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Superconductivity in the presence of strong electron-phonon interactions and
frustrated charge order

Zi-Xiang Li1, Marvin L. Cohen1,2, and Dung-Hai Lee1,2∗
1 Department of Physics, University of California, Berkeley, CA 94720, USA.

2 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

We study the superconductivity of strongly coupled electron-phonon systems where the geometry
of the lattice frustrates the charge order by the sign-problem-free Quantum Monte Carlo(QMC)
method. The results suggest that with charge order frustrated, the superconductivity can benefit
from strong electron-phonon interaction in a wide range of coupling strengths.

Introduction.-Strong electron-phonon (e-ph) interac-
tions are often regarded as being beneficial for strong
Cooper pairing and high-temperature superconductivity
(SC). However, as the e-ph interaction gets strong
other electronic or lattice instabilities often set in to
preempt the high-temperature superconductivity. This
problem has been appreciated in the literature for a long
time [1–11]. It has received renewed interest recently,
and sign-problem-free quantum Monte Carlo (QMC)
simulation has been used to study it[12].

For the Holstein model on a square lattice, Ref.[12]
shows that as the e-ph interaction gets strong, the
Q = (π, π) charge density wave (CDW) susceptibility
surpasses that of SC. Moreover, when this happens, the
Migdal-Eliashberg (ME) theory fails. Interestingly, this
failure occurs when the control parameter of the ME
theory, namely, the ratio of the phonon energy to the
electron Fermi energy, is small. In addition, it is pointed
out that the CDW wavevector is unrelated to Fermi
surface nesting. (The electron hopping includes next
neighbors, hence the Fermi surface is not nested, even
at half-filling.) Physically when the e-ph interaction
becomes sufficiently strong, bipolarons form. Under
such conditions the ground state consists of bipolarons
occupying one of the sublattices so that each doubly
occupied site is surrounded by empty ones. In such an
arrangement electrons on the doubly occupied sites can
virtually hop to the neighboring sites to gain the kinetic
energy. This is similar to the super exchange mechanism
of repulsive systems.

Here we ask the question “what if the CDW is frus-
trated by the geometry of the lattice, will this frustration
allow SC to benefit from stronger e-ph interactions.” To
answer this question we study the Holstein model on
both square (un-frustrated) and triangular (frustrated)
lattices. Following Ref.[12] we quantify the strength
of the e-ph interaction by the dimensionless parameter
λ = α2ρ(EF )/K, where ρ(EF ) is the density of states at
the Fermi energy and α is the e-ph interaction parameter
(see. Eq. (1)). The main results summarized in the fol-
lowing are obtained for 0.2 ≤ λ ≤ 0.8 and ~ω/EF = 0.1
and 0.3 at different electron densities and temperatures.

(1) For the half-filled square lattice at T = 0 we find
no evidence for SC order for the lattice sizes we have
studied. On the other hand, we do find Q = (π, π) CDW
order for the entire range of λ we studied. (2) For a
half-filled triangular lattice at T = 0, on the other hand,
we find SC order in the entire range of λ. In contrast,
the CDW order (with Q = (±4π/3, 0)) only exists for
0.4 . λ ≤ 0.8 when ~ω/EF = 0.1, and for 0.6 . λ ≤ 0.8
when ~ω/EF = 0.3. In these more restricted ranges of λ,
SC and CDW coexist. (3) For the half-filled triangular
lattice with λ = 0.4 (where SC is strongest) we deter-
mine the Kosterlitz phase transition temperature to be
Tc ≈ t/10. (4) In the SC-CDW coexistence phase at,
e.g., ~ω/EF = 0.1, charge fluctuations are significantly
stronger on one sublattice of the tri-partite triangular
lattice (see discussion below). Moreover, the SC order
parameter is the strongest on this sublattice. Through
these sites SC can survive at strong e-ph coupling even
after the CDW order has set in. (5) At half filling
a single-particle gap exists in the non-SC phase for
both square and triangular lattices. (6) For triangular
and square lattices doped away from half filling we
find the low temperature CDW/SC susceptibilities are
suppressed/enhanced relative to those at half filling.

