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ABSTRACT

Motivation: While text mining technologies for biomedical research
have gained popularity as a way to take advantage of the explosive
growth of information in text form in biomedical papers, selecting
appropriate natural language processing (NLP) tools is still difficult
for researchers who are not familiar with recent advances in NLP. This
article provides a comparative evaluation of several state-of-the-art
natural language parsers, focusing on the task of extracting protein–
protein interaction (PPI) from biomedical papers. We measure how
each parser, and its output representation, contributes to accuracy
improvement when the parser is used as a component in a PPI
system.
Results: All the parsers attained improvements in accuracy of PPI
extraction. The levels of accuracy obtained with these different
parsers vary slightly, while differences in parsing speed are larger.
The best accuracy in this work was obtained when we combined
Miyao and Tsujii’s Enju parser and Charniak and Johnson’s reranking
parser, and the accuracy is better than the state-of-the-art results on
the same data.
Availability: The PPI extraction system used in this work
(AkanePPI) is available online at http://www-tsujii.is.s.u-tokyo.ac.jp/
downloads/downloads.cgi. The evaluated parsers are also available
online from each developer’s site.
Contact: yusuke@is.s.u-tokyo.ac.jp

1 INTRODUCTION
Text mining has recently emerged as a way to harvest specific
pieces of information from the rapidly growing body of biomedical
literature. While the use of shallow text processing techniques is
now common for tasks such as the identification of proteins and
other entities in biomedical papers (Kim et al., 2004; Yeh et al.,
2005), researchers are now addressing more complex tasks, such
as the identification of protein–protein interactions (PPI), using
advanced natural language parsing approaches that analyze the
syntactic and semantic structure of text (Bunescu et al., 2005;
Hirschman et al., 2007; Nédellec, 2005; Pyysalo et al., 2007a).
However, parsing natural language is an intricate endeavor, where
a wide range of possible approaches and open research questions
exist, making the choice of a natural language parsing component

∗To whom correspondence should be addressed.

a burden for researchers without close familiarity with current
trends in natural language processing (NLP). Through a series
of experiments, we investigate different aspects of state-of-the-art
parsing approaches that affect practical performance of information
extraction in biomedical papers. Although accuracy figures for
different parsers are commonly reported in the NLP literature, such
figures are usually computed using artificial metrics that, while
useful for parser development, may not be indicative of overall task
performance when the parser is used as a component in a biomedical
text mining system.

Due to the creation of biomedical treebanks (Kulick et al., 2004;
Tateisi et al., 2005) and rapid progress of data-driven parsers (Nivre
et al., 2007), there are now fast, robust and accurate syntactic
parsers for text in the biomedical domain. Recent research shows
that the accuracy for parsing of biomedical text is now in the
80–90% range (Clegg and Shepherd, 2007; Pyysalo et al., 2007b;
Sagae et al., 2008a). However, to be of interest outside the parsing
or computational linguistics communities, such accurate syntactic
analysis must be shown to improve the performance of overall
systems that perform meaningful tasks with biomedical data. This
has started to happen, for example, in the task of automatically
identifying PPI described in scientific papers. Intuitively, syntactic
relationships between words should be valuable in determining
possible interactions between entities present in text. Recent PPI
extraction systems have confirmed this intuition (Airola et al., 2008;
Erkan et al., 2007; Fundel et al., 2007; Katrenko and Adriaans, 2006;
Kim et al., 2008; Miyao et al., 2008; Sætre et al., 2007; Sagae et al.,
2008b).

