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Abstract 

 

Understanding the Role of Socioeconomic, Biological, Health Behavioral, and Genetic Factors in 

Cardiovascular Disease Risk Disparities 

 

by 

 

Robert C. Schell 

 

Doctor of Philosophy in Health Policy 

 

University of California, Berkeley 

 

Professors William H. Dow and Lia C.H. Fernald, Co-Chairs 

 

The age-standardized incidence of cardiovascular disease in high-income countries has 

fallen precipitously from 844 cases per 100,000 in 1990 to 597 in 2019. However, this 

reduction in average incidence obscures significant disparities in risk by socioeconomic, 

genetic, biological, and health behavioral factors. To date, most studies of the risk factors 

for cardiovascular disease attempt to isolate the effect of a single risk factor. This single-

exposure focus belies the dynamic interplay between genetics, socioeconomic status, and 

traditional health and health behavioral factors that ultimately determine an individual’s 

cardiovascular disease risk. This dissertation explores the ways in which different domains 

of risk interact to produce heterogeneous, individualized risk of cardiovascular disease. 

 

The second chapter of this dissertation employs Mendelian randomization, an instrumental 

variable technique that uses random genetic variation as the instrument, to understand the 

causal effect of adiposity on cardiovascular disease incidence for individuals at different 

levels of socioeconomic status. Both high adiposity and low socioeconomic status increase 

cardiovascular disease risk. However, it is unclear whether the risk caused by an increase 

in adiposity is itself identical for individuals at varying levels of socioeconomic status or 

if, instead, individuals at lower levels of socioeconomic status face a greater risk from an 

increase in adiposity than their peers. If such a disparity did exist, it would imply that the 

risk implications of weight gain may differ by socioeconomic status. In UK Biobank data, 

we find that differences in risk in these Mendelian randomization models existed only for 

individuals with versus without a university degree. The differences in cardiovascular 

disease risk from higher body mass index by educational attainment or income – if they 

exist - are small in magnitude, though imprecisely estimated. The results for waist-to-hip 

ratio adjusted for body mass index, a measure of central adiposity, generally showed even 

smaller differences between socioeconomic groups. 

 

The third chapter of this dissertation explores whether a health behavior related to lower 

cardiovascular disease risk, physical activity, might ameliorate some of the risk of coronary 

artery disease caused by an individual’s genetic predisposition. Specifically, I use wrist-

worn accelerometer data combined with the most powerful polygenic risk score in the 
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literature to determine how physical activity volume and intensity impact an individual’s 

risk of coronary artery disease at different levels of genetic risk. If individuals at higher 

risk benefit more from greater physical activity than their lower risk peers, this could imply 

that more personalized physical activity standards should be considered for at-risk patients. 

Physical activity volume and intensity each had significant independent associations with 

incident coronary artery disease, with physical activity intensity demonstrating the 

strongest association. However, no interactive effect of physical activity and genetic risk 

on coronary artery disease risk was found. 

 

Future research should focus both on the impact of individual risk factors on cardiovascular 

disease risk and - particularly - how different risk factors and domains might contribute 

and interact to determine an individual’s overall cardiovascular disease risk. With the 

proliferation of large-scale cohort datasets such as the UK Biobank, the Million Veteran 

Program, and All of Us, researchers face an unprecedented opportunity to understand how 

every aspect of a person’s life from their social and built environment to their medical care 

access, genetic code, and health behaviors interconnect to determine disease risk.
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1 Introduction 
 

Cardiovascular disease is the leading cause of death worldwide. While the emergence of 

treatments such as statins and hypertensive medications has greatly reduced mortality, the 

risk of developing this disease is largely determined beyond the walls of a doctor’s office 

(1). The American Heart Association advocates focusing on “Life’s Simple 7,” a set of 

behaviors including not smoking, maintaining a healthy bodyweight, sufficient physical 

activity, a high-quality diet, and low levels of cholesterol, blood pressure, and fasting 

glucose without medication use, to lower the incidence of cardiovascular disease (2). 

However, adherence to these principles is low among the American public with only 13% 

of adults meeting 5 of the 7 criteria (2). Optimal physical activity and ideal bodyweight, 

which serves as a proxy for adiposity, have especially low rates of adherence, with under 

half of Americans meeting physical activity guidelines and over 70% of Americans above 

an ideal bodyweight according to body mass index (3)(4). These low rates of adherence 

become even more concerning when coupled with risk factors such as an individual’s 

socioeconomic status and genetic susceptibility that may further increase the risk of 

developing cardiovascular disease. 

 

This dissertation explores how adiposity, socioeconomic status, genetics, and 

physical activity interact to produce cardiovascular disease risk. Chapter two focuses on 

whether socioeconomic status - and particularly educational attainment - alters the causal 

effect of adiposity on cardiovascular disease. Presently, we have a limited understanding 

of how adiposity and low socioeconomic status interact to contribute to an individual’s 

cardiovascular disease risk. Chapter two demonstrates their combined impact via a 

Mendelian randomization survival analysis, which will demonstrate whether an increase 

in adiposity causes a similar increase in risk for individuals at varying levels of 

socioeconomic status. Chapter three focuses on the degree to which physical activity 

volume and intensity can mitigate a high genetic risk of coronary artery disease. This 

chapter hypothesizes that if individuals at high genetic risk benefit more from greater 

physical activity, a targeted intervention approach focusing on these high-risk individuals 

may be warranted. The rest of this introduction outlines the rationale of chapters two and 

three. 

 

1.1 Overview of Chapter 2 
 

Because a randomized controlled trial is neither ethical nor possible to study the effects 

of socioeconomic status and adiposity on cardiovascular disease risk, researchers must 

rely on observational studies, for which endogeneity, or correlation between the exposure 

and error term, obscures the underlying causal relationship. Endogeneity results from two 

issues: omitted variable bias (or unmeasured confounding) and reverse causation. 

Omitted variable bias occurs because of persistent unmeasured differences between 

people of different levels of adiposity. Reverse causation can occur, for instance, if a 

cardiovascular event causes disability that results in weight gain. To isolate the causal 

effect of adiposity on cardiovascular disease risk in different socioeconomic strata, I 
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employ Mendelian randomization, which can solve this endogeneity problem provided its 

core assumptions are met. 

 

 The basic idea behind Mendelian randomization is that an individual randomly 

inherits one allele from each parent at every single nucleotide polymorphism, a binary 

genetic variant where an individual could receive one of two alleles from each parent, 

which makes the genetic variation random conditional on parental genotype (5). Because 

they are randomly determined, these genetic variants can, in turn, serve as valid 

instrumental variables for adiposity subject to the three traditional instrumental variable 

assumptions: relevance, exchangeability, and the exclusion restriction (denoted in order 

by the arrows labeled 1,2, and 3 in Figure 1.1) (6). 

 

 Numerous Mendelian randomization studies have explored the causal link 

between adiposity and cardiovascular disease. Early studies relied on smaller datasets and 

a relatively small number of genetic variants that accounted for under 2% of the variation 

in adiposity. Despite the resultant low statistical power, these studies often found a strong 

association between an increase in adiposity and an increased risk of coronary heart 

disease, heart failure, and ischemic heart disease, with mixed results for stroke (7-10). 

More recent Mendelian randomization studies have explored the association between 

adiposity and cardiovascular disease and, while the percent of variation in adiposity 

explained by genetic variants remains largely unchanged, the datasets are far larger, 

which gives the analyses more statistical power. These better powered studies have 

reinforced the strength of the association between adiposity and cardiovascular disease, 

with a standard deviation increase in waist-to-hip ratio associated with a 1.46 increase in 

the odds of coronary heart disease (11-17). However, all of these studies either control for 

or do not consider the role of socioeconomic status in producing cardiovascular disease 

risk. 

 

Socioeconomic status, a multidimensional concept that includes an individual’s 

income, educational attainment, occupational status, environment, and social 

environment, has long been understood as a “fundamental cause” of health disparities in 

high-income countries.32 The view of socioeconomic status as a stationary attribute to 

abstract away from instead of as a key contributor in the production of health that works 

in conjunction with traditional risk factors in shaping an individual’s health has kept the 

literature from exploring how socioeconomic status modifies health risks. Traditionally, 

socioeconomic status and adiposity are both thought of as having their own independent 

(and stable) average treatment effects and as simple confounders instead of as interacting 

factors in the production of health. However, socioeconomic status is known to impact 

both biological risk factors for cardiovascular disease such as hypertension and diabetes 

and social risk factors such as access to medical care and health knowledge that could 

interact with adiposity’s own effects on cardiovascular disease to further increase risk 

(30). This study is the first to view socioeconomic status as an effect modifier – not 

confounder – of the impact of adiposity on cardiovascular disease risk.  
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Research Question for Chapter 2: Does the effect of an increase in adiposity on 

cardiovascular disease risk vary by socioeconomic status among the adults in the UK 

Biobank? 

 

Hypothesis: People of higher socioeconomic status face a lower increase in 

cardiovascular disease risk from high adiposity than their lower status peers. 

 

Key Dependent and Independent Variables and Covariates 

 

Incident Cardiovascular Disease Case Definition 

 

The main outcome of interest in this study is incident cardiovascular disease, for which I 

included angina, myocardial infarction, ischemic heart disease, atrial fibrillation, heart 

failure, and stroke with the following ICD-10 codes: I20, I21, I25, I48, I50, I60, I61, I63, 

I64. 

 

Socioeconomic Status 

 

I utilized two different measures of self-reported socioeconomic status in the analysis, 

which reflect the different dimensions encompassed by the term: educational attainment 

and household income. I treated educational attainment as a categorical variable 

separated into less than a high school education compared to at least high school graduate 

given the strong discontinuity in cardiovascular disease risk in the literature at this point. 

Household income is discretized to above or below the poverty level, owing to the 

importance of this threshold in the literature.  

 

Anthropometry 

 

I used measured waist-hip-ratio adjusted for body mass index (WHRadjBMI) and body 

mass index (BMI) to reflect adiposity. While most analyses focus on BMI alone to 

measure adiposity, it is a controversial and imprecise measure that fails to account for fat 

free mass. The WHRadjBMI, on the other hand, which measures central adiposity, has a 

far more consistent association with both adiposity and cardiovascular disease risk than 

BMI (18). Therefore, I used both WHRadjBMI and BMI as measures of central and total 

adiposity (18-20).  

 

Genetic Variants Selected 

 

I selected the genetic variants associated with an elevated WHRadjBMI based on a recent 

genome-wide association study (GWAS) performed by the GIANT Consortium. Shungin 

et al. measured WHRadjBMI among 210,088 individuals of European ancestry (21). The 

authors found 49 independent single nucleotide polymorphisms that reached genome-

wide significance of p<1x10-8, the standard critical value in GWAS studies that comes 

from multiple testing correction. For BMI, I focused on the most recent GWAS that 

excludes the UK Biobank, which identified 97 significant variants (22). 
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1.2 Overview of Chapter 3 
 

Physical activity has a well-established influence on coronary artery disease risk. 

Professional organizations from the World Health Organization to the American Heart 

Association advocate for a minimum of 150 minutes of moderate intensity physical 

activity or 75 minutes of vigorous intensity physical activity for adults aged 18 to 64 to 

minimize the risk of cardiovascular disease (23-24). However, it is unclear whether 

heterogeneity in the ideal level of physical activity exists for different people based on 

their underlying risk. Could a person genetically predisposed toward coronary artery 

disease meaningfully benefit from engaging in physical activity beyond the blanket 

standards currently recommended? Chapter 3 focuses on the possibility that genetic risk 

of coronary artery disease and objectively measured physical activity volume and 

intensity may interact to alter coronary artery disease risk. 

