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Abstract

Understanding the Role of Socioeconomic, Biological, Health Behavioral, and Genetic Factors in
Cardiovascular Disease Risk Disparities

by
Robert C. Schell
Doctor of Philosophy in Health Policy
University of California, Berkeley
Professors William H. Dow and Lia C.H. Fernald, Co-Chairs

The age-standardized incidence of cardiovascular disease in high-income countries has
fallen precipitously from 844 cases per 100,000 in 1990 to 597 in 2019. However, this
reduction in average incidence obscures significant disparities in risk by socioeconomic,
genetic, biological, and health behavioral factors. To date, most studies of the risk factors
for cardiovascular disease attempt to isolate the effect of a single risk factor. This single-
exposure focus belies the dynamic interplay between genetics, socioeconomic status, and
traditional health and health behavioral factors that ultimately determine an individual’s
cardiovascular disease risk. This dissertation explores the ways in which different domains
of risk interact to produce heterogeneous, individualized risk of cardiovascular disease.

The second chapter of this dissertation employs Mendelian randomization, an instrumental
variable technique that uses random genetic variation as the instrument, to understand the
causal effect of adiposity on cardiovascular disease incidence for individuals at different
levels of socioeconomic status. Both high adiposity and low socioeconomic status increase
cardiovascular disease risk. However, it is unclear whether the risk caused by an increase
in adiposity is itself identical for individuals at varying levels of socioeconomic status or
if, instead, individuals at lower levels of socioeconomic status face a greater risk from an
increase in adiposity than their peers. If such a disparity did exist, it would imply that the
risk implications of weight gain may differ by socioeconomic status. In UK Biobank data,
we find that differences in risk in these Mendelian randomization models existed only for
individuals with versus without a university degree. The differences in cardiovascular
disease risk from higher body mass index by educational attainment or income — if they
exist - are small in magnitude, though imprecisely estimated. The results for waist-to-hip
ratio adjusted for body mass index, a measure of central adiposity, generally showed even
smaller differences between socioeconomic groups.

The third chapter of this dissertation explores whether a health behavior related to lower
cardiovascular disease risk, physical activity, might ameliorate some of the risk of coronary
artery disease caused by an individual’s genetic predisposition. Specifically, | use wrist-
worn accelerometer data combined with the most powerful polygenic risk score in the



literature to determine how physical activity volume and intensity impact an individual’s
risk of coronary artery disease at different levels of genetic risk. If individuals at higher
risk benefit more from greater physical activity than their lower risk peers, this could imply
that more personalized physical activity standards should be considered for at-risk patients.
Physical activity volume and intensity each had significant independent associations with
incident coronary artery disease, with physical activity intensity demonstrating the
strongest association. However, no interactive effect of physical activity and genetic risk
on coronary artery disease risk was found.

Future research should focus both on the impact of individual risk factors on cardiovascular
disease risk and - particularly - how different risk factors and domains might contribute
and interact to determine an individual’s overall cardiovascular disease risk. With the
proliferation of large-scale cohort datasets such as the UK Biobank, the Million Veteran
Program, and All of Us, researchers face an unprecedented opportunity to understand how
every aspect of a person’s life from their social and built environment to their medical care
access, genetic code, and health behaviors interconnect to determine disease risk.
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1 Introduction

Cardiovascular disease is the leading cause of death worldwide. While the emergence of
treatments such as statins and hypertensive medications has greatly reduced mortality, the
risk of developing this disease is largely determined beyond the walls of a doctor’s office
(1). The American Heart Association advocates focusing on “Life’s Simple 7,” a set of
behaviors including not smoking, maintaining a healthy bodyweight, sufficient physical
activity, a high-quality diet, and low levels of cholesterol, blood pressure, and fasting
glucose without medication use, to lower the incidence of cardiovascular disease (2).
However, adherence to these principles is low among the American public with only 13%
of adults meeting 5 of the 7 criteria (2). Optimal physical activity and ideal bodyweight,
which serves as a proxy for adiposity, have especially low rates of adherence, with under
half of Americans meeting physical activity guidelines and over 70% of Americans above
an ideal bodyweight according to body mass index (3)(4). These low rates of adherence
become even more concerning when coupled with risk factors such as an individual’s
socioeconomic status and genetic susceptibility that may further increase the risk of
developing cardiovascular disease.

This dissertation explores how adiposity, socioeconomic status, genetics, and
physical activity interact to produce cardiovascular disease risk. Chapter two focuses on
whether socioeconomic status - and particularly educational attainment - alters the causal
effect of adiposity on cardiovascular disease. Presently, we have a limited understanding
of how adiposity and low socioeconomic status interact to contribute to an individual’s
cardiovascular disease risk. Chapter two demonstrates their combined impact via a
Mendelian randomization survival analysis, which will demonstrate whether an increase
in adiposity causes a similar increase in risk for individuals at varying levels of
socioeconomic status. Chapter three focuses on the degree to which physical activity
volume and intensity can mitigate a high genetic risk of coronary artery disease. This
chapter hypothesizes that if individuals at high genetic risk benefit more from greater
physical activity, a targeted intervention approach focusing on these high-risk individuals
may be warranted. The rest of this introduction outlines the rationale of chapters two and
three.

1.1 Overview of Chapter 2

Because a randomized controlled trial is neither ethical nor possible to study the effects
of socioeconomic status and adiposity on cardiovascular disease risk, researchers must
rely on observational studies, for which endogeneity, or correlation between the exposure
and error term, obscures the underlying causal relationship. Endogeneity results from two
issues: omitted variable bias (or unmeasured confounding) and reverse causation.
Omitted variable bias occurs because of persistent unmeasured differences between
people of different levels of adiposity. Reverse causation can occur, for instance, if a
cardiovascular event causes disability that results in weight gain. To isolate the causal
effect of adiposity on cardiovascular disease risk in different socioeconomic strata, |



employ Mendelian randomization, which can solve this endogeneity problem provided its
core assumptions are met.

The basic idea behind Mendelian randomization is that an individual randomly
inherits one allele from each parent at every single nucleotide polymorphism, a binary
genetic variant where an individual could receive one of two alleles from each parent,
which makes the genetic variation random conditional on parental genotype (5). Because
they are randomly determined, these genetic variants can, in turn, serve as valid
instrumental variables for adiposity subject to the three traditional instrumental variable
assumptions: relevance, exchangeability, and the exclusion restriction (denoted in order
by the arrows labeled 1,2, and 3 in Figure 1.1) (6).

Numerous Mendelian randomization studies have explored the causal link
between adiposity and cardiovascular disease. Early studies relied on smaller datasets and
a relatively small number of genetic variants that accounted for under 2% of the variation
in adiposity. Despite the resultant low statistical power, these studies often found a strong
association between an increase in adiposity and an increased risk of coronary heart
disease, heart failure, and ischemic heart disease, with mixed results for stroke (7-10).
More recent Mendelian randomization studies have explored the association between
adiposity and cardiovascular disease and, while the percent of variation in adiposity
explained by genetic variants remains largely unchanged, the datasets are far larger,
which gives the analyses more statistical power. These better powered studies have
reinforced the strength of the association between adiposity and cardiovascular disease,
with a standard deviation increase in waist-to-hip ratio associated with a 1.46 increase in
the odds of coronary heart disease (11-17). However, all of these studies either control for
or do not consider the role of socioeconomic status in producing cardiovascular disease
risk.

Socioeconomic status, a multidimensional concept that includes an individual’s
income, educational attainment, occupational status, environment, and social
environment, has long been understood as a “fundamental cause” of health disparities in
high-income countries.® The view of socioeconomic status as a stationary attribute to
abstract away from instead of as a key contributor in the production of health that works
in conjunction with traditional risk factors in shaping an individual’s health has kept the
literature from exploring how socioeconomic status modifies health risks. Traditionally,
socioeconomic status and adiposity are both thought of as having their own independent
(and stable) average treatment effects and as simple confounders instead of as interacting
factors in the production of health. However, socioeconomic status is known to impact
both biological risk factors for cardiovascular disease such as hypertension and diabetes
and social risk factors such as access to medical care and health knowledge that could
interact with adiposity’s own effects on cardiovascular disease to further increase risk
(30). This study is the first to view socioeconomic status as an effect modifier — not
confounder — of the impact of adiposity on cardiovascular disease risk.



Research Question for Chapter 2: Does the effect of an increase in adiposity on
cardiovascular disease risk vary by socioeconomic status among the adults in the UK
Biobank?

Hypothesis: People of higher socioeconomic status face a lower increase in
cardiovascular disease risk from high adiposity than their lower status peers.

Key Dependent and Independent Variables and Covariates

Incident Cardiovascular Disease Case Definition

The main outcome of interest in this study is incident cardiovascular disease, for which |
included angina, myocardial infarction, ischemic heart disease, atrial fibrillation, heart
failure, and stroke with the following ICD-10 codes: 120, 121, 125, 148, 150, 160, 161, 163,
164.

Socioeconomic Status

| utilized two different measures of self-reported socioeconomic status in the analysis,
which reflect the different dimensions encompassed by the term: educational attainment
and household income. | treated educational attainment as a categorical variable
separated into less than a high school education compared to at least high school graduate
given the strong discontinuity in cardiovascular disease risk in the literature at this point.
Household income is discretized to above or below the poverty level, owing to the
importance of this threshold in the literature.

Anthropometry

| used measured waist-hip-ratio adjusted for body mass index (WHRadjBMI) and body
mass index (BMI) to reflect adiposity. While most analyses focus on BMI alone to
measure adiposity, it is a controversial and imprecise measure that fails to account for fat
free mass. The WHRadjBMI, on the other hand, which measures central adiposity, has a
far more consistent association with both adiposity and cardiovascular disease risk than
BMI (18). Therefore, | used both WHRadjBMI and BMI as measures of central and total
adiposity (18-20).

Genetic Variants Selected

| selected the genetic variants associated with an elevated WHRadjBMI based on a recent
genome-wide association study (GWAS) performed by the GIANT Consortium. Shungin
et al. measured WHRadjBMI among 210,088 individuals of European ancestry (21). The
authors found 49 independent single nucleotide polymorphisms that reached genome-
wide significance of p<1x10°, the standard critical value in GWAS studies that comes
from multiple testing correction. For BMI, | focused on the most recent GWAS that
excludes the UK Biobank, which identified 97 significant variants (22).



1.2 Overview of Chapter 3

Physical activity has a well-established influence on coronary artery disease risk.
Professional organizations from the World Health Organization to the American Heart
Association advocate for a minimum of 150 minutes of moderate intensity physical
activity or 75 minutes of vigorous intensity physical activity for adults aged 18 to 64 to
minimize the risk of cardiovascular disease (23-24). However, it is unclear whether
heterogeneity in the ideal level of physical activity exists for different people based on
their underlying risk. Could a person genetically predisposed toward coronary artery
disease meaningfully benefit from engaging in physical activity beyond the blanket
standards currently recommended? Chapter 3 focuses on the possibility that genetic risk
of coronary artery disease and objectively measured physical activity volume and
intensity may interact to alter coronary artery disease risk.

