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ABSTRACT OF THE DISSERTATION

Combining Dynamic Earthquake and Tsunami Models With Case Studies Offshore Alaska
and Southern California

by

Kenny Ryan

Doctor of Philosophy, Graduate Program in Geological Sciences
University of California, Riverside, June 2016

David D. Oglesby, Chairperson

Earthquakes and their corresponding tsunamis pose significant hazard to popu-

lated regions around the world. Therefore, it is critically important that we seek to more

fully understand the physics of the combined earthquake-tsunami system. One way to

address this goal is through numerical modeling. The work discussed herein focuses on

combining dynamic earthquake and tsunami models through the use of the Finite Element

Method (FEM) and the Finite Difference Method (FDM). Dynamic earthquake models ac-

count for the force that the entire fault system exerts on each individual element of the

model for each time step, so that earthquake rupture takes a path based on the physics

of the model; dynamic tsunami models can incorporate water height variations to produce

water wave formation, propagation, and inundation. Chapter 1 provides an introduction

to some important concepts and equations of elastodynamics and fluid dynamics as well as

a brief example of the FEM. In Chapter 2, we investigate the 3-D effects of realistic fault

dynamics on slip, free surface deformation, and resulting tsunami formation from an Mw

9 megathrust earthquake offshore Southern Alaska. Corresponding tsunami models, which
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use a FDM to solve linear long-wave equations, match sea floor deformation, in time, to the

free surface deformation from the rupture simulations. Tsunamis generated in this region

could have large adverse effects on Pacific coasts. In Chapter 3, we construct a 3-D dynamic

rupture model of an earthquake on a reverse fault structure offshore Southern California

to model the resulting tsunami, with a goal of elucidating the seismic and tsunami hazard

in this area. The corresponding tsunami model uses final seafloor displacements from the

rupture model as initial conditions to compute local propagation and inundation, resulting

in large peak tsunami amplitudes northward and eastward due to site and path effects. In

Chapter 4, we begin to evaluate 2-D earthquake source parameters from characteristics of

the Rayleigh-wave field by running a suite of 2-D dynamic rupture models on thrust/reverse

faults that vary in dip angle and fault curvature, and with equivalent prestress conditions

such as constant traction across the fault or variable prestress distributions. We compare

traveling Rayleigh-wave breakout amplitudes with fault slip distribution. Such Rayleigh-

wave analysis has implications for early estimation of far-field tsunami amplitude, since

source parameters are directly related to tsunami generation and propagation.
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Chapter 1

Introduction

Below we give a brief overview of essential concepts and equations that are em-

ployed by computational models throughout the rest of the dissertation, and then we con-

clude with a short note on the Finite Difference Method as well as a Finite Element Method

(FEM) example. Simple “derivations” are given for many analytic equations, while consti-

tutive equations – that describe relationships between physical quantities (e.g., stress and

displacement) – are also listed. More comprehensive derivations can be found in books

on elasticity (e.g., Sokolnikoff, 1956), fluid mechanics (e.g., Owczarek, 1968; Currie, 2013,

updated from 1974), and geophysics (e.g., Dean and Dalrymple, 1991; Stein and Wysession,

2003; Shearer, 2009; Aki and Richards, 2009). The FEM is demonstrated by the 1-D shal-

low water wave equations, and we follow similar notation and procedures to that of Hughes

(2000).
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1.1 Solid Mechanics: Key Concepts in Modeling Earthquakes

1.1.1 Continuum hypothesis

The continuum hypothesis is one common and basic assumption in the numerical

analysis of physical processes. In this approach, individual small particles (i.e., molecules)

are ignored. Instead, continuous matter is assumed with field variables such as density

and velocity being uniquely defined at specific locations in the physical model. These field

variables are further assumed to be average values for all (un-modeled) small particles within

a small neighborhood ε surrounding those particles. Differential equations are then used to

describe the variation (in time and space) of field variables. A continuum approximation is

valid if the number of molecules per small volume neighborhood, n, is very large compared

to the small volume neighborhood ε, and also if that small volume neighborhood is very

small compared to the volume V of the model space:

1

n
� ε� V.