 

This study provides two vital innovations to address this question. Firstly, until 

recently physical activity in large cohort studies has been measured exclusively via self-

reported questionnaires. This measure of physical activity suffers from the biases typical 

of self-reporting, including most notably recall and social desirability bias. The UK 

Biobank, the dataset used for this chapter, tracked physical activity over the course of a 

week with wrist-worn accelerometers for over 100,000 participants. As a result, for the 

first time in a large cohort study, objectively measured physical activity is available. 

While this method has its own limitations, previous studies have shown that 

accelerometers provide a more accurate picture of actual physical activity undertaken 

than questionnaire-based assessments. Secondly, our understanding of the genetic 

variants associated with coronary artery disease has increased substantially over the past 

ten years with the proliferation of both genome-wide association studies and increasingly 

sophisticated techniques to create polygenic scores that summarize an individual’s overall 

genetic risk of a disease. 

 

Research Question for Chapter 3: Can greater accelerometer-measured physical 

activity volume or intensity offset a high genetic predisposition to coronary artery disease 

among the adults in the UK Biobank? 

 

Hypothesis: People of higher genetic risk benefit more from an increase in physical 

activity volume and intensity than their lower risk peers. 

 

Key Dependent and Independent Variables and Covariates 

 

Coronary Artery Disease Case Definition 

 

The main outcome of interest was incident coronary artery disease. I defined cases based 

on hospital inpatient episodes, surgeries, and deaths using ICD-10 codes I20 to I25, I46, 

and R96 to determine CAD for cause of death, ICD-10 codes I20.0, I21-I22, and ICD-9 

codes 410 and 4110 for an event in hospital inpatient records, and OPCS-4 codes K40 to 

K46, K49, K501, K75 and OPCS-3 code 3043 for surgeries. 
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Polygenic Score 

 

I applied the best performing polygenic risk score to date that did not include the UK 

Biobank to avoid the potential for winner’s curse bias. This score consisted of 1,090,048 

variants, from which I excluded 332 by utilizing a more stringent minor allele frequency 

and INFO score requirement than the original authors. 

 

Physical Activity Volume and Intensity 

 

Following the work of Dempsey, et al, I converted the raw accelerometer Euclidean norm 

minus one (ENMO) from the wrist-worn accelerometer data to physical activity energy 

expenditure to represent physical activity volume (25). I then calculated the percent of 

this physical activity energy expenditure derived from moderate to vigorous physical 

activity as the percent of physical activity energy expenditure that took place above 125 

milligravities. 

1.3 Data 
 

The UK Biobank (UKB) is a massive population-based cohort of over 500,000 people 

aged 40-69 years old at recruitment in 2006 from England, Scotland, and Wales with 

demographic, genetic, biomarker, detailed health status, socioeconomic status, 

anthropometric measurement, and disease data (26). This dataset is unparalleled both in 

its size and in the breadth of variables measured longitudinally since 2006. Participants in 

the UK Biobank were genotyped using either the UK BiLEVE or the UK Biobank Axiom 

Array, which each genotyped over 800,000 single-nucleotide polymorphisms (SNPs). 

Using either the Haplotype Reference Consortium panel or the UK10k and 1000 

Genomes phase 3 panels, additional SNPs were imputed, yielding roughly 96 million 

variants assayed or imputed. The UKB contains detailed demographic, genetic, 

biomarker, health status, socioeconomic status, anthropometric, and disease data. Almost 

all of the enrolled subjects (> 96.9%) had valid measures of waist-to-hip ratio, genetic 

data, and social factors, which makes it an ideal resource to answer the question in 

chapter two. Between 2013 and 2015, participants with an email address were invited 

except those in the North West region due to concerns about participant burden. A 

subsample of 103,712 individuals responded to an email recruiting them to wear a wrist-

worn Axivity AX3 triaxial accelerometer continuously for seven days on their dominant 

wrist and provided data (26). This group of participants constitutes the largest cohort with 

registered accelerometer data I am aware of and will serve as the study population for 

chapter three. 
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1.4 Tables and Figures 
 

Figure 1.1: Demonstration of Mendelian randomization analysis and necessary 

assumptions 
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2 Does educational attainment modify the causal 

relationship between adiposity and cardiovascular 

disease? A Mendelian randomization study 
 

 

Abstract 
 

A greater risk of cardiovascular disease is associated with low educational attainment and 

high adiposity. Despite the correlation between low educational attainment and high 

adiposity, whether educational attainment modifies the risk of CVD caused by high 

adiposity remains poorly understood. We investigated the effect of adiposity (body mass 

index [BMI] and waist-to-hip ratio adjusted for BMI [WHRadjBMI]) on incident CVD 

among individuals with varying education levels, using associational and one-sample 

Mendelian randomization (MR) survival analyses. Data were collected from 2006 to 

2021, and sample sizes were 254,281 (27,511 CVD cases) for BMI and 253,968 (27,458 

CVD cases) for WHRadjBMI. In the associational model, a standard deviation (SD) 

higher BMI was associated with 19.81 (95% CI: 18.55–21.06) additional cases of 

incident CVD per 10,000 person-years for individuals with a secondary education, versus 

32.96 (95% CI: 28.75–37.17) for those without. When university degree served as the 

education variable, education group differences attenuated, with 18.26 (95% CI: 16.37–

20.15) cases from a one SD higher BMI for those with a university degree versus 23.18 

[95% CI: 21.56–24.72] for those without. For the MR model, an SD higher BMI resulted 

in 11.75 (95% CI: −0.84-24.38) and 29.79 (95% CI: 17.20–42.44) additional cases of 

incident CVD per 10,000 person-years for individuals with versus without a university 

degree. WHRadjBMI exhibited no effect differences by education. While the 

associational model showed evidence of educational attainment modifying the 

relationship between adiposity and incident CVD, it does not modify the association 

between adiposity and incident CVD in the MR models. This suggests either less 

education does not cause greater risk of incident CVD from high adiposity, or MR 

models cannot detect the effect difference. The associational point estimates exist within 

the MR models’ confidence intervals in all BMI analyses, so we cannot rule out the effect 

sizes in the associational models. 

 

2.1 Introduction 
 

One of the great public health achievements ever has been the substantial reduction in 

cardiovascular disease (CVD) incidence and mortality in high-income countries (27-29). 

However, these reductions were not equally distributed, and people from lower 

socioeconomic strata, for example as defined by lower educational attainment, and people 

with higher levels of adiposity still face a disproportionately high risk of having a CVD 

event (30-34). A recent meta-analysis of observational studies found that people with a 

high school education or less faced a 27% to 50% greater risk of a CVD event, while 

controlling for body mass index (BMI) (34).  Just as low educational attainment is related 

to a substantial increased risk of CVD, so too is high adiposity. A recent Mendelian 
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randomization (MR) analysis showed that a standard deviation higher waist-to-hip ratio 

adjusted for BMI (WHRadjBMI) is associated with an odds ratio of 1.46 for coronary heart 

disease (CHD), which reinforces decades of evidence from observational studies (17,35-

36).  

 

 These disparities in CVD risk are especially concerning given the high prevalence 

of obesity, at 28% in the UK, and the fact that over half of UK residents never graduate 

college and 21% do not have a secondary education (37-39). Low educational attainment 

and high adiposity also tend to coexist, with one study finding that 22.5% of Europeans 

with only primary school education had obesity compared to 9.9% of individuals with a 

university degree (40). Despite their high prevalence and tendency to co-occur, the degree 

to which low educational attainment modifies the risk of CVD caused by high adiposity 

remains poorly understood.  

 

MR is an instrumental variable technique that relies on random genetic variation as 

a natural experiment and, if the core assumptions are met, provides a causal effect robust 

to reverse causation and confounding bias. The elimination of reverse causation is 

especially important when considering adiposity as an exposure because of its tendency to 

blur the association of illness and adiposity in older age (41). While a person’s adiposity 

derives from both genetic and lifestyle factors, MR provides a unique opportunity to isolate 

the health effects of adiposity from other confounding health behaviors, such as smoking, 

that could affect CVD risk and adiposity. Recent MR studies on adiposity’s effect on CVD 

improve on the methodological limitations of the earliest studies, but they still largely treat 

educational attainment as a confounder for which to adjust (7,13-14,42). However, two 

people with identical levels of adiposity and different levels of education may face different 

associations between adiposity and CVD risk. Differences in incident CVD risk from 

adiposity could exist between educational attainment groups because of differences in 

medical care access and utilization, alcohol consumption patterns, and from higher levels 

of inflammation, hypertension, and hyperlipidemia (30,31,33,43-47). This study is the first 

to directly explore how different levels of education modify the effect of adiposity on 

incident CVD. 

 

We estimate the relationship between adiposity and incident CVD at different levels 

of education via an MR survival analysis. We hypothesize that an increase in adiposity 

leads to a greater incidence of CVD among adults without a secondary education in the UK 

Biobank (UKB) compared to the risk faced by their better educated peers, as shown in the 

DAG in Figure 2.1. We also explore potential effect heterogeneity for individuals with 

more or less than a university degree as a sensitivity analysis. 

 

2.2 Methods 
 

The UKB is a population-based cohort of over 500,000 people from England, Scotland, 

and Wales aged 40-69 years old at recruitment designed to explore the genetic and 

environmental determinants of a variety of diseases (48). It began in 2006 and is uniquely 

suited to perform a One Sample MR survival analysis because of its size and the wide 

array of data collected longitudinally (26). We included only a subset of the full UKB 
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dataset based on the criteria outlined in Figure 2.2. MR requires us to restrict to unrelated 

individuals with high-quality genetic data. Because of the possibility of population 

stratification, or spurious associations which can occur if a disease and a genetic variant 

are more or less common in a specific ancestry group, we must also restrict to only 

individuals of white British ancestry. Pooled analysis of ancestry groups would create 

these spurious associations and there are simply too few non-white subjects in the UK 

Biobank to produce separate, well-powered analyses in these other ancestry groups. We 

describe briefly the criteria in Figure 2.2 below. 

 

First, we dropped any subjects who were not genotyped (14,239 subjects). 

Because subjects of European ancestry are the largest group by far in the UK Biobank 

(comprising over 94% of the sample) and population stratification concerns prevent us 

from analyzing an ancestrally diverse sample, we then dropped all individuals without 

European ancestry (78,620 subjects). Next, we removed individuals who withdrew 

consent to continue participating in data collection (96 subjects). We next dropped all 

individuals related, defined as third degree relatives or closer, to at least one other person 

in the UK Biobank to avoid creating spurious associations caused by familial effects 

(131,927 subjects) (26,49). 

 

We excluded individuals whose genetic data failed the standard inclusion quality 

control procedures created by the MRC Integrative Epidemiology Unit (731 subjects) 

(50). In short, this excludes individuals who have a mismatch between genetically 

inferred and reported sex, duplicates, and individuals who are outliers in terms of 

heterozygosity or missing rates. We excluded individuals with prevalent cardiovascular 

disease at baseline, defined as those who experienced a CVD event prior to their first 

adiposity measurement in the UKB (19,259 subjects) and those with missing adiposity 

measurement (1,278 subjects) or educational attainment status (1,979 subjects). The final 

sample size of the study was 254,281 participants with 27,511 cases of incident CVD. 

 

2.2.1 Incident Cardiovascular Disease Case Definition 
 

The main outcome of interest in this study is time to incident cardiovascular disease 

(CVD), defined as including angina, myocardial infarction, ischemic heart disease, heart 

failure, and stroke with the following ICD-10 codes (and OPCS-4 codes for operations): 

I20 to I25, I44, I50, I60 to I64, I69, K40 to K46, K49, K50, K75 (51,52). If ICD-10 codes 

were unavailable for an individual, we relied on the corresponding self-reported events. 

We focused on incident instead of prevalent CVD, so only CVD cases that occurred after 

the first adiposity measurement for a subject who has not yet experienced CVD qualified 

as events. 

 

2.2.2 Educational Attainment Definition 
 

We treated education as a self-reported categorical variable separated into individuals 

who did not complete secondary education and those that did. In secondary analyses, we 

also split education into those with and without a university degree. We chose these 
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dichotomizations of educational attainment because past studies have shown significant 

differences in CVD risk between these educational groups (30,31,34). 