The results summarized above make the case that the
frustration of CDW allows SC to benefit from stronger
e-ph coupling without being preempted by the charge
order.

Before discussing the details we present a physical
picture which enables one to understand the above
results. When λ becomes sufficiently strong bipolarons
form. In the charge ordered phase the bipolarons are
localized. For the square lattice, which is bipartite,
the bipolarons localize on one of the sublattices so
that virtual hopping can lower the kinetic energy. For
the triangular lattice, however, such an arrangement
is impossible. This is the same as the frustration
encountered in the antiferromagnetic Ising model on a
triangular lattice. This obstruction toward charge order
benefits SC. To understand the coexistence phase we
note that the ground state of the AF Ising model is
macroscopically degnerate (exp(cN) ((c ∼ O(1))) spin
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FIG. 1. (a) A schematic figure of the
√
3×

√
3 CDW ordered

state in the strong e-ph coupling limit on triangular lattice.
The ordering wavevectors are (±4π/3, 0). The black circles
represent the sites with ⟨ni⟩ > 1 and the white circles rep-
resent sites with ⟨ni⟩ < 1. The gray circles stand for sites
where large charge fluctuations and ⟨ni⟩ ≈ 1. (b) The CDW
susceptibility at different momenta for the triangular lattice,
where ~ω/EF is set to 0.3 and the temperature is set to t/16.
Here K = (4π/3, 0), and M = (0, 2π/

√
3) and K + δk is a

momentum closest to K on a lattice with linear dimension
L = 12.

patterns have the same energy)[13]. Moreover, it has
been shown that out of these degenerate spin patterns,
a class of

√
3 ×

√
3 spin configurations (characterized

by Q = (± 4π
3 , 0) wavevectors) are stabilized at low

temperatures due to an “order by disorder” mechanism
[14–20]. In the present problem we expect the analogous
CDW pattern, with Sz = +1 → double occupancy
and Sz = −1 → single occupancy (see Fig. 1(a)),
to be stabilized by either thermal or the quantum
fluctuations (introduced by the hopping of electrons).
This expectation is supported by the simulation result
– the strongest CDW susceptibility is associated with
wavevector (±4π

3 , 0) as shown in Fig. 1(b). The same
order by disorder mechanism predicts charge fluctuation
to be significantly stronger on one of the three

√
3×

√
3

sublattices. Each site in this sublattice is surrounded by
a hexagon of sites where the charge density alternates
between ⟨ni⟩ > 1 and ⟨ni⟩ < 1. These sites are anal-
ogous to the “flippable sites” in the entropy-stabilized√
3 ×

√
3 pattern of the antiferromagnetic Ising model

(spins on the flippable sites are surrounded by alter-
nating spin ups and spin downs, hence they feel no
internal field). Through these large charge fluctuation
sites, SC can survive even after the CDW order has set in.

The model
In the following discussions we consider the Holstein
model defined on both square and triangular lattices
H = He +Hp +Hep where

He = −
∑
⟨ij⟩,σ

tij(ψ
†
i,σψi,σ + h.c)− µ

∑
i

n̂i,σ

Hp =
∑
i

(
P̂ 2
i

2M
+
K

2
X̂2

i ); Hep = α
∑
i

n̂iX̂i (1)

Here, ψi,σ annihilates an electron with spin polarization
σ on lattice site i, µ is the chemical potential, and n̂i is
the electron number operator associated with site i. For
the triangular lattice we set the hopping integrals tij to 1
between nearest neighbors. For the square lattice we set
the nearest-neightbor hopping integral to 1 and second
neighbor hopping integral to−0.2 to avoid a nested Fermi
surface at half-filling. In the rest of the paper we use t to
denote the nearest neighbor hopping matrix element for
both triangular and square lattices. Hp describes a dis-

persionless Einstein phonon with frequency ω =
√
K/M ,

where X̂i is the phonon displacement operator and P̂i is
its conjugate momentum. Hep describes the e-ph cou-
pling with α being the coupling constant. As mentioned
earlier, the e-ph coupling strength is characterized using
the dimensionless parameter λ = α2ρ(EF )/K. Moreover
we set ~ω/EF to be either 0.1 or 0.3 in the QMC studies.

