an RMA 

correction with affymetrix arrays. Data were then quantile-normalized to produce equivalent 

expression distributions among cell lines. 
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Germline Variant Filtering 

 The UTSW-92 panel of the cell lines corresponded to those in which we have tumor 

DNA but corresponding matched non-tumorigenic DNA is not available. These correspond to 

68 lines from the ‘training set’ of cell lines and 24 lines from the ‘testing set’ of cell lines. For 

these, we developed a pipeline to filter out the most probable germline mutations and enrich 

for somatically acquired mutations. Reads were aligned as described to the hg19 reference 

and filtered for non-synonymous lesions (missense, non-sense, splice site mutations) (mean 

of 5,049 mutations/cell). We next removed any site that was annotated as corresponding to a 

germline mutation in the matched dataset (mean of 1,248 mutations/cell). Using publicly 

available datasets such as the thousand genome project (TGP) as an exclusion criterion or the 

catalog of somatic mutations in cancer (COSMIC) as an inclusion criterion may aid in enriching 

for somatic mutations. We removed variants (defined based on genomic position) that were 

found in > 12% of the TGP (TGP filter) and where the difference in the UTSW panel frequency 

and the TGP frequency was < 1.8% (allele difference filter). We also removed, on a gene-level 

basis, genes that were highly mutated (mutated at any site in > 40% of cell lines) in the UTSW 

panel (mutation any site filter), but present at a low frequency (< 13%) in COSMIC (Cosmic 

filter) and in the UTSW-34 matched panel (< 20%) (UTSW-34 filter). This resulted in a final 

mean mutation count of 718 mutations/cell. We developed a strategy to find a data driven way 

select optimal filter cutoffs from these datasets. We selected 12 evenly distributed values for!

the TGP filter between 0.02% and 20%, for the allele difference filter between −10% and 10%, 

for the mutated any-site filter between 1.8% and 80%, for the Cosmic filter between 0.13% and 

20% (log10 scale), and for the UTSW-34 filter between 2.9% and 50%. Selecting all possible 

combinations of these filters resulted in 248,832 possible combinations. For each filter 

combination, we can plot the number of mutations that pass the filters, with the strictest filter 

combination resulting in the fewest variant being annotated as ‘somatic’ and the most lenient 

resulting in the most variants being included. To select the optimal filter combination in a data-
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driven way, we fit a cubic function to the plot of filter index (x values) versus a number of 

mutations included at each filter index (y-axis) and selected the value on the plot which results 

in the minimized second derivative for each cell line. 

 
1.7.4 Small Molecule Cytotoxicity Assays 

 Our chemical library, consisting of ∼200,000 chemicals (Figures S1B and S1G), was 

initially screened at a single dose (2.5 μM) in a single well for each compound against a panel 

of 12 NSCLC cell lines. Toxicity data were converted to an activity score according to the 

following equation: 

67 = −1	 × (100 −
>

?@ABCD(>!"#$%"&)
× 100)	

 
so that an activity score indicates percent kill relative to on-board DMSO controls. We 

subsequently converted activity scores to z-scores for each chemical across the 12 cell line 

panel and selected chemicals with z ≤ −3 in at least one cell line, resulting in 15,483 chemicals 

(single dose cohort). These chemicals were then re-screened in triplicate against the same 12 

NSCLC cell lines along as well as an immortalized human bronchial epithelial cell line 

(HBEC30KT) at the screening dose of 2.5 μM (confirmation dataset). From this dataset, we 

used two criteria to select chemicals for further follow-up. We first filtered for chemicals with a 

bimodal pattern of response from our panel of cell lines. Specifically, we selected chemicals 

with > 40% toxicity to a subset of cell lines and < 20% toxicity to the remaining NSCLC’s and 

HBEC30KT. As determined in downstream dose-response studies, compounds that met this 

criterion typically displayed IC50’s in the range of our screening dose or lower for a subset of 

the NSCLC lines and IC50 values > 10 μM in the remaining cell lines in the panel and the 

HBEC30KT cell lines. In terms of chemical selectivity, we expect this selection to result in 

compounds with at least a ½ log difference in response between sensitive and resistant cell 

lines. We also used a selection method to capture potent chemicals with more of a continuous 

distribution of cytotoxicity in our 12 cell line panel. For each compound, the responses of the 
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cell lines were ranked from most sensitive to least. The difference (Δn) in response between 

each pair of ranked cell line activities for each compound was calculated. The S-score is the 

maximum difference (Δnmax) between two cell lines’ responses in the ranked list of responses 

to the compound. The two cell line responses that define the S-score, therefore, demarcate a 

boundary between sensitive and resistant response groups in the ranked list of responses for 

each compound. We selected chemicals for follow-up to be those with the S-score > 40%, while 

enforcing the criteria that the chemical not be toxic to HBEC30KT (< 20% observed toxicity). 

These chemicals were subjected to chemistry review that removed compounds with known or 

suspected promiscuous (off-target) behavior based on historical screening data, structural 

alerts, and PAINS substructures. Following resupply (1 – 5 mg of powder per compound) and 

analytical quality control for identity and purity (LC/MS), 447 compounds were assayed in a 

multi-dose format (12 point dose-response curves in ½ log dilutions with the doses ranging 

from 50 pM to 50 μM) against the same panel of 12 NSCLC cell lines plus the HBEC30KT cell 

line. Each compound was assayed twice in this format and the dose-response curves were 

compared. In cases where experimental replicates differed by more than 3-fold, we performed 

a third dose-response experiment and averaged the two experimental replicates that were in 

closest agreement. We used the same unimodal (S-score) method to select a total of 208 

chemicals to be screened across the entire panel of 100 cell lines. In this case, we rank-ordered 

average log10(IC50) values for each compound and applied a threshold of 0.5 log units for the 

S-score. 
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CHAPTER TWO 

ISOLATION AND STRUCTURAL AND BIOLOGICAL CHARACTERIZATION OF 

IKARUGAMYCIN
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Figure 2.1 Natural product fraction prioritization workflow. 

2.1 Analysis of NSCLC Screening Data 

 In Chapter 1, I described a nonbiased screening platform designed to identify selective 

natural product toxins for non-small cell lung cancer (NSCLC).43 As the assay was shown to 

be functional, it was critical to conduct follow-up studies on the identified hits. ‘Hits’ can be 

described to have produced the desired phenotypic expression, cytotoxicity. In this chapter, I 

will describe how we took the phenotypic readout of the assay and prioritized a subset of 

fractions for further investigation (Figure 2.1). 

 

2.1.1 Identification of Subtype-selective Inventions of Non-Small Cell Lung Cancer 

 As part of our efforts in our screening platform designed to identify select toxins for 

non-small cell lung cancer (NSCLC), we carried out a primary screen of synthetic chemicals, 

siRNAs, and natural product fractions against representative members of the NSCLC cell lines. 

The phenotypic readout of our natural product fractions reflected various levels of cytotoxicity 

(Figure 2.2). The representative NSCLC cell lines are displayed along the y-axis and the 

natural product fractions are displayed along the x-axis. Fractions that exhibited toxicity to the 

NSCLC panel are represented by green bars, while the fractions that exhibited no toxicity are 

represented by red bars.  
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Figure 2.2 Phenotypic readout of preliminary NSCLC screen. Natural product fractions are shown across 

the x-axis, while NSCLC cell lines are shown across the y-axis. Green represents cytotoxic readout; red 

represents non-toxic read out. 

 Our traditional screening methods for the identification of chemical toxins utilized 

standard concentrations of 5 or 10 µM. As we set out to find selective toxins, screening the 

natural product fraction library at our standard concentrations presented a unique challenge 

due to the potency of many natural products. As such, we elected to carry out a limited dose-

response for all fractions at 5, 1.8, 0.5, and 0.18 µM. Carrying out the screen in a limited dose-

response allowed us to quickly identify those fractions that were both potent and selective over 

a larger concentration range. In doing so, we were able to prioritize for fractions that exhibited 

the desired cytotoxicity profile (Figure 2.3). For example, we identified fractions 15 and 16 from 

our strain SNB-039 as eliciting a pan-toxic response from our representative NSCLC cell lines. 

Fraction 16 from our strain SNA-096 and fraction 10 from our strain SNA-097 elicited a 

cytotoxicity profile that was selective for one cell line. Although pan-toxic and single-cell 

selective cytotoxicity profiles can be used to identify novel NSCLC toxins, our initial intention 

was to identify cell subtype-selective toxins. Our hypothesis was that by prioritizing for subtype-
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selective toxicity profiles, we would be able to cluster the cell lines that were sensitive to our 

fractions for further genomic interrogation.44 Once the implicated natural product was isolated, 

we would then use the compound as a probe to better understand the genetic make-up that 

underpinned the sensitivity to the probe. As such, we decided to move forward with the 

identification of the bioactive natural product found in fractions 13 and 14 of our strain SNB-

040. 

 
Figure 2.3 Representation of different cytotoxicity profiles observed in preliminary NSCLC screen. 

  

Having set out to find novel NSCLC toxins with the best chance of becoming clinically 

relevant, our preliminary datasets utilized HBEK30KT and HCC366 cells alongside the 

representative NSCLC cell lines. HBEK30KT cells are immortalized lung epithelial cells – in 

other words, normal healthy human lung epithelial cells that are non-cancerous. HCC366 cells 

are NSCLC cells that have expressed a large mutational load and have been identified to 

develop resistance to treatment, such as the acquired resistance to the DDR2 inhibitor 

dasatinib. Including the HBEK30KT cell line in our preliminary screen allowed us to prioritize 

natural product fractions that exhibited discriminative activity NSCLC cell lines and not against 

the HBEC30KT, thus pushing the identified bioactive natural product fraction closer to clinical 

relevancy. Screening against the HCC366 cell lines, and those of its kind, allowed us to further 

prioritize natural product fractions that exhibited selective activity against treatment-resistant 
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SN-B-040-14 0.18 0.7782176
SN-B-040-14 0.55 -2.471442
SN-B-040-14 1.65 -32.13119
SN-B-040-14 5 -98.36646

-4.033056
-51.8351

-96.75926
-97.60531
2.542316
-73.17297
-95.35678
-97.76488

-0.1927159
0.5274042
-75.68996
-97.91486
0.2097621
-5.060146
-48.39421
-97.99749

0.5256748
2.755773
-41.84926
-104.5132
-1.536368
1.929235
-10.0587

-103.2189

-4.902923
-2.260509
-6.955743
-84.05775
-5.723119
-1.010875
-4.460775
-92.66705

7.607141
-29.01083
-79.14972
-96.19886
-12.07146
-58.97765
-67.9071

-95.62001

-1.499639
-31.95313
-66.79073
-84.28791
-10.68327
-48.06662
-52.72481
-90.56113

-3.972666
2.184036
-86.28598
-96.9825

-7.381722
-33.16068
-74.22144
-97.06647

-3.333422
-13.04878
-94.63162
-97.14854
-2.965849
-17.45817
-55.68081
-97.17852

-2.992832
-19.08968
-92.43996
-97.60101
-3.651489
-29.93836
-65.37313
-96.60316

-4.684213
-82.09248
-97.96471
-98.02321
-15.16561
-90.64559
-98.00343
-98.09853

2.376143
-17.94579
-84.54939
-96.39678
-6.804036
-29.08953
-55.38459
-95.13991

-2.984293
-6.038361
-88.61437
-97.7831

-3.200526
-9.226333
-51.45678
-97.43974

3.876281
-2.123724
-71.42303
-97.45573
2.081979
-6.803807
-30.43949
-97.00789

-1.331166
-1.573756
-88.02987
-96.69156

-0.04999578
-7.734667
-29.0525
-97.006

-3.419544
3.923253
-13.91115
-95.03723
-3.186828
0.8307836
-17.2626

-91.91998

0.8173187
2.284116
1.834824
-25.73482
0.7029242
3.508327
2.804104
-46.92305

SNB-040 fractions 13 and 14: selective for a few cell lines

SNB-039  fractions 15 and 16: pan-toxic 

SNA-096  fraction 16 and SNA-097 fraction 10: selective to one cell line

HBEC-
30KT HCC366 H1993 H2009 H2122 HCC15 HCC827 H2073 HCC44 H2887 HCC193 H1819 HCC515 H2347 HCC95 H2250 H1437

HBEC-
30KT HCC366 H1993 H2009 H2122 HCC15 HCC827 H2073 HCC44 H2887 HCC193 H1819 HCC515 H2347 HCC95 H2250 H1437

HBEC-
30KT HCC366 H1993 H2009 H2122 HCC15 HCC827 H2073 HCC44 H2887 HCC193 H1819 HCC515 H2347 HCC95 H2250 H1437

[C]

[C]

[C]
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NSCLC cell lines with the idea that a hit would be able to provide insight into a novel druggable 

target. 

 We identified the natural product fractions SNB-040-13 through SNB-040-17 and SNE-

002-15 through SNE-002-19 as exhibiting selective toxicity profiles against NSCLC cell lines 

and discriminatory non-toxic profiles against HBEC30KT cell lines. Amongst the NSCLC cell 

lines, we were able to identify cell lines that were either sensitive (NPF caused cytotoxicity 

readout) or resistant (NPF did not cause cytotoxicity readout). We utilized representative cell 

lines, HCC366 and Calu-1 (sensitive) and HCC44 and H650 (resistant), to direct our bioassay-

guided isolation of the active metabolite found in the fractions of interest. 

 

2.2 Isolation of the Bioactive Metabolites from SNB-040 and SNE-002 for NSCLC Toxicity 

 
Figure 2.4 Purification schematic for the isolation of bioactive metabolites identified in SNB-040. 

 

Fractions SNB-040-13 through SNB-040-17 are NPFs derived from the marine 

bacterial strain Streptomyces carpaticus. Analysis of the active fractions by LC-UV-MS showed 

a number of metabolites withlmax absorptions at 225nm and 325nm correlating to a mass to 

charge range between 450 and 650 m/z [M+H]. A large-scale regrow (20L) by shake 
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fermentation was carried out to obtain sufficient material for the purification, isolation, and full 

chemical and biological characterization of the active metabolites (Figure 2.4). The crude 

extract was initially purified using reversed-phase (C18) flash columns with step gradients 

(30%-100% MeOH:H2O) to yield 22 fractions. Fractions 12 through 22 were found to possess 

modest to strong selectivity and potency for the representative NSCLC cell lines. Therefore, 

fractions 12 through 22 were pooled together and purified using preparative-scale reversed-

phase HPLC (Phenomenex Kinetex C18 Evo) with a linear gradient (10%-100% ACN:H2O) to 

yield 21 fractions. The resulting fractions were then separated according to their elution times 

and re-collected according to their observed mass to charge ratio via LC-UV-MS analysis. The 

fraction groups (F5-F10, F11-F15, and F16-F20) were then subject to further purification 

utilizing semi-preparative reversed-phase HPLC (Phenomenex Luna C5) with a linear gradient 

(40%-90% ACN:H2O) until pure peaks were isolated. 

Fractions SNE-002-15 through SNE-002-19 are NPFs derived from the marine 

bacterium SNE-002 that was isolated from a sediment sample collected from a hypersaline 

lake at East Plana Cay, Bahamas. Bacterial spores were collected via stepwise centrifugation 

and isolated on a humic acid media. Analysis of 16S rRNA revealed 99% identity to 

Streptomyces xlamenemycin. Analysis of the active fractions by LC-UV-MS showed a number 

of metabolites with ëmax absorptions at 225nm and 325nm correlating to a mass to charge range 

between 450 and 650 m/z [M+H]. A large-scale regrow (20L) by shake fermentation was carried 

out to obtain sufficient material for the purification, isolation, and full chemical and biological 

characterization of the active metabolites. The excreted metabolites were collected using XAD-

7 resin and the resulting crude extract was initially purified using reversed-phase (C18) flash 

columns with step gradients (30%-100% MeOH:H2O) to yield 22 fractions. Fractions found to 

possess modest to strong selectivity and potency for the representative NSCLC cell lines were 

pooled together and purified using preparative-scale reversed-phase HPLC (Phenomenex 

Kinetex C18 Evo) with a linear gradient (10%-100% ACN:H2O) to yield 21 fractions. The 

resulting fractions were then separated according to their elution times and re-collected 
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according to their observed mass to charge ratio via LC-UV-MS analysis. The fraction groups 

were then subject to further purification utilizing semi-preparative reversed-phase HPLC 

(Phenomenex Luna C5) with a linear gradient (40%-90% ACN:H2O) until pure peaks were 

isolated, following the same purification schematic laid out in Figure 2.4. 

2.2.1 Ikarugamycin 

High-resolution mass spectrometry analysis determined an m/z [M+H] of 479.2908 

corresponding to a molecular formula of C29H38N2O4 (calculated m/z 479.2910) and accounting 

for 12 degrees of unsaturation. Using 1- and 2-D 1H NMR techniques the natural product was 

successfully characterized as ikarugamycin, a polycyclic tetramate macrolactam (PTM) 

(Figure 2.5, Table 2.1), and confirmed by comparing data to that found in the literature. 

Originally isolated as an antibiotic45, ikarugamycin was recently identified as a promising lead 

for anticancer therapeutics but has not been characterized for cytotoxicity against NSCLC cell 

lines. Other PTMs such as discodermide,46,47 ikarugamycin oxide,48,49 cylindramide50 have also 

been reported to have anticancer activities against various cancer cells. 

 
Figure 2.5 Structure of ikarugamycin, a microbial natural product. 

 

Table 2.1 1H (800 MHz) and 13C (800 MHz) spectroscopic data of 1.	

Position FH, Mult (J in Hz) FC, 
Mult Position 	

FH, Mult (J in Hz) 
FC, 
Mult 

1 0.98, t (7.0) 13.28 17 3.95, br s 61.32 

2 1.41, m; 1.51, m 21.63 NH-18 6.15, br s - 

3 1.62, m 47.72 19 - 173.98 
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4 1.42, m 46.97 20 - 100.38 

5 5.99, d (10.0) 131.59 21 - 195.81 

6 5.74, dt 128.07 22 - 175.51 

7 2.56, m 42.92 23 7.19, d (15.4) 122.18 

8 1.20, m 48.3 24 6.83, dd (15.4, 10.6) 152.86 

9 2.44, d (10.6); 3.52, m 25.33 25 2.57, m 49.51 

10 6.11, td 141.13 26 1.29, m; 2.18, m 36.71 

11 5.87, d (10.6) 123.98 27 2.12, m 41.76 

12 - 166.31 28 1.62, m 48.6 

NH-13 5.92, br s - 29 0.74, ddd (12.0, 12.0, 6.8); 2.14, m 38.46 

14 2.68, s; 3.74, br s 38.87 30 2.31, ddd (7.6, 7.6, 7.6) 33.05 

15 1.29, m; 1.63, m 21.1 31 0.92, d (7.2) 17.71 

16 1.87, m; 2.07, m 27.67    

Measured in CDCl3. F values given in ppm. 

 

2.2.2 Capsimycin D 

 A chloride-containing ikarugamycin (1) analog was isolated from S. carpaticus and 

became a high priority target due to the relatively low number of published halogenated PTMs. 

With an ionized molecular peak at m/z 531.26, compound 2 showed an isotopic peak at m/z 

533.26 with a high relative intensity of 3:1 in the LC-MS spectrum; indicating a halogenated 

substituent compound. The molecular formula for 2 was determined as C29H39ClN2O5 and 

confirmed by comparing the HR-MS data found in the literature. The structural characterization 

of 2 was determined by extensive NMR data analysis and confirmed with NMR data found in 

the literature (Figure 2.6, Table 2.2). Although capsimycin D is a recently known compound51, 

it has not been characterized for cytotoxicity against a panel of NSCLC cell lines. 
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Figure 2.6 Structure of ikarugamycin analog, capsimycin D. 

 

Table 2.2 1H (800 MHz) and 13C (800 MHz) spectroscopic data of 2. 
Positio

n FH, Mult (J in Hz) FC, 
Mult Position FH, Mult  

(J in Hz) FC, Mult 

1 0.94, t (7.3) 12.8 17 3.88, dd (5.5, 2.1) 61.6 

2 1.35, m 21.2 NH-18 -  

3 1.76, d (3.3) 44.7 19  173.65 

4 1.77, m 47 20  100.8 

5 3.13, dd (3.8, 2.0) 57.7 21  197.1 

6 2.89, d (3.8) 53.5 22  175.6 

7 2.07, m 47.3 23 7.13, d (15.4) 122.18 

8 2.14, m 45.6 24 6.83, dd (15.4, 10.6) 153 

9 2.53, dd (17.3, 3.0); 3.38, m 26.4 25 2.57, m 49.51 

10 6.06, ddd (11.5, 11.5, 3.4) 141.6 26 1.29, m; 2.13, m 35.6 

11 5.84, dd (11.5, 1.3) 123.7 27 2.07 m 42.6 

12  167.2 28 1.61, m 41.1 

NH-13 -  29 
0.75, ddd (12.0, 12.0, 6.8); 

2.19, d (7.6) 
38.6 

14 
2.65, br t (11.2); 3.55, ddd 

(11.2, 4.9, 3.0) 
39 30 2.21, m 32.6 

15 1.29, m; 1.63, m 21.1 31 0.92, d (6.8) 17.71 

16 1.18m, 2.05 m 27.5    

Measured in DMSO-d6. F values given in ppm. 
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An ikarugamycin (1) analog was isolated from S. carpaticus and became a priority for 

isolation due to its’ unique mass, an ionized molecular peak at m/z 495.28 (calculated 

495.2859). The molecular formula for 3 was determined as C29H39N2O5 and confirmed by 

comparing the HR-MS data found in the literature. The structural characterization of 3 was 

determined by extensive NMR data analysis and confirmed with NMR data found in the 

literature (Figure 2.7, Table 2.3). Although capsimycin B is a recently known compound51, it 

has not been characterized for cytotoxicity against a panel of NSCLC cell lines. 