2.2.3 Adiposity Definition 
 

We used first-measured WHRadjBMI, defined as the ratio of the circumference of the 

waist compared to the hip controlling for BMI and first measured BMI as the two 

measures of adiposity in this study. This first adiposity measurement occurred at 

enrollment for all of the individuals in the present study. The benefit of using 

WHRadjBMI is that it has a more direct correlation with adiposity and measures central 

adiposity, which serves as an independent predictor of CVD risk beyond total body 

adiposity (53)(20). We stratified the WHRadjBMI analysis by sex due to the sexually 

dimorphic nature of the exposure (21). Therefore, the BMI models are presented pooled 

by biological sex, while the WHRadjBMI models are presented stratified by sex. Both 

exposures were standardized by subtracting the mean from each individual and dividing 

by the standard deviation. 

 

2.2.4 Selected Genetic Variants 
 

We identified 97 variants significantly associated with BMI that explain 2.7% of its 

variance from the most recent genome-wide association study (GWAS) that excluded the 

UKB (22). We selected the 49 variants associated with an elevated WHRadjBMI at 

genome-wide significance based on a recent GWAS performed by the GIANT 

Consortium (21). Because genetic variants are often co-inherited and inferring output 

from genotyping platforms can be difficult, imputation is a common technique used to 

allow a person’s available genetic data to predict any missing genotypes. Imputation 

enables us to both keep individuals with incomplete genetic data, while also ensuring we 

can draw accurate inference from this population. The UK Biobank has developed their 

own imputation methods, detailed in the documentation at 

https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/impute_ukb_v1.pdf. To assess 

the quality of the UKB’s imputation for our variants, we rely on INFO score, a measure 

of genetic variants’ imputation quality scaled between 0 and 1, with a 1 denoting perfect 

imputation. Every genetic variant in this analysis had an INFO score higher than 0.95, 

which signifies the high level of imputation accuracy in this analysis. For individuals 

with imputed SNPs, we perform hard-call genotyping, which assigns variants to the most 

likely allele count between 0, 1, and 2 based on an individual’s related genetic 

information.  

 

We next checked for the existence of multi-allelic or palindromic SNPs. In brief, a 

multi-allelic SNP is one with more than the conventional two alleles, which would make 

applying any of our estimators impossible. Palindromic SNPs are those with the same 

letters on the forward and reverse strands, which makes identifying the effect allele 

challenging, particularly if the effect allele frequency is roughly 0.5. We identified no 

multi-allelic but two palindromic SNPs:rs1558902 (16:52,361,075) and rs9641123 

(7:93,035,668) for BMI. We reran these models without the two above SNPs, which did 

not affect the results. No such variants existed for WHRadjBMI. 
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These genetic variants can serve as valid instrumental variables for adiposity subject 

to three assumptions: relevance, exchangeability, and no horizontal pleiotropy (54). 

Relevance, which requires that the variant influences adiposity, represents the only 

empirically verifiable assumption. We verify relevance by determining whether the 

instruments combine to have a partial F-statistic over 10, a conventional threshold for 

instrument strength. Exchangeability, or a lack of confounding between the outcome and 

variant, seems plausible in this scenario given the random assignment of genes at birth, 

although population stratification could violate it. The last assumption, no horizontal 

pleiotropy, is the most contentious and likely to fail in practice. This happens when a 

variant affects CVD risk both through adiposity and some other exposure. 

 

2.2.5 Statistical Analyses 
 

The following analyses are stratified by educational attainment, with subjects grouped as 

those with versus without a secondary education and those with and without a university 

degree. All analyses consist of an associational model and an MR model. We used 

Aalen’s additive hazards model for both the MR and associational survival analyses. We 

chose the additive hazard model instead of the Cox model to avoid the issue of non-

collapsibility of the hazard ratio as a measure of association (55,56). In a survival model 

with death as a competing risk, the quantity estimated is a cause-specific hazard 

difference. The timescale used is time since first measured adiposity. Time to event, the 

outcome of interest, signifies time from first measurement of adiposity to first incident 

CVD event. We controlled for baseline age, genotyping array, whether a subject ever 

smoked (defined as over 100 lifetime cigarettes), the first ten genetic ancestry principal 

components as a standard way to further control for population stratification 

confounding, and biological sex in the BMI models (the WHRadjBMI models stratify by 

sex). We relied on complete case analysis due to low rates of missingness in the UKB 

with only 3257 individuals missing exposure or outcome values at the final stage of 

screening. 

 

For the MR analyses we first performed inverse variance weighted (IVW) regression, 

which is the most efficient MR estimator because it more heavily weights variants with 

more precise effects on adiposity and, thus, CVD incidence (57). We utilized a fixed 

effects modeling approach, which assumes one underlying “true” effect of adiposity on 

CVD incidence in each educational attainment stratum. While the IVW regression 

provides the most statistical efficiency of any MR design, it is also the most susceptible 

to bias due to horizontal pleiotropy (58).  

 

We performed sensitivity analyses that vary the assumptions underlying the model to 

make the causal effect more plausible. The weighted median estimator is an alternative 

model utilized in many MR analyses that offers less efficiency than the IVW estimator 

but provides robustness to certain forms of horizontal pleiotropy (58). The weighted 

median estimator is consistent provided at least half of its weight is placed on variants 

acting as valid instruments. The causal effect is then the effect of the variant at the 50th 

percentile of the weights (58). Because the MR estimators do not allow formal 
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assessments of effect modification, we performed stratified analyses and evaluated 

confidence intervals and point estimates. While non-overlapping confidence intervals 

imply statistically significant differences, their overlap does not imply that no difference 

exists and so we only interpreted confidence intervals in the cases where they diverged or 

overlapped extensively, thus our conclusions should be conservative (59). All analyses 

were performed using R 4.1.3. Because individuals with at least (less than) a secondary 

education and with (without) a university degree overlap, we focused on comparisons 

between mutually exclusive groups. We pre-specified all analyses and hypotheses on 

Open Science Framework. This study follows the STROBE-MR guidelines (60). 

 

2.3 Results 
 

Out of the 254,281 (253,968) subjects that fit the inclusion criteria for the BMI 

(WHRadjBMI) analysis, 27,511 (27,458) experienced a CVD incident over 2,970,344 

(2,969,741) person-years. Subjects with more education had lower BMIs and incidence of 

CVD, were less likely to smoke, and were generally younger at baseline than their peers 

with less education (Tables 2.1 and 2.2). The genetic variants displayed relationships of 

adequate strength according to our pre-analysis plan for every group except for subjects 

with less than secondary education and males with at least a university degree for 

WHRadjBMI, as the partial F-statistic for each of the rest exceeded 10. It is important to 

note that this instrument strength estimate was derived from estimating a first-stage 

regression with the genetic variants as variables and the confounders, which differs from 

the models used in the results. Figures 2.2 to 2.4 present a detailed breakdown of follow-

up time by event, Kaplan-Meier curves for overall survival probability, and cumulative 

incidence by event type. 

 

In the adjusted model in Table 2.3 and Figure 2.5, a standard deviation higher BMI 

(4.69 kg/m2) results in 22.60 (95% CI: 21.39 to 23.82) excess cases of incident CVD per 

year among 10,000 individuals in the pooled sample. This effect increases to 32.96 (95% 

CI: 28.75 to 37.17) for individuals with less than a secondary education compared to only 

19.81 (95% CI: 18.55 to 21.06) for individuals with at least a secondary education. Given 

the over 33% increased rate of incident CVD per standard deviation increase in BMI 

between individuals in these groups and their non-overlapping confidence intervals, it 

appears education may act as an effect modifier in the associational models. Individuals 

with a university degree and those without one also diverge in terms of hazard of CVD, 

but the effect size difference is far smaller in magnitude. These differences do not appear 

to exist for WHRadjBMI for either sex, as the educational groups’ effect sizes largely 

overlap. 

 

In the IVW model results, shown in Figure 2.6 and Table 2.3, the differences 

between educational groups for BMI appear less pronounced. For individuals with less 

than a secondary education, the relatively small sample size results in imprecise estimates 

and a confidence interval that reaches below the lowest and above the highest point of 

any other educational group. The point estimate for individuals with a university degree 

is less than half of the next closest point estimate and appears to differ meaningfully from 

individuals with less than a university degree. A standard deviation higher BMI results in 
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29.79 (95% CI: 17.20 to 42.44) excess cases of incident CVD per year among 10,000 

individuals in the sample of individuals with less than a university degree compared to 

only 11.75 (95% CI: -0.84 to 24.38) for individuals with a university degree. Figure 2.7 

and Table 2.3 suggest that the weighted median estimator is too imprecise to draw firm 

conclusions about differences in hazard between educational groups. 

 

The IVW model results for WHRadjBMI differed from our hypothesis. While the 

results were difficult to distinguish for males, with all groups’ confidence intervals 

overlapping with zero, females experienced a decrease in the hazard of incident CVD 

from a standard deviation higher WHRadjBMI. Specifically, the model suggests that a 

standard deviation higher WHRadjBMI results in a decrease in incidence of CVD of 

31.12 per 10,000 individuals. Because some of the estimates are in opposite directions, it 

is important to note that the pooled estimates in this analysis have no straightforward 

interpretation. Likewise, in the weighted median model females experience an increase in 

incident CVD from a higher WHRadjBMI only if they have at least a secondary 

education, which also contradicts our hypothesis of an inverse association between CVD 

hazard and educational attainment. We repeat these analyses for household income, 

another dimension of socioeconomic status associated with incident CVD in the 

literature, in the appendix in Table 5.1 and Figures 5.1 to 5.3 (61). 

 

2.3.1 Sensitivity Analyses 
 

The simplest method to minimize the potential role of horizontal pleiotropy in this 

analysis is a “leave one out” (LOO) method, where the model is re-estimated excluding 

each SNP separately (62). This analysis should demonstrate whether any outlier SNPs 

have a disproportionate impact on the effect estimate. If each of these iterations provides 

directionally consistent results, it decreases the likelihood that horizontal pleiotropy plays 

a large role in driving the existence of a causal effect because the different SNP subsets 

would likely not suffer from the exact same source of bias. 

 

A more direct way of assessing the causal effect of adiposity on CVD would involve 

including only SNPs with an established mechanistic link to adiposity that makes their 

association more plausible (63). Because BMI is determined by a host of mechanisms not 

directly related to adiposity, we are only able to perform this sensitivity analysis for 

WHRadjBMI. Out of the original set of 49 SNPs in WHRadjBMI, only 9 are associated 

with gene expression in either subcutaneous or omental adipose tissue. Because there 

were only 9 variants associated with WHRadjBMI that had a plausible functional 

component identified, we tested the strength of this instrument. The combined effect of 

the genetic variants produced an F-statistic under 10, suggesting the estimator would 

suffer from weak instrument bias. As a result, we did not perform this sensitivity 

analysis. As a result, we only present the leave-one-out analyses below. 

 

Figure 2.8 plots the distribution of point estimates across the iterations of the LOO 

analyses. The LOO analysis for the effect of WHRadjBMI on incident CVD for females 

suggests that no one genetic variant appeared to have an outsized influence on the results 

except in the case of females with less than a secondary education. However, because this 
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effect was already so imprecisely estimated, it is unclear how much these genetic variants 

actually impact the observed results. 

 

The LOO analysis for the effect of WHRadjBMI on incident CVD in Figure 2.9 for 

males suggests that no one genetic variant appeared to have an outsized influence on the 

results except in the case of females with less than a secondary education. There were 

some notable outliers for males with at least a secondary education and a wide range for 

males with at least a university degree. 