This study provides two vital innovations to address this question. Firstly, until
recently physical activity in large cohort studies has been measured exclusively via self-
reported questionnaires. This measure of physical activity suffers from the biases typical
of self-reporting, including most notably recall and social desirability bias. The UK
Biobank, the dataset used for this chapter, tracked physical activity over the course of a
week with wrist-worn accelerometers for over 100,000 participants. As a result, for the
first time in a large cohort study, objectively measured physical activity is available.
While this method has its own limitations, previous studies have shown that
accelerometers provide a more accurate picture of actual physical activity undertaken
than questionnaire-based assessments. Secondly, our understanding of the genetic
variants associated with coronary artery disease has increased substantially over the past
ten years with the proliferation of both genome-wide association studies and increasingly
sophisticated techniques to create polygenic scores that summarize an individual’s overall
genetic risk of a disease.

Research Question for Chapter 3: Can greater accelerometer-measured physical
activity volume or intensity offset a high genetic predisposition to coronary artery disease
among the adults in the UK Biobank?

Hypothesis: People of higher genetic risk benefit more from an increase in physical
activity volume and intensity than their lower risk peers.

Key Dependent and Independent Variables and Covariates

Coronary Artery Disease Case Definition

The main outcome of interest was incident coronary artery disease. | defined cases based
on hospital inpatient episodes, surgeries, and deaths using ICD-10 codes 120 to 125, 146,
and R96 to determine CAD for cause of death, ICD-10 codes 120.0, 121-122, and ICD-9

codes 410 and 4110 for an event in hospital inpatient records, and OPCS-4 codes K40 to
K46, K49, K501, K75 and OPCS-3 code 3043 for surgeries.



Polygenic Score

| applied the best performing polygenic risk score to date that did not include the UK
Biobank to avoid the potential for winner’s curse bias. This score consisted of 1,090,048
variants, from which | excluded 332 by utilizing a more stringent minor allele frequency
and INFO score requirement than the original authors.

Physical Activity Volume and Intensity

Following the work of Dempsey, et al, | converted the raw accelerometer Euclidean norm
minus one (ENMO) from the wrist-worn accelerometer data to physical activity energy
expenditure to represent physical activity volume (25). | then calculated the percent of
this physical activity energy expenditure derived from moderate to vigorous physical
activity as the percent of physical activity energy expenditure that took place above 125
milligravities.

1.3 Data

The UK Biobank (UKB) is a massive population-based cohort of over 500,000 people
aged 40-69 years old at recruitment in 2006 from England, Scotland, and Wales with
demographic, genetic, biomarker, detailed health status, socioeconomic status,
anthropometric measurement, and disease data (26). This dataset is unparalleled both in
its size and in the breadth of variables measured longitudinally since 2006. Participants in
the UK Biobank were genotyped using either the UK BiLEVE or the UK Biobank Axiom
Array, which each genotyped over 800,000 single-nucleotide polymorphisms (SNPs).
Using either the Haplotype Reference Consortium panel or the UK10k and 1000
Genomes phase 3 panels, additional SNPs were imputed, yielding roughly 96 million
variants assayed or imputed. The UKB contains detailed demographic, genetic,
biomarker, health status, socioeconomic status, anthropometric, and disease data. Almost
all of the enrolled subjects (> 96.9%) had valid measures of waist-to-hip ratio, genetic
data, and social factors, which makes it an ideal resource to answer the question in
chapter two. Between 2013 and 2015, participants with an email address were invited
except those in the North West region due to concerns about participant burden. A
subsample of 103,712 individuals responded to an email recruiting them to wear a wrist-
worn Axivity AX3 triaxial accelerometer continuously for seven days on their dominant
wrist and provided data (26). This group of participants constitutes the largest cohort with
registered accelerometer data | am aware of and will serve as the study population for
chapter three.



1.4 Tables and Figures

Figure 1.1: Demonstration of Mendelian randomization analysis and necessary
assumptions

SES J
PN T
Genes [SNPs) — Adiposity " CVD Event
1 ! |
2.
Unmeasured

Confounding




2 Does educational attainment modify the causal
relationship between adiposity and cardiovascular
disease? A Mendelian randomization study

Abstract

A greater risk of cardiovascular disease is associated with low educational attainment and
high adiposity. Despite the correlation between low educational attainment and high
adiposity, whether educational attainment modifies the risk of CVD caused by high
adiposity remains poorly understood. We investigated the effect of adiposity (body mass
index [BMI] and waist-to-hip ratio adjusted for BMI [WHRadjBMI]) on incident CVD
among individuals with varying education levels, using associational and one-sample
Mendelian randomization (MR) survival analyses. Data were collected from 2006 to
2021, and sample sizes were 254,281 (27,511 CVD cases) for BMI and 253,968 (27,458
CVD cases) for WHRadjBMI. In the associational model, a standard deviation (SD)
higher BMI was associated with 19.81 (95% CI: 18.55-21.06) additional cases of
incident CVD per 10,000 person-years for individuals with a secondary education, versus
32.96 (95% CI: 28.75-37.17) for those without. When university degree served as the
education variable, education group differences attenuated, with 18.26 (95% CI: 16.37—
20.15) cases from a one SD higher BMI for those with a university degree versus 23.18
[95% CI: 21.56-24.72] for those without. For the MR model, an SD higher BMI resulted
in 11.75 (95% CI: —0.84-24.38) and 29.79 (95% ClI: 17.20—42.44) additional cases of
incident CVD per 10,000 person-years for individuals with versus without a university
degree. WHRadjBMI exhibited no effect differences by education. While the
associational model showed evidence of educational attainment modifying the
relationship between adiposity and incident CVD, it does not modify the association
between adiposity and incident CVD in the MR models. This suggests either less
education does not cause greater risk of incident CVD from high adiposity, or MR
models cannot detect the effect difference. The associational point estimates exist within
the MR models’ confidence intervals in all BMI analyses, so we cannot rule out the effect
sizes in the associational models.

2.1 Introduction

One of the great public health achievements ever has been the substantial reduction in
cardiovascular disease (CVD) incidence and mortality in high-income countries (27-29).
However, these reductions were not equally distributed, and people from lower
socioeconomic strata, for example as defined by lower educational attainment, and people
with higher levels of adiposity still face a disproportionately high risk of having a CvVD
event (30-34). A recent meta-analysis of observational studies found that people with a
high school education or less faced a 27% to 50% greater risk of a CVD event, while
controlling for body mass index (BMI) (34). Just as low educational attainment is related
to a substantial increased risk of CVD, so too is high adiposity. A recent Mendelian
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randomization (MR) analysis showed that a standard deviation higher waist-to-hip ratio
adjusted for BMI (WHRadjBMI) is associated with an odds ratio of 1.46 for coronary heart
disease (CHD), which reinforces decades of evidence from observational studies (17,35-
36).

These disparities in CVD risk are especially concerning given the high prevalence
of obesity, at 28% in the UK, and the fact that over half of UK residents never graduate
college and 21% do not have a secondary education (37-39). Low educational attainment
and high adiposity also tend to coexist, with one study finding that 22.5% of Europeans
with only primary school education had obesity compared to 9.9% of individuals with a
university degree (40). Despite their high prevalence and tendency to co-occur, the degree
to which low educational attainment modifies the risk of CVD caused by high adiposity
remains poorly understood.

MR is an instrumental variable technique that relies on random genetic variation as
a natural experiment and, if the core assumptions are met, provides a causal effect robust
to reverse causation and confounding bias. The elimination of reverse causation is
especially important when considering adiposity as an exposure because of its tendency to
blur the association of illness and adiposity in older age (41). While a person’s adiposity
derives from both genetic and lifestyle factors, MR provides a unique opportunity to isolate
the health effects of adiposity from other confounding health behaviors, such as smoking,
that could affect CVD risk and adiposity. Recent MR studies on adiposity’s effect on CVD
improve on the methodological limitations of the earliest studies, but they still largely treat
educational attainment as a confounder for which to adjust (7,13-14,42). However, two
people with identical levels of adiposity and different levels of education may face different
associations between adiposity and CVD risk. Differences in incident CVD risk from
adiposity could exist between educational attainment groups because of differences in
medical care access and utilization, alcohol consumption patterns, and from higher levels
of inflammation, hypertension, and hyperlipidemia (30,31,33,43-47). This study is the first
to directly explore how different levels of education modify the effect of adiposity on
incident CVD.

We estimate the relationship between adiposity and incident CVD at different levels
of education via an MR survival analysis. We hypothesize that an increase in adiposity
leads to a greater incidence of CVVD among adults without a secondary education in the UK
Biobank (UKB) compared to the risk faced by their better educated peers, as shown in the
DAG in Figure 2.1. We also explore potential effect heterogeneity for individuals with
more or less than a university degree as a sensitivity analysis.

2.2 Methods

The UKB is a population-based cohort of over 500,000 people from England, Scotland,
and Wales aged 40-69 years old at recruitment designed to explore the genetic and
environmental determinants of a variety of diseases (48). It began in 2006 and is uniquely
suited to perform a One Sample MR survival analysis because of its size and the wide
array of data collected longitudinally (26). We included only a subset of the full UKB



dataset based on the criteria outlined in Figure 2.2. MR requires us to restrict to unrelated
individuals with high-quality genetic data. Because of the possibility of population
stratification, or spurious associations which can occur if a disease and a genetic variant
are more or less common in a specific ancestry group, we must also restrict to only
individuals of white British ancestry. Pooled analysis of ancestry groups would create
these spurious associations and there are simply too few non-white subjects in the UK
Biobank to produce separate, well-powered analyses in these other ancestry groups. We
describe briefly the criteria in Figure 2.2 below.

First, we dropped any subjects who were not genotyped (14,239 subjects).
Because subjects of European ancestry are the largest group by far in the UK Biobank
(comprising over 94% of the sample) and population stratification concerns prevent us
from analyzing an ancestrally diverse sample, we then dropped all individuals without
European ancestry (78,620 subjects). Next, we removed individuals who withdrew
consent to continue participating in data collection (96 subjects). We next dropped all
individuals related, defined as third degree relatives or closer, to at least one other person
in the UK Biobank to avoid creating spurious associations caused by familial effects
(131,927 subjects) (26,49).

We excluded individuals whose genetic data failed the standard inclusion quality
control procedures created by the MRC Integrative Epidemiology Unit (731 subjects)
(50). In short, this excludes individuals who have a mismatch between genetically
inferred and reported sex, duplicates, and individuals who are outliers in terms of
heterozygosity or missing rates. We excluded individuals with prevalent cardiovascular
disease at baseline, defined as those who experienced a CVD event prior to their first
adiposity measurement in the UKB (19,259 subjects) and those with missing adiposity
measurement (1,278 subjects) or educational attainment status (1,979 subjects). The final
sample size of the study was 254,281 participants with 27,511 cases of incident CVD.