Due to the presence of time reversal symmetry and
particle number conservation in the electronic part
of the action for arbitrary phonon configurations the
partition function of Eq. (1) is free of the fermion
minus sign problem where it is subjected to determinant
QMC simulation[21–27]. In the literature many QMC
simulations have been applied to the Holstein model on
non-frustrated lattices[12, 28–37]. Here the introduction
of lattice frustration is a new aspect. We preform zero
and non-zero temperature QMC simulations. Due to
the absence of the sign problem our simulation can be
carried out at any temperature for large system sizes.
The details of the QMC simulations can be found in the
Supplementary Materials.

Zero-temperature and half-filling
I. The phase diagram
We employ projector QMC to study the ground state
of Eq. (1) for ~ω/EF = 0.1, 0.3 and 0.2 ≤ λ ≤ 0.8 at
zero temperature. Through a finite-size scaling analysis
for systems with linear dimension L = 6, 9, 12, 15 (the
details can be found in the supplementary materials)
we obtain the zero-temperature phase diagrams in the
specified range of λ as shown in Fig. 2(a),(b). For
the triangular lattice (Fig. 2(a)) SC long-range order
exists in the entire range of λ we studied. Moreover,
this is true for both ~ω/EF = 0.1 and 0.3. However,
for ~ω/EF = 0.1 CDW sets in to coexist with SC
for 0.4 . λ ≤ 0.8. For ~ω/EF = 0.3, CDW order is
weakened and but it still sets in to coexist with SC for
0.6 . λ ≤ 0.8. The CDW ordering wavevectors are
Q = (±4π/3, 0) and a schematic figure of it is given in
Fig. 1(a). In contrast, for the square lattice there is no
SC order (at least within the lattice sizes we studied.)
Instead we find CDW order in the entire λ range we
studied (see Fig. 2(b)). The ordering wavevector is
Q = (π, π). Note that our phase diagram excludes
λ < 0.2. This is because for small λ, weak SC or CDW
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FIG. 2. (a) The zero-temperature phase diagram of the
Holstein model in the e-ph coupling range 0.2 ≤ λ ≤ 0.8 and
~ω/EF = 0.1, 0.3 for the triangular lattice. For both values
of ~ω/EF the ground state possesses SC order in the entire
range of λ. However, for ~ω/EF = 0.1 the CDW order sets
in to coexist with SC for 0.4 . λ ≤ 0.8. For ~ω/EF = 0.3
the CDW sets in for 0.6 . λ ≤ 0.8. (b) The zero temperature
phase diagram for the square lattice with ~ω/EF = 0.1, 0.3
and 0.2 ≤ λ ≤ 0.8. Here we only find the Q = (π, π) CDW
order. (c) The RG invariant ratio, RSC(L), for the SC order
at ~ω/EF = 0.1 on half-filled triangular lattice. The result
indicates SC long-range order. (d) The RG invariant ratio,
RCDW (L), for the CDW order at ~ω/EF = 0.1 on half-filled
triangular lattice. The result is indicative of CDW disorder-
order phase transition at λ ≈ 0.42.

orders can be suppressed by the non-zero energy gap
caused by the finite lattice size, and hence prevent us
from drawing conclusions in the thermodynamic limit.
However, we do expect the presence of SC order in the
thermodynamic limit due to the standard argument that
SC is the generic instability for Fermi surface possessing
time reversal symmetry. Because the bandstructure does
not possess Fermi surface nesting there is no CDW insta-
bility. In Fig. 2(c) and (d) we present the “RG-invariant
ratio” R = S(Q)/S(Q + δq) as a function of system
size L for the SC and CDW orders. Here S(Q) is the
Fourier transform of the SC/CDW correlation functions,
and Q = (0, 0) for SC, and Q = (π, π) or (±3π/4, 0) for
the CDW on the square and triangular lattices. δq is
a small wavevector introduced to enable a comparison
between the correlation function at the expected order-
ing wavevector and a wavevector nearby. Long-range
order implies the divergence of R as L→ ∞, while short
range order means R → 1. The results clearly support
the phase diagram presented in Fig. 2(a). Compare the
results for the square and triangular lattice we conclude
that frustration of the charge order enables the SC to
prevail for a much wider range of strong e-ph interaction.