This approach works for well for dense gases, liquids, and solids. In contrast, a statistical

approach that focuses on the dynamics of molecular movements, while useful, is not well

developed for dense mixtures. We utilize the continuum approximation here.

1.1.2 Strain

A single continuous body is said to be strained if the relative position of points

(i.e., the distance between points) within that body changes (e.g., Sokolnikoff, 1956). Any

change in the relative position of points is termed a deformation. It is important to note the
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difference between deformation and rigid displacements, that is, translations and rotations,

which do not alter the distance between any two points in the body. Motions on and near

the surface of the Earth have both deformation and rigid displacement components. For

our purposes we will be referring to small deformations relative to the size of the body

being strained. Figure 1.1 shows a cartoon schematic of a body (of mass M) undergoing

deformation and rigid displacement. The small vector δx points from sample point A to

V(t)

x1

x2

x3

δx

A

B

δx

δu

δx’

B

A

deformation
and rigid movement

mass M

mass M

u + δu

u

x +
 δx

x

Figure 1.1: A schematic of a continuous body experiencing displacement.

sample point B (i.e., points A and B are close to each other) and has a magnitude that

is equal to the distance between the two points. If that body is rigidly displaced and

deformed, we see that the new small vector δx′ from point A to point B has a different

direction and magnitude than δx. The position of point A is represented by the vector x

and the displacement that point A undergoes is represented by the vector u. Similarly, the

position of point B is represented by the vector x + δx and the displacement that point

B undergoes is represented by the vector u + δu. Thus, the relative displacement between
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points A and B within the body at its original state and its altered state is δu. If we

consider each vector component of u, that is, ui for i = {1, 2, 3}, to be a function of x, we

can expand each component in a truncated Taylor series to approximate a value for ui at

x + δx:

ui(x + δx) ≈ ui(x) +
∂ui(x)

∂xj
δxj

where we will be using the Einstein summation convention, so that repeated indices are

summed (e.g., αijxj = αi1x1 +αi2x2 +αi3x3). Using the approximation above, each compo-

nent of the relative displacement δu can be approximated by the last term in the truncated

Taylor series which depends on the position vector x:

δui ≈
∂ui(x)

∂xj
δxj .

Another way to write this is

δui ≈
∂ui
∂xj

δxj =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
δxj +

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
δxj = (eij + wij)δxj (1.1)

where eij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
and wij = 1

2

(
∂ui
∂xj
− ∂uj

∂xi

)
are termed the strain and rotation

tensors, respectively. For a body that experiences only translational rigid motion, δu will

obviously be zero, so translational motion does not contribute to the relative displacement

components δui. It can be shown that, since the magnitude of vector δx is unchanged by

rigid displacements, rigid rotations do contribute to the relative displacement components

δui and are of the skew-symmetric form wij (i.e., wij = −wji) (e.g., Sokolnikoff, 1956). The

remaining contributions to δui result from deformation and are of the symmetric form eij

(i.e., eij = eji). Note that the rate of strain tensor involves derivatives of velocities instead

of displacements, and thus can be written as ėij where the dot signifies the time derivative.
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1.1.3 Stress

If we consider a continuous medium as before, a mass M can have two different

types of forces act on it – body forces and surface forces. When the sum of these forces is

not zero, mass M accelerates and may or may not deform. Body forces are forces that act

on the volume of a body; therefore, such forces are proportional to the mass of the body.

An example of a body force is the force due to gravity ρgδV , where ρ is the density of the

material, g is the acceleration due to gravity, and δV is a small volume that the force is

applied to. For a large body, the body force needs to be summed for each δV so that the

total body force is
∫
V ρg dV . Surface forces are forces that act on the surface of a body;

therefore, such forces are related to the surface area of that body. An example of a surface

force is the force that results from the hydrostatic pressure on an object that is submerged

within a fluid, where the pressure acts in different directions based on the orientation of the

object’s surface. Let Fs = QδS, where Q is a force per area δS, be a surface force acting

on some small surface area δS of a volume. Now we can define the traction vector T, which

is a force per unit area, as a limiting case when we shrink the surface element to zero:

T = lim
δS→0

Fs

δS
= lim

δS→0
Q. (1.2)

Figure 1.2 shows the traction vector acting on an infinitesimal surface element dS of some

body of mass M. The net surface force for the body is then
∫
S T dS.