2.2.1 Incident Cardiovascular Disease Case Definition

The main outcome of interest in this study is time to incident cardiovascular disease
(CVD), defined as including angina, myocardial infarction, ischemic heart disease, heart
failure, and stroke with the following ICD-10 codes (and OPCS-4 codes for operations):
120 to 125, 144, 150, 160 to 164, 169, K40 to K46, K49, K50, K75 (51,52). If ICD-10 codes
were unavailable for an individual, we relied on the corresponding self-reported events.
We focused on incident instead of prevalent CVD, so only CVD cases that occurred after
the first adiposity measurement for a subject who has not yet experienced CVD qualified
as events.

2.2.2 Educational Attainment Definition

We treated education as a self-reported categorical variable separated into individuals
who did not complete secondary education and those that did. In secondary analyses, we
also split education into those with and without a university degree. We chose these



dichotomizations of educational attainment because past studies have shown significant
differences in CVD risk between these educational groups (30,31,34).

2.2.3 Adiposity Definition

We used first-measured WHRadjBMI, defined as the ratio of the circumference of the
waist compared to the hip controlling for BMI and first measured BMI as the two
measures of adiposity in this study. This first adiposity measurement occurred at
enrollment for all of the individuals in the present study. The benefit of using
WHRadjBMI is that it has a more direct correlation with adiposity and measures central
adiposity, which serves as an independent predictor of CVD risk beyond total body
adiposity (53)(20). We stratified the WHRadjBMI analysis by sex due to the sexually
dimorphic nature of the exposure (21). Therefore, the BMI models are presented pooled
by biological sex, while the WHRadjBMI models are presented stratified by sex. Both
exposures were standardized by subtracting the mean from each individual and dividing
by the standard deviation.

2.2.4 Selected Genetic Variants

We identified 97 variants significantly associated with BMI that explain 2.7% of its
variance from the most recent genome-wide association study (GWAS) that excluded the
UKB (22). We selected the 49 variants associated with an elevated WHRadjBMI at
genome-wide significance based on a recent GWAS performed by the GIANT
Consortium (21). Because genetic variants are often co-inherited and inferring output
from genotyping platforms can be difficult, imputation is a common technique used to
allow a person’s available genetic data to predict any missing genotypes. Imputation
enables us to both keep individuals with incomplete genetic data, while also ensuring we
can draw accurate inference from this population. The UK Biobank has developed their
own imputation methods, detailed in the documentation at
https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/impute_ukb_v1.pdf. To assess
the quality of the UKB’s imputation for our variants, we rely on INFO score, a measure
of genetic variants’ imputation quality scaled between 0 and 1, with a 1 denoting perfect
imputation. Every genetic variant in this analysis had an INFO score higher than 0.95,
which signifies the high level of imputation accuracy in this analysis. For individuals
with imputed SNPs, we perform hard-call genotyping, which assigns variants to the most
likely allele count between 0, 1, and 2 based on an individual’s related genetic
information.

We next checked for the existence of multi-allelic or palindromic SNPs. In brief, a
multi-allelic SNP is one with more than the conventional two alleles, which would make
applying any of our estimators impossible. Palindromic SNPs are those with the same
letters on the forward and reverse strands, which makes identifying the effect allele
challenging, particularly if the effect allele frequency is roughly 0.5. We identified no
multi-allelic but two palindromic SNPs:rs1558902 (16:52,361,075) and rs9641123
(7:93,035,668) for BMI. We reran these models without the two above SNPs, which did
not affect the results. No such variants existed for WHRadjBMI.
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These genetic variants can serve as valid instrumental variables for adiposity subject
to three assumptions: relevance, exchangeability, and no horizontal pleiotropy (54).
Relevance, which requires that the variant influences adiposity, represents the only
empirically verifiable assumption. We verify relevance by determining whether the
instruments combine to have a partial F-statistic over 10, a conventional threshold for
instrument strength. Exchangeability, or a lack of confounding between the outcome and
variant, seems plausible in this scenario given the random assignment of genes at birth,
although population stratification could violate it. The last assumption, no horizontal
pleiotropy, is the most contentious and likely to fail in practice. This happens when a
variant affects CVD risk both through adiposity and some other exposure.

2.2.5 Statistical Analyses

The following analyses are stratified by educational attainment, with subjects grouped as
those with versus without a secondary education and those with and without a university
degree. All analyses consist of an associational model and an MR model. We used
Aalen’s additive hazards model for both the MR and associational survival analyses. We
chose the additive hazard model instead of the Cox model to avoid the issue of non-
collapsibility of the hazard ratio as a measure of association (55,56). In a survival model
with death as a competing risk, the quantity estimated is a cause-specific hazard
difference. The timescale used is time since first measured adiposity. Time to event, the
outcome of interest, signifies time from first measurement of adiposity to first incident
CVD event. We controlled for baseline age, genotyping array, whether a subject ever
smoked (defined as over 100 lifetime cigarettes), the first ten genetic ancestry principal
components as a standard way to further control for population stratification
confounding, and biological sex in the BMI models (the WHRadjBMI models stratify by
sex). We relied on complete case analysis due to low rates of missingness in the UKB
with only 3257 individuals missing exposure or outcome values at the final stage of
screening.

For the MR analyses we first performed inverse variance weighted (VW) regression,
which is the most efficient MR estimator because it more heavily weights variants with
more precise effects on adiposity and, thus, CVD incidence (57). We utilized a fixed
effects modeling approach, which assumes one underlying “true” effect of adiposity on
CVD incidence in each educational attainment stratum. While the IVW regression
provides the most statistical efficiency of any MR design, it is also the most susceptible
to bias due to horizontal pleiotropy (58).

We performed sensitivity analyses that vary the assumptions underlying the model to
make the causal effect more plausible. The weighted median estimator is an alternative
model utilized in many MR analyses that offers less efficiency than the VW estimator
but provides robustness to certain forms of horizontal pleiotropy (58). The weighted
median estimator is consistent provided at least half of its weight is placed on variants
acting as valid instruments. The causal effect is then the effect of the variant at the 50th
percentile of the weights (58). Because the MR estimators do not allow formal
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assessments of effect modification, we performed stratified analyses and evaluated
confidence intervals and point estimates. While non-overlapping confidence intervals
imply statistically significant differences, their overlap does not imply that no difference
exists and so we only interpreted confidence intervals in the cases where they diverged or
overlapped extensively, thus our conclusions should be conservative (59). All analyses
were performed using R 4.1.3. Because individuals with at least (less than) a secondary
education and with (without) a university degree overlap, we focused on comparisons
between mutually exclusive groups. We pre-specified all analyses and hypotheses on
Open Science Framework. This study follows the STROBE-MR guidelines (60).

2.3 Results

Out of the 254,281 (253,968) subjects that fit the inclusion criteria for the BMI
(WHRadjBMI) analysis, 27,511 (27,458) experienced a CVD incident over 2,970,344
(2,969,741) person-years. Subjects with more education had lower BMIs and incidence of
CVD, were less likely to smoke, and were generally younger at baseline than their peers
with less education (Tables 2.1 and 2.2). The genetic variants displayed relationships of
adequate strength according to our pre-analysis plan for every group except for subjects
with less than secondary education and males with at least a university degree for
WHRadjBMI, as the partial F-statistic for each of the rest exceeded 10. It is important to
note that this instrument strength estimate was derived from estimating a first-stage
regression with the genetic variants as variables and the confounders, which differs from
the models used in the results. Figures 2.2 to 2.4 present a detailed breakdown of follow-
up time by event, Kaplan-Meier curves for overall survival probability, and cumulative
incidence by event type.

In the adjusted model in Table 2.3 and Figure 2.5, a standard deviation higher BMI
(4.69 kg/m2) results in 22.60 (95% CI: 21.39 to 23.82) excess cases of incident CVD per
year among 10,000 individuals in the pooled sample. This effect increases to 32.96 (95%
Cl: 28.75 to 37.17) for individuals with less than a secondary education compared to only
19.81 (95% CI: 18.55 to 21.06) for individuals with at least a secondary education. Given
the over 33% increased rate of incident CVD per standard deviation increase in BMI
between individuals in these groups and their non-overlapping confidence intervals, it
appears education may act as an effect modifier in the associational models. Individuals
with a university degree and those without one also diverge in terms of hazard of CVD,
but the effect size difference is far smaller in magnitude. These differences do not appear
to exist for WHRadjBMI for either sex, as the educational groups’ effect sizes largely
overlap.

In the IVW model results, shown in Figure 2.6 and Table 2.3, the differences
between educational groups for BMI appear less pronounced. For individuals with less
than a secondary education, the relatively small sample size results in imprecise estimates
and a confidence interval that reaches below the lowest and above the highest point of
any other educational group. The point estimate for individuals with a university degree
is less than half of the next closest point estimate and appears to differ meaningfully from
individuals with less than a university degree. A standard deviation higher BMI results in
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29.79 (95% CI: 17.20 to 42.44) excess cases of incident CVD per year among 10,000
individuals in the sample of individuals with less than a university degree compared to
only 11.75 (95% CI: -0.84 to 24.38) for individuals with a university degree. Figure 2.7
and Table 2.3 suggest that the weighted median estimator is too imprecise to draw firm
conclusions about differences in hazard between educational groups.

The IVW model results for WHRadjBM I differed from our hypothesis. While the
results were difficult to distinguish for males, with all groups’ confidence intervals
overlapping with zero, females experienced a decrease in the hazard of incident CVD
from a standard deviation higher WHRadjBMI. Specifically, the model suggests that a
standard deviation higher WHRadjBMI results in a decrease in incidence of CVD of
31.12 per 10,000 individuals. Because some of the estimates are in opposite directions, it
is important to note that the pooled estimates in this analysis have no straightforward
interpretation. Likewise, in the weighted median model females experience an increase in
incident CVD from a higher WHRadjBMI only if they have at least a secondary
education, which also contradicts our hypothesis of an inverse association between CVD
hazard and educational attainment. We repeat these analyses for household income,
another dimension of socioeconomic status associated with incident CVD in the
literature, in the appendix in Table 5.1 and Figures 5.1 to 5.3 (61).

2.3.1 Sensitivity Analyses

The simplest method to minimize the potential role of horizontal pleiotropy in this
analysis is a “leave one out” (LOO) method, where the model is re-estimated excluding
each SNP separately (62). This analysis should demonstrate whether any outlier SNPs
have a disproportionate impact on the effect estimate. If each of these iterations provides
directionally consistent results, it decreases the likelihood that horizontal pleiotropy plays
a large role in driving the existence of a causal effect because the different SNP subsets
would likely not suffer from the exact same source of bias.

A more direct way of assessing the causal effect of adiposity on CVD would involve
including only SNPs with an established mechanistic link to adiposity that makes their
association more plausible (63). Because BMI is determined by a host of mechanisms not
directly related to adiposity, we are only able to perform this sensitivity analysis for
WHRadjBMI. Out of the original set of 49 SNPs in WHRadjBMI, only 9 are associated
with gene expression in either subcutaneous or omental adipose tissue. Because there
were only 9 variants associated with WHRadjBMI that had a plausible functional
component identified, we tested the strength of this instrument. The combined effect of
the genetic variants produced an F-statistic under 10, suggesting the estimator would
suffer from weak instrument bias. As a result, we did not perform this sensitivity
analysis. As a result, we only present the leave-one-out analyses below.