 

The LOO analysis for the effect of BMI on incident CVD in Figure 2.10, which 

produced far more precise estimates than WHRadjBMI, unsurprisingly demonstrates 

more consistency in results across genetic variants. There are notable outliers for subjects 

with less than and at least a university degree; however, these were of much smaller 

magnitude than the outliers in the WHRadjBMI analysis. Because there were only 9 

variants associated with WHRadjBMI that had a plausible functional component 

identified, we tested the strength of this instrument. The combined effect of the genetic 

variants produced an F-statistic under 10, suggesting the estimator would suffer from 

weak instrument bias. As a result, we did not perform this sensitivity analysis. 

 

2.4 Discussion 
 

The associational models in this analysis suggest differences in hazard of incident CVD 

from a higher BMI exist between individuals with and without a secondary education, as 

well as between those with and without a university degree. However, in the IVW models 

only individuals with and without a university degree still faced significantly different 

hazards of incident CVD from a higher BMI and the weighted median models were too 

imprecise to detect differences between educational attainment groups. Overall, we 

conclude that differences in hazard of incident CVD from higher BMI by educational 

attainment – if they exist - are small in magnitude. The results for WHRadjBMI were 

generally even less different between educational attainment groups, although a 

counterintuitive relationship emerged in the MR models for females where individuals 

with less than a secondary education experienced a decrease in hazard from increasing 

WHRadjBMI. 

 

While higher BMI is related to an increased hazard of incident CVD for every 

educational attainment group in the associational and IVW models, WHRadjBMI 

increases the hazard of incident CVD for every group in the associational models and 

then only a subset of educational attainment groups thereafter. WHRadjBMI has been 

criticized in previous work for introducing collider bias, which could explain both the 

inconsistent association between WHRadjBMI and incident CVD in the MR models and 

the negative association found between WHRadjBMI and incident CVD in individuals 

with less than a secondary education (64).  

 

 Unlike much of the MR literature on CVD, we focused on incident CVD which 

should assuage concerns regarding reverse causation in studies of prevalent CVD and 

adiposity (65). We employed an additive hazard model instead of the more commonly 
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used Cox model, which avoids the issue of non-collapsibility and puts the effect measure 

in a more easily interpreted additive form. This is the first study to our knowledge to 

consider SES as a potential effect modifier instead of simply as a confounder for the 

impact of adiposity on CVD, which acknowledges the ways in which education and 

adiposity could interact in the production of population health. Lastly, we utilized a 

variety of sensitivity analyses, perform numerous confirmatory analyses, and pre-

specified the analysis plan to increase confidence in our results. 

 

 As with many MR studies, we face some statistical power limitations, especially 

for the smaller educational attainment subgroups. The measures of adiposity used, BMI 

and WHRadjBMI, have also been criticized for not capturing the underlying variable of 

interest (total adiposity) and producing collider bias, respectively. As with any MR 

analysis, we cannot ensure the assumptions outside of relevance are met or know the 

‘best’ model in terms of balance between robustness and statistical efficiency. We also 

treated education as exogenous, as the MR design only applies to adiposity. The UK has 

universal healthcare and the UKB is an unusually healthy and high-status snapshot of the 

country (66). While health disparities by educational attainment persist in countries with 

universal healthcare, our analysis likely understates the differences in CVD incidence 

between educational attainment groups in countries without universal healthcare and in 

more socioeconomically diverse samples (67). Additionally, some researchers have 

attempted to make the UKB more representative of the broader population with sampling 

weights, which we do not apply in this analysis (68). We restricted the analysis to only 

White Europeans and control for genetic ancestry principal components to reduce the 

possibility of population stratification, but social stratification remains a potential 

concern (69). Past evidence also suggests nonlinear effects of adiposity on CVD risk, 

with individuals at higher levels of adiposity facing greater risks, but we treated 

adiposity’s impact as linear in this analysis. 

 

Lastly, unique forms of selection bias represent a general limitation of MR 

studies. Because high adiposity has an association with mortality in young adulthood, the 

MR analysis here necessarily restricts to individuals who survived long enough to 

participate (70,71). Therefore, even with valid instruments or methods robust to invalid 

instruments, the possibility remains for selection bias from loss to follow up correlated 

with the instruments (70). 

 

 In the associational models, individuals with lower educational attainment face a 

higher hazard of CVD from an increase in adiposity. However, hazard differences 

between educational attainment groups are only detected in the MR models for 

individuals with and without a university degree for BMI and not detected at all for 

WHRadjBMI. 
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2.5 Tables and Figures 
 

 
 

Figure 2.1: Directed acyclic graph of adiposity, educational attainment, and cardiovascular 

disease incidence 
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(n = 78,620) 
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Dead 
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Figure 2.2: Subject exclusion criteria flowchart 
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Table 2.1: Characteristics of cohorts with less than and at least secondary education 

  
Less than Secondary Education 

 

 
At Least Secondary Education 

 

 Mean 
(SD) 

Range Mean 
(SD) 

Range 

Age at Baseline 61.55 
(6.28) 

40.31-71.19 56.16 
(7.97) 

40.02-72.95 

BMI at Baseline 28.17 
(4.84) 

14.28-68.41 27.05 
(4.65) 

12.12-74.68 

WHR at Baselinea 0.89 
(0.09) 

0.54-1.56 0.86 
(0.09) 

0.20-1.65 

Follow Up Time 11.23 
(3.05) 

0.005-14.45 11.78 
(2.41) 

0.0027-15.55 

CVD Incidence 0.17 
(0.38) 

0-1 0.10 
(0.30) 

0-1 

Ever Smoked 0.64 
(0.48) 

0-1 0.59 
(0.49) 

0-1 

Biological Sex N (%) N (%) 

Female 21,581 (56.06%) 117,910 (54.64%) 
Male 16,915 (43.94%) 97,875 (45.36%) 

Region N (%) N (%) 

England 33,574 (87.21%) 190,418 (88.24%) 
Scotland 3276 (8.51%) 15,814 (7.33%) 
Wales 1646 (4.28%) 9553 (4.43%) 

Total 
Participants 

38,496 (100%) 215,785 (100%) 

aNote: 253,968 subjects with valid WHR measure (38,484 less than secondary education; 

215,484 at least secondary education) 
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Table 2.2: Characteristics of cohorts with less than university degree and at least 

university degree 

  
Less than University 

 

 
At Least University 

 

 Mean 
(SD) 

Range Mean 
(SD) 

Range 

Age at Baseline 57.64 
(7.94) 

40.20-72.95 55.70 
(7.90) 

40.02-70.49 

BMI at Baseline 27.63 
(4.79) 

12.12-74.68 26.43 
(4.40) 

13.12-65.23 

WHR at Baselinea 0.87 
(0.09) 

0.20-1.65 0.86 
(0.09) 

0.45-1.48 

Follow Up Time 11.60 
(2.63) 

0.003-15.55 11.88 
(2.29) 

0.005-14.46 

CVD Incidence 0.12 
(0.33) 

0-1 0.08 
(0.28) 

0-1 

Ever Smoked 0.61 
(0.49) 

0-1 0.58 
(0.49) 

0-1 

Biological Sex N (%) N (%) 

Female 94,368 (56.21%) 45,123 (52.23%) 
Male 73,525 (43.79%) 41,265 (47.77%) 

Region N (%) N (%) 

England 149,201 (88.87%) 74,791 (86.58%) 
Scotland 11,244 (6.70%) 7846 (9.08%) 
Wales 7448 (4.44%) 3751 (4.34%) 

Total 
Participants 

167,893 (100%) 86,388 (100%) 

aNote: 253,968 patients with valid WHR measure (167,595 less than university degree; 86,373 at 

least university degree) 
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Figure 2.3: Follow-up time by event type for body mass index and waist-to-hip ratio 

adjusted for body mass index 

BMI 

 

WHRadjBMI 
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Figure 2.4: Kaplan-Meier survival probability for body mass index and waist-to-hip ratio 

adjusted for body mass index 

BMI 

 

WHRadjBMI 
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Figure 2.5: Cumulative incidence functions for body mass index and waist-to-hip ratio 

adjusted for body mass index 

BMI 

 

WHRadjBMI 
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Table 2.3: Association between adiposity and incident cardiovascular disease by 

educational status and model choice 

  Body Mass Index WHRadjBMI 

(Male) 

WHRadjBMI 

(Female) 

  Additive 

Hazard 

(CVD 

incidents 

per 10,000 

person-

years) 

95% 

Confidence 

Interval 

Additive 

Hazard 

(CVD 

incidents 

per 10,000 

person-

years) 

 

95% 

Confidence 

Interval 

Additive 

Hazard 

(CVD 

incidents 

per 10,000 

person-

years) 

95% 

Confidence 

Interval 

Less than 

Secondary 
Education 

Associational 32.96 (28.75, 37.17) 28.90 (17.90, 39.90) 8.61 (3.08, 14.10) 

IVW 28.75 (-1.89, 59.44) -28.37 (-64.16, 7.41) -31.12 (-60.38, -1.87) 

Weighted 

Median 

14.28 (-27.30, 

55.85) 

-28.67 (-82.10, 24.75) -26.67 (-69.95, 16.61) 

At Least 

Secondary 

Education 

Associational 19.81 (18.55, 21.06) 20.70 (17.30, 24.10) 5.83 (4.09, 7.57) 

IVW 23.76 (14.23, 33.34) 25.02 (-14.44, 64.47) 11.21 (2.21, 20.20) 

Weighted 

Median 

21.16 (6.70, 35.62) 6.26 (-46.88, 59.41) 17.39 (4.04, 30.74) 

Less than 
University 

Degree 

Associational 23.18 (21.56, 24.72) 24.50 (20.10, 28.90) 7.04 (4.84, 9.24) 

IVW 29.79 (17.20, 42.44) 0.34 (-56.59, 55.27) 2.29 (-8.98, 13.56) 

Weighted 
Median 

19.40 (2.92, 35.93) -19.87 (-88.56, 48.83) 1.03 (-16.15, 18.22) 

At Least 

University 
Degree 

Associational 18.26 (16.37, 20.15) 17.30 (12.40, 22.20) 5.16 (2.55, 7.77) 

IVW 11.75 (-0.84, 24.38) 38.46 (-14.66, 91.55) 7.98 (-5.81, 21.77) 

Weighted 

Median 

12.45 (-6.86, 31.77) 34.28 (-42.43, 111.00) 8.02 (-12.35, 28.38) 
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Figure 2.6: Associational relationship between adiposity and incident cardiovascular 

disease 

Body mass index 

 

Waist-to-hip ratio adjusted for body mass index (Male) 
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Waist-to-hip ratio adjusted for body mass index (Female) 
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Figure 2.7: Inverse-variance weighted association between adiposity and incident 

cardiovascular disease 

Body mass index 

 

Waist-to-hip ratio adjusted for body mass index (Male) 
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Waist-to-hip ratio adjusted for body mass index (Female) 
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Figure 2.8: Weighted median estimator association between adiposity and incident 

cardiovascular disease 

Body mass index 

 

Waist-to-hip ratio adjusted for body mass index (Male) 
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Waist-to-hip ratio adjusted for body mass index (Female) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

Figure 2.9: Leave-one-out analyses for waist-to-hip ratio adjusted body mass index (Female) 
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Figure 2.10: Leave-one-out analyses for waist-to-hip ratio adjusted for body mass index (Male) 
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Figure 2.11: Leave-one-out analyses for body mass index 
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3 Joint Association of Genetic Risk and 

Accelerometer-Measured Physical Activity with 

Incident Coronary Artery Disease in the UK 

Biobank Cohort 
 

Abstract 
 

Previous research demonstrates the joint association of self-reported physical activity and 

genetics with coronary artery disease. However, an existing research gap is whether 

accelerometer-measured physical activity volume or intensity can offset genetic 

predisposition to coronary artery disease. This study explores the independent and joint 

associations of accelerometer-measured physical activity and genetic predisposition with 

incident coronary artery disease. The UK Biobank population-based cohort recruited over 

500,000 individuals aged 40 to 69 between 2006 and 2010, with 103,712 individuals 

participating in a weeklong wrist-worn accelerometer study from 2013 to 2015. 