While, it is now relatively clear that syntactic parsing is useful
in information extraction from the large natural language corpora
in bioinformatics, several questions remain regarding the benefits
and costs of different parsing approaches and different syntactic
representations: how syntactic analyses should be used in a practical
setting, whether further improvements in parsing technologies will
result in further improvements in practical systems, and how much
effort should be spent on comparing and benchmarking parsers
for biomedical data. We attempt to shed some light on these
matters by performing a comparative evaluation of state-of-the-
art syntactic parsers based on different frameworks: dependency
parsing, phrase structure parsing and deep parsing. Our approach to
parser evaluation is to measure accuracy improvement in the task of
identifying PPI information in biomedical papers, by incorporating
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Contributions of natural language parsers to PPI

the output of different parsers as statistical features in a machine
learning classifier (Erkan et al., 2007; Katrenko and Adriaans, 2006;
Sætre et al., 2007; Yakushiji et al., 2005). PPI identification is
an informative task for parser evaluation, since it is a biomedical
information extraction application of practical utility, and because
recent studies have shown the effectiveness of syntactic parsing in
this task. Since our evaluation method is applicable to any parser
output, and is grounded in a real application, it allows for a fair
comparison of syntactic parsers based on different frameworks. In
addition, we present experiments that show the relationship of the
accuracy of parsers and the accuracy of the larger PPI system that
includes the parser. We investigate the effects of domain-specific
treebank size (the amount of available manually annotated training
data for syntactic parsers) and final system performance, and obtain
results that should be informative to researchers in bioinformatics
who deal with natural language, as well as to members of the parsing
community who are interested in the practical impact of parsing
research in biomedical applications.

2 NATURAL LANGUAGE PARSERS
This article focuses on eight representative parsers that are
classified into three parsing frameworks: dependency parsing,
phrase structure parsing and deep parsing.

2.1 Dependency parsing
Dependency parsing has recently been extensively studied in parsing
research, partly because the shared tasks of CoNLL 2006 and 2007
focused on data-driven dependency parsing (Nivre et al., 2007).
The aim of dependency parsing is to compute a tree structure
of a sentence, where nodes are words and edges represent the
relationships among the words.

Figure 1 shows a parsing result for the sentence ‘IL-8 recognizes
and activates CXCR1’, in the dependency tree format used in
the 2006 and 2007 CoNLL shared tasks on dependency parsing
(which we call the ‘CoNLL’ format). An advantage of dependency
parsing is that dependency trees are a reasonable approximation
of the semantics of sentences, and are readily usable in NLP
applications. For example, the subject and the object of ‘recognizes’
are explicitly represented in this format. Furthermore, the efficiency
of dependency parsing compares favorably to phrase structure
parsing or deep parsing. While a number of methods have been
proposed for dependency parsing, this article focuses on the
following two representative parsers.

MST: McDonald and Pereira’s (2006) dependency parser
(http://sourceforge.net/projects/mstparser) based on Eisner’s (1996)
algorithm for projective dependency parsing.

KSDEP: Sagae and Tsujii’s (2007) dependency parser, (http://
www.cs.cmu.edu/˜sagae/parser/), based on a probabilistic shift-
reduce algorithm.

2.2 Phrase structure parsing
Owing largely to the Penn Treebank (Marcus et al., 1994), the
mainstream of data-driven parsing research has been dedicated to
phrase structure parsing. These parsers output Penn Treebank-style
phrase structure trees (which we call the ‘PTB’ format), as shown
in Figure 2. While most state-of-the-art phrase structure parsers
are based on probabilistic context-free grammars (PCFGs), the

Fig. 1. CoNLL-X dependency tree (CoNLL).

Fig. 2. Penn Treebank-style phrase structure tree (PTB).

parameterization of the probabilistic model of each parser varies.
In this work, we chose the following four parsers.

NO-RERANK: Charniak’s (2000) parser, based on a lexicalized
PCFG model of phrase structure trees (http://bllip.cs.brown.edu/
resources.shtml). The probabilities of CFG rules are parameterized
on carefully hand-tuned information, such as lexical heads and
symbols of ancestor/sibling nodes.

RERANK: Charniak and Johnson’s (2005) reranking parser. The
reranker of this parser receives n-best1 parse results from NO-
RERANK, and selects the most likely parse result by using a
maximum entropy model with manually engineered features.

BERKELEY: Berkeley’s parser (Petrov and Klein, 2007) (http://
nlp.cs.berkeley.edu/Main.html#Parsing). The parameterization of
this parser is optimized automatically by assigning latent variables to
each non-terminal node and estimating the parameters of the latent
variables by the expectation maximization algorithm.