Figure 2.8 plots the distribution of point estimates across the iterations of the LOO
analyses. The LOO analysis for the effect of WHRadjBMI on incident CVD for females
suggests that no one genetic variant appeared to have an outsized influence on the results
except in the case of females with less than a secondary education. However, because this
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effect was already so imprecisely estimated, it is unclear how much these genetic variants
actually impact the observed results.

The LOO analysis for the effect of WHRadjBMI on incident CVD in Figure 2.9 for
males suggests that no one genetic variant appeared to have an outsized influence on the
results except in the case of females with less than a secondary education. There were
some notable outliers for males with at least a secondary education and a wide range for
males with at least a university degree.

The LOO analysis for the effect of BMI on incident CVD in Figure 2.10, which
produced far more precise estimates than WHRadjBMI, unsurprisingly demonstrates
more consistency in results across genetic variants. There are notable outliers for subjects
with less than and at least a university degree; however, these were of much smaller
magnitude than the outliers in the WHRadjBMI analysis. Because there were only 9
variants associated with WHRadjBMI that had a plausible functional component
identified, we tested the strength of this instrument. The combined effect of the genetic
variants produced an F-statistic under 10, suggesting the estimator would suffer from
weak instrument bias. As a result, we did not perform this sensitivity analysis.

2.4 Discussion

The associational models in this analysis suggest differences in hazard of incident CVD
from a higher BMI exist between individuals with and without a secondary education, as
well as between those with and without a university degree. However, in the IVW models
only individuals with and without a university degree still faced significantly different
hazards of incident CVD from a higher BMI and the weighted median models were too
imprecise to detect differences between educational attainment groups. Overall, we
conclude that differences in hazard of incident CVD from higher BMI by educational
attainment — if they exist - are small in magnitude. The results for WHRadjBMI were
generally even less different between educational attainment groups, although a
counterintuitive relationship emerged in the MR models for females where individuals
with less than a secondary education experienced a decrease in hazard from increasing
WHRadjBMI.

While higher BMI is related to an increased hazard of incident CVD for every
educational attainment group in the associational and VW models, WHRadjBMI
increases the hazard of incident CVD for every group in the associational models and
then only a subset of educational attainment groups thereafter. WHRadjBMI has been
criticized in previous work for introducing collider bias, which could explain both the
inconsistent association between WHRadjBMI and incident CVD in the MR models and
the negative association found between WHRadjBMI and incident CVD in individuals
with less than a secondary education (64).

Unlike much of the MR literature on CVD, we focused on incident CVD which

should assuage concerns regarding reverse causation in studies of prevalent CVD and
adiposity (65). We employed an additive hazard model instead of the more commonly
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used Cox model, which avoids the issue of non-collapsibility and puts the effect measure
in a more easily interpreted additive form. This is the first study to our knowledge to
consider SES as a potential effect modifier instead of simply as a confounder for the
impact of adiposity on CVD, which acknowledges the ways in which education and
adiposity could interact in the production of population health. Lastly, we utilized a
variety of sensitivity analyses, perform numerous confirmatory analyses, and pre-
specified the analysis plan to increase confidence in our results.

As with many MR studies, we face some statistical power limitations, especially
for the smaller educational attainment subgroups. The measures of adiposity used, BMI
and WHRadjBMI, have also been criticized for not capturing the underlying variable of
interest (total adiposity) and producing collider bias, respectively. As with any MR
analysis, we cannot ensure the assumptions outside of relevance are met or know the
‘best” model in terms of balance between robustness and statistical efficiency. We also
treated education as exogenous, as the MR design only applies to adiposity. The UK has
universal healthcare and the UKB is an unusually healthy and high-status snapshot of the
country (66). While health disparities by educational attainment persist in countries with
universal healthcare, our analysis likely understates the differences in CVD incidence
between educational attainment groups in countries without universal healthcare and in
more socioeconomically diverse samples (67). Additionally, some researchers have
attempted to make the UKB more representative of the broader population with sampling
weights, which we do not apply in this analysis (68). We restricted the analysis to only
White Europeans and control for genetic ancestry principal components to reduce the
possibility of population stratification, but social stratification remains a potential
concern (69). Past evidence also suggests nonlinear effects of adiposity on CVD risk,
with individuals at higher levels of adiposity facing greater risks, but we treated
adiposity’s impact as linear in this analysis.

Lastly, unique forms of selection bias represent a general limitation of MR
studies. Because high adiposity has an association with mortality in young adulthood, the
MR analysis here necessarily restricts to individuals who survived long enough to
participate (70,71). Therefore, even with valid instruments or methods robust to invalid
instruments, the possibility remains for selection bias from loss to follow up correlated
with the instruments (70).

In the associational models, individuals with lower educational attainment face a
higher hazard of CVD from an increase in adiposity. However, hazard differences
between educational attainment groups are only detected in the MR models for
individuals with and without a university degree for BMI and not detected at all for
WHRadjBMI.
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2.5 Tables and Figures

Figure 2.1: Directed acyclic graph of adiposity, educational attainment, and cardiovascular
disease incidence
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Figure 2.2: Subject exclusion criteria flowchart
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Table 2.1: Characteristics of cohorts with less than and at least secondary education

Less than Secondary Education At Least Secondary Education

Mean Range Mean Range
(SD) (SD)

Age at Baseline 61.55 40.31-71.19 56.16 40.02-72.95
(6.28) (7.97)

BMI at Baseline 28.17 14.28-68.41 27.05 12.12-74.68
(4.84) (4.65)

WHR at Baseline? 0.89 0.54-1.56 0.86 0.20-1.65
(0.09) (0.09)

Follow Up Time 11.23 0.005-14.45 11.78 0.0027-15.55
(3.05) (2.41)

CVD Incidence 0.17 0-1 0.10 0-1
(0.38) (0.30)

Ever Smoked 0.64 0-1 0.59 0-1
(0.48) (0.49)

Biological Sex N (%) N (%)

Female 21,581 (56.06%) 117,910 (54.64%)

Male 16,915 (43.94%) 97,875 (45.36%)

Region N (%) N (%)

England 33,574 (87.21%) 190,418 (88.24%)

Scotland 3276 (8.51%) 15,814 (7.33%)

Wales 1646 (4.28%) 9553 (4.43%)

Total 38,496 (100%) 215,785 (100%)

Participants

2Note: 253,968 subjects with valid WHR measure (38,484 less than secondary education;
215,484 at least secondary education)
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Table 2.2: Characteristics of cohorts with less than university degree and at least

university degree

Less than University At Least University
Mean Range Mean Range
(SD) (SD)

Age at Baseline 57.64 40.20-72.95 55.70 40.02-70.49
(7.94) (7.90)

BMI at Baseline 27.63 12.12-74.68 26.43 13.12-65.23
(4.79) (4.40)

WHR at Baseline? 0.87 0.20-1.65 0.86 0.45-1.48
(0.09) (0.09)

Follow Up Time 11.60 0.003-15.55 11.88 0.005-14.46
(2.63) (2.29)

CVD Incidence 0.12 0-1 0.08 0-1
(0.33) (0.28)

Ever Smoked 0.61 0-1 0.58 0-1
(0.49) (0.49)

Biological Sex

Female

94,368 (56.21%)

45,123 (52.23%)

Male 73,525 (43.79%) 41,265 (47.77%)
Region

England 149,201 (88.87%) 74,791 (86.58%)
Scotland 11,244 (6.70%) 7846 (9.08%)
Wales 7448 (4.44%) 3751 (4.34%)
Total 167,893 (100%) 86,388 (100%)
Participants

®Note: 253,968 patients with valid WHR measure (167,595 less than university degree; 86,373 at

least university degree)
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Figure 2.3: Follow-up time by event type for body mass index and waist-to-hip ratio
adjusted for body mass index
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Figure 2.4: Kaplan-Meier survival probability for body mass index and waist-to-hip ratio

adjusted for body mass index
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Figure 2.5: Cumulative incidence functions for body mass index and waist-to-hip ratio
adjusted for body mass index
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Table 2.3: Association between adiposity and incident cardiovascular disease by

educational status and model choice

Body Mass Index WHRadjBMI WHRadjBMI
(Male) (Female)
Additive 95% Additive 95% Additive 95%
Hazard Confidence Hazard Confidence Hazard Confidence
(CvD Interval (CvD Interval (CvD Interval
incidents incidents incidents
per 10,000 per 10,000 per 10,000
person- person- person-
years) years) years)
Lessthan | Associational 32.96 (28.75, 37.17) 28.90 (17.90, 39.90) 8.61 (3.08, 14.10)
Secondary vw 28.75 (-1.89, 59.44) -28.37 (-64.16, 7.41) -31.12 (-60.38, -1.87)
Education Weighted 14.28 (-27.30, -28.67 (-82.10, 24.75) -26.67 (-69.95, 16.61)
Median 55.85)
AtLeast | Associational 19.81 (18.55, 21.06) 20.70 (17.30, 24.10) 5.83 (4.09, 7.57)
Secondary \A 23.76 (14.23, 33.34) 25.02 (-14.44, 64.47) 11.21 (2.21, 20.20)
Education Weighted 21.16 (6.70, 35.62) 6.26 (-46.88, 59.41) 17.39 (4.04, 30.74)
Median
Less than Associational 23.18 (21.56, 24.72) 24.50 (20.10, 28.90) 7.04 (4.84,9.24)
University VW 29.79 (17.20, 42.44) 0.34 (-56.59, 55.27) 2.29 (-8.98, 13.56)
Degree Weighted 19.40 (2.92, 35.93) -19.87 (-88.56, 48.83) 1.03 (-16.15, 18.22)
Median
At Least Associational 18.26 (16.37, 20.15) 17.30 (12.40, 22.20) 5.16 (2.55, 7.77)
University VW 11.75 (-0.84, 24.38) 38.46 (-14.66, 91.55) 7.98 (-5.81,21.77)
Degree Weighted 12.45 (-6.86, 31.77) 34.28 (-42.43, 111.00) 8.02 (-12.35, 28.38)
Median
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Figure 2.6: Associational relationship between adiposity and incident cardiovascular

disease
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Waist-to-hip ratio adjusted for body mass index (Female)
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Figure 2.7: Inverse-variance weighted association between adiposity and incident
cardiovascular disease
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Waist-to-hip ratio adjusted for body mass index (Female)
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Figure 2.8: Weighted median estimator association between adiposity and incident
cardiovascular disease
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Waist-to-hip ratio adjusted for body mass index (Female)
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Figure 2.9: Leave-one-out analyses for waist-to-hip ratio adjusted body mass index (Female)
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Figure 2.10: Leave-one-out analyses for waist-to-hip ratio adjusted for body mass index (Male)
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Figure 2.11: Leave-one-out analyses for body mass index
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3 Joint Association of Genetic Risk and
Accelerometer-Measured Physical Activity with
Incident Coronary Artery Disease in the UK
Biobank Cohort