Individuals of White British ancestry (n = 65,079) meeting the genotyping and 

accelerometer-based inclusion criteria and with no missing covariates were included in 

the analytic sample. Incident coronary artery disease based on hospital inpatient records 

and death register data serves as the outcome of this study. Polygenic risk score and 

physical activity volume, measured as physical activity energy expenditure, and intensity, 

measured as percent of physical activity of moderate-to-vigorous intensity, are examined 

both linearly and at the 20th and 80th percentiles. In the sample of 65,079 individuals, the 

mean (SD) age was 62.51 (7.76) and 61% were female. During a median follow-up of 6.8 

years, 1,382 cases of coronary artery disease developed. At the same genetic risk, 

physical activity intensity had a hazard ratio (HR) of 1.53 (95% CI: 1.32-1.76) at the 20th 

compared to 80th percentile versus an HR of 1.35 (95% CI: 1.22-1.50) for physical 

activity volume. The combination of high genetic risk and low physical activity intensity 

showed the greatest risk, with an individual at the 80th percentile of genetic risk and 20th 

percentile of intensity facing an HR of 2.20 (95% CI: 1.45-3.32) compared to an 

individual at the 20th percentile of genetic risk and 80th percentile of intensity. Physical 

activity, especially physical activity intensity, is associated with an attenuation of some of 

the genetic risk of coronary artery disease. This accelerometer-based study provides the 

clearest evidence to date regarding the joint influence of genetics and physical activity 

volume and intensity on coronary artery disease. 

 

 

 

 

 

 

 

 



34 

3.1 Introduction 
 
Coronary artery disease (CAD) is a leading cause of death and disability worldwide (72,73). Both 

physical activity and genetic risk play a crucial role in its development (74,75). Decades 

of evidence demonstrate the importance of physical activity volume, referring to total 

physical activity accumulated, and intensity, referring to the proportion of time spent at 

higher levels of exertion, in reducing the risk of CAD (75-78). However, in recent years, 

large-scale studies with accelerometer-measured physical activity suggest both that the 

benefits of physical activity in reducing the risk of CAD may be greater than previously 

realized and physical activity intensity and volume may each contribute to this risk 

reduction (25,79-81). 

 

While genetic susceptibility to CAD was established decades ago using twin 

studies, recent genome-wide association studies have identified millions of variants 

associated with CAD (72,82-83). Methods of combining these variants have enabled the 

construction of polygenic risk scores that have improved researchers’ ability to 

understand the genetic risk of developing CAD (84,85). 

 

Several studies have explored the combined impact of genetic susceptibility and 

self-reported lifestyle factors, including physical activity, on cardiovascular diseases 

(80,86-90). Genetic risk and physical activity had independent associations with 

cardiovascular disease and jointly increased overall risk in each study. However, these 

studies relied on questionnaire-assessed physical activity defined either dichotomously or 

as quantiles.  

 

This subjective measure of physical activity has several limitations. In doubly 

labeled water studies, questionnaire-assessed physical activity demonstrated a weaker 

correlation with PAEE than objective measures (91-92). This method also does not 

account for incidental physical activity throughout the day. Administering longer 

questionnaires to provide a more holistic view of an individual’s daily physical activity 

results in higher levels of misclassification (93-94). Even when administered by a trained 

professional, questionnaire-based techniques suffer from recall and social desirability 

bias and perform poorly for people of less advantaged sociodemographic backgrounds 

(95-96). These sources of bias may obscure the associations between physical activity, 

genetic risk, and incident CAD. Additionally, modeling physical activity dichotomously 

or in quantiles ignores the continuous relationship between physical activity and CAD 

risk (75,81). Because these quantiles group physical activity intensity and volume 

together, these previous efforts could not distinguish their relative importance (80). 

 

This study evaluated the extent to which objective physical activity volume and 

intensity, measured by a wrist-worn accelerometer and modeled continuously, can offset 

an individual’s genetic susceptibility to incident CAD in the UK Biobank (26). We 

utilized the best performing polygenic risk score to date, allowing for more precise 

genetic risk stratification than in previous efforts. Secondarily, we explored whether a 

gene-environment interaction exists between physical activity volume and intensity and 

genetic risk. 
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3.2 Methods 
 

3.2.1 Accelerometer Cohort 
 

We used the UK Biobank (application # 79654), a population-based cohort of over 

500,000 individuals from England, Scotland, and Wales aged 40-69 at recruitment 

between 2006 and 2010. Follow-up time was censored at March 31st, 2016 in Wales, 

September 30th, 2021 in England, and July 31st, 2021 in Scotland. This dataset contains 

information on genetics, health behaviors, socioeconomic status, and health status and is 

described in detail elsewhere (26). Between 2013 and 2015, participants with an email 

address were invited except those in the North West region due to concerns about 

participant burden. A subsample of 103,712 individuals responded to an email recruiting 

them to wear a wrist-worn Axivity AX3 triaxial accelerometer continuously for seven 

days on their dominant wrist and provided data. We applied exclusion criteria used 

previously in this dataset and dropped participants who failed calibration through either 

insufficient or unreliable data, had implausibly high overall acceleration averages, had 

wear time under three days, or did not have 24 unique hours of wear in a 24-hour cycle 

(97-98).  

 

3.2.2 Genotyping and Imputation 
 

Participants in the UK Biobank were genotyped using either the UK BiLEVE or the UK 

Biobank Axiom Array, which each genotyped over 800,000 single-nucleotide 

polymorphisms (SNPs). Using either the Haplotype Reference Consortium panel or the 

UK10k and 1000 Genomes phase 3 panels, additional SNPs were imputed, yielding 

roughly 96 million variants assayed or imputed (99). Following standard genetic quality 

control criteria in this dataset, we dropped individuals who withdrew consent or were not 

genotyped, had a mismatch between genetic and reported biological sex, sexual 

aneuploidy, outliers for missingness or heterozygosity, and we limited the dataset to the 

maximal set of individuals not related by third degree or closer (50). We also split the 

dataset by ancestry, with those of White British ancestry as the sample for the analyses. 

Other ancestry groups contribute too few cases for analysis.  

 

3.2.3 Polygenic Score 
 

We applied the most predictive polygenic risk score available for CAD (84). This score 

was derived by obtaining weights from the largest European-ancestry focused GWAS 

excluding the UK Biobank; and used PRS-CS, a polygenic risk score prediction method 

utilizing a Bayesian framework and continuous shrinkage robust to varying genetic 

architecture. We screened out multi-allelic SNPs, restricted to SNPs with an INFO score 

greater than 0.6, and restricted minor allele frequency to at least 0.01, yielding 1,087,647 

variants included in the score. We then applied the scoring file available on PGS Catalog 

to recreate the scores derived in the original study (100). We transformed the score into 

zero mean and unit variance. 
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3.2.4 Physical Activity Measures 
 

Previous researchers processed the raw accelerometer data in the UK Biobank by 

calibrating to local gravity, filtering out sensor noise and gravity, and detecting and 

imputing non-wear time data segments to calculate the Euclidean norm minus one 

(ENMO) (97,101). The average ENMO was summarized as an average proportion of 

daily time spent at different categories of intensity measured in milligravities (mgs) based 

on measurements taken every 5 seconds. Following Dempsey et al., we used a formula 

shown in Table 3.1 to convert these categorical midpoints of ENMO from dominant 

wrist-worn accelerometer data into instantaneous physical activity energy expenditure 

(PAEE) (25). This measure was validated in free-living populations by both doubly 

labeled water and a combined heart rate monitor and trunk acceleration, the gold and 

silver standards of physical activity energy expenditure measurement, respectively 

(91,102-103). PAEE serves as our measure of physical activity volume in kJ/kg/day. In 

order to calculate physical activity intensity, we categorized physical activity above 125 

milligravities as moderate-to-vigorous physical activity (MVPA) and then divided this 

value by total PAEE and multiplied by 100 to yield the percentage of PAEE from MVPA 

(percent MVPA) (25,81,91,104).  

 

3.2.5 Outcome Definition 
 

We defined CAD based on hospital inpatient episodes, surgeries, and deaths. 

Specifically, we used ICD-10 codes I20 to I25, I46, and R96 to determine CAD as a 

cause of death, ICD-10 codes I20.0, I21-I22, and ICD-9 codes 410 and 4110 to denote a 

CAD event in hospital inpatient records, and OPCS-4 codes K40 to K46, K49, K501, 

K75 and OPCS-3 code 3043 to denote a CAD-related surgery. We restricted to incident 

CAD by excluding individuals with an event prior to the start of accelerometer wear. 

Figure 3.1 shows the Kaplan-Meier plot for survival in the sample. 

 

3.2.6 Covariates 
 

In several waves, participants self-reported information on diet, health behaviors, parental 

heart disease history, mobility, employment status, and educational attainment pertinent 

to this analysis. These questionnaires did not occur at the same time as accelerometer 

wear. To minimize the bias from this discrepancy, we chose the value of the covariates 

from the most recent wave of self-reported data before accelerometer wear began. Diet 

consists of several variables, including whether an individual often adds salt to their food, 

past day consumption of fruits and vegetables, and weekly consumption frequency of oily 

fish and processed meat. Educational attainment denotes whether a person has a 

university degree, any other degree, or no degree. Health behaviors include smoking 

status divided into never, previous, or current and alcohol consumption measured as 

frequency of consumption per week. Employment status is defined as whether an 

individual is currently employed, and mobility problems denotes whether an individual 
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has indicated any issues walking. Table 3.2 shows how we created these variables from 

UK Biobank data fields. We controlled for the first 10 genetic principal components, 

region, biological sex, the Townsend index measuring material deprivation, and season of 

wear, which as static variables did not depend on the wave selected. 

 

3.2.7 Statistical Analyses 
 

We fit a Cox proportional hazards model with age as the timescale to measure the 

association between physical activity volume and intensity, genetic risk, and incident CAD 

with time-to-event as the outcome of interest. The model stratified on biological sex, the 

only covariate violating the proportional hazards assumption based on Schoenfeld residuals. 

Because the functional form of physical activity volume and intensity’s relationship with 

CAD could be nonlinear, we assessed model fit between the exposures modeled linearly or 

as a restricted quadratic or cubic spline. The linear model performed best for both physical 

activity exposures according to BIC. We ran the model with PAEE and polygenic risk score 

as continuous exposures and an interaction term between these exposures controlling for 

sex and then the full covariate set. Using this continuous model, hazard ratios and 95% 

confidence intervals were then calculated for the 20th and 80th percentiles of genetic risk 

and physical activity volume with the 20th and 80th percentile (lowest), respectively, 

serving as the reference group. We restricted to the 20th and 80th percentiles of risk instead 

of the maximum and minimum to avoid interpreting results based on the sparsely populated 

extremes of the distributions. We ran a model with percent MVPA and polygenic risk score 

as continuous exposures with an interaction term and controlling for PAEE and adjusting 

for sex and then the full covariate set and repeated the percentile-based analysis. In 

sensitivity analyses, we excluded cases occurring within the first year of accelerometer 

wear to minimize possible reverse causation, explored the impact of measured body mass 

index, average sleep duration, and cholesterol and blood pressure medication, all potential 

mediators, as well as manual labor conducted for one’s occupation on the results. We relied 

on complete case analysis but imputed via multivariate imputation by chained equations as 

a sensitivity analysis. 

 

We explored whether genetic risk and physical activity volume and intensity interact 

to increase risk of incident CAD by fitting interaction terms between the PA exposures and 

the polygenic risk score. All analyses were performed using R 4.1.3 (105).  