The traction vector T clearly depends on the orientation of the surface on which

it acts, and the orientation of a planar surface is described by its unit normal vector n.

The relationship between the traction vector T and the unit normal vector n is through the
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x1

x2

x3

dS

mass M

T
n

Figure 1.2: A schematic of a continuous body with the traction vector T acting on an
infinitesimal surface element dS with unit normal n.

stress tensor σ. We can demonstrate this in 2-D. Figure 1.3 shows a small right triangle

in equilibrium (i.e., zero acceleration). We are assuming the triangle has a constant depth

into and out of the page. Panel (a) shows traction upon one of the surfaces. This surface

has unit normal n and unit vector parallel p. We say that the traction vector has a normal

stress magnitude of s in the unit normal n-direction and a shear stress magnitude of t in

the unit parallel p-direction. For equilibrium, there must be surface forces acting on the

other two sides of the triangle so that the sum of the forces in each orthogonal direction is

zero. Figure 1.3 panel (c) shows components of shear and normal stress on the other two

surfaces of the triangle, along with the traction vector components on the third surface, in

the x1- and x2-directions. We can determine the relative areas of the sides of the triangle

through the angle θ as seen in panel (b) of Figure 1.3. The subscripts of the stress tensor

components σij should be noted here. The first subscript indicates the coordinate axis that

is normal to the surface element on which the stress is acting, while the second subscript

indicates the direction of the stress component. Therefore, summing the forces in the x1-
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x1
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area A

x1
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T

T1

T2

θ
Acosθ
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σ22
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σ12

σ11
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n

θ

θ

θ
cosθ

sinθ

Figure 1.3: (a) A small right triangle, with constant depth into and out of the page, is
subjected to traction T on the largest side. (b) The unit normal vector u can be decomposed
into a sine and cosine term. (c) Stress components are introduced onto the other two sides
of the triangle.

and x2- directions, respectively, results in

σ11A cos θ + σ21A sin θ = T1A

σ12A cos θ + σ22A sin θ = T2A.

We can divide the equations above by area A to get

σ11 cos θ + σ21 sin θ = T1

σ12 cos θ + σ22 sin θ = T2.
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We can see from panel (b) of Figure 1.3 that the normal vector can be decomposed into

an n1 = cosθ component along the x1-axis and an n2 = sinθ component along the x2-axis.

Thus, we can write the equation above as

σ11n1 + σ21n2 = T1

σ12n1 + σ22n2 = T2.

We can write this system of linear equations in matrix form asσ11 σ21

σ12 σ22



n1

n2

 =


T1

T2


In summation notation (tensor notation), this can be written as

Tj = σijni. (1.3)

Additionally, it can be shown that if there is zero torque on the triangle about the x3-axis,

σ12 = σ21 (e.g., Stein and Wysession, 2003). In general, the stress tensor is symmetric (i.e.,

σij = σji). Therefore, it is common practice to also write

Tj = σjini

or in vector form as

T = σ · n.

We have seen that the traction vector T is related to the unit normal vector n via

the stress tensor σ in 2-D. The stress tensor generalizes to 3 spatial dimensions. In fact,

because stress can be described as a tensor (of rank 2), the state of stress does not change

in different Cartesian coordinate systems. Note that the components of the stress tensor

can change between different coordinate systems, but the state of stress remains invariant.
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The 3-D stress tensor, made up of both normal and shearing components (and noting that

this tensor is symmetric), is

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ21 σ22 σ23

 . (1.4)

Thus, the stress tensor has nine components, and represents the state of stress at a point.