FIG. 3. The local density (a) and its mean square fluctua-
tions (b) in the CDW-SC coexistent phase on the triangular
lattice at ~ω/EF = 0.1. The calculation is carried out at zero
temperature for L = 12 and λ = 0.5.

II. The coexistence phase
In order to gain more insight into the SC/CDW
coexistence phase, we turn on a tiny pinning poten-
tial consistent with the periodicity of the CDW. We
then compute the expectation value of local electron

density ni =
⟨
c†i ci

⟩
and its mean square fluctuation

∆n2i =
⟨
n̂2i

⟩
− ⟨n̂i⟩2. The details of the calculation can

be found in the supplementary materials. The result for
the electron density distribution is shown in Fig. 3(a),
which clearly reveals the

√
3 ×

√
3 periodicity. The

results for ∆n2 is presented in Fig. 3(b). It shows a
significantly stronger charge fluctuation on the lattice
sites with ⟨ni⟩ ≈ 1. In addition, we have also computed
the SC correlation function in the coexistence phase.
Remarkably, the correlation is significantly stronger
among the sites with larger charge fluctuation. These
results suggest the SC coherence within the CDW is
enabled by the “flippable” sites, which in turn is caused
by the geometric frustration.

Half-filling and non-zero temperatures
I. The SC and CDW susceptibilities
Next we fix the temperature and linear lattice size
to T = t/16 and L = 12 and compute the SC and
CDW susceptibilities as a function of λ ∈ [0.0, 0.5]. For
the triangular lattice, the CDW susceptibility peaks
at wavevector Q = (±4π/3, 0) as shown in Fig. 1(b).
Moreover as shown in Fig. 4(a) the SC susceptibility is
enhanced with increasing λ till λ ≈ 0.4. For larger λ
the CDW susceptibility rises which suppresses the SC
susceptibility. For comparison, we also plot the CDW
and SC susceptibility for the square lattice in Fig. 4(b).
Similar to the triangular lattice result, when CDW
ordering tendency gets stronger SC is suppressed. More-
over, upon taking the absolute scale of the susceptibility
into account, it is seen that the CDW/SC susceptibility
is strongly suppressed/enhanced on the triangular lattice.

II. The Kosterlitz-Thouless transition
We estimate the SC Kosterlitz-Thouless transition
temperature Tc through the well-known scaling behavior
of the SC susceptibility (χSC) at the KT transition:
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FIG. 4. (a) The SC and CDW susceptibilities on the tri-
angular lattice for ~ω/EF = 0.3. The wavevectors of the SC
and CDW are (0, 0) and (4π/3, 0), respectively. (b) The SC
and CDW susceptibilities for ~ω/EF = 0.3 on a square lattice.
The wavevectors of the SC/CDW are (0, 0) and (π, π), respec-
tively. The results in (a) and (b) are obtained at T = t/16
and L = 12. (c) The scaled SC susceptibility, χSCL

−2−ηc

where ηc = 0.25, for the triangular lattice. The e-ph cou-
pling is set to λ = 0.4. Here β is inverse temperature in unit
of 1/t. The crossing point indicates the Kosterlitz-Thouless
transition temperature: Tc ≈ t/10. (d) The same plot for the
square lattice, here λ is set to 0.2. The absence of the cross-
ing and the fact that χSCL

−2−ηc decreases with increasing
L implies that, if it exists, the SC transition temperature is
below the lowest temperature we calculated. The results in
(c) and (d) are obtained for L = 12 and ~ω/EF = 0.3.

χSC ∼ L2−η, where η = 0.25. Upon fixing λ = 0.4 for
the triangular lattice and λ = 0.2 for the square lattice
(these are the λ values at which the SC susceptibility
is the strongest at T = t/16) we plot L−2+ηχC as
a function of temperature in Fig. 4. The crossing of
the curves for different L marks the phase transition.
The result suggests that the transition temperature for
triangular lattice is Tc ≈ t/10 (Fig. 4(a)). In contrast,
for the square lattice no crossing is observed for T ≥ t/16
(Fig. 4(b)). When combined with the zero temperature
result this suggests the absence of SC. This comparison
again provides the evidence for frustration enhanced SC
on triangular lattice.