STANFORD: Stanford’s unlexicalized parser (Klein and Manning,
2003) (http://nlp.stanford.edu/software/lex-parser.shtml). Unlike
NO-RERANK, probabilities are not parameterized on lexical heads.

Since the PTB format does not directly represent the grammatical
functions between words, it is difficult to use it directly in
applications. In Figure 2, it is not clear how the syntactic arguments
(e.g. the subject and the object) of verbs are identified. An
ordinary solution is the conversion of PTB trees into some form
of dependency-based representations. This article adopts three
representations that can be converted from PTB trees.

CoNLL: while this representation is the default output for
dependency parsers, it can also be obtained from the PTB format
by applying constituent-to-dependency conversion (http://nlp.cs.
lth.se/pennconverter/). (Johansson and Nugues, 2007). It should
be noted, however, that this conversion cannot work perfectly
with automatic parsing, because the conversion program relies on
additional information (function tags and empty categories) of the
original Penn Treebank, which are not produced by the parsers listed
above.

HD: dependency trees of syntactic heads (Fig. 3). We first
determine lexical heads of non-terminal nodes by using Collins’head
detection algorithm (http://www.cis.upenn.edu/˜dbikel/software.
html) (Bikel, 2004). We then convert lexicalized trees into

1We set n=50 in this article.
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Fig. 3. Head dependencies (HD).

Fig. 4. Stanford dependencies (SD).

dependencies between lexical heads. This format can represent
dependency relations similar to CoNLL, although relation types
are not sufficient to identify important grammatical relations. For
example, in Figure 3, the subject and the object relations are assigned
the same relation types, NP, and are not distinguishable.

SD: the Stanford dependency format (Fig. 4). This format was
originally proposed for extracting dependency relations useful for
practical applications (de Marneffe et al., 2006). A program to
convert PTB is attached to the Stanford parser. Although the concept
looks similar to CoNLL, this representation does not necessarily
form a tree structure, and is designed to express more fine-
grained relations, such as apposition. In Figure 4, ‘nsubj’ and ‘dobj’
indicate the nominal subject and direct object, which are more fine-
grained relation types than CoNLL dependencies. Research groups
for biomedical NLP recently adopted this representation for corpus
annotation (Pyysalo et al., 2007a) and parser evaluation (Clegg and
Shepherd, 2007; Pyysalo et al., 2007b).

2.3 Deep parsing
Deep parsing aims to compute in-depth syntactic and semantic
structures based on syntactic theories, such as HPSG (Pollard and
Sag, 1994). Recent research developments have allowed for efficient
and robust deep parsing of real-world texts (Miyao and Tsujii,
2008). Deep parsers can compute theory-specific syntactic/semantic
structures, and predicate argument structures (PAS) that are often
used in parser evaluation and applications. PAS is a graph structure
that represents the relations among words (Fig. 5). The concept is
therefore similar to CoNLL dependencies, though PAS expresses
deeper relations, such as long distance dependencies, and may
include shared structures. For example, the subject (ARG1) and the
object (ARG2) of ‘activates’ are explicitly represented in Figure 5,
while not in the other formats.

In this work, we used two variants of the Enju parser (Miyao and
Tsujii, 2008) (http://www-tsujii.is.s.u-tokyo.ac.jp/enju/).

ENJU: an HPSG-based parser derived from the Penn Treebank.
ENJU-GENIA: a variant of ENJU, which is adapted to biomedical

texts, by the method of Hara et al. (2007).
In addition to the PAS format, the PTB format can also be created

from Enju’s output by using tree structure matching (Matsuzaki and
Tsujii, 2008), but this conversion is imperfect because the forms
of PTB and Enju’s output are not entirely compatible. We can also
obtain the CoNLL, HD and SD formats, because they can be converted
from PTB. That is, five parse representations are available for the
Enju parser.

Fig. 5. Predicate argument structure (PAS).

This   study   demonstrates   that   IL-8   recognizes  and 
activates  CXCR1,  CXCR2,  and  the Duffy antigen by 
distinct mechanisms.