 

 
Figure 2.7 Structure of ikarugamycin analog, capsimycin B. 

 
 

Table 2.3 1H (800 MHz) and 13C (800 MHz) spectroscopic data of 3.	

Position FH, Mult (J in Hz) FC, 
Mult Position 	

FH, Mult (J in Hz) 
FC, 
Mult 

1 0.98, t (7.0) 13.28 17 3.95, br s 61.32 

2 1.41, m; 1.51, m 21.63 NH-18 6.15, br s - 

3 1.62, m 47.72 19 - 173.98 

4 1.42, m 46.97 20 - 100.38 

5 5.99, d (10.0) 131.59 21 - 195.86 

6 5.74, dt 128.07 22 - 175.51 

7 2.56, m 42.92 23 7.11, d (15.4) 122.68 

8 1.20, m 48.3 24 6.73, dd (15.4, 10.6) 151.86 

9 2.44, d (10.6); 3.52, m 25.33 25 2.57, m 49.51 

10 6.06, td 140.33 26 1.29, m; 2.18, m 36.71 

11 5.79, d (10.6) 124.18 27 2.12, m 41.76 

12 - 166.31 28 1.62, m 48.6 
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NH-13 5.92, br s - 29 0.74, ddd (12.0, 12.0, 6.8); 2.14, m 38.46 

14 2.68, s; 3.74, br s 38.87 30 2.31, ddd (7.6, 7.6, 7.6) 33.05 

15 1.29, m; 1.63, m 21.1 31 0.92, d (7.2) 17.71 

16 1.87, m; 2.07, m 27.67    

Measured in CDCl3/CD3OD. F values given in ppm. 

2.2.4 Capsimycin F 

Capsimycin F (4) was obtained as white amorphous solid with UV-Vis absorptions lmax 

327 and 223 nm (Figure 2.8). Its positive ion HRESIMS revealed a pseudomolecular ion peak 

at m/z 527.3108 [M+H]+, corresponding to a molecular formula of C30H42N2O6 (calcd for 

C30H43N2O6 527.3121). Its 1H NMR signals in CD3OD exhibited four downfield signals at δH 

6.07 (td, 11.3, 3.8 Hz), 5.85 (d, 11.5 Hz), and 7.40 (d, 15.4Hz), 6.76 (dd, 15.4, 10.3Hz), 

suggesting the existence of one Z- and one E- double bonds (Table 2.4). The analysis of 13C 

and HSQC NMR spectra concluded 30 carbon signals, including one methoxyl, two methyls, 

seven methylenes, 15 methines (including three hetero substituted carbons and four olefinic 

carbons), and five downfield shifted quaternary carbons including one amide carbon at δC 167.9 

and characteristic tetramic acid signals at δC 175.9, 101.1, 197.2 and 173.0 (Table 2.4).  

 
Figure 2.8 Structure of ikarugamycin analog, capsimycin F. 

Table 2.4 1H (600 MHz) and 13C (100 MHz) spectroscopic data of 4.	

Position FH, Mult (J in Hz) FC, 
Mult Position 	

FH, Mult (J in Hz) 
FC, 
Mult 

1 0.96 (t, J = 7.3) 
12.6 

17 3.86, s 61.9 

2 
1.39 m 21.7 
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3 
1.75 m 42.9 

19 - 
175.9 

4 
1.48 m 46.7 

20 - 
101.1 

5 
3.40 m 81.5 

21 - 
197.2 

6 
4.09 m 67.8 

22 - 
173.0 

7 
2.03 m 47.9 

23 
7.40 (d, J = 15.4) 122.4 

8 
2.03 m 44.8 

24 
6.76 (dd, J = 15.4, 10.3) 152.3 

9 
3.49 m, 2.47 m 26.7 

25 
2.38 m 50.3 

10 
6.07 (td, J = 11.3, 3.8) 141.7 

26 
2.08 m, 1.25 m 35.3 

11 
5.85 (d, J = 11.5) 123.7 

27 
1.55 m 42.0 

12 - 
167.9 

28 
2.02 m 42.0 

NH-13 - - 29 
2.16 m, 0.67 m 39.3 

14 
3.45 m, 2.67 (t, J = 10.9) 39.0 

30 
2.17 m 32.8 

15 
2.01 m, 1.97 m 21.0 

31 
0.90 (d, J = 6.4) 17.0 

16 
2.01 m, 1.87 m 27.4 

32  
58.0 

Measured in CD3OD. F values given in ppm. 

 

 
Figure 2.9 Key COSY and HMBC correlations of 4. 

 

In the COSY spectrum, the signals for spin systems CH3-CH2-CH(CH-CH3)-CH-CH-

CH-CH (CH3-1 through H2-2, H-3, H-4, H-5, H-6 to H-7 and from H-3 through H-4 to CH3-5), 

CH2-CH-CH (from H2-29 through H-28 to H-27), and CH-CH-CH2-CH-CH-(CH2)-CH-CH (from 

H-11 through H-10, H2-9, H-8, H-25 and H-24 to H-23, and from H-25 to H2-26) were clearly 

observed. Due to the close overlapping of some proton signals, the connectivity of the above 

three spin systems were built up based on the interpretation of its HMBC spectrum. The long-

range correlations from H-29 to C-30, C-31, C-3 and C-4 as well as from H-28 to C-4 indicated 

rings A and B were fused at C-4 and C-28. Meanwhile, the relationship of ring B and C was 
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suggested by the observation of correlations from H-6 and H-27 to C-8, from H-7 and H2-26 to 

C-28, from H-9 and H2-26 to C-7. One methoxyl group was assigned at C-5 (δc 81.5) due to 

the observation of HMBC correlation from OCH3 (δH 3.43) to C-5. Therefore, the molecule was 

determined to have a 5,6,5 tricyclic ring segment. The COSY correlations established the spin 

system CH2-CH2-CH2-CH (from H2-14 through H2-15 and H2-16 to H-17), which was proved to 

be connected with α, β unsaturated amide by the HMBC signals from H-10, H-11 and H2-14 to 

C-12 (δc 167.8). The carbon chemical shifts of tetramic acid (δc 176.4, 100.4, 194.0, 174.4) 

were ascribed to C-19, C-20, C-21 and C-22 based on the HMBC correlations from H-23, H-

24 to C-22, from H-23 to C-20 as well as from H-17 to carbonyl C-19 and C-21.  Therefore, the 

planar structure of 4 was established to be a 5,6,5 tricyclic tetramic acid amide (Figure 2.9), 

an analog of ikarugamycin (1).  

 
Figure 2.10 Key NOESY correlations of 4. 

The stereochemistry of 4 was established on the NOESY correlations. The correlations 

from H-4 to CH3-1, H-5 and H-29β, from H-5 to H-7, and from H-29β to H-27 suggested H-4, 

H-5, H-7, H-27 in ring A and B adapted β orientation. Meanwhile, the NOESY correlations from 

H-25 to H-26β revealed the β orientation of H-25. (Figure 2.10). The observed NOESY signals 

from H-28 to H-29α, H-6, and H-3, from H-3 to H-30, from H-8 to H-6, H-24 and 26α, and from 

H-26α to H-24 demonstrated H-3, H-6, H-8, H-28, H-30 were α orientation as depicted in Figure 

2.10. Since all natural occurring PTMs are having L-ornithine incorporated in the molecule, 
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given the biogenetic consideration, H-17 was considered to being β orientation. Therefore, the 

molecular structure of 4 was as shown in Figure 2.8. 

 

2.2.5 Capsimycin C 

Capsimycin C (5) was isolated as a white amorphous solid. Its positive ion HRESIMS 

revealed a pseudomolecular ion peak at m/z 513.2960 [M+H]+, corresponding to a molecular 

formula of C29H40N2O6 (calc’d for C29H41N2O6, 513.2965) with UV-Vis absorptions λmax 326 and 

222 nm. The similarity of its 13C NMR spectrum and 4 suggested it an analog of 4. The only 

difference lies in the change of the chemical shifts at C-5 and C-6 in addition to the absence of 

the methoxyl carbon signal. The above information and its molecular formula hinted a hydroxyl 

instead of a methoxyl group was substituted at C-5. Its planar structure was further confirmed 

by the COSY and HMBC spectra. The NOESY spectrum of 5 displayed similar correlations as 

4, establishing the α orientation of H-3, H-8, H-28, H-30 and the β orientation of H-4, H-7, H-

25 and H-27. H-5 was concluded to be α orientation due to its correlations with H-4 and CH3-

1, while the α orientation of H-6 was deduced from its correlation with H-8, H-28 and H-9α. 

Derived from same precursor as 4, H-17 of capsimycin F was also believed to adapt β 

orientation. Therefore, the structure of 5 was determined as depicted in Figure 2.11 (Table 

2.5).  

 

 
Figure 2.11 Structure of ikarugamycin analog, capsimycin C. 
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Table 2.5 1H (600 MHz) and 13C (100 MHz) spectroscopic data of 5.	

Position FH, Mult (J in Hz) FC, 
Mult Position 	

FH, Mult (J in Hz) 
FC, 
Mult 

1 0.96 (t, J = 7.3) 12.4 17 3.85, m 61.7 

2 1.36 m 21.7 NH-18 - - 

3 1.78 m 42.9 19 - 
175.9 

4 1.44 m 45.5 20 - 
101.1 

5 3.85 m 71.6 21 - 
197.3 

6 3.87 m 73.3 22 - 
173.0 

7 1.99 m 47.9 23 7.13 (d, J = 15.4) 122.4 

8 2.08 m 44.5 24 6.79 (dd, J = 15.4, 10.3) 152.3 

9 3.47 m, 2.53 m 26.8 25 2.39 m 50.2 

10 6.09 (td, J =1 1.3, 3.9) 142.0 26 2.16 m, 1.23 m 35.8 

11 5.84 (d, J =11.3) 123.5 27 2.02 m 42.7 

12 - 168.0 28 1.60 m 41.2 

NH-13 - - 29 2.18 m, 0.70 m 39.3 

14 3.41 m, 2.67 m 39.0 30 2.21 m 33.1 

15 1.48 m, 1.19 m 21.1 31 0.91 (d, J=6.6) 17.0 

16 1.99 m, 1.86 m 27.4   
 

Measured in CD3OD. F values given in ppm. 
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2.2.6 Xlamenemycin C & SS8201 D 

Xlamenemycin C (6) was obtained as a white amorphous solid with UV-Vis absorptions 

λmax 251 and 324 nm. Its positive HRESIMS revealed a pseudomolecular ion peak at m/z: 

575.2532 [M-H]-, corresponding to a molecular formula of C30H40ClN2O7, (calc’d for 

C30H39ClN2O7 575.2524). The UV spectrum and the similarity of 13C NMR data of 6 with 4 and 

5 indicated it was another ikarugamycin analog.  

 
Figure 2.12 Structure of ikarugamycin analog, xlamenemycin C. 

The 5,6,5 tricyclic ring skeleton of 6 was able to be identified and connected with a spin 

system (from H2-14, H2-15 and H-16 to H-17) through an amide functionality by the analysis of 

COSY and HMBC signals. However, chemical shift of H-16 at 3.97 ppm ascribed it an  

oxygenated methine. Furthermore, we saw one methoxyl group showing strong HMBC 

correlation to C-2 (δC 77.5). The above functionalities of 6 resembled with another PTM 

SS8201D (7) (Figure 2.13, Table 2.7).10 The carbon chemical shift difference at C-5 and C-6 

(shift from 58.7 and 54.6 to 65.0 and 73.4) and the molecular formula C30H39ClN2O7 ascribed 

Cl and OH at C-5 and C-6, respectively. The planar structure of 6 was further confirmed by the 

analysis of 2D spectra.   

The stereochemistry of 6 was established on the analysis of NOESY spectra. The 

correlations from H-28 to H-6, H-26β, H-30 and H-29β set up their same orientation as 

corresponding protons in 7. Meanwhile, clear signals arisen from the correlations between CH3-

1, H-4 and H-5 assigned α orientation of H-5, H-4 and CH3-1. β-hydroxyl L-ornithine has been 
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reported to be incorporated in several PTMs such as alteramide A, cylindramide and 

clifednamide B. Using the same strategy for determining the stereochemistry at H-17 of 

clifednamide B,11 we calculated the dihedral angles of H-16-C16-C17-H17 as 87° (J < 0.5 Hz) 

of β orientation versus 20° (J > 7 Hz) of α orientation of H-17 (Chem3D-Ultra 12.0, MM2). The 

fact of the broad singlet at H-17 indicated the β orientation of the OH group. Therefore, the 

structure of xlamenemycin C is as shown in Figure 2.12 (Table 2.6). 

 
Figure 2.13 Structure of ikarugamycin analog, SS8201 D. 

 

Table 2.6 1H (600 MHz) and 13C (100 MHz) spectroscopic data of 6.	

Position FH, Mult (J in Hz) FC, 
Mult Position 	

FH, Mult (J in Hz) 
FC, 
Mult 

1 1.21 (d, J=6.2) 17.4 17 3.99, m 68.6 

2 3.49 m 77.5 NH-18 - - 

3 2.14 m 47.0 19 - 176.4 

4 2.05 m 44.2 20 - 100.4 

5 4.32 (t, J=2.9) 65.0 21 - 194.0 

6 4.11 s 73.4 22 - 174.4 

7 2.10 m 47.3 23 7.09 (d, J=15.4) 122.4 

8 2.15 m 45.9 24 6.79 (dd, J=15.4, 10.3) 151.9 

9 3.63 m, 2.41 m 26.0 25 2.36 m 49.9 

10 6.09 (td, J = 11.2, 2.9) 140.8 26 2.10 m, 1.31 m 35.4 

11 5.84 (d, J = 11.7) 123.2 27 2.05 m 41.3 

12 - 167.8 28 2.09 m 42.2 

NH-13 - - 29 2.10 m; 0.79 (dd, J=20.6, 11.3) 39.5 

14 3.44 m, 2.83 (t, J = 11.8) 37.2 30 2.24 m 34.1 

1 3
4

5 6
7 8

9

10

11 12 14

15
16

17

1920

21

2223

24
25

26
2728

2930
31

H

H

H
N

O

NH

O
O

HOH

7

O
H

32 O OH



  42 

15 1.53 m, 1.40 m 31.4 31 1.04 (d, J=7.1) 16.5 

16 3.97 m 71.5 32 3.31 s (overlap) 54.5 

Measured in CD3OD. F values given in ppm. 

 

Table 2.7 1H (600 MHz) and 13C (100 MHz) spectroscopic data of 7.	

Position FH, Mult (J in Hz) FC, 
Mult Position 	

FH, Mult (J in Hz) 
FC, 
Mult 

1 1.30 (d, J = 6.2) 17.2 17 3.74, m 66.4 

2 3.43 m 78.1 NH-18 - - 

3 1.96 (dd, J = 20.7, 9.9) 50.4 19 - 178.3 

4 0.96 m 47.5 20 - 102.5 

5 3.31 m (overlap) 58.7 21 - 194.7 

6 2.98 (d, J = 3.9) 54.6 22 - 184.5 

7 2.38 m 40.3 23 7.40 (d, J = 15.4) 131.6 

8 1.64 m 46.6 24 6.32 (dd, J = 15.3, 9.6) 143.0 

9 3.57 m, 2,36 m 25.8 25 2.34 m 47.4 

10 6.14 (td, J = 11.3, 2.4) 140.1 26 2.08 m, 1.18 m 37.6 

11 5.90 (d, J = 11.6) 124.1 27 1.72 m 41.6 

12 - 167.9 28 1.22 m, 47.5 

NH-13 - - 29 2.06 m, 0.68 (dd, J = 20.8, 11.9) 39.5 

14 3.55 m, 2.84 (t, J = 12.3) 36.7 30 2.36 m 34.2 

15 1.64 m, 1.36 m 31.3 31 1.01 (d, J = 7.1) 16.8 

16 3.94 m 71.7 32 3.35 s 54.6 

Measured in CD3OD. F values given in ppm. 

2.2.7 Capsimycin E 

 

Figure 2.14 Structure of Ikarugamycin analog, capsimycin E. 
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Table 2.8 1H (800 MHz) and 13C (800 MHz) spectroscopic data of 8.	

Position FH, Mult (J in Hz) FC, 
Mult Position 	

FH, Mult (J in Hz) 
FC, 
Mult 

1 1.22 (d, J = 6.2) 17.8 17 3.82, br d (4.0) 62.8 

2 3.40 m 79.1 NH-18 - - 

3 2.05 m 46.1 19 - 176.3 

4 1.68 dd (11.2, 2.5) 44.5 20 - 102.3 

5 3.44 m (overlap) 83.1 21 - 197.8 

6 4.1 br 68.7 22 - 174.5 

7 2.02 m 49.3 23 7.23 (d, J = 15.4) 124.6 

8 2.01 m 45.9 24 6.71 (dd, J = 15.3, 9.6) 152.9 

9 2.46d (15.4), 3.48 m 27.4 25 2.34 m 49.4 

10 6.1 (td, J = 11.3, 3.5) 142.6 26 2.08 m, 1.25 m 36.6 

11 5.85 (d, J = 11.4) 124.5 27 1.92 m 42.6 

12 - 168.9 28 1.54 m 43.1 

NH-13 - - 29 2.04 m, 0.68 m 40.5 

14 2.64 br t (11.1), 3.40 m 38.9 30 2.16 m 34.8 

15 1.16 m, 1.52 m 22.3 31 1.01 (d, J = 7.1) 17.8 

16 1.82 m, 1.98 m 28.3 32/33 3.29 s, 3.41 s 
55.6, 

58.4 

 

2.3 Biological Characterization of Ikarugamycin 

 The original isolation of ikarugamycin (1) in 1972 keenly identified it as a toxin against 

the protozoa tertrahymena pyriformis, exhibiting an excellent potency of 1.0 µg/mL.45 However, 

ikarugamycin quickly lost clinical relevance due to the group reporting intraperitoneal and 

intravenous LD50 values of 6 mg/kg and 2 mg/kg, respectively, in mice. Ikarugamycin has also 

been reported to be cytotoxic (IC50 21.3 nM) in HL-60 leukemia cells by inducing apoptosis.52 

Posecu et al. confirmed apoptotic cell death by immunoblotting to observe the cleavage of 

caspase-9, -8, and -3. Although the group did not directly identify a molecular target of 1, they 

presented evidence that ikarugamycin induces DNA damage, increased intracellular, and 

activates p38 MAP kinase52 – providing key insights to the mechanism of action. The initial 

biological characterizations of ikarugamycin, in the context of protozoa and HL-60 cells, 

coupled with our NSCLC screening results allowed us to formulate a sound hypothesis for the 
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thorough characterization of 1 and how its structure gives rise to the selective toxicity observed 

in the context of NSCLC. 

 

2.3.1 Cytotoxicity of Ikarugamycin  

 
Figure 2.15 A. Volcano plot of ikarugamycin (2.5) against 40 NSCLC cell lines and 2 HBEC cell lines. B. 

Overlayed cell viability plots of ikarugamycin against a representative set of NSCLC cell lines. Both plots 

illuminate the selective toxicity trend of 2.5 and its ability to discriminate against sensitive and resistant 

cell lines. Determined by Celltiter GloTM in triplicate. 

 

 Screening 2.5 against a panel of 40 NSCLC and 2 HBEC cell lines allowed us to 

observe a stark cellular subtype-selective cytotoxicity pattern. This is best visualized by the 

volcano plot (Figure 2.15 A) where the experimental IC50 values are observed to have a clear 

cut-off for certain NSCLC and HBEC cell lines at the 10 µM region. We characterized those 

cells with IC50 values at, or above, 10 µM as being resistant to toxin 1. The overlayed cell 

viability plots (Figure 2.15 B) confirmed the trends observed in the volcano plot and allowed 

us to categorize the NSCLC cell lines that exhibited an IC50 value below 2 ìM as sensitive cell 

lines; those with an IC50 value between 2 µM and 10 µM were categorized with ‘intermediate’ 

sensitivity. Parsing out the cells that are sensitive to 1 allows for us to interrogate what 

biological mechanisms, or lack thereof, illicit the sensitivity. Identifying the biological make-up 

of ikarugamycin sensitivity could prove to be critical for achieving patient-matched NSCLC 

interventions down the road. 
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Figure 2.16 IC50 curve of representative NSCLC cell lines against ikarugamycin (1). 

