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ABSTRACT OF THE DISSERTATION 

 

Statistical Profiling of Academic Oral English Proficiency  

based on an ITA Screening Test 

 

by 

 

Ick Kyu Choi 

Doctor of Philosophy in Applied Linguistics 

University of California, Los Angeles, 2013 

Professor Lyle F. Bachman, Chair 

 

At the University of California, Los Angeles, the Test of Oral Proficiency (TOP), an 

internally developed oral proficiency test, is administered to international teaching assistant (ITA) 

candidates to ensure an appropriate level of academic oral English proficiency. Test taker 

performances are rated live by two raters according to four subscales. While the subscale scores 

have potential as valuable feedback to major stakeholders, only a weighted average of the four 

subscale scores are currently reported and used. This study presents a way of extracting valuable 

information from the TOP subscale scores. In particular, it investigates an approach to obtaining 

oral English proficiency profiles based on the subscale score patterns of 960 TOP test takers.  

This study utilized item response theory and finite mixture modeling to investigate profiles of 

academic oral English proficiency in terms of the TOP subscales. A higher-order generalization 

of the graded response model was formulated to estimate subscale scores that accounted for 
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structural dependencies and rater effects in the observed TOP scores. The estimated scores were 

clustered using a multivariate normal mixture model to yield subscale score profiles. The mixture 

model suggested seven profile groups and classified the TOP test takers into the seven groups. 

The profile groups were then interpreted and labeled based on characteristic score patterns and 

linguistic background shared by group members. 

To achieve a thorough understanding of the resulting profiles, discourse features of test taker 

performances sampled from different profile groups were closely examined. A small corpus was 

constructed based on the sampled test taker performances and compared to a reference corpus to 

explore the overall pattern of TOP test takers’ language use. The comparison showed that the 

TOP test takers tended to use relatively fewer function words than speakers in the reference 

corpus. Characteristic features of each profile group’s discourse were investigated through an 

identification and examination of discourse organizing lexical bundles. The results suggested that 

the use of metadiscourse and textual reference bundles with an explicit past reference point 

might be related to test takers’ academic oral English proficiency. 
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Chapter 1: The Problem 

1.1 Background of the problem 

As the proportion of international graduate students has grown in many U.S. universities, the 

number of international teaching assistants (ITAs) has also increased and become quite large 

(Constantinides, 1987; Rounds, 1987). This phenomenon has brought about predominantly 

negative reactions from major stakeholders, including American-born undergraduates and their 

parents, faculty members, and even ITAs themselves (e.g., Fox & Geneva, 1994; Mestenhauser, 

1981; Nelson, 1991; Rubin & Smith, 1990).  

Central to this negative reception has been the concern about the adequacy of ITAs’ oral 

English proficiency (Bresnahan & Kim, 1993; Hendel et al., 1993; Hinofotis & Bailey, 1981). 

Communicating with undergraduate students is crucial to most, if not all, teaching assistant (TA) 

duties. Inadequate oral English proficiency could seriously undermine the quality of guidance 

and help undergraduate students may receive from their TAs. While it has been acknowledged 

that English oral proficiency should not be singled out as the sole concern for all ITAs (e.g., 

Bauer, 1991; Nelson, 1990; Thomas & Monoson, 1991), it still lies at the heart of the issues 

surrounding ITA (e.g., Gallego, 1990; Hendel et al., 1993; Hinofotis & Bailey, 1981). Thus, 

English oral proficiency poses a crucial barrier for ITAs trying to serve in their full capacity and 

for undergraduates seeking to receive the education that they deserve. 

Therefore, universities with a large number of ITAs have institutionalized procedures to 

assure that ITAs possess a minimum level English oral proficiency. Two most commonly 

adopted procedures include training and screening. English as a Second Language (ESL) classes 

have assumed the training role in many institutions (Bauer & Tanner, 1994), while mandatory 
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oral proficiency tests have been put into practice to screen out international graduate students 

who do not meet the required English proficiency standards (Briggs, 1994; Johncock, 1991). 

1.2 Statement of problem situation 

1.2.1 Lack of high-quality feedback from ITA testing  

In general, ESL classes last for a short period and the number of students per class is larger 

than ideal (e.g., Kaplan, 1989; Locastro, 2001; Warriner, 2007). Such limitations make it 

difficult for instructors to provide learners with individual feedback that would help them 

identify areas of weakness. It has been acknowledged that while detailed linguistic feedback is 

desirable for effective second/foreign language training (e.g., Davis & Tyler, 1994; Shohamy, 

1992), it is difficult for language learners to receive such feedback. In fact, the lack of high 

quality linguistic feedback has been one of the biggest challenges in ESL teaching (e.g., Vardi, 

2009). Furthermore, the lack of such feedback is not limited to ESL classrooms. Researchers 

have noticed that native speaker peers tend not to provide linguistic feedback to international 

graduate students even in a context in which one evaluates others’ oral presentations (Jacoby & 

McNamara, 1996). 

At the same time, information gathered from ITA screening tests is often not utilized as 

effectively as it could be. In particular, this information has rarely been employed as feedback. A 

number of universities have adopted an English oral proficiency test as a screening device. A 

prospective ITA is asked to produce a sample of spoken English which is then rated in several 

different aspects, such as grammatical accuracy and pronunciation, by multiple trained raters 

(Briggs, 1994). However, it is typical that only the final score, usually in the form of a weighted 

composite of different subscale scores, is considered in the pass-fail decision and reported to the 



 

3 
 

test takers. Other information including the subscale scores is disclosed to test takers who make 

an additional request for all their scores or is used only for internal review purposes. 

1.2.2 Test of Oral Proficiency: Setting of the test program under study 

At the University of California, Los Angeles (UCLA), an internally developed oral 

proficiency test, called the Test of Oral Proficiency (TOP), has been administered for the purpose 

of securing minimum oral English proficiency for ITAs since 2004. The TOP consists of two 

scored tasks: a syllabus presentation task and a simulated lecture task. Two trained 

undergraduate students are present as questioners in test rooms to ask questions of and to interact 

with test takers. Two trained raters are also present in the test rooms, but do not interact with test 

takers; they focus on rating and documenting evidence that could justify their ratings. Both tasks 

are rated live by the two raters according to four subscales: Pronunciation, Lexical Grammar, 

Rhetorical Organization, and Question Handling. A pass-fail decision is based on a weighted 

average of the four subscale scores, namely the total score. There are three decision categories: 

fail, provisional pass, and pass. In order for an international graduate student to start working as 

a TA without any restriction, he or she needs to pass the test. Test takers whose scores 

correspond to the provisional pass decision are allowed to work as a TA under the condition that 

they take a remedial ESL class of their choosing. When a test taker fails the test, he or she cannot 

start working as a TA until the TOP is re-taken, and the test taker (provisionally) passes the test.  

While the test yields scores for all four subscales, only the total score and the corresponding 

decision category are reported to test takers. Although it is possible for a test taker to receive the 

subscale score information by arranging a test review session with a TOP coordinator, the 

proportion of the test takers who opt to arrange a review session is less than 20 percent of all test 
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takers, indicating that most test takers are not benefiting from more information that is available 

to them. At the same time, practical concerns prohibit the coordinators from providing the review 

session to every individual test taker. For instance, while there are approximately 100 test takers 

per quarter, a typical review session takes from 30 minutes to one hour. Considering other duties 

of the coordinators, such as training raters and questioners, monitoring raters’ and questioners’ 

performances, reporting test results to test takers and their departments, and examining and 

monitoring psychometric qualities of the test, they would not have enough time to provide the 

review session to every test taker, should all test takers request the service.   

1.3 Purpose of the study 

It is unfortunate that the information resulting from the TOP has not been fully utilized to 

provide feedback to test takers on their academic oral proficiency. The TOP subscale scores 

capture different aspects of test takers’ academic oral proficiency, and are provided by trained 

raters with documented justification. These scores thus have considerable potential to provide 

valuable feedback to both TOP test takers and ESL instructors. However, most test takers are not 

currently benefiting from this additional information, and thus, it is desirable to have a means to 

provide the additional information to the TOP test takers. 

This study investigates a way of extracting information from the TOP subscale scores. In 

particular, it attempts to produce oral English proficiency profiles of TOP test takers based on 

their subscale score patterns. The score patterns will be clustered and interpreted to yield 

meaningful profiles of academic oral English proficiency. To achieve a thorough understanding 

of the resulting profiles, discourse features of test taker performances sampled from different 

profile groups will be examined and compared. 
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1.4 Research questions 

An investigation of TOP subscale score profiles can yield a broad picture of test takers’ 

performance in terms of the four subscales. The total score currently reported to the test takers 

does not provide any information for each subscale. The weighted-average method of computing 

the total score implies a compensatory scoring scheme; the same total score can be obtained from 

a number of different subscale score combinations. However, subscale score patterns might 

indicate that some test takers would benefit from more specific information to guide their 

learning. For example, when a test taker receives high scores for Pronunciation and Lexical 

Grammar, but low scores for Question Handling, it might be more beneficial for the test taker to 

focus on comprehension and interactive aspects of oral proficiency, rather than individual 

phonemes or grammar patterns. Therefore, the subscale score profile can provide useful 

information that is not available in the current score report.  

Another utilization of the subscale score profile involves an examination of discourse 

features in test taker performances sampled from different subscale score profiles groups. 

Characteristics of ITA language use have been studied based on a relatively small sample; 

comparisons between ITAs with different levels of oral proficiency in terms of their 

characteristic language use features have often relied upon holistic judgment of the participants’ 

proficiency or standardized test scores (e.g., Robinson, 1993; Tyler, 1992; Williams, 1992). The 

TOP subscale score profile will provide a more grounded sampling scheme for describing and 

comparing characteristic features of language use by ITAs from different levels of English oral 

proficiency. In addition, if distinct characteristics of language use features are observed across 
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different profile groups, those characteristics can also be provided as linguistic feedback to test 

takers. 

With a focus on the potential benefits of the TOP subscale score profile, this study attempts 

to obtain the profiles of the TOP test takers based on their subscale scores and to examine 

features of language use by the members of different profile groups. In particular, the following 

research questions will be investigated: 

1. What different subscale score profiles of academic English oral proficiency can be 

meaningfully produced by the TOP? 

2. What features of oral discourse characterize test takers who have different subscale score 

profiles? 

1.5 Assumptions 

This study assumes that the TOP subscale scores are valid indicators of academic oral 

English proficiency. That is, this study pursues the goal of creating subscale score profiles under 

the assumption that the four TOP subscales validly measure prospective ITAs’ English academic 

oral proficiency. It is beyond the scope of this study to investigate the quality of the four 

subscales as indicators of academic oral English proficiency of prospective ITAs. Furthermore, it 

will not be claimed that the four subscales form an exhaustive set of indicators of English 

academic oral proficiency.  

Another assumption this study makes is that the TOP test taker population consists of 

heterogeneous subpopulations that cannot be observed directly. While there are several 

background variables that divide the total test taker population into different groups, including 
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gender, first language (L1), and academic major, these background variables do not provide 

direct information about potentially different subscale score profiles of TOP test takers. This 

study assumes that a more direct grouping of TOP test takers in terms of the subscale score 

patterns cannot be made using the existing observed grouping variables, but can be estimated 

based upon the data.  

1.6 Delimitations of the study 

In essence, this study is an exploratory attempt to extract information from the available 

sources of the TOP data and use the extracted information to provide test takers with detailed 

feedback on their oral English proficiency. It is not claimed that the results of this study will 

generalize beyond the local setting of the TOP. In fact, any attempts to generalize to other oral 

tests or other populations of test takers based on this study, should such attempts be made, must 

be preceded by a rigorous cross-validation and thorough consideration of the context of both this 

study and the target domain of the generalization. 

This study does not involve an empirical investigation of the effectiveness of the resulting 

profiles as feedback. While it will be argued that the additional information included in the 

resulting profiles has a great potential to make effective feedback, whether it would function 

effectively as feedback for ITAs and their potential ESL instructors is beyond the scope of this 

study. The effectiveness of feedback depends on the interaction among a number of external 

variables, including learner attitudes and motivation (Rea-Dickins, 2007). Whether the profile 

information resulting from this study could be put into use or how effective this would be in 

practice are both valid and interesting research questions, but will not be pursued in this study.   
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Lastly, this study, in its use of statistical models, embraces the view that statistical models are 

never true (Box, 1979). Consequently, this study will make no attempt to confirm or prove a 

certain proposition based on the results. This study aims to provide useful and efficient 

descriptions and explanations of the available data with statistical models.  

1.7 Importance of the study 

1.7.1 Theoretical importance 

This study attempts to produce academic English oral proficiency profiles in terms of the 

TOP subscale scores. While the generalizability of the resulting profiles to other contexts will 

not be investigated, the profiles based on the local setting will contribute to an understanding of 

the multifaceted construct of academic oral proficiency. Through the exploration of different 

subscale score profiles, this study will present a structure of English academic oral proficiency 

emerged from a local test setting. Furthermore, the results of this study could provide insights 

into the relatively less studied discipline of academic spoken language (Bowles, 2006; Hyland, 

2002) through a close investigation of test taker performances on the TOP.  

This study examines the possibility of using finite mixture (FM) models for analyzing 

performance assessment data to provide detailed feedback to test takers, as an alternative to 

cognitive diagnostic assessment (CDA) models. While CDA models are widely used to yield 

detailed skill profiles of test takers, their rather strict identification conditions render them 

difficult to adopt in most performance assessment context. If FM models, which are the main 

statistical methodology of this study, turn out to be capable of producing meaningful profiles, 

such models will provide applied linguists and language testing specialists who hope to provide 
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detailed feedback based on language test data from a performance assessment with another 

useful methodological tool. 

1.7.2 Practical importance  

The resulting subscale score profiles can provide additional information beyond what is 

currently reported to test takers. The additional information can be readily put to use to facilitate 

teaching and learning of academic English and ITA training. The ability of the TOP to provide 

detailed feedback will bring about positive impact, and therefore add additional evidence for the 

use of the test.  

In addition, this study explores a means of extracting additional information based on the 

readily available results from the TOP administrations using statistical clustering techniques and 

discourse analytic methods. In other words, it does not necessitate additional data collection 

which often requires time and other resources. If successful, therefore, the methods employed in 

this study can be easily adopted to other contexts to yield similar profiles of test takers.  

Finally, this study will provide empirical evidence of how the Rhetorical Organization 

subscale has been interpreted by raters. Little empirical evidence has been available about the 

characteristic features of Rhetorical Organization. Therefore, raters have relied upon intuitions 

and expectations rather than empirical description of test taker practices in assigning Rhetorical 

Organization scores. A concrete description of linguistic characteristics of test taker 

performances, which will be produced as the result of this study, could help improve the quality 

of rubric description, rater training, and rating itself (Biber, Conrad, Reppen, Byrd, & Helt, 

2002).  
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Chapter 2: Review of Literature 

2.1 The ITA problem 

In the 1980’s, the increasing numbers of ITAs stimulated discussions about roles of, and 

expectations and misconceptions towards ITAs. Bailey (1982) recognized this complex issue and 

labeled it the “ITA problem”. Based on a comprehensive description of the difficulties ITAs 

faced and the discords among major stakeholders, she claimed that serious studies of the ITA 

problem should be conducted. Bailey’s suggestion resonated among researchers in the field of 

higher education and applied linguistics. A number of studies and presentations which focused 

on the ITA problem followed, resulting in a series of conferences and books (Bailey, Pialorsi, & 

Zukowski/Faust, 1984; Madden & Myers, 1994; Nyquist, Abbott, Wulff, & Sprague, 1991).  

Researchers have conceptualized oral English language proficiency required in the U.S. 

higher education context as a multi-componential construct (e.g., Bauer, 1991; Hoekje & 

Williams, 1992; Nelson, 1990; Robertson, 1983; Seo, 1989). Over the years, a list of components 

pointed out by researchers has grown; this includes American culture in general (Nelson, 1990; 

Thomas & Monoson, 1991), expected classroom behavior (Bauer, 1991; Thomas & Monoson, 

1993; Young, 1989), and teaching skills (Thomas & Monoson, 1993; Young, 1989). However, 

researchers in general have been in agreement that inadequate English oral proficiency lies at the 

heart of the ITA problem. English oral proficiency has been the primary concern in the ITA 

problem of researchers and practitioners alike (e.g., Ard, 1987; Bauer, 1991, 1992; Smith, Byrd, 

Nelson, Barret, & Constantinides, 1992), and the inadequacy of English oral proficiency has 

been found as one of the most crucial barriers for ITAs (Jacobs & Friedman, 1988; Williams, 

Barnes, Finger, & Ruffin, 1987).  
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While the specific roles of ITA vary across institutions and academic fields, early surveys of 

ITA roles have identified the core tasks ITAs are expected to perform: providing undergraduate 

students with teaching, guidance, and help (Fox & Geneva, 1994; Williams et al., 1987). 

Considering the central role of communication in such core tasks, concerns about ITAs’ 

inadequate oral English proficiency have arisen (e.g., Bailey, 1982, 1984; Feetham, 1988; 

Thomas & Monoson, 1993). If ITAs are incapable of providing undergraduate students with help 

and guidance due to inadequate oral English proficiency, ITAs should be trained to overcome the 

language hurdle (Smith et al., 1992; Thomas & Monoson, 1993). It has been argued that ITAs 

should be able to meet a minimum standard of English proficiency required to perform TA duties 

(Dick & Robinson, 1994; Jacobs & Friedman, 1988; Thomas & Monoson, 1991, 1993). Higher 

education institutions responded by establishing procedures that could address ITAs’ 

communication problem, the most popular of which include ITA training programs and ITA 

screening tests (e.g., Bauer & Tanner, 1994; Kaplan, 1989; Smith et al., 1992). 

2.2 ITA training and screening 

A large number of ITA training programs, often consisting of ESL classes for (prospective) 

ITAs, began with an emphasis on pronunciation, especially on accent reduction at the individual 

phoneme level (Bauer & Tanner, 1994; Kaplan, 1989; Smith et al., 1992). As researchers have 

realized that accent reduction at the segmental level alone could not guarantee satisfying results 

(e.g., Derwing, 2008), ITA training programs have also diversified to include other components 

of oral English proficiency. For example, Anderson-Hsieh (1990) has argued that explicit 

instructions about suprasegmental features should be included in ITA training programs. Other 

components of oral proficiency beyond pronunciation have also garnered interest, including 
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vocabulary use (e.g., Rubin, 1993; Taner, Selfe, & Wiegand, 1993; vom Saal, Miles, & McGraw, 

1988) and pragmatic knowledge (e.g., Davies, Tyler, & Koran, 2002; Jenkins, 1997), leading to a 

variety of aspects of oral English proficiency that have been added to the curriculum. 

Furthermore, ITA training programs have expanded to include non-linguistic components, such 

as American cultural knowledge (e.g., Althen, 1991) and familiarity with the daily lives of 

typical undergraduate students (e.g., Jia & Bergerson, 2008).  

However, several issues have been raised with regard to the effectiveness of ITA training 

programs. A critical issue has been that trainees are not given enough attention or practice time 

due to large class sizes (e.g., Green, Christopher, & Lam, 1997; Warriner, 2007). The duration of 

ITA training programs has also been pointed out as a potential problem. Researchers have 

emphasized that second language learning and development is a time-consuming process (e.g., 

Ellis, 1994; Gass & Selinker, 2001), while ESL programs often do not last longer than a semester 

or a quarter (Bauer & Tanner, 1994; Kaplan, 1989). This has yielded a side effect that has been 

noticed by several researchers. Specifically, some ITA training programs appear to have a 

tendency to teach ITAs what can be easily taught, rather than what should be taught (Halleck & 

Moder, 1995).  

In addition to the ITA training component, a number of universities have administered a 

screening test for prospective ITAs (Bauer & Tanner, 1994; Kaplan, 1989; Smith et al., 1992). 

Most early ITA screening tests took the form of a standardized English proficiency test, which 

sometimes also functioned as a gatekeeper for all incoming international students (e.g., Dunn & 

Constantinides, 1991; Johncock, 1991). However, researchers have argued that these 

standardized test kits might not suit the ITA screening purpose properly. It has been pointed out 
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that the standardized tests were not flexible enough to be optimized for each institution’s needs 

(e.g., Plakans & Abraham, 1990) and did not engage academic oral English proficiency of 

(prospective) ITAs to a desired degree (e.g., Bier & Friedman, 1982). As these drawbacks have 

been recognized, institutions have begun to develop their own ITA screening test (see, e.g., 

Briggs, 1994). These internally developed ITA tests often take the form of oral English 

proficiency test and involve a simulation of a lecture or classroom discussion (Bailey, 1985; 

Briggs, 1994; Plakans & Abraham, 1990). Surveys of the internally developed ITA tests have 

also shown that they have typically adopted scoring procedures that utilize multiple raters and 

analytic scoring methods (Bauer & Tanner, 1994; Johncock, 1991). Researchers who have 

surveyed ITA screening tests are generally in agreement that the tests have positively contributed 

to achieving minimum oral English proficiency of ITAs (Briggs, 1994; Johncock, 1991).  

However, several concerns have been raised about ITA screening tests including construct 

under-representation (e.g., Fox & Geneva, 1994; Thomas & Monoson, 1993; Plough, Briggs, & 

Bonn, 2010). In addition, results from ITA screening tests including analytic scores have rarely 

been put into use for the ITA training purpose. This is an unfortunate practice considering the 

high potential of the resulting information from ITA screening tests; the test results are typically 

obtained from trained raters under a highly focused situation (see, e.g., Kaplan, 1989; Smith et 

al., 1992). ITA screening tests provide an advantageous context in terms of generating rich 

information. This clear potential of ITA testing results has recently begun to attract the interests 

of researchers. For example, Schmidgall (2012a) described test takers’ experience with receiving 

feedback and their attitude towards receiving detailed feedback based on an ITA assessment, 

which turned out to be largely positive.  
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2.3 Profiles of ITAs’ English oral proficiency 

The idea of utilizing test results for improving learning is certainly not new. The formative 

assessment movement has arisen focusing on the very same idea. The main tenet of formative 

assessment centers on the idea that test results could, and perhaps should, function as feedback to 

improve learning (see, e.g., Black & Wiliam, 1998 for a comprehensive review). The increasing 

interest in diagnostic assessment (see, e.g., Bejar, 1984) is also closely related to the idea of 

utilizing test results to enhance learning processes. If the main objective of an assessment is to 

provide diagnostic information about test takers’ current mastery of skills, abilities or knowledge 

components, the assessment can be viewed as a diagnostic assessment (Bachman & Palmer, 

2010). The focus of diagnostic assessment has been identifying different profiles of skill mastery 

observed across different learners (Bejar, 1984). With the skill mastery information, the users of 

diagnostic assessment aim to provide more contextualized and beneficial feedback and input to 

learners. 

The important first step of extracting profile information from test results is to decide on the 

components of the profile. In the context of ITA screening tests, the decision could be made 

based upon theoretical and empirical models of second language oral proficiency in an academic 

context. Different models of second language oral proficiency exist (e.g., Bachman and Palmer, 

2010; Foster, Tonkyn, & Wigglesworth, 2000; Iwashita, Brown, McNamara, & O’Hagan, 2008; 

Poehner, 2008), based on different foci or perspectives, or sometimes reflecting different 

philosophical backgrounds. However, they all appear to agree on one issue: second language oral 

proficiency consists of multiple components. While not all of the suggested models explicitly 

discuss the relationships among multiple components of language proficiency, it is reasonable to 
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conjecture that different learners possess different profiles in terms of different language 

proficiency components. Anecdotal evidence of different profiles of language learners abounds; 

famous examples include Henry Kissinger and Joseph Conrad, who, despite their accented 

pronunciation, showed a mastery of the oral and written grammar of English, respectively. 

Indeed, different profiles of language learners have attracted the interests of a number of 

researchers (e.g., Gibbons, 1984; Kagan, 2005; Weissberg, 2000)  

Pronunciation has been one of the most popular research areas when it comes to different 

language learner profiles. Over the years, a number of studies have reported cases of language 

learners who were deemed proficient in many other aspects of target language including mastery 

of oral and written grammar, but had distinct accents and therefore suffered from compromised 

intelligibility (e.g., Han & Odlin, 2006; Oyama, 1976; Schwartz, 1997). Those pronunciation 

effects have typically been studied under the framework of fossilization or stabilization, as well 

as under the critical period hypothesis (see Han, 2004; Han & Odlin, 2006, for a review). 

Grammar has been another area which language learners have found difficult to master even 

after achieving proficiency in other aspects of the target language (e.g., Patkowsky, 1980). In 

particular, there has been intensive research about which areas of grammar are difficult to 

acquire for learners with a specific L1. Some researchers have argued that, based on the results 

from so-called “morpheme order” studies (e.g., Dulay & Burt, 1973, 1974, 1975), there exists a 

specific set of developmental stages, often defined in terms of the acquisition of specific 

morphological/syntactical elements, applicable to all learners of the same target language 

(Pienemann, 1998; Zobl & Liceras, 1994). However, this claim is not without criticism (see 

Doughty & Long, 2003; Ellis, 1994; Hudson, 1993, for a review). 
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While pronunciation and grammar have been the most productive research areas that focus 

on different components of second language oral proficiency, there are other areas that have 

attracted researchers’ attention. Highly relevant to the ITA context includes what Bachman and 

Palmer (2010) call textual knowledge, which has to do with “producing or comprehending the 

sequence of units of information in text” (p. 45). Researchers have found a strong positive 

relationship between the comprehensibility of academic lectures and the use of organization 

markers, lexical ties, and cohesiveness (e.g., Douglas & Myers, 1989; Flowerdrew & Tauroza, 

1995; Rounds, 1987; Tyler, 1992). The lack of proper organization in ITA speech could impede 

undergraduate students’ understanding of substantive materials (Duerksen, 1994; Tyler, 1992; 

Williams, 1994). Furthermore, the distinction between comprehension and production is also 

relevant to the ITA context. For example, one’s use of communication strategies could 

compensate for his lack of comprehension (Douglas & Myers, 1989). This discrepancy could be 

addressed by real-time communications such as the question and answer structure of classrooms. 

Indeed, studies have shown that ITAs could lack proper understanding of the questions, and that 

this could lead to misunderstanding undergraduates’ linguistic and non-linguistic signals, which 

would ultimately result in frustration for undergraduates (e.g., Chiang, 2009).  

Taken together, research investigating several different components of language proficiency 

strongly suggests that ITAs could possess different profiles of oral English proficiency in terms 

of pronunciation, grammar, organization, and question handling. Some ITAs could be regarded 

as proficient in grammar and organization but lacking intelligibility. Others might have proper 

organization in their speech but suffer from comprehension problems that could impede 

communication. These different profiles of ITAs, then, could play an important role in deciding 

how to improve their oral English proficiency. For example, if one is good in pronunciation but 
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not in organization, taking an ESL class focusing on phoneme distinctions in the target language 

would not be effective; on the other hand, if one’s heavy accent is the primary concern, learning 

about the target culture would not be the best use of his or her time. When it comes to ITAs, the 

efficiency of instruction and training is an important concern given the already heavy burden a 

graduate student carries (Hoekje & Williams, 1992; Sequeira & Costantino, 1989). Therefore, 

specifying different profiles of language proficiency would improve the effectiveness and 

efficiency of language learning and teaching.  

2.4 Statistical approaches to obtain profile information 

2.4.1 Cognitive diagnostic assessment models 

Acknowledging the potential of language proficiency profile information for enhancing 

language learning, numerous researchers have made attempts to extract skill profiles from test 

results (e.g., Jang, 2009; Kim, 2011; Lesaux & Kieffer, 2010). In this regard, the formative and 

diagnostic assessment movements have provided a substantive framework to utilize test results 

for learning purposes (e.g., Black, Harrison, Lee, Marshall, & Wiliam, 2003; Sadler, 1989). On 

the other hand, psychometric models have provided methodological tools to extract language 

skill profiles based on information obtained from test administrations. A popular psychometric 

model for this approach is a class of restricted latent class models, often called cognitive 

diagnostic assessment (CDA) models (Leighton & Griel, 2007). Combining a content analysis of 

test items and an investigation of test takers’ response patterns, CDA models yield a set of skill 

profiles that provides probabilistic judgments regarding the mastery of each skill measured by 

the test.  
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The goal of the content analysis stage of CDA is to yield a zero-one matrix called a Q matrix 

(Tatstuoka, 1983), which specifies the relationships between test items and skills. The item-skill 

mapping in the Q matrix functions as the model specification which informs the subsequent 

decomposition of test takers’ response patterns to estimate item parameters and yield each test 

taker’s skill mastery information. A variety of CDA models have been proposed depending on 

specific model parameterizations and suggested response processes (DiBello, Roussos, & Stout, 

2007). Detailed discussions of individual CDA models are beyond the scope of this study. Rupp 

and Templin (2008) give a comprehensive description and review of popular CDA models. 

Comprehensive coverage of CDA models can also be found in DiBello et al. (2007) and 

Leighton and Griel (2007). In the language testing context, a special issue of Language 

Assessment Quarterly (Lee & Sawaki, 2009) covered CDA extensively, focusing on the theory 

and use of CDA models in the second language assessment context. Overall, CDA models have 

provided useful methodological tools for language testing researchers and practitioners who aim 

to yield skill profile information based on test results. 

However, CDA models are not without limitations. The most relevant limitation in the 

context of this study involves the models’ identification condition. In particular, CDA models 

require that each skill has at least one item that measures only that specific skill in order to 

empirically distinguish different skills (Rupp & Templin, 2008). This identification condition 

would not pose much difficulty when a test consists of a number of items but is designed to 

engage a relatively small number of skills. For example, if a test contains 50 items and involves 

five skills, the above identification condition could easily be met. However, the identification 

condition is not normally satisfied in most performance assessment situations. In general, 

language performance assessments consist of a relatively small number of tasks (or items) that 
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are supposed to engage a number of different skills (Luoma, 2004; Wiegle, 2002). In addition, 

skills required for each item are often difficult to specify, for there could exist different 

combinations of different skills that enable one to perform well on an item. Under these 

circumstances, it becomes extremely difficult to satisfy the identification condition of CDA 

models. The paucity of applications of CDA models in the performance assessment context can 

be accounted for, at least partly, by this identification condition.   

Another limitation involves CDA models’ heavy reliance upon content analyses. CDA 

models yield model-based estimates and skill profiles. However, if the model is not properly 

specified, the validity of the resulting estimates and profiles would be compromised. When a test 

is originally designed for diagnostic purposes, that is, when a test is developed under the CDA 

framework, the skills involved in the test can be identified in a straightforward manner. However, 

not all applications of CDA have been based upon tests designed to yield diagnostic information; 

CDA models have been adopted to investigate existing tests, which were often not developed for 

diagnostic purposes (e.g., Jang, 2005; Kim, 2011). As a result, researchers have relied upon 

reverse-engineered content analyses to create the Q matrix. Under those circumstances, at least 

partial misspecifications of the model are suspected, and results should be interpreted with 

caution. In general, researchers advise against the use of CDA models for making high-stakes 

diagnostic decisions based on a test not developed for diagnostic purposes. (Rupp & Templin, 

2008). 

2.4.2 Finite mixture models 

CDA models belong to a restrictive class of latent class models in the sense that the model is 

specified based on the Q matrix (Rupp & Templin, 2008). A more general family of models 
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which subsumes latent class models are finite mixture (FM) models. FM models assume that the 

data under study consist of heterogeneous groups from different population distributions 

(McLachlan & Peel, 2000). The main goal of FM models is to estimate the proportion of each 

group (called the mixing proportion) in the data as well as parameters of each group’s population 

distribution (called the component distribution). For example, if one suspects that the data 

consist of a mixture of two normal distributions with different means and variances, FM models 

can be applied to estimate the mean and variance for each component distribution and the mixing 

proportion of the two distributions in the data. Therefore, free parameters of general FM models 

include the parameters of each component distribution and the mixing proportion of each 

component distribution, with an obvious restriction that the mixing proportions should add up to 

unity.  

FM models share similar objectives with traditional cluster analysis techniques when the 

main goal is to decompose the data into clusters of homogeneous subgroups.  In this light, FM 

models can be viewed as a type of cluster analysis (Everitt, Landau, Leese, & Stahl, 2011). A 

crucial feature of FM models that distinguishes them from traditional cluster analysis models is 

their parametric nature; FM models assume that each component distribution follows a known 

mathematical distribution, which puts them in the category of parametric models. On the other 

hand, traditional cluster analysis techniques often do not impose a parametric form for each 

cluster and rely upon distance functions to identify clusters (For a detailed account of clustering 

techniques, see Everitt et al., 2011).   

The idea of finding heterogeneous distributions in data has been around for a long time. A 

well-known early application of a FM model goes back more than a century to Pearson (1894). 
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Using the method of moments, Pearson had to perform daunting computations to obtain his 

solution. For many years, this computational burden had prevented researchers from employing 

FM models (McLachlan & Peel, 2000). The introduction of computers and competent algorithms 

such as expectation-maximization (EM) (Dempster, Laird, & Rubin, 1977) and Markov Chain 

Monte Carlo (MCMC), largely freed researchers from the heavy computational burden related to 

FM models (McLachlan & Peel, 2000). Currently, FM models are widely used in a variety of 

disciplines including medicine (e.g., Schlattmann, 2009), marketing (e.g., Wedel & Desarbo, 

2002), and political science (e.g., Hill & Kiresi, 2001).  