The molar ratio of serum retinol-binding protein (RBP) 
to  transthyretin (TTR) is  not  useful  to assess vitamin 
A status during infection in hospitalised children.

Fig. 6. Sentences including protein names.

3 METHODS
In our approach to parser evaluation, we measure the accuracy of a PPI
extraction system, in which the parser output is embedded as statistical
features of a machine learning classifier. We run the classifier with features
of every possible combination of a parser and a parse representation, by
applying conversions between representations when necessary.

3.1 PPI extraction
PPI extraction is an information extraction task to identify protein pairs that
are mentioned as interacting in biomedical papers. Because the number of
biomedical papers is growing rapidly, it is becoming difficult for biomedical
researchers to find all papers relevant to their research; thus, there is an
emerging need for reliable text mining technologies, such as automatic PPI
extraction from texts.

Figure 6 shows two sentences that include protein names: the former
sentence mentions a protein interaction, while the latter does not. Given
a protein pair, PPI extraction is a task of binary classification; for example,
〈IL-8, CXCR1〉 is a positive example, and 〈RBP, TTR〉 is a negative example.
Recent studies on PPI extraction demonstrated that syntactic/semantic
relationships between target proteins are effective features for machine
learning classifiers (Erkan et al., 2007; Katrenko and Adriaans, 2006; Sætre
et al., 2007). For the protein pair IL-8 and CXCR1 in Figure 6, a dependency
parser outputs a dependency tree; partly shown in Figure 1. From this
dependency tree, we can extract the dependency path shown in Figure 7,
which appears to be a strong clue in knowing that these proteins are
mentioned as interacting.

We follow the PPI extraction method of Sætre et al. (2007), which is
based on support vector machines with SubSet Tree Kernels (Moschitti,
2006), while using different parsers and parse representations. Two types of
features are incorporated in the classifier. The first is bag-of-words features,
which are regarded as a strong baseline for PPI extraction systems. Lemmas
of words before, between and after the pair of target proteins are included,
and a linear kernel is used for these features. This kernel is included in all our
models. The other type of feature is parser output features. For dependency-
based parse representations, a dependency path is encoded as a flat tree as
depicted in Figure 8 (prefix ‘r’ denotes reverse relations). Because a tree
kernel measures the similarity of trees by counting common subtrees, it is
expected that the system finds effective subsequences of dependency paths.
For the PTB representation, we directly encode phrase structure trees.

We also measure the accuracy obtained by the ensemble of two
parsers/representations. This experiment indicates differences or overlaps in
the information conveyed by two different parsers or parse representations.
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ENTITY1(IL-8)
SBJ

recognizes
OBJ

ENTITY2(CXCR1) 

Fig. 7. Dependency path.

(dep_path (SBJ (ENTITY1 recognizes))
(rOBJ (recognizes ENTITY2)))

Fig. 8. Tree representation of a dependency path.

3.2 Conversion of parser output representations
It is widely believed that the choice of the representation format for parser
output may greatly affect the performance of applications, although this
has not been extensively investigated. We should, therefore, evaluate the
parser performance in multiple parse representations. In this article, we
create multiple parse representations by converting each parser’s default
output into other representations when possible. This experiment can also
be considered to be a comparative evaluation of parse representations, thus
providing an indication for selecting an appropriate parse representation for
similar information extraction and text mining tasks.

Table 1 lists the formats for parser output used in this work, and Figure 9
shows our scheme for representation conversion. Although only CoNLL is
available for dependency parsers, we can create four representations for the
phrase structure parsers, and five for the deep parsers. Dotted arrows in
Figure 9 indicate imperfect conversion, in which the conversion inherently
introduces errors, and may decrease the accuracy. We should, therefore, take
caution when comparing the results obtained by imperfect conversion.

3.3 Parser retraining with GENIA
The domain of our target text is different from the Wall Street Journal (WSJ)
portion of the Penn Treebank, which is the de facto standard data for parser
training. Because all the parsers listed in Section 2 were originally trained
with the WSJ data (except for ENJU-GENIA), we retrain the parsers with the
GENIATreebank2 (8127 sentences), which is a treebank of biomedical paper
abstracts annotated according to the guideline of the Penn Treebank (Tateisi
et al., 2005). Since all these parsers have programs for training with a PTB-
style treebank, we use those programs for retraining with default parameter
settings.