III. The pseudogap
Stimulated by the phenomenology of the cuprates, single-
particle gaps above the SC transition is of consider-
able interests. In the Holstein model, we expect a
single-particle gap to accompany the bipolaron forma-
tion. Moreover, because the hopping of bipolarons is sup-
pressed at large e-ph coupling, which results in a small
SC phase stiffness, we expect a pseudogap can persist
above the SC transition temperature Tc.

FIG. 5. (a) The evolution of single-particle gap, extracted
from the spectral function A(kF , ω), at the Fermi momentum
as a function of λ on a triangular lattice. (b) The same plot for
the square lattice. The results are obtained for ~ω/EF = 0.3,
L = 12 and T = t/8. This temperature is above the highest
SC transition temperature for both lattices.

We have computed the single-particle gap for both
triangular and square lattices at half-filling. It is
deduced from the imaginary-time single-particle Green’s
function through a stochastic analytical continuation
method[38]. The electron spectral function A(kF , w) at
different temperatures are included in the supplementary
materials. As shown in Fig. 5(a) and (b) the pseudogap
at T = t/8 (which is above the highest Tc for both
systems) undergoes a sharp upturn around the λ value
where the CDW susceptibility rises (which signifies
the bipolaron formation). In Fig. S5(d) we study the
pseudogap onset temperature for the hal-filled triangular
lattice. The result T ∗ ≈ 0.45t is considerably above the
Kosterlitz-Thouless transition temperature.

Away from half-filling, and the effect of decreas-
ing ~ω/EF

Doping away from half filling further suppress the CDW
ordering. In the supplementary materials we report the
result for 15% electron-doped triangular and square lat-
tices. Compared with the results at half-filling, SC/CDW
are obviously enhanced/suppressed.

Decreasing the phonon frequency makes the Holstein
oscillator more classical. Due to the diminished quantum
fluctuations, bipolarons are easier to form and localize.
As a result CDW correlation gets stronger and SC
becomes weaker.

Conclusion
We have studied the effects of frustrating charge order
at large electron-phonon coupling for the Holstein model
through sign-problem-free QMC simulation. We con-
clude that frustrating the charge order enables supercon-
ductivity to exist under much wider conditions in temper-
ature, electron-phonon coupling strength, and the ratio
between the phonon energy and the electron bandwidth.
In particular, frustrating the charge order enables a novel
coexistence phase where superconducting coherence de-
velops in the presence of charge order. In conclusion,
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frustrating the charge order formation is a powerful way
to enhance superconductivity!
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FIG. S1. (a) The SC and CDW susceptibilities for a doped (⟨n⟩ = 1.15) triangular lattice. (b) The SC and CDW susceptibilities
for a doped (⟨n⟩ = 1.15) square lattice. The results are obtained under the parameter choice ~ω/EF = 0.3, L = 12 and T = t/16.

SUPPLEMENTARY INFORMATION

I. Details of the Quantum Monte Carlo simulation

We apply both the finite-temperature and projector determinant QMC algorithm to study Eq. (1). In the finite-

temperature simulation, the grand canonical ensemble averages of observables are evaluated through:
⟨
Ô
⟩

=

Tr[Ôe−βĤ ]/Tr[e−βĤ ]. Here β is the inverse temperature. The values studied in this paper are 4/t ≤ β ≤ 16/t,
where t is electron’s nearest-neighor hopping matrix element. The imaginary time is discretized with the time step
∆τ = 0.1/t. We have checked that the results do not change upon further decrease of ∆τ .

In the projector QMC, we evaluate the ground-state expectation values of observables according to
⟨
Ô
⟩

=

⟨ψ0|O |ψ0⟩ /⟨ψ0 | ψ0⟩ = limθ→∞{⟨ψT | e−θHOe−θH | ψT ⟩/⟨ψT | e−2θH | ψT ⟩, where |ψT ⟩ is a trial state. In this
work θ is set to 30/t, and we have checked the convergence of the results against further increase of θ. Like the
finite-temperature calculations we have checked that the imaginary time step ∆τ = 0.1/t is sufficient to grantee the
convergence of the result.