Abstract

Previous research demonstrates the joint association of self-reported physical activity and
genetics with coronary artery disease. However, an existing research gap is whether
accelerometer-measured physical activity volume or intensity can offset genetic
predisposition to coronary artery disease. This study explores the independent and joint
associations of accelerometer-measured physical activity and genetic predisposition with
incident coronary artery disease. The UK Biobank population-based cohort recruited over
500,000 individuals aged 40 to 69 between 2006 and 2010, with 103,712 individuals
participating in a weeklong wrist-worn accelerometer study from 2013 to 2015.
Individuals of White British ancestry (n = 65,079) meeting the genotyping and
accelerometer-based inclusion criteria and with no missing covariates were included in
the analytic sample. Incident coronary artery disease based on hospital inpatient records
and death register data serves as the outcome of this study. Polygenic risk score and
physical activity volume, measured as physical activity energy expenditure, and intensity,
measured as percent of physical activity of moderate-to-vigorous intensity, are examined
both linearly and at the 20th and 80th percentiles. In the sample of 65,079 individuals, the
mean (SD) age was 62.51 (7.76) and 61% were female. During a median follow-up of 6.8
years, 1,382 cases of coronary artery disease developed. At the same genetic risk,
physical activity intensity had a hazard ratio (HR) of 1.53 (95% CI: 1.32-1.76) at the 20th
compared to 80th percentile versus an HR of 1.35 (95% CI: 1.22-1.50) for physical
activity volume. The combination of high genetic risk and low physical activity intensity
showed the greatest risk, with an individual at the 80th percentile of genetic risk and 20th
percentile of intensity facing an HR of 2.20 (95% CI: 1.45-3.32) compared to an
individual at the 20th percentile of genetic risk and 80th percentile of intensity. Physical
activity, especially physical activity intensity, is associated with an attenuation of some of
the genetic risk of coronary artery disease. This accelerometer-based study provides the
clearest evidence to date regarding the joint influence of genetics and physical activity
volume and intensity on coronary artery disease.
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3.1 Introduction

Coronary artery disease (CAD) is a leading cause of death and disability worldwide (72,73). Both
physical activity and genetic risk play a crucial role in its development (74,75). Decades
of evidence demonstrate the importance of physical activity volume, referring to total
physical activity accumulated, and intensity, referring to the proportion of time spent at
higher levels of exertion, in reducing the risk of CAD (75-78). However, in recent years,
large-scale studies with accelerometer-measured physical activity suggest both that the
benefits of physical activity in reducing the risk of CAD may be greater than previously
realized and physical activity intensity and volume may each contribute to this risk
reduction (25,79-81).

While genetic susceptibility to CAD was established decades ago using twin
studies, recent genome-wide association studies have identified millions of variants
associated with CAD (72,82-83). Methods of combining these variants have enabled the
construction of polygenic risk scores that have improved researchers’ ability to
understand the genetic risk of developing CAD (84,85).

Several studies have explored the combined impact of genetic susceptibility and
self-reported lifestyle factors, including physical activity, on cardiovascular diseases
(80,86-90). Genetic risk and physical activity had independent associations with
cardiovascular disease and jointly increased overall risk in each study. However, these
studies relied on questionnaire-assessed physical activity defined either dichotomously or
as quantiles.

This subjective measure of physical activity has several limitations. In doubly
labeled water studies, questionnaire-assessed physical activity demonstrated a weaker
correlation with PAEE than objective measures (91-92). This method also does not
account for incidental physical activity throughout the day. Administering longer
questionnaires to provide a more holistic view of an individual’s daily physical activity
results in higher levels of misclassification (93-94). Even when administered by a trained
professional, questionnaire-based techniques suffer from recall and social desirability
bias and perform poorly for people of less advantaged sociodemographic backgrounds
(95-96). These sources of bias may obscure the associations between physical activity,
genetic risk, and incident CAD. Additionally, modeling physical activity dichotomously
or in quantiles ignores the continuous relationship between physical activity and CAD
risk (75,81). Because these quantiles group physical activity intensity and volume
together, these previous efforts could not distinguish their relative importance (80).

This study evaluated the extent to which objective physical activity volume and
intensity, measured by a wrist-worn accelerometer and modeled continuously, can offset
an individual’s genetic susceptibility to incident CAD in the UK Biobank (26). We
utilized the best performing polygenic risk score to date, allowing for more precise
genetic risk stratification than in previous efforts. Secondarily, we explored whether a
gene-environment interaction exists between physical activity volume and intensity and
genetic risk.
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3.2 Methods

3.2.1 Accelerometer Cohort

We used the UK Biobank (application # 79654), a population-based cohort of over
500,000 individuals from England, Scotland, and Wales aged 40-69 at recruitment
between 2006 and 2010. Follow-up time was censored at March 31%, 2016 in Wales,
September 30", 2021 in England, and July 31%, 2021 in Scotland. This dataset contains
information on genetics, health behaviors, socioeconomic status, and health status and is
described in detail elsewhere (26). Between 2013 and 2015, participants with an email
address were invited except those in the North West region due to concerns about
participant burden. A subsample of 103,712 individuals responded to an email recruiting
them to wear a wrist-worn Axivity AX3 triaxial accelerometer continuously for seven
days on their dominant wrist and provided data. We applied exclusion criteria used
previously in this dataset and dropped participants who failed calibration through either
insufficient or unreliable data, had implausibly high overall acceleration averages, had
wear time under three days, or did not have 24 unique hours of wear in a 24-hour cycle
(97-98).

3.2.2 Genotyping and Imputation

Participants in the UK Biobank were genotyped using either the UK BiLEVE or the UK
Biobank Axiom Array, which each genotyped over 800,000 single-nucleotide
polymorphisms (SNPs). Using either the Haplotype Reference Consortium panel or the
UK10k and 1000 Genomes phase 3 panels, additional SNPs were imputed, yielding
roughly 96 million variants assayed or imputed (99). Following standard genetic quality
control criteria in this dataset, we dropped individuals who withdrew consent or were not
genotyped, had a mismatch between genetic and reported biological sex, sexual
aneuploidy, outliers for missingness or heterozygosity, and we limited the dataset to the
maximal set of individuals not related by third degree or closer (50). We also split the
dataset by ancestry, with those of White British ancestry as the sample for the analyses.
Other ancestry groups contribute too few cases for analysis.

3.2.3 Polygenic Score

We applied the most predictive polygenic risk score available for CAD (84). This score
was derived by obtaining weights from the largest European-ancestry focused GWAS
excluding the UK Biobank; and used PRS-CS, a polygenic risk score prediction method
utilizing a Bayesian framework and continuous shrinkage robust to varying genetic
architecture. We screened out multi-allelic SNPs, restricted to SNPs with an INFO score
greater than 0.6, and restricted minor allele frequency to at least 0.01, yielding 1,087,647
variants included in the score. We then applied the scoring file available on PGS Catalog
to recreate the scores derived in the original study (100). We transformed the score into
zero mean and unit variance.
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3.2.4 Physical Activity Measures

Previous researchers processed the raw accelerometer data in the UK Biobank by
calibrating to local gravity, filtering out sensor noise and gravity, and detecting and
imputing non-wear time data segments to calculate the Euclidean norm minus one
(ENMO) (97,101). The average ENMO was summarized as an average proportion of
daily time spent at different categories of intensity measured in milligravities (mgs) based
on measurements taken every 5 seconds. Following Dempsey et al., we used a formula
shown in Table 3.1 to convert these categorical midpoints of ENMO from dominant
wrist-worn accelerometer data into instantaneous physical activity energy expenditure
(PAEE) (25). This measure was validated in free-living populations by both doubly
labeled water and a combined heart rate monitor and trunk acceleration, the gold and
silver standards of physical activity energy expenditure measurement, respectively
(91,102-103). PAEE serves as our measure of physical activity volume in kJ/kg/day. In
order to calculate physical activity intensity, we categorized physical activity above 125
milligravities as moderate-to-vigorous physical activity (MVPA) and then divided this
value by total PAEE and multiplied by 100 to yield the percentage of PAEE from MVPA
(percent MVVPA) (25,81,91,104).

3.2.5 Outcome Definition

We defined CAD based on hospital inpatient episodes, surgeries, and deaths.
Specifically, we used ICD-10 codes 120 to 125, 146, and R96 to determine CAD as a
cause of death, ICD-10 codes 120.0, 121-122, and ICD-9 codes 410 and 4110 to denote a
CAD event in hospital inpatient records, and OPCS-4 codes K40 to K46, K49, K501,
K75 and OPCS-3 code 3043 to denote a CAD-related surgery. We restricted to incident
CAD by excluding individuals with an event prior to the start of accelerometer wear.
Figure 3.1 shows the Kaplan-Meier plot for survival in the sample.

3.2.6 Covariates

In several waves, participants self-reported information on diet, health behaviors, parental
heart disease history, mobility, employment status, and educational attainment pertinent
to this analysis. These questionnaires did not occur at the same time as accelerometer
wear. To minimize the bias from this discrepancy, we chose the value of the covariates
from the most recent wave of self-reported data before accelerometer wear began. Diet
consists of several variables, including whether an individual often adds salt to their food,
past day consumption of fruits and vegetables, and weekly consumption frequency of oily
fish and processed meat. Educational attainment denotes whether a person has a
university degree, any other degree, or no degree. Health behaviors include smoking
status divided into never, previous, or current and alcohol consumption measured as
frequency of consumption per week. Employment status is defined as whether an
individual is currently employed, and mobility problems denotes whether an individual
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has indicated any issues walking. Table 3.2 shows how we created these variables from
UK Biobank data fields. We controlled for the first 10 genetic principal components,
region, biological sex, the Townsend index measuring material deprivation, and season of
wear, which as static variables did not depend on the wave selected.

3.2.7 Statistical Analyses

We fit a Cox proportional hazards model with age as the timescale to measure the
association between physical activity volume and intensity, genetic risk, and incident CAD
with time-to-event as the outcome of interest. The model stratified on biological sex, the
only covariate violating the proportional hazards assumption based on Schoenfeld residuals.
Because the functional form of physical activity volume and intensity’s relationship with
CAD could be nonlinear, we assessed model fit between the exposures modeled linearly or
as a restricted quadratic or cubic spline. The linear model performed best for both physical
activity exposures according to BIC. We ran the model with PAEE and polygenic risk score
as continuous exposures and an interaction term between these exposures controlling for
sex and then the full covariate set. Using this continuous model, hazard ratios and 95%
confidence intervals were then calculated for the 20th and 80th percentiles of genetic risk
and physical activity volume with the 20th and 80th percentile (lowest), respectively,
serving as the reference group. We restricted to the 20th and 80th percentiles of risk instead
of the maximum and minimum to avoid interpreting results based on the sparsely populated
extremes of the distributions. We ran a model with percent MVVPA and polygenic risk score
as continuous exposures with an interaction term and controlling for PAEE and adjusting
for sex and then the full covariate set and repeated the percentile-based analysis. In
sensitivity analyses, we excluded cases occurring within the first year of accelerometer
wear to minimize possible reverse causation, explored the impact of measured body mass
index, average sleep duration, and cholesterol and blood pressure medication, all potential
mediators, as well as manual labor conducted for one’s occupation on the results. We relied
on complete case analysis but imputed via multivariate imputation by chained equations as
a sensitivity analysis.

