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Abstract

In part one of this dissertation, we present a scheme for rendering higher-order isosur-
faces. Animation and visualization of rectilinear data require interpolation schemes
for smooth image generation. Piecewise trilinear interpolation, the de facto standard
for interpolating rectilinear data, usually leads to significant visual artifacts in the
resulting imagery. These artifacts reduce the fidelity of the resulting visualization,
and may even lead to false interpretations of the data. This part is concerned with the
generation of smooth isosurface image sequences, obtained by casting rays through
the image plane and computing their intersections with an isosurface. We describe a
novel solution to this problem: We replace trilinear interpolation by tricubic interpo-
lation, smoothing out the artifacts in the images; and we simplify the ray-isosurface
intersection calculations by rotating and resampling the original rectilinear data onto
a second rectilinear grid — a grid with one family of grid planes parallel to the image
plane.

In part two of this dissertation, we discuss multiresolution techniques for hardware-
accelerated, texture-based visualization of very large data sets. We discuss both vol-
ume visualization and cutting-planes techniques and how we have implemented them.
In general, these methods use an adaptive scheme that renders the volume in a region-
of-interest at a high resolution and the volume away from this region at progressively
lower resolutions. The developed algorithm is based on the segmentation of texture
space into an octree, where the leaves of the tree define the original data and the
internal nodes define lower-resolution approximations. Rendering is done adaptively
by selecting high-resolution cells close to a center of attention and low-resolution cells
away from this area. We discuss four items particular to multiresolution volume visu-
alization: (a) the special attention that must be paid to the transfer function; (b) the
proxy geometry; (c) indexed texture maps to allow for quick changes to the transfer
function; and (d) error evaluation in the context of index texture maps. We discuss
a method for removing artifacts in multiresolution cutting planes.
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Chapter 1

Introduction

Motivation

Scientific visualization is concerned with the creation of imagery to understand data
resulting from scientific measurements or numerical simulations. Understanding is
usually best enabled via pictures and animations when (a) data set are large, (b) the
data sets contain small-scale details, or (c¢) the phenomenon represented by a data
set are not well understood.

A medical doctor asks a simple question: Does this patient have a tumor? Where
is it? A structural engineer asks a simple question: Will this structure fail? Where
and Why? A well chosen visualization of the underlying data processes the data
“instantaneously” and allows the person to locate the tumor, find the fail points, etc.

Speed and quality of a rendering process significantly affect a person’s ability to
understand data: the computer must produce images in a “reasonable” amount of
time, and the images must be free of distracting or misleading artifacts. To this end,

we discuss two contributions to the scientific visualization field. The first contribu-



CHAPTER 1. INTRODUCTION 2

tion is a method for removing surface artifacts typically resulting from traditional
trilinear interpolation isosurfacing schemes. The second one is the development of

multiresolution technique for volume visualization and cutting plane applications.

Higher-order Isosurfaces

Rendering of trilinear spline. Rendering of tricubic B-spline.

Figure 1.1: A view of a skull data set: the left image is obtained by using a tri-
linear interpolation scheme with normals calculated by linearly interpolating central
differences; the right image is obtained by using a tricubic interpolating B-spline with
normals computed analytically from the partial derivatives of the B-spline.

In part one of this dissertation, we present a scheme for rendering higher-order
isosurfaces. Animation and visualization of data defined on rectilinear meshes require
interpolation schemes for smooth image generation. Piecewise trilinear interpolation,
the de facto standard in the visualization community for interpolating rectilinear
data, usually leads to significant visual artifacts in the resulting imagery. These ar-
tifacts reduce the fidelity of the resulting visualization and may even lead to false

interpretations. This part is concerned with the generation of “smoother” isosurface
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image sequences, obtained by casting rays through the image plane and computing
their intersections with an isosurface (i.e., an implicitly defined surface). We describe
a novel solution to this problem: we replace trilinear interpolation by tricubic inter-
polation, smoothing out the artifacts in the images. We simplify the ray-isosurface
intersection calculations by rotating and resampling an original rectilinear grid onto
a second rectilinear grid — a grid with one family of grid planes parallel to the image
plane. Figure 2 shows the advantage of this technique: the left image is obtained by
using the traditional trilinear scheme with the normals calculated by linearly interpo-
lating central differences (computed at the grid vertices); the right image is obtained
by using a tricubic interpolating B-spline with the normals calculated analytically

from the partial derivatives of the B-spline.

Multiresolution Techniques

Multiresolution techniques are used to process data sets that are too large to process
directly, due to time or compute resource constraints. These methods allow for a data
set to be rendered with a high level of detail in regions of high interest and rendered
with a low level of detail in regions of low interest. Also, these methods allow for
progressive rendering of a data set, where a coarse approximation is rendered first,
with progressively higher resolutions rendered as time and computing resources allow.

Hardware-accelerated texture-based rendering techniques leverage recent improve-
ments in graphics hardware: instead of processing voxels on a per-voxel basis in
software, as ray-tracing and splatting do, the rendering is performed on commodity
graphics hardware, where a volume is represented as a large texture. A volume is

rendered by applying the texture to a set of proxy-geometries, which can be rendered
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as standard textured polygons.

In part two of this dissertation, we discuss multiresolution techniques for hardware-
accelerated, texture-based visualization of very large scientific data sets. We discuss
both volume visualization and cutting-plane techniques and how we have implemented
them.

In general, these methods use an adaptive scheme that renders a volume in a
region-of-interest (ROI) at a high resolution and the regions further away from this
ROI at progressively lower resolutions. The developed algorithm is based on the
segmentation of texture space into an octree, where the leaves of the tree define the
original data and the internal nodes define lower-resolution approximations. Render-
ing is done adaptively by selecting high-resolution cells close to a center of attention
and low-resolution cells away from this area.

Figure 1.2 shows an equine metacarpal data set (128% x 108 voxels). The left
image shows an image of the full data set, while the right image shows an image
based on a multiresolution approximation. The data and time used for rendering the
approximation is roughly half the full-resolution version. Two items are important in
multiresolution volume visualization: special attention must be paid to the transfer
function such that an approximation-based rendering has the same “optical depth”
as one of the original data; and spherical proxy geometries are necessary to regularly
sample the data volume.

Interactive manipulation of the transfer function is necessary for exploration of
a large volumetric data set, and we show how to use indexed texture maps to allow
for quick changes of a transfer function. Figure 1.3 shows a single time step from a
Raleigh-Taylor flow simulation (5122 x 768 voxels). Both images are based on the

same approximation, but with different transfer functions.
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Fixed-resolution rendering Multiresolution-based rendering
(391 tiles, 2.87 seconds). (195 tiles, 1.53 seconds).

Figure 1.2: An equine metacarpal data set: the left image shows a rendering of the
full resolution version while the right shows a multiresolution approximation. The
data closer to the viewer is rendered at high resolution, while the data further away
is rendered at lower resolution.

Transfer Function #1 Transfer Function #2

Figure 1.3: Two images rendered from multiresolution approximations of the Raleigh-
Taylor flow simulation data set. The images are rendered using two different transfer
functions.
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Blocky Multiresoluton. Smooth Multiresoluion.
Figure 1.4: Two images of the Mandrill, the left is rendered without attention to level-
of-detail changes. The right is rendered with attention to level-of-detail changes; note
how the artifacts in the left image are not present in the right image.

Arbitrarily oriented multiresolution cutting planes are useful for exploring large
data sets. While rendering the cutting-planes is very simple, this technique points out
the problems with level-of-detail changes. The borders between two different levels
of detail can be obvious and distracting, as can be seen in the left image of Figure
1.4. (For simplicity, we show a 2D example). To remove border artifacts, we require
that the level of detail not change too quickly across an image, and blend between
levels of detail, with only a small penalty of storage. The rendering speed of the
current implementation is half that of the non-blending technique, which is explained
by the two-pass nature of the algorithm. However, next-generation graphics hardware
is likely to allow this technique to be implemented as a one-pass operation.

Assessing the error inherent in a multiresolution approximation is very expen-
sive: a naive approach might evaluate an error function at all original data sites and

compare the value of the dependent variables at those sites with those of an approx-
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imation. Considering byte data sets (where each dependent variable is represented
by an 8-bit integer), the total number of error pairs is quite large (one pair for each
data value in the domain of the original data set), but the number of unique error
pairs is very small. Each term of the error pair is a byte value, and there are only
2562 unique pairs. We use this insight to simplify error calculation: we construct
a table that stores the frequency of the possible error pairs. To evaluate the error,
we accumulate the following: we multiply the error function for a unique error pair
by the frequency of that error pair. In the case of the Visible Female CT data set
(512% x 1734 voxels), this technique allows us to re-compute the error for the entire
approximation hierarchy in 1.23 seconds. With a “lazy” evaluation scheme, we can
perform a progressive error evaluation, where each tile requires about 0.0028 seconds

to for error calculation.



Part 1

Higher-order Isosurfaces



Chapter 2

Ray-tracing high-order isosurfaces

Animation and visualization of rectilinear data require interpolation schemes for
smooth image generation. Piecewise trilinear interpolation, the de facto standard
for interpolating rectilinear data, usually leads to significant visual artifacts in the
resulting imagery. These artifacts reduce the confidence in the resulting visualization,
and may even lead to false interpretations of the data. This chapter is concerned with
the generation of smooth isosurface image sequences, obtained by casting rays through
the image plane and computing their intersections with an isosurface. We describe a
novel solution to this problem: We replace trilinear interpolation by tricubic interpo-
lation, smoothing out the artifacts in the images; and we simplify the ray-isosurface
intersection calculations by rotating and resampling the original rectilinear data in a
second rectilinear grid — a grid with one family of grid planes parallel to the image
plane. Our solution significantly reduces artifacts in individual images and leads to

smooth animations.
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2.1 Introduction

With ever increasing speed, data sets are being generated that represent three-
dimensional, volumetric information. They arise as a result of complex computa-
tional simulations or of empirical data-collection procedures, and present a challenge
to current visualization techniques. As these are large problems, the approximation
techniques used to render the data produce artifacts that are visible in the resulting
images, and especially in the animations. These artifacts frequently present mislead-
ing information about the data and may reduce the reliability of the visualization. It
is crucial to clearly display all information contained in a data set, and not to simplify
the data for the sake of rendering ease.

Scientific data sets are typically scalar- or vector-valued and defined on a grid
in two- or three-dimensional space. In many cases, the grid is rectilinear and the
data represents either point values associated with the nodes (or vertices) or constant
values associated with the voxels (or grid cells). Three methods have been developed
to visualize these data sets: the construction of isosurfaces, i.e., surfaces defining the
region in space for which a particular field variable is constant [Lev87, LC87, NH91];
volume visualization methods, where rays are cast through the volume, averaging
color and opacity values along the ray [Lev87]; and splatting, which is based on
projecting the voxel data onto the image plane and considering relative depth to
simulate transparency [CLL*88 LH91, WV91].

We describe a method based on a C'-continuous interpolation scheme that leads
to normal-continuous isosurfaces. We construct a cubic tensor-product spline inter-
polating the function values at the grid points ensuring an overall C'-continuous

representation of the field. The algorithm extends the de facto standard of piecewise-
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isosurface of
ey the trilinear
interpolant
& voxel / Po
intersection
surface

Figure 2.1: Ray-isosurface intersection in a voxel: The shaded area shows the isosur-
face of the trilinear approximant. The bounding curves of the isosurface on the faces
of the voxel are hyperbolic arcs.
trilinear interpolation of the data in a cell to piecewise-tricubic interpolation.

Piecewise trilinear interpolation (Figure 2.1) of rectilinear data interpolates the
eight data values at the corners of a cell and yields an overall C°-continuous approxi-
mation of a field. The resulting isosurfaces have normal discontinuities on the shared
boundary faces of each pair of neighboring voxels. The resulting normal discontinu-
ities are clearly visible when rendering isosurfaces. Images obtained by ray casting
also suffer from the lack of smoothness in the trilinear spline interpolation. The re-
sulting artifacts — “ring patterns” — are particularly visible in animations of a data
set.

Piecewise tricubic interpolation utilizes the 64 vertices at the corners of a 3 x 3 x 3

array of cells, and calculates a tricubic approximant to the values within the cell. To
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determine a point on an isosurface we insert a parametric ray equation

Ty + t.Td
r(t) =po+td= | y,+ty,

2o+ '[JZd

into the individual tricubic polynomial segments approximating the field over each

voxel, i.e.,

Thus, we have to solve the equation

3 3 3

D DD (@o +txa) (o + tya) (20 + tza)* = F

k=0 j=0 i=0
to determine points on the isosurface f = f. This is an equation of degree nine in ¢,
and thus, intersection of a ray with the isosurface of a tricubic polynomial requires
the solution of a ninth-degree polynomial — a time-consuming task.

However, if the direction vector d of the ray r is parallel to one of the axes of
the coordinate system in which f(z,y, z) is defined, then two of the values of x4, y4,
and z; must be zero, and the intersection problem leads to a third-degree equation.
Thus, we reduce the general ray-isosurface intersection problem by rotating the given
rectilinear grid such that one of its coordinate “directions” is parallel to the ray
direction, and by resampling the field at the vertices of the “ray-aligned” grid. Thus,
each intersection calculation is reduced to root-finding for a third-degree polynomial.

We note that since all rays are required to be parallel, this technique is not suitable
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for perspective projections.

In Section 2.2, we review research related to this problem. In Section 2.3, we
review the tricubic spline that we use to approximate a tri-variate scalar field. In
Section 2.4, we discuss the rotation and resampling steps that allow us to efficiently
render smooth isosurfaces by using axis-aligned rays. The ray-isosurface intersection
method is discussed in Section 2.5. In Section 2.6, we discuss ray-isosurface intersec-
tion and implementation details of the algorithm. We present results of our approach

in Section 2.7 and conclude with an outlook on future work in Section 2.8.

2.2 Related Work

Two basic approaches are used in scientific visualization for the identification, extrac-
tion, and rendering of isosurfaces: those that generate an intermediate representation
of the isosurfaces for rendering purposes and those that render the data directly.

The marching-cubes algorithm [LC87, NH91| generates an intermediate trian-
gle mesh from a set of trilinear interpolants. Considering each trilinear interpolant
independently, the algorithm determines a set of triangles that approximates the iso-
surface within each voxel. The resulting triangle mesh is displayed using conventional
rendering hardware. The number of cases to be considered for generating the mesh
within a voxel can be simplified by symmetry and rotation to 14 cases, and the algo-
rithm uses a look-up table to quickly generate the triangular mesh approximating an
isosurface. The marching-cubes paradigm has been adapted to tetrahedral meshes by
Shekhar et al. [SFYC96], where only three cases must be considered, ignoring certain
degenerate cases.