In Figure 1.4 a small cube demonstrates the stress tensor in Cartesian coordinates. Note

that the stress tensor is defined to act on a point in space, and as the cube shrinks to zero

size, the state of stress is defined by nine components. It is worthwhile to learn the sign

convention for the stress tensor components. If the surface that the component acts on has

an outward-unit normal vector that is in the positive direction for that axis, then each stress

component on that face will be positive in the axis-positive direction. If the surface that

the component acts on has an outward-unit normal vector that is in the negative direction

for that axis, then each stress component on that face will be positive in the axis-negative

direction. Figure 1.4 shows all positive components. Take, for example, σ32 on the top face

of the small cube in Figure 1.4. The unit vector for that face points in the positive x3-axis

direction, and so a positive value for σ32 would point in the positive x2-axis direction. For

the bottom face of the cube, the unit vector for that face points in the negative x3-axis

direction, and so a positive value for σ32 would point in the negative x2-axis direction. Note

that Figure 1.3 utilized this convention when summing the forces and setting them equal

to zero for equilibrium.
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Figure 1.4: Stresses acting on a small cube.

1.1.4 Conservation of Momentum

We will use Newton’s second law to express conservation of momentum. More

specifically, the rate of change of momentum is equal to the sum of forces acting on some

body. Let f be the vector that represents the body forces per unit mass. Then the sum of the

body forces over the body will be
∫
V ρf dV . Now let T be the surface vector that represents

the surface force per unit area. Then the sum of the surface forces acting over surface S

(that contains the body) will be
∫
S T dS. Additionally, the total change of momentum of

the body is d
dt

∫
V ρv dV =

∫
V ρa dV , where v is the velocity vector for each small summed

volume, and a is the acceleration vector for each small summed volume. Note that we

have assumed that the mass of the object does not change, and that the function ρv in the

integral is continuous over the volume of the body. If we equate this change in momentum
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to the sum of all external forces acting on the body of mass M we have

∫
V
ρa dV =

∫
S

T dS +

∫
V
ρf dV.

This vector form can be transferred into tensor form:

∫
V
ρaj dV =

∫
S
Tj dS +

∫
V
ρfj dV.

By utilizing our previous discussion of traction being the sum of stresses multiplied by

corresponding normal vector components (see eq. 1.3), the equation above becomes

∫
V
ρaj dV =

∫
S
σijni dS +

∫
V
ρfj dV.

The first term on the right hand side (RHS) of the above equation can be changed into a

volume integral via the Divergence theorem:
∫
S aini dS =

∫
V
∂ai
∂xi

dV , where a is some field

variable. Therefore the equation above becomes

∫
V
ρaj dV =

∫
V

∂σij
∂xi

dV +

∫
V
ρfj dV.

All of these volume integrals could be collected and placed on the left hand side (LHS) with

the RHS being zero. And since we chose the volume arbitrarily, the integrands must sum

to zero. Therefore, we can use the integrands in the above equation to form

ρaj =
∂σij
∂xi

+ ρfj . (1.5)

This equation relates the acceleration (in the xj-direction) to the gradient of stress (a stress

component in the xj-direction) and the body forces (in the xj-direction). It is often referred

to as the equation of motion, or the equation of equilibrium when ρaj is set to zero (e.g.,

Sokolnikoff, 1956).
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1.1.5 A Constitutive Relationship for Stress and Strain

For linearly elastic materials the stress tensor is linearly related to the strain tensor

if the value of strain is relatively small (so that the material can rebound, elastically, and

return to its original shape). The justification for this concept is through experimentation.

More specifically, the stress tensor σij is linearly related to the strain tensor ekl through the

fourth-rank tensor cijkl (i, j, k, l = {1, 2, 3}) by

σij = cijkl
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
= cijklekl. (1.6)

This is referred to as a generalized Hooke’s law. It is approximately valid for values of

strains in the Earth up to 10−4 (strain is unitless!) (e.g., Stein and Wysession, 2003). The

fourth-rank tensor cijkl, with 34 components, can be simplified by noting symmetry and

isotropic conditions. Since cijkl is a map from stress to strain, and since the stress and

strain tensors are symmetric, cijkl is minor-symmetric with cijkl = cjikl and cijkl = cijlk

(e.g., Hughes, 2000). This symmetry reduces the number of elastic constants from 81 to 36.