It is possible to expand FM models by imposing further structures to component distributions. 

A mixture of generalized linear models has been popular in social science applications 

(McLachlan & Peel, 2000). Psychometricians have actively implemented factor analysis models 

into mixture component distributions. Yung (1997) has suggested a mixture of confirmatory 

factor analysis models, and Muthén (2001) has argued that FM modeling is a potent 

methodology to model atypical distributions and to deal with cases in which one has substantive 

reasons to believe that the data consist of heterogeneous groups. Muthén and Asparouhov (2006) 

have successfully applied a mixture of factor analysis models to address addictive behaviors. 

Another productive area of FM models has been a mixture of IRT models. Rost (1997) has 

shown that the mixture of logistic regressions can be easily estimated, and Cho, Cohen and Kim 

(2013) present how the model parameters could be estimated using a full Bayesian approach via 

MCMC. However, to date, few applications of FM models in applied linguistics or language 

testing research exist, which is unfortunate considering that profiles of language learners have 

been the interest of a number of applied linguistics and language testing researchers. 
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2.5 Corpus linguistics and analysis of ITA oral proficiency 

2.5.1 Real language use and corpus linguistics 

Corpus linguistics is based on the notion that intuitions about language use, which has been 

the main instrument of traditional theoretical linguistics, is not free from fallacy (Biber, Conrad, 

& Reppen, 1998). Everyone has a unique style of language use to a certain degree (Halliday, 

1975) and these idiosyncrasies could affect how one views and regards language use. 

Consequently, studies of language use based solely on intuition might lead to inaccurate 

interpretations and conclusions. This limitation can be mitigated by investigating a large 

collection of instances of language use (i.e., corpus). For many years, technical problems and 

practicality issues were the main obstacles for building corpora that could be used for research 

purposes. However, powerful computers and cheap storage have diminished the hurdles these 

obstacles presented. With the advent of large corpora, corpus linguistics has been widely utilized 

by applied linguists who want to construct or test hypotheses involving real language use (Biber 

et al., 1998). Corpus linguistics has provided empirical evidence for claims about language use 

and has become a very productive tool. 

An important advantage of corpus linguistics involves the capability of handling real 

language use data at various levels (McEnery, Xiao, & Tono, 2006; Stubbs, 1996). Corpus 

linguistics provides a systematic way of analyzing language use data in a quantitative way. 

Qualitative linguistic methodologies such as discourse analysis and conversation analysis have 

been invaluable tools for many linguists who need to investigate rich data obtained from a 

relatively small sample of participants. However, these qualitative methods are of limited use in 

aggregating individual evidence to capture important patterns underlying the phenomena under 
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study at a large scale. Corpus linguistics provides researchers with a way of aggregating 

qualitative descriptions to allow more general claims (Biber et al., 1998; McEnery et al., 2006). 

However, corpus linguistics is not limited to a large scale analysis; small scale corpora designed 

to address specific research objectives have been developed and provided promising results (e.g., 

Aguilar, 2004; Farr, 2003; Rounds, 1987). While the use of a small corpus inevitably constrains 

generalizability, such a corpus can still be highly useful in finding patterns that are not clear at 

the individual sentence or text level. 

2.5.2 Spoken and learner corpora 

Most corpus studies over the last several decades have focused on written texts (Biber, 

Conrad, Reppen, Byrd, & Helt, 2002), which, at least partly, can be explained by the limited 

availability of oral language corpora. Building an oral language corpus is clearly more difficult 

than building a corpus consisting of texts. Recently, however, several corpora consisting of oral 

language data have been compiled (e.g., Michigan Corpus of Academic Spoken English; Corpus 

of Contemporary American English). Those oral language corpora have already begun to attract 

the interest of applied linguists who have long desired to analyze spoken language use (e.g., 

Csomay, 2007; Fortanet, 2004). Analyses of oral language corpora have provided important 

observations about spoken language use (e.g., Leech, 2002) as well as about differences between 

spoken and written language use (e.g., Biber, 1986; Leech, Rayson, & Wilson, 2001).  

Another area of research to which corpus linguistics has recently made an influential 

contribution is the target language use of nonnative speakers (NNS). In the early days of corpus 

linguistics, the majority of available corpora consisted of language use data obtained from native 

speakers (NS) (Granger, 2003a). NS corpora could be helpful for language learning purposes in 
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an indirect fashion; for example, they could help develop teaching materials, provide grounded 

descriptions of language use, and validate grammatical rules. However, researchers have pointed 

out that direct investigations of learner language use could benefit from corpora consisting of 

learner language data (Gabrielatos, 2005; Granger, 2003b; Nesselhauf, 2004). Several corpora 

containing learners’ target language use, sometimes exclusively, have recently been made 

available (see Pravec, 2002, for a survey of learner corpora). These learner corpora have been 

effective in understanding how learners use the target language and whether and how their 

language use is different from that of NSs (e.g., Gabrielatos, 2005; Granger, 2003a, 2003b).  

2.5.3 Analysis of ITA language use based on corpus linguistics 

Corpus linguistics has been an invaluable tool in studying language use in the academic 

context. A number of researchers have investigated characteristics of academic language use 

based on academic corpora (see, e.g., Biber et al., 2002; Csomay, 2007; Hyland & Tse, 2004; 

Reppen, 2004). ITA language use is no exception; analyses based on ITA spoken corpora have 

been utilized to examine differences between language use of ITAs and native speaker TAs 

(Reinhardt, 2010) and to describe discourse features of ITA language use (Liao, 2009), to name a 

few. However, considering that ITA corpora consist of spoken language obtained from learners 

of English, both of which are relatively new to corpus studies, there still remain areas of research 

that could benefit from more such studies. The above corpus-based studies of ITA language use 

have shown that corpora could be very useful in studying ITA language use. Nevertheless, they 

have been relatively narrow in terms of their research focus in that they have investigated a 

specific, sometimes isolated feature of ITA language use. At the other extreme, there have been 

very broad and general approaches such as Biber’s (1998) multidimensional analysis. Using a set 
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of dimensions identified from an exploratory factor analysis based on a large corpus, Biber and 

his colleagues analyzed other corpora to investigate empirical differences across different 

discourse genres (e.g., Biber et al., 2002). While this type of approach could provide helpful 

insights at a very general level, its unit of analysis might not be appropriate when there are 

potentially heterogeneous subgroups within the same discourse genre, which is the case of this 

study.  

In order to properly address the language use of prospective ITAs consisting of 

heterogeneous subgroups, it is desirable to base the investigation upon a representative set of 

characteristic language use in each subgroup. Furthermore, using an extensive set of discourse 

features at once could lead to an overly complex picture of ITA language use, leading to a model 

that is not generalizable. There have been few studies that investigate the language use in the 

ITA testing context. A systematic description of ITA test taker performances in terms of 

characteristic discourse features could lead to a better understanding of ITA language use. 

2.5.4 Lexical bundles and their discourse organizing functions 

Prefabricated multiword expressions, often called lexical bundles, have attracted interests of 

applied linguists as an essential feature of language use (e.g., DeCarrico & Nattinger, 1988; 

Nattinger & DeCarrico, 1992). The recent advent of large corpora has led to empirical findings 

that attest to the frequent occurrences of such lexical bundles in both oral and written language 

(e.g., Biber, Johansson, Leech, Conrad, & Finegan, 1999). Lexical bundles have been studied 

under many different names, including lexical phrases (e.g., Nattinger & DeCarriro, 1992) and 

formulaic language (e.g., Ellis, Simpson-Vlach, & Maynard, 2008), each of which is associated 

with a slightly different definition. However, despite such differences, they all share a common 
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core, which can be defined as “sequences of word forms that commonly go together in natural 

discourse” (Biber et al., 1999, p. 990). 

Even before large corpora became widely available to enhance the identification of lexical 

bundles in various real language use settings, researchers acknowledged their important role in 

organizing academic discourse, especially in academic contexts. Chaudron and Richards (1986) 

investigated the impact of macro-organizers, which are essentially lexical bundles that signal 

important marks of given discourse, on the comprehensibility of a lecture. The availability of a 

large quantity of lexical bundles identified in academic corpora has led to a systematic synthesis 

of pragmatic functions served by lexical bundles. Biber, Conrad, and Cortes (2004) present a 

functional taxonomy of lexical bundles in a university setting and classify lexical bundles into 

three categories: stance expressions, referential expressions, and discourse organizers. Their 

classification results show that discourse organizers are most frequently observed in lectures. 

Nesi and Basturkmen (2009) use Biber et al.’s (2004) taxonomy to investigate how the frequent 

use of discourse organizing lexical bundles in university lectures contributes to overall cohesion. 

Nesi and Basturkmen suggest that discourse organizing lexical bundles in academic lectures 

serve as a facilitating mechanism that reduces the information processing loads of students.  

Simpson-Vlach and Ellis (2010) extend Biber et al.’s (2004) taxonomy based on the findings 

from a large academic corpus. In Simpson-Vlach and Ellis’ categorization, the function of 

discourse organizers can be further divided into four subcategories: metadiscourse and textual 

reference, topic introduction and focus, topic elaboration, and discourse markers. Out of the four 

subgroups, they find lexical bundles that function as metadiscourse and textual references (MTR) 

are genre-specific, in that frequently occurring MTR bundles in lectures do not overlap with 
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frequently occurring MTR bundles in textbooks. Considering this result, MTR bundles in 

lectures can be regarded as having a unique position among lexical bundles in that they 

constitute a characteristic feature of academic oral language use as a part of discourse organizers 

while retaining formal distinctiveness from their counterparts that normally occur in written texts. 

This unique position of MTR bundles in academic lectures makes them a natural contender for 

an investigation of the relationship between discourse organization and academic oral English 

proficiency of NNS lecturers.      
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Chapter 3: Methodology 

This chapter discusses analytic procedures employed to address the research questions. It 

begins with an overview of the analysis plan, which describes the combination of different 

analytic approaches used for each research question. It then describes the dataset that was 

analyzed, including the participants-test takers and raters-who generated the data. Finally, the 

analytic procedures that were used for the first and the second research questions are described in 

detail.  

3.1 Overview 

To answer the research questions raised in the first chapter, this study utilized item response 

theory (IRT)-based score estimation, statistical clustering techniques, and discourse/corpus 

analytic methods. Major sources of data included the TOP subscale scores and videotaped 

performance of a subset of the test takers who were selected as representative samples of each 

subscale score profile group. The sampling scheme and the detailed description of the data for 

each stage are presented in the following sections.  

This study consisted of two data analysis stages, each of which corresponds to one of the two 

research questions. In the first stage, the TOP subscale scores of the test takers were estimated 

using an IRT model. This estimation process accounted for structural dependency and rater 

effects contained within the observed rater scores. The resulting estimates will be referred to as 

the model-based subscale scores in the remainder of this study. Finite mixture (FM) models were 

fitted to the model-based subscale scores to explore groups of TOP test takers who exhibited 

homogeneous subscale score profiles. Based on the FM modeling result, each test taker was 
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assigned a profile group membership. The resulting profile groups were interpreted and labeled 

based on the shared score patterns of the group members.   

The second stage focused on features of language use that characterize the test performances 

of the TOP test takers who belong to different score profile groups. Videotaped performances of 

a sample of test takers from each of the profile groups identified in the FM modeling were 

transcribed and analyzed to examine characteristic language use features. The transcripts 

constituted a small oral corpus of the test taker performances. The resulting corpus was then 

compared to a reference corpus to examine salient features in the overall language use of the 

TOP test takers. In addition, the use of discourse organizing lexical bundles in the corpus was 

investigated to explore relationships between discourse organizers and subscale score profiles. 

3.2 Stage 1: TOP subscale score profiles 

3.2.1 Objectives 

The goal of the subscale score profile analysis was threefold. First and foremost, it aimed to 

find distinct groups of TOP test takers who share similar patterns of TOP subscale scores. Based 

on the resulting groups, it attempted to develop a suitable interpretation and label for each group 

and to assign group membership probabilities to the test takers. The resulting groups were also to 

be used as grouping variables for the second analysis stage. 

3.2.2 Data 

The data analyzed in this stage included the observed TOP subscale scores and the model-

based subscale scores. The latter was estimated using an IRT model that can account for 

structural dependencies and bias arising from the TOP scoring procedure involving multiple 
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tasks and raters. The IRT model utilized in this stage will be described in detail in the next 

section. All subscale scores share the same range, from one to four. Since there are two raters 

who give a score for each of the four subscales for each of the two tasks, each test taker receives 

a total of 16 (4 subscales ൈ 2 tasks ൈ 2 raters) scores. However, the 16 scores do not provide 

independent information; a test taker receives four scores (2 tasks ൈ 2 raters) per each subscale. 

In this study, the four scores within a subscale were weighted and combined to produce the 

model-based subscale scores. Therefore, each test taker was given a model-based score for each 

subscale, resulting in four model-based subscale scores per test taker. The model-based subscale 

scores were used as inputs for the FM analysis. 

From the introduction of the TOP in 2004 to the end of academic year 2011-2012, a total of 

2,450 tests were administered. Out of these, 361 were repeaters who took the test more than once 

because they did not “pass” in the first test. Of these 361 repeaters, only the scores from the first 

attempt were used for the analysis. While this reduced the total sample size, including multiple 

data from the repeaters would have created additional dependencies among data points. 

Furthermore, since all other test takers’ scores were obtained from their first attempt, it was 

reasonable to retain the results from only the first attempt of the repeaters. An additional filtering 

process was used to obtain stable estimates of the model-based subscale scores.  

There are 56 raters who have rated at least once since the introduction of the TOP. Based on 

their productivity (i.e., the number of test takers he or she rated), 18 out of the total 56 raters 

were selected. The remaining 38 raters were excluded due to the small number of test takers they 

have rated. In addition, different pairings of the remaining 18 productive raters were considered. 

Only the test takers who were assigned to rater pairs who rated at least five test takers were 
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included for the analysis. This process resulted in a total of 960 test takers who were analyzed in 

this stage. 

3.2.2.1 Test taker language background 

TOP test takers are asked to provide several pieces of background information at registration, 

including their first language (L1). In the dataset used for this study, there were a total of 53 

different L1s.  These L1s were grouped into nine different language groups based on linguistic 

commonalities among them. Table 3-1 provides the numbers and proportions of TOP test takers 

in each group, and the individual languages included in each group. 

Table 3-1 

Proportions of Major Language Groups in the TOP Dataset 

Language Group 
Percent Prop. 
(Raw Count) Included Languages 

Arabic (ARA) 5. 73 (55)  Arabic, Farsi, Persian 
Chinese (CHI) 40.10 (385) Cantonese, Mandarin Chinese 
East Asian (EAL) 16.98 (163) Japanese, Korean 
English (ENG) 2.92 (28) English 
Germanic (GER) 2.71 (26) Danish, Dutch, Finnish, German, Swedish 

Indian (IND) 8.44 (81) 
Bengali, Gujarati, Hindi, Kannada, Marathi, Oriya, 
Tamil 

Romance (ROM) 11.04 (106) French, Italian, Portuguese, Spanish, Romanian 
Southeast Asian (SEA) 2.50 (24) Filipino, Malay, Thai, Vietnamese 

Slavic (SLA) 4.06 (39) 
Armenian, Bulgarian, Czech, Macedonian, Polish, 
Russian, Serbo-Croatian, Slovenian, Ukrainian 

 

Table 3-1 shows that the proportions of the language groups differed widely, with Mandarin 

Chinese being the L1 of the largest number of test takers, accounting for approximately 40 

percent (372 out of 960). Other L1s with large populations in the TOP dataset included Spanish, 

Korean, Portuguese, and languages spoken in India. Thirty-nine out of the 53 L1s belonged to 

one of the nine groups. Speakers of languages belonging to the nine major language groups 
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comprised the vast majority (907 out of 960) of the entire sample. The remaining 14 languages 

had only few speakers each in the TOP dataset and these languages did not share enough 

commonalities with the languages included in the nine groups. The Chinese languages, including 

Cantonese and Mandarin Chinese, had the largest number of speakers, accounting for 

approximately 40 percent of the entire sample. East Asian languages, namely Japanese and 

Korean, comprised the second largest group, followed by Romance languages. There were a 

small number of English speakers. This was due to the definition of an international student at 

UCLA, which includes students from other English speaking countries such as Australia, Canada, 

and United Kingdom. The university policy mandates that every international student must pass 

the TOP before he or she starts working as a TA, regardless of L1. In addition, test takers who 

listed English as their second language were also counted as English speakers.  

3.2.2.2 Test taker decision categories 

As described in Chapter 1, TOP test takers are assigned one of three decision categories, 

namely Pass, Provisional Pass, and Fail. The TOP decision categories of the 960 test takers are 

given in Table 3-2.  

Table 3-2 

Proportions of TOP Decision Categories in the TOP Dataset 

 Pass Provisional Pass Fail 
Proportion (%) 63.64 20.94 15.42 

 

Table 3-2 shows that approximately 65 percent of the entire sample passed the test, while 

approximately 15 percent of all test takers failed the test. The remaining test takers belonged to 

the Provisional Pass category, which mandates them to take a remedial ESL course. 
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3.2.2.3 Model-based subscale scores as the data for the mixture analysis 

The unit of analysis for the FM model was the model-based subscale scores. The model-

based subscale scores were entries in a data matrix, X, which has test takers as rows and the 

subscales as columns and was the input to the FM modeling. Therefore, an element xih of X 

represented ith test taker’s model-based score on hth subscale, where i = 1,…, 960 and h = 1,…, 

4. The structure of X is given in Table 3-2. 

Table 3-3   

The Structure of the Data Matrix   

 
Pronunciation 

Lexical 
Grammar 

Rhetorical 
Organization 

Question 
Handling 

Test Taker #1 x11 x12 x13 x14 
Test Taker #2 x21 x22 x23 x24 
… … … … … 
Test Taker #960 x960,1 x960,2 x960,3 x960,4 

 

3.2.3 Motivation for an IRT model to obtain the model-based scores 

The TOP employs a fully crossed analytic scoring scheme with two tasks and two raters. A 

scoring procedure involving multiple raters and tasks is common in language proficiency 

performance assessments (Luoma, 2004; Weigle, 2002), but poses a challenge to psychometric 

modeling because of its complex data structure. In particular, residual dependencies are expected 

among scores produced by the same rater and among scores based on the same task. It is well 

known that bias in point estimates and their standard errors are introduced when underlying 

dependencies are ignored in model-based scoring and inferences (e.g., Bock, Brennan, & Muraki, 

2002).  
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Another issue relevant to the TOP scoring procedure involves differences between raters. As 

noted before, each test taker is rated by two randomly assigned raters. This leads one to suspect a 

possible rater effect due to potential differences in raters’ severity as well as their discriminating 

competency. For example, if some raters tend to be harsher than other raters in the TOP rater 

pool, it is reasonable to expect that, on average, test takers rated by those harsh raters would 

receive lower scores than they would have received had they been rated by other raters.  

Given the incomplete block design of the TOP rater assignment, it was not possible to 

directly compare raters’ severity and discrimination. In particular, each test taker in the dataset 

was rated by two raters, and scores from 16 out of 18 raters were missing. This makes the 

proportion of missing data in the TOP dataset almost as high as 90 percent (16 out of 18). Had all 

18 rater scores been available, it would have been straightforward to evaluate raters’ severity and 

discrimination through a direct comparison. An indirect and crude approximation to the direct 

comparison under the lack of that complete data would be to investigate univariate frequencies of 

scores given by each rater. Figure 3-1 provides the univariate frequencies of Pronunciation 

scores from all 18 raters in this study. Scores from the two tasks were summed for a clear 

presentation. Since each task is rated on a four-point scale staring from one, the summed scores 

were distributed on a six point scale from two to eight. Figure 3-1 shows differences among the 

raters’ score frequencies. Similar differences were observed in the other three TOP subscale 

scores.  
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Figure 3-1. Univariate Pronunciation score frequencies from all 18 raters. Scores from two tasks 
were summed for a clearer presentation.  
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Another indirect way of comparing rater severity would be to examine the score frequencies 

of test takers who were rated by the same rater pairs. One rater pair, Rater 2 and Rater 10, 

marked a total of 74 test takers together, and their score distributions from the 74 test takers are 

given in Figure 3-2. Figure 3-2 suggests that the two raters yielded different score distributions 

despite the same performances they rated. Other pairs also presented similar discrepancies.  
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 Figure 3-2. All subscale score frequencies from 74 students rated by Rater 2 and Rater 10. 
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which, in turn, would be clustered to yield subscale score profile groups. Since the TOP uses a 

four-point scale for all subscales, there is only a finite number of possible score patterns. In 

addition, from Figures 3-1 and 3-2, it is evident that the lowest score was seldom assigned, 

which resulted in an even smaller number of effective score patterns. Even a one-point 

classification error from a rater could bring about substantial shifts in classification results. 

Therefore, rater effects should be properly accounted for in order to obtain accurate profile 

groups of the TOP subscale scores.  

This study formulated an IRT model to address the structural dependency and the rater 

effects in the observed TOP scores. In particular, this study extended the multi-rater ordinal 

model of Johnson (1996) to a second-order graded response model (GRM) (Samejima, 1996) for 

analyzing the TOP data structure. In the following sections the formulation of a second-order 

graded response model will be presented in detail. A variant of the multi-rater ordinal model will 

be considered first as the essential component and will be followed by the rationale for having a 

higher-order structure to account for the dependencies and rater effects in the TOP scores. The 

mathematical formulation of the second-order GRM will be provided next. Then, the second-

order GRM will be reparameterized into a restricted testlet model (Wainer, Bradlow, & Wang, 

2007) as well as a restricted bifactor model (Gibbons & Hedecker, 1992), following Rijmen 

(2010). The relationship between the second-order GRM and the testlet model provides an 

insight into the role of raters and tasks in multi-rater, multi-task contexts such as the TOP. 

Furthermore, the relationship between the second-order GRM and the bifactor model allows the 

use of an efficient maximum likelihood estimation method, namely the bifactor dimension 

reduction, in estimating the second-order GRM.          
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3.2.4 The second-order GRM 

The multi-rater ordinal model (Johnson, 1996) was developed to effectively combine 

multiple rater scores on a single essay task to estimate test takers’ writing proficiency. In 

addition, Baldwin, Bernstein, and Wainer (2009) utilized a Bayesian GRM in a similar “multi-

rater, single-task” context for a medical application. These two models form the basis of the 

second-order GRM proposed in this study.1 Since the TOP involved multiple tasks rated by 

multiple raters, the two models were expanded to combine information from multiple tasks. The 

extension utilized a second-order factor structure to combine multiple task scores, hence its name, 

the second-order GRM. While the extension of the base models to the second-order GRM is 

straightforward, real-world applications of the extension have yet to be reported in the literature 

to the knowledge of the author.  

3.2.4.1 Model notations and assumptions 

The second-order GRM was formulated considering testing situations in which there exist 

multiple tasks or items, each of which is marked by multiple raters to yield ordinal scores. 

Therefore, it is necessary to establish a general notation system that takes account of test takers, 

tasks, raters, and scores with finite ordinal categories. Suppose there are n test takers who 

perform on J tasks, which are rated by all or some of R raters. The number of raters for each test 

taker ൈ task combination can vary, while in the TOP scoring scheme it was fixed at two. Test 

takers will be denoted by subscript i, tasks by subscript j, and raters by subscript r. That is, i = 

1, . . . , n; j = 1, . . . , J; and r = 1, . . . , R. Furthermore, suppose raters classify test taker 

                                                            
1 It should be noted that the two base models are essentially equivalent in that one can be obtained from 
the other with an appropriate reparameterization. However, they assumed different priors for some 
parameters.   
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performances to K ordered categories. When the number of scoring categories differs across 

tasks, the task subscript should be added. That is, Kj should be used instead of K. Let yijr denote 

the observed score of test taker i performing on task j marked by rater r. It follows that, assuming 

the same number of scoring categories for all tasks, yijr ∈ {1, . . . , K}. The ultimate interest in 

this setup is to estimate each test taker’s proficiency, based on observed scores assigned by raters 

(i.e., yijr).  

A fundamental model assumption, which is shared by all IRT models, is that test taker 

proficiency is a latent trait that governs test taker performances on test tasks (or test items, using 

a more standard IRT terminology). A standard IRT model makes an additional assumption that 

task scores are observed with certainty. This additional assumption is reasonable when a test 

taker response can be objectively scored. A dichotomously scored multiple choice question is a 

quintessential example of an objectively scored task. However, when human raters are involved 

in assigning task scores, scoring errors cannot be ignored. In other words, task scores cannot be 

taken as observables for tasks involving human raters. An additional assumption is needed to 

remedy this situation. In particular, it is assumed that there exists an unobserved quantity that 

represents the task score free from all rater errors. It is further assumed that this “rater-free” task 

score is continuous on an arbitrary scale.2 For simplicity, this rater-free task score will be 

referred to as the true task score.  

With the true task score in mind, observed scores can be conceptualized as its error-prone 

ordinal indicators. That is, a score assigned by a human rater can be understood as the result of 

                                                            
2 Not all rater models make this continuity assumption. For example, the hierarchical rater model (Patz, 
Junker, Johnson, & Mariano, 2002) and its variants (Mariano & Junker, 2007; DeCarlo, Kim, & Johnson, 
2011) assume discrete “true-task” scores on the same scale as the observed scores.  
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error-prone discretization of the true task score on an ordinal scale based on rater-specific cutoff 

thresholds on the true task score scale. When there are multiple tasks, test taker proficiency can 

be estimated from true task scores, which, in turn, can be estimated from observed rater scores. 

Following the standard notation in the IRT literature, let θi denote test taker i’s proficiency. 

Furthermore, let ξij denote test taker i’s true task score for task j. This two-step procedure implies 

a second-order structure illustrated in Figure 3-3. 

 

 

Figure 3-3: A path diagram representing the two-step procedure to estimate test taker proficiency 
from observed rater scores.   

3.2.4.2 Modeling the rating procedure 

A rater’s scoring procedure is assumed to follow a two-stage process. The first stage involves 

a rater’s perception of the true task score of test taker i on task j, namely ξij. Raters are known to 

differ in terms of their harshness or leniency (e.g., McNamara, 1996), and such differences can 
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be modeled at this level. In particular, let τr denote rater r’s overall harshness. In addition, due to 

the inherent subjectivity and inconsistency involved in human rating, it is reasonable to assume a 

random error term attached to the rater perception of true task scores. This error term captures 

the random perturbation of rater r’s perception across different ξij, and will be denoted with εijr. 

The aforementioned formulation decomposes rater r’s perception of ξij into three different parts: 

the true task score (ξij), the fixed overall harshness effect specific to rater r (τr), and the random 

error term (εijr). Formally put,  

௜௝௥ߥ ൌ ௜௝ߦ െ	߬௥ ൅	ߝ௜௝௥,      (1) 

where νijr denotes rater r’s perception of ξij.  

In most practical cases, rater scores are an ordinal variable with more than or equal to two 

categories. Therefore, it follows that observed rater scores are an ordinal variable with K 

categories, where K ≥ 2. The corresponding model assumption is that raters classify their 

perception of a test taker’s performance on a task into K ordered categories, based on K − 1 

cutoff points. It is further assumed that rater r classifies test taker i’s performance on j as k, 

where k = 1, 2, …,K, if and only if νijr lies between the k-1th largest and the kth largest category 

cutoffs. Let γrk denote the kth largest cutoff point of rater r. The discretization process can then 

be represented as 

௜௝௥ݕ    ൌ ݇	 ⇔ ௥,௞ିଵߛ	 ൏ 	 ௜௝ߦ െ	߬௥ ൅	ߝ௜௝௥ 	൑ 	  ௥௞,      (2)ߛ

subject to a weak order constraint γr1 ≤  …  ≤ γrK-1. It is standard and reasonable to set γr0 = -∞ 

and γrK = ∞. When it is reasonable to assume that raters use different category cutoffs across J 

tasks, triple subscripts should be used for γ, such as γjrk. 
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The above rating procedure can be made into a stochastic model when a distributional 

assumption is made on the random error term. Following the standard choice in the IRT literature, 

let the random error term follow a normal distribution. In particular, it is assumed that 

,ܰሺ0	~	௜௝௥ߝ  ௜௝௥  isߝ	,௥ଶ denotes rater r’s overall lack of discrimination. That isߪ ௥ଶሻ, whereߪ

assumed to be normally distributed around zero, with the only source of variation being rater r’s 

lack of discrimination. ߪ௥ଶ has a clear substantive interpretation; when the random error of a rater 

fluctuates widely across different ξij, the rater’s perception is less likely to be accurate, hence low 

discrimination. Given the distributional assumption on ߝ௜௝௥ , its distribution function is  

Φሺ
ఌ೔ೕೝ
ఙೝ
ሻ,       (3) 

where Φሺ. ሻ denotes the standard normal distribution function. It follows from (2) and (3) that 

Pr൫ݕ௜௝௥ ൌ ݇൯ ൌ Φቀ
ఊೝೖି൫క೔ೕିఛೝ൯

ఙೝ
ቁ െ 	Φ ቀ

ఊೝ,ೖషభି൫క೔ೕିఛೝ൯

ఙೝ
ቁ,         (4) 

which is essentially identical to Johnson’s (1996) multi-rater ordinal model except for the overall 

rater bias term τr and the additional subscript for tasks (i.e., j). It is also very similar to a 

Bayesian graded response model of Baldwin, Bernstein, and Wainer (2009), and their measure of 

within- and between-rater consistency can be directly adopted here. 

The model in (4) is not identified. For example, let ߛ௥௞
ୀ ൌ ௥௞ߛ	 ൅ and ߬௥ୀ ,ݖ ൌ 	 ߬௥ ൅  for all k ,ݖ

= 1, … , K−1, r = 1, . . . , R, and some constant z, the exact same form as (4) is obtained. 

Therefore, for identification, let ߬ଵ ൌ 0, such that all other τr represent an overall harshness of 

rater r relative to rater 1. The choice of rater 1 as the reference is completely arbitrary. Also for 

identification, a sum-to-zero constraint is made on γ. That is, ߛ௥,௄ିଵ ൌ 	െ∑ ௥௞ߛ
௄ିଶ
௞ୀଵ for all j and r.  
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3.2.4.3 Combining information from multiple tasks 

Figure 3-3 shows that test taker i’s proficiency, θi, can be obtained via a confirmatory factor 

analysis model based on true tasks scores, ξij. Let ξi denote the vector of true task scores for test 

taker i. That is, ξi = (ξi1, ξi2, …, ξiJ)
T. A factor analytic representation of the relationship between 

ξi and θi is given by 

௜ࣈ ൌ ௜ߠࢫ	 ൅	࢛௜,       (5) 

where Λ is a factor loading matrix and ui = (ui1,… ,uiJ)
T is a J×1 error vector. Following the 

factor analysis tradition, it is assumed that ui ~ N(0,Ψ), where Ψ is a J ×J diagonal matrix. It is 

also assumed that θi follows a normal distribution. In particular, θi ~ N(0, σ2
θ). Depending on a 

specific modeling context, elements of Ψ or σθ should be fixed for identification. Assuming 

independence between ui and θi, it follows that the variance-covariance matrix of ξi, Σξ, has a 

structure given by 

కࢳ ൌ ఏߪ	
ଶࢀࢫࢫ ൅  (6)      .ࢸ	

From (5) and (6), it is clear that the second-order GRM utilizes a unidimensional confirmatory 

factor analysis model to combine information from multiple tasks, and the resulting factor scores 

are the estimates of test taker proficiency. 

From (4) and (5), it follows that the second-order GRM has the following model likelihood. 

Assuming independence, the first-order model likelihood is given by 

Lሺሼࣈ௜ሽ, ሼγ௥௞ሽ, ሼ߬௥ሽ, ሼߪ௥ሽሻ ൌ 	∏ ∏ ∏ ൤Φ൬
ఊೝ,೤೔ೕೝିక೔ೕିఛೝ

ఙೝ
൰ െ Φ൬

ஓೝ,೤೔ೕೝషభିక೔ೕିఛೝ

ఙೝ
൰൨ ,௥∈ோ೔ೕ

௃
௝ୀଵ

୬
୧ୀଵ    (7) 



 

45 
 

where Rij denotes the set of raters who evaluated test taker i’s performance on task j. The first-

order model has essentially the same likelihood as the multi-rater ordinal model of Johnson 

(1996), but with two deviations: the addition of the overall rater bias term τr and the product 

operator over J tasks. Furthermore, it follows from (5) that 

 ;௜,શሻߠࢫNሺ	~	௜ߠ|௜ࣈ

,N൫0	~	௜ߠ ఏߪ
ଶ൯. 