We explored whether genetic risk and physical activity volume and intensity interact
to increase risk of incident CAD by fitting interaction terms between the PA exposures and
the polygenic risk score. All analyses were performed using R 4.1.3 (105).

3.3 Results

3.3.1 Population Characteristics

After screening individuals for valid accelerometer wear data, 96,660 participants
remained in the study. We excluded 17,206 participants not meeting the genetic quality
control criteria. 1,587 participants had missing covariate data, and 1,980 had prevalent
CAD at baseline, which left a final analytic sample of 75,887, among whom 65,079
participants were of White British ancestry as outlined in Figure 3.2. Compliance was
high, with a median wear time of 6.9 days. Table 3.3 shows the characteristics of the
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participants in our sample. The median follow-up time was 6.8 years with a total of
430,160 cumulative person-years and 1,368 CAD cases. The average age at baseline was
62.5 and participants in this sample were generally higher educated, less likely to smoke,
and had lower levels of material deprivation than the larger population in the UK, which
coheres with previous research (66). Table 3.4 shows the percentiles of PAEE, %
MVPA, and the polygenic score. Model 1 refers to the fully adjusted model and model O
refers to the model adjusted for biological sex.

3.3.2 Linear Association of Genetic Risk, Physical Activity, and
Incident CAD

As Table 3.5 demonstrates, the hazard ratio for a standard deviation increase in
polygenic risk is 1.51 (95% CI: 1.43-1.60) in model 1. The hazard ratio from a standard
deviation increase (11.49 kJ/kg/day) in PAEE is 0.83 (95% CI: 0.78-0.88) and for percent
MVPA (11.39%) 0.79 (95% CI: 0.73-0.85), which includes PAEE as a confounder, in
model 1. Table 3.6 presents results for model 0.

3.3.3 Physical Activity Volume and Genetic Risk Percentile
Comparison

Table 3.7 presents the hazard ratios of participants at different genetic risk and PAEE
percentiles. All results are for model 1 and within stratum hazard ratios refer to hazard
ratio from a change in one variable at a set value of the other variable. Hazard increases
substantially at the highest levels of inactivity, with an individual at the 20th percentile of
PAEE (30.07 kJ/kg/day) facing a 35% greater hazard of incident CAD compared to an
individual of the same genetic risk at the 80th percentile of PAEE (48.50 kJ/kg/day).
Genetic risk has a stronger association as an individual at the 80th percentile of genetic
risk within the same PAEE stratum faces a 51% greater hazard of incident CAD than if
they were in the 20th percentile of genetic risk. While PAEE and genetic risk each have
important independent associations with incident CAD, they combine to create the
highest risk of incident CAD. An individual at the 80th percentile of genetic risk and 20th
percentile of PAEE faces an 80% greater hazard of incident CAD than the reference

group.

3.3.4 Physical Activity Intensity and Genetic Risk Percentile
Comparison

Controlling for PAEE in model 1, Table 3.8 shows that percent MVVPA has a stronger
association with incident CAD than PAEE. An individual at the 20th percentile of percent
MVPA (25.97%) faces a 53% greater hazard of incident CAD compared to an individual
of the same genetic risk at the 80th percentile (45.46%). The combined association
between a participant at the 80th percentile for genetic risk and 20th percentile for
percent MVVPA results in a 120% higher hazard of incident CAD relative to an individual
in the reference group. We explored possible interaction between physical activity
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volume and intensity and concluded that no significant interaction exists in this sample.
We found no significant interactions between PAEE and genetic risk or percent MVPA
and genetic risk, which is similar to what other studies found (80,89).

3.3.5 Sensitivity Analyses

We excluded individuals with cases occurring within the first year of follow-up in Tables
3.9 and 3.10, reran the analyses with multivariate imputation by chained equations in
Tables 3.11 and 3.12, and added potential mediators and occupation into the model with
results in Tables 3.13 through 3.15. None of these choices substantially affected the
results.

3.4 Discussion

3.4.1 Overview of Principal Findings

In this study of 65,079 participants from the UK Biobank, genetic risk was associated
with a higher risk of incident CAD regardless of physical activity volume or intensity.
Physical activity volume and intensity each had significant independent associations with
incident CAD, with physical activity intensity demonstrating the strongest association.
While low physical activity volume and intensity increased risk of CAD within a genetic
risk stratum, low levels of physical activity volume and intensity were associated with
greater risk of incident CAD in the highest genetic risk group. This suggests that physical
activity behavior may attenuate some of the high genetic risk of CAD. Specifically, an
individual at the 80th percentile of genetic risk and physical activity volume or intensity
risk in the percentile analysis faced a 51% or 61% greater hazard of CAD compared to an
80% increase and 120% increase if they also had 20th percentile levels of physical
activity volume or intensity, respectively.

3.4.2 Comparison with Existing Literature

Because previous studies discretize subjective physical activity, a direct comparison to
estimates from the existing literature is not possible. However, the estimates for physical
activity’s association with cardiovascular diseases in Said, et al. and Tikkanen et al.
appear consistent with this study in size and direction of association (80,89). Zaccardi et
al., rely on self-reported walking pace as the measure of physical activity and show that
this has a large association with CAD, which is also consistent with our stronger results
for physical activity intensity (90). Because none of the above studies separate physical
activity volume and intensity, we demonstrate that intensity may supersede volume in
terms of reducing risk of CAD from a high genetic risk. Our results within genetic risk
strata largely agree with existing accelerometer-based studies, although we model
physical activity volume and intensity linearly (25,81).
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3.4.3 Strengths and Limitations

This study is among the first to explore the association of genetic risk and accelerometer-
measured physical activity volume and intensity with incident CAD. We use the strongest
polygenic risk score and the largest sample of individuals with accelerometer
measurements to date. By modeling physical activity continuously and objectively, we
avoid the significant misclassification problems from discretizing subjective physical
activity (106-107). The exploding commercial popularity of wrist-worn accelerometers
has decreased the relevance of current physical activity standards for the population
relying on these devices (23,108-109). The current standards do not account for
incidental physical activity, or physical activity performed as part of one’s normal
activities, which means accelerometer-measured physical activity may make users appear
more adherent to current guidelines than they are in reality. Studies relying on
accelerometer-measured physical activity can help close this gap (108).

This study has several limitations. The UK Biobank sample is disproportionately
White and affluent relative to the general population and the sample who responded to
take place in the accelerometer study represents further selection bias. However, previous
studies have found in terms of physical activity, this cohort appears representative of the
general population (110). The covariates used rely on self-reporting and are measured at
different times than accelerometer wear. Accelerometer wear occurred over seven days,
which makes it cross-sectional, although we validate this against two waves of subjective
physical activity in Figure 3.3, which found a stronger correlation between more recent
subjective physical activity and accelerometer wear. Previous studies have shown
reactivity, or a behavioral response to accelerometer wear, may bias measured physical
activity volume, although not MVVPA (111). More sophisticated machine learning
methods can better discriminate between activity types and studies have shown our
method of segregating percent MVPA is prone to misclassification (112-113). Wrist-
worn accelerometers have limited ability to capture all physical activity, with housework,
cycling, and weightlifting especially poorly captured (114-115). Because physical
activity is not determined randomly, unmeasured confounding exists. We mitigate this
concern by adjusting for related health behavioral factors, socioeconomic status, season
of wear, and by performing sensitivity analyses adjusting for potential mediators.

3.4.4 Conclusion

High genetic risk and low levels of physical activity volume and intensity were
associated with large increases in incident CAD. This study showed physical activity is
beneficial regardless of an individual’s underlying genetic risk and that genetic risk does
not determine an individual’s fate regarding CAD (116).
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3.5 Tables and Figures

Figure 3.1: Kaplan-Meier survival estimates for main sample
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Table 3.1: Equation converting ENMO into PAEE and derivation of percent MVPA

Physical Activity Definition
EXxposure
Physical Activity Following the work of Demspey, et al. (25), we apply the quadratic equation from White, et al.? to
Energy Expenditure convert ENMO from wrist-worn accelerometer on dominant hand to PAEE with:
(PAEE)
PAEE = —10.58 + 1.1176 * (1.5 + 0.8517 * x) + 2.9148 * /(1.5 + 0.8517 * x) — 0.00059277
* (1.5 + 0.8517 x x)?
where x is the midpoint of one of UK Biobank’s predefined categories in milligravities. We then
convert from J/min/kg into J/kg/day by multiplying by 1.44. We then sum over all of the intervals to
get cumulative PAEE.
Percent MVPA We divide PAEE spent above 125 mgs (equivalent to 3 METS) by overall PAEE to get the proportion
of PAEE from moderate-to-vigorous physical activity and multiply this by 100 to yield the percent
MVPA.
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Table 3.2: Definitions and conversions for covariates in model 1

Covariate

Final Definition

UK Biobank Definition

Conversion

Smoking Status

Categorical Variable
with categories of
Current, Never, and
Previous following UK
Biobank definition.

Categories of Current,
Never, and Previous
following UK Biobank
definition. Derived from
Current tobacco smoking
and Past tobacco
smoking fields.

None

Educational Attainment

Categorical variable
with University Degree,
Other Degree, and No
Degree as levels.

Question asked: “which
of the following
qualifications do you
have?”

Converted to
University if
“College or
University Degree”
selected, “None” if
“None of the above”
selected, and “Other”
otherwise.

Employment Status

Binary variable with
employment = 1 and
other = 0.

Question asked: “which
of the following
describes your current
situation?”

Converted to binary
variable that equals 1
if “in paid
employment or self-
employed” and 0 if
not.

Mobility Problems

Binary variable with
mobility problems =1
and no mobility
problems = 0.

Question asked: “Please
click the ONE box that
best describes your
health TODAY.”

Converted to binary
variable that equals 1
if they indicate any
issues walking and 0
otherwise.

Parental History of
Heart Disease

Binary variable with
existence of history = 1
and no history = 0.

Question asked: “Has/did
your mother ever suffer
from?”” and “Has/did
your father ever suffer
from?”

Converted to binary
variable that equals 1
if they indicate the
mother OR father
suffered from heart
disease and 0
otherwise.

Weekly Processed
Consumption

Numeric variable on
frequency of processed
meat consumption.

Question asked: “How
often do you eat
processed meats?” and
lists options as never,
less than once a week,
once a week, 2-4 times a
week, 5-6 times a week,
once or more daily.

Converted to
numeric variable
with never =0, less
than once a week =
0.5, once a week =1,
2-4 times a week = 3,
5-6 times a week =
5.5, once or more
daily = 7.

Fruit & Vegetable
Consumption Quartile

Quartiles from 1to 4
denoting total fruit and
vegetable consumption.

Composite of four total
questions. Combined
cooked and raw
vegetable intake “On
average how many
heaped tablespoons of
COOKED(RAW)
vegetables would you eat
per day?” Combined
dried and fresh fruit

Added fruit total and
vegetable totals
together and then
split these totals into
quartiles.
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intake “On average how
many pieces of
DRIED(FRESH) fruit
would you eat per day?”