 
 We decided to develop a focused group of NSCLC cell lines that would be 

representative of those that we identified as resistant, intermediate, and sensitive to 

ikarugamycin treatment. The more focused screen resulted in a shift in our categorial 

parameters. We moved towards the use of resistant cell lines HCC44 and A549 which revealed 

ikarugamycin to possess a half maximal inhibitory concentration (IC50) of 4.5 µM and 5.0 µM, 

respectively. We utilized the sensitive cell lines Calu-1 and HCC366 which identified 

ikarugamycin to illicit an IC50 of 0.36 µM and 0.39 µM, respectively (Figure 2.16). 

 

2.3.2 Cytotoxicity of Ikarugamycin Analogs 

 In order to probe the structure-activity-relationship (SAR) of ikarugamycin, we sought 

out to isolate any naturally occurring analogs. We hypothesized that the isolated analogs would 

provide enough structural diversity to direct a more focused semi-synthetic derivatization in our 

quest to characterize the minimum pharmacophore of ikarugamycin. The culmination of our 

ikarugamycin analog isolation efforts is listed in Table 2.9 and the associated compounds are 

structurally characterized in chapter 2.2. Compounds 8 through 11 were not structurally 

characterized as part of this thesis, but their structures can be found in Figure 2.17.  

Table 2.9 Anticancer activity of PTMs against representative NSCLC cells.	

Compound HCC366	
(µM) 

HCC44	
(µM) 

H650 
(µM) 

Calu-1	
(µM) 

HCC4017 
(µM) 
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1 0.12 8.25 >24 0.09 0.47 

2 >24 >24 >24 >24 - 

3 >24 >24 >24 >24 3.8 

4 >24 >24 >24 >24 >24 

5 >24 >24 >24 >24 >24 

6 - >24 - - 14.0 

7 - 10.1 - - 6.8 

8 >24 >24 >24 >24 - 

9 >24 >24 >24 >24 - 

10 10.2 >24 >24 >24 - 

11 0.17 3.2 >24 0.007 - 

 

 

Figure 2.17 Collection of PTMs screened against NSCLC. 
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2.4 Semi-Synthetic Derivatization 

 Upon analysis of the PTMs isolated from SNB-040 and SNE-002, we concluded that 

the preservation of the alkene embedded within the 5-6-5 tricyclic system was critical to the 

biological activity of Ikarugamycin (1). Bearing that in mind, we sought to selectively derivatize 

1 near commonly known reactive functionality such as the tetramic acid and the conjugated 

(N,O-Unsaturated) carbonyls while preserving the alkene embedded within the 5-6-5 tricyclic 

system. Those efforts are described below. 

 

2.4.1 Selective Reduction of Conjugated (N,O-Unsaturated) Carbonyls 

 We prioritized the reduction of the N,O-unsaturated carbonyls in an effort to explicitly 

rule out any potential for the non-conjugated alkene to be implicated as the main 

pharmacophore. The methodology that we initially implemented utilized sodium borohydride in 

acetic acid for the deoxygenation of our  N,O-unsaturated carbonyls.53 The reaction was carried 

out in open air for 1 hour with 4 eq of NaBH4, 2 eq of Acetic Acid, and 2.5 mol% of Palladium 

on carbon (Scheme 2.1).  

 

Scheme 2.1 Reaction conditions for the selective reduction of N,O-unsaturated carbonyls in 1. 

The reaction did not yield the expected results, but I observed a small amount of 

starting material (1) remaining in solution. Given that I did not allow the reaction to resume for 

very long, I questioned whether 1 was going into solution. The original isolation paper for 1 

highlights the lack of solubility across traditional organic solvents, thus presenting a challenge 
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for the given methodology. Having run several 1H NMR experiments on 1 utilizing CDCl3, I 

decided to substitute toluene with chloroform and implement a fresh batch of Pd/C (Scheme 

2.2). According to LCMS signatures, I observed several reduction events along with a major 

amount of remaining starting material. I decided to set Scheme 2.2 up again, but with a longer 

reaction time of 3 hours. This resulted in a cleaner conversion of 1 to a reaction product 

correlated with pseudo-mass signatures of 489 [M+H]+ and 487 [M-H]-. I was unable to isolate 

enough material from this small-scale reaction to characterize via 1H NMR, therefore the 

proposed structure found in Scheme 2.2 was from the observed mass signatures and the 

reactivity of NaBH4 described in the literature.53 

 

 

Scheme 2.2 Altered reaction conditions of Scheme 2.1. 

 I later attempted to utilize the conjugated nature of the N,O-unsaturated carbonyls for 

selective reduction via a dissolving metal reduction. I decided to utilize the Birch reduction 

methodology54 (Scheme 2.3) with the understanding that the delocalized P-system would 

selectively engage with the desired N,O-unsaturated carbonyls, as well as providing low-

temperature reaction conditions that would help with the degradation of 1. After allowing the 

reaction to run for one hour, I only observed starting material. This would indicate that I was 

unable to appropriately react lithium with liquid ammonia, therefore stunting the production of 

the unpaired electron required to initiate the reduction. 
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Scheme 2.3 Reaction conditions for the Birch reduction employed on 1. 

 

2.4.2 Epoxidation of Ikarugamycin (1) 

 The cytotoxicity screening of 3 resulted in decreased activity against the representative 

NSCLC cell panel, but exhibited more bioactivity than the less rigid analogs of ikarugamycin. 

With this in mind, we decided to explore several epoxidation methodologies to gain a better 

insight of the tolerable functionality. Addition of 2 equivalents of mCPBA to 1 suspended in 

CHCl3 over 48 hours (Scheme 2.4) yielded predominant pseudo-mass signatures of 527 

[M+H]+ and 525 [M-H]- that correspond to triple expoditation event. An aliquot taken after 24 

hours revealed a predominant pseudo-mass signature of 504 [M-H]- which corresponds to a 

unknown reaction intermediate. Isolation and purification of the 526 m/z species proved to be 

difficult due to its’ lack of UV absoption and therefore was never fully characterized via 1H NMR. 

 

Scheme 2.4 Epoxidation of 1 utilizing mCPBA. 

 

 We next attempted to perform an epoxidation on the N,O-unsaturated carbonyls by 

implementing Juliá-Colonna (Scheme 2.5) epoxidation conditions.55,56 The idea was to 

preserve the non-conjugated alkene embedded within the 5-6-5 tricycle ring system while 
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epoxidating the electron deficient olefins found in the N,O-unsaturated carbonyls. However, the 

reaction did not yield the desired products and the starting material was observed to have been 

consumed by the reactants. 

 

 

Scheme 2.5 General reaction conditions for the Juliá-Colonna epoxidation of 1. 

  

 Lastly, we decided to attempt a synthetic derivitization of one of the isolated analogs, 

compound 3. The addition of 1.2 equivalents of triphenylphosphine and 1.2 equivalents of NBS 

to compound 3 suspended in 1% aqueous ACN yielded interesting results (Scheme 2.6). The 

expected outcome of a bromo-hydroxyl functionalization following the opening of the epoxide 

ring was not achieved based on the lack of brominated mass signatures. I did, however, 

observe a pseudo-mass signature of 559 [M+H]+ and no remaining mass signatures of the 

starting material. The 559 m/z corresponds to an isomer of the compound 8, which has the 

addition of two methoxy groups and one hydroxl group. 

 

 

Scheme 2.6 Reaction scheme of the epoxide ring opening of compound 3. 
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2.5 Conclusions and Discussion 

Due to their interesting biological properties,2 many efforts have been done in the 

synthesis3 and biosynthesis4 of natural occurring tetramic acids. Among all tetramic acids from 

natural resources, polycyclic tetramate macrolactams (PTMs) are structurally complex 

compounds with a 5,5-dicyclic ring fusing with a 20-member tetramic acid lactam ring or a 

5,5,6/5,5,6 tricyclic ring fusing with a 16-member tetramic acid lactam ring. Originally isolated 

as an antibiotic PTM, ikarugamycin was recently identified as a promising lead for anticancer 

therapeutics.12 Other PTMs such as discodermide,6 ikarugamycin oxide,9 cylindramide13 have 

also been reported to have anticancer activities against various cancer cells. Our biological 

evaluation of ikarugamycin, and its’ corresponding analogs, provided great insight into the 

relationship between the structure of the natural product toxin and its ability to exhibit 

cytotoxicity across several representative NSCLC cell lines (Table 2.8). Although the structural 

diversity found in naturally occurring PTMs was limited to a few regions within the molecule, 

we were able to extrapolate two conclusions.  

Compounds that contained functionality across the alkene found in the 5,6,5 ring system 

of ikarugamycin(1) exhibited a dramatic decrease in cytotoxicity. Given that 5,6,5 tricyclic 

system does not provide a reactive warhead, we presume that the alkene provides structural 

rigidity to ikarugamycin. The structural rigidity may play a role in allowing the compound to 

properly fit into a minor grove of the target protein and allowing the conjugated enone to react 

in a Michael Addition fashion. Some of the analogs containing epoxides (3 & 7) showed modest 

activity against sensitive cell lines – the incorporation of the epoxide adds some rigidity to the 

tricyclic system and could explain the slight improvement in cytotoxicity compared to the other 

analogs. To further support this conclusion, Yu et al. observed a similar cytotoxicity pattern 

where compounds 1 and 3 induced cell death in the pancreatic carcinoma cell line PANC-1 

with IC50 values of 1.30 µM and 3.33 µM, respectively. These results highlight the importance 

of maintaining structural rigidity within the tricycle region of the molecule during future semi-

synthetic derivatization efforts. 
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Secondly, analogs containing an additional hydroxyl group adjacent to the embedded 

tetramic acid observed in compounds 6 and 7 exhibited negligible cytotoxicity decreases. 

These results provide insight to tolerable functionality and point derivatization efforts to focus 

on the exploration of structural diversity within the macrolactam region. Having observed this 

trend, I set out to install a propargyl group with the goal of conducting a ‘click’ pull-down assay 

to help us identify the target of ikarugamycin. The mass of the propargyl-IKA compound was 

confirmed via HRMS, but the position of the installation proved to be difficult due to the 

overlapping signals in the up field region of the NMR spectra. We believe that the propargyl 

resides near the tetramic acid. Unfortunately, the installation of the propargyl group 

dramatically decreased the cytotoxicity of ikarugamycin against the NSCLC cell lines H2122 

and Calu-1 (Figure 2.18).   

  
Figure 2.18 Cytotoxicity assay of ikarugamycin (1) and propargyl-IKA against representative NSCLC 

cell lines. 
 
 
 In conclusion, our preliminary screen for selective toxins against NSCLC allowed us to 

identify ikarugamcyin (1) as a potent and selective agent for NSCLC. The chemical and 

biological characterization of ikarugamycin and its analogs has provided powerful insights on 

key the functionalities that give rise to the unique selective toxicity profile exhibited across a 

panel of NSCLC cell lines. Our studies have laid the foundation for medical chemists to begin 

semi-synthetic derivatization in order to tune the potency and potentially tune the selectivity of 

1. Utilizing 1 as a probe, we were also able to identify sensitive subtypes of NSCLC which are 

currently being investigated on the basis of target gene expression and TFEB localization. 
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2.6 Materials and Methods  

2.6.1 General experimental procedures 

UV spectra were recorded on a Shimadzu UV-1601 UV–Vis spectrophotometer. 1H 

and 2D NMR spectral data were recorded at 800 MHz in CD3OD, CDCl3, CD3OD/ CDCl3, or 

DMSO-d6 on a Varian System  or Bruker spectrometer, and chemical shifts were referenced to 

the corresponding solvent residual signal. 13C NMR spectra were acquired at 100 MHz on a 

Varian System spectrometer and at 800MHz on a Bruker spectrometer. High resolution ESI-

TOF mass spectra were collected on a ThermoFisher Orbitrap or provided by The Scripps 

Research Institute, La Jolla, CA. Low-resolution LC/ESI-MS data were measured using an 

Agilent 1200 series LC/MS system with a reversed-phase C18 column (Phenomenex Luna, 

150 mm x 4.6 mm, 5 µm) at a flow rate of 0.7 mL/min. Preparative HPLC was performed on an 

Agilent 1200 series instrument with a DAD detector, using a C18 column (Phenomenex Luna, 

250 x 10.0 mm, 5 µm). ODS (50 µm, Merck) were used for column chromatography. 

 

2.6.2 Collection and Phylogenetic Analysis of Strain SNB-040 

The marine-derived actinomycete, strain SNB-040, was isolated from a sediment 

sample collected from Sweetings Cay, Bahamas. Bacterial spores were collected via stepwise 

centrifugation as follows: 2 g of sediment was dried over 24 h in an incubator at 35 ºC and the 

resulting sediment added to 10 mL sH2O containing 0.05% Tween 20. After a vigorous vortex 

for 10 min, the sediment was centrifuged at 2500 rpm for 5 min (4 ºC). The supernatant was 

removed and transferred into a new tube and centrifuged at 18,000 rpm for 25 min (4 ºC) and 

the resulting spore pellet collected. The resuspended spore pellet (4 mL sH2O) was plated on 

a humic acid media, giving rise to individual colonies of SNB-040 after two weeks. Analysis of 

the 16S rRNA sequence of SNB-040 revealed 99% identity to Streptomyces carpaticus.  
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2.6.3 Collection and Phylogenetic Analysis of Strain SNE-002 

The marine-derived actinomycete, strain SNE-002, was isolated from a sediment 

sample collected from hypersaline lake at East Plana Cay, Bahamas (22°36’33’’N, 73° 

33’24’’W). Bacterial spores were collected via stepwise centrifugation as follows: 2 g of 

sediment was dried over 24 h in an incubator at 35 ºC and the resulting sediment added to 10 

mL sH2O containing 0.05% Tween 20. After a vigorous vortex for 10 min, the sediment was 

centrifuged at 2500 rpm for 5 min (4 ºC). The supernatant was removed and transferred into a 

new tube and centrifuged at 18,000 rpm for 25 min (4 ºC) and the resulting spore pellet 

collected. The resuspended spore pellet (4 mL sH2O) was plated on a humic acid media, giving 

rise to individual colonies of SNE-002 after two weeks. Analysis of the 16S rRNA sequence of 

SNB-040 revealed 99% identity to Streptomyces xlamensis.  

 

2.6.4 Cultivation and Extraction of SNB-040 and SNE-002 

Bacterium SNB-040 was cultured in 20 2.8 L Fernbach flasks each containing 1 L of a 

seawater based medium (10 g starch, 4 g yeast extract, 2 g peptone, 1 g CaCO3, 40 mg 

Fe2(SO4)3∙4H2O, 100 mg KBr) and shaken at 200 rpm at 27 ºC. After seven days of cultivation, 

sterilized XAD-7-HP resin (20 g/L) was added to adsorb organic products, and the culture and 

resin were shaken at 200 rpm at 27 °C for 2 h. The resin was filtered through cheesecloth, 

washed with deionized water, and eluted with acetone. The acetone soluble fraction was dried 

in vacuo to yield 3.8 g of extract. 

Bacterium SNE-002 was cultured in 20 2.8 L Fernbach flasks each containing 1 L of a 

seawater based medium (10 g starch, 4 g yeast extract, 2 g peptone, 1 g CaCO3, 40 mg 

Fe2(SO4)3∙4H2O, 100 mg KBr) and shaken at 200 rpm at 27 ºC. After seven days of cultivation, 

sterilized XAD-7-HP resin (20 g/L) was added to adsorb organic products, and the culture and 

resin were shaken at 200 rpm at 27 ºC for 2 h. The resin was filtered through cheesecloth, 
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washed with deionized water, and eluted with acetone. The acetone soluble fraction was dried 

in vacuo to yield 6.1 g of extract. 

 

2.6.5 Extraction and Isolation. 

The extract of either SNB-040 or SNE-002 was suspended in aqueous MeOH (MeOH-

H2O, 9:1, 100 mL) and extracted with hexanes (3 x 100 mL portions). The hexanes extract was 

evaporated in vacuo to leave 241 mg. The aqueous MeOH extract then subjected to reverse 

phase flash column chromatograph (C18) to yield 22 fractions with a step gradient of MeOH 

and H2O (30:80-100:0). Fractions 12 through 22 were pooled together and purified using 

preparative-scale reversed-phase HPLC (Phenomenex Kinetex C18 Evo, 250 x 21.2 mm, 10 

mL/min, 5 µm) with a linear gradient (10:90-100:0 ACN:H2O) to yield 21 fractions. The later 

fractions were grouped (F5-F10, F11-F15, and F16-F20) and were then subject to further 

purification utilizing semi-preparative reversed-phase HPLC (Phenomenex Luna C5, 250 x 

10.0 m, 2.5 mL/min, 5 µm) with a linear gradient (40:60-90:10 ACN:H2O) until pure peaks were 

isolated. 

   
2.6.6 Antiproliferative Bioassays.   

Cytotoxicity assays Cell lines were cultured in 10 cm dishes (Corning, Inc.) in NSCLC 

cell-culture medium: RPMI/L-glutamine medium (Invitrogen, Inc.), 1000 U/ml penicillin 

(Invitrogen, Inc.), 1 mg/ml streptomycin (Invitrogen, Inc.), and 5% fetal bovine serum (Atlanta 

Biologicals, Inc.). Cell lines were grown in a humidified environment in the presence of 5% CO2 

at 37 ºC. For cell viability assays, HCC366, A549, Calu-1, H650, HCC4017 and HCC44 cells 

(60 µL) were plated individually at a density of 750 and 500 cells/well, respectively, in 384 well 

microtiter assay plates (Bio-one; Greiner, Inc.). After incubating the assay plates overnight 

under the growth conditions described above, purified compounds were dissolved and diluted 

in DMSO and subsequently added to each plate with final compound concentrations ranging 

from 1 µM to 2 pM and a final DMSO concentration of 0.5%. After an incubation of 96 h under 
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growth conditions, Cell Titer GloTM reagent (Promega, Inc.) was added to each well (10 uL of 

a 1:2 dilution in NSCLC culture medium) and mixed. Plates were incubated for 10 min at room 

temperature and luminescence was determined for each well using an Envision multi-modal 

plate reader (Perkin-Elmer, Inc.). Relative luminescence units were normalized to the untreated 

control wells (cells plus DMSO only). 

 

2.6.7 Natural Product Fraction Cytotoxicity Screening 

Screening Protocol 

The NSCLC cell line was cultured in 10 cm dishes (Corning, Inc.) in NSCLC culture 

medium (RPMI/L-glutamine medium (Invitrogen, Inc.), 1000 U/ml penicillin (Invitrogen, Inc.), 1 

mg/ml streptomycin (Invitrogen, Inc.), and 5% fetal bovine serum (Atlanta Biologicals, Inc.) for 

primary screening. All cell lines were maintained in a humidified environment in the presence 

of 5% CO2 at 37 oC. For cell viability assays, NSCLC cell lines (60 μL) were plated in 384- well 

microtiter assay plates (Bio-one; Greiner, Inc.) at a cell density that would allow for 70 – 80% 

confluency by the end of the incubation period (96 h). After incubating the assay plates 

overnight under the growth conditions described above, NPFs or pure compounds were added 

to each plate for confirmation studies (three replicates per compound per cell line) and at twelve 

half-log doses ranging from 50 μg/mL to 50 pg/mL for dose-response studies (3 replicates per 

dose per cell line). In all experiments, we maintained a final DMSO concentration of 0.5%. After 

an incubation of 96 hours under growth conditions, Cell Titer Glo™ reagent (Promega, Inc.) 

was added to each well (10 μL of a 1:2 dilution in NSCLC culture medium) and mixed. Plates 

were incubated for 10 minutes at room temperature and luminescence was determined for 

each well using an EnVision multi-label plate reader (Perkin-Elmer, Inc.). Assay with the 

HBEC30KT was assayed using a published protocol (Kim, Hyun S., et al., Cell, 2013. 155(3): 

552-566). All NSCLC and HBEC30KT viability assays typically displayed Z’ values greater than 

0.5. 
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The 26 NSCLC Cell Lines 

HBEC30KT, HCC366, H1993, H2009, H2122, HCC15, HCC827, H2073, HCC44, 

H2887, HCC193, H1819, HCC515, HCC95, H2250, H1437, HCC122, H2126, H2347, H1693, 

HCC4017, H2087, H2052, H1395, HCC4018 & H2882. 
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CHAPTER THREE 

DIRECTED-MESSAGE PASSING NEURAL NETWORK APPLICATION TO THE NATURAL 

PRODUCTS ATLAS
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3.1 Challenges in Physical High Throughput Screening Strategies 

3.1.1 Creating and Screening Natural Product Libraries 

 As mentioned in Chapter 1, natural product libraries typically come in two forms – crude 

extracts or semi-purified fractions. Conducting high throughput screens using these two 

mediums has provided many therapeutic leads over the years, but the method is not perfect. 