Hamann et al. describe a method for constructing a “smoother” isosurface by
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fitting rational-quadratic surface patches to the triangle mesh resulting from the
marching-cubes algorithm [HTF97]. Since the contour of the bilinear interpolant
on a face of a grid cell is a hyperbolic arc, rational quadratic curves can represent this
curve exactly. These boundary curves, together with curves in the interior of a grid
cell, can be used to generate the control nets of triangular rational-quadratic patches
that approximate the isosurface within the cell. The use of this type of surface patch
yields a “smoother” isosurface, but tangent plane discontinuities still exist at the
boundaries of each grid cell.

Levoy [Lev87| was one the first to describe the concept of casting rays directly
through volumetric data to produce transparent images. His algorithm uses tri-
linear spline interpolation along with the spline gradient to assign normal vectors
points along the rays for shading purposes. In order to emphasize regions in a three-
dimensional data set where the (scalar) function values are in a certain range, one
can assign higher weights to data in these regions by increasing their opacity values.
Furthermore, one can use the gradient to emphasize boundaries between different
“tissue types”: High gradients imply such boundaries and can therefore be used to
increase the opacity of boundary regions. Levoy describes an efficiency improvement
of his algorithm in [Lev90a, Lev90b].

Several volume visualization algorithms that utilize and render the data directly
are based on transforming a rectilinear data set so that it coincides with an “image-
space cube” [Lac95, Lac96, SS92]. These methods factor the viewing matrix into
a three-dimensional shear and a two-dimensional “warp,” thus projecting the given
data set into image space. The shear-warp algorithm is a resampling scheme that
is advantageous for algorithms utilizing SIMD (Single-Instruction, Multiple-Data)
architectures [TQ97].
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Yagel and Kaufman [YK92| present an algorithm for volume rendering that is
based on exploiting coherency between rays in parallel projections. Rays are cast
from a base plane, which simplifies the paths through the volume in a serial image-
order algorithm, insuring uniform sampling of the volume.

Webber [Web90] describes an algorithm that casts rays through the grid directly.
This algorithm constructs a biquadratic isosurface over each grid cell, and intersects
the ray with this surface. This biquadratic surface is derived by examining the 3x3x 3
volume of voxels around the target voxel and using one of the 3 x 3 sides of this voxel
array as a base for a biquadratic function. This approximating function is used
for ray-isosurface intersection tests. This method allows the derivation of a precise
intersection and a precise normal over a voxel.

Our approach combines ray-casting methods with a tricubic spline interpolation
scheme for high-quality image generation and animation. To eliminate the root-
finding for ninth-degree polynomials, we rotate and resample the original rectilinear
data set at the vertices of a grid with one family of grid planes being parallel to the
image plane. We cast rays that are normal to the image plane and thus perform
ray-intersection calculations for third-degree polynomials. These methods are all
independent calculations and can be efficiently implemented on a parallel processing

system.

2.3 'Tricubic Interpolation

To solve the general ray-isosurface intersection problem, we must compute the inter-
section of a (parametric) ray and an isosurface of a tricubic approximant. We utilize

the cubic tensor-product Catmull-Rom spline scheme [CR74, Far97] to represent the
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scalar field for all grid cells. We briefly review this spline scheme for the univariate
case.
Given a set of scalar values fo, fi1, ..., fn, the univariate cubic Catmull-Rom spline

is a piecewise cubic polynomial function

f@) =3 H@E@),

where each f;(z) is a function of the values f;, and the F;(x) denotes a set of blending
functions [CR74]. The functions f;(z) depend on the f; values but are allowed to
vary with z. Catmull and Rom discovered that certain choices of the functions f;(z)
allowed the curve to interpolate the control points f;.

For our application, it is sufficient to assume that the knots of the spline curve
are the integers, and, by utilizing the basis functions Fj(z) = (z — |z])?, where |z]
denotes the floor of = - the greatest integer less than or equal to x, we can obtain

an interpolating spline segment (see the discussing in [CR74] by setting f;(z) = 0 for

j <|z] —1and for j > |z| +2, and

fe(z) fi-1
Jfu(@) i
(
(

fria(z) Jr1

frr2(2) i i Jra2 |
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where k£ = |z], and

0o 2 0 0
-1 0 1 O
Mo = -
2 =5 4 -1
-1 3 -3 1

Thus, one can write f(x) as

Jr-1

f@ =1 ook @b @kt | M| |,
Jr41

Jrt2 |

where k = |z|. For 2 = k the spline interpolates the point fi, and the derivative at
x =k is 5 (fer1 — fe—1). Figure 2.2 illustrates a Catmull-Rom spline scheme.

A segment of the Catmull-Rom spline can also be written as
3
f@) =" flaj+i-1Cilz — |2)),

1=0

where

Co(z) Ci(z) Calx) cg(x)]:[1 z o’ x?’]MC;

and the functions C;(x) denote the Catmull-Rom basis functions.

We can bound the values of a Catmull-Rom spline for a particular knot interval
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(9
A

i-1 i i+1 i+2 i+3 X

Figure 2.2: A Catmull-Rom spline: The curve interpolates the control points at
integer values of the parameter; the slope of the curve at the integer knots is given
by the central difference of the two values on either side of each knot.

by converting it to Bernstein-Bézier form. This conversion is given by

Ji—1
i

frs1

Jrt2 |

where

10 00
-3 3 00
Mp =
36 30
-1 3 =31

The matrix Mp converts from the cubic power basis to the Bernstein basis {B;(z)}
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[Far97]. The convex-hull property of Bézier curves ensures that each segment of the

spline lies between the minimal and maximal values of its four defining Bernstein-

Bézier control points. The Bernstein-Bézier “control coefficients” for a polynomial

are given by

br—1
by

br+1

bi+2

= Mz'M¢

| fues |

fr—1
Jr

fr41

We define I as the smallest interval containing all four values by_1, bx, b1, and bgyo.

The convex-hull property ensures that the curve f(z) is contained within the interval

1.

The univariate Catmull-Rom spline can be extended to the trivariate case by

constructing a tensor-product spline. In the trivariate case, an individual tricubic

segment is given by

f(z,y,2) = ZZZfLwH—z 1,ly]+5-1,lz] +k— 1Ci(r — |z])C (y_ ly])Cr(z — |2])-

k=0 j=0 =0

We use this spline scheme to represent a piecewise tricubic approximation of a scalar

field. We must consider a stencil of 64 data values to define the Catmull-Rom spline

for a particular grid cell. These 64 data values include the scalar values at the corners

of a grid cell C, and the scalar values at the corners of the 26 neighboring cells sharing
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at least one vertex with C. The 64 values are the elements of the set
{fije:i1€{io—1i0+2},7€{jo—1,J0+2}k € {ko—1,ko+2}},

where fi, io ko 15 the value at the vertex of C' with minimum ¢, 7, k¥ indices. Again, it is
possible to determine the range of function values for a particular tricubic polynomial
by converting it to Bernstein-Bézier form and computing the minimal and maximal

coefficient.

2.4 Rotation and Resampling

We use the ray tracing paradigm as the mechanism for finding and rendering an
isosurface of a trivariate scalar function. Suppose we are to render the isosurface

defined by the expression

3 3 3
f(xaya Z) = Zzzci,j,k xiyjzk = 7 (21)

for a particular voxel. We must intersect the ray

Ty + t.Td
I‘(t) =po + td = Yo + tyq (22)

2o + tzq4

with the isosurface f = f. To intersect r(¢) with the isosurface, we substitute the z, y
and z values of equation (2.2) into equation (2.1) and obtain, in general, a polynomial

of degree nine in t. We reduce this problem to solving a third-degree equation by using
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r(t)

™.

~

Figure 2.3: Casting rays through the grid S: ray r(¢) passes through a pixel center
in the image plane I and intersects the arbitrarily oriented grid cells of S.
rays that are aligned with the z axis, e.g., 5 = yq = 0.

Our algorithm is an image-space algorithm, 7.e., we cast rays through each pixel
in the image plane I and find intersections with an isosurface. A ray, perpendicular
to the image plane I, is cast through the source grid S (see Figure 2.3). We replace
the grid S by a second rectilinear grid 7', a grid with one family of grid planes parallel
to the image plane. Rotating grid S into grid 7" allows us to perform ray-isosurface
computations with axis-aligned rays (see Figure 2.4).

The rotation of S onto 7' is effectively performed by resampling the scalar field
approximation at the vertices of T, i.e., we must approximate new function values for
the vertices of each cell in T" from the original values at the vertices in S. These resam-
pling problems arise in many visualization applications and they can be resolved in
a number of ways [FN80, Lac96, LL94, NFHL91, YK92]. We compare three different
approximation techniques for the estimation of function values at the vertices of 7'

(1) trilinear approximation; (2) tricubic spline approximation using the Catmull-Rom
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Figure 2.4: Definition of the grid 7: One family of grid planes of T' is parallel to the
image space plane I. Ray r(¢) is axis-aligned with 7". After resampling at the vertices
of T, ray tracing can be performed with axis-aligned rays.

spline; and (3) Hardy’s multiquadric method [Har71, Har90].

Trilinear interpolation is the standard technique used to estimate function values
for rectilinear data sets. In this method the function value for a vertex p of T is
approximated by trilinearly interpolating the eight values at the vertices of the cell
in S that contains p (see Figure 2.5). Denoting the coordinates of p in S by z,, yp,

and z,, p’s local parameter values with respect to the cell in S containing p are

Uzﬂjp— prJa
v =1y, — lyp), and

w=2z,— 2] (2.3)

Thus, the function value f(p) is

1 1 1
flp) = Z Z Z Flep) +islyp) il 2ol +k Li(w) Lj(v) Ly (w),

k=0 j=0 i=0

where the linear Lagrange polynomials are Lo(t) = 1 — ¢ and L, (t) = t.



CHAPTER 2. RAY-TRACING HIGH-ORDER ISOSURFACES 23

o} = O
ES
N
. S
N
, N
BECTERN
, N
~ ,
. N ,
N
’ ~ 4
, ~ //
. N ,
N . N
,
~ v’ ~
~ ’ N
~ ”
. N
~
N ’ ’ ~
< 7 <
AN , N
’ ~ ’ S v
, ~ N ,
4 S ’ ~ ’
. N N .
’ ’ [~ 7
v’ ~ ’ ~
, N ’ ~ ’
~ ’ ~ v’
’ ~ s N
’ N >
S , ~
S ’ S ¢ ’ ~
, N
N ’ ) 3 , N
~ ’ ’ ~ ~
~ ’ ~ ’ ~
N , N
~,
~ v’ ~ v
AN ~
’ ’ N
~ ,
, N
4 N ~ ’
N ,
’ N ’
N ’ R
. N ,
, N , N
. N . N .
N N .
N
~ 7|
AN ’ <
~ ’ \\
~ . , N
\/\ ’ ~
A K N
[¢ L o

Figure 2.5: A two-dimensional illustration of resampling: Given a vertex p of the
grid T', bilinear approximation uses the four vertices of the two-dimensional grid cell
in S containing p to approximate a function value at p; bicubic spline approximation
and Hardy’s method use the 16 vertices of S in the stencil of the cell containing p to
approximate a function value.
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We can extend the trilinear spline approximation scheme to tricubic spline ap-
proximation by using the Catmull-Rom spline. In this case, the function value for a
vertex p of 1" is approximated by considering the 64 vertices of the “stencil cell” in S
associated with the cell containing p. If u, v and w denote the local parameter values

of p (equation (2.3)), then the function value f(p) is

3 3

3
flp) = Z Z Z flep) 6,1y +3,12p) +£Ci (1) C5 (v) Cr (w),
k=0

§=0 =0

where C;(t) denotes the cubic Catmull-Rom blending functions.

Hardy’s multiquadric method [FN95, Har71, Har90, NFHL91] is a standard scat-
tered data approximation scheme. It is used in cases where the data sites are randomly
distributed and (typically) no connectivity information is known for the data sites.
Hardy’s approximant smoothly interpolates the values at the data sites and we use
it for estimating function values for the vertices of the T' grid.

Given a vertex p in the 7" grid and n+1 vertices pg, p1, --., P 0of S, with associated
function values fy, f1, ..., fn, the coefficients of Hardy’s multi-quadric interpolant is

defined by the linear system

fi =3 an/Ulps —pill)* + B2 j=0,.m,
=0

and the estimate at p is

§®) =Y ai/(Ip ~ pil)’ + R

where R? is some positive constant. The computation of the coefficients «; requires
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the inversion of an (n + 1) x (n + 1) matrix.

If p is a vertex of the grid 7', we consider the 64 data sites given by the vertices
of the “stencil” in S of the cell containing p (see Figure 2.5). Assuming that the
spacing of the S grid is uniform, the distances ||p; — p;|| are the same throughout
the grid, and one needs to invert the 64 x 64 matrix only once. Hardy’s method is
considerably slower than the tricubic spline approximation due to computation of the

square roots. The visual results of the two approximation schemes are similar.

2.5 Ray-Isosurface Intersection Tests

To intersect the parametric ray r(t) = (o, yo, 20 + tz4) With the isosurface

3 3 3
flz,y,2) = ZZZ%M iyl F =0 (2.4)

we substitute the coordinate functions for z, y, and z into equation (2.4) leading to

the (normalized) cubic equation
t* +at® + bt +c = 0. (2.5)

To find the roots of this equation, we use Cardan’s solution [Lit50], which first trans-

forms equation (2.5) by substituting s = ¢ — § leading to the polynomial
s°+ps+q, (2.6)

where
3

p:—a——i—b and q=2(

g)ff ab
3

3 —§+C.
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Equation (2.6) has three roots. The characteristics of these roots are determined by

the discriminant of the cubic equation
D = 4p° 4 27¢°,

which leads to three cases:

e If D > 0, then the cubic equation has one real root and two complex roots. The

single real root is given by
S1 = A —+ B,

where

o If D < 0, then the equation has three different real roots. The roots are given

by

2 4
7r+a, and s3 = k cos 7r;-oz’

o
$1 :kcosg, s9 = k cos

where

[ 4 —4
k= —Epand cosa:k—g)q.

e If D = 0, then the equation has three real roots, of which two are equal. The
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roots are given by

where s; is the double root.