Now, since cijkl is minor-symmetric with respect to the indices k and l, we can write the

equation above as

σij = cijklekl = cijkl
∂uk
∂xl

. (1.7)

Now we can use this form of Hooke’s law to re-write the equation of motion (eq. 1.5) as

ρaj =
∂

∂xi

(
cijkl

∂uk
∂xl

)
+ ρfj . (1.8)

This form of the equation of motion is the starting basis for many finite element techniques

in linearly elastostatic (i.e., the ρaj term is set to zero) and elastodynamic analysis (Hughes,
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2000). Furthermore, if there are no body forces acting then we get

ρ
∂2uj
∂t2

=
∂

∂xi

(
cijkl

∂uk
∂xl

)
(1.9)

where we have replaced the acceleration term with the second time derivative of displace-

ment. This form of the equation of motion provides us with some physical intuition about

the outcome of conservation of momentum and Hooke’s law. In fact, this familiar form is

a wave equation since it relates time derivatives of displacement to spatial derivatives of

displacement. In seismology, the propagation of seismic waves far from the earthquake fault

can be described by this equation (e.g., Shearer, 2009). Note that we say this is appropriate

far from the fault since equivalent body forces (forces that produce the same displacement

field as that of fault slip) must be modeled when considering fault motion (e.g., Shearer,

2009). It is very interesting that, by combing Newton’s second law with Hooke’s law, we

ultimately get wave motion!

Strain energy considerations (e.g., Sokolnikoff, 1956; Aki and Richards, 2009) re-

sult in major-symmetry of cijkl with cijkl = cklij (Hughes, 2000) that further reduces the

number of elastic constants to 21. Lastly, isotropic (independence of direction) conditions

further reduce the number of constants to 2. Under these assumptions (e.g., Shearer, 2009),

cijkl = λδijδkl +G(δikδjl + δilδjk)

where δij is the Kronecker delta and where λ and G (i.e., the 2 elastic constants) are referred

to as elastic moduli since they relate stress to displacement. λ is Lamé’s first parameter,

while G is the shear modulus (that is also referred to as Lamé’s second parameter). The

values of these parameters need to be determined experimentally. We can write the isotropic
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form of Hooke’s law as (e.g., Shearer, 2009)

σij = cijklekl = [λδijδkl +G(δikδjl + δilδjk)] ekl

= λδijekk +G(eij + eji) = λδijekk + 2Geij

(1.10)

where we have utilized only non-zero contributions that result from the Kronecker delta

function as well as the symmetry of the strain tensor.

1.1.6 Physical Boundary Conditions on Faults and on Earth’s Surface

It is well known that earthquake ruptures are controlled by friction on faults. The

general friction equation for a point on an interface (e.g., fault surface) without cohesion

(bonding) is:

τ ≤ µσeff (1.11)

where τ is the shear stress, µ is the friction coefficient, and σeff is the effective normal

stress that is taken to be positive in compression on the surface. When the shear stress at

that point becomes equal to the friction coefficient multiplied by the normal stress, sliding

commences that relieves (reduces) the shear stress at that same point. Before, during,

and after this process the friction coefficient and effective normal stress may also change.

When the shear stress is smaller than the product of the former two, sliding ceases. For

earthquakes this is a quasi-periodic process that helps explain why earthquakes occur every

so many years along the same faults, but with some level of unpredictability in time. It is

intuitive that kinetic coefficients of friction are often smaller than their static counterparts

– sliding a heavy cardboard box across a slick household floor demonstrates this. Initially

it is more difficult to move, but once the box begins sliding it becomes easier to push. The
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nature of such coefficients of friction has been explored in the laboratory for many years

(e.g., Rabinowicz, 1951).

One such friction formulation that describes this observation and has been used

in numerical modeling is linear slip-weakening friction (e.g., Ida, 1972; Andrews, 1976):

µ =


µk−µs
d0

u+ µs, if u < d0

µk, if u ≥ d0

(1.12)

where u is total displacement (i.e., slip on a fault) and d0 is a slip distance over which the

friction coefficient µ drops from its static value µs to its kinetic value µk; d0 is referred

to as the effective slip-weakening distance. For computational studies, a nonzero value of

d0 is necessary to resolve the (shear) stress drop (i.e., rupture front) process accurately

and with stability. It is also a reasonable physical assumption, since energy being focused

by seismic waves driving rupture is probably not focused at a single point, but a finite

volume (Andrews, 1976), leading to an apparent fracture (i.e., dissipated) energy associated

with that finite volume during the onset of fault slip. Additionally, laboratory studies on

rock friction show gradual stress drops (e.g., Dieterich, 1978, 1979). Andrews (1976) was

a pioneer in using a linear slip-weakening formulation to model spontaneous earthquake

rupture in 2-D.