On one hand, screening crude extracts allows for drug discovery groups to quickly discern 

which organisms are producing compounds with the desired phenotypic read out and inform 

them which extract to push forward into purification. On the other hand, crude extracts contain 

complex mixtures of numerous chemical entities that may interfere with the assay and result in 

a false positive hit.57 Pre-fractionated high throughput screens were designed with this issue in 

mind and provide a solution by iteratively reducing the number of compounds that are dosed 

into an assay. Furthermore, groups have coupled pre-fractionated screening with concentration 

dose gradients to aid in the identification of true hits.58,59 While these efforts have greatly 

assisted in our ability to parse out false positives and true positives, current high throughput 

natural products screening strategies leave out great detail regarding the relationship between 

the structures in question and their associated bioactivity.60 

 Are natural products drug discovery efforts looking for a ‘hit’ or are they looking for a 

potential drug? The latter begs for thorough characterization between a given natural product 

and its’ bioactivity within the context of the screen, that of which is lost in current physical 

screening strategies. Ideally, the development of a pure natural product library would allow for 

accurate screening that produces rich chemoinformatic data that is critical for true drug 

discovery. However, the task of isolating and structurally characterizing each natural product 

sourced from an organism prior to conducting a high throughput screen would require extensive 

labor and countless resources. 
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3.1.2 High-throughput screening with Fraction Libraries and Pure Compound Libraries 

 The pure natural product libraries that do exist present accessibility challenges and are 

not conducive to collaborative drug discovery efforts. Although combinatorial chemistry 

enabled vast libraries of synthesized compounds for HTS, early libraries had low chemical 

diversity and so provided few authorized medications in the previous 25 years.61  Pure natural 

product libraries might considerably boost structural variety in chemical libraries, but the 

expenses involved with building them can be prohibitive (Table 3.1). This is owing to the 

resource-intensive stages needed with the purification and characterization of individual 

molecules in sufficient amount.62 So, to construct more chemically varied screening libraries, 

techniques like fragment-based drug discovery (FBDD) and diversity-oriented synthesis (DOS) 

were developed.63 Despite this, only around 20% of the core ring scaffolds observed in natural 

products are represented in most commercially accessible synthetic collections or compound 

libraries. Ultimately, a complementary collection of varied source species should provide the 

scientific community access to structurally diverse pure chemicals to be used in HTS efforts for 

further examination as possible therapeutic leads



 

 

 

Table 3.1 Commercially and publicly available large natural product libraries.60 

  Number of screening samples 

Company/institute Sample type (number) 
Extracts (sample 
source #) 

Fractions (extract 
source #) 

Compounds 
(type) Ref. 

Albany Molecular Research, Inc. (AMRI) B/F and P (>190 000) 102 000 (23 375) 209 000 (12 349) — 144 

AnalytiCon Discovery B/F (na); P (na); SS (>25 000) — — >25 000 (SS); >5000 
(NP) 145 

Bioinformatics Institute Singapore (BII)—A*STAR Natural 
Product Library B/F (>120 000); P (>37 000) ∼270 000 (>157 000) ∼70 000 (na) 2600 (NP) 146 

Developmental Therapeutics Program—The National 
Cancer Institute 

MI (>20 000); B/F (>25 000); P 
(>80 000) >230 000 (>108 000) 326 000 (46 570) 419 (NP set IV)d 147 

Fondazione Ricerca per la Vita (FIIRV) B/F (>15 000) 166 000 (15 000) — — 148 

Fundación MEDINA B/F (190 000) >130 000 (na) — — 149 

Griffith Institute for Drug Discovery (GRIDD)—Nature 
Bank MI and P (30 000) 10 000 (10 000) 50 000 (10 000)  150 

InterBioScreen (IBS) MI (na); B/F (na) and P (na) — — >67 000 (NP) 151 

Magellan BioScience Group, Inc. MB (10 000); F (55 000) >15 000 (na) — — 152 

Mycosynthetix F (>55 000) 55 000 (na) — — 153 

Natural Products Discovery Institute (NPDI) B/F (>30 000); P (>20 000) 80 000 (na) — — 154 

PharmaMar MI (>118 000); MB (>100 000) 100 000 (na) — — 155 

PhytoPharmacon P (4000) 4000 (4000) 25 000 (4000) 500 (NP) 156 

RIKEN Natural Products Repository (NPDepo) B/F (na) and P (na) — — 8000 (NP) 157 

The Institut de Chimie des Substances Naturelles (ICSN) MI, B/F, and P (>7000) 14 000 (7000) — — 158 

The Natural Products Library Initiative at the Scripps 
Research Institute (Florida) B (>5500) 8500 (na) 3400 (na) 450 (NP) 159 

The University of Mississippi—National Center for 
Natural Products Research MI and F (>2000); P (>18 000) >20 000 (>20 000) >43 000 (>3400) ∼700 (NP) 160 

Unigen (PhytoLogix Library) P (8000) 9000 (na) 200 000 (na) — 161 

B= bacteria; F= fungi; MB= marine bacteria; MI= marine invertebrates; P= plant; NP= pure natural products; SS= semi-synthetic (NP-based); na= data not available. 
 

61 
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3.1.3 Role of Virtual Compound Libraries for Large Scale Screens 

 Virtual compound libraries provide a rich alternative to physical compound libraries by 

increasing accessibility and allowing for a broad scope of high throughput in silico screening. 

Virtual screening is a computer approach that is used to scan through libraries of small 

molecules in order to determine the structures that are most likely to bind to the target of a 

pharmaceutically relevant target.64 Because of its distinct benefits over experimental high-

throughput screening (HTS), it has emerged as a critical step in early-stage drug development. 

These advantages include being drug target-relevant, being competitively priced, and being 

efficient. 

 In this context, the virtual screening of virtual compound libraries is a promising in silico 

method using in the drug discovery process. Traditionally, the availability of 3D structures of 

target proteins directed our ability perform in silico screening of virtual compound libraries. 

Within the context of screening natural products, an indispensable condition in performing 

virtual screening is the availability of appropriate virtual natural product compound libraries.65 

The ideal virtual natural product library to accelerate broad in silico high throughput screening 

would provide comprehensive structural characterization for each entry in an open-access 

format that allows for easily downloadable content. 

 

3.2 Virtual Natural Products Libraries 

3.2.1 Overview of Virtual Natural Product Databases 

 Virtual natural products databases are as close as we can come to a large (>20,000) 

SS library of pure natural product compounds. The assembly of, and access to, these 

databases are critical for virtual screening to identify potential NP-based drugs or key 

functionality that elicits a desired bioactivity. A major issue in the assembly of virtual NP 

databases stems from the publication of structures exclusively in pictorial format, such as in 

the annual reviews of Marine Natural Products. This makes it difficult to retrieve the compounds 

to be computationally analyzed and subsequently integrated into a central molecular 
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database.66 The first stage in any exploratory molecular analyses and, to some extent, in the 

discovery of NP-based drugs or other active components, is virtual screening. For example, 

virtual screening of known NPs can save time on sample extraction and purification, delaying 

the wet lab phase until the theoretical selection of optimal candidates. Using contemporary 

cheminformatics technologies thereby streamlines research, saves time and money, and 

improves findings. 

 The current landscape of virtual natural product databases is plenty, each of which 

offering different content and providing various analysis tools. In a broad review of 123 

resources listing NP structures, Sorokina et. al. found that 92 were open-source and only 50 of 

those contained molecular structures that could be retrieved for further analysis. Sorkina et. al. 

compared all of the selected NP databases on the following: NP source organism type, 

estimated size (number of NP molecules with correct structures), number of unique molecules 

in COCONUT, percentage of molecules with stereochemistry, can the data be freely browsed 

(open-source), registration requirements, and if they were actively maintained or updated 

(Table 3.2, which can be found in the Appendix).67,68 Their review keenly identified that 40 of 

the 50 open-source databases also shared a significant overlap of at least 50% of compounds 

with at least one other dataset. This analysis proved to be crucial to choosing the appropriate 

virtual NP database to be used as a compound library for virtual screening. I elected to use the 

Natural Products Atlas because of its’ strong structural foundation and selection for microbial 

natural products, that of which have become increasingly important to modern natural product 

drug discovery efforts. 

 

3.2.2 The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural 

Products Discovery 

 Although microbial natural products only make up 11% of FDA approved natural 

product drugs, the field of natural products has shifted its’ focus towards microbial sources due 

to their high propensity for bioactivity and rising interests in biosynthetic gene cluster 
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manipulation. Given the substantial fraction of antibiotics sourced from microbial organisms, it 

seems clear that utilizing a virtual natural product database would yield rich results for virtual 

screening efforts. The Natural Products Atlas provides a concise repository of microbial natural 

products with easily accessible structures that can be applied to various in silico screening 

methodologies.69 

 The Natural Products Atlas addresses the existing, yet fragmented, database 

landscape for microbial natural products. Out of the currently available databases, some are 

only accessible through commercial means and do not provide comprehensive characterization 

for each entry (i.e., AntiBase, Dictionary of Natural Products, MarinLit). The databases that are 

open access are often difficult to download (i.e., NPEdia) or cater to a niche within the field 

(i.e., AfroDB, NuBBEDB, StreptomeDB).70–75 More than 29,000 microbially-derived natural 

products are included in the NP Atlas, which is designed to cover all microbially-derived natural 

products published in peer-reviewed primary scientific literature. The database contains 

taxonomic information to inquire about the distribution of compounds originating from different 

species. Researchers can use the search, explore, and discover aspects of the NP Atlas to 

find new information. Compounds can be found by utilizing a structure drawing tool or by 

searching for their structure, name, molecular weight, chemical formula, InChiKey, SMILES, 

etc. Compounds with structural similarities can be clustered and nodes analyzed using NP 

Atlas's explore feature, while those with different structures can be interrogated using the find 

feature. 

 

3.3 In silico Screening of Natural Products 

3.3.1 Overview 

 Unprecedented opportunities for rationalizing drug discovery are opening up because 

of advances in our knowledge of protein–ligand interactions, as well as the rapidly expanding 

number of 3D-structures of potentially useful and empirically proven ligands. In order to benefit 

from previously released knowledge, the human brain is being asked to do actions that are just 
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unrealistic. Thus, today's understanding of NPs may be used to develop more efficient and 

effective methods. Computer simulations like virtual screening studies have previously satisfied 

these requirements in the field of pharmaceutical chemistry.76 They are required to make use 

of the available structural information, to grasp specific molecular recognition events, and to 

elucidate the function of the target macromolecule. The 'needles in a haystack' of bioactive 

natural compounds can be found using rationalized approaches, but computational approaches 

have only recently made their way into the field of natural product drug discovery research as 

auxiliary screening methods.77 Virtual screening methods have innovated the discovery of new 

compounds with specific bioactivity, assessing in silico large structural libraries against a 

bioreceptor or biological in parallel to physical screening efforts favor the reduction of financial 

efforts, streamline discovery infrastructure, and reduce the time required to develop drug-

target-disease associations.  

 
Figure 3.1 A Sequential steps applied in virtual screening workflows to identify bioactive natural products. B Ligand- 

and structure-based virtual screening approaches and some of their associated computational methods.78 
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 In silico methods involve sequential and hierarchical steps that aim at filtering and 

selecting compounds with desirable physiochemical, pharmacokinetic, and pharmacodynamic 

properties. All virtual screening workflows begin with library preparation, which involves 

obtaining structures of the compounds (developing a novel library or utilizing an available 

database such as the ones in Table 3.2), converting them into a readable format (SMILES, 

SDF, MOL2, etc.), and scrubbing the structures for stereochemical correction or valence errors. 

Following library preparation, virtual screening workflows involve the selection and application 

of computational methods (docking simulations, chemoinformatics, QSAR, etc.) that are 

appropriate for the established hypothesis. The final step corresponds to experimental 

validation using in vitro and in vivo assays, such as enzymatic inhibition and cell line cytotoxicity 

assays. 

 

3.3.2 Chemoinformatic Models for Molecular Property Prediction 

 Predicting molecular properties is critical for rapidly developing new drugs. Chemists 

can quickly filter through vast libraries of molecules using accurate property prediction models. 

Some techniques, like chemoinformatics, quantitative structure activity relationship (QSAR), 

docking, molecular similarity, network pharmacology, and pharmacogenomic computational de 

novo design, to name a few, have been found to cut the cost of drug development by as much 

as 50%.79 In recent years, machine learning has come to play an increasingly important role in 

predicting molecular properties.80–82 Machine learning offers a quick, low-cost, and accurate 

framework for developing a property prediction model. 
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Figure 3.2 Representation of a message passing neural network (MPNN) that iteratively aggregates local chemical 

features for molecular property prediction. 

 
 

Many current approaches to molecular property prediction, such as Dragon descriptors 

or Morgan (ECFP) fingerprints,83 rely on standard machine learning models. Improvements in 

property prediction accuracy using these models has primary come through the development 

of better molecular descriptors. Other approaches have explored the use of 3D atomic 

coordinates to augment the information provided by these models. Instead, a different line of 

study has focused on developing more robust models. Descriptors and fingerprints have been 

the subject of some research, but SMILES strings and the molecular graph have also been 

employed as input.84–87 Graph convolutional neural networks and message passing neural 

networks (Figure 3.2) are examples of the latter method.88 These models work directly with the 

molecular graph's atoms and bonds, allowing them to generate a molecular representation that 

is more relevant to the feature or qualities that are being studied. 

 

3.3.4 Directed-Message Passing Neural Network Development 

 An MPNN is a form of neural network model that is especially built to function on 

graphs, as opposed to other types of networks. When an MPNN is run, it receives as input an 

undirected graph !	that has node characteristics xv and bond features evw. Atoms are the nodes 

of the network, while bonds are the edges. In chemistry, the graph represents a molecule. 

Following the incorporation of this featurization as an input, the MPNN functions in two stages.88 

In the beginning, there is a message passing phase, in which information is sent throughout 

the graph in order to construct a neural representation of the entire graph. The second step is 
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the readout phase, during which the neural representation of the graph is utilized to create 

predictions based on the data. There are T stages in the information propagation process 

during the message passing phase. Vertex v is connected with a set of hidden ℎ!	# states and 

messages $!# , which are updated on each time step t by calling a message function %# and a 

vertex updated function &# according to: 

$!#$% = (
&∈((!)

%#(ℎ!# , ℎ&# , +!&)	

ℎ!#$% = &#(ℎ!# , $!#$%)	
	

where -(.) is the set of neighbors of . in graph !, and ℎ!+ is some function of the initial atom 

features /!. 

During the readout phase, a readout function 0 is applied to the collection of final 

concealed states ℎ!, in order to produce the following prediction: 

12 = 	0({ℎ!,|. ∈ !})	
	

The readout function works by first building a single representation	ℎ of the whole graph by 

summing the final hidden states: 

ℎ	 = 	(
!∈-

ℎ!,	 

 
Then, a feed-forward neural network 6 is applied to ℎ to produce: 

12 = 6(ℎ) 
 

 It is necessary to train the MPNN from beginning to finish, training each feature vector 

and ending with the final representation graph, with backpropagation of the gradient of loss 

occurring throughout both the reading and message passing phases. By adjusting the loss 

function, the MPNN may be trained in either a regression or a classification context, depending 

on the situation. 88,89 

 The fundamental distinction between D-MPNNs and normal MPNNs is the type of the 

messages that are conveyed across the molecule during the message passing phase. Unlike 

the conventional MPNN framework, which assumes that messages are focused on atoms, the 
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D-MPNN framework centers messages on bonds. The D-MPNN, in particular, keeps two 

representations of the message focused on the connection between atoms . and 7: one from 

atom . to atom 7 ($!&# ) and one from atom 7 to atom . ($&!# ). As a result, rather than 

aggregating data from nearby atoms, the D-MPNN gathers data from neighboring bonds. The 

message of each bond is modified depending on all incoming bond messages $.!
#  where 8 ∈

{-(.)\7}. The D-MPNN has better control over the flow of information throughout the molecule 

as a result of this structure, with messages concentrated on bonds and a differentiation 

between the two orientations of bond messages and can thus generate more informative 

molecular representations.88–90 

 

3.4 Proof of Principle Application to the Natural Products Atlas 

3.4.1 Rise in Antibiotic Resistance 

 Natural products have provided a significant foundation for the development of 

antibiotic drugs in the 90 years since the discovery of penicillin (1).91 The use of natural 

products to create new molecular entities for almost every disease is also well established.92 

Six of the nine antibiotic classes depicted in Figure 3.3 are naturally occurring compounds, 

with the remaining three (sulfonamides, fluoroquinolones, and oxazolidinones) created entirely 

through synthetic chemistry.93–101 The structural diversity and complexity of natural product 

antibiotics tend to offer unique mechanisms of action with selective target interaction, especially 

when compared to synthetic classes. 
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Figure 3.3 Representative classes of antibiotics of the modern era, excluding the arsenic-containing antibiotics of the 

early twentieth century. 

  

Antibiotic resistance has spread as a result of the widespread use of antibiotics to treat 

nonbacterial infections.102 The United States is likely to use newly developed antibiotics quickly, 

potentially shortening their efficacy lifetime. In the United States and the United Kingdom, 

nearly 40–60% of hospital-acquired S. aureus strains are methicillin-resistant.3 It is estimated 

that the livestock industry in the United States consumes an astounding 80 percent of all 

antibiotics produced.104 Antibiotic resistance was responsible for at least two million illnesses 

and 23,000 deaths in the United States as of 2013.105 With nearly 450,000 cases of drug-

resistant tuberculosis, antibiotic resistance is also a global issue.106 Since the implementation 

of HTS in the 1980s, no new chemical antibiotics have been discovered using this method.107 
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The rise of global antibiotic resistance and subsequent short comings of HTS efforts illuminate 

the necessity for novel approaches to antibiotic discovery to increase the rate at which new 

antibiotics are identified. 

 

3.4.2 Training DMPNN to Predict for Antibiotic Bioactivity 

 I first utilized an open source message passing neural network, Chemprop 

(https://github.com/chemprop/chemprop), for molecular property prediction to train a D-MPNN 

that would predict the likelihood that a molecule would inhibit the growth of E. coli. The entire 

training process was done in accordance with the procedure found in Stokes et. al (Figure 

3.4).108 The authors were able to provide me with their primary training dataset composed of 

2,335 compounds (deduplicated library containing 1,760 FDA-approved drugs and 800 natural 

products) that were binarized as hit or non-hit. Following binarization, I utilized these data to 

train a binary classification model that predicts the likelihood of a novel chemical inhibiting E. 

coli growth based on its structure. To do this, I used a directed-message passing deep neural 

network model89, which converts a molecule's graph representation to a continuous vector 

using a directed bond-based message passing strategy. This method constructs a molecular 

representation iteratively by aggregating the properties of individual atoms and bonds. The 

model works by encoding information about surrounding atoms and bonds in "messages" that 

are sent along bonds. The model produces higher-level bond messages containing information 

about bigger chemical substructures by repeatedly performing this message passing 

procedure. The bond signals at the highest level are then concatenated into a single continuous 

vector describing the complete molecule. 
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Figure 3.4 Schematic representation of machine learning in antibiotic discovery that 
demonstrates how the combination of in silico predictions and empirical investigations can lead 
to the discovery of new antibiotics. 
 
 
 The D-MPNN was then further optimized by adding computed molecular features 

provided by the cheminformatic package RDKit so that the D-MPNN could effectively learn to 

associate key features with the molecule’s respective classification. I then improved the 

resilience of the approach even further by employing an ensemble of classifiers and predicting 

hyperparameters using Bayesian optimization to give the D-MPNN the best shot at accurately 

learning key molecular features.88 The resulting model achieved a receiver operating 

characteristic curve-area under the curve (ROC-AUC) score of 0.982 and a precision recall 

curve-area under the curve (PRC-AUC) score of 0.734 on the test data. 

 

3.4.3 Application of Trained Model to NP Atlas as Drug Hub 

 Once the D-MPNN model was optimized, I then applied an ensemble of models trained 

on twenty folds to identify potential antibacterial molecules from the Natural Products Atlas.69 

This database, at the time of the study, consisted of 20,035 microbial natural products with the 

associated cross references. Although microbial natural products have a high propensity for 

antibacterial properties, this database would allow for cross validation of the predictive results 
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in order to assess the ability for the D-MPNN to accurately interrogate structures as complex 

as natural products. 

 

3.4.4 Results and Cross Validation via Literature 

 

Figure 3.5 Cross validation of predicted natural products with antimicrobial characteristics. 
 

Given that many natural products discovery efforts include antimicrobial screens for 

novel compounds, we were able to compare predicted scores for the natural 

products  produced by the D-MPNN to the annotated antimicrobial characteristics found in the 

given literature (Figure 3.5) Our comparison of compounds identified by the D-MPNN to the 

characteristics of those compounds annotated in the literature encouraged us to believe that 

the algorithm was capable of attributing learned chemical characteristics to molecules as 

complex as natural products. Some of the microbial natural products identified by the D-MPNN 

include: Tetracycline (Streptomyces sp. CB01913), Actinomycin Z3 (Streptomyces fradiae), 

and Mitomycin C (Streptomyces vertuillatus) (Table 3.3). 