2.5.1 Accelerating Ray-Isosurface Intersection Tests using In-

tervals

To accelerate the ray-isosurface intersection computations, we store an interval with
each grid cell in 7' that represents a lower and upper bound of the function values
within the cell. The Catmull-Rom interpolants are polynomial splines, and we find
the lower and upper bound by determining minimal and maximal spline coefficients
of the corresponding Bernstein-Bézier representation (see Section 2.3). If, for a given
grid cell, the desired isosurface value is outside the interval associated with this cell,
then the cell cannot contain any part of the isosurface.

We also store intervals for each “column of grid cells.”! Thus, a ray can intersect
an isosurface in a grid cell of a particular column only if the column-specific interval
contains the particular isovalue. The calculation of lower and upper bounds turns out
to be beneficial for “sparse data sets,” i.e., data sets containing large homogeneous

areas or thin features.

LA column of grid cells in T consists of all the cells of T intersected by an axis-aligned ray.
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2.6 Implementation

The algorithm requires an initial grid S and an isovalue f, and it generates an image
of the isosurface f = f. To reduce sampling artifacts, we use a resolution for the
grid T that is at least the twice the resolution of the S grid (Nyquist limit) in each
direction [Gla95, Jai89]. We estimate function values in 7" from those in S by using
one of the sampling methods discussed in Section 2.4. We compute intervals for each
grid cell in 7" and intervals for each column of grid cells in 7.

For each pixel in the image plane, we cast a ray r(t) into the grid 7. If the
column-specific interval of the column of cells intersected by r(¢) does not contain the
specific isovalue, we skip to the next pixel. Otherwise, for each grid cell intersected by
the ray, we examine the intervals for each cell and determine whether the isosurface
exists within the cell. If the interval bounds the isovalue, we trace the ray through
the grid cell and determine the possible intersections with the isosurface. If the ray
intersects the isosurface, then we compute the intersection closest to the image plane
and shade the surface using the gradient of the isosurface. Ray tracing terminates
when all pixels have been processed.

Normals are calculated by interpolating (either linear or cubic) the central-differences
in the target mesh, and are not calculated analytically.

We have implemented our algorithm on several Silicon Graphics Inc. (SGI) work-
stations, including systems with multiple processors. Our implementation takes ad-
vantage of multiple processors by executing all compute-intensive activities in paral-
lel. We have found a near-linear speedup between the implementation on an SGI O2
(single-processor system) and an Origin2000 (16-processor system).

The mapping of source grid vertices to target grid vertices is done in parallel. The
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mapping of vertices is structured such that the size of the needed memory stride is
kept at a minimum. Each processor runs to completion, and waits until the other
processors are done. We have experienced that the difference in completion time,
considering all processors, is usually less than ten percent.

The ray-isosurface intersection calculations are parallelizable as well. Since rays
may pass through different numbers of grid cells and different types of computations
may be performed, we use a more sophisticated load-balancing scheme: We use a job
queue that consists of scan line indices. A processor reads a scan line index from
the job queue and casts rays for all the pixels in the scan line. The time needed to

acquire and update the job queue is very small compared to line scanning.

2.7 Results

The first data set for which we present results is a skull data set of CAT (computerized
axial tomography) data, of size 64? x 68 voxels (see Figures 2.6 and 2.7). Figure 2.6
is a comparison of different techniques for resampling and ray-tracing. The matrix
of images shows trilinear, Hardy, and tricubic resampling vertically and trilinear and
tricubic ray-tracing horizontally. The image in the upper, left-hand corner is the
lowest quality image, produced with trilinear interpolation in the resampling phase
and trilinear interpolation in the ray-tracing phase. The images generally improve
as the basis technique for resampling moves from trilinear to Hardy to tricubic, and
as the basis technique for ray-tacing move from trilinear to tricubic. The image in
the lower, right-hand corner is the highest quality image, produced with tricubic
interpolation in the resampling phase and tricubic interpolation in the ray-tracing

phase.
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Figure 2.6: Comparison of sample and interpolation methods on the Skull data set
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Figure 2.7: Sobol filtered images from Figure 2.6.
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Figure 2.8: Equine metacarpal data set: (a) using tricubic sampling and trilinear
interpolation in the ray-tracing step (Note the bands running diagonally through the
image); (b) using tricubic sampling and tricubic interpolation in the ray-tracing step.
The banding has effectively disappeared.

The vertical bands near the ear of the model (more easily seen in the Sobel filtered
images [Jai89], Figure 2.7) appear to move and pulse across the isosurface under
animation. In the regions where the angle between the normal to the viewer and light
source direction are both acute, one sees alternating bands of light and dark. The

Sobel operator illustrates differences in the gradient in the image. We node that the

artifacts are reduced in the image with tricubic sample and tricubic ray-tracing.

2.8 Conclusions

We have discussed a new method for rendering smooth isosurfaces of trivariate scalar

fields using C'-continuous spline functions with an efficient ray-tracing scheme. We



CHAPTER 2. RAY-TRACING HIGH-ORDER ISOSURFACES 33

Figure 2.9: A second view of the equine metacarpal data set: (a) using tricubic
sampling and trilinear interpolation; (b) using tricubic sampling and tricubic inter-
polation. Again, the banding virtually disappears.

have shown how a rotation-resampling approach can be used to reduce the complexity
of ray-isosurface intersection calculations.

Future work includes developing error metrics to characterize and quantify the er-
ror introduced during the rotation/resampling phase. Better methods are needed to
identify grid cells containing isosurfaces, more efficient ones than our current linear-
search scheme. This method could by applied to other volume visualization tech-
niques, e.g., Levoy’s method, and possibly to the rendering of vector fields.

If a data set has the same value over large regions, methods to smoothly approxi-
mate these regions by high-degree schemes do not improve smoothness: they require
many unnecessary coefficients to be stored. Adaptive methods, such as an octree-
based approach, could possibly be used to determine regions that hardly vary, and

one could use low-degree schemes in such regions.
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Additional work must be done to improve the ray tracing phase of the algorithm:
There is a high degree of correlation among ray-isosurface intersections for adjacent

pixels, which we do not consider at this point.



Chapter 3

Improving the spline model

3.1 Introduction

In this chapter, we will present a C? continuous spline scheme that significantly im-
proves upon the work discussed in Chapter 2. We will also demonstrate a better
method for visualizing the artifacts from Chapter 2. Section 3.2 briefly discusses the
the central difference approximation; Section 3.3 discusses our method for genera-
tion C? continuous interpolating splines; Section 3.4 shows tests using 2-d data sets;

Section 3.5 discusses 3-d results; and Section 3.6 is the conclusion.

3.2 Improvements to Catmull-Rom Interpolation

Central-differencing is a technique that can be used to approximate the gradient
for discrete samples when there is no differentiable function defined. For closely
spaced, repeating data values, it can give misleading results. We describe a simple

example: construct a one-dimensional spline with control points Py, ..., P,, where P; =

35
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Figure 3.1: An example of the difficulties with central differencing: This curve is a
uniform cubic B-spline . The central difference is D; = P;,1 — P, 1, which is zero for
all D;. If the gradient is computed from the central differences, it will always be zero.
(+ mod 2), i.e., P,=0,P,=1,P,=0,...; see Figure 3.1. For each i = 1,...,n — 1,
compute the central differences, D; = P;;; — P; 1. One can see that D; = 0 for all
i. In Chapter 2, we defined a spline over the data values P; to compute the curve,
and another spline over the central differences D; to compute the normal to the curve
(see section 2.6). For this example, the second spline will always show a gradient of
zero. While this is a contrived example, it is demonstrative of the problems using
central differences. The result is that the normals, calculated from splining the central
differences, can be inaccurate — in fact, smoother than they should be.

When a ray emanating from a pixel intersects the isosurface, the Phong lighting
model [And95] is applied, and the pixel is assigned the resulting color. The only way
to see surface variation is through the surface highlights. However, the highlights
are directly related to the normals, and since the normals are overly smooth, the
highlights are similarly overly smooth. The result is that the applied lighting model

may not reflect the bumps in the surface.
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3.3 Constructing Interpolating Uniform Cubic B-
spline Curves

We solve the problems resulting from the use of central differences in two parts.
First, we use a C? continuous B-spline instead of the C' continuous spline described
in chapter 2. Second, we take the mathematically correct normal by computing the
partial derivative of the trivariate spline. We will not discuss taking the partial
derivative, as this is well discussed in the literature.

In the univariate case, given a list Q = {Qo, @1, ..., @n_1} of n scalar values, we
wish to derive a list P = {P_, P, ..., P, } of control points, that define a uniform cubic
B-spline curve that interpolates all ();. The interpolation occurs at the uniformally
spaced knots. The reason that there are two more data values in P is that a uniform
cubic B-spline of m control points defines m — 3 Bézier segments. Since we want to
include all n — 1 segments of @), m — 3 = n — 1, which implies m = n + 2. Note that
these two new data values appear at either end of the control polygon, i.e., P_; and
P,.

P_; and P, must be given some appropriate value. These “end conditions” have
been extensively studies in the literature and their full discussion is beyond the scope
of this thesis (see Farin [Far97]). For the applications and data sets that we are
concerned with, we have found that P_; = P, = 0 works well. This will likely not be
the case if the values in ) have large magnitude.

In the trivariate case, we are given a list @ = {Qo0,0,---, @n_1,n-1,n—1} Of scalar
values and must generate a list P = {P_y 1,1, ..., Pann}. P has (n+2)? —n® =

6n? + 12n + 8 boundary values that should be given appropriate values.
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3.3.1 The Formal Definition of B-spline Curves

The recursive definition of a B-spline curve (from [Joy98]) is as follows:

Given
n control points P, ..., P,_1,
a degree k, and

knots t(), ---atn—|—k—17

the implied B-spline curve is defined as follows:

(3.1)

otherwise

if
t € [t;,tis1) and i € [k — 1,n)
then
P(t) = Pf(t),
where
. (1= @O)PL &)+ (P () ifj>0
Pi(t) =
P
and
() = it

A uniform B-spline has uniformly spaced knots, i.e., t; = i. Figure (3.2) shows a

uniform cubic B-spline curve.
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Figure 3.2: A uniform cubic B-spline curve. Here, £k = 4 and there are 3 segments
defined for ¢ € [t3, tg).

A cubic B-spline is defined as follows:

if

telfi,i+1)
then

P(t) = P} (1), (3.2)
where

(1— 9P + 5P (1) ifj>0

P, otherwise
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We can expand and simplify this equation for evaluation at a knot 4:

Pi) =(1- ) Lt ih =P

(1 ) SSUPL = 4P, + P,
s((1- )P + IR L) + 1 ((1- ) P+ HERP )
( i-3 T 2Pz 2) + 3 (2131‘—2+§Pi—1)
P,

i 3+2Pz 2+1Pz 1

D= N

(3.3)

For the following analysis and discussion, we make several definitions and simplifi-
cations. First, we define the knots to be —1...n so that the evaluation of the function
P(i) corresponds to the value @);, and makes the mapping of our problem definition
one-to-one. Second, define the “neighborhood” of a knot 7 to be the non-zero support
of the equation evaluated at ¢, or the terms P;_, P;, and P;;. Lastly, it follows that

the value of a uniform cubic B-spline as a knot ¢ is given by:

) 1 2 1
P(Z) = ER_I + gR + EH_H. (34)

In the bivariate case, the neighborhood has nine (3 x 3) terms:

P(i,j) = %Pz'fl,jfl +%Pz',j4 +3g P+1,g 1
sPi—1;  +3B +5Pit1,j (3.5)

1 1
sli-Lir1 5P P
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In the trivariate case, the neighborhood has 27 (3 x 3 x 3) terms:

P(i,j, k) = il_l jil_l I,ﬁil_l WiW Wk Piyrjtik+ks
where (3.6)
Woyi=1Wo=2W, =

3.3.2 Solution Methods

Given a set of values @y, ..., @,_1, several solution methods exist to derive a set of
values P_q, ..., P,. We will briefly discuss the methods that we do not use, then
continue in the next section with an examination of the method that we do use.

The first method uses an analytical matrix solution [AR87]. Equations (3.4), (3.5),
and (3.6) are linear, and can be solved by using standard matrix solution techniques.
Each row and column in the matrix refers to a specific entry in the one-, two-, or
three-dimensional grid. The matrix for the one-dimensional case can be solved in
O(n) time, where n is the number of linear equations, because it can be set up as a
tridiagonal matrix. The matrix for the three-dimensional case has 27 non-zero terms
per row and cannot be solved in O(n) time. Also, the space cost for representing a
sparse matrix is large with respect to the number of non-zero entries in that matrix.
The ray-tracer is executing on a parallel machine, so the matrix solver must also
execute in parallel, lest it become the bottleneck in the rendering pipeline. We have
not had the time to write a fast parallel matrix solver nor have we found one that
works under our parallel environment.

The second method is a variation of a scheme from Boehm et al. [BFK84]. Instead
of solving for the entire three-dimensional grid, it is possible to break it into three

steps (two steps for two dimensions). We will describe the two-dimensional version
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(A (B)

Figure 3.3: The Boehm et al.tensor-product interpolating surface scheme.

(Figure 3.3 shows the steps graphically).

One starts with the base grid and for each row, computes a C? continuous cubic
spline using the matrix method. The matrix is a diagonally dominant, tridiagonal,
and can be solved in O(n) time, where n is the number of linear equations. One
creates two new points on the curve between each pair of original control points.
Then one repeats the process for the 3n — 2 columns. This produces a C? continuous
surface. In trivariate case, this has a significant disadvantage: when given a grid of
size n X n x n, the resulting grid is of size (3n — 2) x (3n — 2) x (3n — 2). Further,
since the resampling process requires the final grid to be twice the size of the original
grid, given a grid of size n3, the final grid size will be 216n3. Given that the simpler
data sets that we wish to visualize are 643 to 1282 voxels at four bytes per voxel, this
would require 216MB to 1728MB; this is too high a cost.

The last method is mentioned briefly by Farin [Far97]. This is an iterative scheme,
where the control points P_q, P, ..., P, are adjusted until the curve’s approximation
of Qo,Q1, .., Qn_1 is below some predefined threshold. This algorithm is simple to
implement and lends itself towards a parallel implementation, so it is the method we

use and will discuss in the next section.
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Q ©

Figure 3.4: The curve in the neighborhood of knot 7. Initially, the (solid) curve does
not interpolate @;. E; # 0 and E;+; = 0. P, is moved to P';, and the (dashed) curve
interpolates ;: E'; =0 and E';1; # 0, but E';1, < E;.