Finally in both the zero and finite temperature calculations we carry out both single-site and global updates to
ensure the statistical independence in our Monte-Carlo sampling.

II. The non-zero temperature SC and CDW susceptibilities for doped triangular and square lattices

Intuitively, incommensurate filling factors resulting from doping should suppress the CDW order and enhance
the SC pairing. To check this intuition we calculate the SC and CDW susceptibilities for different values of λ at
temperature T = t/16 for lattices with linear dimension L = 12. The doping is chosen to be 15%, i.e., ⟨n̂⟩ = 1.15.
The results are shown in Fig. S1. Compared with half-filling, the CDW susceptibility is suppressed by doping, while
the SC susceptibility is enhanced. Moreover by comparing Fig. S1(a) and Fig. S1(b) we conclude that for a doped
system, lattice frustration remains very effective in suppressing/enhancing CDW/SC orders.

III. The non-zero temperature SC and CDW susceptibilities for a triangular lattice at ~ω/EF = 0.1.

Here the temperature is set to T = t/16 and linear system size is L = 12. In Fig. S2 we show the SC and CDW
susceptibilities as a function of λ. Qualitatively the behaviors of the SC and CDW susceptibilities are similar to
those for ~ω/EF = 0.3. However, it is notable that lower ~ω/EF enhances the CDW while suppress the SC ordering
tendencies.
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FIG. S2. The SC and CDW susceptibility on a triangular lattice for ~ω/EF = 0.1. The temperature is T = t/16 and the linear
system size L = 12.

IV. Finite-size scaling analysis of the zero temperature SC and CDW orders for triangular and square lattices

We perform projector QMC simulation to study the ground-state properties of the Holstein model on the tri-
angular lattice. The Fourier transforms of the SC and CDW correlation functions at momentum (0, 0) (SC) and
(4π/3, 0)(CDW) are shown in Fig. S3. When extrapolated to L = ∞ the finite values of these quantities indicates
long-range order. In panels (a) to (d) the data are fit by second-order polynomials in 1/L. At ~ω/EF = 0.1, the SC
order (panel(a)) is persistent in the entire range of λ (0.2 ≤ λ ≤ 0.8). However, the CDW structure factors (panel(b))
are extrapolated to zero or negative within error bar when λ < 0.4, while extrapolated to finite values when λ > 0.4.
The result suggests that the ground state is a coexistent phase of SC and

√
3 ×

√
3 CDW when e-ph coupling is

stronger than 0.4. For ~ω/EF = 0.3 the SC correlations (panel(c)) also extrapolate to a finite values in the entire
range of λ we studied. The CDW correlations (panel(d)), on the other hand, are extrapolated to finite values only
when λ > 0.6. To verify this result, we also calculated the RG-invariant ratio R = S(Q)/S(Q + δq) as a function of
lattice size, where Q is peak momentum of Fourier transformed correlation function, and δq is the minimum allowed
momentum quantum on lattice. R(L) has smaller finite-size scaling corrections than correlation functions, hence is a
powerful tool for investigating the thermal or quantum phase and phase transition on finite lattices. In the long-range
ordered phase, R(L) should diverge for L → ∞, while R(L) → 0 for L → ∞ in disordered phase. At the critical
point, R(L) collapses to a finite value for different L due to scaling invariance . We present the results of RG-invariant
ratio for ~ω/EF = 0.1 in Fig. 2(c),(d) and ~ω/EF = 0.3 in Fig. S3. The results are qualitatively consistent with the
conclusion drawn from the extrapolation of the correlation functions. For ~ω/EF = 0.1, we observe a quantum phase
transition from the SC phase to a SC and CDW coexistent phase around λ ≈ 0.42. For ~ω/EF = 0.3, the CDW order
coexists with SC when 0.6 . λ ≤ 0.8.