Weekly Oily Fish
Consumption

Numeric variable on
frequency of oily fish
consumption per week.

Question asked: “How
often do you eat oily
fish?” and lists options as
never, less than once a
week, once a week, 2-4
times a week, 5-6 times a
week, once or more
daily.

Converted to
numeric variable
with never = 0, less
than once a week =
0.5, once a week =1,
2-4 times a week = 3,
5-6 times a week =
5.5, once or more
daily = 7.

Weekly Alcohol
Consumption

Numeric variable on
frequency of alcohol
consumption per week.

Question asked: “about
how often do you drink
alcohol?” and lists daily
or almost daily, three or
four times a week, once
or twice a week, one to
three times a month,
special occasions only,
never.

Converted to
numeric variable
with never = 0, daily
or almost daily = 7,
three or four times a
week= 3.5, once or
twice a week = 1.5,
one to three times a
month = 0.4, special
occasions only =
0.03.

Added Salt Intake

Factor variable with four
levels never/rarely,
sometimes, usually,
always.

Question asked: “do you
add salt to your food?”
with options
Never/rarely, sometimes,
usually, always.

None

Season of Wear

Factor variable coded as
Fall, Spring, Winter, or
Summer based on date
range.

Start time of wear
denotes the date they
began wearing an
accelerometer.

Derived season
ranges based on
“Start time of wear’
variable.

]
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Figure 3.2: Subject Exclusion Criteria Flowchart

UK Biobank Sample w/
Accelerometer Data
(n = 103,669)

A

Well-calibrated accelerometer
data
(n = 103,658)

y

Reasonable range of average
overall acceleration
(n =103,631)

Poorly calibrated
(n=11)

A

Wear time > 3 days and have
unique hours of wear >= 24 in
24-hour cycle
(n =96,660)

Implausibly high overall
acceleration average of
greater than 100 mg
(n=27)

Subjects included in final cohort
who met genetic quality control
criteria
(n = 79,454)

\ 4

Wear time under 3 days
(n=6,517)

Did not have unique hours of
wear in 24-hour cycle of >= 24
(n = 454)

Subjects included in
accelerometer cohort
(n = 75,887)

By Ancestry
(n = 65,079 Caucasian)
(n =10,808 Other)

Screened out based on genetic
quality control criteria
(n =17,206)

Subjects with prevalent CAD at
baseline
(n=1,980)

Subjects with missing covariates
(n =1,587)

44



Table 3.3: Baseline characteristics

Summary Statistics (n = 65,079; Incident CAD = 1368)

Variable

Follow-up Time, median(IQR)

Physical Activity Energy Expenditure
(PAEE), mean(SD)

Percent moderate-to-vigorous physical
activity (percent MVPA), mean(SD)

Standardized Polygenic Risk Score, mean(SD)
Person-Years
Age, mean(SD)

Highest Education Level, n(%6)
University
Any Other
Qualification
No qualification

Townsend Index, mean(SD)

Currently Employed, n(%)

Fruit & Vegetable Intake Quartile, mean(SD)
Weekly Alcohol Consumption, mean(SD)
Weekly Oily Fish Consumption, mean(SD)
Female, n(%)

Parental History of Heart Disease, n(%)

Cigarette Smoking Status, n(%)
Never
Previous
Current

Added Salt Intake, n(%)
Never
Rarely
Sometimes
Always

Season Accelerometer Worn, n(%b)
Fall
Spring
Summer
Winter

6.82 (6.29, 7.36)

39.56 (11.49)

35.79% (11.39)

0 (1.00)
430,160
62.51 (7.76)
27,779 (42.69%)
32,076 (49.29%)
5,224 (8.03%)
-1.92 (0.08)
38,614 (59.33%)
2.10 (0.59)
3.02 (0.58)
1.10 (1.00)
36,790 (61.14%)
26,737 (41.08%)
37,773 (58.04%)

23,166 (35.60%)
4,140 (6.36%)

39,573 (60.81%)

17,085 (26.25%)
6,561 (10.08%)
1,860 (2.86%)

19,329 (29.70%)
14,810 (22.76%)
17,086 (26.25%)
13,854 (21.29%)
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Region, n(%o) and
Englan
Scotland
Wales

Mobility Limitations, n(%)

58,225 (89.47%)
4,322 (6.64%)
2,532 (3.89%)

12,676 (19.48%)

Table 3.4: Percentiles of PAEE, %MVPA, and PGS

Percentiles PAEE % MVPA Standardized PGS
20" Percentile 30.07 kJ/kg/day 25.97% -0.83
80™ Percentile 48.50 kJ/kg/day 45.46% 0.81

Table 3.5: Model 1 - controlling for full set of covariates in main analyses (exposures

standardized)

Exposure Hazard Ratio
PAEE HR =0.83 (95% CI: 0.78 to 0.88)
Standardized PGS (in PAEE eqtn) HR =1.51 (95% CI: 1.43 to 1.60)
% MVPA HR =0.79 (95% CI: 0.73 to 0.85)

Standardized PGS (in MVVPA eqtn)

HR =1.50 (95% CI: 1.42 to 1.60)

PAEE (in MVPA eqtn)

HR =0.98 (95% CI: 0.91 to 1.07)

Table 3.6: Model 0 - controlling for age and biological sex (exposures standardized)

EXxposure

Hazard Ratio

Standardized PAEE

HR = 0.80 (95% CI: 0.75 to 0.85)

Standardized PGS (in PAEE eqtn)

HR = 1.54 (95% CI: 1.46 to 1.63)

Standardized % MVPA

HR = 0.77 (95% CI: 0.71 to 0.83)

Standardized PGS (in MVPA eqtn)

HR = 1.54 (95% CI: 1.45 to 1.63)

Standardized PAEE (in MVPA eqtn)

HR = 0.97 (95% CI: 0.90 to 1.05)
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Table 3.7: Overview of physical activity volume and genetic susceptibility results

20" Percentile Genetic 80" Percentile Genetic

Risk Risk
(-0.83 units) (0.81 units)
HR (95% CI) HR (95% CI) HR (95% CI) for Genetic Risk within
strata of PAEE
80™ Percentile
PAEE 1.0 (Reference Group) 1.51(1.11-2.06) 1.51 (1.11-2.06)
(48.50 kJ/kg/day)
20™ Percentile
PAEE 1.35(1.22-1.50) 1.80 (1.17-2.79) 1.85 (1.67-2.05)
(30.07 kJ/kg/day)
HR (95% ClI) for
PAEE within
strata of Genetic 1.35(1.22-1.50) 1.27 (1.15-1.41)
Risk
Interaction on
Multiplicative
Scale (Ratio of 1.00 (1.00-1.01)
HRs)

@ Model adjusted for first 10 genetic principal components, season of wear, salt intake frequency, weekly alcohol
intake, weekly oily fish intake, fruit and vegetable consumption quartile, weekly processed meat consumption,
parental history of heart disease, mobility problems, employment status, Townsend index, educational attainment,
smoking status, region, and biological sex

Table 3.8: Overview of physical activity intensity and genetic susceptibility results

20" Percentile Genetic 80" Percentile Genetic

Risk Risk
(-0.83 units) (0.81 units)
HR (95% CI) HR (95% CI) HR (95% CI) for Genetic Risk within
strata of Percent MVPA
80" Percentile
Percent MVPA 1.0 (Reference Group) 1.61 (1.23-2.11) 1.61 (1.23-2.11)
(45.46%)
20™ Percentile
Percent MVPA 1.53 (1.32-1.76) 2.20 (1.45-3.32) 1.85 (1.66-2.06)
(25.97%)
HR (95% CI) for
Percent MVPA
within strata of 1.53 (1.32-1.76) 1.44 (1.25-1.67)
Genetic Risk
Interaction on
Multiplicative
Scale (Ratio of 1.40(0.87-2.28)
HRs)

@Model adjusted for first 10 genetic principal components, season of wear, salt intake frequency, weekly alcohol
intake, weekly oily fish intake, fruit and vegetable consumption quartile, weekly processed meat consumption,
parental history of heart disease, mobility problems, employment status, Townsend index, educational attainment,
smoking status, region, PAEE, and biological sex
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Table 3.9: Overview of physical activity volume and genetic susceptibility results (first

year excluded)

20™ Percentile
Genetic Risk
(-0.83 units)

80" Percentile
Genetic Risk
(0.81 units)

HR (95% CI)

HR (95% CI)

HR (95% CI)
for Genetic
Risk within

strata of PAEE

(48.50 kJ/kg/day)

80" Percentile
PAEE

1.0 (Reference
Group)

1.46 (1.05-2.04)

1.46 (1.05-2.04)

(30.07 kJ/kg/day)

20t Percentile
PAEE

1.29 (1.16-1.44)

1.64 (1.03-2.62)

1.84 (1.65-2.06)

HR (95% CI) for

strata of Genetic

PAEE within

Risk

1.29 (1.16-1.44)

1.20 (1.08-1.34)

Interaction on
Multiplicative
Scale (Ratio of

HRs)

1.00 (1.00-1.01)

Table 3.10: Overview of physical activity intensity and genetic susceptibility results (first
year excluded)

20" Percentile
Genetic Risk
(-0.83 units)

80" Percentile
Genetic Risk
(0.81 units)

HR (95% Cl)

HR (95% Cl)

HR (95% CI)
for Genetic
Risk within

strata of
Percent MVPA

80™ Percentile

Percent MVPA 1.0 (Reference i 1.51(1.13-
(45.46%) Group) 151 (1.13-2.01) 2.01)

20™ Percentile

Percent MVPA | 53 (1.31-1.79) | 1.97 (1.27-3.08) 1'82 (%)63'

(25.97%)

HR (95% CI)
for Percent
MVPA within
strata of Genetic
Risk

1.53 (1.31-1.79)

1.97 (1.27-3.08)

Interaction on
Multiplicative
Scale (Ratio of

HRs)

1.60 (0.95-2.68)
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Table 3.11: Overview of physical activity volume and genetic susceptibility results
(MICE imputation)

20™ Percentile
Genetic Risk
(-0.83 units)

80" Percentile
Genetic Risk
(0.81 units)

HR (95% CI)

HR (95% CI)

HR (95% CI)
for Genetic
Risk within

strata of PAEE

80" Percentile

1.0 (Reference

PAEE Group) 1.47 (1.08-2.00) | 1.47 (1.08-2.00)
(48.50 kJ/kg/day)
20" Percentile
PAEE 1.36 (1.23-1.51) | 1.74(1.13-2.68) | 1.85 (1.67-2.04)

(30.07 kJ/kg/day)

HR (95% CI) for
PAEE within
strata of Genetic
Risk

1.36 (1.23-1.51)

1.27 (1.15-1.41)

Interaction on

Multiplicative

Scale (Ratio of
HRs)

1.00 (1.00-1.01)

Table 3.12: Overview of physical activity intensity and genetic susceptibility results
(MICE imputation)

20" Percentile
Genetic Risk
(-0.83 units)

80™ Percentile
Genetic Risk
(0.81 units)

HR (95% CI)