 

3.3 Results 
 

3.3.1 Population Characteristics 
 

After screening individuals for valid accelerometer wear data, 96,660 participants 

remained in the study. We excluded 17,206 participants not meeting the genetic quality 

control criteria. 1,587 participants had missing covariate data, and 1,980 had prevalent 

CAD at baseline, which left a final analytic sample of 75,887, among whom 65,079 

participants were of White British ancestry as outlined in Figure 3.2. Compliance was 

high, with a median wear time of 6.9 days. Table 3.3 shows the characteristics of the 
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participants in our sample. The median follow-up time was 6.8 years with a total of 

430,160 cumulative person-years and 1,368 CAD cases. The average age at baseline was 

62.5 and participants in this sample were generally higher educated, less likely to smoke, 

and had lower levels of material deprivation than the larger population in the UK, which 

coheres with previous research (66). Table 3.4 shows the percentiles of PAEE, % 

MVPA, and the polygenic score. Model 1 refers to the fully adjusted model and model 0 

refers to the model adjusted for biological sex. 

 

3.3.2 Linear Association of Genetic Risk, Physical Activity, and 

Incident CAD 
 

As Table 3.5 demonstrates, the hazard ratio for a standard deviation increase in 

polygenic risk is 1.51 (95% CI: 1.43-1.60) in model 1. The hazard ratio from a standard 

deviation increase (11.49 kJ/kg/day) in PAEE is 0.83 (95% CI: 0.78-0.88) and for percent 

MVPA (11.39%) 0.79 (95% CI: 0.73-0.85), which includes PAEE as a confounder, in 

model 1. Table 3.6 presents results for model 0. 

 

3.3.3 Physical Activity Volume and Genetic Risk Percentile 

Comparison 
 

Table 3.7 presents the hazard ratios of participants at different genetic risk and PAEE 

percentiles. All results are for model 1 and within stratum hazard ratios refer to hazard 

ratio from a change in one variable at a set value of the other variable. Hazard increases 

substantially at the highest levels of inactivity, with an individual at the 20th percentile of 

PAEE (30.07 kJ/kg/day) facing a 35% greater hazard of incident CAD compared to an 

individual of the same genetic risk at the 80th percentile of PAEE (48.50 kJ/kg/day). 

Genetic risk has a stronger association as an individual at the 80th percentile of genetic 

risk within the same PAEE stratum faces a 51% greater hazard of incident CAD than if 

they were in the 20th percentile of genetic risk. While PAEE and genetic risk each have 

important independent associations with incident CAD, they combine to create the 

highest risk of incident CAD. An individual at the 80th percentile of genetic risk and 20th 

percentile of PAEE faces an 80% greater hazard of incident CAD than the reference 

group. 

  

3.3.4 Physical Activity Intensity and Genetic Risk Percentile 

Comparison 
 

Controlling for PAEE in model 1, Table 3.8 shows that percent MVPA has a stronger 

association with incident CAD than PAEE. An individual at the 20th percentile of percent 

MVPA (25.97%) faces a 53% greater hazard of incident CAD compared to an individual 

of the same genetic risk at the 80th percentile (45.46%). The combined association 

between a participant at the 80th percentile for genetic risk and 20th percentile for 

percent MVPA results in a 120% higher hazard of incident CAD relative to an individual 

in the reference group. We explored possible interaction between physical activity 
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volume and intensity and concluded that no significant interaction exists in this sample. 

We found no significant interactions between PAEE and genetic risk or percent MVPA 

and genetic risk, which is similar to what other studies found (80,89). 

 

3.3.5 Sensitivity Analyses 
 

We excluded individuals with cases occurring within the first year of follow-up in Tables 

3.9 and 3.10, reran the analyses with multivariate imputation by chained equations in 

Tables 3.11 and 3.12, and added potential mediators and occupation into the model with 

results in Tables 3.13 through 3.15. None of these choices substantially affected the 

results. 

 

3.4 Discussion 
 

3.4.1 Overview of Principal Findings 
 

In this study of 65,079 participants from the UK Biobank, genetic risk was associated 

with a higher risk of incident CAD regardless of physical activity volume or intensity. 

Physical activity volume and intensity each had significant independent associations with 

incident CAD, with physical activity intensity demonstrating the strongest association. 

While low physical activity volume and intensity increased risk of CAD within a genetic 

risk stratum, low levels of physical activity volume and intensity were associated with 

greater risk of incident CAD in the highest genetic risk group. This suggests that physical 

activity behavior may attenuate some of the high genetic risk of CAD. Specifically, an 

individual at the 80th percentile of genetic risk and physical activity volume or intensity 

risk in the percentile analysis faced a 51% or 61% greater hazard of CAD compared to an 

80% increase and 120% increase if they also had 20th percentile levels of physical 

activity volume or intensity, respectively. 

 

3.4.2 Comparison with Existing Literature 
 

Because previous studies discretize subjective physical activity, a direct comparison to 

estimates from the existing literature is not possible. However, the estimates for physical 

activity’s association with cardiovascular diseases in Said, et al. and Tikkanen et al. 

appear consistent with this study in size and direction of association (80,89). Zaccardi et 

al., rely on self-reported walking pace as the measure of physical activity and show that 

this has a large association with CAD, which is also consistent with our stronger results 

for physical activity intensity (90). Because none of the above studies separate physical 

activity volume and intensity, we demonstrate that intensity may supersede volume in 

terms of reducing risk of CAD from a high genetic risk. Our results within genetic risk 

strata largely agree with existing accelerometer-based studies, although we model 

physical activity volume and intensity linearly (25,81). 
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3.4.3 Strengths and Limitations 
 

This study is among the first to explore the association of genetic risk and accelerometer-

measured physical activity volume and intensity with incident CAD. We use the strongest 

polygenic risk score and the largest sample of individuals with accelerometer 

measurements to date. By modeling physical activity continuously and objectively, we 

avoid the significant misclassification problems from discretizing subjective physical 

activity (106-107). The exploding commercial popularity of wrist-worn accelerometers 

has decreased the relevance of current physical activity standards for the population 

relying on these devices (23,108-109). The current standards do not account for 

incidental physical activity, or physical activity performed as part of one’s normal 

activities, which means accelerometer-measured physical activity may make users appear 

more adherent to current guidelines than they are in reality. Studies relying on 

accelerometer-measured physical activity can help close this gap (108). 

 

This study has several limitations. The UK Biobank sample is disproportionately 

White and affluent relative to the general population and the sample who responded to 

take place in the accelerometer study represents further selection bias. However, previous 

studies have found in terms of physical activity, this cohort appears representative of the 

general population (110). The covariates used rely on self-reporting and are measured at 

different times than accelerometer wear. Accelerometer wear occurred over seven days, 

which makes it cross-sectional, although we validate this against two waves of subjective 

physical activity in Figure 3.3, which found a stronger correlation between more recent 

subjective physical activity and accelerometer wear. Previous studies have shown 

reactivity, or a behavioral response to accelerometer wear, may bias measured physical 

activity volume, although not MVPA (111). More sophisticated machine learning 

methods can better discriminate between activity types and studies have shown our 

method of segregating percent MVPA is prone to misclassification (112-113). Wrist-

worn accelerometers have limited ability to capture all physical activity, with housework, 

cycling, and weightlifting especially poorly captured (114-115). Because physical 

activity is not determined randomly, unmeasured confounding exists. We mitigate this 

concern by adjusting for related health behavioral factors, socioeconomic status, season 

of wear, and by performing sensitivity analyses adjusting for potential mediators. 

 

3.4.4 Conclusion 
 

High genetic risk and low levels of physical activity volume and intensity were 

associated with large increases in incident CAD. This study showed physical activity is 

beneficial regardless of an individual’s underlying genetic risk and that genetic risk does 

not determine an individual’s fate regarding CAD (116). 
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3.5 Tables and Figures 
 

Figure 3.1: Kaplan-Meier survival estimates for main sample 

 

 

 

Table 3.1: Equation converting ENMO into PAEE and derivation of percent MVPA 

Physical Activity 

Exposure 

Definition 

Physical Activity 

Energy Expenditure 

(PAEE) 

Following the work of Demspey, et al. (25), we apply the quadratic equation from White, et al.2 to 

convert ENMO from wrist-worn accelerometer on dominant hand to PAEE with: 

 

𝑃𝐴𝐸𝐸 =  −10.58 + 1.1176 ∗ (1.5 + 0.8517 ∗ 𝑥) + 2.9148 ∗ √(1.5 + 0.8517 ∗ 𝑥) − 0.00059277
∗ (1.5 + 0.8517 ∗ 𝑥)2 

 

where x is the midpoint of one of UK Biobank’s predefined categories in milligravities. We then 

convert from J/min/kg into J/kg/day by multiplying by 1.44. We then sum over all of the intervals to 
get cumulative PAEE. 

Percent MVPA We divide PAEE spent above 125 mgs (equivalent to 3 METs) by overall PAEE to get the proportion 

of PAEE from moderate-to-vigorous physical activity and multiply this by 100 to yield the percent 

MVPA. 
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Table 3.2: Definitions and conversions for covariates in model 1 

Covariate Final Definition UK Biobank Definition Conversion 

Smoking Status Categorical Variable 

with categories of 

Current, Never, and 

Previous following UK 

Biobank definition. 

Categories of Current, 

Never, and Previous 

following UK Biobank 

definition. Derived from 

Current tobacco smoking 

and Past tobacco 

smoking fields. 

None 

Educational Attainment Categorical variable 

with University Degree, 

Other Degree, and No 

Degree as levels. 

Question asked: “which 

of the following 

qualifications do you 

have?”  

Converted to 

University if 

“College or 

University Degree” 

selected, “None” if 

“None of the above” 

selected, and “Other” 

otherwise. 

Employment Status Binary variable with 

employment = 1 and 

other = 0. 

Question asked: “which 

of the following 

describes your current 

situation?” 

Converted to binary 

variable that equals 1 

if “in paid 

employment or self-

employed” and 0 if 

not. 

Mobility Problems Binary variable with 

mobility problems = 1 

and no mobility 

problems = 0. 

Question asked: “Please 

click the ONE box that 

best describes your 

health TODAY.” 

Converted to binary 

variable that equals 1 

if they indicate any 

issues walking and 0 

otherwise. 

Parental History of 

Heart Disease 

Binary variable with 

existence of history = 1 

and no history = 0. 

Question asked: “Has/did 

your mother ever suffer 

from?” and “Has/did 

your father ever suffer 

from?” 

Converted to binary 

variable that equals 1 

if they indicate the 

mother OR father 

suffered from heart 

disease and 0 

otherwise. 

Weekly Processed 

Consumption 

Numeric variable on 

frequency of processed 

meat consumption. 

Question asked: “How 

often do you eat 

processed meats?” and 

lists options as never, 

less than once a week, 

once a week, 2-4 times a 

week, 5-6 times a week, 

once or more daily. 

Converted to 

numeric variable 

with never = 0, less 

than once a week = 

0.5, once a week = 1, 

2-4 times a week = 3, 

5-6 times a week = 

5.5, once or more 

daily = 7. 

Fruit & Vegetable 

Consumption Quartile 

Quartiles from 1 to 4 

denoting total fruit and 

vegetable consumption. 

Composite of four total 

questions. Combined 

cooked and raw 

vegetable intake “On 

average how many 

heaped tablespoons of 

COOKED(RAW) 

vegetables would you eat 

per day?” Combined 

dried and fresh fruit 

Added fruit total and 

vegetable totals 

together and then 

split these totals into 

quartiles. 
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intake “On average how 

many pieces of 

DRIED(FRESH) fruit 

would you eat per day?” 

Weekly Oily Fish 

Consumption 

Numeric variable on 

frequency of oily fish 

consumption per week. 

Question asked: “How 

often do you eat oily 

fish?” and lists options as 

never, less than once a 

week, once a week, 2-4 

times a week, 5-6 times a 

week, once or more 

daily. 

Converted to 

numeric variable 

with never = 0, less 

than once a week = 

0.5, once a week = 1, 

2-4 times a week = 3, 

5-6 times a week = 

5.5, once or more 

daily = 7. 