On the opposite end of the scoring, the algorithm seemed to have more false 

negatives, but the low scoring compounds seemed to share lower molecular weights. Since 

the scoring metric is relative to the rest of the dataset, we could argue that the lower scores 

are a function of the compounds having fewer chemical descriptors correlated with bioactivity 

per structure. This could be addressed by splitting the datasets according to relative molecular 

weights to achieve appropriate scoring. The large mass variability within the dataset could also 
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explain the false positives observed in our top scoring region. For example, our DMPNN scored 

the lipodepsipeptide (LDP) Tolaasin C within the 90th percentile but was the only analog within 

the family that was reported to not possess antimicrobial activity. The lack of activity was 

correlated to the hydrolysis of its’ lactone ring that was preserved amongst every bioactive LDP 

in their study. This acute change in functionality may be saturated by the large number of 

chemical descriptors accumulating due the high mass of the compound. 

In the cases where the antimicrobial properties were unknown, it was simply due to the 

design of the bioassay utilized to isolate the NPs. For example, Leporizine C was isolated 

through a collaborative screening effort between Albany Molecular Research Incorporated 

(AMRI) and the Cystic Fibrosis Foundation Therapeutics (CFFT) to identify natural products 

that may act at correctors or potentiators of F508del-CFTR function. Collaborative efforts such 

as these present an impressive opportunity to discover targeted therapeutics for a given human 

disease, but such focus can inherently leave out antimicrobial/antibiotic characterizations of 

the identified compounds. The lack of antimicrobial/antibiotic characterizations of novel natural 

products identified through adjacent phenotypic screens can be addressed by repurposing the 

identified compounds through the means discussed in this thesis. Once these compounds have 

been identified by the DMPNN, it would be possible to screen them against the antimicrobial 

assay used to develop the training set for experimental validation. 

 

3.5 Conclusion 

 The initial antibacterial prediction screen of the natural products found within the NP 

Atlas served to be a genuine proof of principle. I think it is most important to keep in mind what 

the network is actually achieving throughout the process. Each message passing step 

aggregates information from neighboring atoms, meaning each step of message passing 

moves information one step through the graph. If a molecule has two atoms that are, for 

instance, more than 3 bonds away from each other then those two atoms will never be able to 

relay information during the message passing phase given that the Chemprop algorithm utilizes 
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3 passing step by default. Nevertheless, both representations will be included in the final 

molecular representation since the embeddings of all atoms and bonds are summed 

throughout the process. 

 A simple solution would be to increase the number of message passing steps so that 

most atoms can communicate during message passing, but that can potentially introduce more 

concerning issues. Increasing the number of message passing steps will result in a much 

slower network and can potentially saturate the atom representations to cause all atoms to 

appear similar to the network, thereby losing important local chemical information. In 

conclusion, message passing neural networks are incredibly useful for characterizing localized 

graphs embedded within complex natural products. In the context of medicinal chemistry 

efforts, this can be interpreted as a way to identify bioactive functionality embedded within the 

structure of natural products. Such a tool can then be used to train message passing neural 

networks to select for optimized pharmacophores or bioactive functional groups that may have 

been missed by traditional natural product screening efforts. 
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3.9 Materials and Methods 

Model training and predictions 

A directed-message passing neural network (Chemprop), like other message passing 

neural networks, learns to predict molecular properties directly from the graph structure of the 

molecule, where atoms are represented as nodes and bonds are represented as edges. For 

every molecule, we reconstructed the molecular graph corresponding to each compound’s 

SMILES string and determined the set of atoms and bonds using the open-source package 

RDKit (Landrum, 2006). Next, we initialized a feature vector, as described in Yang et al. 

(2019b), for each atom and bond based on computable features: 

 

1. Atom features: atomic number, number of bonds for each atom, formal charge, 

chirality, number of bonded hydrogens, hybridization, aromaticity, atomic mass. 

2. Bond features: bond type (single/double/triple/aromatic), conjugation, ring 

membership, stereochemistry. 

 

The model applies a series of message passing steps where it aggregates information 

from neighboring atoms and bonds to build an understanding of local chemistry. In Chemprop, 

on each step of message passing, each bond’s featurization is updated by summing the 

featurization of neighboring bonds, concatenating the current bond’s featurization with the sum, 

and then applying a single neural network layer with non-linear activation. After a fixed number 

of message-passing steps, the learned featurizations across the molecule are summed to 

produce a single featurization for the whole molecule. Finally, this featurization is fed through 

a feed-forward neural network that outputs a prediction of the property of interest. Since the 

property of interest in our application was the binary classification of whether a molecule inhibits 

the growth of E. coli, the model is trained to output a number between 0 and 1, which represents 

its prediction about whether the input molecule is growth inhibitory. 

 



 

  77 

In addition to the basic D-MPNN architecture described above, we employed three model 

optimizations89: 

 

Additional molecule-level features 

While the message passing paradigm is excellent for extracting features that depend 

on local chemistry, it can struggle to extract global molecular features. This is especially true 

for large molecules, where the longest path through the molecule may be longer than the 

number of message-passing iterations performed, meaning information from one side of the 

molecule does not inform the features on the other side of the molecule. For this reason, we 

chose to concatenate the molecular representation that is learned via message passing with 

200 additional molecule-level features computed with RDKit.85 

 

Additional molecule-level features 

While the message passing paradigm is excellent for extracting features that depend 

on local chemistry, it can struggle to extract global molecular features. This is especially true 

for large molecules, where the longest path through the molecule may be longer than the 

number of message-passing iterations performed, meaning information from one side of the 

molecule does not inform the features on the other side of the molecule. For this reason, we 

chose to concatenate the molecular representation that is learned via message passing with 

200 additional molecule-level features computed with RDKit.85 

 

Hyperparameter optimization 

The performance of machine learning models is known to depend critically on the 

choice of hyperparameters, such as the size of the neural network layers, which control how 

and what the model is able to learn. We used the Bayesian hyperparameter optimization 

scheme, with 20 iterations of optimization to improve the hyperparameters of our model (see 

Table 3.3). Baysian hyperparameter optimization learns to select optimal hyperparameters 
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based on performance using prior hyperparameter settings, allowing for rapid identification of 

the best set of hyperparameters for any model.108 

Table 3.3 List of hyperparameters for each respective dataset. 
Dataset Hyperparameter Range Value 
Antibiotic Number of message-passing steps [2, 6] 5 
 Neural network hidden size [300, 2400] 1600 
 Number of feed-forward layers [1, 3] 1 
 Dropout probability [0, 0.4] 0.35 
 Neural network hidden size [300, 2400] 1100 
 Number of feed-forward layers [1, 3] 1 
 Dropout probability [0, 0.4] 0.35 

 

Ensembling 

Another standard machine learning technique used to improve performance is 

ensembling, where several copies of the same model architecture with different random initial 

weights are trained and their predictions are averaged. We used an ensemble of 20 models, 

with each model trained on a different random split of the data (Dietterich, 2000). Our initial 

training dataset consisted of 2,335 molecules, with 120 compounds (5.14%) showing growth 

inhibitory activity against E. coli, as defined by endpoint OD600 < 0.2.108 

Our experimental procedure consisted of four phases: (1a) a training phase to evaluate 

the optimized but non-ensembled model and (1b) training the ensemble of optimized models; 

(2) a prediction phase; (3) a retraining phase; and (4) a final prediction phase. We began by 

evaluating our model on the training set of 2,335 molecules using all optimizations except for 

ensembling, in order to determine the best performance of a single model. Here, we randomly 

split the dataset into 80% training data, 10% validation data, and 10% test data. We trained our 

model on the training data for 30 epochs, where an epoch is defined as a single pass through 

all of the training data, and we evaluated it on the validation data at the end of each epoch. 

After training was complete, we used the model parameters that performed best on the 

validation data and tested the model with those parameters on the test data. We repeated this 



 

  79 

procedure with 20 different random splits of the data and averaged the results. After we were 

satisfied with model performance, we conducted predictions on new datasets. Since we wanted 

to maximize the amount of training data and were no longer interested in measuring 

performance on the test set, we trained new models on the training data from each of 20 

random splits, each with 90% training data, 10% validation data, and no test data. 

We lastly compared the prediction outputs of our augmented D-MPNN with a D-MPNN 

without RDKit features; a feedforward DNN model with the same depth as our D-MPNN model 

with hyperparameter optimization using RDKit features only; the same DNN instead using 

Morgan fingerprints (radius 2) as the molecular representation; and RF and SVM models using 

the same Morgan fingerprint representations. We used the scikit-learn implementation of a 

random forest classifier with all of the default parameters except for the number of trees, where 

we used 500 instead of 10.109 When making predictions, we output the growth inhibition 

probability for each molecule according to the random forest, which is the proportion of trees 

in the model that predict a 1 for that molecule. Similarly, we used the scikit-learn implementation 

of a support vector machine with all of the default parameters. When making predictions, we 

output the signed distance between the Morgan fingerprint of the molecule and the separating 

hyperplane that is learned by the SVM. This number represents how much the model predicts 

a molecule is antibacterial, with large positive distances meaning most likely antibacterial and 

large negative distances meaning most likely not. Although the signed distance is not a 

probability, it can still be used to rank the molecules according to how likely they are to be 

antibacterial. 

To predict the toxicity of molecules for possible in vivo applications, we trained a 

Chemprop model on the ClinTox dataset. This dataset consisted of 1,478 molecules, each with 

two binary properties: (a) clinical trial toxicity and (b) FDA-approval status. Of these 1,478 

molecules, 94 (6.36%) had clinical toxicity and 1,366 (92.42%) were FDA approved. Using the 

same methodology as described in phase (1) of our experimental procedure, the Chemprop 

model was trained on both properties simultaneously and learned a single molecular 
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representation that was used by the feed-forward neural network layers to predict toxicity. We 

utilized the same RDKit features as in our other models, except for that the ClinTox model was 

an ensemble of five models and used the following optimal hyperparameters: message-passing 

steps = 6; neural network hidden size = 2200; number of feed-forward layers = 3; and dropout 

probability = 0.15.  

 

Chemical analyses 

We utilized Tanimoto similarity to quantify the chemical relationship between 

molecules predicted in our study. The Tanimoto similarity of two molecules is a measure of the 

proportion of shared chemical substructures in the molecules.110 To compute Tanimoto 

similarity, we first determined Morgan fingerprints (computed using RDKit) for each molecule 

using a radius of 2 and 2048-bit fingerprint vectors. Tanimoto similarity was then computed as 

the number of chemical substructures contained in both molecules divided by the total number 

of unique chemical substructures in either molecule. The Tanimoto similarity is thus a number 

between 0 and 1, with 0 indicating least similar (no substructures are shared) and 1 indicating 

most similar (all substructures are shared). Morgan fingerprints with radius R and B bits are 

generated by looking at each atom and determining all of the substructures centered at that 

atom that include atoms up to R bonds away from the central atom. The presence or absence 

of these substructures is encoded as 1 and 0 in a vector of length B, which represents the 

fingerprint. For t-SNE analyses, plots were created using scikit-learn’s implementation of t-

Distributed Stochastic Neighbor Embedding. Here, we first used RDKit to compute Morgan 

fingerprints for each molecule using a radius of 2 and 2048-bit fingerprint vectors. We then 

used t-SNE with the Jaccard distance metric to reduce the data points from 2048 dimensions 

to the two dimensions that are plotted. Note that Jaccard distance is another name for Tanimoto 

distance, and Tanimoto distance is defined as: Tanimoto distance = 1 - Tanimoto similarity. 

Thus, the distance between points in the t-SNE plots is an indication of the Tanimoto similarity 

of the corresponding molecules, with greater distance between molecules indicating lower 
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Tanimoto similarity. We used scikit-learn’s default values for all t-SNE parameters besides the 

distance metric. 

Software and Algorithms 
Chemprop Yang, et al., 

2019 
https://github.com/swansonk14/chemprop 

RDKit Landrum, 2016 https://github.com/rdkit 
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CHAPTER FOUR 

APPLICATION OF DIRECTED MESSGAE PASSING NEURAL NETWORK TO RAPIDLY 

IDENTIFY ANTI-VIRAL NATURAL PRODUCTS 



 

  83 

4.1 Natural Products as a trove of bioactive compounds 

Natural Products (NPs) remain a rich source of bioactive compounds that pave the 

road for the development of novel therapeutics for hard-to-treat pathogens.  It is postulated that 

the rapid evolution of treatment-resistant pathogens could be rivaled by the diverse microbial 

NP chemical space.111 NPs offer structural diversity and bioactivity that many synthetic 

therapeutics aim to mimic and incorporate into their scaffolds. As of 2019 there have been 441 

therapeutics that are NPs or NP-derived compounds that have been FDA approved, and 424 

synthetic therapeutics that mimic NPs or contain a NP pharmacophore.17 Of the FDA approved 

drugs that were explicitly categorized as antivirals, 19.5 percent of them were NP-derived or 

were inspired by the structural features found in NPs (Figure 4.1).17 

 
Figure 4.1 Antivirals drugs by source rom 2015 to 09/2019, n = 185.17 

 

Behind each great natural product, there lies a rigorous screening effort followed by 

thorough structure-activity-relationship (SAR) studies. The field of NP drug discovery, at the 

industry level and at the academic level, has greatly benefited from technological screening 

advancements such as genome mining and engineering; induced and heterologous expression 

of NP biosynthetic gene clusters;112 high-content phenotypic bioactivity profiling;113 HRMS 

metabolomics;114 new dereplication methods and new molecular mode of action elucidation 
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platforms (Reviewed in Atanasov 2021, nature reviews drug discovery).115 Advancements in 

screening platforms that are more target-oriented and higher throughput have led drug 

discovery efforts to shift away from the crude extract samples and towards partially purified 

samples. The partially purified extracts allow for the parsing of complex mixtures that are 

inherent to crude NP extracts which has translated to better performance amongst molecularly 

targeted assay designs. Screening such an expansive set of complex fractions through these 

screening methods would still take a considerable amount of time – time we cannot afford 

amidst a pandemic. Ideally, the construction of pure NP libraries would yield the greatest drug-

target-disease association, but the cost associated with the assembly of such a library is 

inhibitory. This is largely due to the generation of pure compounds through intramural isolations 

or collaborations, which can be limited by resource-intensive steps associated with the 

purification and characterization of individual compounds of sufficient quantity.60 However, over 

120 computational libraries exist that contain thousands of pure NPs from a variety of sources 

(plants, bacteria, fungus, metazoa, insects, and food) in the form of SMILES (Simplified 

Molecular Input Entry System) chains or other chemical identification notations. Although 98 of 

the NP databases require clearance, 50 of them remain open access such as the NP Atlas, 

NPASS, and CMAUP.116, 117 These open-access databases, coupled with in silico screening, 

are crucial for drug discovery when a global health crisis limits our ability to physically screen 

for a potential therapeutic. 

 

4.2 Onset of the SARS-CoV-2 Virus 

The COVID-19 pandemic, which caused about 180 million illnesses and 4 million 

fatalities globally by June 2021, necessitated a swift, vast, and effective therapeutic 

response.118 Since the emergence of the pandemic in late December 2019, researchers have 

been studying both the causative agent, SARS-CoV-2 virus, and the host response to the virus 

in order to better understand the disease pathogenesis, the structure of the constituent viral 

proteins, and identify key actionable proteins in order to guide the rapid development of both 



 

  85 

antiviral  therapeutics and host-directed agents.119 Clearly, developing new, effective 

medications for COVID-19 has not been possible because drug development and clinical 

testing often take 10–15 years. As a result, many scientists and clinicians have pursued the 

repurposing of existing drugs, clinical trial candidates, and approved natural products that have 

already been in clinical use and whose toxicity and preliminary pharmacokinetics have been 

deciphered in successful efforts to identify compounds with bioactivity against COVID-19.120 

Figure 4.2 Schematic of SARS-CoV-2 replication mechanism within host. 

 

4.3 Target Selection for SARS-CoV-2 

The Betacoronavirus genus includes SARS-CoV, MERS-CoV, and SARS-CoV-2, all 

which contain genomes with 59-methylated caps at the N terminus and a 39-poly-A tail at the 

C terminus, as well as a highly conserved order of genes linked to replication/transcription and 

structural components.121 In the first step of the SARS-CoV-2 life cycle, the spike protein on 

the outer surface of the virion is responsible for binding to the host receptor (ACE2) for 

attachment to the cell membrane, which is followed by viral and host cellular membrane fusion 
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and the release of viral genomic RNA into the cells. Subsequently, host ribosomes are hijacked 

to produce the two viral replicase polyproteins, which can further be processed into 16 mature  

nonstructural proteins (NSPs) through two virus-encoding proteases: main protease a 3C-like 

protease (3CLpro) and papain-like protease (PLpro).122 The first three peptide cleavages are 

performed by PLpro. The remainders are cleaved by 3CLpro (also called Mpro). These NSPs 

can assemble into the replication and transcription complex (RTC) to initiate viral RNA 

replication and transcription (Figure 4.2).123 Several drug repurposing efforts have been carried 

out to identify compounds that selectively target these mechanisms of replication within the 

context of SARS-CoV-2. These efforts have successfully identified remdesivir as a potent 

inhibitor of the SARS-CoV-2 RNA polymerase with an EC50 value of 0.77 µM.124 The concept 

of drug repurposing can be thought of as the utilization of a predetermined compound library, 

such as the ZINC15 database or the NP Atlas.  

Table 4.1 Examples of active molecules derived from drug repurposing for SARS-CoV-2. 

Molecule Name Target 

SARS-
CoV-2 

activity in 
Vero cells 

SARS-CoV-2 
activity on other 

cell types 

 

Remdesivir 
RNA-dependent 

RNA polymerase 
EC50 0.77 
µM124 

Human epithelial 
cell culture(EC50 
0.01 µM); Calu-3 
(EC50 0.28mM)125 

 

Apilimod PIKfyve 
EC50 
0.023 
µM126 

 

293T cells (EC50 
0.012mM)127 

 

 

GC376 Mpro (Ki 12 nM) EC50 0.91 
µM128 

 

Not tested 
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 The 3CL protease, also known as Main Protease (Mpro), plays a vital role in 

processing the polyproteins that are translated from the viral RNA 3CL Protease inhibitors that 

can block viral replication are promising potential drug candidates that could be used to treat 

patients suffering with the COVID19 coronavirus infection. Thus, blocking viral replication by 

inhibiting 3CLpro is one of the key strategies in the drug development process (Figure 4.2). 

Some drugs in this aspect include GC376 or PF-07321332 (PAXLOVIDTM) which inhibit the 

3C-like protease (3CLpro). In the CAS registry, the highest number of patents and potential 

drug candidates have been registered against 3CLpro among all the target proteins of SARS-

CoV-2, which directly reflect its potentiality as a drug target.  

 

 

 

  

 
EIDD-1931 

RNA-dependent 

RNA polymerase 

IC50 0.3 
µM129 

 

Calu-3 
(IC500.08mM)130 

 

 

PF-
07321332 

 

Mpro (Ki 3.11 
nM) 

EC50 74.5 
nM131 See Ref [132] 
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4.4 In-silico Approaches to SARS-CoV-2 Drug Discovery  

 
Scheme 4.1 NPs identified with high bioactivity against key SARS-CoV-2 proteins via in silico 
screening. 
 

Several efforts have utilized virtual libraries of NPs to identify a potential therapeutic to 

combat the emerging SARS-CoV-2 virus. In silico screening trials are a powerful step to identify 

NPs with a high propensity for bioactivity when resources and time are limited. Computational 

simulations and neural networks decrease our reliance on time-consuming physical screening 

procedures and allow for a more streamlined discovery of drug-target-disease associations.  

Some of the most promising in silico efforts for anti-SARS-CoV-2 NPs focus on 

glycosylated flavonols, flavanones, terpenoids, and alkaloids that are predicted to interact with 

key proteins (Scheme 4.1).133,134,135 Many of the in-silico screening efforts of large NP 

databases often come in the form of docking simulation that bears a heavy computational load 
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and specialized software. The recent advancements in machine learning technology presents 

a path for in silico screening with minimal computational loads that is readily accessible. 

 

4.5 Application of DMPNN to Identify NPs Active Against SARS-CoV-2 Proteases 

         Given recent advancements in machine learning, the field is adequately prepared for 

the application of algorithmic solutions for molecular property prediction to identify novel 

therapeutic NP leads. The implementation of methodologies that allow early drug discovery to 

be performed largely in silico enables the exploration of vast bioactivity-rich chemical space 

that can streamline the formation of drug-target-disease associations. Recent advancements 

in modeling neural network-based molecular representations have allowed for learning 

automation in mapping molecules into continuous vectors that can subsequently be used to 

predict their properties. An important application of this innovation is best illustrated by three 

key steps taken to successfully identify a novel antibiotic through a combination of in silico 

predictions and empirical investigations. The first step required is to train a deep neural network 

model to predict a desired property using a dataset of molecules. Secondly, the resulting model 

is applied to several chemical libraries to identify potential lead compounds with the desired 

property. Lastly, ranking the compounds based on the model's predicted score and selecting 

leads based on chemical structure and availability. Utilizing this approach, coupled with the 

vast bioactivity-rich chemical space of natural product libraries represents an important 

opportunity to streamline drug discovery efforts. 

Table 4.2 List of publicly available drug repurposing campaigns for compounds against 
Betacoronavirus genus. 