HR (95% CI)

HR (95% CI)
for Genetic
Risk within

strata of
Percent MVPA

80™ Percentile

Percent MVPA 1.0 (Reference 1.58 (1.21-
(45.46%) Group) 1.58 (1.21-2.06) 2.06)

20" Percentile

Percent MVPA 1.84 (1.66-
(25.97%) 1.53 (1.32-1.76) | 2.12 (1.41-3.20) 2.05)

HR (95% ClI) for
Percent MVPA
within strata of

Genetic Risk

1.53 (1.32-1.76)

1.44 (1.24-1.66)

Interaction on

Multiplicative

Scale (Ratio of
HRs)

1.46 (0.91-2.36)
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Table 3.13: Add BMI, sleep duration, medication use to model 1 for physical activity
volume and genetic susceptibility

20™ Percentile
Genetic Risk
(-0.83 units)

80" Percentile
Genetic Risk
(0.81 units)

HR (95% CI)

HR (95% CI)

HR (95% CI)
for Genetic
Risk within

strata of PAEE

80" Percentile

1.0 (Reference

PAEE Group) 1.45 (1.06-1.97) | 1.45 (1.06-1.97)
(48.50 kJ/kg/day)
20" Percentile
PAEE 1.22 (1.10-1.36) | 1.55(1.00-2.39) | 1.80 (1.62-1.99)

(30.07 kJ/kg/day)

HR (95% CI) for
PAEE within
strata of Genetic
Risk

1.22 (1.10-1.36)

1.14 (1.03-1.27)

Interaction on

Multiplicative

Scale (Ratio of
HRs)

1.00 (1.00-1.01)

Table 3.14: Add BMI, sleep duration, medication use to model 1 for physical activity
intensity and genetic susceptibility

20" Percentile
Genetic Risk
(-0.83 units)

80™ Percentile
Genetic Risk
(0.81 units)

HR (95% CI)

HR (95% CI)

HR (95% CI)
for Genetic
Risk within

strata of
Percent MVPA

80™ Percentile

Percent MVPA 1.0 (Reference 1.57 (1.20-
(45.46%) Group) 1.57 (1.20-2.05) 2.05)

20" Percentile

Percent MVPA 1.80 (1.62-
(25.97%) 1.41(1.22-1.62) | 1.97 (1.30-2.98) 2.01)

HR (95% ClI) for
Percent MVPA
within strata of

Genetic Risk

1.41 (1.22-1.62)

1.33 (1.15-1.54)

Interaction on

Multiplicative

Scale (Ratio of
HRs)

1.41 (0.87-2.28)
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Table 3.15: Add BMI, sleep duration, medication use, whether individual is physically
active in occupation to model 1 for physical activity volume and genetic susceptibility

Exposure Hazard Ratio
PAEE HR = 0.87 (95% CI: 0.82 t0 0.93)
Standardized PGS (in PAEE eqtn) HR = 1.50 (95% CI: 1.41 to 1.58)
% MVPA HR = 0.83 (95% CI: 0.76 to 0.90)
Standardized PGS (in MVVPA eqtn) HR = 1.49 (95% CI: 1.41 to 1.58)
PAEE (in MVPA eqtn) HR = 1.00 (95% CI: 0.92 to 1.09)

Figure 3.3: Objective physical activity vs longitudinal subjective physical activity
correlation
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@ While correlation between self-reported MVPA and MVPA from accelerometer are low, this

correlation changes relatively little between closer or farther visit from accelerometer wear start date and

is in line with low correlations even between self-reported MVPA and MVPA from accelerometers
measured contemporaneously.®
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4 Conclusion

This dissertation focuses on the ways in which different aspects of an individual’s life
including their health behaviors, socioeconomic status, and genetics interact to produce
cardiovascular disease risk. In chapter two | explore whether socioeconomic status
modifies the causal effect of adiposity on incidence of cardiovascular disease. In chapter
three, | determine whether objectively measured physical activity volume and intensity
could reduce the risk of coronary artery disease among individuals at high genetic risk. In
this conclusion, I will briefly discuss the principal findings from these two chapters, the
policy and clinical implications of this work and conclude with the future directions for
this broader research agenda.

4.1 Overview of Principal Findings

Chapter two provides ambiguous evidence regarding the existence of differences in
cardiovascular disease risk caused by an increase in adiposity among people of varying
socioeconomic backgrounds. For body mass index, clear differences in risk appear to
exist in the associational models but these differences only persist between individuals
with and without a university degree in the base Mendelian randomization model. While
the imprecision of Mendelian randomization is one of its principal drawbacks, the
relatively small effect size differences in both the associational and Mendelian
randomization models provide convincing evidence that any effect differences that do
exist by socioeconomic status are small in magnitude. The measure of central adiposity,
waist-to-hip ratio adjusted for body mass index, provided less intuitive results. Among
individuals with less than a secondary education, the association was negative, which
defies current scientific understanding of the role of central adiposity in cardiovascular
disease development. It is likely that collider bias, an issue discussed in the existing
literature, and the relatively small number of participants with less than a secondary
education are driving this anomalous result.

Chapter three provides evidence that physical activity intensity reduces risk of
coronary artery disease to a greater degree than physical activity volume alone and that
both can reduce the impact of a high genetic risk of coronary artery disease. However, no
evidence of the hypothesized interaction between physical activity and genetic risk was
found. This suggests that while physical activity can reduce the genetic risk of coronary
artery disease, there are not differential benefits to physical activity between individuals
at differing genetic risk levels. While individuals at higher genetic risk may emphasize
the need for physical activity owing to their greater susceptibility to the disease, this
study does not provide clear evidence of a need for different physical activity standards
for this high-risk group. It is important to note that unlike the causal design in chapter
two, this chapter relies on a strictly associational model. Other health behaviors such as
diet and alcohol consumption imperfectly controlled for in this study likely confound
physical activity’s association with coronary artery disease and so these conclusions
should be interpreted cautiously.
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4.2 Policy & Clinical Implications

It is reasonable to wonder what, if any, policy implications could be derived from two
studies that did not strongly support their original hypotheses. After all, socioeconomic
status, genetics, adiposity, and physical activity have well-established influences on
cardiovascular disease incidence. The possibility of heterogeneous policy effects would
be an important consideration if socioeconomic status impacted the causal effect of
adiposity. For instance, the health effects of an intervention to increase educational
attainment might include both a decrease in adiposity and making an individual’s existing
level of adiposity less dangerous. Likewise, if genetics and physical activity had an
interactive association with coronary artery disease, this would suggest that personally
tailored physical activity recommendations based on an individual’s underlying genetic
risk be worthwhile. However, studies with null effects are vital precisely because they
provide researchers a clearer understanding of when the presence of two risk factors in a
single person may not warrant special consideration above and beyond each risk factor’s
independent effects.

If no evidence of an interaction between genetic risk and physical activity exists, this
implies that public health researchers and clinicians should focus on providing accurate
and uniform recommendations on physical activity to individuals at different levels of
genetic risk all things equal. Likewise, the existence of little - if any - interaction between
socioeconomic status and adiposity has important policy implications. When
implementing a soda tax, for example, to reduce caloric intake, the primary mechanism
for improved health is through reduced adiposity. The benefits of this policy would differ
by socioeconomic group primarily due to differences in soda consumption and price
sensitivity, which makes its effects easier to project. These studies provide early evidence
of the promise of precision health in guiding disease prevention interventions.

4.3 Future Directions

Precision medicine has received significant public attention over the past decade. In
2015, President Obama enacted the Precision Medicine Initiative to personalize treatment
choices and dosages based on a holistic understanding of a patient, including their
genetics, lifestyle, and environment. This initiative was undertaken on the premise that
the ‘average patient’ typified by clinical trials does not provide an accurate understanding
of a drug’s effects for most patients. However, this focus on precision medicine distracts
from the fact that health is largely determined outside of the doctor’s office. While
precision medicine is vital to ensure patients receive proper medical care, precision health
is a concept explicitly focused on utilizing every aspect of a patient’s life from their
genetic code to their zip code to understand the most effective strategies for disease
prevention in everyday life. Fully accounting for all of the risks of disease a person could
face through their lifestyle, social status, and genetic makeup is essential to fully quantify
individual disease risk and to ultimately prevent these diseases from occurring. By
exploring how risks factors from these different aspects of a person’s life may interact,
this dissertation asks two of the many questions that need to be answered for the
successful implementation of precision health.
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There are many barriers to this vision of precision health being fully realized for
all people. It is imperative that largescale cohort datasets become far more socially and
ethnically diverse in the immediate future. Initiatives such as All of Us are a step in the
right direction but these datasets and especially the populations most frequently
genotyped are too often overwhelmingly white, wealthy, and well-educated. Precision
health can never fulfill its promise to improve the entire population’s health with the
current status quo. If these large datasets are not diversified to include all ancestries,
precision health research will instead become just another tool in the perpetuation of
health disparities.

Genetics research has a long and sordid history of promoting inequality by class
and race and this legacy can still be seen today in both the ancestral homogeneity of
genetic datasets and in the field’s continued fixation on the genetic predictors of
intelligence, educational attainment, and income. These prejudices and lines of inquiry
distract from the essential goal of gaining a complete understanding of the genetics
behind common diseases among populations in all their diversity.

Lastly, and most importantly, there is a gap between an individual knowing how
best to improve their health and actually implementing these changes. Most people know
that they get too little exercise or drink too often or eat too much but behavioral change at
a population level remains stubbornly out of reach. These new risk prevention tools
enabled by precision health must be combined with the arduous “boots on the ground”
work that has always been the hallmark of good public health. This dissertation provides
only drops in the ocean of discoveries that await for this burgeoning field.
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5 Supplementary Tables and Figures

Table 5.1: Association between adiposity and incident cardiovascular disease by
household income and model choice

Body Mass Index WHRadjBMI WHRadjBMI
(Male) (Female)
Additive 95% Additive 95% Additive 95%
Hazard Confidence Hazard Confidence Hazard Confidence
Interval Interval Interval
HH Income | Associational 29.45 (26.08, 32.83) 33.00 (23.00, 43.00) 13.40 (8.54, 18.30)
Under VW 25.04 (5.25, 44.84) -93.80 (-195.20, 7.60) 9.61 (-14.69, 33.92)
£18,000 Weighted 13.79 (-18.90, 46.48) -70.25 (-216.15, 75.65) 13.16  (-22.26, 48.57)
Median
HH Income | Associational 19.46 (18.10, 20.82) 17.70 (14.20, 21.20) 3.94 (2.08, 5.80)
at least VW 25.28 (15.66, 34.85) 29.83 (-11.07, 70.72) 4.99 (-4.55, 14.53)
£18,000 Weighted 27.76 (12.94, 42.59) 16.76 (-37.74, 71.26) 3.46 (-10.55, 17.46)
Median
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Figure 5.1: Associational relationship between adiposity and incident cardiovascular
disease
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Household Income

Figure 5.2: IVW association between adiposity and incident cardiovascular disease
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Household Income
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Figure 5.3: Weighted median association between adiposity and incident cardiovascular
disease
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Household Income
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