3.3.3 Computing the Control Points

We now discuss an iterative approach to computing the control points for an inter-
polating cubic B-spline curve. We will describe a one-dimensional algorithm, but the
extension to two and higher dimensions is straight-forward.

Let the control points of the uniform cubic B-spline curve be P_; _,, the curve be

P(i), as defined in equation 3.4, and the set of points be Qg . , 1 where we assume

that P(i) = Q;.

The first step is to give P; an initial values: assign P, = @; for ¢ € [0,n — 1];
assign P_; and P, some appropriate value (as defined earlier). The second step is to
move control points so the final curve interpolates the data points (see Figure 3.4).
For all 7 € [0,n — 1], we find a new control point P;' that will cause the curve P(i) to
interpolate ;. We solve for P’ using equation (3.4):

3 1 1
P = 9 (Qz - 6131'—1 - épﬂ—l) : (3‘7)
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The error in the local approximation is the differences between the point to be

interpolated, @;, and the curve at P(i). This value is

E; =P(i) - Q
= %131'—1 + %Pi + %PH—I - Qi

(3.8)

which will be zero if the curve passes through @);.
The distance that the control point P; is moved to P’ to reduce the error to zero,

i.e., properly interpolate ();, is given as

D =P -P,
=3 (Qi— P — tP) — P,
=3 (Qi—¢Pi1— Py — 3P) (3.9)
—%( i 1+2P+1Pz+1 Qi)
= —5 (P(i) — Qi)
= _%EZ
The new error in the local approximation is now zero:
E';=P'(i)—Q; =0. (3.10)
The error in the neighboring approximations are:
P Z D= 611

= %B + §P1'+1 + %Pi+2 — Qit1-
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After moving P;, the new error in the neighboring approximations is

Elipn =P(i+1) = Qina
= %Pz'l + §Pi+1 + épz'+2 = Qiy1
= %(R +D;) + %P'H—l + %Pi+2 — Qi1
=iP 4+ tD;+ 2Py + ¢ Pia — Qina
= §Di+ (§Pi + 5Pip1 + gPiv2 — Qi)

= —1Ei+ Eij1.

(3.12)

By moving a control point P; to P}, the local approximation error decreases by Ej,
but the two neighboring approximation errors increase by iEi. After one iteration,
the overall error will decrease by Y. F; and increase by ), 2% 1 E;, or a total decrease
of ). %EZ Hence, the error will decrease by half each iteration, which means that

the process will converge.

The algorithm is thus:
Input:
a list of data values Q... n—1
a number of iterations N
Output:
a list of control values P_; _ ,
Temporary:
a temporary list of data values Ty ,_1
Algorithm:
copy Qo,.n—1t0 Py n1

assign P_; and P, some appropriate value
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forj=1to N
fori =0 ton-1
T; =3 (Qi — tPio1 — £ Pig1)

copy To,..n—1 t0 Py, n—1

In the bi- and trivariate cases, 7" and P are the same array. We do this to save
on memory. This causes some artifacts that can be seen after the first and second
iterations, but disappears after the third.

For the bi- and trivariate cases, we use a iteration limit of N = 4. To select this
parameter, we created a series of pictures of the skull, with iteration limits of one to
ten. The difference of two images is the absolute value of the difference of each color
channel (red, green, blue) for each pixel. We found that the differences at N =4 to
be very small, with about 40 visible pixels in the differenced image (of a 500 x 500
pixel image). At this time, no formal error analysis has been performed. Clearly,
there is a trade-off here: image quality for time. If the error is too high, a larger N
can be used. Tables (3.1) and (3.2) detail a run of ten iterations on a curve of seven

points. Figure 3.5 shows the final results of the run graphically.

3.3.4 The “Overshooting” Artifact and Error

One of the artifacts of most interpolation schemes is that an interpolating curve
can “overshoot”. Figure 3.6 shows Catmull-Rom and interpolating cubic B-spline
curves. The overshooting in the Catmull-Rom spline is localized due to its local slope
estimates. In contrast, interpolation based on uniform cubic B-spline curves can lead

to global overshooting artifacts. These are well known artifacts of these methods.
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Figure 3.5: The interpolating cubic B-spline curve: The uniform cubic B-spline is
red and it’s control polygon is purple. The center seven diamonds, from left to right,
are (g through QQs. The vertices of the control polygon, from left to right, are P_;

through P;.
Qo @ Q2 Qs Q4 Qs Qs
0.000  0.000  0.000 1.000  0.000  0.000 0.000

1] Py Py Py P, P; Py Py Py P,
0]0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
110.0000 0.0000 0.0000 —0.2500 1.5000 —0.2500 0.0000 0.0000 0.0000
210.0000 0.0000 0.0625 —0.3750 1.6250 —0.3750 0.0625 0.0000 0.0000
310.0000 —0.0156 0.0937 —0.4218 1.6875 —0.4218 0.0937 —0.0156 0.0000
410.0000 —0.0234 0.1093 —0.4453 1.7109 —0.4453 0.1093 —0.0234 0.0000
510.0000 —0.0273 0.1171 —0.4550 1.7226 —0.4550 0.1171 —0.0273 0.0000
6| 0.0000 —0.0292 0.1206 —0.4599 1.7275 —0.4599 0.1206 —0.0292 0.0000
710.0000 —0.0301 0.1223 —0.4620 1.7299 —-0.4620 0.1223 —0.0301 0.0000
810.0000 —0.0305 0.1230 —0.4630 1.7310 —0.4630 0.1230 —0.0305 0.0000
910.0000 —0.0307 0.1234 —0.4635 1.7315 —0.4635 0.1234 —0.0307 0.0000

10 | 0.0000 —0.0308 0.1235 —0.4637 1.7317 —0.4637 0.1235 —0.0308 0.0000

Table 3.1: The iterative interpolating cubic B-spline method: this table shows how
the control points are moved to interpolate the initial points (Q_1,...,Q7). Values

away from the center (Ps) alternate between negative and positive.
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L L, Lo
0.666667 0.166667 0.333333
0.333333 0.024306 0.083333
0.166667 0.004774 0.041667
0.078125 0.001004 0.015625
0.036458 0.000214 0.007812
0.016927 0.000046 0.003255
0.007813 0.000010 0.001628
0.003621 0.000002 0.000692
0.001668 0.000000 0.000346
0.000773 0.000000 0.000148
0.000356 0.000000 0.000074

S © 00 IO Ui W N H O .

—

Table 3.2: This table details the error norms of @); — P(i) from table 3.1. Note that
the L; norm is decreasing at a rate slightly larger than discussed in section 3.3.3.
This can be explained by noting that £_; and E; “absorb” the error from Ey and Eg.

L 4

PR XA

Figure 3.6: A comparison of linear splines: the blue curve is a C! Catmull-Rom spline
and the red line is a C? interpolating cubic B-spline .
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L U RGB

-10 0.100 111
0.100  0.200 010
0.200  0.300 001
0.300  0.400 100
0.400  0.500 010
0.500  0.600 001
0.600  0.700 100
0.700  0.800 010
0.800  0.900 001
0.900  1.000 100
1.000 10 111

Table 3.3: The isoslice look-up table. A value f is assigned a color C; if L; <= f <
U;. The first and last entries are to deal with the under and over-shoot features of
interpolating curves.

3.4 Results with Two-dimensional Slices

This section discusses the results of a bivariate implementation. One of the issues
with the prior method is the fact that it is not possible to visualize the surface directly
— we could only see the highlights from surface features. Our solution is to extract a
two-dimensional slice from a trivariate data set and render the slice. We found this
method extremely useful for visualizing isocontours and the differences between the
Catmull-Rom and interpolating cubic B-spline methods.

The images are generated first by defining a two-dimensional patch over the data
set (either Catmull-Rom or interpolating uniform cubic B-spline ). Then, for each
pixel in the image, evaluate the function, obtaining a value f. Lastly, the color is
assigned by checking in a look-up table (see tables 3.3, 3.4a, and 3.4b). The pixel is
assigned color C; if f is between L; and U;. The number of solution iterations for the

interpolating uniform cubic B-spline is four.
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L U RGB L U RGB
0.00078125 0.0015625 011 0.900 0.950 011
0.0015625  0.003125 101 0.950 0.975 101
0.003125  0.00625 110 0.975 0.9875 110
0.00625 0.0125 011 0.9875 0.99375 011
0.0125 0.025 101 0.99375 0.996875 101
0.025 0.050 110 0.996875  0.9984375 110
0.050 0.100 011 0.9984375  1.000 011
(a) (b)

Table 3.4: The isoslice look-up tables: (a) for small values and (b) for large values.

The contour is the edge between two colors. This allows us to show large families
of isosurfaces in one image. This is very important because the nature of the artifacts
of the different sampling algorithms change for isovalues from the very small (near
zero) to very large (near one).

We have not done any analytical analysis on the contours and have relied on
“eyeball” measurements. However, the pictures are fairly compelling without this
analysis.

For the following series of images, we use the following conventions. “single” vs.
“double” sampling refers to the sampling frequency, since the data in the source grid
is resampled onto the target grid. A single-sampled image is one that is sampled
onto a grid of the same spatial resolution. A double-sampled image is on that is one
that is sampled onto a grid of double the spatial resolution. We note that the spatial
extent of the target grid is larger than the source grid, and we do this such that the
entirety of the source grid appears in the target grid. Also, iCS is an abbreviation
for interpolating uniform cubic B-spline .

We note that, in contrast to the prior chapter, where different methods were

used in resampling and rendering steps, when generating an image, we use the same
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00000000000
00000000000
00111111100
00000000000
00000000000

Table 3.5: The slab data set.

method for resampling and rendering, i.e., Catmull-Rom means that Catmull-Rom
was for used for both sampling and rendering, and iCS means that iCS was used for
both sampling and rendering.

The base data set is shown in Table 3.5. Images 3.7a, 3.7c, 3.8a, and 3.8c are
created using the Catmull-Rom formulation. Images 3.7b, 3.7d, 3.8b, and 3.8d are
created using the interpolating cubic B-spline (iCS) formulation.

The first pair of images, 3.7a and 3.7b, show the data sets, unrotated and sampled
at the same rate (single sampling) as the original data set (11 x 11). There are
clearly differences between images which are inherent to the formulation. These are
the references images.

The second pair of images, 3.7c and 3.7d, show the data sets rotated by 0.2
radians (11.4 degrees) and single sampled. These images look very little like unrotated
versions. At this point, both are “equally” bad.

Images 3.8a and 3.8b comprise the third pair, which show the data sets rotated
by 0.2 radians but are double sampled. One notices how “wavy” image 3.8a is and
how poorly it reconstructs 3.7b. However, image 3.8c is very close to the unrotated
version, image 3.7b.

The fifth and final images, 3.8c and 3.8d, show the data set rotated by 0.2 radians,

double sampled, and the isovalues from tables 3.4a and 3.4b added to the color look-up
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Catmull-Rom iCS

=2 ==

(c) (d)

Figure 3.7: Images (a) and (c) are Catmull-Rom and (b) and (d) are iCS. Images
(a) and (b) are the slab, unrotated, single sampled. Images (c) and (d) are the slab,
rotated by 0.2 radians, and single sampled.
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Catmull-Rom iCS

Figure 3.8: Images (a) and (c¢) are Catmull-Rom and (b) and (d) are iCS. Images (a)
and (b) are the slab, rotated by 0.2 radians, double sampled. Images (c) and (d) are
the slab, rotated by 0.2 radians, double sampled, with the color map structured to
show the “echo” artifacts discussed in section 3.3.4.
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table. These images show the overshoot artifacts of interpolating schemes. Note how
much stronger the overshoot artifact is in the interpolating uniform cubic B-spline
method.

These images exhibit the superiority of the interpolating uniform cubic B-spline
method over the Catmull-Rom method. The next step is to apply these methods to

the trivariate case.

3.5 Results with Trivariate Scalar Field Data

We show a few pictures demonstrating the results using the ray-tracer, see images 3.9a
through 3.9d. The iterative solution step in three dimensions is the dominant step in
the rendering pipeline. Table 3.6 shows representative times for rendering the skulls
shown in images 3.9a through 3.9d. These images were rendered on a 16-processor SGI
Origin 2000 system!. Note that the “Intervals” stage for the Catmull-Rom method
is more complicated that the interpolating cubic B-spline stage, which accounts for
the variation. Also, the “Solve” step performed only four iterations; the time for the
Solve step is proportional to the number of iterations.

Lastly, we compute the normals to the surface analytically (differentiating the
trivariate interpolation uniform cubic B-spline ). This approach is much better than
the original Catmull-Rom method (where we computed the normals by splining the
central differences) and is considerably better than the current Catmull-Rom method
(again, analytically). The only times where artifacts appear is for fairly small isovalues
(less than 0.2), and they are still very hard to see, even under animations. The

representation of isosurfaces greater than 0.2 is considerably better.

1 Using only eight processors, with several users on the system.
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Figure 3.9: A comparison of Catmull-Rom sampling and raytracing with interpolating
cubic B-spline sampling and raytracing: (a) Catmull-Rom; (b) interpolating cubic B-
spline . Images (c) and (d) are the images from (a) and (b) respectively, filtered with
a Sobel operator.
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Step Catmull-Rom  iCS
Rotate 1.51  1.59
Solve n/a 13.70
Intervals 296 1.63
Ray-trace 3.28 3.20
misc. 0.42 0.38
Total 8.17 20.50

Table 3.6: Representative running times (in seconds) for Catmull-Rom and interpo-
lating uniform cubic B-spline (iCS) methods.

3.6 Conclusions and Future Work

The interpolating cubic B-spline is a superior method to the Catmull-Rom spline for
the purpose of resampling and isosurface extraction. The computational cost for this,
however, is rather high. One avenue for future research is to find a method that can
perform this curve fitting faster.