Another friction formulation, that is similar to linear slip-weakening friction, is

linear time-weakening friction (Andrews, 2004):

µ =


µk−µs
t0

t+ µs, if t < t0

µk, if t ≥ t0

(1.13)
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where t is total time during slip and t0 is a time over which the friction coefficient µ

drops from its static value µs to its kinetic value µk, and where t0 can be referred to as

the effective time-weakening interval. A linear time-weakening friction law can be a useful

numerical tool. Since stress drop must be resolved in time and space to produce numerically

stable and accurate results, one can specify t0 directly to do so. In fact, since earthquake

ruptures travel at roughly the S-wave speed, one can ensure that the rupture front is spread

out over three to four spatial (modeling) intervals by making t0 equal to the time that it

takes for an S-wave to travel across three to four spatial elements.

More complex and realistic friction formulations have also been developed from

laboratory experimentation. One such formulation is rate- and state-dependent friction

(Dieterich, 1978, 1979; Ruina, 1983). Dieterich (1978) shows, through experiments and

analysis of a spring slider system, that the friction coefficient of rock varies with time and

slip velocity. More specifically, the static friction increases with stationary contact time, and

the kinetic friction also changes with the contact time of sliding asperities – small contact

surfaces across the fault that are continually sliding into and out of existence – as well as

with slip velocity history. Dieterich (1979) further shows through laboratory experiments

that an increase in slip speed leads to an abrupt increase in frictional strength, after which

the frictional strength falls toward a steady (kinetic) value. Using the constitutive relations

proposed by Dieterich (1978, 1979), Ruina (1983) formulated state variable friction laws

that include the time and velocity dependence of friction coefficient. The general form of

the rate- and state-dependent friction law is:

τ =

[
µ0 + aln

(
V

V0

)
+ bln

(
θ

θ0

)]
σeff (1.14)
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where µ0 represents a constant reference value for the coefficient of friction; a and b are

constitutive parameters estimated from laboratory experiments; V0 and θ0 are reference

values for slip rate and the state of the sliding surface, respectively; θ can be thought of as

the average age of contacts at some constant sliding velocity, and the bracketed term is the

friction coefficient. Note that for an increase in sliding velocity V there is a corresponding

increase in friction, and as sliding velocity grows the asperities are in contact for smaller

amounts of time, making θ small and ultimately decreasing friction. Later, Linker and Di-

eterich (1992) further developed the rate-state framework to include the friction coefficient’s

dependence on normal stress. They found that increases in normal stress led to decreases in

the state variable θ and decreases in normal stress led to increases in θ. This result indicates

that the friction coefficient at least partially compensates (acts in the opposite direction)

for changes in normal stress.

Since shear stress during sliding depends on the friction coefficient (and the normal

stress) as seen in the equations above, the functional form of frictional weakening is directly

related to the earthquake rupture energy budget (e.g., Andrews, 1976; Kanamori and Rivera,

2006). The total energy of the earthquake can be split into three categories: fracture energy,

energy expended against friction (i.e., heat energy), and radiated seismic energy (see Figure

1.5). Figure 1.5 shows a simplified energy budget schematic for earthquakes and how it is

related to the functional form of shear stress evolution, where τ0 is the initial shear stress;

τy is the yield shear stress; τf is the final shear stress; d0 is the effective slip-weakening

distance, and df is the final amount of slip. We note that radiated energy density should be

thought of as an average over the entire fault; the contributed radiated energy density from
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Figure 1.5: A simplified schematic of energy partitioning for an earthquake. The solid black
line indicates shear stress with slip at a point on the fault. The gray “triangle” within the
radiated energy density indicates the full subtraction of the fracture energy density from
the total energy budget (the area under the dashed line). Note that the Figure shows a
nonlinear weakening curve for generality. In general, different friction laws produce different
weakening curve geometries. Figure from Ryan and Oglesby, (2014).

a single point cannot be determined easily from stress-versus-slip weakening curves since

rupture along portions of the fault sends radiation to other portions of the fault. In other

words, during rupture complex stress-wave interactions occur so that energy is transferred

amongst parts of the fault. However, fracture and frictional energy are dissipated at points

along the fault, making those easily measurable from models.