In preliminary experiments, we found that dependency parsers attain
higher dependency accuracy when trained only with GENIA. We therefore
use only GENIA as the training data for the retraining of dependency parsers.
For the other parsers, we use the concatenation of WSJ and GENIA for the
retraining, while the reranker of RERANK was not retrained due to the high
cost. Also for the training of ENJU-GENIA, the same set of the WSJ and
GENIA was used.

Since all the parsers except NO-RERANK and RERANK require an
external POS tagger, geniatagger (Tsuruoka et al., 2005) is used with
these parsers.

3.4 Evaluating the relationships between parser
accuracy, treebank size and PPI accuracy

In addition to investigating the impact of different parsers and different
syntactic representations on PPI identification accuracy, we also examine
how the parse accuracy of a single parser affects the PPI accuracy. To this
end, we retrain one of the parsers (KSDEP) with varying amounts of training
text, resulting in several different versions of the same parser, having different
levels of accuracy. This allows us to establish a relationship between the
accuracy of the parser and the amount of training data used to create the

2The domains of GENIA and AIMed are not exactly the same, because they
are collected independently from PubMed.

Table 1. Parser output representations

CoNLL Dependency trees used in CoNLL 2006 and 2007
PTB Penn Treebank-style phrase structure trees
HD Dependency trees of lexical heads
SD Stanford dependency graphs
PAS Predicate argument structures

Fig. 9. Conversion of parser output representations.

parser. When the parser is used as a component in the PPI identification
system, we can determine the relationship between the size of the dataset
used to train the parser, the parser’s accuracy, and the overall PPI system’s
accuracy. This provides a rough guide for what level of accuracy to expect
in the PPI task when a new parser is used, as long as the accuracy of the
parser is known.

4 RESULTS

4.1 Data
In the following experiments, we used AIMed (Bunescu and
Mooney, 2004), which is a popular dataset for the evaluation
of PPI extraction systems. The data consists of 225 biomedical
paper abstracts (1970 sentences), which are sentence-split, tokenized
and annotated with proteins and PPIs. We use the gold protein
annotations given in the data, and multi-word protein names are
concatenated and treated as single words. The accuracy is measured
by abstract-wise 10-fold cross-validation and the one-answer-per-
occurrence criterion (Giuliano et al., 2006). A prediction threshold
for the support vector machine (SVM) is moved to adjust the balance
of precision and recall, and the maximum f -score is reported for each
experiment.

4.2 Comparison of accuracy improvements
Table 2 shows the time used by each parser for parsing the entire
AIMed corpus, and the PPI accuracy obtained by using the output
from each parser with different parse representation. The row
‘baseline’ indicates the accuracy obtained with bag-of-words
features only.

Table 2 clearly shows that all the parsers achieved better results
than the baseline, demonstrating contributions of these parsers to
PPI extraction. Differences among parsers are relatively smaller than
the differences from the baseline, proving that dependency parsing,
phrase structure parsing and deep parsing perform equally well in
this task. Among these parsers, KSDEP and ENJU-GENIA performed
better than the other parsers, and NO-RERANK, RERANK and ENJU
come next.

While the accuracy level of PPI extraction is similar, parsing
speed differs considerably for different parsing frameworks. The
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Table 2. Parsing time and accuracy (precision/recall/f -score) on the PPI task

Time (s) CoNLL PTB HD SD PAS

MST 425 49.1/65.6/55.9 N/A N/A N/A N/A
KSDEP 111 51.6/67.5/58.3 N/A N/A N/A N/A

NO-RERANK 1372 53.9/60.3/56.8 51.3/54.9/52.8 53.1/60.2/56.3 54.6/58.1/56.2 N/A
RERANK 2125 52.8/61.5/56.6 48.3/58.0/52.6 52.1/60.3/55.7 53.0/61.1/56.7 N/A
BERKELEY 1198 52.7/60.3/56.0 48.0/59.9/53.1 54.9/54.6/54.6 50.5/63.2/55.9 N/A
STANFORD 1645 49.3/62.8/55.1 44.5/64.7/52.5 49.0/62.0/54.5 54.6/57.5/55.8 N/A