Let ࣂ ൌ ሺߠଵ, … , ௡ሻߠ
T. It follows that the second-order model likelihood is given by 

Lሺી, ઩,શሻ ൌ 	∏ ሾ|2ࢸߨ|ି
భ
మexp	ሼെ ଵ

ଶ
ሺࣈ௜ െ ௜ࣈଵሺିࢸθ௜ሻ்ࢫ െ θ௜ሻሽࢫ ൈ

ଵ

√ଶగఙഇ
exp	ሼ

ିఏ೔
మ

ଶఙഇ
మሽሿ

௡
௜ୀଵ .  (8) 

3.2.4.4 Reparameterization of the second-order GRM into a bifactor model 

The second-order GRM in the previous sections can be estimated in multiple ways. A full 

Bayesian approach can be employed when proper prior distributions for all parameters can be 

specified. Maximum likelihood is another option for the model estimation. However, the 

likelihood for the second-order GRM involves J + 1 dimensions, and its maximization can be 

computationally challenging even with a relatively small J. Therefore, it is desirable to have an 

alternative representation of the second-order GRM that could be more efficiently estimated. To 

this end, this section discusses a reparameterization of the second-order GRM into a restricted 

bifactor model. The reparameterization relies on Rijmen’s (2010) proof that shows the 

relationships between a bifactor model, an extended testlet model (Wainer, Bradlow, & Wang, 

2007), and a second-order IRT model. Through the reparameterization, the model parameters can 

be efficiently estimated using the bifactor dimension reduction (Gibbons & Hedecker, 1992). 
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The reparameterization begins with transformations of the existing parameters. First, define 

ar = 1/σr, arνijr = ν∗ijr, and arεijr = ε∗ijr, and multiply both sides of (1) by ar to obtain 

௜௝௥ߥ
∗ ൌ 	ܽ௥൫ߦ௜௝ െ ߬௥൯ ൅ ௜௝௥ߝ

∗ .      (9) 

Recall the previous definition of σ2
r as the lack of discrimination in rater r. The above 

transformation gives ar a more straightforward interpretation as rater r’s discrimination. It 

follows from (5) and (9) that 

௜௝௥ߥ
∗ ൌ 	ܽ௥൫ߣ௝ߠ௜ ൅ ௜௝ݑ െ ߬௥൯ ൅ ௜௝௥ߝ

∗   

ൌ	ܽ௥ߣ௝ߠ௜ ൅	ܽ௥ݑ௜௝ െ	ܽ௥߬௥ ൅	ߝ௜௝௥
∗      (10) 

ൌ	ܽ௥#൫ߠ௜ ൅ ௝ܥ
௜௝൯ݑ# െ ߬௥∗ ൅ ௜௝௥ߝ

∗ ,     (11) 

where a#
r = arλj, C

#
j = 1/λj, and τ∗r = arτr. It is noteworthy that (11) is formally identical to the 

second-order IRT model of Rijmen (2010). Rijmen shows that a second-order IRT model such as 

the one in (11) is identical to the extended testlet response model (Wainer et al., 2007), which, in 

turn, is a bifactor model with proportionality constraints. To make the connection clear, a general 

bifactor model can be represented as 

log ൬
௣೔ೕ

ଵି௣೔ೕ
൰ ൌ 	 ௝ܽ௚ߠ௚ ൅	 ௝ܽ௦ߠ௦ െ	 ௝ܾ,     (12) 

where pij is the probability of test taker i gets item j correct, and ajg and ajs are slope parameters 

for general (θg) and specific (θs) dimensions, respectively. The proportionality constraints 

become clear when (10) and (12) are compared. Assuming the standard logistic distribution 
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rather than the standard normal distribution for ε∗ijr, the probability of test taker i receiving score 

k from rater r on task j is 

Pr൫ݕ௜௝௥ ൌ ݇൯ ൌ Ψ൫ߛ௥௞
∗ െ ሼܽ௥#൫ߠ௜ ൅ ௝ܥ

௜௝൯ݑ# െ ߬௥∗ሽ൯ െ 	Ψ൫ߛ௥,௞ିଵ
∗ െ ሼܽ௥#൫ߠ௜ ൅ ௝ܥ

௜௝൯ݑ# െ ߬௥∗ሽ൯, (13) 

where ߛ௥௞
∗ ൌ ܽ௥ߛ௥௞ and Ψ(.) denotes the standard logistic distribution function. From the 

relationship between (10) and (12), the reparameterized second-order GRM in (13) belongs to 

the family of generalized bifactor models (Cai, Yang, & Hansen, 2011) with proportionality 

constraints on the slope parameter for uij.  

3.2.4.5 The conceptual analogy between the second-order GRM and the extended testlet model 

The close algebraic relationship between the second-order GRM and the extended testlet 

model provides an insight into the interesting similarity between the role of raters in a multi-rater, 

multi-task context and that of items in a testlet-based test. Raters in the former provide scores 

that function as indicators of true task scores, which are, in turn, indicators of test taker 

proficiency. Rater scores are based on the test taker performance on a task, and therefore, rater 

scores within the same tasks are expected to be more highly correlated with one another than 

with rater scores across different tasks. This relationship between raters and tasks in the second-

order GRM is analogous to the relationship between items and testlets in the testlet model. In the 

latter, items are indicators of test taker proficiency, and within-testlet items are structurally 

dependent upon one another by the virtue of belonging to the same testlet. The analogy also 

holds for the parameters of the two models. Each rater has its own severity and discrimination 

parameters in the second-order GRM. Similarly, each item has its own difficulty and 

discrimination parameters in the extended testlet model. In this light, it is reasonable to consider 
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the second-order GRM as a testlet model that treats raters as items and tasks as testlets. An 

important difference between the two models lies in the feasibility of additional constraints on 

rater/item parameters. In a typical testlet-based test, each testlet consists of different items; it is 

difficult to imagine two different testlets sharing an item. However, it is common to have the 

same set of raters evaluate multiple tasks of the same test takers. Therefore, the second-order 

GRM has a potential to become more parsimonious. In particular, it can become a testlet model 

with additional equality constraints on rater severity and discrimination of the same raters across 

different tasks.  

Treating raters as if they were items is not entirely new. Both the multi-rater ordinal model 

(Johnson, 1996) and the Bayesian GRM (Baldwin et al., 2009) adopt this analogy. Johnson (1996) 

does not make explicit the relationship between raters and items. On the other hand, Baldwin et 

al. (2009) justify their approach of treating raters as items in that rater judgment (in their case, 

physicians) about the same stimuli or performances (in their case, radiographs) are not supposed 

to differ widely (p. 2282). Their logic is pertinent to a typical multi-rater, multi-task situation in 

which one does not expect large fluctuations among rater scores on the same performance. 

Raters in most operational testing contexts are trained and normed in that, despite frequent and 

expected disagreements, their scores do not, in general, deviate too much from one another. 

In addition to the computational advantage in model estimation, the relationship between the 

second-order GRM and the extended testlet model facilitates the conceptualization of 

complicated real-world rater assignment scenarios. For practical reasons, operational tests 

seldom adopt a complete-block design in which every rater scores every test taker on every task. 

Instead, an incomplete-block design, in which a subset of raters marks only a subset of test takers 
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performing on a subset of tasks, has been much more commonly employed. Such an incomplete 

design poses a challenge to many existing models, but can be easily conceptualized and 

estimated with the second-order GRM. Keeping the raters-as-items analogy, the entire rater pool 

can be conceptualized as a test form. For example, a rater pool consisting of R raters can be 

regarded as a test form with R items. Then, an incomplete-block design reduces to a missing data 

problem, in which test takers respond to only a subset of items (i.e., raters). If test takers were 

rated by two raters in the example, there will be R-2 missing responses per test taker. Raters are 

often randomly assigned to test takers or to test taker and item combinations, and therefore 

missing completely at random (MCAR) (Rubin, 1976) is a reasonable assumption. While 

missing data still present a challenge for estimation, this conceptualization provides a 

straightforward way to model complicated rater assignment schemes based on an incomplete-

block design. 

3.2.4.6 Estimation 

Given the likelihoods in (7) and (8), multiple estimation methods can be utilized to estimate 

the second-order GRM. This study employed two such methods, namely maximum likelihood 

and Markov chain Monte Carlo (MCMC), to fit the model to the TOP data. Parameter recovery 

capability of the second-order GRM was evaluated based on a simulation study, which will be 

presented in detail in Chapter 4. The maximum likelihood approach was used to obtain sound 

initial values for the MCMC approach, which was the main estimation method in this study. 

Identification conditions and equality constraints specific to the TOP data will be described in 

detail in Chapter 4. Prior distributions for the MCMC estimation will also be discussed in 

Chapter 4. The maximum likelihood estimation was conducted using flexMIRT version 1.86 
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(Cai, 2012). The reparameterization in the previous section, combined with flexMIRT’s built-in 

dimension reduction functionality, facilitated the estimation process. The MCMC estimates were 

obtained using WinBUGS 1.4.3 (Lunn, Thomas, Best, & Spiegelhalter, 2000).  

3.2.5 FM model analysis  

The model-based subscale scores estimated using the MCMC approach comprised the data 

matrix X. Based on that data matrix, a mixture of four dimensional multivariate normal 

distributions were employed to identify distinct subscale score profiles. Given the lack of 

previous knowledge about the number of distinctive profiles, models consisting of different 

numbers of component distributions were fitted to the estimated TOP proficiency. The 

considered models were estimated using an EM algorithm with non-parametric hierarchical 

clustering results as initial values. The final model was selected based on statistical goodness of 

fit and substantive interpretability. The selected model provided estimates of the proportion of 

each profile group in the 960 TOP test takers, as well as the probability of a test taker belonging 

to each profile group. The composition of each profile group was examined in terms of members’ 

linguistic and academic background, and their TOP decision categories. The profile groups were 

then interpreted and labeled based on the score patterns and background shared by members. All 

FM model analyses were conducted using the mclust package (Fraley, Raftery, Murphy, & 

Scrucca, 2012) in R (R Core Team, 2012). 
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3.3 Stage 2: Features of oral discourse across subscale score profiles 

3.3.1 Objectives  

In this stage, videotaped performances of representative test takers from each subscale score 

profile group were transcribed and analyzed to examine characteristic features of language use in 

each profile group. This analysis also serves as an indirect validation of the subscale score 

profiling, in that different score patterns, especially on the Rhetorical Organization and Question 

Handling subscales, are expected to be related to differences in salient discourse features. 

3.3.2 Data  

All TOP test administrations have been videotaped and stored in a digital medium. The 

duration of the test varies from one test taker to another and typically ranges from ten to twenty 

five minutes. The first several minutes of the test contain a warm-up task which is not scored, 

and thus were excluded from all analyses in this study. The syllabus presentation task was also 

excluded from the subsequent analysis because of its limited variability across different test 

takers in terms of discourse structures. In particular, performances on the syllabus presentation 

task are expected to be structured based on the syllabus given to test takers. The remaining 

performances of test takers (i.e., the lecture task performances) were transcribed and the 

transcripts constituted the main data for the analysis.  

The large amount of time required for the transcription and building a corpus prohibited a 

large sample size. Consequently, it was decided to select a subset of the TOP test takers and 

focus on the language use of the selected subset. The representativeness of the sample was 

crucial in this stage, and therefore, efforts were made to achieve representativeness of the 
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selected sample. The sampling scheme for obtaining a representative subset of each subscale 

score profile group was based on the FM modeling results in the previous stage, and therefore, 

will be reported in detail in Chapter 5. A total of 82 TOP test takers’ performances were selected 

for transcription. Profile group membership and background variables of the 82 test takers will 

be presented in Chapter 5. 

The sampled subset of the videotaped performances was transcribed following the notations 

and conventions used in the conversation analysis (CA) literature (Sacks, Schegloff, & Jefferson, 

1974). Utterances from test takers and questions from the TOP questioners, as well as overlaps 

between them, were separately transcribed and marked. The resulting transcriptions were used to 

construct a small corpus of the TOP test takers’ performances following the procedures 

described in Biber et al. (1998) and McEnery et al. (2006). Finally, a group-specific sub-corpus 

was constructed for each subscale score profile group. All analyses in this stage were conducted 

based on the resulting corpus and group-specific sub corpora.        

3.3.3 Analysis  

The second research question, “What features of oral discourse characterize test takers who 

have different subscale score profiles?”, was addressed by the two following corpus-based 

analyses. First, the lecture task performances of the 82 selected test takers were compared to a 

reference corpus consisting of academic lectures. The specific corpus used for this comparison 

was the Michigan Corpus of Academic Spoken English (MICASE) (Simpson, Briggs, Ovens, & 

Swales, 2002). This corpus is described in detail in Chapter 5. Second, lexical bundles that serve 

a discourse organizing function were identified and analyzed to explore their patterns of 

distribution across the subscale score profile groups. The objective of the first analysis was to 
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investigate the overall language use of the TOP test takers by comparing their performances to a 

reference collection of academic lectures given by native speakers of English. The second 

analysis, on the other hand, was designed to provide an insight to the discourse structures of the 

TOP test takers.  

The comparison between the TOP performances and the reference corpus was made by 

examining a set of words that were used significantly more or less frequently by the selected 

TOP test takers than by speakers in the reference corpus. It was expected that the differences in 

frequency of word use between the two corpora would help explain the characteristics and 

peculiarities of the TOP test taker performances. In addition, each group-specific sub-corpus was 

compared to the reference corpus in the same manner. This group level analysis was designed to 

find potential differences in overall language use of test takers who had different subscale score 

profiles. The keyword component of AntConc 3.2.4 (Anthony, 2011) was used in comparing the 

corpora. 

The analysis of lexical bundles in the TOP test taker performances was motivated by recent 

findings in the corpus linguistics literature. This research suggests that multiword expressions are 

an integral discourse organizing device that contributes to the overall coherence of a given text 

or speech (Biber et al., 1999; Halliday & Hasan, 1976; Nattinger & DeCarrico, 1992). Biber et al. 

(2004) provide a functional taxonomy of lexical bundles including discourse organization. Biber 

(2006) later suggested discourse organization bundles (e.g., going to talk about, let’s have a look 

at, and to go ahead) as a characteristic feature of academic lectures. Nesi and Basturkmen (2009) 

use Biber et al.’s taxonomy to classify lexical bundles occurring in a corpus consisting of 

academic lectures and investigate the discourse signaling role of such bundles. Based on an 
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investigation of another large academic corpus, Simpson-Vlach and Ellis (2010) expanded Biber 

et al.’s taxonomy and present a comprehensive list of lexical bundles that serve different 

functions in the expanded taxonomy. Furthermore, Simpson-Vlach and Ellis suggest four 

subcategories of the discourse organizing function, namely metadiscourse and textual reference, 

topic introduction and focus, topic elaboration, and discourse markers.  

The lexical bundle analysis in this study focused on the first subcategory of Simpson-Vlach 

and Ellis’ (2010) taxonomy, namely metadiscourse and textual reference (MTR), which they 

define as discourse organizing bundles that explicitly refer “to prior or upcoming discourse” (p. 

507). The choice to focus on the MTR category was dictated by both substantive and practical 

considerations. Simpson-Vlach and Ellis suggest that the MTR bundles are genre-specific in that 

MTR bundles that are commonly used in spoken academic discourse did not overlap with 

popular MTR bundles in written discourse, and vice versa. Given the focus on academic oral 

English proficiency in this study, investigating features specific to academic oral discourse was 

believed to be a logical choice. In addition, other functions were mainly handled by a function 

word rather than by lexical bundles. For example, the vast majority of topic elaboration were 

handled by so and because in the TOP test taker performances. From a practical point of view, 

lexical bundles that belonged to the other subcategories were either very difficult to identify and 

classify or oftentimes not relevant. Topic introduction and elaboration were not always exclusive, 

and therefore, distinguishing the two functions was not straightforward. Discourse markers in 

Simpson-Vlach and Ellis’ (2010) taxonomy include interactional bundles such as oh my god and 

thank you very much, which were not pertinent to the testing context.          
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MTR bundles in the TOP test taker performances were identified using a combination of 

search queries and manual reading of the CA transcripts. The identification procedure will be 

reported in detail in Chapter 5. The identified MTR bundles were then classified in terms of their 

timeframe. As Simpson-Vlach and Ellis (2010) noted, the MTR bundles refer to a previous or 

upcoming point in discourse. The timeframe coding used this dichotomous distinction between 

past and upcoming events in discourse, and categorized all MTR bundles into either the past- or 

future-reference subgroup. Furthermore, whether a given MTR bundle was grammatically well-

formed or not was recorded to examine the formal appropriateness of MTR bundle use in the 

TOP test taker performances. The distribution of different MTR bundles across the subscale 

score profile groups was then investigated to explore potential relationships between MTR 

bundle use and subscale score profiles. 
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Chapter 4: TOP Subscale Score Profile Groups 

This chapter reports the findings of analyses addressing the first research question, “What 

different subscale score profiles of academic English oral proficiency can be meaningfully 

produced by the TOP?” In particular, it presents the procedures and the results of model-based 

subscale score estimation and clustering. This chapter is organized according to the order of 

analysis. First, the results of a simulation study evaluating the parameter recovery of the second-

order GRM are reported. The estimation of model-based subscale scores is presented next, 

followed by the exploration of subscale profile groups based on the model-based scores. The 

resulting profile groups are further examined in terms of the TOP decision categories and the 

linguistic background of group members.  

4.1 Parameter recovery of the second-order GRM 

Parameter recovery, which refers to a model’s capability of accurately estimating true 

parameter values, is essential for any statistical model. The use of a model cannot be justified 

when its ability to recover parameters is unknown or doubtful. While the second-order GRM 

introduced in Chapter 3 is not entirely new in that it is a straightforward extension of existing 

IRT models, the lack of its prior use in the literature means that it has not been properly 

evaluated in terms of parameter recovery. Therefore, a small-scale simulation study was 

conducted to investigate the parameter recovery of the second-order GRM. This section 

describes the procedures and the results of the simulation study. 
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4.1.1 Simulation study setup 

The parameter recovery of the second-order GRM was evaluated in three different settings. 

The settings were designed to match the characteristics of typical language performance 

assessment contexts, with a specific focus on the TOP dataset. All three settings had 960 test 

takers and four scoring categories per task, but they differed in terms of the number of tasks and 

raters. The first setting (hereafter Setting 1) was designed to be the most favorable situation. In 

particular, Setting 1 specified a complete block design with five tasks and five raters fully 

crossed, so that all five tasks were rated by each and every rater. The second setting (hereafter 

Setting 2) also specified a complete block design with fully crossed tasks and raters, but with 

fewer tasks than Setting 1. In particular, only two tasks were specified in Setting 2. Due to the 

smaller number of tasks, Setting 2 was a less favorable condition for the model than Setting 1. 

The third setting (hereafter Setting 3) shared the number of tasks and raters with Setting 2, but 

presented a more challenging scenario in that it adopted an incomplete block design with missing 

data. In particular, it was specified in Setting 3 that only two raters (out of five) were randomly 

assigned to each test taker. Operationally, the data for Setting 3 were obtained by randomly 

deleting three out of five rater scores per each test taker from the Setting 2 data. Setting 3 was 

designed to be highly comparable to the TOP dataset, which had the same number of test takers 

(i.e., 960), tasks (i.e., two) and raters per test taker (i.e., two), as well as a large amount of 

missing data due to the incomplete block design. In both Setting 3 and the TOP dataset, the raters 

were missing completely at random (MCAR) (Rubin, 1976) in that raters were assigned to test 

takers in a completely random fashion. The differences between the three settings are 

summarized in Table 4-1. 
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Table 4-1 

Settings for the Parameter Recovery Simulation Study  

 Setting 1 Setting 2 Setting 3 
Test takers (N) 960 960 960 

Scoring categories (K) 4 4 4 
Tasks (J) 5 2 2 

Raters per test taker (R) 5 5 2 
Missing data No No Yes 

Rater assignment Complete block Complete block Incomplete block 
 

True parameter values for data generation were set in the following way. Both the test taker 

proficiency (i.e., θi) and the task-specific error (i.e., uij) were randomly drawn from a normal 

distribution centered at zero. The ratio of the task-specific error variance (i.e., diagonal elements 

of Ψ) to the proficiency variance (i.e., ߪఏ
ଶ) was roughly based on a previous Generalizability 

theory analysis of another TOP dataset (Schmidgall, 2012). In particular, all task-specific 

variances were set to one, and the proficiency variance was set to eight. To retain the variance 

ratio between the task-specific variances and the proficiency variance, all loadings from the 

proficiency factor to the task factors (i.e., λj) were set to one. The rater discrimination parameters 

(i.e., ar) were generated from the standard normal distribution truncated below zero. The overall 

rater severity parameters (i.e., τr) were drawn from the standard normal distribution, except for τ1 

which was set to one for identification. Lastly, the rater cutoff parameters (i.e., γrk) were drawn 

from the standard normal distribution with the weak order constraints and the sum-to-zero 

constraints described in Chapter 3. Based on the true parameter values, data for all three settings 

were generated using the second-order GRM as the data generation mechanism in R (R Core 

Team, 2012). The R syntax for the data generation is provided in Appendix A. 
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This simulation study estimated the model parameters using the same procedures as were 

intended to be used in the actual TOP model-based subscale score estimation. First, maximum 

likelihood (ML) estimates were obtained without separating the overall rater severity and the 

rater cutoff parameters. The resulting ML point estimates and standard errors were then used to 

obtain starting values for subsequent MCMC estimation of test taker proficiency. Prior 

distributions for the MCMC estimation were set to be equal to the generating distributions of the 

true parameter values, except for the proficiency variance (i.e., ߪఏ
ଶ), whose prior distribution was 

set to follow an inverse-Gamma distribution. Three parallel MCMC chains were constructed. 

The first chain contained the ML point estimates as its starting values. The second and third 

chains began with the ML point estimates plus and minus, respectively, two point half times the 

corresponding standard errors as starting values. Since the ML estimation did not distinguish the 

rater severity and the rater cutoff parameters, starting values for these parameters were randomly 

drawn from the standard normal distribution. Each chain was run for 20,000 iterations. The 

flexMIRT (Cai, 2012) and WinBUGS (Lunn et al., 2000) syntax for the ML and MCMC 

estimation, respectively, are provided in Appendix B. 

4.1.2 Simulation results 

Before presenting the parameter recovery results from the three settings, a note on model fit 

evaluation for the second-order GRM is in order. Both the simulation study in this section and 

the main study described in the later sections adopted a full Bayesian framework and utilized 

MCMC as the main estimation method. Model fit in Bayesian modeling is often assessed based 

on relative fit indices such as the Akaike Information Criterion (AIC; Akaike, 1974), the 

Bayesian Information Criterion (BIC; Schwartz, 1978), and the Deviance Information Criterion 
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(DIC; Spiegelhalter, Best, Carlin, and van der Linde, 2002) or through comparisons between the 

data and simulated predictions by the model (Gelman, Carlin, Stern, & Rubin, 2003). However, 

absolute indices that can evaluate the degree of model fit against a known distribution can be 

very convenient. Therefore, whether absolute model fit indices obtained in the ML estimation 

stage could be used to evaluate the goodness of fit of the second-order GRM was also 

investigated in the simulation study.        

While full-information fit statistics such as the Pearson’s chi-square statistic and the 

likelihood-ratio statistic are available, their performance under sparse underlying contingency 

tables is known to be inferior to limited-information fit statistics such as M2 (Maydeu-Olivares & 

Joe, 2005). The original M2 statistic was developed for dichotomous response variables, and Cai 

and Hansen (2012) suggest an extension of M2 that is more suitable when response variables are 

polytomous. Consequently, the Cai-Hansen M2 statistic and the corresponding p-value obtained 

in the ML estimation stage were examined to evaluate the model fit in the three simulation 

settings. In addition, the corresponding Root Mean Square Error of Approximation (RMSEA; 

Browne & Cudeck, 1993) was also monitored.  

Since the fitted model was identical to the data generating model in this simulation study, the 

fit indices should indicate that the model fit the data very well in all three settings. That is, one 

would expect to observe non-significant p-values and near zero RMSEA values across all 

settings. Table 4-2 provides the Cai-Hansen M2 statistics, the p-values, and RMSEA in Settings 1, 

2, and 3.  
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Table 4-2 

Cai-Hansen M2 Statistics and RMSEA Values for All Three Settings 

Setting Cai-Hansen M2 M2 D.F. M2 p-value RMSEA 
Setting 1 2582.82 2754 1.00 .00 
Setting 2 404.05 414 .63 .00 
Setting 3 32140.16 414 .00 .21 

 

As can be seen in Table 4-2, the model fit results from Settings 1 and 2 were in line with the 

expectation. In particular, the Cai-Hansen M2 statistics and the corresponding RMSEA values 

suggested almost perfect fit in both settings. However, Setting 3 presented a deviation from the 

expectation in that both indices suggested poor fit. The only difference between Setting 2 and 

Setting 3 was the missing data introduced in the latter. Therefore, it is reasonable to infer that the 

large amount of missing data could have caused problems for the Cai-Hansen M2 statistic and the 

corresponding RMSEA3. The performance of the Cai-Hansen M2 and RMSEA in Setting 3 

suggested that these indices could be misleading for the actual TOP model-based subscale score 

estimation, which involved an even larger amount of missing data than Setting 3. Consequently, 

the goodness of fit of the second-order GRM to the actual TOP dataset was evaluated using a 

relative fit index.  

All three settings involved a total of five raters. Consequently, there were five discrimination 

parameters that were estimated. Table 4-3 provides the deviation of the estimated values from 

the true generating values. The corresponding 95 percent Bayesian credible intervals are also 

given in the deviation form.  

 
                                                            
3 It should be noted that this was a small-scale simulation study involving only one dataset per each 
setting. The performance of the Cai-Hansen M2 and the corresponding RMSEA under a large amount of 
missing data deserves a much more rigorous investigation based on extensive replications. 
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Table 4-3 

Deviations of the Estimated Discrimination Parameters from the True Values  

Parameter Setting 1 Deviation Setting 2 Deviation Setting 3 Deviation 
ܽଵ -.003 (-.022, .016) -.018 (-.046, .012) .019 (-.032, .075) 
ܽଶ  .006 (-.084, .099) -.047 (-.186, .102) .189 (-.152, .610) 
ܽଷ  .011 (-.073, .100) -.033 (-.177, .120) .108 (-.214, .479) 
ܽସ  -.034 (-.146, .086) -.121 (-.293, .065) .067 (-.353, .600) 
ܽହ  -.008 (-.136, .129) -.029 (-.233, .200) .090 (-.372, .689) 

 

Note. The 95 percent Bayesian credible intervals are provided in the parentheses. 

As can be seen in Table 4-3, the estimates from the second-order GRM were highly comparable 

to the true values, indicated by the small magnitude of the deviations. The discrimination 

parameters were successfully recovered across all three settings in that the 95 percent Bayesian 

credible intervals contained the corresponding true values in every case. However, there was a 

clear hierarchy of model performance among the three settings. Setting 1 yielded the most 

accurate and precise parameter estimates in that its point estimates were closest to the true values 

and the corresponding intervals were narrowest. Furthermore, the comparison between Setting 2 

and Setting 3 showed that the missing data in the latter setting resulted in lower precision 

indicated by wider credible intervals. 

Since there were four scoring categories in each task, all settings involved fifteen rater cutoff 

parameters (three cutoff parameters for each of the five raters). However, only ten of them were 

freely estimated due to the sum-to-zero constraint on the third cutoff of each rater. Table 4-4 

gives the deviations of the freely estimated cutoff parameters from the generating values. The 

corresponding 95 percent Bayesian credible intervals are also given in the deviation form.  
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Table 4-4  

Deviations of the Estimated Cutoff Parameters from the True Values  

Parameter Setting 1 Deviation Setting 2 Deviation Setting 3 Deviation 
 ଵଵߛ -.003 (-.053, .047) .035 (-.039, .106) .059 (-.061, .172) 
 ଵଶߛ -.005 (-.033, .024) .012 (-.041, .067) .005 (-.077, .086) 
 ଶଵߛ -.002 (-.097, .093) -.070 (-.199, .048) -.235 (-.550, .021) 
 ଶଶߛ -.016 (-.078, .045) .011 (-.07, .091) -.010 (-.154, .133) 
 ଷଵߛ -.021 (-.103, .057) -.047 (-.204, .094) -.088 (-.398, .214) 
 ଷଶߛ -.021 (-.074, .030) -.044 (-.135, .045) -.029 (-.179, .120) 
 ସଵߛ -.033 (-.126, .056) .093 (-.030, .203) .074 (-.169, .280) 
 ସଶߛ .027 (-.023, .078) .021 (-.055, .095) .073 (-.047, .186) 
 ହଵߛ -.007 (-.092, .076) -.184 (-.447, .049) -.101 (-.653, .346) 
 ହଶߛ -.005 (-.049, .040) .104 (-.012, .237) .040 (-.175, .300) 

 

Note. The 95 percent Bayesian credible intervals are provided in the parentheses. 

Table 4-4 shows that Setting 1 yielded point estimates with the smallest absolute deviations from 

the true values, as well as the narrowest credible intervals. While the point estimates from 

Settings 2 and 3 were similar in terms of the absolute deviation from the true values, Setting 2 

resulted in more precise estimation indicated by narrower credible intervals. Overall, however, 

the estimated cutoff parameters were very close to the true values. Furthermore, the 95 percent 

credible intervals contained the true value in every case across all settings.  

The severity of the first rater, τ1, was fixed at one to identify the model. The severity 

parameters of the remaining four raters were freely estimated. The deviations of the resulting 

point estimates from the true values, as well as the corresponding 95 percent Bayesian credible 

intervals in the deviation form, are given in Table 4-5.  
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Table 4-5  

Deviations of the Estimated Severity Parameters from the True Values  

Parameter Setting 1 Deviation Setting 2 Deviation Setting 3 Deviation 
߬ଶ  -.020 (-.214, .175) -.106 (-.380, .155) .004 (-.395, .334) 
߬ଷ  -.028 (-.238, .168) .048 (-.165, .262) .142 (-.126, .404) 
߬ସ  -.001 (-.210, .195) -.109 (-.409, .173) .282 (-.146, .637) 
߬ହ  -.039 (-.231, .138) -.070 (-.281, .142) -.081 (-.340, .177) 

 

Note. The 95 percent Bayesian credible intervals are provided in the parentheses. 

In general, the point estimates were very close to the true values. In addition, the credible 

intervals successfully contained the true values every time across all three settings. The most 

favorable conditions in Setting 1 resulted in the smallest absolute deviations of the point 

estimates and the narrowest intervals. 

The person proficiency variance was freely estimated while the variances of task-specific 

factors were all fixed at one. Since WinBUGS parameterizes the reciprocal of variance for 

normal distributions, the reciprocal of the person proficiency variance was set up as a free 

parameter. Table 4-6 provides the deviations of the resulting estimates from the true generating 

values from the three settings. The corresponding 95 percent Bayesian credible intervals are also 

given in the deviation form.  

Table 4-6 

Deviations of the Estimated Person Proficiency Variance Parameters from the True Values  

Parameter Setting 1 Deviation Setting 2 Deviation Setting 3 Deviation 
ఏߪ/1

ଶ  .000 (-.017, .019) -.010 (-.034, .018) .007 (-.037, .059) 
 

Note. The 95 percent Bayesian credible intervals are provided in the parentheses. 



 

65 
 

Table 4-6 shows that the second-order GRM successfully recovered the reciprocal of the 

proficiency variance parameter in that the true value was contained in the credible intervals in 

every setting. The point estimates were highly comparable to the true values. Setting 1 yielded 

the most precise estimate indicated by the narrowest interval.  

The aforementioned parameter recovery results showed a consistent pattern. The second-

order GRM was capable of recovering every parameter across all three settings. The number of 

tasks as well as the presence of missing data affected the precision of recovery, which is in line 

with the original expectation. In particular, the 95 percent Bayesian credible intervals were the 

narrowest in Setting 1, which had the largest number of tasks (i.e., five) without missing data. On 

the other hand, Setting 3, which had only two tasks as well as a large proportion of missing data, 

yielded the least precise estimates indicated by the widest credible intervals. Figure 4-1 presents 

an illustration of this pattern.   
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Figure 4-1. Deviations of the second-order GRM estimates from the true values. The circles 
represent the point estimates from the model, while the intervals stand for the 95 percent 
Bayesian credible intervals. The dotted lines represent the true values (i.e., zero deviation). 

The recovery of test taker proficiency parameters (i.e., θi) was evaluated by examining the 

correlation between the true and estimated values. The correlations between the true values and 

the standardized sum scores, which were calculated by standardizing the sum of all observed 

rater scores, were also evaluated. The standardized sum scores are equivalent to the results of a 
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simple average scoring method. The comparison between the two sets of correlations was made 

to assess the added-value of the model in estimating the true proficiency. In particular, for the 

second-order GRM estimation to have added-value over a simple average scoring method, the 

correlation between the true values and second-order GRM estimates should be higher than the 

correlation between the true values and the standardized sum scores. The difference between the 

two sets of correlations can be interpreted as the added-value of using the second-order GRM for 

estimating the proficiency of each test taker, instead of a simple average scoring method. Table 

4-7 gives the correlations of the second-order GRM estimates and the standardized sum scores 

with the true values across all three settings. 

Table 4-7 

Correlations with the True Values: the Second-order GRM Estimates and the Standardized Sum 
Scores  

Settings True vs. Model-based Estimates True vs. Standardized Sum Scores 
Setting 1 .97 .93 
Setting 2 .92 .89 
Setting 3 .86 .80 

 

Setting 1 yielded estimates that were closest to the true test taker proficiency values. Both the 

reduction of the number of tasks and the introduction of the incomplete block design for rater 

assignment negatively affected the proficiency parameter recovery. Table 4-7 shows that the use 

of the second-order GRM led to better results than using a simple average scoring method. The 

model-based parameter estimates were more highly correlated with the true values than the 

standardized sum scores were across all three settings. Furthermore, the added value of using the 

second-order GRM became larger as the simulation setting became more realistic. In particular, 
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the largest difference between two sets of correlation coefficients was observed in Setting 3, 

which involved the smallest number of tasks and a large proportion of missing data.  