Main Target Compounds Hits Source 
3CL Protease of 

SARS-CoV-2 
880 fragments 78 

Diamond Light 

Source Group 

SARS-CoV-2 

Replication 
1,484 88 NCBI 
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SARS-CoV-2 

Cytotoxicity 
5,632 67 NCBI 

3CL Protease of 

SARS-CoV 
290,726 405 NCBI 

PL Protease of 

SARS-CoV 
233,891 697 NCBI 

HIV Replication 41,127 1,443 MoleculeNet 

 

Herein, we report the application of deep neural network models to predict the 

bioactivity of NPs against the SARS-CoV-2 M-protease. Our approach consisted of three 

stages. First, we chose publicly available datasets that screened small molecules against the 

main proteases of both the SARS-CoV and SARS-CoV-2 viral strains (Table 4.2). We also 

used untargeted screens that provided information on small molecules that inhibited SARS-

CoV-2 replication. Lastly, we chose to include a large dataset composed of compounds that 

have been screened against HIV replication so that we would select for antivirals from a broad 

sense.  We used the Chemprop algorithm in combination with open-source datasets to train 

six independent deep neural network models to predict activity against key proteins that allow 

for viral entry. We then applied the resulting models to the >20,000 microbial-derived NPs listed 

within the NP Atlas library to identify potential lead compounds with activity against key viral 

proteins. Lastly, the NPs were ranked according to the model’s predicted score and the 

compounds with a relative pre-specified score were cross-examined against the other model 

predictions. We selected a list of NPs based on the relative prediction score across the panel 

of models, availability, and synthetic feasibility. Through this approach, we successfully 

identified Closthioamide and Deferroxamine mesylate from the NP Atlas to possess activity 

against the SARS-CoV-2 MProtease. 
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4.6 Conclusion 

 
Scheme 4.2 Several NPs with a high propensity to be active against SAR-CoV-2 Mpro via 
DMPNN.  
 

Once we possessed the read-out scores from our antiviral screen, we began to 

prioritize the top scoring compounds based on several conditions. Initially, we selected for the 

top scoring compounds within each respective screen that were readily available to purchase 

or synthesize. We also provided a list of high scoring compounds to colleagues within the 

department, and our in-house chemical screening center, in the case that they had some of the 

compounds in storage. The top scoring compounds varied in chemical complexity spanning 

from cyclic peptides to siderophores (Scheme 4.2). 
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Many of the compounds identified by our screens have been characterized for adjacent 

bioactivity. For example, Cylindrocyclin A was the highest scoring compound within our HIV 

screen and has been shown to exhibit modest cytotoxicity (IC50 ~11 µM) against COLO-320,  

HL-60, L1210 and human T lymphocyte Jurkat cells. The compound we ultimately selected to 

synthesize in house, Closthioamide, was also shown to be a potent inhibitor of bacterial DNA 

gyrase; however, its molecular mechanism differs from that of the quinolones and 

aminocoumarins. We decided to test Closthioamide, Cyclosporin A, Cylindrocylin A, 

Ribocyclophane C, and Desferroxamine mesylate using a SARS-CoV-2 specific 3CLpro assay 

kit (Catalog #79955-1) purchased from BPS Biosciences (CA).  

 

Scheme 4.3 Schematic presentation of the total synthesis of Closthioamide. 

Given the structural simplicity of Closthioamide, I decided to evoke a modified synthetic 

route analogous to that provided by Hertweck et. al (Scheme 4.3). The synthesis began with 

the generation of 4-(cyclohexyloxy)benzoic acid (13) from the addition of cyclohexane to methyl  

4-hydroxybenzoate in the presence of boron trifluoride diethyl etherate under reflux. The 

protected benzoic acid was then utilized to form the amide (14) via coupling with a benzyl ester 

in the presence of DCC and HOBt in triethylamine (i). The terminal amide (14) was then 
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subjected to a lithium hydroxide reduction (ii) to remove the benzyl group to afford the 

propanoic acid (15). The amide backbone (9) was synthesized utilizing 1,3-diaminopropane 

and boc-beta-alanine in the presence of DDC and HOBt in DMF (iii). Removal of the boc group 

proved to be challenging, but was eventually achieved by subjecting compound 9 to acid 

dioxane under constant sonication followed by a methanolic quench with continuous sonication 

to afford bis(hydrochloride). The protected hexamide backbone (16) was then synthesized by 

converging our propanoic acid and bis(hydrochloride) in the presence of Hünig’s Base, HOBt, 

and DCC (iv). Thionation via Lawesson’s reagent in pyridine (v) worked remarkably well to 

afford the protected hexathioamide 17, which was subsequently deprotected utilizing 

trifluoromethanesulfonic acid in TFA (vi) to yield closthioamide (18). 

  
Figure 4.3 IC50 curves generated via fluorescent protein engagement assay. 

 

The natural products in Scheme 4.2 were selected based on their high scores across 

all six DPMNN models and their accessibility (immediately available in-house or synthetically 

feasible). Cyclosporin A and Cylindrocyclin A were provided by the lab of Prof. Scott Lokey. 

Ribocyclophane C was sourced from the Chemical Screening Center at UCSC. We also chose 

to include a known protease inhibitor, GC376, and a reported protease inhibitor, MG-132, found 

in the literature at the time. Our assay resulted in hits for both Closthioamide (IC50 8.602 μM) 

and Desforroxamine mesylate (IC50 3.303 μM) – a 40 percent positive hit rate for our predicted 

protease inhibitors. 

The results of our studies indicate that the Chemprop algorithm is capable of training 

DMPNNs for the prediction of antiviral activity of the natural products found within the NP Atlas. 
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The rapid development of machine learning algorithms is quickly become a tool for drug 

discovery and is quickly approaching a realm of accuracy that will allow for its application to 

complex structures such as natural products. Graphical neural networks allow for a rapid  

 

 

Figure 4.4 t-Distributed stochastic neighbor embedding (t-SNE) of all molecules from the 
training datasets (blue, forest green, purple, orange, black, and neon blue) and the NP Atlas 
(red), with Closthioamide (neon green). 

 

characterization of vast chemical libraries without inheriting the large computational burden 

observed by other in silico methods. This study encompassed expansive chemical diversity by  

natural products isolated from various microbial organisms and thousands of FDA-approved 

drugs (Figure 4.3). The t-SNE plot above reveals the chemical relationships between the 

libraries used to train the DMPNNs and the NP Atlas, with Closthioamide highlighted in neon 

green. Carrying out a physical screen of this magnitude would have countless hours and 

numerous resources that proved to be scarce in the face of a global pandemic. 
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4.7 Materials and Methods 

 SARS-CoV-2 genome encodes for more than 20 proteins, including the main protease 

(Mpro) which is a 3C-like protease (3CLP) that happens to share 96.1% similarity with the 3CLP 

of the SARS-CoV. Utilizing a series of open-source datasets from the National Center for 

Biotechnology Information (NCBI) we began to train several D-MPNN’s to recognize chemical 

features that resulted in bioactivity against replication in both SARS-CoV and SARS-CoV-2. 

The datasets were chosen to span from in vitro assays of FDA-approved compounds to 

fragment screens for targeted protease binding. The high level of similarity between the SARS-

CoV and SARS-CoV-2 encouraged us to utilize previously assembled compound libraries that 

characterize the activity of known therapeutics against Mpro/3CLP in the context of SARS-

CoV. The referenced targeted screens focused on either of the two polyproteins encoded by 

the coronavirus, the 3CL protease (M-pro) and a papain-like protease (Plpro). The D-MPNN’s 

were trained under varying conditions; some with added RDKit features, some with random 

training splits, and some with scaffolded training splits. The goal was to identify which 

conditions would accurately interpret the given data sets so that we could have a well-trained 

network to utilize on the NP Atlas data set. 

 

SARS-CoV Data 

 A comprehensive bioassay conducted by The Scripps Research Institute Molecular 

Screening Center titled “Summary of probe development efforts to identify inhibitors of the 

SARS- coronavirus 3C-like Protease (3CLP)” provided a data set of 290,726 molecules with 

405 of those exhibiting activity against 3CLP via fluorescence. Broad repurposing hub 

evaluation set from SARS-CoV 3CL protease containing 41 experimentally validated hits along 

with 5630 other molecules. The 41 validated hits were combined with the Scripps screen to 

yield a dataset containing 290,767 compounds and 446 hits. This dataset was used to train a 

D-MPNN with the parameters founds in Table 4.3. 
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We also utilized a dataset from a bioassay that detects activity against SARS-CoV in 

yeast models via PL protease inhibition titled “qHTS o Yeast-based Assay for SARS-CoV PLP: 

Summary.” The dataset is a combination of a broad screen and their follow up validation screen 

that contains 233,891 compounds and 697 hits. This dataset was used to train a D-MPNN with 

the parameters founds in Table 4.3. 

 

SARS-CoV-2 Data 

 Fragments screened for 3CL protease binding using crystallography techniques. Data 

was sourced from the Diamond Light Source group. The dataset contained 880 fragments with 

78 hits. This dataset was used to train a D-MPNN with the parameters founds in Table 4.3. 

 FDA-approved compounds screened against SARS-CoV-2 in vitro. Data was sourced 

from “In vitro screening of a FDA approved chemical library reveals potential inhibitors of 

SARS-CoV-2 replication.” The dataset contained 1,484 FDA-approved compounds with 88 

identified hits. This dataset was used to train a D-MPNN with the parameters founds in Table 

4.3. 

Table 4.3 List of hyperparameters for each respective dataset.136-142 

Dataset Hyperparameter Range Value 

Antibiotic Number of message-passing steps [2, 6] 5 
 Neural network hidden size [300, 2400] 1600 
 Number of feed-forward layers [1, 3] 1 
 Dropout probability [0, 0.4] 0.35 
AID1706 Number of message-passing steps [2, 6] 3 
 Neural network hidden size [300, 2400] 1300 
 Number of feed-forward layers [1, 3] 2 
 Dropout probability [0, 0.4] 0.4 
PLpro Number of message-passing steps [2, 6] 3 
 Neural network hidden size [300, 2400] 1300 
 Number of feed-forward layers [1, 3] 2 
 Dropout probability [0, 0.4] 0.1 
Mpro Number of message-passing steps [2, 6] 4 
 Neural network hidden size [300, 2400] 800 
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 Number of feed-forward layers [1, 3] 3 
 Dropout probability [0, 0.4] 0.35 
amu_sars_cov_2 Number of message-passing steps [2, 6] 2 
 Neural network hidden size [300, 2400] 1400 
 Number of feed-forward layers [1, 3] 2 
 Dropout probability [0, 0.4] 0.3 
Ellinger Number of message-passing steps [2, 6] 6 
 Neural network hidden size [300, 2400] 1100 
 Number of feed-forward layers [1, 3] 1 
 Dropout probability [0, 0.4] 0.35 
HIV Number of message-passing steps [2, 6] 3 
 Neural network hidden size [300, 2400] 1000 
 Number of feed-forward layers [1, 3] 2 
 Dropout probability [0, 0.4] 0.35 

  

Compounds screened against SARS-CoV-2 in vitro. Data was sourced from 

“Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using 

a large-scale drug repurposing collection.” The dataset contained 5,632 compounds with 67 

identified hits. This dataset was used to train a D-MPNN with the parameters founds in Table 

4.3. 

 

HIV Data 

Dataset Metric Score 

Antibiotic ROC-AUC 0.951744 ± 0.025224 
AID1706 ROC-AUC 0.794167 ± 0.031480 
PLpro ROC-AUC 0.763580 ± 0.031110 
Mpro ROC-AUC 0.850082 ± 0.056475 
amu_sars_cov_2 ROC-AUC 0.676327 ± 0.077956 
Ellinger ROC-AUC 0.760277 ± 0.074501 
HIV ROC-AUC 0.778134 ± 0.000013 

  

To ensure that our results also included previously identified antivirals we utilized a 

publicly available dataset from the MoleculeNet benchmark repository that contained 
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experimentally measured abilities to inhibit HIV replication. The dataset contained 41,127 

compounds with 1,443 identified as confirmed active or confirmed moderately active. This  

dataset was used to train a D-MPNN with the parameters founds in Table 4.3.  

 

Application of Models 

 After D-MPNN model development and optimization using the respective training 

datasets, we subsequently applied an ensemble of models trained on twenty folds to identify 

potential antivirals from the Natural Products Atlas. This library contains 20,035 natural 

products isolated from bacterial, fungal, and cyanobacterial source organisms, with 18,959 of 

the compounds listed as being unique by the MongoDB COlleCtion of Open Natural prodUcTs 

(COCONUT). Here, prediction scores for each compound were determined and molecules 

were ranked based on their probability of displaying antiviral activity. There were no identified 

overlaps between the compounds in the training datasets and the NP Atlas dataset. 

 

Hit Prioritization 

 The molecules predicted to display antiviral characteristics were ranked relative to the 

model that produced the scores. We used a prediction cutoff of (>0.9 Antibiotic, >0.6 HIV, etc.) 

The prediction scores produced by the appropriate models were then cross examined to see if 

we could identify any natural products that scored well across several models. The compounds 

that scored exceptionally on respective models and those that appeared to score well across 

multiple models were then evaluated based on structural characteristics, commercial 

availability, and synthetic feasibility. 

 

Additional molecule-level features 

While the message passing paradigm is excellent for extracting features that depend 

on local chemistry, it can struggle to extract global molecular features. This is especially true 

for large molecules, where the longest path through the molecule may be longer than the 
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number of message-passing iterations performed, meaning information from one side of the 

molecule does not inform the features on the other side of the molecule. For this reason, we 

chose to concatenate the molecular representation that is learned via message passing with 

200 additional molecule-level features computed with RDKit. 

 

Hyperparameter optimization 

The performance of machine learning models is known to depend critically on the 

choice of hyperparameters, such as the size of the neural network layers, which control how 

and what the model is able to learn. We used the Bayesian hyperparameter optimization 

scheme, with 20 iterations of optimization to improve the hyperparameters of our model (see 

Table 4.3). Baysian hyperparameter optimization learns to select optimal hyperparameters 

based on performance using prior hyperparameter settings, allowing for rapid identification of 

the best set of hyperparameters for any model. 

 

Ensembling 

Another standard machine learning technique used to improve performance is 

ensembling, where several copies of the same model architecture with different random initial 

weights are trained and their predictions are averaged. We used an ensemble of 20 models, 

with each model trained on a different random split of the data (Dietterich, 2000). 

 

Chemical analyses 

We utilized Tanimoto similarity to quantify the chemical relationship between 

molecules predicted in our study. The Tanimoto similarity of two molecules is a measure of the 

proportion of shared chemical substructures in the molecules. To compute Tanimoto similarity, 

we first determined Morgan fingerprints (computed using RDKit) for each molecule using a 

radius of 2 and 2048-bit fingerprint vectors. Tanimoto similarity was then computed as the 

number of chemical substructures contained in both molecules divided by the total number of 
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unique chemical substructures in either molecule. The Tanimoto similarity is thus a number 

between 0 and 1, with 0 indicating least similar (no substructures are shared) and 1 indicating 

most similar (all substructures are shared). Morgan fingerprints with radius R and B bits are 

generated by looking at each atom and determining all of the substructures centered at that 

atom that include atoms up to R bonds away from the central atom. The presence or absence 

of these substructures is encoded as 1 and 0 in a vector of length B, which represents the 

fingerprint. For t-SNE analyses, plots were created using scikit-learn’s implementation of t-

Distributed Stochastic Neighbor Embedding. Here, we first used RDKit to compute Morgan 

fingerprints for each molecule using a radius of 2 and 2048-bit fingerprint vectors. We then 

used t-SNE with the Jaccard distance metric to reduce the data points from 2048 dimensions 

to the two dimensions that are plotted. Note that Jaccard distance is another name for Tanimoto 

distance, and Tanimoto distance is defined as: Tanimoto distance = 1 - Tanimoto similarity. 

Thus, the distance between points in the t-SNE plots is an indication of the Tanimoto similarity 

of the corresponding molecules, with greater distance between molecules indicating lower 

Tanimoto similarity. We used scikit-learn’s default values for all t-SNE parameters besides the 

distance metric. 

Figure 4.4 Graphical representation of validation bioassay. 
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Bioassay Validation of predicted hits 

SARS-CoV-2 specific 3CLpro assay kits (Catalog #79955-1) were purchased from 

BPS Biosciences (CA) and assay was carried out as per the manufacturer’s recommendations. 

In Brief, in a 96-well plate 4 ng/µl 3CLpro-MBP tagged enzyme (120 ng per reaction) in 30 µl of 

assay buffer was pre-incubated with varying concentrations of selected natural products for 40 

min. The enzymatic reaction was initiated by adding 10 µl (50 µM final) fluorescent substrate. 

Fluorescence kinetic measurements were taken in Envision 2105 multimode plate reader for 

16 h with 360/40 excitation and 460/40 nm emission. For IC50 calculation, drugs were screened 

at 0 to 100 µM dose range. Positive control for no enzyme inhibition was 1% DMSO with 4 ng 

of enzyme and 50 µM of substrate. 100 µM of GC-376 served as inhibitor control and blanks 

were wells with 1% DMSO with 50 µM of substrate without enzyme. All the values were 

subtracted from blank values and percent inhibition calculations compared to DMSO controls. 

 

 

 

Software and Algorithms 
Chemprop Yang, et al., 

2019 

https://github.com/swansonk14/chemprop 

RDKit Landrum, 2016 https://github.com/rdkit 
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Total Synthesis of Closthioamide 

All reagents were obtained from commercial suppliers (Sigma Aldrich, TCI, etc.) and 

used without further purification unless otherwise explained. Reactions were carried out under 

inert gas (N2) by using the Schlenk technique in dried solvents. Dry methanol was obtained by 

desiccation with magnesium and subsequent distillation. Dimethylformamide was dried over 

molecular sieve (4 Å), distilled and stored over molecular sieve (4 Å) under N2. Dry 

dichloromethane (DCM) was generated by distillation from calciumhydride suspension. 

Triethylamine and diisopropylethylamine (Hünig’s Base) were dried over potassium hydroxide 

and distilled. Dioxane was dried over potassium hydroxide. Methanol, chloroform, 

dichloromethane, ethyl acetate and benzyl alcohol were distilled prior to use. Open column 

chromatographic separations were executed on silica gel (Kieselgel 60, 15-40 µm, Merck 

KGaA). Reaction progresses were monitored by thin layer chromatography (TLC) (silica gel on 

aluminium sheets 20 x 20 cm with fluorescent dye 254 nm, Merck KGaA), GC-MS or HPLC-

MS. β-Alanine benzylester p-toluenesulfonate (4) was purchased from Bachem AG, while 

larger amounts were easily obtained according to a standard procedure. 4-

(Cyclohexyloxy)benzoic acid (3b) could be provided by various suppliers (Life Chemicals, 

Aronis, etc.) 

 

Compound 9. tert-Butyl 3,3’-(propane-1,3diylbis(azanediyl))bis(3-xoxpropane-3,1-

diyl)dicarbamate (9) was synthesized using a simplified literature procedure.143 To a solution 

of Boc-β-Ala-OH (7.2 g, 42 mmol) and 1-hydroxy-benzotriazole (HOBt) (6.7 g, 48 mmol) in dry 

dimethylformamide (DMF) (80 mL) was added N,N’-Diisopropylecarbodiimide (DCC) (9.20 g, 

48 mmol). The mixture was stirred for one hour at room temperature (rt), subsequently treated 

with 1,3-diaminopropane (1.48 g, 1.66 mL, 20 mmol), and stirred for an additional 96 h at rt. 

The solvent was evaporated under reduced pressure and the residue was and the residue was 
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mixed with aqueous sodium hydroxide solution (xx mL, 0.2M) and filtered. The white solid 

product was washed with aqueous sodium hydroxide solution (50 mL, 0.2M), with water (2 x 

50 mL), with hydrochloric acid (2 x 25 mL, 1M) and dried in high vacuum to yield the desired 

product (7.2 g, 86%). 

 

Compound 10. Benzyl 3-(4-hydroxybenzamido)propanoate (10) was synthesized in 

analogy to standard procedures.143 β-Alanine benzylester p-toluenesulfonate (7.03 g, 20 

mmol), EDC (4.60 g, 24 mmol) and HOBt (3.35 g, 24.8 mmol) were dissolved in dry DCM (50 

mL). Subsequently, triethylamine (3.64 g, 5.0 mL, 36 mmol) was added and the mixture was 

stirred at rt for 42 h. The solution was diluted with 150 mL ethyl acetate and washed twice with 

50 mL saturated aqueous ammonium chloride solution in 150 ml water. The organic extract 

was dried with sodium sulfate and the solvent was evaporated. The solid crude product was 

mixed with hot chloroform (15 mL) and diethyl ether was added dropwise until cloudiness. 

Crystallization was induced in an ultrasonic bath. Diethyl ether (30 mL) was added and the 

solid was removed by filtration and dried in fine vacuum (6.9 g, 88%). 