Weekly Alcohol 

Consumption 

Numeric variable on 

frequency of alcohol 

consumption per week. 

Question asked: “about 

how often do you drink 

alcohol?” and lists daily 

or almost daily, three or 

four times a week, once 

or twice a week, one to 

three times a month, 

special occasions only, 

never. 

Converted to 

numeric variable 

with never = 0, daily 

or almost daily = 7, 

three or four times a 

week= 3.5, once or 

twice a week = 1.5, 

one to three times a 

month = 0.4, special 

occasions only = 

0.03. 

Added Salt Intake Factor variable with four 

levels never/rarely, 

sometimes, usually, 

always. 

Question asked: “do you 

add salt to your food?” 

with options 

Never/rarely, sometimes, 

usually, always. 

None 

Season of Wear Factor variable coded as 

Fall, Spring, Winter, or 

Summer based on date 

range. 

Start time of wear 

denotes the date they 

began wearing an 

accelerometer. 

Derived season 

ranges based on 

“Start time of wear” 

variable. 
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UK Biobank Sample w/ 
Accelerometer Data 

(n = 103,669) 

Well-calibrated accelerometer 
data 

(n = 103,658) 

Poorly calibrated 

(n = 11) 

Reasonable range of average 
overall acceleration 

(n = 103,631) 

Implausibly high overall 
acceleration average of 

greater than 100 mg 
(n = 27) 

 

Wear time > 3 days and have 
unique hours of wear >= 24 in 

24-hour cycle 
(n = 96,660) 

 

Wear time under 3 days 
(n = 6,517) 

 
Did not have unique hours of 

wear in 24-hour cycle of >= 24 
(n = 454) 

Subjects included in final cohort 
who met genetic quality control 

criteria 
(n = 79,454) 

Subjects included in 
accelerometer cohort 

(n = 75,887) 
 
 

By Ancestry 
(n = 65,079 Caucasian) 

(n = 10,808 Other) 

Screened out based on genetic 
quality control criteria 

(n = 17,206) 

Subjects with prevalent CAD at 
baseline 

(n = 1,980) 
 

Subjects with missing covariates 
(n = 1,587) 

Figure 3.2: Subject Exclusion Criteria Flowchart 
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Table 3.3: Baseline characteristics 

Summary Statistics (n = 65,079; Incident CAD = 1368) 

Variable   

Follow-up Time, median(IQR) 

 

 6.82 (6.29, 7.36) 

Physical Activity Energy Expenditure 

(PAEE), mean(SD) 

 

 39.56 (11.49) 

Percent moderate-to-vigorous physical 

activity (percent MVPA), mean(SD) 

 

 35.79% (11.39) 

Standardized Polygenic Risk Score, mean(SD) 

 

 0 (1.00) 

Person-Years 

 

 430,160 

Age, mean(SD) 

 

 62.51 (7.76) 

Highest Education Level, n(%)   

 University 27,779 (42.69%) 

 Any Other 

Qualification 

32,076 (49.29%) 

 No qualification 

 

5,224 (8.03%) 

Townsend Index, mean(SD) 

 

 -1.92 (0.08) 

Currently Employed, n(%) 

 

 38,614 (59.33%) 

Fruit & Vegetable Intake Quartile, mean(SD) 

 

 2.10 (0.59) 

Weekly Alcohol Consumption, mean(SD) 

 

 3.02 (0.58) 

Weekly Oily Fish Consumption, mean(SD) 

 

 1.10 (1.00) 

Female, n(%) 

 

 36,790 (61.14%) 

Parental History of Heart Disease, n(%) 

 

 26,737 (41.08%) 

Cigarette Smoking Status, n(%)   

 Never 37,773 (58.04%) 

 Previous 23,166 (35.60%) 

 Current 4,140 (6.36%) 

 

Added Salt Intake, n(%)   

 Never 39,573 (60.81%) 

 Rarely 17,085 (26.25%) 

 Sometimes 6,561 (10.08%) 

 Always 1,860 (2.86%) 

 

Season Accelerometer Worn, n(%)   

 Fall 19,329 (29.70%) 

 Spring 14,810 (22.76%) 

 Summer 17,086 (26.25%) 

 Winter 13,854 (21.29%) 
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Region, n(%)   

 England 58,225 (89.47%) 

 Scotland 4,322 (6.64%) 

 Wales 2,532 (3.89%) 

 

Mobility Limitations, n(%) 

 

 12,676 (19.48%) 

 
 

 

Table 3.4: Percentiles of PAEE, %MVPA, and PGS 

Percentiles PAEE % MVPA Standardized PGS 

20th Percentile 30.07 kJ/kg/day 25.97% -0.83 

80th Percentile 48.50 kJ/kg/day 45.46% 0.81 

 

 

Table 3.5: Model 1 - controlling for full set of covariates in main analyses (exposures 

standardized)  

Exposure Hazard Ratio 

PAEE HR = 0.83 (95% CI: 0.78 to 0.88) 

Standardized PGS (in PAEE eqtn) HR = 1.51 (95% CI: 1.43 to 1.60) 

% MVPA HR = 0.79 (95% CI: 0.73 to 0.85) 

Standardized PGS (in MVPA eqtn) HR = 1.50 (95% CI: 1.42 to 1.60) 

PAEE (in MVPA eqtn) HR = 0.98 (95% CI: 0.91 to 1.07) 

 

 

Table 3.6: Model 0 - controlling for age and biological sex (exposures standardized) 

Exposure Hazard Ratio 

Standardized PAEE HR = 0.80 (95% CI: 0.75 to 0.85) 

Standardized PGS (in PAEE eqtn) HR = 1.54 (95% CI: 1.46 to 1.63) 

Standardized % MVPA HR = 0.77 (95% CI: 0.71 to 0.83) 

Standardized PGS (in MVPA eqtn) HR = 1.54 (95% CI: 1.45 to 1.63) 

Standardized PAEE (in MVPA eqtn) HR = 0.97 (95% CI: 0.90 to 1.05) 
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Table 3.7: Overview of physical activity volume and genetic susceptibility results 

 20th Percentile Genetic 

Risk 

(-0.83 units) 

80th Percentile Genetic 

Risk 

(0.81 units) 

 

 HR (95% CI) HR (95% CI) HR (95% CI) for Genetic Risk within 

strata of PAEE 

80th Percentile 

PAEE 

(48.50 kJ/kg/day) 

1.0 (Reference Group) 1.51 (1.11-2.06) 

 

1.51 (1.11-2.06) 

20th Percentile 

PAEE 

(30.07 kJ/kg/day) 

1.35 (1.22-1.50) 1.80 (1.17-2.79) 

 

1.85 (1.67-2.05) 

HR (95% CI) for 

PAEE within 

strata of Genetic 

Risk 

1.35 (1.22-1.50) 1.27 (1.15-1.41) 

 

Interaction on 

Multiplicative 

Scale (Ratio of 

HRs) 

1.00 (1.00-1.01) 

a Model adjusted for first 10 genetic principal components, season of wear, salt intake frequency, weekly alcohol 

intake, weekly oily fish intake, fruit and vegetable consumption quartile, weekly processed meat consumption, 

parental history of heart disease, mobility problems, employment status, Townsend index, educational attainment, 

smoking status, region, and biological sex 

 

Table 3.8: Overview of physical activity intensity and genetic susceptibility results 

 20th Percentile Genetic 

Risk 

(-0.83 units) 

80th Percentile Genetic 

Risk 

(0.81 units) 

 

 HR (95% CI) HR (95% CI) HR (95% CI) for Genetic Risk within 

strata of Percent MVPA 

80th Percentile 

Percent MVPA 

(45.46%) 

1.0 (Reference Group) 1.61 (1.23-2.11) 

 

1.61 (1.23-2.11) 

20th Percentile 

Percent MVPA 

(25.97%) 

1.53 (1.32-1.76) 2.20 (1.45-3.32) 

 

1.85 (1.66-2.06) 

HR (95% CI) for 

Percent MVPA 

within strata of 

Genetic Risk 

1.53 (1.32-1.76) 1.44 (1.25-1.67) 

 

Interaction on 

Multiplicative 

Scale (Ratio of 

HRs) 

1.40 (0.87-2.28) 

a Model adjusted for first 10 genetic principal components, season of wear, salt intake frequency, weekly alcohol 

intake, weekly oily fish intake, fruit and vegetable consumption quartile, weekly processed meat consumption, 

parental history of heart disease, mobility problems, employment status, Townsend index, educational attainment, 

smoking status, region, PAEE, and biological sex 
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Table 3.9: Overview of physical activity volume and genetic susceptibility results (first 

year excluded) 

 20th Percentile 

Genetic Risk 

(-0.83 units) 

80th Percentile 

Genetic Risk 

(0.81 units) 

 

 HR (95% CI) HR (95% CI) HR (95% CI) 

for Genetic 

Risk within 

strata of PAEE 

80th Percentile 

PAEE 

(48.50 kJ/kg/day) 

1.0 (Reference 

Group) 
1.46 (1.05-2.04) 

 

1.46 (1.05-2.04) 

20th Percentile 

PAEE 

(30.07 kJ/kg/day) 

1.29 (1.16-1.44) 1.64 (1.03-2.62) 

 

1.84 (1.65-2.06) 

HR (95% CI) for 

PAEE within 

strata of Genetic 

Risk 

1.29 (1.16-1.44) 1.20 (1.08-1.34) 

 

Interaction on 

Multiplicative 

Scale (Ratio of 

HRs) 

1.00 (1.00-1.01) 

 

Table 3.10: Overview of physical activity intensity and genetic susceptibility results (first 

year excluded) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 20th Percentile 

Genetic Risk 

(-0.83 units) 

80th Percentile 

Genetic Risk 

(0.81 units) 

 

 HR (95% CI) HR (95% CI) HR (95% CI) 

for Genetic 

Risk within 

strata of 

Percent MVPA 

80th Percentile 

Percent MVPA  

(45.46%) 

1.0 (Reference 

Group) 
1.51 (1.13-2.01) 

 

1.51 (1.13-

2.01) 

 

20th Percentile 

Percent MVPA  

(25.97%) 
1.53 (1.31-1.79) 1.97 (1.27-3.08) 

 

1.83 (1.63-

2.05) 

 

HR (95% CI) 

for Percent 

MVPA within 

strata of Genetic 

Risk 

1.53 (1.31-1.79) 1.97 (1.27-3.08) 

 

Interaction on 

Multiplicative 

Scale (Ratio of 

HRs) 

1.60 (0.95-2.68) 



49 

Table 3.11: Overview of physical activity volume and genetic susceptibility results 

(MICE imputation) 

 20th Percentile 

Genetic Risk 

(-0.83 units) 

80th Percentile 

Genetic Risk 

(0.81 units) 

 

 HR (95% CI) HR (95% CI) HR (95% CI) 

for Genetic 

Risk within 

strata of PAEE 

80th Percentile 

PAEE 

(48.50 kJ/kg/day) 

1.0 (Reference 

Group) 
1.47 (1.08-2.00) 

 

1.47 (1.08-2.00) 

20th Percentile 

PAEE 

(30.07 kJ/kg/day) 

1.36 (1.23-1.51) 1.74 (1.13-2.68) 

 

1.85 (1.67-2.04) 

HR (95% CI) for 

PAEE within 

strata of Genetic 

Risk 

1.36 (1.23-1.51) 1.27 (1.15-1.41) 

 

Interaction on 

Multiplicative 

Scale (Ratio of 

HRs) 

1.00 (1.00-1.01) 

 

Table 3.12: Overview of physical activity intensity and genetic susceptibility results 

(MICE imputation) 

 20th Percentile 

Genetic Risk 

(-0.83 units) 

80th Percentile 

Genetic Risk 

(0.81 units) 

 