Figure 4-2 presents bivariate scatter plots between the true proficiency values and the 

second-order GRM estimates in the three settings. The relationships between the true values and 

the standardized sum scores are also given in the same format in Figure 4-2.  
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The scatter plots for the second-order GRM estimates illustrate that the model functioned well 

except for extreme proficiency values, which is expected from an IRT model. The scatter plots 

involving the standardized sum scores show severe nonlinearity at the extreme proficiency 

values across all three settings. Furthermore, the standardized sum scores were close to discrete 

variables in Setting 3. This tendency of generating discrete scores can be problematic when the 

goal of score estimation involves clustering of the estimated scores, which was the case in this 

study. The second-order GRM estimates did not suffer from this issue, making the model-based 

proficiency estimates more desirable for this study. In sum, the correlations in Table 4-7 and the 

scatter plots in Figure 4-2 illustrate the advantage of using the second-order GRM over a simple 

average scoring method in the context of this study.    

It should be noted that the simulation study reported in this section was limited in that it only 

investigated a single case from each setting. More extensive simulation studies are needed to 

rigorously evaluate the performance of the second-order GRM under various settings. However, 

despite this limitation, the results were encouraging. The second-order GRM successfully 

recovered the true parameters under all three settings. The 95 percent Bayesian credible intervals 

estimated by the model always contained the true parameter values. This was the case even under 

the most challenging setting (i.e., Setting 3) in which there were only two tasks and a large 

proportion of missing data were present. Setting 3 was designed to be highly comparable to the 

TOP dataset, and the performance of the second-order GRM in Setting 3 provided a justification 

for its use with the TOP dataset.       
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4.1.3 Summary of the section 

This section reported the results of a simulation study that evaluated the parameter recovery 

of the second-order GRM. Three simulation settings were specified to present the characteristics 

of typical language performance assessment contexts. The settings presented varying levels of 

challenge to the model, and the most challenging setting, namely Setting 3, was designed to be 

comparable to the TOP dataset in that they both shared the same number of tasks and observed 

rater scores, as well as the same missing data mechanism. Across all three settings, model 

parameters were estimated using MCMC as the main estimation method. The starting values of 

the MCMC estimation were obtained using ML estimates and standard errors. The simulation 

results showed that the second-order GRM successfully recovered all rater parameters and the 

test taker proficiency variances across all three settings. In addition, in each setting, the second-

order GRM generated test taker proficiency estimates that were highly correlated with the true 

values. The added value of using the second-order GRM was evaluated by comparing the 

correlation between the true values and the model estimates to the correlation between the true 

values and the standardized sum scores. The second-order GRM estimates were more highly 

correlated with the true values than the standardized sum scores were across all three settings. 

Overall, the results of the simulation study showed that the second-order GRM was capable of 

recovering its parameters in practical settings, and that the use of the second-order GRM had a 

clear advantage over a simple average scoring method in estimating the model-based subscale 

scores.      
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4.2 Estimation of the model-based subscale scores 

Given the positive results of the simulation study, the model-based subscale scores of the 960 

TOP test takers were estimated using the second-order GRM. The model estimation involved 

two approaches: maximum likelihood (ML) with the reparameterization described in Chapter 3 

and MCMC based on a full Bayesian framework. The latter was the main estimation approach 

for the model-based subscale scores. The ML approach was used to obtain sensible starting 

values for the MCMC estimation and to facilitate a better understanding of the target 

distributions of model parameters. The choice of adopting the MCMC approach was based on 

practical grounds. Due to the incomplete block design of the TOP rater assignment rule, it was 

necessary to estimate the rater parameters based on a relatively small sample. The lowest cutoff 

parameters were particularly problematic considering the rare use of the lowest score by the 

raters, as depicted in Figures 3-1 and 3-2 in Chapter 3. However, the distinction between the 

lowest and the second lowest scores was important. The lowest score indicates a severe 

communication failure, whereas the second lowest score implies difficulties in communication. 

Therefore, estimating the lowest cutoff parameters, as well as distinguishing the two lowest 

scores, was of substantive interest. A Bayesian framework can be used to regularize parameter 

estimation through the specification of prior distributions, and therefore, was preferred over the 

ML approach which can fail to estimate parameters under the lack of data. 

This section reports the results of the model-based subscale score estimation. The 

organization of this section follows the order of analysis. First, the procedures of the ML 

approach are described. The main MCMC estimation procedures are presented next, followed by 

the report of the resulting estimates.          
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4.2.1 ML estimation procedures 

The purpose of the ML estimation phase was twofold: to obtain sound starting values and to 

facilitate an understanding of the target distribution for the subsequent MCMC estimation. As 

with any iterative algorithm, MCMC benefits from good starting values (see, e.g., Spiegelhalter, 

Best, Gilks, & Inskip, 1996). In addition, it is desirable to achieve a solid understanding of the 

target distribution before conducting an MCMC analysis (Gelman et al., 2003). ML estimates are 

recommended as good candidates for sound starting values and as a means to obtain a concrete 

understanding of the target distribution (Gelman et al., 2003).  

Some modeling details were specific to the ML estimation, and therefore, were not shared by 

the subsequent MCMC estimation. As previously mentioned, the lowest scoring category was 

seldom used, and not enough data were available to estimate the cutoff that divides the lowest 

and the second lowest scores. Consequently, the two lowest score categories were collapsed for 

the ML estimation, resulting in two, instead of three, cutoff parameters per rater. Collapsing the 

lowest two categories could introduce a downward bias in estimating the variance of model-

based subscale scores, since the distinction between the collapsed categories was lost. In addition, 

the overall rater severity parameter, τr for rater r, involved a reparameterization of the standard 

GRM, which is difficult to implement with an IRT software package. Therefore, the overall rater 

severity parameters were absorbed in the corresponding rater cutoff parameters. The resulting 

parameterization for the ML estimation presented a form highly comparable to a bifactor GRM 

(Cai, Yang, & Hansen, 2011; Gibbons et al., 2007).  

ML estimation, in general, does not require prior distributions for model parameters. 

However, it is possible to specify prior distributions for all or a selected subset of parameters to 
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help stabilize estimation when parameters are estimated based on a relatively small sample. As 

noted in Chapter 3, when viewed from a second-order GRM perspective, the TOP dataset 

contained an overwhelming amount of missing data due to its incomplete block design. 

Consequently, rater parameters were estimated based on sparse data. Prior distributions for rater 

discrimination parameters were specified to ameliorate this issue. Since the discrimination 

parameter is seldom negative, a prior distribution that is frequently used for this in the IRT 

literature is a lognormal distribution (e.g., Patz & Junker, 1999). Following this convention, all 

rater discrimination parameters were given a lognormal prior with mean equal to zero and 

standard deviation equal to 0.25. 

Additional constraints were imposed to identify the model. Since the TOP consists of two 

tasks, the model-based subscale score of test taker i (i.e., θi) is a second order factor based on two 

first order factors (i.e., ξi1 and ξi2). Therefore, an equality constraint was needed on the loadings 

from the second-order factor to the first-order factors (i.e., λ1 = λ2). In addition, both loadings 

were set to be equal to one. When translated into the standard bifactor model terminology, these 

conditions implied that the slopes on the general factor and the specific factors were all set to be 

equal. This can be easily shown by inspecting the equation (10) in Chapter 3. In particular, when 

λj = 1, ar λj = ar. In addition, the variances of task-specific errors (i.e., diagonal elements of Ψ) 

were fixed at one. The above conditions allowed the variance of model-based subscale scores 

(i.e., ߪఏ
ଶ) to be freely estimated and interpreted in a straightforward manner. In particular, the 

resulting model-based subscale score variance reflected its relative size compared to the task-

specific error variances. The flexMIRT syntax implementing the aforementioned setup is given 

in Appendix C. 
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The second-order GRM introduced in this study is a univariate model in that it involves only 

one proficiency factor (in this study, the model-based subscale score). Since the TOP employs an 

analytic scoring scheme consisting of four subscales, four parallel analyses were conducted. That 

is, each scale was investigated using a univariate model. The aforementioned modeling details 

were universally applied to all four parallel analyses. It is theoretically possible to model the 

TOP analytic scoring scheme as a multivariate second-order GRM. The resulting multivariate 

model can be reparameterized into a two-tier model (Cai, 2010; Cai, Yang, & Hansen, 2011) 

with appropriate restrictions. Fitting this multivariate second-order GRM model to the TOP 

dataset would have been more desirable in theory than running four parallel univariate models.  

The multivariate second-order GRM, however, would involve heavy computation even with 

the two-tier dimension reduction. For the TOP dataset, it involves as many as four general level 

factors. In addition, such a multivariate model cannot be built without a thorough understanding 

of rater behaviors under analytic scoring contexts. For example, little is known about the extent 

to which raters tend to remain equivalently harsh or lenient across different subscales. A similar 

point can be made for rater discrimination across different subscales. The lack of relevant 

substantive knowledge made it difficult to propose a complicated model such as the multivariate 

second-order GRM. Therefore, in this study, it was decided to run four parallel univariate 

analyses. Nevertheless, a multivariate version of rater models for analytic scoring schemes 

presents a promising line of research considering the popularity of analytic scoring schemes in 

the language testing field (Luoma, 2004; Weigle, 2002). 
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4.2.2 MCMC estimation of model-based subscale scores 

This part of the study adopted a full Bayesian framework and utilized MCMC as a means to 

estimate the model-based subscale scores of the 960 TOP test takers. The starting values of 

Markov chains were obtained based on the ML estimates. The modeling details for the ML 

estimation largely remained unchanged except for prior distributions and identification 

conditions.  

4.2.2.1 Prior distributions 

The specification of prior distributions is an integral part of Bayesian modeling. Prior 

distributions reflect the nature and amount of prior knowledge available for model parameters; 

strong prior information is incorporated through the use of a strong prior distribution, while weak 

prior distributions are often employed to indicate the lack of available information (Gelman et al., 

2003; Gill, 2007). In general, little was known about the parameters of the second-order GRM in 

the TOP setting. While the results of the ML estimation were available, it would have been 

premature to specify strong prior distributions based solely on these. Furthermore, information 

about rater parameters was particularly difficult to obtain a priori. For example, it was not clear 

how to gauge a rater’s discrimination power before fitting an IRT model. Consequently, it was 

decided to specify relatively vague prior distributions for the second-order GRM parameters. 

In the IRT literature, it is standard procedure to set conjugate priors when they are reasonable 

(see, e.g., Fox, J-P, 2010; Patz & Junker, 1999). This study followed this in adopting conjugate 

priors where feasible. In particular, prior distributions for rater cutoff (i.e., γrk), overall rater 

severity (i.e., τr), task-specific error (i.e., uij), and subscale score (i.e., θi) parameters were all 

specified as normal distributions. However, a normal distribution was not appropriate for the 
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rater discrimination parameter (i.e., ar) because discrimination is seldom negative. Therefore, 

this study specified a normal distribution truncated below zero as the prior distribution of rater 

discrimination parameters.4 Lastly, the variance of model-based subscale scores (i.e., ߪఏ
ଶ) was 

given an Inverse-Gamma prior distribution. To reflect the lack of prior knowledge for the 

parameters, the prior normal distributions were given large variances. The Inverse-Gamma prior 

distribution for the model-based score variance was also intentionally vague. The prior 

distributions of the model parameters are summarized in Table 4-8.  

Table 4-8 

Prior Distributions for the Second-order GRM Parameters 

Parameter Prior Distribution 
Discrimination (ܽ௥) N(0, 10), truncated below 0 

Severity (߬௥) N(0, 10) 
Cutoff (ߛ௥௞) N(0, 4) 

Model-based score (ߠ௜ሻ N(0, ߪఏ
ଶ) 

Model-based score variance (ߪఏ
ଶ) Inverse-Gamma(1,1) 

Task-specific error (ݑ௜௝ሻ N(0, 1) 
 

It is noteworthy that the MCMC estimation utilized a different approach to model 

identification from that used for the ML estimation. The ML approach involved fixing the 

variances of task-specific error terms at one. The MCMC approach, on the other hand, achieved 

the same goal through the prior distribution of uij, as can be seen in Table 4-8. In particular, the 

prior distribution of uij had a fixed variance equal to one. The difference between the variance of 

task-specific error terms and the variance of model-based subscale scores is also noteworthy. 

While the former was fixed a priori, the latter was freely estimated based on the Inverse-Gamma 

                                                            
4 Another popular choice for the discrimination parameter in the literature is a lognormal distribution (e.g., 
Patz & Junker, 1996). A later trial with a lognormal prior on the rater discrimination parameters suggested 
that the impact of a choice between the two prior distributions was trivial. 
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prior and the data, relative to the size of the former. This is analogous to their relationship in the 

ML estimation context.  

4.2.2.2 Markov chain construction and run 

The model likelihood specified in Chapter 3 and the prior distributions in Table 4-8 were 

used to construct Markov chains for the parameter estimation. The aforementioned modeling 

details were directly translated into WinBUGS 1.4.3 (Lunn et al., 2000). The resulting 

WinBUGS syntax used to construct Markov chains is provided in Appendix D. 

Monitoring and evaluating the convergence of Markov chains is one of the most important 

and difficult parts of any MCMC application (Cowles & Carlin, 1996). Researchers have 

proposed several analytical approaches to convergence checking (e.g., Rosenthal, 1993, 1995a, 

1995b), as well as convergence diagnostic measures (e.g., Gelman & Rubin, 1992; Geweke, 

1992; Raftery & Lewis, 1992). While the analytical approaches are more desirable in theory, it is 

often difficult to adopt them in an applied setting. The convergence diagnostic measures are 

more straightforward to implement. When the evaluation of convergence relies on diagnostic 

measures, it is recommended to base the evaluation on multiple measures (Cowles & Carlin, 

1996; Gelman & Shirley, 2011). In this study, the convergence of chains was monitored using 

the shrinkage factor (Gelman & Rubin, 1992). Other diagnostic measures suggested by Geweke 

(1992) and Raftery and Lewis (1992) were also examined.  

The shrinkage factor (Gelman & Rubin, 1992) requires running multiple chains in parallel 

since it is calculated based on an ANOVA-like comparison of within- and between-chain 

variances. Running multiple chains has other benefits, including the mitigation of concerns about 

dependence between consecutive draws (i.e., autocorrelation). Large autocorrelation is 
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problematic since it reduces the number of effective sample draws from which inferences can be 

made. However, if draws from multiple chains are randomly mixed, the concern for high 

autocorrelation is ameliorated (Gelman, 1996; Gelman & Shirley, 2011). The number of parallel 

chains was determined by both theoretical and practical considerations. Theoretically, the more 

chains the better. However, more chains means more computing time, and it is often advised that 

three to five chains are sufficient for most practical applications (Gelman et al., 2003). Therefore, 

in this study, it was decided to run five parallel chains per subscale.  

It is of substantial importance to arrange Markov chains such that they could travel through 

the entire joint posterior distribution of model parameters. Gelman and Rubin (1992) suggest a 

two-step process in which one first establishes an over-dispersed version of the target 

distribution, and then draws starting values from the over-dispersed distribution. Their approach, 

however, can be difficult to implement in practice, and researchers instead have relied upon 

different sets of starting values that are well separated from one another to ensure the appropriate 

coverage of the target distribution (Gelman & Shirley, 2011). This study used the point estimates 

and the standard errors from the ML estimation to obtain sets of starting values that were distant 

from each other. In particular, five sets of starting values, one for each of the five parallel chains, 

were obtained in the following manner. Chain 1 starting values were equal to the ML point 

estimates. Chain 2 and 3 starting values were equal to the ML point estimates plus and minus, 

respectively, 1.5 times the corresponding standard errors. Similarly, the ML point estimates plus 

and minus three times the corresponding standard errors comprised of Chain 4 and 5 starting 

values, respectively. There were two sets of parameters in the MCMC setup that did not have a 

direct counterpart in the ML estimation, namely rater cutoff and severity parameters. For those 

two parameters, randomly generated starting values were used. Lastly, the missing values in the 
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observed rater scores were given the rounded averages of available rater scores as their starting 

values. 

Each chain was run for 15,000 iterations. The coda package (Plummer, Best, Cowles, & 

Vines, 2006) in R (R Core Team, 2012) was used to monitor the convergence of chains. All 

chains appeared to converge after approximately 5,000 draws. In particular, the Gelman-Rubin 

shrinkage factor for each and every parameter became smaller than the usual cutoff of 1.1 after 

the first 5,000 draws. Other diagnostic measures also agreed that the chains had reached 

convergence after 5,000 draws. Consequently, the first 5,000 draws were discarded as “burn-in” 

samples. This left 10,000 effective sample draws per chain. The five parallel chains were then 

combined, resulting in a total of 50,000 sample draws. All 50,000 draws were used to summarize 

the joint posterior distributions of model parameters.           

4.2.2.3 MCMC estimation results 

It is of little use to interpret estimates from a model that does not fit the data well. The 

model-based subscale scores were dependent upon the second-order GRM, and thus the model 

goodness of fit was important. Unfortunately, however, in Bayesian modeling a convenient 

absolute fit statistic such as the limited information M2 statistic (Cai & Hansen, 2012; Maydeu-

Olivares & Joe, 2005) is not available. Consequently, the fit of the second-order GRM was 

instead evaluated by comparing it to the fit of a similar model. In particular, a hierarchical rater 

model (HRM; Patz, Junker, Johnson, & Mariano, 2002) was selected for the comparison due to 

its similarity to the second-order GRM in terms of model parameters. The fit of the second-order 

GRM and the HRM to the TOP dataset were compared using a set of relative model fit indices.  
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The second-order GRM and the HRM are not nested models. That is, one cannot impose a set 

of constraints to obtain the second-order GRM from the HRM or vice versa. Therefore, the usual 

chi-square difference test was not appropriate in comparing the goodness of fit of the two models. 

The comparison of model goodness of fit was instead conducted based on the Akaike 

Information Criterion (AIC; Akaike, 1974) and the Bayesian Information Criterion (BIC; 

Schwartz, 1978), both of which can be employed to compare non-nested models. A model with 

the smallest AIC or BIC is preferred. Both AIC and BIC are calculated based on the maximized 

log-likelihood given a model and the number of free parameters of the model. In particular, let 

Lmax be the maximized log-likelihood, p be the number of free parameters, and n be the sample 

size. AIC and BIC are obtained as 

ܥܫܣ ൌ 	െ2	ܮ௠௔௫ ൅   ;݌2

ܥܫܤ ൌ 	െ2	ܮ௠௔௫ ൅ ݌ log ݊. 

The above equations show that both AIC and BIC consist of two parts. The first term on the right 

hand side represents the model goodness of fit, while the second term penalizes model 

complexity. The maximized log-likelihood of the HRM was obtained by fitting the HRM to the 

TOP dataset. The HRM parameterization in this study was the same as described in Patz et al. 

(2002). Three parallel chains were constructed for each subscale HRM run. Each chain was run 

for 15,000 iterations, and the first 10,000 iterations were discarded as burn-in. Table 4-9 gives 

minus two log-likelihood, the number of free parameters, AIC, and BIC of the second-order 

GRM and the HRM for each subscale. 
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Table 4-9 

Model Fit Comparison between the Second-order GRM and the HRM 

Subscale Model # Parameters െ2  ௠௔௫ AIC BICܮ

PR 
2nd-order GRM 72 3216.88 3360.88 3711.30 

HRM 43 3306.96 3392.96 3602.24 

LG 
2nd-order GRM 72 3509.27 3653.27 4003.69 

HRM 43 3887.66 3973.66 4182.94 

RO 
2nd-order GRM 72 3902.34 4046.34 4396.76 

HRM 43 4120.77 4206.77 4416.05 

QH 
2nd-order GRM 72 3536.06 3680.06 4030.48 

HRM 43 3862.88 3948.88 4158.16 
 

Note. Boldfaced entries represent the preferred model. 

Table 4-9 shows that the second-order GRM was the better fitting model across all subscales, 

as indicated by the smaller minus two times log-likelihood values. The second-order GRM, 

however, was the more complicated model in that it had more free parameters than the HRM. 

Both AIC and BIC contain a penalty term for model complexity measured by the number of free 

parameters. Since log(960) is larger than 2, BIC imposed a heavier penalty on the second-order 

GRM in the TOP dataset. Despite the penalty, however, the second-order GRM was the 

preferred model by both AIC and BIC for Lexical Grammar, Rhetorical Organization, and 

Question Handling. AIC and BIC yielded mixed results for Pronunciation. The second-order 

GRM was preferred by the former, whereas the HRM was preferred by the latter. However, it 

should be noted that the HRM was preferred by BIC for Pronunciation due to its simplicity, not 

because of better fit. In sum, the second-order GRM was superior to the HRM in terms of model 

fit across all subscales, albeit with added complexity. 

The TOP dataset consisted of 960 test takers’ TOP subscale scores given by 18 raters. 

Consequently, the second-order GRM yielded the estimates of 18 rater discrimination parameters, 
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17 rater severity parameters,5 and 36 rater cutoff parameters6 per subscale. All rater parameter 

estimates were within a reasonable range. Since the rater parameters were not of central interest 

in this study, the resulting estimates are not reported or interpreted here. Instead, the rater 

parameter estimates and the corresponding standard errors are provided in Appendix E. 

The model also estimated the variance of model-based subscale scores for each subscale. 

Recall that every task-specific error variance, as well as every loading, was fixed at one for 

identification. The estimated subscale score variances can be interpreted in relation to the task-

specific error variances, which were all equal to one. For example, if the resulting estimate of a 

subscale score variance is 20, the estimated model-based subscale score variance is twenty times 

larger than the task-specific error variance for that scale. Table 4-10 gives the resulting estimates 

of model-based score variances and the corresponding 95% Bayesian credible intervals. As 

previously mentioned, WinBUGS parameterizes precision (i.e., the reciprocal of variance) for 

normal distributions. Therefore, the reciprocal of the estimated variance of each subscale is given 

in the first row of Table 4-10 with the corresponding intervals. The second row of Table 4-10 

presents the point estimates on the original variance scale.   

Table 4-10 

Model-based Subscale Score Variance Estimates 

 PR LG RO QH 
ఏߪ/1

ଶ 0.029 (0.017, 0.042) 0.048 (0.034, 0.068) 0.165 (0.110, 0.230) 0.079 (0.054, 0.114) 
ఏߪ
ଶ 34.98 20.68 6.05 12.58 

 

Note. The 95 percent Bayesian credible intervals are presented in the parentheses. 

                                                            
5 The first rater’s severity was fixed at zero for identification. 
6 Two cutoff parameters were estimated for each of 18 raters due to the sum-to-zero constraint on the third cutoff. 
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Table 4-10 shows that the magnitude of score variance relative to the task-specific error 

variance differed across the four subscales. Pronunciation showed the largest variance, implying 

the smallest impact due to task-specific fluctuations. The estimated variance for Rhetorical 

Organization was the smallest at 6.05, which suggested that, once rater effects were accounted 

for, the ratio of the model-based Rhetorical Organization score variance to the task-specific error 

variance was approximately 6:1. The difference among the variance estimates was in line with 

the test design. In particular, given the different organizational nature between the two TOP tasks 

(a syllabus presentation task and a short lecture task), it was expected that the most notable 

between-task difference would occur in Rhetorical Organization. On the other hand, it was 

reasonable to expect to observe little difference in terms of Pronunciation across the two TOP 

tasks.   

The model-based subscale scores were calculated based on the rater parameters and the 

subscale variance parameters. The resulting scores were compared to observed sum scores, 

which were calculated by simply adding the two observed rater scores together. The distributions 

of the model-based subscale scores and the observed sum scores are presented in the first and 

second rows, respectively, of Figure 4-3.  
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Figure 4-3 shows that the model-based subscale scores successfully captured the distributional 

characteristics of the observed sum scores. In particular, multiple modes in the sum score 

distributions were retained by the corresponding model-based score distributions. Furthermore, 

by virtue of being continuous, the model-based subscale scores ensured more fine-tuned 

distinction among test takers than the observed sum scores. The continuous nature of the model-

based subscale scores was particularly well-suited for a clustering technique to explore 

underlying group structures in terms of subscale score patterns. Indeed, the fine-tuned distinction 

available with continuous variables was one of the main motivations for the model-based 

subscale score estimation in this study.  

Bivariate relationships among the four subscales were examined using Pearson product-

moment correlation coefficients. The correlation coefficients among the model-based subscale 

scores are given in the upper diagonals of Figure 4-4. Figure 4-4 also presents the corresponding 

scatter plots in the lower diagonals.  
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Figure 4-4. Scatter plots and correlations among the TOP subscales 

A few outliers can be found in each plot, but the proportion of the outliers was not large enough 

to affect the overall correlations. Furthermore, the scatter plots show no sign of curvilinear 

relationships among the subscale scores. All subscales were highly correlated with one another. 

Pronunciation and Rhetorical Organization were the least correlated subscales, but even their 

correlation was as high as 0.58. The highest correlation, which was approximately 0.74, was 

observed between Pronunciation and Lexical Grammar. 
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4.2.3 Summary of the section 

This section reported the procedures and the results of the model-based subscale score 

estimation. The model-based scores were estimated using the second-order GRM with MCMC as 

the main estimation method. Five chains were constructed for each of the four TOP subscales. 

Each chain was run for 15,000 iterations from the starting values that were obtained based on 

ML estimates and standard errors. Multiple convergence diagnostic indices suggested that the 

chains converged after 5,000 iterations. Consequently, the first 5,000 draws were discarded as 

the burn-in samples and the remaining draws were used to summarize the joint posterior 

distribution of model parameters. The goodness of fit of the second-order GRM was evaluated in 

relation to the goodness of the fit of a similar model, namely the HRM (Patz et al., 2002). The 

model fit comparison between the second-order GRM and the HRM showed that the former 

model fit the data better than the latter model across all subscales, albeit with more free 

parameters. The distributions of the estimated model-based subscale scores were compared to the 

observed sum score distributions. The comparison showed that the two sets of distributions were 

highly comparable across all subscales. The key difference between them was the continuous 

nature of the estimated model-based scores. Obtaining continuous scores was the main 

motivation of the use of the second-order GRM in that these provided more fine-tuned 

distinctions among test takers. The model-based scores were highly correlated across all 

subscales.          

4.3 Clustering of TOP subscale score patterns 

The second-order GRM fitted to the TOP dataset yielded four model-based subscale scores, 

one per subscale, for each of the 960 test takers. The resulting model-based scores were plugged 
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in for use as the data for the subsequent mixture analysis. That is, the estimated model-based 

subscale score for test taker i on subscale h was used as the (i, h)th element of the mixture model 

data matrix X presented in Chapter 3.  

The plug-in procedure adopted in this study (i.e., using the estimates of the second-order 

GRM as the data for the mixture analysis) is not the most desirable approach from a purely 

theoretical point of view. The main caveat of a plug-in approach is that it ignores the uncertainty 

involved in plugged-in estimates and treats the estimates as given values. A direct approach that 

can acknowledge the uncertainty inherent in estimates is more desirable. In this study, such a 

direct approach would amount to a mixture of second-order GRMs. However, mixtures of IRT 

models have been largely limited to the Rasch model family (see, e.g., Cho, Cohen, & Kim, 2013; 

Rost, 1990; Rost & von Davier, 1995) due to technical difficulties. A mixture model using the 

second-order GRM as a component distribution is not currently feasible. The decision to rely on 

the plug-in procedure, instead of adopting the direct approach, was made based on this practical 

consideration. 

This section reports the results from the mixture model analysis for investigating subscale 

score profile groups. The results are presented in the following order. First, the employed 

mixture models are described in detail. Model selection procedures are reported next. Lastly, the 

group structures suggested by the selected model are interpreted.  

4.3.1 Mixture component distributions 

Mixture component distributions were selected based on the empirical distributions of the 

model-based subscale scores and the structure of the TOP. A visual inspection of the model-

based score distributions in Figure 4-3 suggested that each subscale distribution could be 
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modeled as mixtures of normal distributions. Normal component distributions also have practical 

advantages such as ease of computation and interpretation. The dimensionality of component 

distributions was determined to reflect the test design. In particular, since the TOP consists of 

four subscales, it was natural to consider four dimensional distributions as mixture components. 

The examination of the correlation structure among the subscales presented in Figure 4-4 did not 

suggest any need to collapse the existing dimensions, which also supported the choice of four-

dimensional component distributions. Consequently, four-dimensional normal distributions were 

selected as mixture component distributions.  

It is possible to enhance computations involved in model estimation by imposing restrictions 

on the parameters of component distributions. However, such restrictions should be made with 

caution. It is well known that restrictions on component covariance matrices could negatively 

affect the performance of mixture models even when those restrictions are not completely 

unreasonable (McLachlan & Peel, 2000). Since this study adopted a standard mixture model with 

normal component distributions, the associated computational burden was of little concern. 

Furthermore, the subscale covariance structure in Figure 4-4 did not provide any justification for 

component parameter restrictions. For example, the considerable correlations among all 

subscales prohibited restricting the component covariance matrices to be diagonal matrices. 

Consequently, no restriction was made on the parameters of component distributions. That is, the 

mean vectors and the covariance matrices of the four-dimensional normal component 

distributions were all freely estimated. 
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4.3.2 Model selection 

Multiple mixture models were fitted to the model-based subscale score. Since the type of 

component distributions was fixed (i.e., four dimensional normal distributions), the focus of 

model fitting was to find the number of underlying subscale profile groups that could adequately 

account for the data. Both statistical and substantive criteria were considered in the process of 

model selection. The statistical goodness of fit was evaluated using BIC. BIC has been 

successfully applied to mixture modeling for density estimation (see, e.g., Roeder & Wasserman, 

1997; Solka, Wegman, Priebe, Poston, & Rogers, 1998). Furthermore, simulation results suggest 

that BIC performs better in finding the number of components than other indices including AIC 

(see, e.g., Cho et al., 2013; Dasgpta & Raftery, 1998; McLachlan & Peel, 2000). The generalized 

variances of component distributions were also monitored. In particular, solutions involving a 

component distribution with extremely small generalized variance were carefully investigated to 

avoid spurious solutions. Substantive interpretability was another important consideration. Given 

the exploratory nature of this study, the objective was to find a clear solution which could lead to 

better understanding of the TOP dataset. Consequently, solutions were evaluated in terms of their 

substantive interpretability.  

Figure 4-5 presents the BIC values of the best fitting models conditional on the number of 

components, which ranges from one to ten. Models with more than ten component groups 

yielded BIC values less satisfactory than the models included in the figure.  
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Figure 4-5. BIC of the best solutions given the number of component groups (from one to 10) 

Figure 4-5 suggests that there were three modes within the range, and that the best fitting model 

corresponded to the seven group solution. Solutions corresponding to the three modes, namely 

the four, seven, and ten group solutions were examined in terms of the generalized variances of 

component distributions as well as interpretability. The ten group solution contained several 

spurious groups with very small generalized variances, which made it difficult to interpret. Both 

the four group solution and the seven group solution appeared legitimate in terms of the 
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generalized variances and interpretability. However, the seven group solution was preferred 

because of the following two reasons. The seven group solution fit the data much better than the 

four group solution, as can be seen in Figure 4-5. Furthermore, the four group solution yielded 

larger uncertainties in classifying the TOP test takers into groups. Consequently, the seven group 

solution was selected as the final model. 

The component parameters of the final model included the mean vector and the covariance 

matrix of each component distribution, as well as the proportion of each component in the 

population. Table 4-11 presents the estimates of component-specific mean vectors and 

proportions. The component-specific covariance matrices are given in Appendix F.  

Table 4-11 

Mixture Model Parameter Estimates for Component Distributions 

 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 
Proportion (%) 10.07 19.22 23.01 10.20 16.73 15.29 5.49 
PR Mean 10.72 5.55 -3.65 -5.99 -1.33 1.47 1.15 
LG Mean 7.38 4.02 -2.04 -3.99 -0.61 1.33 -0.44 
RO Mean 2.60 1.78 -1.16 -1.27 -0.17 1.14 -0.52 
QH Mean 3.64 3.36 -0.71 -3.56 -0.63 1.48 -1.05 
 

Table 4-11 shows that the groups were largely comparable in terms of their proportion. The 

largest group, namely Group 3, comprised slightly less than a quarter of the entire sample, while 

Group 7 was the smallest group and accounted for approximately five percent. The mean vectors 

of Groups 1 through 4 indicate a clear hierarchy among the four groups. In particular, Group 1 

consisted of test takers of highest model-based scores on all subscales, followed by Group 2. 

Group 4 test takers in general received the lowest scores on all subscales.   
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In addition, the selected final model estimated the probability of a test taker’s being classified 

into each of the seven groups. For an illustration, the estimated classification probabilities for the 

first five test takers are provided in Table 4-12.  