ENJU 727 54.4/59.7/56.7 48.3/60.6/53.6 56.7/55.6/56.0 54.4/59.3/56.6 52.0/63.8/57.2
ENJU-GENIA 821 56.4/57.4/56.7 46.5/63.9/53.7 53.4/60.2/56.4 55.2/58.3/56.5 57.5/59.8/58.4

Baseline 48.2/54.9/51.1

Table 3. Results of parser/representation ensemble (f -score)

RERANK ENJU
CoNLL HD SD CoNLL HD SD PAS

KSDEP CoNLL 58.5 (+0.2) 57.1 (−1.2) 58.4 (+0.1) 58.5 (+0.2) 58.0 (−0.3) 59.1 (+0.8) 59.0 (+0.7)

RERANK CoNLL 56.7 (+0.1) 57.1 (+0.4) 58.3 (+1.6) 57.3 (+0.7) 58.7 (+2.1) 59.5 (+2.3)
HD 56.8 (+0.1) 57.2 (+0.5) 56.5 (+0.5) 56.8 (+0.2) 57.6 (+0.4)
SD 58.3 (+1.6) 58.3 (+1.6) 56.9 (+0.2) 58.6 (+1.4)

ENJU CoNLL 57.0 (+0.3) 57.2 (+0.5) 58.4 (+1.2)
HD 57.1 (+0.5) 58.1 (+0.9)
SD 58.3 (+1.1)

dependency parsers are much faster than the other parsers, while the
phrase structure parsers are relatively slower, and the deep parsers
are in between. It is noteworthy that the dependency parsers achieved
comparable accuracy with the other parsers, while they are more
efficient.

The experimental results also demonstrate that the PTB format is
worse than the other representations with respect to contributions
to accuracy improvements. Although phrase structure parsers are
popular in the NLP community, dependency-based formats are
shown to contribute more to this task, probably because they
express syntactic/semantic relations among words more explicitly,
as shown in Figure 7. The conversion from PTB to dependency-
based representations is, therefore, desirable for this task, although
it is possible that better results might be obtained with PTB
if a different feature extraction mechanism is used. Among
dependency-based representations, HD is slightly worse, indicating
that surface syntactic relations are insufficient for this task. It
should be noted that CoNLL attained competitive or superior
performance to HD and SD in spite of the imperfect conversion
from PTB to CoNLL. This might be a reason for the high
performances of the dependency parsers that directly compute
CoNLL dependencies. The results for ENJU-CoNLL and ENJU-
PAS show that PAS contributes to a larger accuracy improvement
than the CoNLL representation. This result implies that, deep
relations, such as long-distance dependencies, might contribute to
accuracy improvements, although this does not necessarily mean the
superiority of PAS to CoNLL, because two imperfect conversions,
i.e. PAS-to-PTB and PTB-to-CoNLL, are applied for creating ENJU-
CoNLL.

4.3 Parser ensemble results
Table 3 shows the accuracy obtained with ensembles of two
parsers/representations (excluding the PTB format). Bracketed
figures denote improvements from the accuracy with only the single
best (of the two) parser/representation used. The results show that the
task accuracy improves when using a double parser/representation
ensemble. Interestingly, the accuracy improvements are observed
even for ensembles of different representations from the same parser.
This indicates that a single parse representation is insufficient for
expressing the true potential of a parser. Effectiveness of combining
two parsers is also attested by the fact that it resulted in larger
improvements. Especially, large improvements were observed when
ENJU-PAS is combined with another parser/representation. This
indicates that the ENJU-PAS format expresses different information
from others, and differences in information conveyed by these
parsers/representations complementarily contributed to accuracy
improvement. The best accuracy was achieved by the combination
of ENJU-PAS and RERANK-CoNLL. Further investigation of the
sources of these improvements will illustrate the advantages and
disadvantages of these parsers and representations, leading us to
better parsing models and a better design for parse representations.