 HR (95% CI) HR (95% CI) HR (95% CI) 

for Genetic 

Risk within 

strata of 

Percent MVPA 

80th Percentile 

Percent MVPA  

(45.46%) 

1.0 (Reference 

Group) 
1.58 (1.21-2.06) 

 

1.58 (1.21-

2.06) 

 

20th Percentile 

Percent MVPA  

(25.97%) 
1.53 (1.32-1.76) 2.12 (1.41-3.20) 

 

1.84 (1.66-

2.05) 

 

HR (95% CI) for 

Percent MVPA 

within strata of 

Genetic Risk 

1.53 (1.32-1.76) 1.44 (1.24-1.66) 

 

Interaction on 

Multiplicative 

Scale (Ratio of 

HRs) 

1.46 (0.91-2.36) 
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Table 3.13: Add BMI, sleep duration, medication use to model 1 for physical activity 

volume and genetic susceptibility  

 20th Percentile 

Genetic Risk 

(-0.83 units) 

80th Percentile 

Genetic Risk 

(0.81 units) 

 

 HR (95% CI) HR (95% CI) HR (95% CI) 

for Genetic 

Risk within 

strata of PAEE 

80th Percentile 

PAEE 

(48.50 kJ/kg/day) 

1.0 (Reference 

Group) 
1.45 (1.06-1.97) 

 

1.45 (1.06-1.97) 

20th Percentile 

PAEE 

(30.07 kJ/kg/day) 

1.22 (1.10-1.36) 1.55 (1.00-2.39) 

 

1.80 (1.62-1.99) 

HR (95% CI) for 

PAEE within 

strata of Genetic 

Risk 

1.22 (1.10-1.36) 1.14 (1.03-1.27) 

 

Interaction on 

Multiplicative 

Scale (Ratio of 

HRs) 

1.00 (1.00-1.01) 

 

Table 3.14: Add BMI, sleep duration, medication use to model 1 for physical activity 

intensity and genetic susceptibility 

 20th Percentile 

Genetic Risk 

(-0.83 units) 

80th Percentile 

Genetic Risk 

(0.81 units) 

 

 HR (95% CI) HR (95% CI) HR (95% CI) 

for Genetic 

Risk within 

strata of 

Percent MVPA 

80th Percentile 

Percent MVPA  

(45.46%) 

1.0 (Reference 

Group) 
1.57 (1.20-2.05) 

 

1.57 (1.20-

2.05) 

 

20th Percentile 

Percent MVPA  

(25.97%) 
1.41 (1.22-1.62) 1.97 (1.30-2.98) 

 

1.80 (1.62-

2.01) 

 

HR (95% CI) for 

Percent MVPA 

within strata of 

Genetic Risk 

1.41 (1.22-1.62) 1.33 (1.15-1.54) 

 

Interaction on 

Multiplicative 

Scale (Ratio of 

HRs) 

1.41 (0.87-2.28) 
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Table 3.15: Add BMI, sleep duration, medication use, whether individual is physically 

active in occupation to model 1 for physical activity volume and genetic susceptibility 

Exposure Hazard Ratio 

PAEE HR = 0.87 (95% CI: 0.82 to 0.93) 

Standardized PGS (in PAEE eqtn) HR = 1.50 (95% CI: 1.41 to 1.58) 

% MVPA HR = 0.83 (95% CI: 0.76 to 0.90) 

Standardized PGS (in MVPA eqtn) HR = 1.49 (95% CI: 1.41 to 1.58) 

PAEE (in MVPA eqtn) HR = 1.00 (95% CI: 0.92 to 1.09) 

 
 

Figure 3.3: Objective physical activity vs longitudinal subjective physical activity 

correlation 

 
a While correlation between self-reported MVPA and MVPA from accelerometer are low, this 

correlation changes relatively little between closer or farther visit from accelerometer wear start date and 

is in line with low correlations even between self-reported MVPA and MVPA from accelerometers 

measured contemporaneously.3  
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4 Conclusion 
 

This dissertation focuses on the ways in which different aspects of an individual’s life 

including their health behaviors, socioeconomic status, and genetics interact to produce 

cardiovascular disease risk. In chapter two I explore whether socioeconomic status 

modifies the causal effect of adiposity on incidence of cardiovascular disease. In chapter 

three, I determine whether objectively measured physical activity volume and intensity 

could reduce the risk of coronary artery disease among individuals at high genetic risk. In 

this conclusion, I will briefly discuss the principal findings from these two chapters, the 

policy and clinical implications of this work and conclude with the future directions for 

this broader research agenda. 

 

4.1  Overview of Principal Findings 
 

Chapter two provides ambiguous evidence regarding the existence of differences in 

cardiovascular disease risk caused by an increase in adiposity among people of varying 

socioeconomic backgrounds. For body mass index, clear differences in risk appear to 

exist in the associational models but these differences only persist between individuals 

with and without a university degree in the base Mendelian randomization model. While 

the imprecision of Mendelian randomization is one of its principal drawbacks, the 

relatively small effect size differences in both the associational and Mendelian 

randomization models provide convincing evidence that any effect differences that do 

exist by socioeconomic status are small in magnitude. The measure of central adiposity, 

waist-to-hip ratio adjusted for body mass index, provided less intuitive results. Among 

individuals with less than a secondary education, the association was negative, which 

defies current scientific understanding of the role of central adiposity in cardiovascular 

disease development. It is likely that collider bias, an issue discussed in the existing 

literature, and the relatively small number of participants with less than a secondary 

education are driving this anomalous result. 

 

 Chapter three provides evidence that physical activity intensity reduces risk of 

coronary artery disease to a greater degree than physical activity volume alone and that 

both can reduce the impact of a high genetic risk of coronary artery disease. However, no 

evidence of the hypothesized interaction between physical activity and genetic risk was 

found. This suggests that while physical activity can reduce the genetic risk of coronary 

artery disease, there are not differential benefits to physical activity between individuals 

at differing genetic risk levels. While individuals at higher genetic risk may emphasize 

the need for physical activity owing to their greater susceptibility to the disease, this 

study does not provide clear evidence of a need for different physical activity standards 

for this high-risk group. It is important to note that unlike the causal design in chapter 

two, this chapter relies on a strictly associational model. Other health behaviors such as 

diet and alcohol consumption imperfectly controlled for in this study likely confound 

physical activity’s association with coronary artery disease and so these conclusions 

should be interpreted cautiously. 
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4.2  Policy & Clinical Implications 
 

It is reasonable to wonder what, if any, policy implications could be derived from two 

studies that did not strongly support their original hypotheses. After all, socioeconomic 

status, genetics, adiposity, and physical activity have well-established influences on 

cardiovascular disease incidence. The possibility of heterogeneous policy effects would 

be an important consideration if socioeconomic status impacted the causal effect of 

adiposity. For instance, the health effects of an intervention to increase educational 

attainment might include both a decrease in adiposity and making an individual’s existing 

level of adiposity less dangerous. Likewise, if genetics and physical activity had an 

interactive association with coronary artery disease, this would suggest that personally 

tailored physical activity recommendations based on an individual’s underlying genetic 

risk be worthwhile. However, studies with null effects are vital precisely because they 

provide researchers a clearer understanding of when the presence of two risk factors in a 

single person may not warrant special consideration above and beyond each risk factor’s 

independent effects. 

 

If no evidence of an interaction between genetic risk and physical activity exists, this 

implies that public health researchers and clinicians should focus on providing accurate 

and uniform recommendations on physical activity to individuals at different levels of 

genetic risk all things equal. Likewise, the existence of little - if any - interaction between 

socioeconomic status and adiposity has important policy implications. When 

implementing a soda tax, for example, to reduce caloric intake, the primary mechanism 

for improved health is through reduced adiposity. The benefits of this policy would differ 

by socioeconomic group primarily due to differences in soda consumption and price 

sensitivity, which makes its effects easier to project. These studies provide early evidence 

of the promise of precision health in guiding disease prevention interventions. 

 

4.3  Future Directions 
 

Precision medicine has received significant public attention over the past decade. In 

2015, President Obama enacted the Precision Medicine Initiative to personalize treatment 

choices and dosages based on a holistic understanding of a patient, including their 

genetics, lifestyle, and environment. This initiative was undertaken on the premise that 

the ‘average patient’ typified by clinical trials does not provide an accurate understanding 

of a drug’s effects for most patients. However, this focus on precision medicine distracts 

from the fact that health is largely determined outside of the doctor’s office. While 

precision medicine is vital to ensure patients receive proper medical care, precision health 

is a concept explicitly focused on utilizing every aspect of a patient’s life from their 

genetic code to their zip code to understand the most effective strategies for disease 

prevention in everyday life. Fully accounting for all of the risks of disease a person could 

face through their lifestyle, social status, and genetic makeup is essential to fully quantify 

individual disease risk and to ultimately prevent these diseases from occurring. By 

exploring how risks factors from these different aspects of a person’s life may interact, 

this dissertation asks two of the many questions that need to be answered for the 

successful implementation of precision health. 
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There are many barriers to this vision of precision health being fully realized for 

all people. It is imperative that largescale cohort datasets become far more socially and 

ethnically diverse in the immediate future. Initiatives such as All of Us are a step in the 

right direction but these datasets and especially the populations most frequently 

genotyped are too often overwhelmingly white, wealthy, and well-educated. Precision 

health can never fulfill its promise to improve the entire population’s health with the 

current status quo. If these large datasets are not diversified to include all ancestries, 

precision health research will instead become just another tool in the perpetuation of 

health disparities. 

 

Genetics research has a long and sordid history of promoting inequality by class 

and race and this legacy can still be seen today in both the ancestral homogeneity of 

genetic datasets and in the field’s continued fixation on the genetic predictors of 

intelligence, educational attainment, and income. These prejudices and lines of inquiry 

distract from the essential goal of gaining a complete understanding of the genetics 

behind common diseases among populations in all their diversity. 

 

Lastly, and most importantly, there is a gap between an individual knowing how 

best to improve their health and actually implementing these changes. Most people know 

that they get too little exercise or drink too often or eat too much but behavioral change at 

a population level remains stubbornly out of reach. These new risk prevention tools 

enabled by precision health must be combined with the arduous “boots on the ground” 

work that has always been the hallmark of good public health. This dissertation provides 

only drops in the ocean of discoveries that await for this burgeoning field.
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5 Supplementary Tables and Figures 
 

Table 5.1: Association between adiposity and incident cardiovascular disease by 

household income and model choice 

  Body Mass Index WHRadjBMI 

(Male) 

WHRadjBMI 

(Female) 

  Additive 

Hazard 

95% 

Confidence 

Interval 

Additive 

Hazard 

95% 

Confidence 

Interval 

Additive 

Hazard 

95% 

Confidence 

Interval 

HH Income 

Under 

£18,000 

Associational 29.45 (26.08, 32.83) 33.00 (23.00, 43.00) 13.40 (8.54, 18.30) 

IVW 25.04 (5.25, 44.84) -93.80 (-195.20, 7.60) 9.61 (-14.69, 33.92) 

Weighted 

Median 

13.79 (-18.90, 46.48) -70.25 (-216.15, 75.65) 13.16 (-22.26, 48.57) 

HH Income 

at least 

£18,000 

 

Associational 19.46 (18.10, 20.82) 17.70 (14.20, 21.20) 3.94 (2.08, 5.80) 

IVW 25.28 (15.66, 34.85) 29.83 (-11.07, 70.72) 4.99 (-4.55, 14.53) 

Weighted 

Median 

27.76 (12.94, 42.59) 16.76 (-37.74, 71.26) 3.46 (-10.55, 17.46) 
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Figure 5.1: Associational relationship between adiposity and incident cardiovascular 

disease 

BMI 
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Figure 5.2: IVW association between adiposity and incident cardiovascular disease 

BMI 
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Figure 5.3: Weighted median association between adiposity and incident cardiovascular 

disease 

BMI 
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