Table 4-12 

An Excerpt of the Estimated Classification Probabilities 

 G1 Prob. G2 Prob. G3 Prob. G4 Prob. G5 Prob. G6 Prob. G7 Prob. 
TT #1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
TT #2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
TT #3 0.00 0.02 0.96 0.01 0.00 0.00 0.00 
TT #4 0.00 0.00 0.36 0.64 0.00 0.00 0.00 
TT #5 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

… … … … … … … … 
 

Note. TT = Test Taker; G = Group; Prob. = Probability of being classified into that group  

All 960 test takers were assigned a component group membership according to the estimated 

classification probabilities. Specifically, a test taker was classified into the group that had the 

highest classification probability. For example, Test Takers 1, 2, and 5 in Table 4-12 were 

classified into Group 2, while Test Takers 3 and 4 were classified into Groups 3 and 4, 

respectively. Almost all classifications were made with a high degree of confidence. In other 

words, the uncertainty involved with the classification was in general very small. The 

classification uncertainty can be calculated as the difference between one and the highest 

classification probability. For example, the classification uncertainty of Test Taker 3 in Table 4-

12 was 0.04 (i.e., 1 – 0.96). Figure 4-6 presents the cumulative percentages of the 960 test takers 

according to the classification uncertainty.  
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Figure 4-6. The cumulative percentages of the 960 test takers according to the classification 
uncertainty 

Figure 4-6 shows that the final model classified more than half of the test takers with more than 

90 percent probability (or, equivalently, less than 10 percent uncertainty). Furthermore, 810 out 

of the 960 test takers were given a group membership with classification uncertainties lower than 

30 percent. Out of 960, only eight classifications involved classification uncertainties larger than 

50 percent. 
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Chapter 3, the linguistic background (i.e., L1) of the 960 test takers was known. In addition, the 

decision category of each test taker was retrieved from the TOP database.  

To further facilitate the interpretation of the final model, it was decided to focus on test 

takers who were assigned a component group membership with a high degree of confidence. 

Consequently, test takers whose classification uncertainty exceeded 30 percent were not 

considered in interpreting the profile group structure suggested by the final model. The choice of 

the 30 percent cutoff was driven by practical considerations. The 30 percent cutoff provided a 

reasonable degree of confidence in the classification results, while retaining approximately 85 

percent (810 out of 960) of the entire sample. Furthermore, test takers whose L1 was not 

specified in the dataset or did not belong to the nine major language groups were excluded from 

the interpretation. These two filtering procedures left a total of 765 test takers who were assigned 

a group membership with a high-degree of confidence and whose L1 belonged to one of the nine 

major language groups. While these two procedures resulted in approximately a 20 percent 

reduction in the sample size, the remaining sample of 765 test takers did retain major 

characteristics of the entire TOP dataset. Figure 4-7 gives the proportions of the major language 

groups and the TOP decision categories in both the entire TOP dataset and the reduced sample of 

765. 
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Figure 4-7. The proportions of the first language groups and TOP decision categories in the main 
L1/entire sample and the reduced sample 
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The two sets of proportions showed little difference, suggesting that the reduced sample was 

representative of the entire dataset in terms of the test taker L1 and decision category. This 

provided a justification for focusing the interpretation of the mixture modeling results on the 

reduced sample. For simplicity, the reduced sample will be referred to as the baseline sample.  

In the remainder of this section, the group structure suggested by the final model is presented 

in detail. For each of the seven groups, group members’ model-based subscale score patterns are 

presented first. The composition of each group in terms of group members’ L1 as well as their 

decision categories is reported next. Finally, each group is labeled based on its group members’ 

characteristic subscale score patterns and background information.  

4.3.3.1 Interpreting mixture model results: Group 1 

The first group suggested by the final model consisted of test takers with very high model-

based scores on Pronunciation and Lexical Grammar. There were variations in the Rhetorical 

Organization and Question Handling scores. Figure 4-8 provides bivariate scatter plots that 

demonstrate the distributional characteristics of Group 1 members’ model-based subscale scores. 

Figure 4-8 also shows the TOP decision category of each test taker in Group 1. The characteristic 

feature of this group was the concentration of the Pronunciation and Lexical Grammar scores 

around the highest possible scores, as can be seen in Figure 4-8 (a). Figures 4-8 (b) to (f) 

illustrate that the variances of Rhetorical Organization and Question Handling accounted for 

almost all of the within-group variance. However, even the model-based scores on the two latter 

subscales did not vary widely in that those variations were mostly limited to above-average areas. 
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The distributional characteristics of the model-based subscale scores illustrated in Figure 4-8 

provided a basis for a clear understanding of Group 1. The characteristic subscale score pattern 

observed in Group 1 was consistent with a pattern expected from a typical English native speaker. 

The TOP scoring rubric was designed such that a typical native speaker of English should be 

able to receive perfect scores on Pronunciation and Lexical Grammar, but not necessarily on 

Rhetorical Organization and Question Handling. However, a typical English native speaker is 

likely to score highly on the two latter subscales. All Group 1 members passed the test, which 

also supports interpreting Group 1 as the group of near native speakers of English. 

The linguistic background of Group 1 members was in line with the near-native 

interpretation. Figure 4-9 presents the proportion of each L1 group in Group 1 as well as the 

corresponding baseline proportions.  
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Figure 4-9. L1 proportions in Group 1 

It is evident from Figure 4-9 that the proportion of English speakers in Group 1 was considerably 

higher than the corresponding baseline proportion. In fact, English speakers were the largest L1 

group in Group 1 despite its very small baseline proportion. Approximately 70 percent of all 

English speaking test takers (18 out of 27) belonged to this group. Germanic language speakers 

comprised the second largest L1 group in Group 1, followed by Romance language speakers. 

The proportion of Germanic language speakers in Group 1 was also much higher than their 

baseline proportion. On the other hand, the proportion of Chinese and East Asian language 

speakers was much lower in Group 1 than in the baseline sample.  
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In sum, test takers who were classified into Group 1 possessed a profile consisting of almost 

perfect scores on Pronunciation and Lexical Grammar and above average scores on Rhetorical 

Organization and Question Handling. This pattern was consistent with what would be expected 

from a typical English native speaker. The linguistic background of Group 1 members agreed 

with the subscale score profile in that the largest L1 group consisted of English speaking test 

takers. Speakers of Germanic and Romance languages also accounted for large proportions in 

Group 1, which was expected considering their linguistic similarities to English. The subscale 

score pattern and the linguistic background of group members made it clear that Group 1 

members possessed a near-native level of academic oral English proficiency. Consequently, 

Group 1 was labeled as the Near-native group.  

4.3.3.2 Interpreting mixture model results: Group 2 

The members of Group 2 turned out to carry a similar subscale score pattern to Group 1 

members, with one important difference. The model-based scores of Group 2 members varied 

across all four subscales, while only Rhetorical Organization and Question Handling contributed 

to the within-group variance of Group 1. Figure 4-10 (a) shows that Group 2 members also 

varied in terms of their Pronunciation and Lexical Grammar scores. The model-based scores of 

almost all Group 2 members were located around the top-right quadrant of Figure 4-10 (a), 

which indicates that most Group 2 members scored above average on the first two subscales. 

Figures 4-10 (b) through (f) illustrate the same pattern in all bivariate distributions. Therefore, a 

typical Group 2 test taker could be regarded as having above-average scores on all four subscales. 
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The subscale score pattern observed in Group 2 corresponded to what would be expected 

from a typical test taker with advanced academic oral English proficiency. A test taker who is 

not a native speaker of English but highly proficient in English should be able to score well on 

all four subscales and pass the test without difficulty. Figure 4-10 shows that Group 2 members 

met both expectations; the vast majority of Group 2 members scored above-average on every 

subscale, and all Group 2 members passed the test. However, even a highly proficient learner is 

expected to make some pronunciation errors and carry a distinguishable accent (see, e.g., 

Bongaerts, 1999; Fayer & Krasinski, 1987; Yeni-Komshian, Flege, & Liu, 2000). In addition, 

occasional grammatical errors and unnatural word choices are commonly found in the speeches 

of proficient but non-native speakers of a language (see, e.g., Han, 1998; Ju, 2000). It was, 

therefore, not surprising to see variations in the Pronunciation and Lexical Grammar scores 

among highly proficient non-native English speakers. 
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Figure 4-11 presents the proportion of each language group in Group 2 together with the 

corresponding baseline proportions. 

 

Figure 4-11. L1 proportions in Group 2 

Group 2 was overall similar to Group 1 in terms of the linguistic background of the members. 

The proportions of Arabic, Chinese, East Asian, and Slavic language speakers in Group 2 

deviated from the corresponding baseline proportions in the same direction as in Group 1. 

However, there were important differences between Group 2 and Group 1. First, the proportion 

of English speaking test takers was much smaller in Group 2. There were only a few English 

speaking test takers in this group. It is noteworthy that none of them were from the so-called 
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inner-circle countries (Kachru, 1985), in which English is used as the first language such as 

Canada and United Kingdom. All of the English speakers in Group 2 came from countries in 

which English is used as an official (second) language, such as India, Philippine, and Singapore. 

In contrast, many Group 1 English speakers were from inner-circle countries. The existence of 

English speaking test takers in Group 2 might appear counterintuitive given the interpretation of 

Group 1 as the near-native group. However, the difference in home countries between Group 2 

and Group 1 English speaking test takers provided a reasonable explanation. In particular, 

region-specific accents as well as grammatical and lexical differences in English used in outer-

circle countries can account for the variations in Pronunciation and Lexical Grammar observed 

in Group 1. Romance language speakers comprised the largest L1 group, and their proportion in 

Group 2 was much larger than their baseline proportion. Similarly, Indian language speakers 

accounted for a sizable portion of Group 2, and their proportion was much larger in Group 2 than 

in the baseline sample. English shares many commonalities with Romance languages and is used 

as an official language in India. Therefore, the relatively large proportion of Romance and Indian 

language speakers in Group 2 was consistent with the subscale score pattern involving high 

model-based scores across all four subscales.  

The model-based subscale scores suggested that test takers in Group 2 possessed advanced 

academic oral English proficiency across all subscales. Furthermore, every Group 2 member 

passed the test. The linguistic background of Group 2 members presented supporting evidence 

for the inference based on the subscale score pattern and the TOP decision category. A large 

number of Group 2 members were either speakers of languages that share similarities with 

English or came from countries in which English is used as an official language. Considering the 
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subscale score pattern, the TOP decision category, and the linguistic background characterizing 

the members of Group 2, it was reasonable to label Group 2 as the High Proficiency group.      

4.3.3.3 Interpreting mixture model results: Group 3 

Group 3 consisted of test takers with a different subscale score pattern than the two previous 

group members. Figure 4-12 gives the bivariate distributions of the model-based scores among 

the four subscales in Group 3. Variations were observed in all six scatter plots. The variations in 

Pronunciation and Lexical Grammar were largely concentrated around the below-average region. 

Rhetorical Organization and Question Handling scores varied slightly more. The bivariate 

relationships among the subscales were not always positive, as can be seen in Figure 4-12 (c). As 

expected from the widely varying scores on all subscales, all three decision categories were 

present in Group 3. The majority of Group 3 provisionally passed the test. The proportions of the 

fail and pass categories were comparable, each of which accounting for approximately 20 

percent of Group 3.  

  



 

 
 

109 

 

F
ig

ur
e 

4-
12

. B
iv

ar
ia

te
 r

el
at

io
ns

hi
ps

 b
et

w
ee

n 
th

e 
m

od
el

-b
as

ed
 s

ub
sc

al
e 

sc
or

es
 (

G
ro

up
 3

) 
 

-1
5

-1
0

-5
0

5
10

-10-50510

(a
)

P
ro

nu
nc

ia
tio

n

Lexical Grammar

P
a

s
s

P
ro

vi
s

io
n

a
l P

a
s

s
F

a
il

-1
5

-1
0

-5
0

5
10

-6-4-2024

(b
)

P
ro

nu
nc

ia
tio

n

Rhetorical Organization

-1
5

-1
0

-5
0

5
10

-10-505

(c
)

P
ro

nu
nc

ia
tio

n

Question Handling

-1
0

-5
0

5
10

-6-4-2024

(d
)

Le
xi

ca
l G

ra
m

m
ar

Rhetrocial Organization

-1
0

-5
0

5
10

-10-505

(e
)

Le
xi

ca
l G

ra
m

m
ar

Question Handling

-6
-4

-2
0

2
4

-10-505

(f
)

R
he

to
ric

al
 O

rg
an

iz
at

io
n

Question Handling



 

110 
 

The subscale score pattern characterizing Group 3 could be regarded as a middle ground 

between all-high profiles observed in Groups 1 and 2 and an all-low profile consisting of low 

scores across all subscales. It was clear that the test takers in Group 3 did not perform as well as 

Group 1 or 2 members. However, many Group 3 members received around- and even above-

average scores on more than one subscale. In addition, the majority of Group 3 members 

belonged to the provisional pass category, which functions as a middle category between pass 

and fail. The intermediate nature of Group 3 is illustrated in Figures 4-12 (a), (c), and (e), which 

show the concentration of Group 3 members around the central regions. 

The subscale score pattern and the decision categories of Group 3 members can be 

interpreted as supporting evidence for the current university policy for provisionally passed test 

takers, which mandates them to take any ESL oral-skills course. Figure 4-12 shows that a slight 

improvement on any of the four subscales would have led provisionally passed test takers to pass 

the test. Assuming the positive contribution of ESL oral-skills courses to a test taker’s academic 

oral English proficiency, it is reasonable to expect that provisionally passed test takers would 

benefit from any ESL oral-skills course available to them.  

Figure 4-13 gives the proportions of different L1 groups in Group 3 as well as the 

corresponding baseline proportions.  
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Figure 4-13. L1 proportions in Group 3 

Group 3 consisted of test takers whose linguistic background differed considerably from the 

members of the two previous groups. In both Groups 1 and 2, Chinese and East Asian language 

speakers comprised a small proportion despite their large share in the baseline sample. In 

contrast, Group 3 consisted almost exclusively of the speakers of those three languages. Chinese 

and East Asian language speakers together accounted for approximately 80 percent of Group 3. 

Their proportion in Group 3 exceeded the corresponding baseline proportion. Group 3 only 

contained a few speakers of Arabic, European, and Indian languages, and no English speaker. 

Test takers who were classified into Group 3 shared a subscale score pattern that could be 

characterized as intermediate. Their subscale scores were mostly located at below- or around- 
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average, with considerable variations in every subscale dimension. The majority of Group 3 

members belonged to the provisional pass category, which lies between the pass and fail 

categories. Group 3 members were quite different from Group 1 and 2 members in terms of their 

linguistic background. Compared to the near-native and overall high-proficiency possessed by 

the members of Groups 1 and 2, respectively, Group 3 members could be regarded as having an 

all-intermediate profile. Consequently, Group 3 was labeled as the Intermediate Proficiency 

group. 

4.3.3.4 Interpreting mixture model results: Group 4 

Figure 4-14 shows the distributions of Group 4 members’ model-based scores as well as the 

bivariate relationships among the subscales. Variations were present in all six plots in Figure 4-

14, but mostly confined to the lower-left quadrants. This indicates that the test takers classified 

into Group 4 mostly received below-average scores on all subscales. Given the low model-based 

scores, it is not surprising that most test takers (61 out of 78) in Group 4 belonged to the fail 

category. There was only one test taker who passed. Considering the low scores on all subscales, 

that student appeared to be erroneously assigned the pass category due to rater effects. Test 

takers who provisionally passed the test comprised approximately 20 percent of Group 4. The 

difference between Group 4 and Group 2 was noteworthy. Group 4 test takers turned out to share 

a subscale score pattern that was almost the exact opposite of the pattern shared by Group 2 

members. The contrast between Group 4 and Group 2 becomes clear when Figures 4-10 and 4-14 

are compared. The figures present pairs of scatter plots that are almost mirror images of each 

other. Not all bivariate relationships were positive, as can be seen in Figures 4-14 (b) and (e). In 



 

113 
 

particular, it appeared that Question Handling was negatively correlated with Pronunciation and 

Lexical Grammar. 
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The subscale score pattern illustrated in Figure 4-14 largely corresponded to a profile 

expected from a test taker with a low level of academic oral English proficiency. Few in Group 4 

achieved above-average scores on any of the subscales. The majority were given lower model-

based scores across all subscales than Group 3 test takers, who were regarded as intermediate test 

takers. Furthermore, the vast majority of Group 4 members could not either pass or provisionally 

pass the test. The negative relationships between subscales demonstrated in Figures 4-14 (c) and 

(e) provided an interesting insight. In particular, these negative relationships might reflect an 

impact of test preparation among low-proficiency test takers. It has been suggested that 

interpersonal skills such as Question Handling are in general easier to improve with preparation 

than language-specific skills such as Pronunciation and Lexical Grammar (Halleck & Moder, 

1995).  

The subscale score pattern shared by Group 4 members can be interpreted as supporting 

evidence for the current policy for test takers who failed the test. The TOP decision rule states 

that test takers who belong to the fail category are not allowed to work as a TA until they take 

the test again and are assigned the pass or provisional pass category. It is clear from Figure 4-14 

that, but for only one exception, even the highest scoring Group 4 members failed to pass the test. 

This suggested that most test takers in Group 4 would not be able to pass the test even with 

moderate improvements. In this light, Group 4 was different from Group 3, in which within-

group improvements in any dimension would be likely to lead one to pass the test. Therefore, the 

current TOP policy, which does not allow failed test takers to start working as a TA regardless of 

their enrollment in ESL oral-skills courses, can be viewed as consistent with the empirical 

classification results of this study.  
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The proportion of each L1 group in Group 4 and in the baseline sample is given in Figure 4-

15.  

 

Figure 4-15. L1 proportions in Group 4 

Figure 4-15 shows that Group 4 largely consisted of two L1 groups – Chinese and East Asian 

languages. Chinese and East Asian language speakers together comprised approximately 90 

percent of Group 4. While Group 4 members demonstrated largely comparable linguistic 

background to Group 3 members, the predominance of the Chinese and East Asian language 

speakers was more pronounced in Group 4. Chinese language speakers accounted for a 

considerably larger proportion in Group 4 than in the baseline sample. The contrast between 

Group 4 and Group 2 was also observed in the linguistic background. As expected, no English 

0.0 0.2 0.4 0.6

Group 4: L1 Proportions

Proportion

SLA

SEA

ROM

IND

GER

ENG

EAL

CHI

ARA

The Baseline Sample
Group 4

0.1 0.3 0.5 0.7



 

117 
 

speaker was classified into Group 4. Group 4 also did not include speakers of Arabic, Germanic, 

Indian, or Slavic languages, which accounted for a sizable portion of Group 2. Only 10 percent 

of Group 4 members spoke Romance languages as their L1, while the same L1 group comprised 

approximately 25 percent of Group 2. 

Most test takers in Group 4 received below-average scores on all subscales. This pattern was 

in complete contrast to the subscale score pattern observed in Group 2, which was interpreted as 

the high-proficiency group. The contrast between Group 4 and Group 2 continued in terms of 

linguistic background. Group 4 consisted almost exclusively of Chinese and East Asian language 

speakers, who comprised a much smaller proportion in Group 2. Group 4 members in general 

received lower model-based scores than Group 3 members across all subscales. The vast 

majority of Group 4 members failed the test. Considering the subscale score pattern and the 

predominant decision category, it was decided to label Group 4 as the Low Proficiency group. 

4.3.3.5 Interpreting mixture model results: Group 5 

Test takers who belonged to Groups 1 through 4 turned out to possess flat profiles. That is, 

most of their model-based scores were either above-, around-, or below-average on all subscales. 

Group 5 differed from the previous four groups in that its members were widely scattered in 

some dimensions while highly concentrated with little variance in other dimensions. Figure 4-16 

presents the model-based subscale score distributions and bivariate relationships. Figure 4-16 (f) 

shows that Group 5 members were homogeneous in terms of Rhetorical Organization and 

Question Handling. In contrast, they differed widely in terms of their Pronunciation and Lexical 

Grammar scores, as can be seen in Figure 4-16 (a). Group 1 was similar to Group 5 in that it also 

had two subscale dimensions, namely Pronunciation and Lexical Grammar, along which test 
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taker scores seldom varied. However, there were two important differences between Group 1 and 

Group 5. First, the Pronunciation and Lexical Grammar scores of Group 1 members were 

concentrated around the highest possible scores on both subscales. In Group 5, on the other hand, 

the Rhetorical Organization and Question Handling scores were concentrated around the average. 

In addition, the score variations of Group 1 test takers in Rhetorical Organization and Question 

Handling subscale dimensions were largely confined to the upper-right quadrants of Figure 4-8 

(f), whereas Group 5 test takers were distributed across the whole range of Pronunciation and 

Lexical Grammar subscales, as can be seen in Figure 4-16 (f). 
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All three TOP decision categories were present in Group 5. Approximately 60 percent of 

Group 5 test takers passed the test, while provisionally passed and failed test takers comprised 

approximately 30 and 10 percent, respectively. Given the little variance in Rhetorical 

Organization and Question Handling, the decision category of Group 5 test takers was largely 

determined by their Pronunciation and Lexical Grammar scores. Figure 4-16 (a) illustrates the 

crucial role of Pronunciation and Lexical Grammar in assigning the decision categories. In 

particular, most test takers in the upper-right quadrant of Figure 4-16 (a) passed the test, whereas 

those who were distributed in the lower-left quadrant did not. Figures 4-16 (b) through (e) 

illustrate a similar impact. Those four figures show that the decision category changes roughly 

around zero (the average) of the x-axes, which represent Pronunciation in (b) and (c), and 

Lexical Grammar in (d) and (e). 

The variances of Pronunciation and Lexical Grammar scores were considerable despite the 

almost complete lack of variance of the other two subscale scores. While all subscales were 

highly correlated in the entire sample, Rhetorical Organization and Question Handling were 

irrelevant to Pronunciation and Lexical Grammar in Group 5. Language proficiency is often 

regarded as a multi-componential construct in the second language learning and testing literature 

(e.g., Bachman & Palmer, 2010; Foster, Tonkyn, & Wigglesworth, 2000; Iwashita, Brown, 

McNamara, & O’Hagan, 2008; Poehner, 2008), and many frameworks suggest that 

organizational and interpersonal skills pertinent to Rhetorical Organization and Question 

Handling are distinct from more language-specific skills such as Pronunciation and Lexical 

Grammar (e.g., Bachman & Palmer, 2010; Canale & Swain, 1980). Group 5 shows that, for a 

subset of second language speakers, Pronunciation and Lexical Grammar can vary widely even 

when Rhetorical Organization and Question Handling are held constant at a certain level. This 
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could be interpreted as supporting evidence for the multi-componential nature of second 

language oral proficiency.  

From a TOP decision point of view, Group 5 consisted of two subgroups: test takers who 

passed the test and who did not. As previously described, the difference in the decision was 

completely driven by Pronunciation and Lexical Grammar. Figure 4-16 (a) clearly shows that, 

for Group 5 members who did not pass the test, improvements were needed in Pronunciation and 

Lexical Grammar. Furthermore, the around-average Rhetorical Organization and Question 

Handling scores shared by Group 5 test takers were comparable to those of many Group 2 

members, all of whom passed the test. The decisive role of Pronunciation and Lexical Grammar 

and the around-average scores in the other two subscales suggested that Group 5 members who 

did not pass the test would benefit most from interventions focusing on their Pronunciation and 

Lexical Grammar. In this light, Group 5 provides evidence against the current policy that allows 

provisionally passed test takers to take any of the available ESL oral-skills courses. At least to 

test takers who were classified into Group 5, ESL courses focusing on one’s pronunciation, oral 

grammar, and vocabulary uses would be more pertinent than those focusing on organization 

and/or dealing with questions. 
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Figure 4-17 presents the proportion of each L1 group in Group 5 together with the 

corresponding baseline proportion. 

 

Figure 4-17. L1 proportions in Group 5 

The linguistic background of Group 5 members was characterized by the predominance of East 

Asian language speakers. Test takers who spoke Chinese and East Asian languages accounted for 

approximately 80 percent of Group 5. The proportion of Chinese language speakers exceeded the 

baseline proportion. Speakers of Arabic, Indian, and Romance languages together accounted for 

the remaining 20 percent. As described earlier, Group 5 could further be divided into two 

subgroups depending on the TOP decision category, and the compositions of the two subgroups 
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in terms of their linguistic background were compared. The members of the two subgroups came 

from different linguistic background. Speakers of Arabic, Indian, and Romance languages mostly 

belonged to the “pass” subgroup. In contrast, the “non-pass” subgroup consisted almost 

exclusive of Chinese and East Asian language speakers. The linguistic background of the non-

pass group members was in fact highly comparable to that of Group 4 members. 

Group 5 was interesting in that its members did not possess a flat profile. Test takers 

classified into Group 5 were very homogenous in terms of their Rhetorical Organization and 

Question Handling scores, but differed widely along the Pronunciation and Lexical Grammar 

subscale dimensions. All three decision categories were present, and Pronunciation and Lexical 

Grammar were crucial in assigning the decision categories. The reasonably satisfying scores on 

Rhetorical Organization and Question Handling subscales suggested that Group 5 test takers who 

failed to pass the test would benefit the most from an ESL course focusing on Pronunciation and 

Lexical Grammar, which is not in line with the current TOP policy. Considering the non-flat 

subscale score pattern characterizing Group 5, it was decided to keep its label as descriptive as 

possible. In particular, Group 5 was labeled as the Varying Pronunciation/Grammar group, given 

its large variance in the two subscale dimensions. Group 5 mostly consisted of Chinese and East 

Asian language speakers. When only those who did not pass the test were considered, those two 

L1 groups accounted for almost 90 percent, which resulted in a highly comparable L1 group 

composition to Group 4.        

4.3.3.6 Interpreting mixture model results: Group 6 

Group 6 members shared similar scores on the Pronunciation subscale, while varying 

considerably along the other three subscale dimensions. The subscale score patterns of Group 6 
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test takers, therefore, were not flat. Figure 4-18 presents the model-based score distributions of 

Group 6 test takers using bivariate scatter plots. Bivariate relationships not involving 

Pronunciation were all positive. Figures 4-18 (a), (b), and (c) illustrate the lack of variance along 

the x-axes, all of which represented Pronunciation. The Pronunciation scores of Group 6 

members were concentrated slightly above the average. On the other hand, each of the Lexical 

Grammar, Rhetorical Organization, and Question Handling scores was distributed across the 

whole range except around the lowest extremes. Despite the large variances of the latter three 

subscale scores, however, all but two test takers in Group 6 passed the test. This appears to be 

the impact of the current TOP score weighting system, which assigns a higher weight to 

Pronunciation than the others. By virtue of having above-average scores on Pronunciation, most 

test takers in Group 6 were able to pass the test even with below-average scores on the other 

three subscales.  
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Pronunciation and Lexical Grammar scores tended to move together in the same direction in 

Groups 1 through 5. Group 6 presented an exception to this tendency in that its members varied 

widely in terms of Lexical Grammar while their Pronunciation scores were homogeneous. This 

provided an interesting insight into the relationship between Pronunciation and Lexical Grammar 

across different subscale profiles. The Pronunciation scores of Group 6 members were slightly 

above-average, which were higher than those of Groups 3 and 4 members but lower than those of 

Groups 1 and 2 members. When Pronunciation was near-native, Lexical Grammar was also 

native like, as was the case in Group 1. Group 2 provided evidence for the positive relationship 

between Pronunciation and Lexical Grammar among high-proficiency test takers. The same held 

among intermediate- and low-proficiency test takers in Groups 3 and 4, respectively. However, 

when Pronunciation scores were slightly above-average, which was the case in Group 6, it 

appears that the relationship could break down. This could indicate a short window in some 

language learners’ second-language development during which learners arrive at a certain level 

in terms of pronunciation whereas their oral grammar still can vary across individuals. Given the 

exploratory and local nature of this study, however, it should be noted that this is not the only 

possible interpretation of the observed phenomenon. Future studies are needed to evaluate the 

validity of this interpretation. 

Group 6 provided another important insight for a future standard setting study. Figures 4-18 

shows that many test takers in Group 6 passed the test even with below-average scores on at least 

two out of the three subscales other than Pronunciation. As previously mentioned, this was 

largely due to the higher weight Pronunciation carries. Given the current weighting scheme and 

the cutoff score for the pass category, once a test taker gets an above average Pronunciation 

score, it is very rare for the test taker to fail to pass the test. It is not clear whether this was 
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considered when the weighting scheme and the cutoff scores were first determined. Whether test 

takers with a probable profile consisting of an above-average Pronunciation score and below-

average scores on all other subscales would be regarded as proficient enough to qualify as a TA 

is an important question that needs to be addressed in a standard setting study. Test takers who 

were classified into Group 6 can be used as a focused sample set for such a standard setting 

project. 

Figure 4-19 gives the proportion of each L1group in Group 6 together with the corresponding 

baseline proportion. 

Figure 4-19. L1 proportions in Group 6 
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The linguistic background of Group 6 members did not differ much from that of the baseline 

sample. The proportions of Arabic, East Asian, German, Slavic, and South East Asian language 

speakers were almost identical to the corresponding baseline proportions. Speakers of Chinese 

languages comprised the largest L1 group, accounting for approximately 35 percent of Group 6. 

However, their proportion here was slightly lower than the baseline proportion. Romance 

language speakers comprised the second largest group, and their proportion in Group 6 was 

higher than their baseline proportion. Indian language speakers also accounted for a larger 

proportion in Group 6 than in the baseline sample. 

Test takers who were classified into Group 6 presented another case of a non-flat profile. 

While their Pronunciation scores were highly concentrated around the average, all other subscale 

scores varied considerably. All but two test takers in Group 6 passed the test, including many 

who received below average scores on other subscales, as a result of the higher weight assigned 

to Pronunciation. In sum, Group 6 could be characterized by the concentration of the 

Pronunciation scores around the average, and therefore was labeled as the Average 

Pronunciation group. The linguistic background of Group 6 members was largely comparable to 

that of the baseline sample.  

4.3.3.7 Interpreting mixture model results: Group 7 

Group 7 members presented still another case of a non-flat score profile. Six scatterplots in 

Figure 4-20 give the bivariate distributions of Group 7 members’ model-based subscale scores. 

Figures 4-20 (a), (c), and (e) show that Group 7 members were very homogeneous in terms of 

Pronunciation, Lexical Grammar, and Question Handling. In particular, their scores on the three 

subscales were concentrated around the corresponding averages. Rhetorical Organization was the 
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sole source of within-group variance, as can be seen in Figures 4-20 (b), (d), and (f). The 

variance of the Rhetorical Organization scores was relatively small with most test takers 

distributed around the average. Extreme scores were not observed in Group 7. All Group 7 

members passed the test.  
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The characteristic feature of Group 7 was the variance of the Rhetorical Organization scores, 

in contrast to the lack of variances on the other subscales. This might have to do with a slight 

difference in the nature of Rhetorical Organization compared to the other subscales. In particular, 

the prior preparation of a test taker is directly relevant to Rhetorical Organization, but not 

necessarily to the other subscales. Being native-like does not guarantee a perfect score in 

Rhetorical Organization, as was the case in Group 1. In order to receive a high score in 

Rhetorical Organization, a test taker needs to give a presentation in a coherent and clear manner, 

which can be enhanced with a thorough preparation. Therefore, the characteristic subscale score 

profile of Group 7 might be interpreted as reflecting the impact of prior preparation on 

Rhetorical Organization among test takers whose proficiency is around average in terms of the 

other three subscales. The homogeneous decision category in Group 7 could further be 

interpreted as suggesting that preparation did not appear to have an impact on the TOP decision 

for Group 7 members. However, considering the exploratory and local nature of this study, this is 

by no means the only possible interpretation, and future studies are needed to evaluate its validity. 
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Figure 4-21 gives the proportion of each L1 group in Group 7, as well as the corresponding 

baseline proportions. 

 

Figure 4-21. L1 proportions in Group 7 

Speakers of Chinese languages comprised the largest L1 group, accounting for approximately 60 

percent of Group 7. The Chinese language speakers also accounted for a higher proportion in 

Group 7 than in the baseline. The proportions of other L1 groups were in general smaller in 

Group 7 than the corresponding baseline proportions, but mostly by only a small margin. East 

Asian language speakers comprised the second largest L1 group, followed by Arabic and 

Romance language speakers. 
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Group 7 test takers could be characterized by the variance of the Rhetorical Organization 

scores and the homogeneity in terms of Pronunciation, Lexical Grammar, and Question Handling. 

The former might be interpreted as the impact of preparation considering the need for 

preparation to receive a good score on Rhetorical Organization. Given the characteristic 

Rhetorical Organization variance, it was decided to label Group 7 as the Varying Organization 

group. As expected from the above-average scores on all subscales but Rhetorical Organization, 

every member of this group passed the test. The proportion of each L1 group was similar to the 

corresponding baseline proportion, with the exception of Chinese language speakers who 

comprised the majority. 