 

Compound 11. 3-(4-Hydroxybenzamido)propanoic acid (11). 4 Benzyl 3-(4-

hydroxybenzamido) propanoate (10) (1.8 g, 4.7 mmol) and Lithium Hydroxide (10% loading, 

281 mg, 11.75 mmol) were suspended in THF with H2O (3:2, 50 mL). Reaction was left to stiff 

for 4 hours at rt. Subsequently, the suspension was filtered, and the solvent of the filtrate was 

evaporated under reduced pressure yielding the pure desired product (1.40 g, ~97%). 
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Compound 12. N,N'-(3,7,13,17-Tetraoxo-4,8,12,16-tetraazanonadecane-1,19-

diyl)bis(4-hydroxy benzamide), “closamide“ (12). tert-Butyl 3,3'-(propane-1,3-

diylbis(azanediyl))bis(3-oxopropane- 3,1-diyl)dicarbamate (9) (104 mg, 0.25 mmol) was 

dissolved in a solution of hydrogen chloride in dried methanol (1 mL, 5.2 M). The solution was 

treated in an ultrasonic bath at 50 °C for 2.25 h. The solvent was removed under reduced 

pressure, and the residue was mixed with dry DMF (2.5 mL). Triethylamine (61 mg, 84 µL, 0.6 

mmol), 3-(4-hydroxybenzamido)propanoic acid (6a) (110 mg, 0.53 mmol), HOBt (81 mg, 0.62 

mmol) and DCC (124 mg, 0.6 mmol) were added, and the mixture was stirred at rt for 21 h 

before the solvent was removed in vacuo. The residue was treated with chloroform (5 mL) in 

an ultrasonic bath and filtered. The white solid was reprecipitated from methanol yielding the 

desired product (91.5 mg, 61%). 

 

Compound 13. 4-(Cyclohexyloxy)benzoic acid (13) was prepared in accordance with 

a reported procedure.143 Methyl 4-hydroxybenzoate (15.2 g, 0.1 mol) and cyclohexene (80 mL) 

were mixed and boron trifluoride diethyl etherate (7.1 g, 6.3 mL, 0.05 mol) was added. The 

mixture was heated under reflux for 2 h and cooled down to rt. Ethyl acetate (50 mL) was added 

and the solution was washed with aqueous sodium hydroxide solution (3 x 100 mL, 5%) and 

once with water (100 mL). The organic layer was dried with sodium sulfate and the solvent was 

evaporated. The oily residue was mixed with water (50 mL), methanol (100 mL) and acetone 

(30 mL), sodium hydroxide was added (20 g, 0.5 mol) and the emulsion was heated under 

reflux for 3 h. The solvent was largely evaporated under reduced pressure and the residue was 
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treated with hydrochloric acid (120 mL, 18%). The precipitate formed was removed by filtration 

and recrystallized from glacial acetic acid yielding the desired product (14.77 g, 67%). 

 

Compound 14. Benzyl 3-(4-(cyclohexyloxy)benzamido)propanoate (14). 4-

(Cyclohexyloxy)benzoic acid (13) (4.63 g, 21 mmol), β-alanine benzylester p-toluenesulfonate 

(7.39 g, 20 mmol), HOBt (3.38 g, 25 mmol) and dicyclohexylcarbodiimide (DCC) (4.95 g, 24 

mmol) were suspended in dry DCM, and Hünig’s Base (3.87 g, 5.16 mL, 30 mmol) was slowly 

added. The mixture was stirred at rt for 18 h, and the solvent was removed under reduced 

pressure. The residue was mixed with ethyl acetate, washed twice with hydrochloric acid (50 

mL, 1M) and once with aqueous sodium hydroxide solution (50 mL, 0.2 M), dried with sodium 

sulfate, and the solvent was evaporated. The oily residue was purified by flash chromatography 

(cyclohexane : ethyl acetate = 4 : 1) yielding the desired product as a colorless oil, which 

crystallized within several hours (7.3 g, 96%). 

 

Compound 15. 3-(4-(Cyclohexyloxy)benzamido)propanoic acid (15). Benzyl 3-(4-

(cyclohexyloxy)- benzamido)propanoate (14) (2.67 g, 7 mmol) and and Lithium Hydroxide (10% 

loading, 281 mg, 11.75 mmol) were suspended in THF with H2O (3:2, 50 mL). Reaction was 

left to stiff for 4 hours at rt. The mixture was filtered and the solvent of the filtrate was evaporated 

(2.06 g, >99%). 

 



 

  106 

Compound 16. N,N'-(3,7,13,17-Tetraoxo-4,8,12,16-tetraazanonadecane-1,19-

diyl)bis(4-(cyclohexyl- oxy)benzamide), “Chx2closamide“ (16). tert-Butyl 3,3'-(propane-1,3-

diylbis(azanediyl))bis- (3-oxopropane-3,1-diyl)dicarbamate (9) (208 mg, 0.5 mmol) was 

dissolved in dry dioxane (5 mL), and a solution of hydrogen chloride in dioxane (5 mL, 3.4M) 

was added. The mixture was sonicated for 1 h at 50 °C. Subsequently, the suspension was 

diluted with dry methanol (5 mL) and sonicated for further 2 h at 50 °C. The solvent was 

removed at low pressure and the residue was mixed with dry DMF (20 mL). Hünig’s Base (161 

mg, 215 µl, 1.25 mmol), 3-(4-(cyclohexyloxy)benzamido)-propanoic acid (15) (306 mg, 1.05 

mmol), HOBt (162 mg, 1.24 mmol) and DCC (230 mg, 1.20 mmol) were added. After stirring at 

30 °C for 68 h, the solvent was evaporated in fine vacuum and the residue was treated with 

ethyl acetate (10 mL) in an ultrasonic bath and centrifugated. The precipitate was washed once 

with aqueous hydrochloric acid (25 mL, 1M) and twice with ethyl acetate (10 mL) by sonication 

and subsequent centrifugation. The white solid was dried in fine vacuum to yield the desired 

product (338 mg,   89%). 

 

Compound 17. N,N'-(3,7,13,17-Tetrathioxo-4,8,12,16-tetraazanonadecane-1,19-

diyl)bis(4-(cyclohexyl- oxy)benzothioamide), “Chx2closthioamide” (17). Chx2closamide (16) 

(38.1 mg, 50 µmol) and Lawesson’s Reagent (121.4 mg, 300 µmol) were suspended in dry 

pyridine (1 mL) and stirred in a closed vial for 23 h at 100 °C. The solvent was removed under 

reduced pressure and the residue was mixed with ethyl acetate (10 mL), washed twice with 

aqueous sodium hydroxide solution (10 mL, 1M), and twice with hydrochloric acid (10 mL, 1M). 

The organic layer was dried with sodium sulfate and the solvent was evaporated yielding the 

desired product in good purity (41.3 mg, 96%). (The substance could further be purified by 

open column chromatography (chloroform : methanol = 9 : 1, Rf = 0.5)). 
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Compound 18. N,N'-(3,7,13,17-Tetrathioxo-4,8,12,16-tetraazanonadecane-1,19-

diyl)bis(4-hydroxy- benzothioamide), “closthioamide” (18).  

Chx2closthioamide (17) (50.0 mg, 58.2 µmol) was dissolved in trifluoroacetic acid (TFA) (500 

µL) at 0 °C, and a mixture of trifluoromethanesulfonic acid in TFA (500 µL, 2M) was added 

dropwise. The mixture was stirred for 12 minutes at 0 °C under continuous TLC monitoring. 

The reaction was rapidly quenched by adding diluted aqueous sodium bicarbonate solution (8 

mL) and the product was extracted with ethyl acetate. The organic layer was washed with 

diluted brine (11 mL) and aqueous sodium bicarbonate solution (3 x 10 mL), dried with sodium 

sulfate and the solvent was removed under reduced pressure to yield the desired product in 

good purity (37.5 mg, 93%). The crude product could further be purified by column 

chromatography (chloroform : methanol = 9 :1, Rf = 0.4) or by preparative HPLC obtaining 

highest purity. 
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Epilogue 

Having experimented in with both physical and virtual screening efforts for the 

discovery of natural product - target - disease associations, I feel encouraged to speculate on 

the future direction of natural products drug discovery. Large-scale collaborative efforts have 

connected world class experts in medicine, pharmacognosy, and numerous other fields to 

develop new-age screening methodologies to address human health concerns. These 

collaborations have brought together the advancements of cell-free and cell-based screening 

technologies, next-generative compound libraries, and cutting-edge analytical techniques to 

provide rich information on bioactive natural products. Furthermore, the assembly of structural-

based virtual libraries of natural products coupled with rapidly developing computational 

screening technologies have provided drug discovery efforts with highly detailed structure-

activity relationship. At the current moment, the use of both of these approaches in parallel 

could yield powerful improvements on our abilities to rapidly interrogate thousands of natural 

products for their bioactivity while simultaneously aggregating chemical information provided 

by their structure. 

Our ability to characterize the bioactivity of natural products, with clinical relevance, is 

dependent on the structural elucidation – that of which presents a fairly time intensive 

bottleneck to drug discovery efforts. The current workflow for the structural elucidation of novel 

natural products incorporates the concurrent application of spectroscopic techniques that rely 

on inference of connectivity (NMR, HRMS, etc.). Although these techniques have produced a 

wealth of structural information for chemists in all fields, they often require high sample purity 

and do not produce unambiguous structural determination. Single crystal X-ray diffraction has 

monopolized chemists abilities to provide unequivocal structural information about position, 

orientation, connectivity, and placement of individual atoms and bonds within a given molecule. 

However, this technique has proven to be challenging for natural product application due to the 

amount of material necessary to form uniform crystals at the scale required for diffraction. A 

development in the utilization of the electron cry-microscopy (cryoEM) method microcrystal 
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electron diffraction (MicroED) presents a promising opportunity for natural product chemists to 

produce unambiguous structural determination – especially for the metabolites isolated in low 

yields, possessing multiple quaternary centers, or that are simply too difficult to purify. 

With the recent development in our ability to produce unambiguous structural 

characterizations of natural products, I can envision the creation of structural database of NPs 

that is akin to the PDB. Employing such a database with the ever-evolving capabilities of 

machine learning algorithms and cheminformatic techniques may lay the foundation for the 

next generation of natural product screening. Lastly, associating the learned chemical 

descriptors of a given natural product in three-dimensional space with its relative bioactivity 

coud potentially provide unrivaled virtual screening capabilities for the field of pharmacognosy. 

Nevertheless, the future of natural products chemistry continues to look bright, and I am excited 

to see what the next couple of decades may provide.
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NMR Tables and Spectra by Molecule 

Ikarugamycin (1) 

 

Table 2.1 1H (800 MHz) and 13C (800 MHz) spectroscopic data of 1.	

Position :H, Mult (J in Hz) :C, 
Mult Position 	

:H, Mult (J in Hz) 
:C, 
Mult 

1 0.98, t (7.0) 13.28 17 3.95, br s 61.32 

2 1.41, m; 1.51, m 21.63 NH-18 6.15, br s - 

3 1.62, m 47.72 19 - 173.98 

4 1.42, m 46.97 20 - 100.38 

5 5.99, d (10.0) 131.59 21 - 195.81 

6 5.74, dt 128.07 22 - 175.51 

7 2.56, m 42.92 23 7.19, d (15.4) 122.18 

8 1.20, m 48.3 24 6.83, dd (15.4, 10.6) 152.86 

9 2.44, d (10.6); 3.52, m 25.33 25 2.57, m 49.51 

10 6.11, td 141.13 26 1.29, m; 2.18, m 36.71 

11 5.87, d (10.6) 123.98 27 2.12, m 41.76 

12 - 166.31 28 1.62, m 48.6 

NH-13 5.92, br s - 29 0.74, ddd (12.0, 12.0, 6.8); 2.14, m 38.46 

14 2.68, s; 3.74, br s 38.87 30 2.31, ddd (7.6, 7.6, 7.6) 33.05 

15 1.29, m; 1.63, m 21.1 31 0.92, d (7.2) 17.71 

16 1.87, m; 2.07, m 27.67    
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Capsimycin D (2) 

 

Table 2.2 1H (800 MHz) and 13C (800 MHz) spectroscopic data of 2. 

Position :H, Mult (J in Hz) :C, 
Mult Position :H, Mult  

(J in Hz) :C, Mult 

1 0.94, t (7.3) 12.8 17 3.88, dd (5.5, 2.1) 61.6 

2 1.35, m 21.2 NH-18 -  

3 1.76, d (3.3) 44.7 19  173.65 

4 1.77, m 47 20  100.8 

5 3.13, dd (3.8, 2.0) 57.7 21  197.1 

6 2.89, d (3.8) 53.5 22  175.6 

7 2.07, m 47.3 23 7.13, d (15.4) 122.18 

8 2.14, m 45.6 24 6.83, dd (15.4, 10.6) 153 

9 2.53, dd (17.3, 3.0); 3.38, m 26.4 25 2.57, m 49.51 

10 6.06, ddd (11.5, 11.5, 3.4) 141.6 26 1.29, m; 2.13, m 35.6 

11 5.84, dd (11.5, 1.3) 123.7 27 2.07 m 42.6 

12  167.2 28 1.61, m 41.1 

NH-13 -  29 0.75, ddd (12.0, 12.0, 6.8); 
2.19, d (7.6) 38.6 

14 2.65, br t (11.2); 3.55, ddd 
(11.2, 4.9, 3.0) 39 30 2.21, m 32.6 

15 1.29, m; 1.63, m 21.1 31 0.92, d (6.8) 17.71 

16 1.18m, 2.05 m 27.5    
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Capsimycin B (3) 

 
 

Table 2.3 1H (800 MHz) and 13C (800 MHz) spectroscopic data of 3.	

Position :H, Mult (J in Hz) :C, 
Mult Position 	

:H, Mult (J in Hz) 
:C, 
Mult 

1 0.98, t (7.0) 13.28 17 3.95, br s 61.32 

2 1.41, m; 1.51, m 21.63 NH-18 6.15, br s - 

3 1.62, m 47.72 19 - 173.98 

4 1.42, m 46.97 20 - 100.38 

5 5.99, d (10.0) 131.59 21 - 195.86 

6 5.74, dt 128.07 22 - 175.51 

7 2.56, m 42.92 23 7.11, d (15.4) 122.68 

8 1.20, m 48.3 24 6.73, dd (15.4, 10.6) 151.86 

9 2.44, d (10.6); 3.52, m 25.33 25 2.57, m 49.51 

10 6.06, td 140.33 26 1.29, m; 2.18, m 36.71 

11 5.79, d (10.6) 124.18 27 2.12, m 41.76 

12 - 166.31 28 1.62, m 48.6 

NH-13 5.92, br s - 29 0.74, ddd (12.0, 12.0, 6.8); 2.14, m 38.46 

14 2.68, s; 3.74, br s 38.87 30 2.31, ddd (7.6, 7.6, 7.6) 33.05 

15 1.29, m; 1.63, m 21.1 31 0.92, d (7.2) 17.71 

16 1.87, m; 2.07, m 27.67    

Measured in CDCl3/CD3OD. : values given in ppm. 
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Capsimycin F (4) 

 
 

Table 2.4 1H (600 MHz) and 13C (100 MHz) spectroscopic data of 4.	

Position :H, Mult (J in Hz) :C, 
Mult Position 	

:H, Mult (J in Hz) 
:C, 
Mult 

1 0.96 (t, J = 7.3) 12.6 17 3.86, s 61.9 

2 1.39 m 21.7 NH-18 - - 

3 1.75 m 42.9 19 - 175.9 

4 1.48 m 46.7 20 - 101.1 

5 3.40 m 81.5 21 - 197.2 

6 4.09 m 67.8 22 - 173.0 

7 2.03 m 47.9 23 7.40 (d, J = 15.4) 122.4 

8 2.03 m 44.8 24 6.76 (dd, J = 15.4, 10.3) 152.3 

9 3.49 m, 2.47 m 26.7 25 2.38 m 50.3 

10 6.07 (td, J = 11.3, 3.8) 141.7 26 2.08 m, 1.25 m 35.3 

11 5.85 (d, J = 11.5) 123.7 27 1.55 m 42.0 

12 - 167.9 28 2.02 m 42.0 

NH-13 - - 29 2.16 m, 0.67 m 39.3 

14 3.45 m, 2.67 (t, J = 10.9) 39.0 30 2.17 m 32.8 

15 2.01 m, 1.97 m 21.0 31 0.90 (d, J = 6.4) 17.0 

16 2.01 m, 1.87 m 27.4 32  58.0 

Measured in CD3OD. : values given in ppm. 
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Capsimycin C 

 
 

Table 2.5 1H (600 MHz) and 13C (100 MHz) spectroscopic data of 5.	

Position :H, Mult (J in Hz) :C, 
Mult Position 	

:H, Mult (J in Hz) 
:C, 
Mult 

1 0.96 (t, J = 7.3) 12.4 17 3.85, m 61.7 

2 1.36 m 21.7 NH-18 - - 

3 1.78 m 42.9 19 - 175.9 

4 1.44 m 45.5 20 - 101.1 

5 3.85 m 71.6 21 - 197.3 

6 3.87 m 73.3 22 - 173.0 

7 1.99 m 47.9 23 7.13 (d, J = 15.4) 122.4 

8 2.08 m 44.5 24 6.79 (dd, J = 15.4, 10.3) 152.3 

9 3.47 m, 2.53 m 26.8 25 2.39 m 50.2 

10 6.09 (td, J =1 1.3, 3.9) 142.0 26 2.16 m, 1.23 m 35.8 

11 5.84 (d, J =11.3) 123.5 27 2.02 m 42.7 

12 - 168.0 28 1.60 m 41.2 

NH-13 - - 29 2.18 m, 0.70 m 39.3 

14 3.41 m, 2.67 m 39.0 30 2.21 m 33.1 

15 1.48 m, 1.19 m 21.1 31 0.91 (d, J=6.6) 17.0 

16 1.99 m, 1.86 m 27.4   
 

Measured in CD3OD. : values given in ppm. 
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Xlamenemycin C (6) 

 

Table 2.6 1H (600 MHz) and 13C (100 MHz) spectroscopic data of 6.	

Position :H, Mult (J in Hz) :C, 
Mult Position 	

:H, Mult (J in Hz) 
:C, 
Mult 

1 1.21 (d, J=6.2) 17.4 17 3.99, m 68.6 

2 3.49 m 77.5 NH-18 - - 

3 2.14 m 47.0 19 - 176.4 

4 2.05 m 44.2 20 - 100.4 

5 4.32 (t, J=2.9) 65.0 21 - 194.0 

6 4.11 s 73.4 22 - 174.4 

7 2.10 m 47.3 23 7.09 (d, J=15.4) 122.4 

8 2.15 m 45.9 24 6.79 (dd, J=15.4, 10.3) 151.9 

9 3.63 m, 2.41 m 26.0 25 2.36 m 49.9 

10 6.09 (td, J = 11.2, 2.9) 140.8 26 2.10 m, 1.31 m 35.4 

11 5.84 (d, J = 11.7) 123.2 27 2.05 m 41.3 

12 - 167.8 28 2.09 m 42.2 

NH-13 - - 29 2.10 m; 0.79 (dd, J=20.6, 11.3) 39.5 

14 3.44 m, 2.83 (t, J = 11.8) 37.2 30 2.24 m 34.1 

15 1.53 m, 1.40 m 31.4 31 1.04 (d, J=7.1) 16.5 

16 3.97 m 71.5 32 3.31 s (overlap) 54.5 
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Capsimycin E (8) 

 

Table 2.8 1H (800 MHz) and 13C (800 MHz) spectroscopic data of 8.	

Position :H, Mult (J in Hz) :C, 
Mult Position 	

:H, Mult (J in Hz) 
:C, 
Mult 

1 1.22 (d, J = 6.2) 17.8 17 3.82, br d (4.0) 62.8 

2 3.40 m 79.1 NH-18 - - 

3 2.05 m 46.1 19 - 176.3 

4 1.68 dd (11.2, 2.5) 44.5 20 - 102.3 

5 3.44 m (overlap) 83.1 21 - 197.8 

6 4.1 br 68.7 22 - 174.5 

7 2.02 m 49.3 23 7.23 (d, J = 15.4) 124.6 

8 2.01 m 45.9 24 6.71 (dd, J = 15.3, 9.6) 152.9 

9 2.46d (15.4), 3.48 m 27.4 25 2.34 m 49.4 

10 6.1 (td, J = 11.3, 3.5) 142.6 26 2.08 m, 1.25 m 36.6 

11 5.85 (d, J = 11.4) 124.5 27 1.92 m 42.6 

12 - 168.9 28 1.54 m 43.1 

NH-13 - - 29 2.04 m, 0.68 m 40.5 

14 2.64 br t (11.1), 3.40 m 38.9 30 2.16 m 34.8 

15 1.16 m, 1.52 m 22.3 31 1.01 (d, J = 7.1) 17.8 

16 1.82 m, 1.98 m 28.3 32/33 3.29 s, 3.41 s 55.6, 
58.4 
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Table 3.2 List of Natural Products databases cited in scientific literature since 2000. The list is ordered alphabetical order of the database name.163-336 

Database name NP type 

Estimated 

size (number 

of NP 

molecules 

with correct 

structures) 

Number of 

unique 

molecules in 

COCONUT 

is open 

(data can 

be freely 

browsed) 

requires a 

registration 

is 

updated 

is 

commercial 

Molecule structures 

easily retrievable 

(download link, data 

packed in one file, 

bulk download option) 

has extensive 

metadata 

(organism, 

tissue, geo info, 

...) 