Another issue is the sparseness of the data: we are only interested in viewing a
very small portion of the volume. For most data sets, the isosurface passes through
a small fraction of the voxels, and this ratio goes up as the grid size increases. This
means that most of the sampling and interval calculation is wasted. One solution
may be to characterize the base data set, separating it into flat and non-flat regions.
Evaluating the spline in a flat region is superfluous, since the function will always be
the same. Similarly, the interval will be a single point in a flat region (see section

2.5.1. The “Sampling” and “Interval” steps can then skip over flat regions.
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Chapter 4

Multiresolution Volume

Visualization

In this chapter, we present a multiresolution technique for interactive texture-based
volume visualization of very large data sets. This method uses an adaptive scheme
that renders the volume in a region-of-interest at a high resolution and the volume
away from this region at progressively lower resolutions. The algorithm is based on
the segmentation of texture space into an octree, where the leaves of the tree define
the original data and the internal nodes define lower-resolution versions. Rendering
is done adaptively by selecting high-resolution cells close to a center of attention and
low-resolution cells away from this area. We limit the artifacts introduced by this
method by modifying the transfer functions in the lower-resolution data sets and
utilizing spherical shells as a proxy geometry. It is possible to use this technique to

produce viewpoint-dependent renderings of very large data sets.

o8
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4.1 Introduction

The capability of computing technology has steadily increased for more than four
decades and continues to increase rapidly. These increased computing capabilities
have enabled applications to scale accordingly in overall throughput and resulting
data set sizes. However, current visualization techniques break down when operating
in this environment due to the massive size of the data sets. New techniques are
necessary to provide exploration of large, multidimensional data sets.

We combine hardware-assisted texture mapping and multiresolution methods for
rendering large volumetric data sets. The general idea is to assign priorities to dif-
ferent regions of the volume and to render the high-priority regions with highest
accuracy, while lower-priority regions are rendered with progressively less accuracy,
and progressively faster.

We use an octree to decompose texture space and produce several coarser levels
of the original data set. Each level is associated with a level in the octree and each
level is half the resolution of the next level. The leaf nodes are associated with the
original resolution, and the root node with the coarsest resolution. The interior nodes
are created by subsampling the node’s eight child nodes.

Rendering a volume involves traversing the octree and applying a selection filter
to each node. Three results are possible: (1) The node (and its children) are skipped
entirely; (2) the node is skipped, but its children are visited; or (3) the node is
rendered, and the children are skipped. The selected nodes are then sorted and
rendered in back-to-front order. We use spherical shells for proxy geometries for
accuracy under perspective projections.

Section 4.2 provides a survey of related work. Section 4.3 discusses data issues for
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the multiresolution representation of textures, and Section 4.4 addresses the rendering
of these textures. Section 4.5 shows results of the method on a number of data sets
and gives performance results. Conclusions and future work are presented in Section

4.6.

4.2 Related Work

High-performance computer graphics systems are evolving rapidly. Silicon Graphics,
Inc. (SGI) has been a primary developer of this rendering technology, introducing
the RealityEngine graphics system [Ake93] in 1994 and the InfiniteReality graphics
system [MBDMO97| in 1998. SGI has also extended its graphics library OpenGL
[SA98], [MB98] to take advantage of this hardware. These systems provided the
initial capability for hardware-based rendering using solid textures.

Cabral et al. [CCF94] show that volume rendering and reconstruction integrals
are generalizations of the Radon and inverse Radon transforms. They show that
the Radon and inverse Radon transforms have similar mathematical forms, and by
developing this relationship, show that both volume rendering and volume reconstruc-
tion can be implemented with hardware-accelerated textures. Thus, their algorithms
execute many times faster than traditional software approaches.

Cullip and Neumann [CN94] discuss general implementation issues for hardware
textures and are the first to generate pictures using this technique based on two
different transfer functions. Their work illustrates the superiority of viewport- versus
object-aligned sampling planes.

Wilson et al. [WVW94] and Van Gelder and Kim [VK96] develop the mathematics

for generating texture coordinates. Van Gelder and Kim also introduce a quantized
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gradient method for shading. Here, a triangulated sphere describes quantized normals
which, when coupled with a quantized set of material values, allows the construction
of a look-up table. For each new scene and texture block, the current viewing and
lighting parameters are applied to the look-up table, and the look-up table is applied
to the texture map as it is transfered to the texture subsystem. They report interac-
tive rates, both for orthographic and perspective projections. However, low gradient
regions show traditional quantization artifacts.

Westerman et al. [WE98] show how to visualize isosurfaces resulting from recti-
linear and unstructured grids. They use fragment testing to draw only those pixels
that have a density value over a given threshold. Rectilinear grids are rendered by
solid-texturing, which is shown to be much faster than the unstructured grid method.
They also demonstrate how shade the texture-based isosurfaces with a technique that
performs the shading as the texture map is transfered to the texturing subsystem.

Grzeszczuk et al. [GHY98] enumerate most methods for using hardware-accelerated
texturing to provide interactive volume visualization. They also introduce a library
for texture-based rendering called Volumizer, see [Eck98].

Massively parallel computers have been used to provide interactive volume visu-
alization and isosurface extraction, see [OHA93], [HKP*95], [HKW95], and [HH92].
Both ray-tracers and marching-cubes algorithms have been implemented, and both
are very parallelizable. The overhead of data distribution and image composition is
very high, and requires careful partitioning and tuning.

Our new method differs from these prior approaches in the sense that we allow
adaptive rendering of a volume. Prior algorithms assume that the data is “uniformly
complex” and “uniformly important.” This is not the case, for example, in an im-

mersive environment, where data closer to the viewer has more visual importance
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Pixel
Unused Unused
Half-Pixel . Half-Pixel

Texture Function Domain

Figure 4.1: A one-dimensional texture tile containing eight pixels. The tile is one
pixel larger than the texture function domain. We assume that the half-pixels at the
edges are constant.

than data far away. Also, quality should be a “tunable” parameter: If a graphics

supercomputer is not available or a user just wishes to quickly browse a data set,

then the user will be satisfied with a poorer rendering quality.

4.3 Generating the Hierarchy

In hardware texturing algorithms, linear interpolation is used to interpolate the values
at the centers of adjacent pixels. If we consider the one-dimensional example shown
in Figure 4.1 and assume that the “tile” contains p pixels, then the texture function
1 2p-—1

domain is the interval [o-

590 3 |. If the unused half-pixels are clipped, a larger tex-

ture can be broken into a set of smaller textures or tiles, where interior edge pixels
are duplicated between adjacent tiles. This technique is known in the literature as
“bricking,” see [GHY98].

In Figure 4.2, we show a two-level texture hierarchy. The higher-resolution texture
is denoted as level A, with tiles A° and A!, and the lower-resolution one as level B.
The grey regions at the ends are unused, and the grey region shared by A° and A'
indicates the “overlay pixel.” The image represented by A can be approximated by
B. The image represented by B has the same number of pixels as A° or A!, and half

the number of pixels of A. We note that the natural relationship for two textures
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Texture Function Domain

Figure 4.3: A texture hierarchy of four levels. Level 0 is the original texture, broken
into eight tiles. Overlapping pixels are shared between the tiles. The dashed lines
show the texture function domain for each level.

whose resolutions differ by a factor of two is using pixel-center alignment. In the
binary tree arrangement defined by this one-dimensional texture B is the parent of

AY and A

4.3.1 The Multiresolution Texture Hierarchy

Figure 4.3 shows a one-dimensional texture hierarchy of four levels. The top level,
level 0, is the original texture, broken into eight tiles; level 1 contains four tiles at half
of the original resolution; level 2 contains two tiles at a quarter of the resolution; and

level 3 has one tile at an eighth of the original resolution. The dashed vertical lines
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Figure 4.4: Selecting tiles from a texture hierarchy of four levels. The vertical line
represents a point of interest p. Tile selection depends on the width of the tile and
the distance from the point. (Selected tiles are shaded, with their position shown in
the “Final Image” by double-headed arrows.)

on either side show the domain of the texture function over the entire hierarchy. The
arrows denote the parent-child relationship of the hierarchy, defining a binary tree,
rooted at the coarsest tile, level 3.

Figure 4.4 illustrates the logic for selecting tiles in a multiresolution environment:
The thick vertical line denotes a point of interest, p, and tiles are selected if the
distance from p to the center of the tile is greater than the width of the tile. Start
with the root tile and perform this selection until all tiles meet this criterion, or no
smaller tiles exist. (This is the case on the left side of Figure 4.4.)

Figure 4.5 shows a two-dimensional quadtree example. The original texture, level
0, has 256 tiles. The darker regions in each level show the portion of that level used to
approximate the full image. The selection method is similar to the one-dimensional
case: Select a node if the distance from the center of the node to the point p is greater
than the length of the diagonal of the node. The original texture is divided into 256
tiles. The adaptive rendering uses 49 tiles, or approximately one-fifth the data of

the original. While, in 2D, this only reduces the amount of data transmitted and
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Level O Level 1 Level 2
256 Tiles 64 Tiles 16 Tiles

Level 4
1Tile

Fina Image
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Figure 4.5: Selecting a tile set in two dimensions from a texture hierarchy of five
levels. Given the point p, tiles are selected if the distance from the center of the tile
to p is greater than the length of the diagonal of the tile. (Selected tiles are shaded.)
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rendered, it will, generally, not reduce the rendering time. This formulation extends
in a straightforward manner to three-dimensional textures; however, both the amount
of data transmitted and rendered, and the rendering time will be reduced.

We generate a texture hierarchy by subsampling textures.! Subsampling chooses
every other voxel when generating a lower-resolution data set. For example, if A is a
linear array of 2n elements and B is a linear array of n elements that approximates
A, then we generate the elements of B as B; = Ag;,1=0,1,... ,n— 1.

How much memory is wasted by breaking a volume into bricks? The waste is
generated by the outer layer of voxels, which is shared by adjacent tiles. If a brick

3 voxels) and is surrounded by a half-voxel layer of duplicate voxels, the

has size n (n
effective size of a brick is n — 1, and there are n® — (n — 1)® “waste” voxels. The
waste relative to the tile size is O(n?/n?) = O(n™!), which means that as the tile size

increases the relative waste decreases.? If we choose a tile size of 642, the tile contains

262,144 voxels, 250,047 effective voxels and 12,097 extra voxels.

4.4 Rendering

The rendering phase is divided into three steps: (1) Selecting tiles to render; (2)

sorting the tiles; and (3) rendering the tiles using a proxy geometry.

4.4.1 Selecting Tiles

The first rendering step determines which tiles will be rendered. The general filtering

logic starts at the root tile and performs a depth-first traversal of the octree. At each

!'We have also tried several other methods, including averaging techniques, but the results are
substantially better using subsampling for the data sets used in this study.
2The total waste still increases.
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Figure 4.6: Field-of-view selection filter. The projected angle § of the tile is less than
half the field-of-view angle a.

tile, we evaluate a selection filter, which returns one of three possible responses:

e Ignore this tile and all of its children. This response is used to cull the tree. For
example, if a tile is not in the view frustum, then we can ignore the tile and its

children.
e The tile satisfies all criteria. Render the tile and do not consider the children.

e The tile does not satisfy the criteria. Check the children of the tile.

Our primary selection filter is based on one of the following criteria:

e Distance. This filter selects a tile if the distance from the viewpoint to the

center of the tile is greater than the diagonal length of the tile.

e Field-of-View. This filter selects a tile if it intersects the view frustum and
the projected angle of the tile is less than half the view frustum’s field-of-view

angle, see Figure 4.6.
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(a) (b)

Figure 4.7: Differences between (a) viewport-aligned planes and (b) spherical shells
on a constant texture. Note the artifacts at the “tile boundaries” visible in (a).

Tiles must be sorted and composited in back-to-front order. We order tiles with
respect to a view direction such that, when drawn in this order, no tile is drawn behind
a rendered tile. The order is fixed for the entire tree for orthogonal projections, and
has to be computed just once for each new rendering, see [GHY98]. The order is not

fixed for perspective projections, and it must be computed at each new node.

4.4.2 Proxy Geometries

Texture-based volume visualization requires proxy geometries on which to render the
texture. Object-aligned planes and viewport-aligned planes are two traditional tech-
niques, but they lead to serious artifacts under perspective projections. To deal with
these artifacts, we use “spherical shells” — finely tessellated concentric spheres sur-
rounding the viewpoint, culled to the view frustum. Figure 4.7 shows the differences
when viewport-aligned planes and spherical shells are used as proxy geometries on a
constant texture defined over a cube.

Object-aligned planes (OAP) are implemented with two-dimensional textures on

polygons aligned with the zy-, yz-, and xz-planes of the volume. This is the fastest
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Figure 4.8: Multiresolution object-aligned planes. The proxy geometry is generated
independently for each tile.
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Figure 4.9: Multiresolution viewpoint-aligned planes. The proxy geometry is gener-
ated independently for each tile. Substantial artifacts can appear at the boundaries.
method, and it is supported by most contemporary graphics workstations. However,
three sets of polygons must be maintained. If only one set is used, certain viewpoints
will lead to an “edge-on situation,” and nothing will be rendered. Also, the light
attenuation is not computed correctly as the projected distance between polygons is
not constant. This error is worst for an angle of 45°. Figure 4.8 illustrates multireso-
lution OAP in two dimensions. Here, OAPs planes must be generated independently

for each tile, generating substantial artifacts at the boundaries of the tiles.
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Figure 4.10: Spherical shells intersecting the voxelized data set. These shells provide
a proxy geometry that can be adapted to the location of the viewpoint.

Viewport-aligned planes (VAP) are implemented with three-dimensional textures
and polygons that are aligned parallel to the viewport. Only one texture set is re-
quired. All orthographic projections yield visually correct results. Three-dimensional
texturing is currently only supported on high-end workstations. Rendering based on
VAPs is generally less than half as fast as OAPs because (1) the Nyquist sampling
theorem requires twice the number of polygons as OAPs requires and (2) the under-
lying computations are more complex. Figure 4.9 shows the use of multiresolution
VAPs. This technique creates strong artifacts under perspective projections. The tiles
are rendered with a differently oriented set of polygons, and these polygons do not
meet at the tile borders. This creates an artifact reminiscent of the “cracking” arti-
fact from multiresolution polygonal schemes, and it manifests itself as light-and-dark
alternating bands at the tiles boundaries.

Viewpoint-centered spherical shells (VCSS) are implemented with three-dimensional



CHAPTER 4. MULTIRESOLUTION VOLUME VISUALIZATION 71

Figure 4.11: Multiresolution viewpoint-centered spherical shells. The differences be-
tween sampling on the boundaries of the tiles is relatively small.

textures and use concentric spherical shells centered at the viewpoint, culled to the
view frustum. This technique does not produce artifacts under perspective projec-
tions, but it is slower than VAPs due to the increased geometric complexity required
to approximate a spherical shell. In Figure 4.10, the viewpoint is on the left-hand
side, almost touching the volume. The sample interval is exaggerated to show the
structure — one shell every two voxels. Figure 4.11 illustrates multiresolution VCSSs.