4.3.4 Summary of the section 

This section reported the clustering of the model-based scores for an investigation of 

subscale profile groups. FM models with four dimensional normal components were fit to the 

model-based subscale scores estimated in the previous section. The BIC (Schwarz, 1978) and 

substantive interpretability were considered in model selection. The final model suggested seven 

profile groups in the TOP dataset, and assigned most test takers a group membership with high 

confidence. All seven groups were interpreted and labeled based on characteristic subscale score 

patterns, as well as group members’ linguistic background and TOP decision categories. Table 4-

13 summarizes of the label and composition of each profile group. 
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Table 4-13 

Labels and Member Background Information of the Seven Profile Groups 

Group Label Decision Categories High Prop. L1 
1 Near-native All pass ENG, GER 
2 High Prof. All pass IND, ROM 
3 Intermediate Prof. Mostly prov. pass CHI, EAL 
4 Low Prof. Mostly fail & prov. pass CHI, EAL 
5 Varying PR/LG Approx. half pass CHI, EAL 
6 Average PR Mostly pass CHI, EAL, ROM, IND 
7 Varying RO All pass ARA, CHI, EAL 

 

4.4 Summary of the chapter             

This chapter reported the findings of analyses addressing the first research question, “What 

different subscale score profiles of academic English oral proficiency can be meaningfully 

produced by the TOP?” This chapter consisted of three main analysis steps. The first step 

investigated the parameter recovery of the second-order GRM through a small-scale simulation 

study. The results of the simulation served as a justification for the use of the second-order GRM 

in estimating the model-based subscale scores of the 960 TOP test takers, which comprised the 

second analysis step. The last analysis step explored profile groups underlying the estimated 

model-based subscale scores.     

The parameter recovery of the second-order GRM was evaluated in three simulation settings 

that were designed to represent typical language performance assessment contexts with varying 

levels of challenge. True values and synthetic datasets were generated using the second-order 

GRM as the true model, and parameters were estimated via MCMC. The starting values for the 

MCMC estimation were obtained based on ML estimates and standard errors. The simulation 

results showed that the second-order GRM successfully recovered all parameters across all three 
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settings. The results also demonstrated the advantage of the second-order GRM over a simple 

average scoring method in estimating the model-based subscale scores.      

Given the positive results of the simulation study, the second-order GRM was fitted to the 

TOP dataset to estimate the model-based subscale scores. MCMC was utilized as the main 

estimation method, and ML estimates and standard errors were used to obtain starting values that 

were reasonable and well-dispersed. The second-order GRM showed a better fit than the HRM 

(Patz et al., 2002), and was favored by both the AIC and BIC for all subscales except 

Pronunciation, despite the penalty for added model complexity. The second-order GRM yielded 

four model-based subscale scores for each of the 960 test takers. The resulting model-based 

subscale scores were then compared to the observed sum scores. The comparison showed that 

the distributions of the two sets of scores were comparable, while the second-order GRM 

estimates provided a continuous scale which yielded additional fine-tuned distinctions between 

test takers owing to its continuous nature.  

The model-based subscale scores from the second analysis step were used as the data for the 

FM analysis that examined subscale profile groups in the TOP dataset. The final model identified 

seven profile groups and classified the TOP test takers into the seven groups. Test takers with 

near-native academic oral English proficiency comprised Group 1. Groups 2, 3, and 4 consisted 

of test takers with high-, intermediate-, and low-proficiency, respectively, in academic oral 

English. Group 5 test takers varied widely in terms of Pronunciation and Lexical Grammar. 

Group 6 consisted of test takers whose Pronunciation scores were concentrated in the average. 

Lastly, Group 7 test takers only varied in terms of Rhetorical Organization.     
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Chapter 5: Features of Oral Discourse across Subscale Score Profiles 

This chapter presents the findings of analyses addressing the second research question, 

“What features of oral discourse characterize test takers who have different subscale score 

profiles?” In particular, this chapter discusses the results from a comparison between the TOP 

test taker performances and a reference corpus consisting of academic lectures. Furthermore, the 

distribution of discourse organizing lexical bundles across subscale score profile groups is 

examined in this chapter. An integral element of the both analyses was a small corpus consisting 

of a subset of TOP test taker performances. The procedures used in corpus construction and the 

resulting corpus are reported here. This chapter is organized in the following order. The corpus 

construction procedures and the characteristics of the resulting corpus are presented first. The 

resulting corpus is then compared to the reference corpus, and the results from the comparison 

are discussed. Lastly, the distributional and formal characteristics of discourse organizing lexical 

bundles are presented.  

5.1 The TOP corpus 

The second research question was addressed based on a small oral corpus consisting of the 

lecture task performances of 82 TOP test takers (hereafter the TOP corpus). This section 

provides a detailed description of the corpus building procedures and the characteristics of the 

TOP corpus. Selection criteria for the 82 test takers are discussed first, followed by a description 

of the transcription procedures. Lastly, the characteristics of the TOP corpus are presented.  

 

 



 

137 
 

5.1.1 Sample selection 

The main motivation for constructing the TOP corpus was to enhance the identification and 

search of important discourse features in test taker performances. It would have been ideal if the 

search could be based on the performances of all test takers. However, given the spoken nature 

of the TOP performances, the construction of a corpus based on them inevitably involved the 

transcription of spoken words into a machine-readable text format, which is an extremely time-

consuming process. Transcribing the lecture task performances of all 960 test takers would 

require a prohibitive amount of transcription time which was not available at the time of analysis. 

Therefore, it was decided to select a subset of the TOP test takers based on important 

characteristics to obtain a small but representative corpus. Both group-level and individual-level 

characteristics were considered in the selection procedure.    

To ensure comparability among the profile groups, it was decided to include the same 

number of test takers from each of the seven groups. There were, however, two exceptions, both 

of which had to do with the TOP decision categories. Chapter 4 reported mixed decision 

categories in Groups 3 (the Intermediate Proficiency group) and 5 (the Varying 

Pronunciation/Grammar group), and it was suggested that those two groups could be further 

divided into two subgroups, namely the pass and non-pass subgroups. Therefore, it was desirable 

to equally represent the pass and non-pass subgroups by selecting the same number of test takers 

from both. It was decided to select eight test takers from each of the pass/non-pass subgroups in 

the two profile groups, and ten test takers from each of the other five profile groups. While the 

specific numbers of test takers (i.e., ten and sixteen) in each group were somewhat arbitrarily 
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decided, they were believed to achieve a reasonable balance between the practicality of 

transcription procedures and the representativeness of the resulting corpus.           

Primary selection criteria at the individual level included the classification uncertainty and 

L1 of test takers. Given the goal of obtaining a representative subset of each profile group, it was 

clear that test takers with low classification uncertainty should be preferred. In addition, 

considering the vast difference in the L1 composition among the profile groups reported in 

Chapter 4, efforts were made to retain the L1 proportions of each profile group. However, the 

relatively large number of different L1 groups (i.e., nine) made the selection procedure very 

difficult. Consequently, it was decided to reduce the number of L1 groups by collapsing 

languages that demonstrated similar characteristics in terms of profile group membership. In 

particular, speakers of Chinese languages and East Asian languages were combined into the 

Chinese, Japanese, and Korean group (CJK). Germanic languages and English were collapsed 

into another group (GEE). Lastly, speakers of Arabic, South East Asian, and Slavic languages 

were grouped into a large category that was conveniently named Other (OTH), given their small 

and stable proportions in all profile groups.  

The pool of selectable test takers became relatively small once the classification uncertainty 

and L1 were considered. When different choices were available, test takers’ academic 

background was considered as a secondary selection criterion. The 765 test takers in the baseline 

sample came from six large academic divisions: Arts & Humanities (AHM), Engineering (ENN), 

Life & Health Sciences (LHE), Physical Sciences (PHY), Social Sciences (SOC), and 

Interdisciplinary Programs (OTH).7 The objective of employing the secondary selection criterion 

                                                            
7 These divisions were based on the administrative structure of UCLA.  



 

139 
 

was to retain the baseline proportions of the six academic divisions in the TOP corpus. The 

decision to use the academic divisions as a secondary criterion instead of a primary one was 

made based on empirical grounds. While research suggests that different academic disciplines 

amount to differences in classroom language use (e.g., Biber, 2006), the proportions of academic 

disciplines remained fairly stable across the seven profile groups. This was not surprising, 

however, since TOP test takers are strongly encouraged to prepare an introductory level lecture 

and the topic selection is not limited to their own academic discipline. Consequently, it was not 

uncommon to see the same topic presented by, say, a computer science student and an economics 

student.        

The application of the aforementioned selection criteria identified 82 test takers who 

constituted a representative subset of the baseline sample. For simplicity, these 82 test takers will 

be collectively referred to as the corpus sample in the remainder of this study. All selected test 

takers were assigned a profile group membership with extremely low uncertainty. The average 

classification uncertainty in the corpus sample was as low as 0.03. Furthermore, the L1 

composition of each profile group was successfully retained in the corpus sample. Table 5-1 

gives the proportion of each L1 group in the corpus sample and the baseline sample. 
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Table 5-1 

L1 Percent Proportions in the Corpus Sample   

Profile Group CJK GEE IND ROM OTH 
Near-native 20 (17) 40 (42) 0 (9) 20 (12) 20 (21) 
High Prof. 30 (33) 0 (9) 20 (16) 30 (23) 20 (19) 
Intermediate Prof. 75 (78) 0 (1) 13 (5) 13 (7) 0 (9) 
Low Prof. 80 (90) 0 (0) 0 (0) 10 (5) 10 (5) 
Varying PR/LG 82 (73) 0 (1) 6 (7) 6 (9) 6 (10) 
Average PR 50 (50) 0 (4) 20 (13) 20 (21) 10 (12) 
Varying RO 80 (79) 0 (0) 0 (2) 10 (7) 10 (13) 
 

Note. The figures in the parentheses indicate the corresponding percent proportions in the 
baseline sample of 765.   

In addition, the proportion of each academic division in the corpus sample corresponded well to 

the baseline proportion, as can be seen in Table 5-2.  

Table 5-2  

Academic Division Proportions in the Corpus and the Baseline Samples 

Academic Divisions Corpus Sample Proportion (%) Baseline Sample Proportion (%) 
AHM 11.0 12.5 
ENN 42.7 48.8 
LHE 6.1 7.5 
PHY 18.3 15.3 
SOC 18.3 13.9 
OTH 3.7 2.1 

 

5.1.2 Transcription of the selected test taker performances 

As noted in Chapter 3, the selected test takers’ performances on the TOP lecture task were 

transcribed using the notations and conventions used in the CA literature (Sacks et al., 1974). 

The CA transcription method was chosen because its attention to details of speech events, such 

as speaker identification and overlapped speech, was expected to be useful in understanding the 

structure of the resulting transcripts. Test takers’ use of whiteboard space was also noted in the 
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transcripts to help interpret reference markers such as here and this. The following excerpt from 

a transcribed test taker performance gives an example of the resulting transcripts: 

    Q1:     For control and order:? 
    TT:     Okay:? Okay, for control and order? Okay, so that’s good. Any  
            other reasons?  
    Q1:     ((long pause)) Good question. [((laughs)) 
    TT:                                   [((laughs)) (2.0) Yeah, I mean it  
            is a good question. You’re right, you know, because .h that’s  
            what um political philosophy helps us to do:, like it helps us  
            ask the very basic questions. Like .h why do we have the system  
            that we have, .h you know it helps us kind of like tear down all  
 

Note. Q1 = Questioner #1; TT = Test Taker. 

While the CA transcription method was helpful in capturing the details of the test takers’ 

performances and their interaction with the TOP questioners, the resulting transcripts were not 

particularly suited for the purpose of corpus construction. This was mainly due to the heavy 

formatting and nonconventional spellings of the CA transcription method. Consequently, the 

resulting transcripts were converted into a simple text file format. The converted transcripts 

adopted the conventional spelling to allow word-level searches for the subsequent corpus 

analysis. The contributions of the TOP questioners in the converted transcripts were tagged to 

distinguish their language use from test taker performances. Also tagged in the converted 

transcripts included pauses and whiteboard uses. In addition, each converted transcript contained 

a header indicating test taker L1, academic background, and the TOP decision category. The 

header information was used to construct a sub-corpus for each profile group.  

5.1.3 Description of the TOP corpus 

The converted text versions of the 82 transcripts constituted the TOP corpus. This small 

corpus consisted of 80,553 words spoken by test takers. As previously noted, the contribution of 

the TOP questioners was not considered as the main body of the corpus, and therefore, excluded 
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from the word count. There were seven sub-corpora within the TOP corpus, one for each 

subscale score profile group. Table 5-3 gives the word count of each profile group sub-corpus. 

Table 5-3 

Word Counts of Subscale Score Profile Group Sub-Corpora 

Near-native High Prof. Inter. Prof. Low Prof. VarPRLG AvgPR VarRO 
12,013 (10) 11,143 (10) 15,790 (16) 7,434 (10) 15,572 (16) 9,951 (10) 8,650 (10) 
 

Note. The figures in the parentheses indicate the number of test takers in the corresponding 
profile group.  

Table 5-3 shows that there were slight differences in the size of the sub-corpora. Average word 

count per test taker ranged from 743 to 1201. The order of the average word counts roughly 

corresponded to the order of the mean vectors reported in Table 4-11 in Chapter 4. That is, 

profile groups that had higher average model-based subscale scores tended to contain more 

words in the corresponding sub-corpora.  

Most frequent words in the TOP corpus as a whole and in each sub-corpus were also 

examined. Table 5-4 gives the ten most frequently used words in each profile group sub-corpus 

and in the entire TOP corpus. 
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Table 5-4 

The 10 Most Frequently Used Words in Each Profile Group Sub-corpus and the TOP corpus 

Near-
native 

High 
Prof. 

Inter. 
Prof. 

Low  
Prof. VarPRLG AvgPR VarRO TOP 

the the the the the the the the 
you to and is and uh uh and 
um you uh of is so is is 
to and so a to to and uh 

and of is and so and of to 
of so you uh of is this of 

that it to it you of a so 
uh is it this uh a to you 
is a this so this s you a 
a s a in it this so this 

 

Table 5-4 shows that all sub-corpora were highly comparable in terms of the frequently used 

words. The vast majority of the ten most frequent words in the entire corpus were shared by all 

sub-corpora, while relative standings of the frequent words only slightly varied across the sub-

corpora. 

 5.2 The TOP corpus and MICASE 

Comparing a newly developed corpus to a well-established corpus with a similar objective 

can help understand the characteristics of the new corpus and often provide a useful starting 

point for further analysis (Evison, 2010). In order to explore characteristic features of TOP test 

takers’ language use, the TOP corpus was compared to a subset of Michigan Corpus of 

Academic Spoken English (MICASE) (Simpson et al., 2002), which is a large academic oral 

language corpus constructed and maintained by the University of Michigan, Ann Arbor (UMAA). 

This section reports the findings from a statistical comparison of word frequencies between the 

two corpora. This section begins with a brief introduction of MICASE, followed by a description 
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of the subset of MICASE that was used as the reference corpus. Lastly, the results of the 

comparison between the TOP corpus and the reference corpus are reported. 

5.2.1 MICASE and its lecture subset 

MICASE (Simpson et al., 2002) is an academic oral language corpus constructed by a 

research team at UMAA. It consists of approximately 1.8 million spoken words from various 

academic settings, including lectures, colloquia, discussion sections, dissertation defenses, and 

office hours, to name a few. As a large collection of spoken words from many academic settings, 

MICASE is one of the most representative academic oral language corpora publicly available, 

and has been used in a number of corpus linguistics studies.8 

The large size and the academic nature of MICASE rendered it a natural reference corpus 

against which the TOP corpus could be compared. However, while the variety of academic 

settings included in MICASE is integral to its representativeness, it also made a direct 

comparison between the TOP corpus and MICASE difficult. In particular, MICASE included 

many settings that were not relevant to the TOP corpus, which consisted solely of simulated 

lectures that were highly monologic. Consequently, it was decided to extract a sub-corpus of 

MICASE that was most comparable to the TOP corpus and use that subset as the reference 

corpus.  

The subset of MICASE was obtained using an interactive browsing tool implemented on the 

official MICASE website. Since the TOP corpus consisted of simulated lecture task 

performances, MICASE transcripts from academic settings other than lectures were excluded 

                                                            
8 See the MICASE publication webpage (http://micase.elicorpora.info/micase-publications-and-
presentations) for the complete list of studies using MICASE since 1999. 
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from the subset. Highly interactive lectures were further filtered out to match the predominantly 

monologic nature of the TOP corpus. Lastly, lectures given by non-native speakers of English 

were excluded. This last step allowed potential differences between the resulting MICASE 

subset and the TOP corpus to be attributed to the differences in English oral language 

proficiency of the speakers when appropriate. The resulting MICASE subset included the 

transcripts of 34 lectures from a variety of academic disciplines, and consisted of 177,119 words. 

For convenience, this subset of MICASE will be referred to as the MICASE lecture sub-corpus.  

5.2.2 Word frequency comparison between the TOP corpus and the MICASE subset 

The word lists of the TOP corpus and the MICASE lecture sub-corpus were compared to 

identify words that were considerably more or less frequently used in one corpus than in the 

other. The comparison was aided by the likelihood ratio test statistic,9 as suggested by Dunning 

(1993). The use of the likelihood ratio test statistic in this context requires a distributional 

assumption on the occurrence of a word in a given text. In particular, it is assumed that the 

occurrence of a word in a given text independently follows a binomial distribution with the 

occurrence (or success) parameter p specific to the word and the trial parameter n equal to the 

number of words in the given text. The likelihood ratio statistic then compares the likelihood of 

having the same occurrence parameter p for a given word in two compared texts (which serves as 

the null model) to the likelihood of having two separate occurrences parameters, one for each 

text (which serves as the alternative model). The well-known asymptotic property of the 

likelihood ratio statistic (see, e.g., Bickel & Doksum, 1978) allows the resulting test statistic to 

be interpreted against the chi-square distribution with one degree of freedom. In the corpus 

                                                            
9 AntConc presents this statistic under the name of log likelihood. 
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linguistics literature, the statistical comparison of word lists between two corpora based on the 

likelihood ratio test statistic is called the keyword analysis (e.g., Scott, 2013), and words that are 

associated with a significant result (i.e., p value less than .05) are called keywords.  

Table 5-5 gives the list of 40 keywords10 from the comparison between the TOP corpus and 

MICASE lecture sub-corpus. The first 20 keywords are positive keywords in that they were used 

significantly more frequently in the TOP corpus, while the remaining 20 keywords are negative 

keywords which were used significantly less frequently in the TOP corpus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            
10 The list of all significant keywords included more than 1,100 words, making it difficult to present the 
list in its entirety. The choice of 40 keywords, 20 for each positive and negative, was to focus on the most 
pronounced differences between the two corpora. 
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Table 5-5  

The TOP Corpus vs. The MICASE Lecture Sub-corpus: Top 20 Positive and Negative Keywords 

Positive Keywords Negative Keywords 
Keyword Likelihood Ratio Keyword Likelihood Ratio 

yeah 487.38 that 186.84 
so 479.04 species 158.49 

like 361.67 was 156.11 
uh 266.18 had 133.79 
is 257.00 were 131.11 
eh 252.07 women 115.59 
um 225.99 he 95.81 

voltage 183.72 sort 91.02 
this 181.02 family 88.59 

energy 174.31 things 86.88 
can 170.48 of 82.02 
will 154.26 been 66.86 

current 153.26 those 61.45 
x 118.20 on 61.29 

output 114.33 who 60.37 
transfer 100.33 at 57.90 

heat 99.47 did 52.64 
signal 99.47 really 49.50 

confess 98.05 up 49.11 
electrical 95.76 in 49.00 

 

Note. All keywords in this table were significant at α < .05. 

Table 5-5 shows several interesting differences between the two corpora. The TOP corpus and 

the MICASE lecture sub-corpus differed mostly in terms of the use of discourse markers such as 

yeah, so, like, that, and things. Differences between the two corpora were also observed in the 

use of disfluency markers, including uh, eh, and um, all three of which were more frequently 

occurred in the TOP corpus. Sort provided another interesting contrast between the two corpora. 

In both corpora, sort was almost always observed as a part of sort of, which shares a formal and 

functional similarity with kind of. The TOP test takers clearly preferred kind of over sort of 

despite the similarity; the former saw almost 20 times more frequent uses than the latter in the 
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TOP corpus. On the other hand, the two expressions were used with almost identical frequencies 

in the MICASE lecture sub-corpus. Little is known about the difference between these two 

similar expressions, and therefore, it would be premature to interpret this contrast. However, 

such a difference in the usage frequencies of the two might be attributed to the difference in 

academic oral English proficiency of the contributors of the two corpora.   

The positive content keywords showed the impacts of a few popular topics among the TOP 

test takers. Content words related to the field of Electrical Engineering, in particular, were 

ranked higher in the positive keyword list.11 The vast majority of he in the MICASE lecture sub-

corpus were used to refer to a scholar who was relevant to class discussions. The TOP test takers 

rarely introduced a specific theory, and therefore, it was not surprising to see he in the negative 

keyword list. 

Having will in the positive keyword list and past tense be verbs in the negative keyword list 

constituted an interesting contrast. This can be interpreted in multiple ways. A contextual 

explanation has to do with the difference in the nature of the TOP lecture task and the real-

classroom lectures in the MICASE lecture sub-corpus. While TOP test takers typically prepared 

a short introductory lecture appropriate for the first day of a course, none of the MICASE 

lectures were recorded on the first day. In this light, it was not surprising to observe more past 

tense usage in the MICASE lecture sub-corpus in which the instructors would have more need to 

refer back to an earlier part of the course. Another explanation, which involves the difference in 

within-speech organization, will be presented in detail in section 5.3.  

                                                            
11 Since the introduction of the TOP in 2004, Electrical Engineering has been the biggest user of the test, 
accounting for more than 20 percent of all test takers.  
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As previously noted, the TOP corpus consisted of seven sub-corpora, which represented the 

oral language use of the seven subscale score profile groups. The word list of each sub-corpus 

was compared to the word list of the MICASE lecture sub-corpus to examine the word usage 

difference across different profile groups. Table 5-6 provides 10 most positive- and 10 most 

negative-keywords for each of the seven keyword comparisons.  
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Table 5-6 shows that most of the positive keywords were content words. On the other hand, all 

negative keywords were function words. In particular, past-tense be verbs and pronouns were 

constantly less frequently occurred in the TOP corpus. General nouns (Halliday & Hasan, 1976) 

such as things, way, and people were also not as commonly used in the TOP corpus as in the 

MICASE lecture sub-corpus. It is well known that both pronouns and general nouns serve 

referential functions that are integral for micro-level discourse organization. The relative lack of 

pronouns and general nouns in the TOP corpus might indicate the relative weakness in micro-

level organization of the TOP test taker performances compared to the real classroom discourse 

given by the MICASE instructors. However, such an interpretation is only one of many possible 

ones, and its validity should be evaluated in a more focused study. The Near-native group was 

the only exception in that its negative keywords did not include either the past-tense be verbs or 

pronouns, except for he and his. This could be interpreted as supporting evidence for the near-

native interpretation of this group, while such an interpretation requires a more rigorous study to 

be validated. 

In sum, the keyword comparison between the TOP corpus and the MICASE lecture sub-

corpus showed a consistent pattern. In particular, the TOP test takers tended not to use certain 

function words as much as the MICASE instructors. Some of the less frequently used function 

words, such as he, his, and past tense be verbs, might be interpreted as the results of contextual 

differences between the two corpora. The subsequent keyword analyses for each of the TOP 

profile group sub-corpora suggested that the observed differences between the TOP corpus and 

the MICASE lecture sub-corpus were largely consistent across different profile groups, with the 

only exception being the Near-native profile group.  
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   5.3 Discourse organizing lexical bundles in the TOP corpus 

This section describes the procedures for identifying and analyzing discourse organizing 

lexical bundles in the TOP corpus and reports findings from the analysis. As noted in Chapter 3, 

this part of the study focused on metadiscourse and textual reference (MTR) bundles, which 

explicitly refer to “prior or upcoming discourse” (Simpson-Vlach & Ellis, 2010, p. 507), such as 

I was saying and as I said. This section begins with a description of how MTR bundles in the 

TOP corpus were identified. The identified MTR bundles are further classified depending on the 

timeframe of their reference point, as well as their formal appropriateness. The distribution of the 

classified MTR bundles across the subscale score profile groups is reported and interpreted.   

5.3.1 The identification and coding of MTR bundles 

The existing corpus studies on lexical bundles have relied heavily upon automatic n-gram 

finders for bundle identification. However, the nature of the TOP corpus made it crucial to 

complement automatic searches with manual reading of the transcripts. The TOP corpus 

consisted of words that were spoken by non-native speakers of English, with only a few 

exceptions in the Near-native group. It was not uncommon to find lexical bundles that functioned 

properly but that deviated from the normal grammatical form (e.g., was talking it for was talking 

about it). Furthermore, a number of bundles were separated by disfluency markers such as uh 

and um (e.g., was eh talking uh um about for was talking about). Consequently, using an 

automatic search for lexical bundles as a whole (e.g., using was talking about as a search query) 

would have not been effective in identifying MTR bundles in the TOP corpus. 

The manual search began with the MTR bundles in the academic formula list suggested by 

Simpson-Vlach and Ellis (2010) and was expanded by adding items suggested in Biber et al. 
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(2004) and Nattinger and DeCarrico (1992). Instead of using an entire bundle as a search query, 

each element of a bundle was searched separately to include ill-formed and/or separated bundles. 

For example, search queries such as talk, talked, talking, and about were used to look for 

instances of was talking about. This search method inevitably yielded multiple hits for the same 

instance of a lexical bundle. For example, was talking about will appear in the search result for 

queries talking and about. In order to avoid multiple counts of a single bundle use, the resulting 

concordance lines from all searches were stored in a relational database developed for the 

purpose of this study. The database was equipped with test taker ID and neighboring words to 

provide a convenient means to examine search results without the danger of multiple counts. The 

stored concordance lines were manually examined by two readers12 to determine whether a 

searched word belonged to a MTR bundle. There were several disagreements between the two 

readers’ independent judgments, but these were resolved in an extra discussion session.   

Despite its time-consuming and labor-intensive nature, this manual identification procedure 

had another advantage over the automatic n-gram search approach in that repetitions of the same 

bundle were counted only once. For example, repetitions such as I was talking about uh um was 

talking about were counted as a single instance of the bundle use. A purely automatic search 

would have counted such repetitions as two instances.  

The aforementioned manual search procedure identified a total of 82 instances of MTR 

bundle use. The entire 82 MTR bundles with neighboring contexts are provided in Appendix G. 

The identified instances were then coded according to their timeframe. That is, MTR bundles 

referring back to a previous part of discourse were classified into the past frame, whereas MTR 

                                                            
12 Both readers had backgrounds in Applied Linguistics and experience as TOP raters.  
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bundles referring to a forthcoming part of discourse were categorized as the future frame. This 

dichotomous timeframe coding was made in a straightforward fashion based on the context and 

the neighboring words. The two readers’ independent judgments agreed on every case.  

Since most of the TOP test takers were nonnative speakers of English, it was believed to be 

helpful to also examine the grammatical form of the MTR bundles included in the TOP corpus. 

Therefore, during the timeframe coding, it was also noted whether an MTR bundle was well-

formed or not. For example, was talking about was coded as a well-formed instance, whereas 

was talk about was noted as an incorrect usage. This additional coding procedure was conducted 

in a straightforward manner, and the two readers again agreed on every instance.     

5.3.2 Distributional characteristics of the MTR bundles 

The number of the MTR bundles in each subscale score profile group was examined first. 

Table 5-7 provides the frequency counts of the MTR bundles in each profile group. 

Table 5-7 

Frequency Counts of MTR Bundles across the Subscale Score Profile Group Sub-corpora 

Near-native High Prof. Inter. Prof. Low Prof. VarPRLG AvgPR VarRO 
11 7 8 | 13 13 2 | 8 14 6 

 

Note. For the Intermediate Proficiency and Varying PR/LG groups, the figures on the left- and 
right-side of the vertical bar give the frequency counts of the MTR bundles in the non-pass and 
pass subgroups, respectively. 

Table 5-7 shows a fair amount of between-group variation in the MTR bundle frequencies. 

However, the frequency counts did not appear to be correlated with the overall model-based 

subscale scores. The Average Pronunciation group used the largest number of MTR bundles, 



 

155 
 

whereas the Near-native group and the High Proficiency group corpora contained fewer MTR 

bundles than many other groups.   

The results of the timeframe coding showed that the MTR bundles in the TOP corpus 

referred to both past and future frames with almost identical frequencies. Out of 82 identified 

MTR bundles, 40 were designated as future reference bundles (e.g., let’s move to, will explain 

later), and the remaining 42 as past reference bundles (e.g., going back to, was telling you). The 

majority of the MTR bundles were well formed. Only 22 out of 82 were noted as incorrect 

usages (e.g., let’s get a start for let’s get started). Figure 5-1 shows the distribution of each MTR 

bundle across the seven profile group sub-corpora with the timeframe and formal appropriateness 

information. 
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Figure 5-1 shows that the MTR bundles were unevenly distributed across the subscale score 

profile groups. It is noteworthy that the Near-native group presented a complete contrast to the 

Low Proficiency group in terms of the MTR bundles’ timeframe. While all MTR bundles in the 

Near-native group were employed to refer to a previous part of discourse, all but one MTR 

bundles in the Low Proficiency group turned out to be a future reference marker. Given the score 

profile differences between the two groups, this contrast could be interpreted as a reflection of 

the difference in academic oral English proficiency. Past-looking MTR bundles typically involve 

a past-tense verb, which might give an additional layer of difficulty to test takers with low 

academic oral English proficiency. The majority of the past timeframe bundles in the High 

Proficiency group might be taken as supporting evidence for this interpretation, although the 

small sample size would prohibit a strong interpretation.  

The above interpretation did not provide a reason for the lack of forward-looking MTR 

bundles in the Near-native group. An inspection of the concordance lines and CA-style 

transcripts suggested a plausible explanation. A large number of MTR bundles referring to a 

forthcoming discourse part occurred when a test taker attempted to delay an answer after being 

asked a question, as can be seen in the following excerpt: 

    Q1:     Does the distance matter? Will it affect that(.) at all?  
    TT:     Mmhmm. In fact, uh:: (0.3) [p is always positive.  
    Q1:                                [Does it have to be- 
    Q1:     okay. 
    TT:     but q may be negative. (0.3) we will come to this soon. hhh  
    Q1:     hhh okay. 
 

Note. Boldface italic parts indicate the bundle of interest.  
 

It turned out that the ten members of the Near-native group in the TOP corpus answered all 

questions when the questions were asked, and therefore, the most common context for future 

reference MTR bundles did not occur. 
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Another potential problem with interpreting MTR timeframe occurrences as an indicator of 

oral proficiency was the large number of past-reference MTR bundles in the Intermediate 

Proficiency group. In fact, there were as many well-formed past-looking MTR bundles in the 

Intermediate Proficiency group as in the Near-native group. Even the non-pass members of the 

Intermediate Proficiency group used the past timeframe MTR bundles as often as did the High 

Proficiency group members. Again, the concordance lines and CA-transcripts turned out to be 

helpful in accounting for this deviation. Upon inspection of the contexts around the past-looking 

MTR bundles, it appeared that past-reference MTR bundles could be further distinguished into 

two types. Those that made an explicit reference to a specific part of the previous discourse were 

classified as Type 1, as illustrated in the following excerpt: 

    TT:     ... first place, you know? Um:: you know, so, you know, one thing  
            you were saying, to go back to the why question, is you know we  
 

Note. Boldface italic parts indicate the bundle of interest.  
 

Past-looking MTR bundles that did not specify the point being referenced were classified as 

Type 2. A prototypical bundle in this category was as I said. An example of a Type 2 MTR 

bundle use is given in the following excerpt: 

    TT:     … And I’ll be talking about that in the date up on final  
            presentation. (hh) so. ((clears throat)) so as I said like uh:  
            the speed- the speed of the storage devices and the how fast the  
             
Note. Boldface italic parts indicate the bundle of interest.  
 

All 42 instances of past reference MTR bundles were thus classified into the two types. Table 

5-8 shows the distribution of the two types in each profile group.  
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Table 5-8 

Further Classification of Past Reference MTR Bundles 

 Near-
native 

High 
Prof. 

Inter. 
Prof. 

Low 
Prof. VarPRLG AvgPR VarRO Totals 

Type 1 7 2 1 1 0 2 0 13 
Type 2 4 2 10 0 4 6 3 29 
 

Table 5-8 presents two important points. First, by far, the majority of the past reference MTR 

bundles in the TOP corpus belonged to Type 2. That is, the test takers in the TOP corpus mostly 

used past-looking MTR bundles without an explicit reference to a point of the previous discourse. 

This might be due to the additional grammatical difficulty of marking an explicit reference point, 

which is discussed in the next paragraph. Second, the Near-native group alone saw more Type 1 

MTR bundles than all the other groups combined. The numbers of past MTR bundles classified 

into Type 1 across the groups corresponded roughly to the order of the model-based subscale 

scores. This suggests that considering the two different types of past reference MTR bundles 

provides a better explanation of their relationship with model-based subscale score profiles. 

However, given the extremely small sample size, a strong interpretation of this relationship 

would be premature.  