4.4 The impact of treebank size and parser accuracy
Figure 10 shows the parse accuracy for KSDEP and the accuracy
of PPI extraction, when the parser is trained with varying amounts
of data. This figure demonstrates that increasing the size of the
parser training set contributes to increasing parse accuracy. Training
the parser with only 100 sentences results in parse accuracy of
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Fig. 10. Parser training set size (number of sentences) versus parse accuracy
and PPI extraction accuracy (f -score).

Fig. 11. Parser accuracy (f -score) versus PPI extraction accuracy (f -score).

about 72.5%. Accuracy rises sharply with additional training data
until the size of the training set reaches about 1000 sentences
(about 82.5% accuracy). From there, accuracy climbs consistently,
but slowly, until 85.6% accuracy is reached with 8000 sentences of
training data.

Figure 10 also shows the relationship between the amount of
parser training data and the accuracy of PPI extraction. This shows
that the accuracy of PPI extraction generally increases with the use
of more sentences to train the parser. Although it may appear that
further increasing the training data for the parser may not improve
the PPI extraction accuracy, we see that the two curves match each
other to a large extent. This is supported by the strong correlation
between parse accuracy and PPI accuracy, shown in Figure 11. While
this suggests that training the parser with a larger treebank may
result in improved accuracy in PPI extraction, we observe that a 1%
absolute improvement in parser accuracy corresponds roughly to a
0.25 improvement in PPI extraction accuracy. Our results suggest
that to obtain even a 1% improvement in parser accuracy by using
more parser training data, the size of the treebank used for training
would have to increase greatly.

4.5 Comparison with previous results on PPI extraction
PPI extraction experiments onAIMed have been reported repeatedly,
although the figures cannot be compared directly because of the
differences in data preprocessing and the number of target protein
pairs (Airola et al., 2008; Sætre et al., 2007). Table 4 compares
our best result with previously reported accuracy figures. Among
these, Giuliano et al. (2006) and Mitsumori et al. (2006) do not
rely on natural language parsing, while the former applied SVMs

3The number for Giuliano et al. (2006) is taken from Airola et al. (2008).

Table 4. Comparison with previous results on PPI extraction (f -score)

Bag-of-words features 51.1
Yakushiji et al. (2005) 33.4
Mitsumori et al. (2006) 47.7
Giuliano et al. (2006)3 52.4
Sætre et al. (2007) 52.0
Airola et al. (2008) 56.4

This article 59.5

with kernels on surface strings and the latter is similar to our
baseline method. Bunescu and Mooney (2005) applied SVMs with
subsequence kernels to the same task, although they provided only a
precision–recall graph, and its maximum f -score is around 50. Since
we did not run experiments on protein-pairwise cross-validation, our
system cannot be compared directly to the results reported by Erkan
et al. (2007) and Katrenko and Adriaans (2006), but Sætre et al.
(2007) presented better results than theirs using protein-pairwise
cross-validation.

5 CONCLUSIONS
We have presented our attempts to evaluate contributions of natural
language parsers and their representations to PPI extraction. The
basic idea is to measure the accuracy improvements of the PPI
extraction task by incorporating the parser output as statistical
features of a machine learning classifier. Experiments showed that
state-of-the-art parsers improved PPI extraction accuracy, and the
obtained accuracy is better than previously reported accuracy on
the same data. These parsers attain accuracy levels that are on
par with each other, while parsing speed differs considerably. We
also observed that a 1% absolute improvement in parser accuracy
corresponds roughly to a 0.25% point improvement in PPI extraction
accuracy.

A shortcoming of our experiments is that there is no guarantee
that the results obtained with our PPI extraction system can be
generalized to other dataset and tasks. Although we cannot assert the
superiority of parsers/representations under arbitrary cricumstances
with only the results presented here, our methodology lays the
foundation for future task-based evaluations using different PPI
dataset and possibly other information extraction tasks. Such
evaluations are indispensable for a more general understanding
of the performance characteristics of different parsers in specific
applications in bioinformatics, and our methodology provides a
template for how these evaluations may be conducted.
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