Using this approach, one can achieve continuity across tile faces.

4.4.3 Preserving Visual Properties

When rendering tiles at different levels of the hierarchy, the opacity properties of
the tiles are different. The classical rendering algorithms depend on using the same
sampling along rays for each pixel, see [Lev87]. But in the context of a multiresolution
format, the the volume is sampled in different ways, and at varying resolutions. To
preserve optical properties between tiles of different resolutions, we must modify the
transfer functions for those tiles generated by subsampling the original texture.

Figure 4.12 shows an example where we have sampled a texture with spherical
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Figure 4.12: When the space is sampled at two different resolutions, the colors C and
C* should be the same.

shells at two different resolutions — one is half the resolution of the other. Each sample
s; has an associated color ¢; and an opacity value «;. The light emitted by s; is a
function of the incoming light, and the color and opacity properties of the sample

itself. Following [Lev87], the color C resulting from the higher-resolution sampling is

C = QpCo + (1 — 040)01, (41)
where (' is the incoming color from samples si, s9,... — that is

Cl = oycq + (1 — CV)CQ, (42)
where () is the incoming color from samples sy, s3, ... For the coarse resolution, the

color C* is given by

C* = a*OCO + (1 - OZ*O)C*Q, (43)
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where C*? is the color calculated as a result of the samples sy, s4, sg, - - -
By considering only the first three samples, the resulting colors C and C* are
given by

C = QpCo + (1 — ()!0)&101 + (1 — Ojo)(l — 011)02 and (4 4)

C* = a*002 + (1 — &*0)0*2,

and these quantities, in general, are different.

However, if we compute the total-accumulated opacities A and A*, we obtain

A= o+ (1—ag)og + (1 —ap)(l —y)Ay and (4.5)

A= a4 (1 — ) A%,

Assuming that the accumulated opacities are equal at the even samples, it follows

that Ay = A* and A = A%, i.e.,

oy + (1 — ao)a1 + (1 — ao)(l — al)AQ =™ + (1 — O!*O)AQ, (46)

Solving this equation for af, one obtains

a® =aop+ (1 — g (4.7)

=1- (]_ - O,/())(l - Oél).

By assuming that a; = ag + € (where € is a very small number), we obtain the
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equation

a0 =1—(1—a)(l—av) (4.8)
=1 (1 a0)(1 — 00) + (1 — o).

Therefore, we modify the transfer function of the parent (coarser) texture by

o =1-(1-a)? (4.9)

for all opacity values in the subsampled texture to minimize the artifacts between the
texture bricks. This formula is used when applying the transfer function to a level of

the texture hierarchy.

4.5 Results

We have implemented our algorithm and applied it to several complex data sets. All
data sets were rendered on an SGI Onyx2 computer system with .5 gigabytes of main
memory, using a single 195Mz R10000 processor.

The first data set is a CT scan of a horse metacarpus. This data set consists of
128 x 128 x 108 voxels. Figure 4.13 shows this data set. The primary feature of this
data set is the “empty interior” of the bone, which can be visualized only from close
inspection of one end. Figures 4.14a and 4.14b were generated using fixed tile sizes,
while Figures 4.14c and 4.14d were generated using our multiresolution technique.

In Figure 4.14a, we show the viewpoint and bricks associated with the rendering in
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Figure 4.13: The horse metacarpus data set

Figure 4.14b. In Figure 4.14c, we show the bricks used for the adaptive rendering of
the texture, resulting in the image in Figure 4.14d.

The second image is a rendering of a trebecular bone data set, shown in Figure
4.14e. The data set consists of 256 voxels, and the interesting features are inside the
data set. Figures 4.14f and 4.15g-i show two views of this data set, one from just
outside the data set, and one from the interior. The respective viewpoints and bricks
associated with the views are shown in Figures 4.14f and 4.15h, while the resulting
renderings are shown in Figures 4.15g and4.151.

The third image is a rendering of data generated from an immersive auditory
interface system, shown in Figure 4.15j. This data set has a “channel” in the middle
of the volume. An image from the interior of the channel is shown in Figures 4.15k
and 4.151. Statistics about rendering times for the various algorithms applied to the

three data sets are given in Table 4.1.
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Figure 4.14: Multiresolution Texture-based Volume Rendering, plate 1.
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Figure 4.15: Multiresolution Texture-based Volume Rendering, plate 2.

7
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Model Horse Immersive | Trebecular
Metacarpus | Auditory Bone
Data Set Size 128% x 108 126° 2563
Tile Size 163 163 163
Number of Tiles (Fixed Tile Size) 391 237 1049
Number of Tiles (Multiresolution) 195 64 397
Time (OAP) (Fixed Tile Size) 0.843 0.419 2.25
Time (OAP) (Multiresolution) 0.424 0.123 0.853
Time (VAP) (Fixed Tile Size) 1.51 1.10 4.20
Time (VAP) (Multiresolution) 0.964 0.683 2.23
Time (VCSS) (Fixed Tile Size) 2.87 173 8.04
Time (VCSS) (Multiresolution) 1.530 0.830 3.03

Table 4.1: Rendering times for the various data sets. (All times are in seconds.)
4.6 Conclusions

We have described a new method for building and rendering a multiresolution texture
hierarchy approximation for very large data sets. The approach utilizes a “bricking”
strategy, where the displayed bricks are selected from an octree representation. De-
spite the fact that our overall system is limited by the amount of available texture
memory, the algorithm produces very good results, and we expect that this approach
will have a major impact on the huge volumetric data sets that are currently en-
countered in numerous applications. Future work will involve the extension of the

technique to vector fields and the parallelization of our algorithm.



Chapter 5

Transfer Functions Using Indexed

Textures

We extend the work discussed in Chapter 4 to use indexed texture maps, which allow

for interactive modification of the opacity transfer function.

5.1 Introduction

In this chapter, we combine hardware-assisted texture mapping and color table look-
up with multiresolution methods for rendering large volumetric data sets. Texture
mapping is substantially faster than software-based approaches, and color look-up
tables allow for easy manipulation of transfer functions. The multiresolution principle
assigns priorities to different regions of the volume and renders “high-priority regions”
with highest accuracy, while “low-priority” regions are rendered with progressively
less accuracy and progressively faster.

We use an octree to decompose texture space and produce several coarser levels
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of an original data set. Each level is associated with a level in the octree, and each
level is half the resolution of the next level. The leaf nodes are associated with the
original resolution and the root node with the coarsest resolution. Interior nodes are
created by subsampling a node’s eight child nodes. Each value in the texture map is
an index, not an RGBA tuple; the transfer function is applied as the texture map is
transferred to texture memory.

Rendering a volume involves traversing the octree and applying a selection filter
to each node. Three results are possible: (1) The node (and its children) are skipped
entirely; (2) the node is skipped, but its children are visited; or (3) the node is
rendered, and the children are skipped. The selected nodes are then sorted in back-
to-front order. Finally, for each node, the algorithm builds and transfers the color
look-up table, transfer the texture map, and render the proxy geometry.

Section 5.2 addresses the rendering of multiresolution textures. Section 5.3 dis-
cusses issues of static and indexed texture maps. Section 5.4 shows results for two
data sets and lists performance results. Conclusions and future work are presented

in Section 5.5.

5.2 Rendering

The rendering phase is divided into three steps: (1) selecting tiles to render; (2)

sorting the tiles; and (3) rendering the tiles using a proxy geometry.

5.2.1 Selecting Tiles

We add the following selection filter to the filters discussed in Section 4.4.1:
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e Cone criterion. Selects the highest-resolution tiles within the viewing frus-
tum. Its primarily use is to determine the speedup factor of the Field-Of-View

criterion.

5.2.2 Proxy Geometries

We use viewpoint-centered spherical shells (VCSSs) proxy geometries, as presented in

4.4.2.

5.2.3 Preserving Visual Properties

See section 4.4.3 for a complete discussion of this topic. For the purpose of this
chapter, we note that the correction formula is used when generating the texture

look-up table from the transfer function.

5.3 Static and Index Texture Maps

Static texture maps are “pre-shaded” texture maps. The data is transformed by
the transfer function, from a byte to an RGBA tuple, then stored in a texture map.
Opacity correction is also applied during this step. This technique is useful since one
can freely choose the transfer function. For example, opacity may be a function of
the gradient. Transferring a static texture to the texture subsystem is very fast as
no further transformations are necessary. However, the overall process is very slow
since the transfer function is implemented in software, which requires that all data

be touched for each new transfer function.! Lastly, static texture maps require two

1The results can be cached, for each transfer function, but at a very high memory cost.
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or four times as much memory as an index texture map. The static texture map uses
a byte for each RGBA (red, green, blue, alpha) value, or four bytes per texel, while
index texture maps use one or two bytes per texel. For these reasons, this technique
is inappropriate for situations where one may use a large number of different transfer
functions.

Index texture maps are stored directly in the texture maps, interpreted as an
index. Opacity correction is deferred until building the look-up table. Though per-
formed in software, this step has very little overhead as it is performed once and
mostly involves moving memory. Transferring an index texture map to the texture
subsystem is more involved. A texture look-up table is built and transferred to the
texture subsystem; the texture look-up table translates the index for a value for each
of the RGBA channels. This is performed in hardware and is very fast. The texture
look-up table is quite small, 256 to 65536 entries?, and can be updated easily and
quickly in software. Subsequently, the texture map is transferred and the texture

subsystem translates that index to an RGBA tuple for each texel.

5.4 Results

We have implemented our algorithm and applied it to several complex data sets. All
data sets were rendered on an SGI Onyx2 computer system with 512MB of main
memory, 2GB of swap, and 16MB of texture memory, using a single 195Mz R10000
Processor.

Figures 5.1a to 5.1d show an Equine Metacarpus data set. This is a CT scan

2 At four bytes per entry, this results in 1024 bytes to 256 KB; compared to a 10243 static texture
map, which requires 4GB.
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Figure 5.1: Equine Metacarpus data set. Image size is 5002 pixels.
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Static Texture Maps || Index Texture Maps
Data Set Size 1082 x 126
Tile Size 162 texels
Tiles at Level 0 448
Tile Time 25.3 sec. 5.1 sec.
Memory Used 8 MB 4 MB
Filter Cone FOV Cone FOV
Number Of Tiles || 432 148 433 150
Rendering Time | 10.72 sec. | 5.1 sec. 9.94 sec. | 4.93 sec.

Table 5.1: Rendering statistics for the Equine Metacarpus data set. (Times are in
seconds.)

data set consisting of 1082 x 126 voxels. Each tile contains 16% texels. The number
of tiles for levels 0 to 3 are: 448, 64, 8, and 1; for a total of 521 tiles. The memory
requirements for static textures, with 163 x 4 = 16384 bytes per tile, is S8MB. The
memory requirements for index textures, with 162 x 2 = 8192 bytes per tile, is 4MB.
Images 5.1(a) and 5.1(c) were rendered using static texture maps, while images 5.1(b)
and 5.1(d) were rendered using index texture maps. Images 5.1(a) and 5.1(b) use tiles
from the Cone filter; images 5.1(c) and 5.1(d) use tiles from the FOV filter. While
the rendering times are roughly the same, index texture maps require 5.1 seconds to
generate all tiles (“Tile Time”), and is done only once. Static texture maps require
25.3 second to generate all tiles, and this must be done every time the transfer function
is changed. Statistics concerning the rendering times for this data set are provided
in Table 5.1.

Figures 5.2a to 5.2d and 5.3e to 5.3h show a Raleigh-Taylor instability data set.
This data set is a single time step from a simulation and consists of 500% x 768 voxels.
Each tile contains 64 texels. The number of tiles for levels 0 to 4 are: 1053, 175, 36,
8, and 1 (total: 1273 tiles). For index textures, this requires 1273 x 643 x 2 = 637 MB

of memory. Images 5.2(a), (c), 5.3(e), and (g) are rendered using tiles selected by the
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Figure 5.2: Raleigh- Taylor instability data set, plate 1. Images (a), (c), (e), and (g)
rendered with tiles selected by the Cone filter. Images (b), (d), (f), and (h) are
rendered with tiles selected by the FOV filter. Image size is 500 pixels. Images(a)
and (b) show the viewing frustum, the yellow pyramid, with respect to the data.
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Figure 5.3: Raleigh- Taylor instability data set, plate 2. Images (a), (c), (e), and (g)
rendered with tiles selected by the Cone filter. Images (b), (d), (f), and (h) are
rendered with tiles selected by the FOV filter. Image size is 5002 pixels.
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Data Set Size 5002 x 768
Tile Size 643 texels
Tiles at Level 0 1053

Tile Time 1049 sec.
Memory Used 637 MB
Filter Cone FOV
Number of Tiles | 593 47
Rendering Time | 25.4 sec. | 2.47 sec.

Table 5.2: Rendering statistics for the Raleigh-Taylor instability data set. Times are
in seconds.

Cone filter, requiring 593 tiles. Images 5.2(b), (d), 5.3(f), and (h) are rendered using
tiles selected by the FOV filter, requiring only 47 tiles. The white grid lines show
the tile boundaries. Images 5.2(c), 5.3(e), and (g) and images 5.2(d), 5.3(f), and (h)
are rendered in perspective. Images 5.2(a) and 5.2(b) are rendered orthographically.
The yellow pyramid is the viewing frustum of the perspective projections, and the
white and blue boxes show the tiles boundaries. Three different transfer functions
are shown: images 5.2(a) to 5.2(d) use a transfer function called “#1”; images 5.3(c)
and 5.3(d) use a transfer function called “#2”; and images 5.3(e) and 5.3(f) use a
transfer function called “#3”.

The fixed-resolution images, 5.2(c), (e), and (g), each require approximately 25
second to render, while the multiresolution images, 5.2(d), 5.3(f), and (h), each require
about 2.5 seconds to render. Statistics concerning rendering times for this data set
are given in Table 5.2.