3DMET generalistic 18248 x yes no yes no no no 

AfroCancer tm, plants, 
africa 390 365 yes NA no no NA no 

AfroDB tm, plants, 
africa 954 874 yes no no no yes no 

AfroMalariaDB tm, plants, 
africa 265 252 yes NA no no NA no 

Afrotryp 
tm, plants, 
drug-like, 
africa 

321 x unknown NA no no NA unknown 

Alkamid 
database 

plants, 
structure 300 x yes no no no no yes 

Ambinter-
Greenpharma 

natural 
compound library 

(GPNCL) 

generalistic, 
industrial >150000 x no yes yes yes no unknown 

AnalytiCon 
Discovery MEGx 

bacteria, 
plants, 
industrial 

5147 4908 yes yes yes no yes no 

AntiBase drug-like >40000 x no no no yes yes unknown 

AntiMarin marine, drug-
like >60000 x no unknown no yes unknown unknown 

ATBD (Animal 
Toxin Database) toxins 1000 x unknown unknown unknown no unknown unknown 

Ayurveda tm, asia 950 x no yes unknown unknown unknown unknown 
Berdy's Bioactive 
Natural Products 

Database 
generalistic x x no unknown no yes unknown unknown 

BiGG metabolites 7339 x yes no yes no NA yes 

Binding DB drug-like x x yes no no no yes yes 
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Table 3.2 List of Natural Products databases cited in scientific literature since 2000. The list is ordered alphabetical order of the database name.163-336 

Database name NP type 

Estimated 

size (number 

of NP 

molecules 

with correct 

structures) 

Number of 

unique 

molecules in 

COCONUT 

is open 

(data can 

be freely 

browsed) 

requires a 

registration 

is 

updated 

is 

commercial 

Molecule structures 

easily retrievable 

(download link, data 

packed in one file, 

bulk download option) 

has extensive 

metadata 

(organism, 

tissue, geo info, 

...) 

BIOFAQUIM plant, fungi, 
america 420 400 yes no yes no yes yes 

BioPhytMol drug-like, 
plants, asia 633 x yes no yes no no yes 

BitterDB food 654 631 yes no yes no no yes 

BRENDA metabolites x x yes no yes no yes yes 

CamMedNP tm, plants, 
africa >2500 x 

yes, but 
proprietar
y format 

no no no 
yes, but proprietary 
format (MDB readable 
by MOE) 

unknown 

Carotenoids 
Database structure 1174 991 yes no yes no yes yes 

CAS 
registry/SciFinde

r 
chemicals >300000 x no yes yes yes unknown unknown 

CEMTDD - 
Chinese Ethnic 

Minority 
Traditional Drug 

Database 

tm, plants, asia 4060 x yes no no no no yes 

CHDD (Chinese 
Traditional 

Medicinal Herbs 
database) 

tm, plants, asia >30000 x unknown unknown no unknown unknown unknown 

ChEBI chemicals 15736 14621 yes no yes no yes yes 

Chem-TCM plants, tm, asia >12000 x no yes no yes unknown unknown 

ChemBank chemicals x x yes no no no unknown unknown 

ChEMBL chemicals 1899 1581 yes no yes no yes no 
ChemBridge 

diversity 
datasets 

generalistic, 
industrial x x no yes no no unknown unknown 

ChemDB plants, asia >1000 x unknown unknown no no unknown unknown 
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Table 3.2 List of Natural Products databases cited in scientific literature since 2000. The list is ordered alphabetical order of the database name.163-336 

Database name NP type 

Estimated 

size (number 

of NP 

molecules 

with correct 

structures) 

Number of 

unique 

molecules in 

COCONUT 

is open 

(data can 

be freely 

browsed) 

requires a 

registration 

is 

updated 

is 

commercial 

Molecule structures 

easily retrievable 

(download link, data 

packed in one file, 

bulk download option) 

has extensive 

metadata 

(organism, 

tissue, geo info, 

...) 

ChemIDplus drug-like, 
toxins 9042 x yes no yes no no no 

ChemSpider chemicals 9732 9029 yes no yes no yes no 

CHMIS-C plants, tm, asia >8000 x yes no no no unknown unknown 

CMAUP plants 47645 20873 yes no no no yes yes 
CNPD (Chinese 

Natural Products 
Database) 

generalistic >57000 x unknown unknown no unknown unknown unknown 

ConMedNP plants, tm, 
africa 3118 2504 yes NA NA NA NA no 

CSLS/NCI 
(Chemical 

Structure Lookup 
Service) 

metabolites x x yes no no no yes no 

Database of 
Indonesian 

Medicinal Plants 
plants, tm, asia 6776 x yes no no no no no 

DESMSCI 
(Dragon 

Exploration 
System on Marin 

Sponge 
Compounds 
Interactions) 

marine x x yes no no no no unknown 

DFC (Dictionary 
of Food 

COmpounds) 
food >41000 x no yes yes yes yes unknown 

DMNP 
(Dictionary of 

Marine Natural 
Products) 

marine >30000 x no yes yes yes yes unknown 

DNP (Dictionary 
of Natural 

Products) by 
generalistic > 230000 x no yes yes yes yes unknown 
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Table 3.2 List of Natural Products databases cited in scientific literature since 2000. The list is ordered alphabetical order of the database name.163-336 

Database name NP type 

Estimated 

size (number 

of NP 

molecules 

with correct 

structures) 

Number of 

unique 

molecules in 

COCONUT 

is open 

(data can 

be freely 

browsed) 

requires a 

registration 

is 

updated 

is 

commercial 

Molecule structures 

easily retrievable 

(download link, data 

packed in one file, 

bulk download option) 

has extensive 

metadata 

(organism, 

tissue, geo info, 

...) 

Chapman and 
Hall (also known 

as 
CHEMnetBase) 
Drugbank NPs drug-like 2617 2617 yes no yes no yes yes 

eBasis food  x no yes yes yes unknown unknown 
ETCM 

(Encyclopedia of 
Traditional 

Chinese 
Medicine) 

tm, asia 7274 x yes no yes no no yes 

ETM-DB tm, plants, 
africa 1795 1653 yes no yes no no yes 

FooDB food 24215 22223 yes no yes no yes yes 

GNPS dereplication 7619 6708 yes no yes no yes no 
HIM (Herbal 

Ingridients in-
vivo Metabolism 

database) 

drug-like, tm, 
plants 1261 962 yes no no no unknown unknown 

HIT (Herbal 
Ingridients 

Targets) 

drug-like, tm, 
plants 524 472 yes no no no unknown unknown 

HMDB dereplication x x yes no yes no yes yes 

IMPPAT tm, plants, asia 9596 x yes no yes no no yes 

InflamNat drug-like 552 536 yes NA NA NA yes yes 
Indofine 

Chemical 
Company Inc. 

natural products 

generalistic, 
industrial 56 46 yes no  no yes no 

InPACdb drug-like, 
plants, asia 124 121 yes no no no yes unknown 
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Table 3.2 List of Natural Products databases cited in scientific literature since 2000. The list is ordered alphabetical order of the database name.163-336 

Database name NP type 

Estimated 

size (number 

of NP 

molecules 

with correct 

structures) 

Number of 

unique 

molecules in 

COCONUT 

is open 

(data can 

be freely 

browsed) 

requires a 

registration 

is 

updated 

is 

commercial 

Molecule structures 

easily retrievable 

(download link, data 

packed in one file, 

bulk download option) 

has extensive 

metadata 

(organism, 

tissue, geo info, 

...) 

InterBioScreen 
Ltd (IBS) 

generalistic, 
industrial 68350 67292 yes yes yes no yes no 

iSMART tm, plants, asia x x yes no yes no no no 

KEGG metabolites x x yes no yes no no no 

KNApSaCK plants 10265 8887 yes no yes no no yes 

Lichen Database fungi 249 156 yes no no no yes yes 
LOPAC1280 by 

Merck drug-like 1280 x no yes yes unknown unknown unknown 

MAPS database plants, asia x x unknown unknown no no unknown unknown 
Marine 

Compound 
Database 

(MCDB) 

marine 182 x yes no no no unknown unknown 

Marine Natural 
Product 

Database 
(MNPD) 

marine 6000 x yes no no unknown unknown unknown 

MarineLit marine >29000 x no yes yes yes yes unknown 

Massbank dereplication x x yes no yes no no no 

MedPServer plants, tm, 
asia, drug-like 1124 x yes no yes no no yes 

MetaCyc metabolites x x yes no yes no yes yes 

METLIN dereplication x x yes yes yes no no no 
Mitishamba 

database plants, africa 1102 1010 yes no no no no yes 

NADI tm, plants 3000 x no yes unknown yes unknown unknown 

NANPDB plants, africa 6832 3913 yes no yes no yes no 
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Table 3.2 List of Natural Products databases cited in scientific literature since 2000. The list is ordered alphabetical order of the database name.163-336 

Database name NP type 

Estimated 

size (number 

of NP 

molecules 

with correct 

structures) 

Number of 

unique 

molecules in 

COCONUT 

is open 

(data can 

be freely 

browsed) 

requires a 

registration 

is 

updated 

is 

commercial 

Molecule structures 

easily retrievable 

(download link, data 

packed in one file, 

bulk download option) 

has extensive 

metadata 

(organism, 

tissue, geo info, 

...) 

NaprAlert generalistic >155000 x no yes yes yes unknown yes 

NAPROC-13 dereplication >18000 x yes no yes no no no 

NCI DTP data drug-like 418 404 yes no no no yes no 

NeMedPlant tm, plants, asia 100 x yes no no no no yes 

NIST chemicals x x no no yes yes yes unknown 

NMRDATA dereplication x x unknown yes yes unknown unknown unknown 

NMRShiftDB dereplication 1875 x yes no yes no yes no 
Novel Antibiotics 

database drug-like 5430 x yes no no yes no yes 

NPACT plants, drug-
like 1573 1453 yes no yes no yes no 

NPASS 
plants, 
bacteria, 
metazoa, fungi 

30858 27479 yes no yes no yes yes 

NPAtlas bacteria, fungi 20035 18959 yes no yes no yes yes 

NPCARE 
plants, marine, 
bacteria, drug-
like 

1370 1364 yes no yes no yes 

no but contains 
impact of NPs on 
different cancer 
tissues and 
associated 
genes 

NPEdia generalistic 18016 16190 yes no no no no yes 

NPL (library) plants, drug-
like 814 x no NA NA NA NA unknown 

NuBBEDB plants, insects, 
america 2215 2022 yes no  no yes no 

Open Source 
Malaria drug-like 842 x yes no yes no yes no 
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Database name NP type 

Estimated 

size (number 

of NP 

molecules 

with correct 

structures) 

Number of 

unique 

molecules in 

COCONUT 

is open 

(data can 

be freely 

browsed) 

requires a 

registration 

is 

updated 

is 

commercial 

Molecule structures 

easily retrievable 

(download link, data 

packed in one file, 

bulk download option) 

has extensive 

metadata 

(organism, 

tissue, geo info, 

...) 

p-ANAPL (Pan-
African Natural 

Product Library ) 
plants, africa 538 467 yes no  no NA no 

PAMDB metabolites, 
bacteria x x yes no yes no yes yes 

Phenol-explorer food 862 681 yes no NA no yes yes 

Phytochemica plants, tm, asia 571 x yes no no no no yes 

PhytoHub food, plants 1200 x yes no yes no no yes 
Pi Chemicals 

System Natural 
Products 

generalistic, 
industrial 405 x yes no yes no no no 

Prestwick plants, 
industrial 320 x no yes yes yes unknwn unknown 

ProCarDB structure, 
bacteria 304 x yes no no no no yes 

PubChem chemicals 3529 2835 yes no yes no yes no 

REAXYS chemicals >220000 x no yes  yes unknown unknown 

ReSpect dereplication 4767 711 yes no no no yes yes 

SANCDB plants, africa 623 592 yes no yes no no yes 
Seaweed 

Metabolite 
Database 
(SWMD) 

marine 1110 423 yes no no no yes yes 

Specs Natural 
Products 

generalistic, 
industrial 745 745 yes yes no no unknwon no 

Spektraris NMR dereplication 248 242 yes no no no yes no 

StreptomeDB bacteria 6415 3610 yes no no no no yes 

Super Natural II generalistic 320670 235436 yes no no no no no 
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molecules in 

COCONUT 

is open 
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be freely 
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requires a 

registration 
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Molecule structures 
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has extensive 

metadata 
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tissue, geo info, 

...) 

Super Scent other 2100 x yes no no no no no 

Super Sweet food, 
metabolites 15000 x yes no no no no no 

TargetMol 
Natural 

Compound 
Library 

generalistic, 
industrial 1680 x no yes yes yes no unkown 

TC-MC tm, asia, plants >20000 x yes no yes no no yes 
TCMDB@Taiwa

n tm, asia, plants 58351 50891 yes no yes no yes no 

TCMID tm, asia, plants 12549 10572 yes no no no no yes (but difficutl 
to extract) 

TCMSP tm, asia, plants 29384 x yes no no no unknown unknown 

TIM tm, asia, plants 1829 x no unknown no no no unknown 

TIPdb asia, plants, 
drug-like 8656 7752 yes no no no yes no 

TMDB plants, 
metabolites 1393 x yes no no no unknown yes 

TPPT plants, toxins, 
europe 1583 1486 yes no no no yes yes 

TriForC plants 266 x yes no no no no yes 

UEFS plants, america 503 481 yes no no no yes no 
UNPD (Universal 
Natural Products 

Database) 
generalistic 213100 156984 yes no no no yes no 

VIETHERB plants, asia 10887 x yes unknown no no unknown unknown 

YaTCM tm, asia, plants 47696 x yes no yes no no no 
ZINC natural 

products 
catalogue 

generalistic 85198 67336 yes no yes no yes no 

174 



 

  175 

Table 3.3 Top scoring compounds in the NP Atlas with predicted antimicrobial activity. 
Natural Products 50uM Inhibition NPAID Molecular 

Weight 
Literature 
Bioactivity 

Thiazomycin 0.88276043 NPA000855 1435.55 TRUE 
Enniatin F 0.90372952 NPA000946 681.912 FAMILY 
Tolaasin C 0.91668656 NPA002448 2005.475 FALSE 
Sch 54445 0.94944679 NPA002511 597.02 TRUE 
Nocathiacin III 0.8570237 NPA004612 1268.298 TRUE 

Tolaasin A 0.85528483 NPA004692 1959.362 TRUE 
Scyptolin A 0.85230808 NPA004834 981.542 TRUE 
MJ347-81F4-B 0.89153915 NPA004941 1423.539 TRUE 
Isopyoverdin 0.90438383 NPA005819 1195.184 UNKNOWN 
Not named 0.95638429 NPA005907 1141.428 UNKNOWN 
Polymyxin E4 0.95669381 NPA006001 1141.428 FAMILY 
Precolibactin C 0.94074521 NPA006156 796.029 TRUE 
POH 2 0.93932198 NPA006221 1030.192 UNKNOWN 
Actinomycin Y1 0.85299864 NPA007759 1305.838 TRUE 
Antagonistic factor 0.92958705 NPA008055 1204.483 TRUE 
Actinomycin Z3 0.92574602 NPA008209 1319.865 FAMILY 
(+)-rugulosin A 0.89788688 NPA008436 542.496 TRUE 
Thienamycin 0.87884712 NPA008843 272.326 TRUE 
Precolibactin B 0.92184092 NPA008996 712.914 TRUE 
6-demethyltetracycline 0.91438579 NPA009270 430.413 FAMILY 
Polymyxin B5 0.94657051 NPA009889 1203.499 TRUE 
Polymyxin-P1 0.95743854 NPA010156 1191.444 TRUE 
Dactylocycline B 0.94511582 NPA010526 712.105 TRUE 
5-Hydroxy-7-chlortetracycline 0.98724271 NPA010649 494.884 FAMILY 
Tetracycline 0.91914074 NPA010761 444.44 TRUE 
Enterolysin A 0.87823657 NPA010873 1613.088 TRUE 
E. coli ferritin 0.88475053 NPA010924 1152.384 UNKNOWN 
Enterocin EJ97 0.91271102 NPA010953 1834.376 TRUE 
Plectosphaeroic acid B 0.91889298 NPA010992 792.852 UNKNOWN 
Cypemycin 0.8765226 NPA012286 2096.532 TRUE 
Plw-alpha 0.88969634 NPA012477 1798.19 FALSE 
Plantaricin W 0.94437841 NPA012512 1751.094 FALSE 
Gassericin B2 0.93412083 NPA012635 1032.233 FAMILY 
Not named 0.95998715 NPA012930 1155.455 UNKNOWN 
Polymyxin E7 0.95851634 NPA013003 1169.482 FAMIILY 
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Terramycin 0.97405366 NPA014607 460.439 TRUE 
MJ347-81F4-A 0.90775723 NPA014699 1437.566 TRUE 
Plectosphaeroic acid C 0.87970339 NPA014844 810.848 UNKNOWN 
NC0604 0.89455987 NPA014943 1511.664 TRUE 
Sporidesmin E 0.85439744 NPA015639 506.027 FAMILY 
Polymyxin Ile-E8 0.96373628 NPA015649 1183.509 TRUE 
Nocathiacin I 0.9194022 NPA016398 1437.566 TRUE 
Dactylocycline A 0.92815099 NPA017120 698.122 TRUE 
Polymyxin Nva-E2 0.96279448 NPA017349 1127.401 FAMILY 
Polymyxin Nva-E1 0.96265357 NPA017927 1141.428 FAMILY 
Porfiromycin 0.8962043 NPA018217 348.359 TRUE 
Polymyxin B6 0.93444857 NPA018392 1219.498 TRUE 
Leporizine C 0.90074278 NPA018659 589.692 UNKNOWN 
Thiazomycin E1 0.87389428 NPA019285 1254.4 FALSE 
Thiazomycin A 0.90039885 NPA019485 1449.577 TRUE 
Bleomycin A2 0.9244478 NPA020036 1415.576 TRUE 
Bleomycin B2 0.8900986 NPA020040 1425.53 TRUE 
Bleomycin A2'-b 0.92294955 NPA020041 1369.462 TRUE 
Putisolvin I 0.87089291 NPA020351 1380.691 FALSE 
Putisolvin II 0.88751653 NPA020352 1380.691 FALSE 
Mitomycin A 0.85054562 NPA020530 349.343 TRUE 
Mitomycin C 0.89814951 NPA020531 334.332 TRUE 
Actinoplanone A 0.8782621 NPA020793 584.965 TRUE 
Cleomycin B2 0.86025122 NPA021050 1437.541 TRUE 
Tallysomycin B 0.94876293 NPA021115 1586.683 TRUE 
Tallysomycin A 0.93939183 NPA021116 1714.858 TRUE 
Polymyxin S1 0.86964102 NPA021130 1178.401 FAMILY 
Bleomycin B1' 0.93940063 NPA021447 1312.366 TRUE 
Bleomycin A2'-C 0.85810379 NPA021448 1406.483 TRUE 
Bleomycin A2'-A 0.93672009 NPA021449 1383.489 TRUE 
Bleomycin demethyl A2 0.94856917 NPA021450 1400.541 TRUE 
Paenialvin A 0.8737903 NPA021780 1892.451 TRUE 
Paenialvin B 0.86614138 NPA021781 1876.452 TRUE 
Paenialvin C 0.86440064 NPA021782 1878.424 TRUE 
Paenialvin D 0.91274652 NPA021783 1924.493 TRUE 
Cerecidin A1 0.87626275 NPA024682 1988.542 TRUE 
Grisemycin  0.86647432 NPA024684 1833.235 FALSE 
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Figure 3.6 Results of virtual screen of NP Atlas for the identification of NPs with antimicrobial 

activity. 

 

 
Figure 3.7 Area Under the Curve Receiver Operating Characteristics Curve for DMPNN 

trained on Ecoli data set. 

 

 
Figure 4.12 Area Under the Curve Receiver Operating Characteristics Curve for DMPNN 

trained on AMU_sars_cov_2 data set. 
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Figure 4.13 Area Under the Curve Receiver Operating Characteristics Curve for 
DMPNN trained on PLpro data set. 
 

 
Figure 4.14 t-SNE of the training set (yellow), the natural products atlas (red), and the 

identified bioactive compound closthioamide (green). 
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Figure 4.15 t-SNE of the training set (yellow), the natural products atlas (red), and the 

identified bioactive compound closthioamide (green). 

 



 

  180 

Figure 4.16 t-SNE of the training set (yellow), the natural products atlas (red), and the 

identified bioactive compound closthioamide (green). 

 
Figure 4.17 t-SNE of the natural products atlas (red), hiv dataset (blue), and the broad 

repurposing library (green). 
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Figure 4.18 t-SNE of the natural products atlas (red), hiv dataset (blue), and 

closthioamide(green). 

 
Figure 4.19 t-SNE of the natural products atlas (red) and the hiv drug repository (blue). 
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Figure 4.20 t-SNE of the training set (yellow), the natural products atlas (red), and the 

identified bioactive compound closthioamide (green). 

 
Figure 4.21 t-SNE of the training set (yellow), the natural products atlas (red), and the 

identified bioactive compound closthioamide (green). 
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