Classifying past reference MTR bundles into two types revealed another interesting 

phenomenon. While the majority of past-looking MTR bundles were Type 2, instances of 

incorrect grammar usage in past-looking MTR bundles occurred mostly as a result of failed 

attempts to use those that were Type 1, as can be seen in the following excerpt: 

    TT:     So- (1.0) now that we are seen the relationships, we can- we  
            can see different patterns of relationships. A- This is important  
 

Note. Boldface italic parts indicate the bundle of interest.  
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This makes intuitive sense, in that the complexity of a bundle generally increases as its reference 

becomes more specific, and therefore, the likelihood of a grammatical error also increases. From 

a pedagogical point of view, this provides empirical evidence that some bundles are more 

difficult to learn that others. Simple MTR bundles such as as I said were seldom used incorrectly, 

and were often used by test takers with relatively low academic oral English proficiency. An 

inspection of MTR bundles with grammatical errors indicated that bundles containing be verbs 

and auxiliary verbs included many errors. Prepositions were also a frequent cause of errors. The 

small sample size made it difficult to generalize this finding, but a future study based on a much 

larger sample would be fruitful. 

In sum, the investigation of the distributions of MTR bundles across the subscale score 

profile groups showed that the use of MTR bundles might be a distinguishing feature for TOP 

test takers who were classified into different profile groups. Future reference MTR bundles 

commonly occurred when a test taker tried to delay answering a question. The ability to use past-

looking MTR bundles that had a specific reference point appeared to be correlated with the 

model-based subscale scores of TOP test takers. Test taker errors were more common with 

bundles that had specific reference points, while simple bundles were successfully used even by 

test takers with relatively low English proficiency.  

5.4 Summary of the chapter 

This chapter reported the findings of analyses addressing the second research question, 

“What are features of oral discourse that characterize test takers who have different subscale 

score profiles?” This chapter consisted of three main sections. The first section described the 

procedures of constructing the TOP corpus. The overall characteristics of the TOP test takers’ 
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language use were then investigated by comparing the TOP corpus to a lecture sub-corpus 

selected from the MICASE corpus. The last section described the use of discourse organizing 

lexical bundles in the TOP corpus to explore relationships between the use of such bundles and 

subscale score profiles. 

The TOP corpus was constructed based on the lecture task performances of 82 test takers. In 

order to obtain a representative corpus, the test takers included in the corpus construction were 

selected based on multiple criteria, including profile group membership, classification 

uncertainty, L1, academic background, and TOP decision categories. The performances of the 82 

test takers were transcribed following the CA transcription method to capture the details of their 

performances and interactional events. The CA-style transcripts were then converted to 

unformatted text files to constitute the TOP corpus, which consisted of approximately 80,000 

spoken words.  

The TOP corpus was compared to the MICASE lecture sub-corpus to explore the 

characteristic features of TOP test takers’ language use. In particular, frequently observed words 

in the two corpora were contrasted. The results showed that the TOP test takers tended to use 

fewer function words than the instructors included the MICASE lecture sub-corpus. Examples of 

such less frequently used function words included discourse markers, past-tense be verbs, 

pronouns, and general nouns. A series of profile group specific comparisons was made by 

examining differences between the word list of each profile group sub-corpus and that of the 

MICASE lecture sub-corpus. The results of these group-specific comparisons demonstrated that 

the relative lack of function words in the TOP test taker performances was a consistent 

phenomenon across all profile groups, with the only exception of the Near-native group.  
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Characteristic features of each profile group’s discourse were investigated through an 

identification and examination of MTR bundles. Based on the list of MTR bundles suggested in 

the literature, a comprehensive search and manual concordance reading procedure were 

combined to identify instances of MTR bundles in the TOP corpus. Identified MTR bundles 

were then coded according to their timeframe and grammatical correctness. The distribution of 

the coded MTR bundles across the score profile groups revealed several interesting findings. 

MTR bundles referring to a previous point in the discourse were most frequently used by test 

takers who belonged to the Near-native group, whereas the vast majority of MTR bundles used 

by the Low Proficiency group members involved a future reference point. A further distinction 

among past reference MTR bundles suggested that the use of past MTR bundles with an explicit 

reference point might be related to test takers’ academic oral English proficiency.  
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Chapter 6: Discussion and conclusion 

This chapter summarizes the results reported in the previous chapters, discusses their 

implications, and provides suggestions for future studies. This chapter begins with a summary of 

the findings from analyses addressing the two research questions of this study. The implications 

of this study are discussed next. The chapter concludes with an acknowledgement of the 

limitations of this study and suggestions for future studies.   

6.1 Summary of the findings 

This study aimed to obtain information from the Test of Oral Proficiency (TOP) subscale 

scores that can be valuable to TOP stakeholders. The TOP subscale scores capture different 

aspects of test takers’ academic oral English proficiency, and therefore, have potential for 

providing valuable feedback to TOP test takers, TOP administrators, and to ESL program 

administrators and instructors. Despite this potential, however, the TOP subscale scores are not 

reported or used. It was believed that an investigation of TOP subscale score profiles would yield 

more detailed information about test takers’ performance in terms of the four TOP subscales, and 

to provide useful information that is not available in the current score report. 

This study attempted to explore the profiles of the TOP test takers based on their subscale 

score patterns and to understand characteristic discourse features of test takers who belong to 

different profile groups. In particular, this study was guided by the following research questions: 

1. What different subscale score profiles of academic English oral proficiency can be 

meaningfully produced by the TOP? 
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2. What features of oral discourse characterize test takers who have different subscale score 

profiles? 

This study consisted of two data analysis stages. In the first stage, which addressed the first 

research question, the model-based subscale scores of 960 TOP test takers were estimated using 

the second-order graded response model (GRM) to account for structural dependencies and rater 

effects contained within the observed rater scores. Finite mixture (FM) models were then fitted 

to the resulting model-based subscale scores to identify groups of TOP test takers who exhibited 

homogeneous subscale score profiles. The subscale scores of the 960 test takers constituted the 

main source of data in this stage. 

The second stage was designed to address the second research question, and therefore, 

focused on oral discourse features characterizing the performances of test takers who had 

different subscale score profiles. Videotaped performances of 82 test takers were transcribed, and 

the transcripts constituted a small oral corpus of the test taker performances. The resulting corpus 

was compared to the MICASE lecture sub-corpus in terms of frequently used words. In addition, 

the distribution of metadiscourse and textual reference (MTR) (Simpson-Vlach and Ellis, 2010) 

bundle usage across the profile groups was investigated. 

6.1.1 Research question 1 

The first research question, “What different subscale score profiles of academic English oral 

proficiency can be meaningfully produced by the TOP?”, was addressed by a series of closely 

related analysis steps. The first step evaluated the parameter recovery of the second-order GRM. 

In the next step, the second-order GRM was fitted to the observed subscale scores of the 960 
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TOP test takers to estimate their model-based subscale scores. Lastly, FM models were 

employed to explore a group structure underlying the estimated model-based subscale scores.  

The parameter recovery of the second-order GRM was evaluated through a small scale 

simulation study. There were three simulation settings, which were designed to present data 

structures from typical language performance assessments with varying levels of complexity. 

The true values of model parameters were generated using the second-order GRM as the true 

model. Model parameters were then estimated using Markov Chain Monte Carlo (MCMC) 

simulations, with the starting values obtained from maximum likelihood (ML) point estimates 

and standard errors. The results showed that all model parameters were successfully recovered in 

all three settings. In addition, the model estimates of test taker proficiency were more highly 

correlated with the true values than the standardized sum scores across all three settings, which 

demonstrated the added value of using the second-order GRM over a simple average scoring 

method in estimating the model-based subscale scores.      

The results of the simulation study provided a justification for the use of the second-order 

GRM to estimate the model-based subscale scores of the 960 TOP test takers. MCMC was used 

as the main estimation method, with its starting values obtained from ML estimation results. The 

goodness of fit of the second-order GRM was evaluated in relation to the goodness of the fit of 

the hierarchical rater model (HRM) (Patz et al., 2002). The model fit comparison results showed 

that the second-order GRM fit the data better than the HRM. The model-based subscale scores 

estimated using the second-order GRM were compared to observed sum scores. The comparison 

showed that the two sets of scores were distributed in a comparable fashion across all subscales. 

However, the continuous nature of the model-based subscale scores allowed more fine-tuned 
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distinctions among takers, and therefore, provided data that were better suited for the subsequent 

FM analysis.     

The model-based subscale scores from the second analysis step were used as the data for the 

FM analysis that explored profiles of subscale score patterns. FM models with four dimensional 

normal components were fit to the model-based subscale scores. The final model was selected 

based on the Bayesian Information Criterion (BIC) (Schwarz, 1978) and substantive 

interpretability. The selected model suggested seven profile groups. All seven groups were 

interpreted and labeled based on the characteristic subscale score patterns, linguistic background, 

and TOP decision categories of group members. The first group consisted of test takers with 

near-native academic oral English proficiency, and therefore, was labeled as the Near-native 

group. Groups 2, 3, and 4 comprised test takers with high-, intermediate-, and low- academic oral 

English proficiency, respectively. Group 5 was labeled as the Varying Pronunciation/Grammar 

group, since its members varied only in terms of Pronunciation and Lexical Grammar. Group 6 

consisted of test takers whose Pronunciation scores were concentrated around the average, and 

therefore, was labeled as the Average Pronunciation group. Group 7 consisted of test takers who 

varied only in terms of Rhetorical Organization, and therefore, was labeled as the Varying 

Organization group.    

6.1.2 Research Question 2 

The second research question, “What features of oral discourse characterize test takers who 

have different subscale score profiles?”, was addressed based on the TOP corpus, a small oral 

corpus consisting of TOP test taker performances. The TOP corpus was compared to a lecture 

sub-corpus selected from the MICASE corpus (Simpson et al., 2002) to investigate the overall 
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characteristics of the TOP test takers’ oral language use. In addition, characteristic features of 

each profile group’s oral discourse were explored through an identification and examination of 

discourse organizing lexical bundles. 

The TOP corpus consisted of the lecture task performances of 82 TOP test takers. The 82 test 

takers included in the TOP corpus were selected as a representative subset of the entire 960 test 

takers. The selection criteria included profile group membership, the estimated uncertainty of 

group membership, L1, academic background, and TOP decision categories. The performances 

of the selected 82 test takers were transcribed according to the CA transcription convention 

(Sacks et al., 1974). Unformatted text files were then created from the CA transcripts for quick 

and straightforward searches of words and expressions in the resulting corpus. The unformatted 

transcripts constituted the TOP corpus, whose total word count was approximately 80,000.  

The lists of most frequently occurring words in the TOP corpus and the MICASE lecture 

sub-corpus were contrasted to find potential differences in the language use patterns of the TOP 

test takers and the instructors in the MICASE sub-corpus. The results showed the relative lack of 

function word usage in the TOP corpus, indicating that the TOP test takers tended to use fewer 

function words than the MICASE instructors. The subsequent group-level comparisons 

demonstrated the following: the TOP test takers use relatively fewer function words consistently 

across all profile groups, with the only exception of the Near-native group.  

Potential differences in discourse organization across different profile groups were 

investigated by identifying and examining the use of MTR bundles. The identification of MTR 

bundles in the TOP corpus began with the list of MTR bundles suggested in the literature, and 

was complemented by manual reading of the CA transcripts and concordance lines. Identified 
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MTR bundles were further examined in terms of their timeframe and grammatical 

appropriateness. The distribution of MTR bundles with different timeframes across the seven 

profile groups demonstrated a relationship between the use of past reference MTR bundles and 

the subscale score profiles. In particular, MTR bundles with an explicit past reference were 

mostly used by test takers who belonged to the Near-native and the High Proficiency groups, 

whereas the majority of MTR bundle use among the Low Proficiency group members referred to 

an upcoming point in discourse. 

6.2 Implications of the findings 

6.2.1 Implications for the TOP 

This study was situated in the local context of the TOP. Consequently, the findings of this 

study have direct implications for the TOP and its stakeholders. First and foremost, the 

identification of distinct profiles based on TOP subscale score patterns provides information that 

can be used to evaluate the current standards and policy. As noted in Chapter 4, the High, 

Intermediate, and Low Proficiency groups corresponded to the three TOP decision categories. 

This can be considered as supporting evidence for the current TOP standards. The Intermediate 

Proficiency group provides further supporting evidence for the current policy in that a small 

improvement on any of the four subscales would place its typical members into the pass category. 

However, the Varying Pronunciation/Grammar group presents evidence against the same policy 

in that its members would benefit more from improvements on two specific subscales, namely 

Pronunciation and Lexical Grammar. It is noteworthy that the current TOP weighting system 

favors test takers who score highly on the Pronunciation subscale. However, the extent to which 

a high score on Pronunciation could compensate relatively low scores on the other scales was not 
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thoroughly investigated when the weights were determined. The members of the Average 

Pronunciation group provide a focused sample set to evaluate the current weighting system in 

that almost all of them passed despite relatively large variations on the other three subscales.         

In addition, the findings of this study can provide valuable information to enhance ITA 

training. As described in Chapter 4, the final model assigned a profile group membership to most 

of the 960 test takers with a high level of confidence. The profile group information can be 

provided to each test taker as detailed feedback on his or her performance. Test takers who did 

not pass the test will be able to make informed decisions about appropriate ESL courses to take 

based on the profile information. Even test takers who passed the test can use the feedback to 

further improve their academic oral English proficiency. Furthermore, such detailed feedback 

will be beneficial for ESL instructors, who can use the information to plan and customize their 

classes. ESL courses can be arranged and developed based on the proportion of test takers who 

belonged to a specific profile group. For example, the results of the FM analysis showed that a 

large proportion of test takers who did not pass the test would benefit most from ESL courses 

focusing on Pronunciation or Lexical Grammar.  

One of the practical difficulties for the TOP program has been the lack of an effective means 

to estimate the relative severity and discrimination of an individual rater. The TOP employs an 

incomplete block design for rater assignment, with two raters per test taker. Therefore, the scores 

from one rater can only be directly compared to those of the other rater in a given pair. While 

variations in rater severity and discrimination were not part of this study, and it did not 

specifically investigate variations across raters, the second-order GRM used in this study can 

address this issue directly by providing an estimate of rater severity and discrimination with the 
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corresponding standard errors. The rater severity and discrimination estimates can provide 

information about how lenient or severe a rater was relative to the other raters, and how large 

random fluctuations in a rater’s score assignment were, respectively. It is straightforward to use 

the estimates of rater severity and discrimination parameters as feedback for individual raters in 

rater training and norming.  

The relationship between the past reference MTR bundle use and the academic oral English 

proficiency presents another practical implication for TOP. This relationship can be used to 

improve the scoring rubric for Rhetorical Organization and to design effective test tasks. Raters 

have had difficulty in evaluating test takers’ Rhetorical Organization, in large part because of the 

relative ambiguity of the current scoring rubric for that subscale, which is provided in Appendix 

H. Appropriate use of the past-reference MTR bundles could be included in the scoring rubric to 

make it more concrete. The relationship could also be utilized to improve the current TOP tasks 

or to develop a new task aimed at eliciting the use of past reference MTR bundles. However, it 

should be noted that the relationship between the past reference MTR bundle use and the 

academic oral English proficiency was examined based a small sample, and therefore, it should 

be validated in future studies before being used to implement changes in the TOP. 

6.2.2 Methodological implications 

This study generalized the GRM (Samejima, 1969) in an attempt to address dependencies 

and rater effects inherent in the TOP rater scores. The resulting model, namely the second-order 

GRM, can be applied to any performance assessment contexts that involve multiple tasks rated 

by multiple raters. Since the second-order GRM draws upon the models for a single task rated by 

multiple raters (Baldwin et al., 2009; Johnson, 1996), it can be easily understood as the 
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continuation of the existing models. In addition, the transformation of the second-order GRM 

into a restricted testlet model described in Chapter 3 allows efficient ML estimation based on the 

bifactor dimension reduction (Gibbons & Hedecker, 1992). The resulting ML point and standard 

error estimates can be used on their own as final estimates, or utilized to obtain sound starting 

values for MCMC estimation. The transformation also reveals a conceptual relationship between 

items in a testlet-based test and raters in a multiple-task, multiple rater assessment, and provides 

a straightforward solution to address incomplete block designs with a large amount of missing 

data.  

This study employed a combination of the second-order GRM and FM models to investigate 

subscale score profiles. While this combination arose within the context of the TOP, it can be 

applied to any language performance assessment context to explore group structures in terms of 

subscale profiles. Language performance assessments typically involve a small number of tasks 

that are designed to capture a large number of different skills, which makes it difficult to apply 

the standard cognitive diagnostic assessment (CDA) models to obtain skill profiles. The 

combination of the second-order GRM and a multivariate normal mixture model provides a 

practical alternative to the CDA models in that this combination is also capable of generating 

profile information based on subscale score patterns. 

The identification of MTR bundles in this study relied upon manual reading of the CA 

transcripts as well as the search results from the TOP corpus. This study effectively utilized two 

different versions of transcripts to combine the advantages that each of them provided. While the 

CA transcripts were better suited for retaining the details of language use in test taker 

performances, constructing a corpus that allows straightforward search for a given word or 
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phrase with them presented a challenge. This study tackled this challenge by creating another 

version of the CA transcripts that were simple and unformatted text files. By constructing the 

TOP with the unformatted text files, the resulting corpus could accommodate a variety of search 

queries. The CA-transcripts were tied to each text file in a relational database, which allowed a 

more context-rich reading of the original CA transcript when necessary. Given the importance of 

context-rich reading in studies based on relatively small corpora, the specific combination of the 

CA transcripts and their unformatted versions appears to be a promising approach to constructing 

a new corpus, especially when the resulting corpus is small.  

6.3 Limitations and suggestions for future studies 

6.3.1 Limitations 

This study was situated in a local setting and was exploratory in nature. Therefore, some 

findings may not be generalizable beyond the local setting, and any attempts to generalize the 

findings must be validated based on further research. The seven profile groups identified in 

Chapter 4 are specific to the TOP context. While the methodologies employed to identify those 

profile groups can be applied to many other, similar settings, the specific structure of the profile 

groups and their characteristics are not intended to generalize. Furthermore, it should be noted 

that the findings from the corpus-based analysis were based on a small sample. While extensive 

efforts were made to assure that the TOP corpus was representative of the TOP test taker 

population, results based on small samples are inherently subject to random and systematic 

fluctuations. Consequently, further investigations based on a more comprehensive collection of 

the TOP test taker performances would be useful to validate the corpus-based findings in this 

study. In addition, this study was certainly limited in that it focused only on the MTR bundles 
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and their timeframe and grammatical correctness. The MTR bundles investigated in this study 

are only one of many possible types of lexical bundles that function as discourse organizers in 

academic settings.  

While the combination of second-order GRM and FM models presents an effective and 

practical solution to explore different profiles in terms of subscale score patterns, there were a 

few choices in its implementation that were not theoretically ideal. As mentioned in Chapter 4, 

the model-based subscale scores were estimated by fitting the second-order GRM to the scores 

on each subscale, resulting in four parallel univariate models. A more desirable approach would 

involve the multivariate generalization of the second-order GRM, which was briefly described in 

Chapter 4. In addition, the lack of an absolute fit index for the second-order GRM made it 

difficult to gauge the goodness of fit of the model. The estimated model-based subscale scores 

were used as the data for the FM model. It is noteworthy that this procedure entailed ignoring the 

uncertainty around the model-based subscale scores. While this choice was a practical necessity 

given the difficulty of fitting mixtures of the second-order GRM, it would be desirable to find a 

way to properly incorporate the uncertainty in estimating the FM model.   

6.3.2 Suggestions for future studies 

The aforementioned limitations offer suggestions for future research efforts. It appears that 

investigating the use of MTR bundles and its relationship with academic oral English proficiency 

presents a promising line of research. There are large oral corpora that capture academic English 

in university settings, upon which such investigations could be conducted. The timeframe coding 

scheme used in this study could be applied to a larger corpus in a straightforward manner. 

Focusing on other elements of academic oral discourse organization could lead to another line of 



 

174 
 

promising research. Based on a number of lexical bundles that serve referential and discourse 

organizing functions suggested in the literature, and an empirical investigation of their 

relationships to academic oral proficiency would be fruitful. The organization of academic 

discourse in terms of pragmatic functions also appears to deserve further investigation; there are 

several schemes for coding pragmatic functions in academic discourse (Maynard & Leicher, 

2007; Nesi, Ahmad & Ibrahim, 2009). At the same time, it should be noted that the difficulty of 

applying such simplified coding schemes to complex language use in academic discourse might 

present a challenge.  

The generalization of the second-order GRM to a multivariate model presents a natural 

extension of this study. The resulting model could provide a methodological tool for handling 

data from analytic scoring schemes that are frequently used in language performance 

assessments (Luoma, 2004; Weigle, 2002). Given the complexity of the model, however, the 

multivariate generalization should be attempted based on a solid understanding of rating 

processes. Unfortunately, little is known about raters’ scoring processes based on analytic 

scoring schemes. Therefore, a qualitative investigation of the rating process would be the first 

step towards the multivariate generalization of the second-order GRM.  
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APPENDICES 

Appendix A: R syntax for the simulation data generation (Setting 1) 

## simulation setup 

nper <- 960 # Number of test takers (i = 1, ..., N) 

ntask <- 5 # Number of tasks (j = 1, ..., J) 

nrater <- 5 # Number of raters (r = 1, ..., R) 

ncat <- 4 # Number of scoring categories (k = 1,...,K) 

 

## True Values 

mu.theta <- 0 

sd.theta <- sqrt(8) 

mu.a <- 0  

sd.a <- 1 

mu.u <- 0 

sd.u <- 1 

mu.tau <- 0 

sd.tau <- 1 

mu.gamma <- 0 

sd.gamma <- 1 

 

## calling msm for drawing samples from truncated normal distributions 

library(msm) 

 

set.seed(1223) 

## Draw the true parameters 

theta <- rnorm(nper, mu.theta, sd.theta) 

theta <- matrix(theta, nrow = nper, ncol = 1) 

a <- rtnorm(nrater, mu.a, sd.a, lower = 0) 

a <- matrix(a, nrow = nrater, ncol = 1) 
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u <- rnorm(nper * ntask, mu.u, sd.u) 

u <- matrix(u, nrow = nper, ncol = ntask) 

tau <- rnorm(nrater - 1, mu.tau, sd.tau) 

tau <- matrix(c(1, tau), nrow = nrater, ncol = 1) 

gamma <- matrix(rep(0, nrater * (ncat - 1)), nrow = nrater, ncol = ncat - 1) 

for (r in 1:nrater) { 

 gtemp <- rnorm(ncat - 2, mu.gamma, sd.gamma) 

 gamma[r,] <- sort(c(gtemp, -sum(gtemp))) 

 } 

prsco <- rep(0, ntask * ncat * nrater * nper) 

dim(prsco) <- c(nper, ntask, nrater, ncat) 

 

# Calculate model implied cumulative probabilities 

for (i in 1:nper){ 

 for (j in 1:ntask){ 

  for (r in 1:nrater){ 

   for (k in 1:(ncat-1)){ 

    exp.in <- gamma[r,k] - a[r] * (theta[i] + u[i,j] - 
tau[r]) 

    prsco[i,j,r,k] <- exp(exp.in)/(1 + exp(exp.in)) 

   } 

   prsco[i,j,r,ncat] <- 1 

  } 

 } 

} 

prob <- rep(0, ntask * ncat * nrater * nper) 

dim(prob) <- c(nper, ntask, nrater, ncat) 

 

# Calculate model implied probabilities per each scoring category 

for (i in 1:nper){ 
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 for (j in 1:ntask){ 

  for (r in 1:nrater){ 

   prob[i,j,r,1] <- prsco[i,j,r,1] 

   for (k in 2:ncat){ 

    prob[i,j,r,k] <- prsco[i,j,r,k] - prsco[i,j,r,k-1] 

   } 

  } 

 } 

} 

gendata <- rep(0, nper * ntask * nrater) 

dim(gendata) <- c(nper, ntask, nrater) 

# Generating observed rater scores 

for (i in 1:nper){ 

 for (j in 1:ntask){ 

  for (r in 1:nrater){ 

   gendata[i,j,r] <- sample(1:ncat, 1, prob = prob[i,j,r,]) 

  } 

 } 

} 
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Appendix B: flexMIRT and WinBUGS syntax for the simulation estimation (Setting 1) 

flexMIRT 

<Project> 

Title = "Simulation /w 5 tasks"; 

Description = "One general factor, 5 tasks (testlets) - 2013/02/23"; 

<Options> 

 Mode = Calibration; 

 saveSCO = YES; 

 Score = EAP; 

 GOF = Complete; 

 M2 = Ordinal; 

 Processors = 4; 

<Groups> 

%UNI% 

  File = "gendata_flexMirt_format.dat"; 

  Dimensions = 6; 

  Primary = 1; 

  Varnames = I1R1, I1R2, I1R3, I1R4, I1R5, I2R1, I2R2, I2R3, I2R4, I2R5, I3R1, 
I3R2, I3R3, I3R4, I3R5, I4R1, I4R2, I4R3, I4R4, I4R5, I5R1, I5R2, I5R3, I5R4, 
I5R5; 

  N = 960; 

  Code(I1R1, I1R2, I1R3, I1R4, I1R5, I2R1, I2R2, I2R3, I2R4, I2R5, I3R1, I3R2, 
I3R3, I3R4, I3R5, I4R1, I4R2, I4R3, I4R4, I4R5, I5R1, I5R2, I5R3, I5R4, I5R5) 
= (1,2,3,4),(0,1,2,3); 

  Ncats(I1R1, I1R2, I1R3, I1R4, I1R5, I2R1, I2R2, I2R3, I2R4, I2R5, I3R1, 
I3R2, I3R3, I3R4, I3R5, I4R1, I4R2, I4R3, I4R4, I4R5, I5R1, I5R2, I5R3, I5R4, 
I5R5) = 4; 

  Model(I1R1, I1R2, I1R3, I1R4, I1R5, I2R1, I2R2, I2R3, I2R4, I2R5, I3R1, 
I3R2, I3R3, I3R4, I3R5, I4R1, I4R2, I4R3, I4R4, I4R5, I5R1, I5R2, I5R3, I5R4, 
I5R5) = Graded(4); 

  BetaPriors(I1R1, I1R2, I1R3, I1R4, I1R5, I2R1, I2R2, I2R3, I2R4, I2R5, I3R1, 
I3R2, I3R3, I3R4, I3R5, I4R1, I4R2, I4R3, I4R4, I4R5, I5R1, I5R2, I5R3, I5R4, 
I5R5) = 1.5; 
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<Constraints> 

  // Bifactor structure 

  Fix  UNI,(I1R1, I1R2, I1R3, I1R4, I1R5, I2R1, I2R2, I2R3, I2R4, I2R5, I3R1, 
I3R2, I3R3, I3R4, I3R5, I4R1, I4R2, I4R3, I4R4, I4R5, I5R1, I5R2, I5R3, I5R4, 
I5R5),Slope; 

  Free UNI,(I1R1, I1R2, I1R3, I1R4, I1R5, I2R1, I2R2, I2R3, I2R4, I2R5, I3R1, 
I3R2, I3R3, I3R4, I3R5, I4R1, I4R2, I4R3, I4R4, I4R5, I5R1, I5R2, I5R3, I5R4, 
I5R5),Slope(1); 

  Free UNI,(I1R1, I1R2, I1R3, I1R4, I1R5),Slope(2); 

  Free UNI,(I2R1, I2R2, I2R3, I2R4, I2R5),Slope(3); 

  Free UNI,(I3R1, I3R2, I3R3, I3R4, I3R5),Slope(4); 

  Free UNI,(I4R1, I4R2, I4R3, I4R4, I4R5),Slope(5); 

  Free UNI,(I5R1, I5R2, I5R3, I5R4, I5R5),Slope(6); 

  // intercepts equality restrictions within the same rater 

  Equal UNI,(I1R1, I1R2, I1R3, I1R4, I1R5),Intercept: 

        UNI,(I2R1, I2R2, I2R3, I2R4, I2R5),Intercept: 

 UNI,(I3R1, I3R2, I3R3, I3R4, I3R5),Intercept: 

 UNI,(I4R1, I4R2, I4R3, I4R4, I4R5),Intercept: 

 UNI,(I5R1, I5R2, I5R3, I5R4, I5R5),Intercept; 

  // slope proportionality constraint 

  Equal UNI,(I1R1, I1R2, I1R3, I1R4, I1R5),Slope(1): 

 UNI,(I2R1, I2R2, I2R3, I2R4, I2R5),Slope(1): 

 UNI,(I3R1, I3R2, I3R3, I3R4, I3R5),Slope(1): 

 UNI,(I4R1, I4R2, I4R3, I4R4, I4R5),Slope(1): 

 UNI,(I5R1, I5R2, I5R3, I5R4, I5R5),Slope(1): 

 UNI,(I1R1, I1R2, I1R3, I1R4, I1R5),Slope(2): 

 UNI,(I2R1, I2R2, I2R3, I2R4, I2R5),Slope(3): 

 UNI,(I3R1, I3R2, I3R3, I3R4, I3R5),Slope(4): 

 UNI,(I4R1, I4R2, I4R3, I4R4, I4R5),Slope(5): 

 UNI,(I5R1, I5R2, I5R3, I5R4, I5R5),Slope(6); 

  Fix UNI,Mean(1); 

  Fix UNI,Mean(2); 
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  Fix UNI,Mean(3); 

  Fix UNI,Mean(4); 

  Fix UNI,Mean(5); 

  Fix UNI,Mean(6); 

  Free UNI, Cov(1,1); 

  Value UNI, Cov(2,2), 1.0; 

  Value UNI, Cov(3,3), 1.0; 

  Value UNI, Cov(4,4), 1.0; 

  Value UNI, Cov(5,5), 1.0; 

  Value UNI, Cov(6,6), 1.0; 

  Prior UNI, (I1R1, I1R2, I1R3, I1R4, I1R5, I2R1, I2R2, I2R3, I2R4, I2R5, 
I3R1, I3R2, I3R3, I3R4, I3R5, I4R1, I4R2, I4R3, I4R4, I4R5, I5R1, I5R2, I5R3, 
I5R4, I5R5),Slope(1) : logNormal(0,0.25); 

  Prior UNI, (I1R1, I1R2, I1R3, I1R4, I1R5),Slope(2) : logNormal(0,0.25); 

  Prior UNI, (I2R1, I2R2, I2R3, I2R4, I2R5),Slope(3) : logNormal(0,0.25); 

  Prior UNI, (I3R1, I3R2, I3R3, I3R4, I3R5),Slope(4) : logNormal(0,0.25); 

  Prior UNI, (I4R1, I4R2, I4R3, I4R4, I4R5),Slope(5) : logNormal(0,0.25); 

  Prior UNI, (I5R1, I5R2, I5R3, I5R4, I5R5),Slope(6) : logNormal(0,0.25);  
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WinBUGS 

model{ 

 for (i in 1:N){ 

  for (j in 1:J){ 

   for (r in 1:R){ 

    ## Observed Data Generating Probability 

    Y[i,j,r] ~ dcat(prob[i,j,r,1:K]) 

    ## Computing elements for the logit likelihood 

   au[i,j,r] <- a[r] * u[i,j] 

   aall[i,j,r] <- a[r] * theta[i] + au[i,j,r] - a[r] * tau[r] 

    for (k in 1:(K-1)){ 

     ## Logit link function and the model 

     logit(P[i,j,r,k]) <- gamma[r,k] - aall[i,j,r] 

    } 

   P[i,j,r,K] <- 1.0 

   } 

  u[i,j] ~ dnorm(0.0, 1.0) 

  } 

  ## Prior for theta: Normal(0,1) 

  theta[i] ~ dnorm(0.0 , pr.theta) 

  ## Differences between neighboring probabilities 

  for (j in 1:J){ 

   for (r in 1:R){ 

    prob[i,j,r,1] <- P[i,j,r,1] 

    for (k in 2:K){ 

     prob[i,j,r,k] <- P[i,j,r,k] - P[i,j,r,k-1] 

    } 

   } 

  } 

 } 
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 ## In this parameterization, lambda[j] is set to 1 for all j 

 ## to estimate the variance of theta 

 ## Prior for lambda: Normal(0,1) with truncated at 0 (only positive) 

 # lambda[1] ~ dnorm(0.0, 1.0)I(0,) 

 ## Equality constraints for lambdas (only if j < 3) 

 ##for (j in 2:J){ 

 ## lambda[j] <- lambda[1] 

 # } 

## Prior for rater discrimination parameter: truncated normal (0,1) I(0,) 

 for (r in 1:R){ 

  a[r] ~ dnorm(0,0.1)I(0,) 

 } 

## Prior for rater overall severity parameter: Normal(0,1) 

## tau[1] is set to one for identification (arbitrary) 

 tau[1] <- 1 

 for (r in 2:R){ 

  tau[r] ~ dnorm(0,0.1) 

 } 

 for (r in 1:R){ 

  for (k in 1:(K-2)){ 

   gamma.star[r,k] ~ dnorm(m.gamma,pr.gamma) 

   gamma[r,k] <- ranked(gamma.star[r,1:(K-2)],k) 

  } 

 # Gamma sum-to-zero Constraint for identification 

 gamma[r, K-1] <- -sum( gamma[r, 1:(K-2)] ) 

 } 

 pr.gamma <- pow(s.gamma, -2) 

## Hyperprior for theta precision: Gamma(1,1) 

 pr.theta ~ dgamma(1,1) 

} 



 

183 
 

Appendix C: flexMIRT syntax for the ML estimation of model-based subscale scores (Lexical 
Grammar) 