We were not able to render a static texture map version of the Raleigh-Taylor
instability data set. However, the Equine Metacarpus data shows the timing issues.
We should also note that the Raleigh-Taylor instability data set “Tile Time” also

includes a reasonable amount of time lost to swapping. However, the render time
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includes the time to change the transfer function. If we extrapolate the time (from
the Equine Metacarpus Static vs. Index “Tile Time”) to regenerate the tiles for a
static texture map version, the “Tile Time” should be about 5245 seconds (about 88
minutes); this is clearly not a reasonable amount of time if one wishes to experiment

with the transfer function.

5.5 Conclusions

We have described a new method for building and rendering a multiresolution texture
hierarchy approximation for very large data sets where the transfer function can
be modified interactively. The approach utilizes a “bricking” strategy, where the
displayed bricks are selected from an octree representation, and index texture maps,
where the transfer function applied with a color look-up table. The color look-up table
is significantly faster than prior methods and provides a better basis for exploring very
large data sets. Despite the fact that our overall system is limited by the amount of
available texture memory, the algorithm produces very good results, and we expect
that this approach will have a major impact on the huge volumetric data sets that are
currently encountered in numerous applications. Future work involves removing the
artifacts between tiles of different resolution and rendering pre-segmented biological

data sets.



Chapter 6

Multiresolution Cutting-Planes

We present a multiresolution technique for interactive texture-based rendering of
arbitrarily oriented cutting-planes for very large data sets. This method uses an
adaptive scheme that renders the data along a cutting-plane at different resolutions:
higher resolution near the point-of-interest and lower resolution away from the point-

of-interest. The algorithm is an extension of work in chapters 4 and 5.

6.1 Introduction

In this Chapter, we combine hardware-assisted texture mapping and multiresolution
methods for rendering cutting-planes of large volumetric data sets. The general idea
is to assign priorities to different regions of the volume and to render the high-priority
regions with highest accuracy, while lower-priority regions are rendered with progres-
sively less accuracy, and progressively faster.

We use an octree to decompose texture space producing several coarser levels of

the original data set. Each level is associated with a level in the octree and each level
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is half the resolution of the next level. The leaf nodes are associated with the original
resolution, and the root node is associated with the coarsest resolution. Interior nodes
are created by subsampling the eight child nodes. Each node contains two texture
tiles, called high and low. The high tile stores the node’s copy of the data; the low
tile stores portion of the parent’s high tile that covers the same area as the node.

Rendering a cutting-plane involves traversing the octree and applying a selection
filter to each node, building a selected node tree. Three results are possible: (1) the
node (and its children) are skipped entirely; (2) the node is skipped, but its children
are visited; or (3) the node is rendered and the children are skipped. The selected
node tree forms an incomplete octree with the leaves being the nodes selected for
rendering. The second step is to balance the selected node tree: all adjacent nodes
must differ by no more than one level of resolution. The final step is to render each
node, blending the high and low tiles when the node is adjacent to a lower-resolution
node.

This technique reduces the amount of data accessed to produce a rendering. This is
important in “data exploration” or visual steering applications, where a user does not
know the point-of-interest or would just like to browse the data. Another application
is progressive visualization: often, a data set is too large to be placed on one computer
system, and portions are distributed across a network of machines. It is not always
practical to wait for all systems to finish rendering. With our technique, an initial
approximation is first rendered. As higher-resolution data is received, a higher-quality
approximation is rendered. This continues until all the data is received or the user
changes viewing parameters.

Section 6.2 discusses construction of the texture hierarchy, and Section 6.3 covers

how to process and render the texture hierarchy. Section 6.4 shows results for two data
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v
Texture Function Domain

Figure 6.1: A node with one-dimensional tiles, high(H) and low(L).

sets and provides performance results. Conclusions and future work are presented in

Section 6.5.

6.2 Generating The Texture Hierarchy

6.2.1 High and Low Texture Tiles

In hardware texturing, linear interpolation is used to interpolate the values at the
centers of adjacent texels. To allow for blending within a node, each node contains
two texture map tiles (Figure 6.1). The high tile is the normal data associated with
that node. The low tile is that part of the parent’s high tile that is covered by the
child node. The size ratio high to low is defined as |high| = |low|+2—1. Thus, one of
the tiles must have odd size. If the size of a texture tile must be a power of two, then
this relationship will incur some memory overhead. Our system uses a power-of-two

size for the low tile, and the size for the high tile is calculated accordingly.

6.2.2 The Multiresolution Texture Hierarchy

Figure 6.2 shows a texture hierarchy consisting of two levels. The higher-resolution
level is denoted as level A, with nodes A° and A, and the lower-resolution level as B.

The image represented by A can be approximated by B. The high and low tiles in B
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Figure 6.2: A texture hierarchy of two levels.
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Figure 6.3: Selecting a set of tiles from a 2D hierarchy of four levels (level three not
shown).
are the same size as the high and low tiles in A° or A!, and half the total size of the
high and low tiles in A. We note that the natural relationship for two textures whose
resolutions differ by a factor of two is using texel-center alignment. In the binary tree
arrangement defined by this one-dimensional texture, B is the parent of A° and A'.
Also, note the correspondence between the low tile of the children to the high tile of
the parent.

Figure 6.3 shows a two-dimensional quadtree example. The original texture, level
0, contains 64 nodes. The dark regions show the portion of the level used in rendering
the cutting-plane. Nodes are selected when the distance from the center of the node
to the point p is greater than the diagonal length of the node, and when the node
intersects the cutting-plane c. The selected nodes are shaded. The original texture,
divided into 64 nodes, requires 64 time units to transfer. The multiresolution render-
ing uses five nodes, requiring five time units which implies a speed-up factor of about

13.
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This technique extends to three-dimensional textures. Approximations are gen-
erated by performing low-pass transforms on the textures. The amount of memory
“wasted” over the prior technique [LJH99] is the storage of the low tile with each
node; since each low tile is % the size of the high tile, the additional memory overhead
is %. For the above example, if all nodes rendered required some portion of both the
high and low tiles, the five nodes would contain 5 x (1+3) = 5.625 (high) tiles, so the
speed-up would only be about 11.37. However, only those nodes the require rendering

of both high and low tiles would require transmitting this additional data.

6.3 Rendering

The rendering phase is divided into the following steps: (1) selecting nodes to be
rendered and building the selected node tree; (2) balancing the selected node tree;

(3) computing the blending ratios; and (4) rendering the nodes.

6.3.1 Selecting Nodes

The first rendering step determines which nodes will be rendered. The general filtering
logic starts at the root node and performs a depth-first traversal of the octree. Our

primary selection filter is based on one of these two criteria:

e Cutting-Plane. This filter selects a node when it intersects the cutting-plane.

e Multiresolution Cutting-Plane. This filter selects a node when it intersects
the cutting-plane and the distance from the node center to the point-of-interest

(on the cutting-plane) is smaller than the diagonal length of the node. We note
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Figure 6.4: Blending red and green checker board patterns.

that this selection criteria is arbitrary and is chosen just to show the essential

process.

6.3.2 Blending

Texturing is performed by modulating the color of the proxy geometry by the texture;
the color is white and constant across a polygon. However, to blend two images, we
can change the polygon color to implement bilinear filtering. In Figure 6.4, image
(G) is created by performing a per-pixel affine combination of images (A) and (D).
Image (B), with ratios of a = ¢ = 1 and b = d = 0, multiplies (A) and produces (C).
Image (E) multiplies (D) and produces (F). Images (B) and (E) sum to unity. Adding
(C) and (F) produces (G): a transition from red checks on the left to green checks
on the right. We obtain a smooth transition, provided (A) and (D) are two different
resolutions of the same image. We note that our current hardware does not allow this
to be performed in one-pass, thus we implement this as a two-pass scheme. However,

we believe that the next generation of graphics hardware will include functionality to
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B=1

Figure 6.5: Cutting-plane clipped against the faces of an intersecting node.

allow us to implement this in a one-pass scheme.

6.3.3 Neighborhoods and Balancing

The blending algorithm described in section 6.3.2 requires that all selected nodes in
a 26-neighborhood (across node faces, edges, and corners) have resolutions that differ
by at most one level in the octree. Blending within a node can only blend between
two texture resolutions: the high-resolution texture is blended into the low-resolution
texture. Nodes have two textures tiles, high and low, so that a pair of nodes that
differ by one level in the tree can be blended. Those that differ by two or more levels
do not share any textures and cannot be blended.

After balancing the tree, we examine the neighbors of all selected nodes. The nodes
adjacent to a node of lower-resolution must be blended such that the textures match.
Considering a corner of a given node, whenever one of the seven adjacent nodes exists
and has lower-resolution, that corner must blend to the low tile; otherwise, it must

use the high tile.
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Mandrill (Fig. 6.6) | Visible Female (Fig. 6.7)
Data set resolution 2562+« RGB (2D) | 5007 * 250 * RGBA (3D)
Data set size 192K 238MB
Tile resolution (high/low) 15%/82 323/163
Tile size (high/low) 1024/256 bytes 128K /16K bytes
Level 0 nodes 324 2601
Rendered nodes: fixed/MR | 324 41 443 50
Bytes transmitted 405K 51K 56MB 7™MB
Rendering time - - 2.0 sec. 0.37 sec.

Table 6.1: Timing results for Mandrill and Visible Female data sets.

Figure 6.5 shows a cutting-plane clipped to an intersecting node. A to H are the
blend ratios associated with the node: corners B, E, and H are adjacent to lower-
resolution nodes, so that the blend ratio is one; the other corners have a blend ratio
of zero, selecting the low and high tile of the node, respectively. The values a to e are
the blend ratios associated with the clipped cutting-planes vertices. Ratios on an edge
are linear combinations of the ratios at the ends of that edge, and are proportional
to the position of the point along the edge.

For rendering, we first define the RGB value for each clipped cutting-plane vertex
to the ratio (a to e in Figure 6.5), download the low texture tile, and draw the
polygon. The color values will be interpolated across the polygon, multiplying the
texture and producing the first weighted image. Next, we download the high texture
tile, define the RGB value for each clipped cutting-plane vertex to one minus the ratio,
and draw the polygon, producing the second weighted image. Finally, by adding the

first and second images, we produce the desired blended result.
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(d)

Figure 6.6: Multiresolution Mandrill: (a) without blending; (b) node boundaries
high-lighted; (c) blended nearest-neighbor; and (d) blended, bilinear filtering.
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Figure 6.7: Multiresolution cutting-plane of the Visible Female data set: (a) fixed
resolution; (b) blending with node boundaries high-lighted; and (c) MR, blending.
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6.4 Results

We have implemented the algorithm and applied it to parts of the Visual Female data
set. The data sets were rendered on an SGI Onyx2 computer system with 512MB of
main memory and 16MB of texture memory, using a single 195MHz R10K processor.

For comparison, Figure 6.6 shows a multiresolution image of a Mandrill. This
image is used to point out the artifacts when not blending across different levels of
resolution. Image 6.6(b) shows the nodes and node boundaries: the resolution is
shown by the node’s boundary color, from highest to lowest resolution: black, red,
green, and yellow; notice the artifacts at the node boundaries in image 6.6(a). Image
6.6(c) shows the blending result, with nearest-neighbor filtering. One notices that
the pixel sizes blend smoothly across the nodes. Image 6.6(d) shows the final result.
One notices how the image is free of the boundary artifacts and smoothly blends
high-resolution nodes to low-resolution nodes.

Figure 6.7 shows a multiresolution view of the Visible Female data set. The 443
nodes of the Visible Female represent the highest-resolution nodes that intersect the
cutting-plane (the other 2158 are never considered). The performance results shown in
Table 6.1 are for a single frame, at 20 frames per second. The 1.1GB/sec required for
the non-multiresolution approach exceeds the SGI InfiniteReality Engine’s maximum
transfer rate for textures of 320MB/sec by a factor of about 3.5, while the 140MB for

the multiresolution approach has capacity to spare.
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6.5 Conclusions

We have presented an algorithm for interactive rendering of multiresolution cutting-
planes. We use hardware-based texturing, multiresolution techniques, and image
blending to render a smooth approximation of a cutting-plane. We have shown that
our algorithm can produce a reasonable approximation while using less data. Despite
the fact that our overall system is limited by the amount of available texture memory,
the algorithm produces very good results, and we expect that this approach will have
a major impact on the exploration of massive volumetric data sets that are currently
generated in numerous applications.

Future work includes error analysis, implementing this technique in our multires-
olution volume visualization system, extend it to visualizing vector fields, and devel-
oping more sophisticated selection criteria. The selection criteria discussed in this
chapter are overly simple — a much more sophisticated mechanism is required for

progressive rendering, e.g., for web applications over a slow modem.



Chapter 7

Efficient Error Calculation

Multiresolution volume visualization is necessary to enable interactive rendering of
large data sets. Interactive manipulation of a transfer function is necessary for proper
exploration of a data set. However, multiresolution techniques require assessing the
accuracy of the resulting images, and re-computing the error after each change in a
transfer function is very expensive. We extend our existing multiresolution volume
visualization method (see [LJH99], [LHJ00], and [LDHJ00]) by introducing a method
for accelerating error calculations for multiresolution volume approximations. Com-
puting the error for an approximation requires adding individual error terms; in this
case, one error value must be computed once for each original voxel and its corre-
sponding approximating voxel. For byte data, we observe that the set of error pairs
can be quite large, yet the set of unique error-pairs is small. Instead of evaluating the
error function for each original voxel, we construct a table of the unique combinations
and the number of their occurrences. To evaluate the error, we add the products of
the error function for each unique error pair and how often this error pair occurs.

This dramatically reduces the amount of computation time involved and allows us to

101
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re-compute the error associated with a new transfer function quickly.

7.1 Introduction

When rendering images from approximations, it is in most applications necessary
to know how close the generated image is to the original data. For multiresolution
volume visualization, it is not possible to compare the images generated from original
data to all possible images generated from approximations. The reason for using the
approximations is to substantially reduce the amount of time required to render the
data. If we assume that there is a reasonable amount of correlation between the data
and the resulting imagery, we can compute an error value between the approximations
and the original data (in 3D object space), and use that value to estimate the error
in the 2D imagery.

However, the time required to evaluate the error over an entire data hierarchy can
be very expensive. This is especially important when it is necessary for a user to
interactively modify a transfer function: each change in the transfer function requires
re-computing the error for the entire hierarchy.