For comparison, we have also studied the Holstein model on square lattice. In this study we turn on a next nearest
neighbor hopping t2 = −0.2t1 to get rid of Fermi surface nesting. We perform finite-size scaling analysis of the SC and
CDW correlation functions for ~ω/EF = 0.1 and 0.3. For 0.2 ≤ λ ≤ 0.8. The results of RG invariant ratio, as plotted
in Fig. S4, clearly show that the ground state possesses CDW long-range order and no SC order for both ~ω/EF = 0.1
and 0.3. This result, combined with those for the triangular lattice, suggests that CDW order is strongly suppressed
by geometric frustration, which enables SC pairing to exist in a larger range of e-ph coupling strength.

V. Local density and density fluctuation distribution in SC and CDW coexistent phase

We compute the average of the charge density and its mean square fluctuation in the SC and CDW coexistent
phase. We employ projector QMC for λ = 0.5 and ~ω/EF 0.1. A tiny modulated chemical potential consistent with
CDW periodicity is added to pin the CDW to one of three degenerate CDW patterns. In particular, we applied a
modulated chemical potential with amplitude δ = 0.02 and have checked that such pinning potential do not affect
the intrinsic values of the SC and CDW correlation functions. The result of averaged charge density is shown in
Fig. 4(a), which clearly reveals the

√
3×

√
3 CDW pattern in Fig. 1(a). The charge density on the three sublattices

are (1+ a, 1, 1− a). More importantly, as shown in Fig. 4(b), the charge fluctuations are significantly stronger on the
sublattice where the averaged density is approximately unity. Since SC order requires charge fluctuation, we expect
that SC correlation to be bigger on such sulattice. This is verified by our unbiased QMC simulation.
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FIG. S3. (a) Finite size scaling analysis of the peak of the Fourier-transformed SC correlation function on a triangular lattice
for L = 6, 9, 12, 15 and ~ω/EF = 0.1. (b) Finite size scaling analysis for the peak of the CDW structure factors on a triangular
lattice for L = 6, 9, 12, 15 and ~ω/EF = 0.1. (c) The same as (a) for ~ω/EF = 0.3. (d) The same as (b) for ~ω/EF = 0.3. (e)
The RG invariant ratio RSC(L) on triangular lattice for ~ω/EF = 0.3. (f) The RSC(L) on triangular lattice for ~ω/EF = 0.3.
In this figure, the temperature is t/16 and linear system size L = 12.

FIG. S4. The RG invariant ratios RSC(L) and RCDW (L) for the square lattice. (a) The RSC(L) at ~ω/EF = 0.1, and (b) the
RSC(L) at ~ω/EF = 0.3. (c) The RCDW (L) at ~ω/EF = 0.1, and (d) the RCDW (L) at ~ω/EF = 0.3.

VI. Electron spectral function on triangular and square lattice

In order to investigate the existence of pseudogap in the Holstein model, we compute the electron spectral function
through stochastic analytical continuation of the imaginary-time Green’s function. We obtain the electron spectral
functions at different points on the Fermi surface. Here we present the spectral function A(kF , ω) at momentum
point where the pseudogap is the minimum. The results of A(kF , ω) for λ = 0.4 on triangular at temperatures
T = t/18, t/12, t/8 are shown in Fig. S5 where t/8 is above the Tc for triangular lattice (the square lattice does not
show a SC transition). We estimate the value of single-particle gap from the peaks of spectral function A(kF , ω). In
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FIG. S5. The electron spectral function A(kF , w) for λ = 0.4 on triangular lattice at various temperatures: (a) T= t/8; (b)
T=t/12; (c) T=t/16. The results clearly show that spectral gap survives above the SC transition temperature t/10. (d) The
single-particle gap on triangular lattice for λ = 0.4 as a function of temperature. The pseudogap onset temperature is estimated
to be T ∗ ≈ 0.45t.

Fig. 5, we present the values of spectral gap for several values of λ on triangular and square lattices. The pseudogap
above Tc undergos a sharp upturn around λ value where CDW susceptibility rises. We also present the single-particle
gap as a function of temperature for λ = 0.4 on triangular in Fig. S5(d). From this result we estimate the onset
temperature of pseudogap T ∗ ≈ 0.45t.