<Project> 

Title = "TOP Second Order GRM: LG"; 

Description = "TOP Lexical Grammar"; 

<Options> 

  Mode = Calibration; 

  Quadrature = 21,6.0; 

  Etol = 1e-5; 

  MAXE = 15000; 

  MAXM = 10000; 

  GOF = Complete; 

  M2 = Full; 

  SaveSCO = Yes; 

  Score = EAP; 

  Processors = 4; 

  FactorLoadings = Yes; 

<Groups> 

%LG% 

  File = "TOP_LG_only_higher_order_3cat.dat"; 

  Missing = 9; 

  Varnames = TTakerID, I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20,  

      I1R21, I1R30, I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46,  

      I1R48, I1R56, I2R02, I2R05, I2R11, I2R12, I2R18, I2R19, I2R20,  

      I2R21, I2R30, I2R31, I2R32, I2R36, I2R40, I2R44, I2R45, I2R46,  

      I2R48, I2R56; 

  Select = I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20,  

      I1R21, I1R30, I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46,  

      I1R48, I1R56, I2R02, I2R05, I2R11, I2R12, I2R18, I2R19, I2R20,  

      I2R21, I2R30, I2R31, I2R32, I2R36, I2R40, I2R44, I2R45, I2R46,  
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      I2R48, I2R56; 

  CaseID = TTakerID; 

  Dimensions = 3; 

  Primary = 1; 

  N = 960; 

  Ncats(I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20,  

      I1R21, I1R30, I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46,  

      I1R48, I1R56, I2R02, I2R05, I2R11, I2R12, I2R18, I2R19, I2R20,  

      I2R21, I2R30, I2R31, I2R32, I2R36, I2R40, I2R44, I2R45, I2R46,  

      I2R48, I2R56) = 3; 

  Model(I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20,  

      I1R21, I1R30, I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46,  

      I1R48, I1R56, I2R02, I2R05, I2R11, I2R12, I2R18, I2R19, I2R20,  

      I2R21, I2R30, I2R31, I2R32, I2R36, I2R40, I2R44, I2R45, I2R46,  

      I2R48, I2R56) = Graded(3); 

  BetaPriors(I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20,  

      I1R21, I1R30, I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46,  

      I1R48, I1R56, I2R02, I2R05, I2R11, I2R12, I2R18, I2R19, I2R20,  

      I2R21, I2R30, I2R31, I2R32, I2R36, I2R40, I2R44, I2R45, I2R46,  

      I2R48, I2R56) = 1.5; 

<Constraints> 

  // Bifactor structure 

  Fix  LG,(I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20, I1R21, I1R30, 
I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46, I1R48, I1R56, I2R02, I2R05, 
I2R11, I2R12, I2R18, I2R19, I2R20, I2R21, I2R30, I2R31, I2R32, I2R36, I2R40, 
I2R44, I2R45, I2R46, I2R48, I2R56),Slope; 

  Free LG,(I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20, I1R21, I1R30, 
I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46, I1R48, I1R56, I2R02, I2R05, 
I2R11, I2R12, I2R18, I2R19, I2R20, I2R21, I2R30, I2R31, I2R32, I2R36, I2R40, 
I2R44, I2R45, I2R46, I2R48, I2R56),Slope(1); 

  Free LG,(I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20, I1R21, I1R30, 
I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46, I1R48, I1R56),Slope(2); 
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  Free LG,(I2R02, I2R05, I2R11, I2R12, I2R18, I2R19, I2R20, I2R21, I2R30, 
I2R31, I2R32, I2R36, I2R40, I2R44, I2R45, I2R46, I2R48, I2R56),Slope(3); 

  // intercepts equality restrictions within the same rater 

  Equal LG,(I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20, I1R21, I1R30, 
I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46, I1R48, I1R56),Intercept: 

        LG,(I2R02, I2R05, I2R11, I2R12, I2R18, I2R19, I2R20, I2R21, I2R30, 
I2R31, I2R32, I2R36, I2R40, I2R44, I2R45, I2R46, I2R48, I2R56),Intercept; 

  // slope proportionality constraint 

  Equal LG,(I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20, I1R21, I1R30, 
I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46, I1R48, I1R56),Slope(1): 

 LG,(I2R02, I2R05, I2R11, I2R12, I2R18, I2R19, I2R20, I2R21, I2R30, 
I2R31, I2R32, I2R36, I2R40, I2R44, I2R45, I2R46, I2R48, I2R56),Slope(1): 

        LG,(I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20, I1R21, I1R30, 
I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46, I1R48, I1R56),Slope(2): 

 LG,(I2R02, I2R05, I2R11, I2R12, I2R18, I2R19, I2R20, I2R21, I2R30, 
I2R31, I2R32, I2R36, I2R40, I2R44, I2R45, I2R46, I2R48, I2R56),Slope(3); 

  Fix LG,Mean(1); 

  Fix LG,Mean(2); 

  Fix LG,Mean(3); 

  Free LG, Cov(1,1); 

  Value LG, Cov(2,2), 1.0; 

  Value LG, Cov(3,3), 1.0; 

  Prior LG, (I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20, I1R21, I1R30, 
I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46, I1R48, I1R56, I2R02, I2R05, 
I2R11, I2R12, I2R18, I2R19, I2R20, I2R21, I2R30, I2R31, I2R32, I2R36, I2R40, 
I2R44, I2R45, I2R46, I2R48, I2R56),Slope(1) : logNormal(0,0.25); 

  Prior LG, (I1R02, I1R05, I1R11, I1R12, I1R18, I1R19, I1R20, I1R21, I1R30, 
I1R31, I1R32, I1R36, I1R40, I1R44, I1R45, I1R46, I1R48, I1R56),Slope(2) : 
logNormal(0,0.25); 

  Prior LG, (I2R02, I2R05, I2R11, I2R12, I2R18, I2R19, I2R20, I2R21, I2R30, 
I2R31, I2R32, I2R36, I2R40, I2R44, I2R45, I2R46, I2R48, I2R56),Slope(3) : 
logNormal(0,0.25); 
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Appendix D: WinBUGS syntax for the MCMC estimation of model-based subscale scores 
(Lexical Grammar) 

Note. Model likelihood is the same as the simulation setting in Appendix C, and therefore, not 
shown here. 

 

 for (r in 1:R){ 

  a[r] ~ dnorm(0,0.1)I(0,) 

 } 

 tau[1] <- 0 

 for (r in 2:R){ 

  tau[r] ~ dnorm(0,0.1) 

 } 

 for (r in 1:R){ 

  for (k in 1:(K-2)){ 

   gamma.star[r,k] ~ dnorm(m.gamma,pr.gamma) 

   gamma[r,k] <- ranked(gamma.star[r,1:(K-2)],k) 

  } 

 gamma[r, K-1] <- -sum( gamma[r, 1:(K-2)] ) 

 } 

 pr.gamma <- pow(s.gamma, -2) 

 pr.theta ~ dgamma(1,1) 
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Appendix E: Rater parameter point estimates and standard errors 

 
Pronunciation Lexical Grammar 

Rhetorical 
Organization Question Handling

ܽଵ 0.65 (0.13) 0.75 (0.16) 1.78 (0.61) 2.58 (0.79) 
ܽଶ  0.44 (0.07) 0.61 (0.1) 1.11 (0.22) 0.69 (0.13) 
ܽଷ  0.66 (0.18) 0.95 (0.26) 0.99 (0.32) 0.96 (0.31) 
ܽସ  0.67 (0.13) 0.98 (0.2) 0.73 (0.16) 0.92 (0.21) 
ܽହ  0.9 (0.16) 0.84 (0.16) 0.65 (0.15) 0.93 (0.2) 
ܽ଺ 0.59 (0.13) 0.82 (0.17) 1.01 (0.25) 0.91 (0.24) 
ܽ଻  0.46 (0.09) 0.71 (0.16) 0.56 (0.13) 0.4 (0.09) 
଼ܽ  0.83 (0.17) 0.93 (0.18) 1.25 (0.28) 0.99 (0.22) 
ܽଽ  1 (0.18) 0.9 (0.13) 1.29 (0.23) 0.66 (0.11) 
ܽଵ଴  0.9 (0.14) 0.74 (0.1) 0.71 (0.1) 0.6 (0.09) 
ܽଵଵ 0.88 (0.18) 0.89 (0.17) 1.24 (0.3) 0.97 (0.22) 
ܽଵଶ  0.63 (0.15) 0.47 (0.11) 1.41 (0.37) 1.18 (0.3) 
ܽଵଷ  0.86 (0.17) 0.61 (0.13) 1.22 (0.3) 0.81 (0.2) 
ܽଵସ  0.94 (0.18) 1.09 (0.22) 1.03 (0.23) 0.83 (0.19) 
ܽଵହ  0.98 (0.22) 0.87 (0.2) 1.02 (0.28) 0.68 (0.19) 
ܽଵ଺ 0.65 (0.13) 1 (0.2) 0.67 (0.14) 0.66 (0.12) 
ܽଵ଻  0.75 (0.18) 1.04 (0.23) 0.73 (0.21) 0.86 (0.24) 
ܽଵ଼  0.89 (0.19) 1.02 (0.24) 1.24 (0.29) 1.19 (0.27) 
 ଵଵ -5.37 (0.75) -4.15 (0.63) -3.35 (0.96) -3.55 (1)ߛ
 ଵଶߛ -1.49 (0.38) -1.1 (0.31) -1.33 (0.43) -1.66 (0.55) 
 ଶଵ -5.19 (0.41) -5.87 (0.8) -6.39 (0.96) -5.09 (0.64)ߛ
 ଶଶߛ 0.26 (0.19) 0.24 (0.38) -0.84 (0.47) -1.1 (0.31) 
 ଷଵ -4.98 (0.94) -5.07 (1.03) -4.26 (1.02) -4.04 (1)ߛ
 ଷଶߛ -0.05 (0.52) -0.15 (0.56) -0.95 (0.59) -1.22 (0.67) 
 ସଵ -5.56 (0.7) -6.01 (0.98) -4.39 (0.79) -4.91 (0.9)ߛ
 ସଶߛ -0.62 (0.32) -0.66 (0.5) -0.29 (0.42) -1.58 (0.55) 
 ହଵ -8.97 (1.01) -6.71 (0.94) -4.67 (0.78) -5.74 (0.94)ߛ
 ହଶߛ 1.23 (0.44) -0.02 (0.44) -0.58 (0.42) -1.5 (0.5) 
 ଺ଵ -5.13 (0.83) -5.81 (0.89) -5.04 (0.98) -4.85 (1.02)ߛ
 ଺ଶߛ 0.04 (0.41) -0.48 (0.48) -1.78 (0.62) -1.73 (0.64) 
 ଻ଵ -4.27 (0.46) -5.29 (0.77) -3.55 (0.48) -3.17 (0.42)ߛ
 ଻ଶߛ -0.32 (0.22) -0.41 (0.3) -0.53 (0.26) -0.61 (0.23) 
 ଵ -6.68 (0.85) -6.27 (0.93) -5.59 (0.98) -5.6 (0.94)଼ߛ
 ଶ଼ߛ -0.67 (0.42) -0.88 (0.5) -1.12 (0.55) -1.06 (0.52) 
 ଽଵ -7.7 (0.84) -6.91 (0.82) -6.9 (0.88) -5.12 (0.81)ߛ
 ଽଶߛ -0.36 (0.31) 0.4 (0.38) -0.72 (0.43) -1.02 (0.42) 
 ଵ଴,ଵ -7.51 (0.63) -6.12 (0.61) -4.78 (0.48) -4.32 (0.42)ߛ
 ଵ଴,ଶߛ -0.26 (0.22) 0.2 (0.28) -0.16 (0.23) -1.22 (0.22) 
 ଵଵ,ଵ -7.21 (0.99) -6.11 (0.95) -5.18 (0.96) -4.9 (0.83)ߛ
 ଵଵ,ଶߛ 0.16 (0.43) -0.53 (0.5) -0.89 (0.54) -1.26 (0.46) 
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 ଵଶ,ଵ -4.79 (0.79) -3.79 (0.75) -5.09 (1.03) -5.42 (1.07)ߛ
 ଵଶ,ଶߛ -0.84 (0.42) -0.81 (0.4) -1.43 (0.65) -1.65 (0.68) 
 ଵଷ,ଵ -7.9 (1.06) -5.5 (0.89) -5.65 (0.96) -5.3 (0.93)ߛ
 ଵଷ,ଶߛ 0.5 (0.41) -0.71 (0.46) -0.63 (0.43) -0.74 (0.53) 
 ଵସ,ଵ -7.9 (1.02) -6.16 (0.96) -5.09 (0.83) -5.34 (0.91)ߛ
 ଵସ,ଶߛ -0.35 (0.45) -1.05 (0.51) -0.19 (0.37) -0.93 (0.52) 
 ଵହ,ଵ -6.53 (1.04) -5.68 (0.99) -5.35 (1.01) -4.71 (0.93)ߛ
 ଵହ,ଶߛ -1.26 (0.55) -1.97 (0.66) -0.87 (0.54) -1.61 (0.56) 
 ଵ଺,ଵ -6.63 (0.91) -6.61 (1.01) -4.11 (0.79) -4.25 (0.75)ߛ
 ଵ଺,ଶߛ -0.21 (0.43) -0.53 (0.49) -0.38 (0.41) -0.1 (0.39) 
 ଵ଻,ଵ -6.36 (1.02) -6.17 (1.05) -4.1 (0.87) -4.62 (0.95)ߛ
 ଵ଻,ଶߛ -1.31 (0.62) -0.97 (0.61) -0.75 (0.49) -0.52 (0.52) 
 ଵ଼,ଵ -6.99 (1.07) -5.45 (0.98) -5.22 (1.01) -6.02 (1.09)ߛ
 ଵ଼,ଶߛ -0.25 (0.53) -1.14 (0.61) -1.79 (0.66) -1.68 (0.64) 
߬ଶ -1.46 (0.5) -4.47 (0.82) -2.89 (0.52) -3.82 (0.61) 
߬ଷ -3.61 (0.99) -2.72 (0.79) -2.62 (0.95) -4.35 (1.11) 
߬ସ -2.55 (0.58) -3.83 (0.68) -4.21 (0.9) -4.69 (0.86) 
߬ହ -3.17 (0.64) -3.67 (0.66) -3.9 (0.92) -2.95 (0.6) 
߬଺ -3.92 (0.96) -3.91 (0.75) -3.3 (0.78) -4.36 (0.9) 
߬଻ -1.34 (0.56) -3.08 (0.53) -3.54 (0.77) -4.42 (0.97) 
଼߬ -3.3 (0.65) -4.2 (0.7) -3.13 (0.59) -4.24 (0.71) 
߬ଽ -2.67 (0.42) -4.52 (0.62) -2.64 (0.42) -5.47 (0.9) 
߬ଵ଴ -2.33 (0.37) -4.39 (0.59) -3.26 (0.51) -4.67 (0.62) 
߬ଵଵ -3.34 (0.65) -3.85 (0.68) -3.5 (0.65) -3.88 (0.6) 
߬ଵଶ -3.48 (0.83) -6.05 (1.23) -3.1 (0.66) -4.31 (0.75) 
߬ଵଷ -1.88 (0.55) -5.47 (0.94) -2.47 (0.49) -4.11 (0.88) 
߬ଵସ  -2.57 (0.54) -3.39 (0.57) -2.47 (0.51) -4 (0.8) 
߬ଵହ  -2.91 (0.64) -4.07 (0.84) -2.69 (0.71) -4.18 (1.06) 
߬ଵ଺  -3.33 (0.8) -3.87 (0.65) -4.45 (0.97) -5.11 (0.95) 
߬ଵ଻  -3.03 (0.88) -3.39 (0.7) -3.96 (1.08) -4.31 (0.93) 
߬ଵ଼  -3.88 (0.76) -4.51 (0.78) -3.03 (0.68) -3.16 (0.62) 

 

Note. Standard errors are presented in parentheses. 
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Appendix F: Profile group subscale covariance matrices 

Group 1 

 
Pronunciation 

Lexical 
Grammar 

Rhetorical 
Organization 

Question 
Handling 

Pronunciation 1.09    
Lexical Grammar 0.56 0.42   
Rhetorical Organization 0.06 0.09 2.92  
Question Handling 0.39 0.45 1.38 5.43 
 

 

Group 2 

 
Pronunciation 

Lexical 
Grammar 

Rhetorical 
Organization 

Question 
Handling 

Pronunciation 14.76    
Lexical Grammar 0.97 7.15   
Rhetorical Organization 0.63 1.70 3.02  
Question Handling 1.01 2.43 2.12 4.72 
 

 

Group 3 

 
Pronunciation 

Lexical 
Grammar 

Rhetorical 
Organization 

Question 
Handling 

Pronunciation 5.95    
Lexical Grammar 0.02 5.73   
Rhetorical Organization -0.13 1.83 2.89  
Question Handling -0.26 1.88 2.23 4.85 
 

 

Group 4 

 
Pronunciation 

Lexical 
Grammar 

Rhetorical 
Organization 

Question 
Handling 

Pronunciation 7.26    
Lexical Grammar 1.72 5.80   
Rhetorical Organization 1.95 1.49 2.16  
Question Handling -0.45 -0.61 1.14 4.84 
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Group 5 

 
Pronunciation 

Lexical 
Grammar 

Rhetorical 
Organization 

Question 
Handling 

Pronunciation 17.25    
Lexical Grammar 7.03 10.40   
Rhetorical Organization -0.09 -0.04 0.06  
Question Handling -0.37 -0.31 0.06 0.14 
 

 

Group 6 

 
Pronunciation 

Lexical 
Grammar 

Rhetorical 
Organization 

Question 
Handling 

Pronunciation 0.42    
Lexical Grammar 0.03 10.03   
Rhetorical Organization -0.09 1.98 3.15  
Question Handling 0.34 2.32 1.97 6.27 
 

 

Group 7 

 
Pronunciation 

Lexical 
Grammar 

Rhetorical 
Organization 

Question 
Handling 

Pronunciation 0.11    
Lexical Grammar 0.04 0.03   
Rhetorical Organization -0.03 -0.01 1.15  
Question Handling 0.08 0.06 0.00 0.13 
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Appendix G: MTR bundles in the TOP corpus 

1 
he drugs. So that’s importance of the stem cell research. However we do have a lot of 
challenge like you said, transplant to back to the human is a lot of problem. For instance, 
how can we specifically divide diffe 

2 
 in your family electricity to conduct the conduct electricity. It’s such as metal. Ok? okay 
let’s come back to my topic, this is the hold end, this is the cold end, with this temperature 
gradient, what  

3 
h is the Aether. Okay? And the Aether, well. I’m gonna have to wait a little bit. Uh a little 
bit later. 

4 
uddenly change into solving a linear equation and quadratic equation, well if the time 
allows, I’ll move on to quadratic equation but I’ll start with the linear equation. Well, first to 
solve the linear e 

5 
 to the computer and the center. And I’ll be talking about that in the date up on final 
presentation. so. so as I said like uh the speed the speed of the storage devices and the how 
fast the data from them is able to acce 

6 
of population flows, then that result in the population population. So that’s that that I’m goin 
to come up with. So this your original population. Stock right? An then its your population 
stock experienc 

7 
 all living and extinct organisms are related somehow. But he also suggested that yep? 
Phylogenetics, as I as I said is a field that is studying the historical relationships between 
organisms on earth.  So Charles Dar 

8 
e this time dimension, we can state that let me let me go to that question in a minute. So now 
that we are seen the relationships, we can we can see different patterns of relationships. A 
This is important to understand t 

9 
s a very interesting question. So if we have this time dimension, we can state that let me let 
me go to that question in a minute. So now that we are seen the relationships, we can we 
can see differ 

10 
ay? Okay. Um let’s talk about a quest uh talk about a story about the standard deviation, 
before we get into the uh the computation. The standard deviation is first come up by Carl 
Friedrich Gauss. Whi w 

11 
 information, come from correction, is called negative evidence. So it’s another important 
notion, so and as I if just told you, children aware in correctives. So mm and moreover, Uh 
negative evident is not providing 

12 
original object. yes. Mm hmm. In fact, uh p is always positive. but q may be negative. we 
will come to this soon. because step by step. so uh on that hand if the absolute value of m is 
less than o 

13 
hat the image of the candle will be like this.  okay? Any question? So far so good? okay. 
Let’s move on. and the distance from the object and the lens is denoted by, p. and the 
distance from the  

14 
I think you will get this equation, and we’ll talk about this next time.  okay so, so can I just 
move on? no question? Ok. let me just erase this a little.  then I’m going to talk about the 
magnific 

15 e story I’m telling you. you will know the answer later.  okay. The Chinese version of the 
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six syllables  

16 
o. So if prisoner one confess,  I mean and can’t don’t confess, and same for prisoner two. 
okay. We said if nobody confess to both going to jail for being in possession for Mona Lisa, 
which is two years each.  

17 
ike this. Mhm? And a oh sorry. This is a this is the reason why I mention the mathematical 
speak. Because uh as I mentioned before, so transfer function is I said transfer function’s 
really important to get the relationsh 

18 
cation because they don’t need to. And I’m gonna go over it uh next. So I ha and I was 
talking here about link layer. So the network layer is next step, uh on the network layer it 
works um you need the net 

19 
whatever it does. So salleh move on? Um I went to hear or you want something? Mmhmm, 
okay. So now this j as I said that there are certain imperfections in this device, and that is 
like uh  by changing the voltage ou 

20 
elp of that you just characterize the how much energy is your device con consuming. For 
example I go back again to the mobile phone, in that you have a battery, and it uh has a 
battery life. So if you 

21 
eir hands. From here to there. So this is how we define conduction. Any questions? Okay. 
Next, we move on to convection. This is another kind of mode of heat transfer. Now let us 
assume that we have the 

22 
m, which This type of transfer of heat is called as convection. Any questions? Okay. Then, 
let us move to the last part of uh mode of heat transfer, radiation. This uh to find an analogy 
for radiation w 

23 
esired to be transferred, this kind of thing is known as radiation. Now the kind uh and it 
were uh I was sayi ng that it is little bit tricky is because here a medium is involved, but 
whereas in actual reality if you  

24 
would be a little tricky, which I will comment on later on, but let us suppose that we had the 
same class 

25 
that’s the plan C.  Yeah. Yeah. Yeah. Thas that's that's that's why we have this reverse 
engineering. So uh as I told you if we need to optimize some functions. Because some some 
model, they don’t fulfill or they can’t f 

26 
ther use the mean or the median. However, when uh when the distribution of your data is 
not symmetric, then, as I mentioned before, the mean is very sensitive to uh each 
measurement, so it it is extremely sensitive to the 

27 
e they are connected. Yeah. Uh okay, what do you imagine is the principle we will we will 
uh talk about the next part. Uh so the power adapter of your laptop is one, example of our 
daily life. And ther 

28 
m sorry?  The the energy can only be transformed euh as uh a as heat and uh work.  Okay. 
Let’s go on. Uh  

29 
onomic growth. Thus bring the changes in its higher education. So that’s my next thing I 
wanna talk about just because of economic growth China’s higher education started to 
change. So what’s it like befo 

30 
k in class today, I wanna talk about the findings from this case study. Okay. So next thing is 
talk about findings. I analyzed the findings into two categories, the first one, we call it 
globally informe 

31 you may feel any difficulty. You may not you may not feel any difficulty. From this class. 
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So let’s get started. I will dis I will discuss the definition, and benefit of using decibel. And 
if I have 

32 
garithm of the ones thousand, yes? Oh. It’s different, I will I will discuss in later. Sweet. So 
go to the decibel. Uh decibel means, ten times log X. So, in this case, the decibel is ten, 
multip 

33 
h as f uh measure it’s a lowest scale of the measured values such as voltage or current. So 
next uh go to the next. Pardon? Sound? So what is problem? Yes, of course. But mm to 
measure sound, uh  

34 
It’s three. Because there are three zeroes here. So, this is the exponent number, and we we 
should move on to logarithm. So logarithm is the exponent number exponent of some 
number, so logarithm of the 

35 
es? Oh. It’s different, I will I will discuss in later. Sweet. So go to the decibel. Uh decibel 
means, 

36 
are not familiar with, that is female patron of art in China. But first of all, uh before I get to 
gett ing to the topic, please name, uh please name one female ruler in the history that that 
you guys kno 

37 
re stable. Is is what the theory says. Um Yeah. Go ahead. I um I’m basically done. yeah. Ah 
No. Well, it as I said you know you could fill this whole uh room or I mean this whole floor 
with with people with literature 

38 
s be seeking to maximize their economic and military power, if need be at expense of other. 
So, and going back to the to the prison debate. Well there’s need to you are going to form 
alliances with the st 

39 
nto lactate when there when there’s no oxygen. It’s an anaerobic um uh reaction. Lactate. So 
the Cori Cycle, as we said, the lactic acid is not good and we wanna get rid of it. The Cori 
Cycle is is gonna help you do that. 

40 
u’re gonna run the Cori Cycle, you wanna run it when you are you have oxygen again. To 
be able to um or else, as I said I showed you over here if you keep on you don you can’t 
keep running. It’s you’re using too much energ 

41 
So um as I already said this is lecture about ontology. Um I suppose uh although you’re lots 
of undergrad that you cou 

42 
hat as a new statement, isn’t it. something different. So we have to acknowledge a third 
realm. and that is as I have said um the realm of the abstract objects. Um now if these 
premises are true from as you know your i 

43 
nna do it through thoughts. Thoughts aren’t are I’m sorry things in the outer world. I’ve 
already told you what you should have in lined. what do you think about things in the outer 
world. so this thing 

44 
If the case of three four five, then A is a friend of three out of five. Right? silent, now we 
can go to a first uh situation. A is a friend of three out of five. Then we can denote the three 
people,  

45 
n Buddhist studies. Eight kinds of languages. One. English. Two, French, three, German, 
and four, Japanese. As I told you, Buddhist studies was all where. Yes, in Europe. So there 
are many scholars whose native language 

46 
 It’s a very difficult question so I will ask you later  This is India, what is the name of the 
island.  

47 India, and now they are trying to move this group. And North Korea tested in two thousand 
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six. But you know, as I mentioned the international uh organization and great power does 
not recognize these guys as uh nuclear po 

48 
 Yeah right. Iran,  not the North Korea, I will go back to that. South Korea,  Not India. I will 
get back to that. Not Pakistan, Because there’s some very you know Certain difference 
between those g 

49 
 another group, latent nuke,  Yeah. That’s N,  Yeah right. Iran,  not the North Korea, I will 
go back to that. South Korea,  Not India. I will get back to that. Not Pakistan, Because 
there’s s 

50 
is charge, so the charge is changed by time. So uh in the in in norm case, it should be zero. 
Because I said uh one charge get in, and one charge get out. So it should be zero. It’s uh it’s 
it is called uh the co 

51 
se ones. Yes. Um so. Basically this how transformer works. Okay? Okay. So any questions? 
Transformer? Yeah. As I said, well, you can they are hidden in a for example a stage 
microphone, it’s it can be as sm small as a th 

52 
w I’m going to just explain for you, what applications we can have with just these kind of 
straight beam. uh as I explain, do we can just have a verfukus point of light, so you can burn 
something. Let’s say you can do e 

53 
onment. yeah. Oh ok. Ok. This section is actually very nice question. ah I was just thinking 
to explain it for you or not but right now I’ll I’m going to explain. ah let’s say I’m not good 
in painting 

54 
 a lot of different terminology from linguistics, and that a little confusing. Especially we 
look back to IPA, because lot of symbols are used differently in IPA.  

55 
r? Okay. Yeah. So basically that’s why we call it micro electrical mechanical system. And 
we just I just said that that two application is the sensor and actuator. And right now I give 
you the an example about sens 

56 
l give you some example about sensor and actuator later, and yeah. Let me talk about the the 
first word,  

57 
questions. Um, I mean, so just yeah. Yeah Yeah. The things Okay, let me give Yeah. I was 
going to go into that part. The idea is suppose you are  

58 
s going to to uh do what I just did, I’m sorry, I I I I ran ahead of myself, was which which 
was uh telling you what different uh like what we are going to do in this course, which is 
like read these papers, 

59 
st of all let’s suppose that she um she has she wants to consume the following bundle of 
good. When I said when I say bundle of goods, is just a a number actually, a vector, but I’m 
not going to enter in the d 

60 
o we need it in the first place, you know? Um you know, so, you know, one thing you were 
saying, to go back to the why question, is you know we were talking about um I guess we 
were talking about order  

61 
y ask like why do we need it in the first place, you know? Um you know, so, you know, one 
thing you were saying, to go back to the why question, is you know we were talking about 
um I guess we were talking about o 

62 
aying, to go back to the why question, is you know we were talking about um I guess we 
were talking about order and stability, but you know also um ethics. The question of ethics 
comes in. Like um how do w 

63 nformation about which pages have this word. The reason why you have this index, is to 
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speed up the search as you said before. If we don't have this index, we need to look at all of 
these downloaded pages, And sear 

64 
 Uh uh yeah that that that that’s the definition of displacement. Any questions? Alright. Uh 
let’s move on to velocity. Um the definition of velocity uh is actually based on 
displacement. It’s it’s the  

65 
 how can we apply this idea to civil engineering design. For example, um if we wanna 
construct a building. So as I mentioned before, um there are a couple requirements to be 
satisfied towards sustainable design, so I’m gon 

66 
tell you what other requirements to be satisfied to be a sustainable design, so um alright um 
let’s get a start on the lecture. So before um I give you the definition of sustainability, um I 
would like t 

67 
Okay let’s uh let’s go forward to uh that section. Um as I said before as I said before, I have 
to introduce a basic idea about solar cells to you. Uh generally, a solar cell is just  

68 
? Uh once you form this kind of s uh basic structure, you shine light very close to this 
junction. Junction, as I said, I just a uh just an intersection, just an interface between two 
semiconductor two semiconductors, the 

69 
ion over here. So the junction just stand from the interface between these two type of 
semiconductor. Uh you mentioned what does P stand for. P stand for the majority carriers in 
s these type of semiconductors are holes. And th 

70 
Okay let’s uh let’s go forward to uh that section. Um as I said before as I said before, I have 
to introduce a basic idea  

71 
lectron hole pairs will be generated nearby. Okay, uh if you want to know more in detail, I 
have to go uh go a little bit digressive to uh stru uh band structure of semiconductor. Uh 
generally in any an 

72 
creased twice. So which means same position, but increasing it twice, so this one is like this. 
Resistance. As I said, resistance is the slope of this figure. Do you think what, slope increase 
or decrease. Increase. Wh 

73 
antenna very small, it can support this. So. This formula governs the whole it it it isn’t . 
Now coming up to the second reason, the the media transmissions being wireless and 
wireline. Now only channel 

74 
T to R. Uh this is a real world analogy of what modulation’s about. So uh yeah. Now 
coming to the moving to the second part, which is why do we need modulation. Here, uh a a 
number of factors govern as  

75 
ight Yeah. If you said it’s um typically an image of several distorted letters. Like  Yeah I 
will explain later. It’s a good question. um. Now, it’s your job to uh type the correct series 
of the letters 

76 
m more thing.  Because yeah. Yeah. It has uh more uh calculations.  probly it makes um. I I 
will explain later. Yeah Okay. Um. Uh. Now let’s see how it works. How the reCAPTCHA 
work. First, um the admini 

77 
ittle lower, and yo the voltage you’ll apply down it will be a smaller. And uh if we apply um 
let’s go on let’s go on, if we apply a negative sign of voltage, maybe the the barrier will 
further increase 

78 
 camera, cell phone, and uh laptop. So I think it is good to for you to know how it works. So 
let’s get started. So I will divide this topic into two parts, the part one will be the material 
part, so w 
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79 
 so good? Okay, I think we have uh enough kn knowledge to fabricate the device now. So 
So so let’s move on the device part. Yeah. So this is the basic device’s structure of the of a 
MOSFET. So the gate  

80 
 is? Uh very close, yeah. So No. Wood Wood is an insulator. Yeah. So? Before we before 
talking about a device part, I think we we need to know what the semiconductor is, because 
the MOSFET is made of 

81 
 machine. Um just.  So here’re two  important concepts, so before explain this, um so I 
already explain this. So performance is how fast it is, I will give you some quick example. 
Of algorithms, whi 

82 
 actually um actually I can answer that question later. Explain decipher ee stuff. Um so 
okay so here’ 
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Appendix H: Rhetorical Organization scoring rubric 

 Description 

4 

Excellent overall organization and use of transitions between sentences and 

topics; effective use of rhetorical questions.  Successful macro and micro 

rhetorical organization.  Clearly organized discourse positively contributes to 

communication. 

3 

Good overall organization and use of transitions between ideas/sentences.  

Discourse is appropriately organized and structured.  Ideas are logically 

connected to one another with appropriate cohesive devices.  Organization 

does not significantly impede communication. 

2 

Minimal overall organization and/or incorrect use of transitions between 

ideas/sentences.  Discourse not well organized and difficulty articulating main 

topics and/or subtopics.  Errors in use of cohesive devices and organization of 

ideas somewhat impede communication. 

1 

No overall organization and/or ineffective use of transitions between 

ideas/sentences.  Discourse is generally not organized or structured.  Errors in 

use of cohesive devices and lack of organization of ideas severely impede 

communication. 
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