We introduce a solution based on the observation that, for many data sets, the
range size of (integer) data sets is often many orders smaller that the domain size
(physical extension) — and that, instead of evaluating an error function for each orig-
inal voxel, it suffices to count the frequencies of unique pairs of error terms. In the
case of 8-bit integer (byte) data, there are only 2562 combinations (each term is a
single byte, or 256 potentially different values). To compute the error, instead of
adding individual error terms, we add the products of the error (for a unique pair of

error terms) by the number of occurrences of that unique pair.
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For example, a typical 5122 voxel data set, with one byte per voxel, contains 227

bytes. To compute the error, a naive method would evaluate an error function for
each of the original 227 voxels. However, there are only 2562 unique pairs of error
terms. Thus, to compute the error, we evaluate the error function for each unique
pair of error terms, or 2'6 times — which is 2!! times faster than the naive method.
This algorithm requires that the entire data set be examined for unique pairs of error
terms - this is a preprocessing cost that can be performed off-line.

This work is a direct extension of earlier work [LJH99], [LHJ00], and [LDHJO00].
We first review the generation of a volume hierarchy in section 7.2, discuss the error
criteria we use in section 7.3, cover some basic optimizations of the general approach
in section 7.4, show the performance in section 7.5, and discuss directions for future

work in section 7.6.

7.2 Generating the Hierarchy

First, we review certain aspects of our multiresolution data representation and how it
influences the decisions on how to evaluate and store error. The underlying assump-
tion is that data sets are too large to fit into texture memory, and are often too large
even to fit into main memory. Given a volumetric data set, we produce a hierarchy
of approximations. Each level in the approximation hierarchy is half the size of the
next level. Each level is broken into constant-sized tiles — tiles that are small enough
to fit in their entirety in texture memory, see Section 4.3.

Figure 7.1 illustrates a 1D multiresolution hierarchy of three levels and seven
nodes of a one-dimensional function with tile size of 15 texels. Each node in the tree

contains one tile. Level 0 is the original data and is broken into four tiles. Level 1
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Texture Function Domain Level

Figure 7.1: Texture Hierarchy of Three Levels.

is the first approximation and is broken into two tiles; and Level 2 is the final and
coarsest approximation (of Level 0) and contains just one tile. The coarsest tile is
contained in the root of the tree; the arrows show the parent-child relationship of the
four nodes. This tree forms a binary tree (and, in three-dimensions, an octree), and
a Level i texel approximates (2° + 1)d level 0 texels, where d = 1 for a binary tree,
see Figure 7.1, and d = 3 for an octree.

Our multiresolution volume visualization system uses hardware-accelerated 3D
texturing for rendering a volume, and represents that volume with index textures.
A transfer function is applied by first building a look-up table, transferring it into
the graphics system, and then transferring the texture tile. The translation of index

values to display values (luminance or color) is performed in hardware.

7.3 Error Calculation

We calculate error on a per-node basis: when a node meets the error criterion, it is
rendered; otherwise, its child (higher-resolution) nodes are considered for rendering.
We currently assume a piece wise constant function implied by a set of voxels, but
use trilinear interpolation for the texture. This simplifies the error calculation.

We use two error norms: the L-infinity and root-mean-square (RMS) norms. Given

two sets of function values, {f;} and {¢;}, i =0,... ,n — 1, the L-infinity error norm
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is defined as lo, = maz; {|z;|}, and the RMS is defined as Eypms = /= >, (22), where
x; = T[f;] — T[g;] and T[] is a transfer function. For the purposes of this discussion,
we will assume that T[z] is a simple scalar function, mapping density to grey-scale
luminance; the issue of error in color space is beyond the scope of this discussion. We
evaluate the error function once for each Level-0 voxel.

227 voxels, with the same number of pairs of error

A data set of size 5123 contains
terms for each level of the hierarchy. However, when using byte data, we observe
that, though there are 2?7 pairs of values, there are only 2'6 (2562) unique pairs of
error values. This means, on average, that each unique pair is evaluated 2! times.
Our solution is to construct a table (), with elements @), 5, that stores the number of

occurrences for each (f;, g;) pair, where a and b are the table indices corresponding

to f; and g;, respectively. Thus

1 if f=0a and &g, =b
Qa,bzz

i 0 otherwise
This table is created only once, when the data is loaded. Each internal node of the
octree, i.e., each approximating node, contains a () table that counts the unique error
terms that the node “covers” of the original data.

To calculate the L-infinity error value for a node, we search the for the largest

value, with the requirement that this value corresponds to a real pair of values:

loo = MaZap|Q, 20 {|T[al = T[0]]} -
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— 255

(B)

(A)

Figure 7.2: The Visible Female CT data set. Image (B) in the upper-right corner
shows the union of all @, tables for the Level-1 approximation. Graph (A), on the
left, shows the Level-0 histogram. Graph (C), on the bottom, shows the Level-1
histogram.

We compute the RMS error for a node as

Boms = [ 37 (Tla] = TI)* X Quy,

where n.= 3" , (Qap)- For a set of ¢t nodes, we compute the value

ETms = %Z (Z (T[CL] - T[b])2 X Qa,b)a

a,b

where N =Y, (Za,b Qa,b)'

Image 7.2(B) in the upper, right-hand corner of Figure 7.2 shows a graphical
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representation of the union of all ) tables for the Level-1 approximation of the Visible
Female CT data set. This image consists of 256 x 256 pixels, with a on the horizontal
axis and b on the vertical axis; each pixel corresponds to a (), element. The colors
are assigned by normalizing the logarithm of the number of occurrences, then linearly
mapping these into a rainbow color sequence, where zero maps to red and one maps to
violet: pizel,, = RainbowColor Map[in (Qap) /In (Maz.p{Qap})]- Graphs 7.2(A)
and 7.2(C) show the Level-0 and Level-1 histograms, respectively.

Figure 7.2 shows that the approximation is generally good: most of the error
terms are along the diagonal. The “lines” in the upper-left corner of the image may
correspond to high gradients present in the data set. The Visible Female CT data
set was produced such that sections of the body fill a 512% image: these different
sections are scanned with different spatial scales. We have not accounted for these
different spatial scales in our version of the data set, thus there are several significant

discontinuities in data values in the data set.

7.4 Optimizations

Evaluating a table is still fairly expensive when interactive performance is required.
We currently use three methods to reduce the time needed to evaluate the error.

First, one observes that the order of the error term calculations, z; = |f; — ¢;| =
lgi — fi| and z; = (f; — gi)2 = (g; — fi)Q, does not matter. If we order the indices in
Qap such that a < b, or a = min(f;, g;) and b = maz(f;, g;), we obtain a triangular
matrix that has slightly more than half the terms of a full matrix (32896 vs. 65536);
this roughly halves the evaluation time and storage requirements.

Second, one observes that, typically, there is a strong degree of correlation between
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approximation and original data. This means that the values of (), are large when
a is close to b (i.e., near the diagonal); and small, often zero, when a < b, (i.e., far
away from the diagonal). We have observed that the number of non-zero entries in
a @ table decreases (i.e., the table is becoming more sparse) for nodes closer to the
leaves of the octree. This happens since the nodes closer to the leaf nodes correspond
to high-resolution approximations and thus a better approximation; the correlation
is strong, and the non-zero values in the @) table cluster close to the diagonal. Also,
the nodes closer to the leaves cover a progressively smaller section of the domain. We
perform a column-major scan, i.e., traverse the table first by column, then by row.
Thus, the () tables become sparse, and we can terminate the checking of elements
if we remember the last non-zero entry for a row. We maintain a table, L,,,, that
contains the index of the last non-zero value for a row. It may even be possible to
perform a run-length encoding on a row to skip over regions of zero entries. Figure
7.2 shows that there are large, interior regions with zero entries.

Third, one can use “lazy evaluation” of the error. When we re-calculate the error
for all nodes in a hierarchy and few of the nodes are rendered, much of the error
evaluation is wasted. Thus, for each new transfer function, we only re-calculate the

error value of those nodes that are being considered for rendering (see [LHJ00]).

7.5 Results

Performance results of static vs. index texture transfer function and error time were
obtained on an SGI Origin2000 with 10GB of memory, using one (of 16) 195MHz
R10K processor. However, images were produced on an SGI Onyx2 Infinite Reality

with 512MB or memory, using one (of four) 195MHz R10K processor. This was
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Image | Lvl. Voxels Nodes | Nodes | Mem. | Time Error
in Lvl. || Rndrd. | (MB) | (sec.) | I, | Erms
7.3a) 0 | 5122 x 1734 | 2268 1560 390 | 83.4 | 0.000 | 0.00000
=454M
7.3b) 1 2577 X 868 350 263 65 8.73 1 0.305 | 0.00678
=57TM
7.3c) 2 129% x 435 63 49 13 2.38 | 0.305 | 0.00917
7.2M
7.3d) 3 65% x 218 16 16 4 0.563 | 0.305 | 0.01059
921K

Table 7.1: Visible Female CT data set multiresolution statistics. Abbreviations:
“Lvl.” for level, “Rndrd” for rendered, and “Mem” for memory.

done for the following reasons: we are interested in the time required to process the
hierarchy, free of memory limitations. The logical memory used during a visualization
is 2.4GB (0.5G of this is mapped), and thrashing completely dominates (by a factor
of 10 or more) the transfer function and error calculation times. The SGI Origin2000
does not have a graphics subsystem, while the SGI Onyx2 does.

We have used the Visible Female CT data set, consisting of 5122 x 1734 voxels in
our experiments. Figure 7.3 shows different-resolution images of this data set: 7.3(a)
shows the original data, and 7.3(b) to 7.3(d) are progressively 1/2 linear (1/8 total)
size. Table 7.1 shows performance statistics for four (of six) levels of the hierarchy.
The “Voxels” column shows the total size of the approximation in voxels (the upper
entry is the linear dimensions and the lower entry is the total), and the next column
shows the total number of nodes associated with that level. The “Nodes Rendered”
column shows how many nodes where used to render that level — the number of
nodes rendered is actually less than one would expect: many regions of the data
set are constant, so there is no error when approximating these regions. Each tile

contains 643 bytes = 256K. When transferring n tiles, the total memory transferred
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(c) (d)

Figure 7.3: Visible Female CT data set rendered at four different resolutions (see
Table 7.1). The transfer function shows bones in white, fat in yellow, muscle in red,
and internal organs in green. Note the different spatial scales for different sections of
the data set.
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| Step | Index Texture

Compute Texture Hierarchy | 1 min 46 sec

Compute Error Table 5 min 35 sec
Calculate Error 1.23 sec

Table 7.2: Performance statistics for Visible Female CT data set.

to the graphics subsystem for n tiles is 256K xn, shown in the “Memory” column.
The “Time” column shows the time, in seconds, required to produce the rendering
for that level; and the I and E,,,s columns show the error values associated with
that rendering.

Table 7.2 shows the times for various stages of our system — we note that the
“Compute Texture Hierarchy” and “Compute Error Tables” stages are only performed
once for a data set, and only the “Calculate Error” step is performed for each new
transfer function. The time for “Calculate Error” is the times needed to to re-compute
the error for all 432 approximating nodes (with @ tables). The time per node is
approximately 0.0028 seconds — and when coupled with a lazy evaluation scheme,
error calculation is insignificant in terms of the other parts of the rendering pipeline

(see “Time” column in Table 7.1).

7.6 Conclusions and Future Work

We believe that there are several significant directions to continue this work. The first
is to extend this technique to color images or more general vector data hierarchies.
The second is to consider data ranges other than bytes: data sets with 12 and 16
bits per voxel are common. However, a table would contain 40962 (22*) or 655362
(232) entries. These tables would be larger than the actual volume data per node,

and possibly require more time for evaluation. Could some quantizing approach



CHAPTER 7. EFFICIENT ERROR CALCULATION 112

work? Since these nodes should have a high degree of correlation, will these tables be
sufficiently sparse to compress? A third direction is to apply our technique to time-
varying data. The error between nodes in different time steps would be expressed in

the same manner and could be encoded in a table.



Chapter 8

Conclusions and Future Work

In this dissertation, two major research directions have been introduced and discussed.
In part one, we showed that the tricubic B-spline provides an effective method
for producing smoother (C?) isosurface renderings. However, the resample time is
long and thus poses a significant hurdle to achieve interactivity. We propose two
different methods that might produce the same results. The first technique is to use
hardware-based texturing method for rendering isosurfaces and the proposed OpenGL
cubic interpolation of texture values. The second technique is to extend methods from
subdivision surfaces, where a surface is subdivided until it is sufficiently simple or flat.
We use the interpolating uniform cubic B-spline. Subdivision methods for one and
two dimensions are well understood, and are easily extended to three dimensions.

In part two, we developed the idea of multiresolution techniques for hardware-
based texture-based volume visualization and arbitrarily-oriented cutting planes. These
techniques will be significantly improved over the next few years as more sophisti-
cated graphics hardware will become available for PC platforms. Commodity PC

graphics cards have surpassed dedicated graphics systems (SGI InfiniteReality, for
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example) in terms of speed of basic operations, and will surpass general workstation
functionality with the next generation of PC graphics cards. For example, two recent
introductions, ATI’s Radeon and FireGL’s FireGL graphics cards support volumetric
textures. This means that all of the techniques introduced and discussed in part
two of this thesis, thus far only executable on SGI’s InfiniteReality engine, can be
implemented on PCs. At the time of this writing, these cards were available for $400
and $2000, respectively. The SGI Onyx2 InfiniteReality, machine upon which most
of this research was performed, costs an estimated $125K, while a similarly equipped
PC with a FireGL card costs an estimated $4K.

We believe feel that extending this work to progressive rendering and steering
will have the most impact in the next years. One of the original motivations for this
research was the fact that data set sizes are continuing to increase. At the same time,
fewer manufacturers are producing large-scale rendering systems, and centralized data
repositories require users to connect remotely to the data. Parallel computers still
offer a solution, but not for the general user for routine rendering. Thus, data explo-
ration must be done with desk-side workstations, both to fetch the data and to render
it. We believe that it is timely to investigate client-server mechanisms for rendering.

We propose a rendering environment where users, using commodity graphics
equipped PCs, connect remotely to a data repository to explore a large data set.
Super computers, connected locally to the data repository, can render higher quality
images and ship these images back to the user. People are already quite comfortable
with this relationship: they use word-processors but prefer the printed results. For
example, a medical doctor can visit a patient at home and can review or annotate a
recent MRI or CT scan of that patient. Later, the doctor can request a higher (or

full) resolution image of the same viewpoint. Similarly, an emergency room doctor
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should be able to see basic patient data when seeing the patient - not waiting for the

full CT scan to arrive from another hospital.
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