In addition to friction on the fault surface, it is important to consider the boundary

conditions at the Earth’s surface in earthquake modeling. Numerical implementations of

these boundary conditions often assume that the atmosphere and ocean are nonexistent, and

that the Earth’s surface is a free surface in that it is the boundary between solid material

and a vacuum. If the Earth’s surface is represented by the top surface of the cube in Figure
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1.4, then σ31 = σ32 = σ33 = 0. In other words, there is no traction at the surface since

there is no surface force compressing, extending, or shearing that surface (if the surface is

free, there is nothing there to supply such a force!). Such a boundary condition ultimately

alters stress transfer during an earthquake, and thus can produce significant effects on the

rupture process and final displacement field (e.g., Oglesby et al., 1998).

1.2 Fluid Mechanics: Key Concepts in Modeling Tsunamis

1.2.1 Lagrangian and Eulerian specifications

The continuum hypothesis is utilized for fluid mechanics in the same way it is for

solid mechanics. Therefore, it is valid here under the same assumptions stated within the

solid mechanics section above. Eulerian or Lagrangian reference frames can both be used

to describe flow fields. Within the Eulerian frame of reference a fixed region, in space, is

observed as different particles travel through it in time. Within the Lagrangian frame of

reference a fluid mass is followed as it flows (i.e., changes shape and location). A simple

analogy involves a cat observing a large fish tank that contains many fish. If the cat con-

tinuously observes a fixed region of the tank as different fish pass by, that is an Eulerian

specification. If the cat follows a single fish as it moves about the tank, that is a Lagrangian

specification. We utilize both of these reference frames to describe some of the following key

formulas. A control or representative volume is used in both frameworks. In the Eulerian

framework the fixed region is the control volume, while in the Lagrangian framework the

control volume consists of the fluid mass being followed.
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It is worth noting that a common notation for the velocity vector in fluid mechanics

is u = (u, v, w), where where u, v, and w represent the velocity components in the x, y, and

z directions, respectively. We use this convention here. It should not be confused with the

displacement variable u in solid mechanics!

1.2.2 Material Derivative

Let α be some field variable (e.g., density) of a material. For a small amount of

time δt, a specific volume element in the Lagrangian framework will travel a small distance

represented by δx, δy, δz. Therefore, a small change in α is represented by the following

total change (this is analogous to the total difference from calculus):

δα ≈ ∂α

∂t
δt+

∂α

∂x
δx+

∂α

∂y
δy +

∂α

∂z
δz.

Dividing through by δt results in:

δα

δt
≈ ∂α

∂t
+
δx

δt

∂α

∂x
+
δy

δt

∂α

∂y
+
δz

δt

∂α

∂z
.

In the limit as δt→ 0, we see that δx
δt → u, δyδt → v, δzδt → w where u, v, and w represent the

velocity components in the x, y, and z directions, respectively. Thus, we obtain the total

time derivative of α:

Dα

Dt
=
∂α

∂t
+ u

∂α

∂x
+ v

∂α

∂y
+ w

∂α

∂z
.

This Lagrangian formulation of the total time derivative (of a field variable) is known as the

material derivative. In fact, this equation relates the Lagrangian framework on the LHS to

the Eulerian derivatives on the RHS. In vector form this equation can be written as

Dα

Dt
=
∂α

∂t
+ (u ·∇)α,
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and in tensor notation as

Dα

Dt
=
∂α

∂t
+ uk

∂α

∂xk
. (1.15)

1.2.3 Reynolds’ Transport Theorem

Application of the conservation principles that follow result in an integro-differential

equation of the form ∫
V
LαdV = 0

where L is some differential operator and α is some set of material properties (e.g., density,

velocity, etc.). If the control volume V is arbitrarily chosen, then it follows that the integrand

must be zero (i.e., Lα = 0).

By considering an arbitrary control volume in the Lagrangian reference frame we

can elegantly derive conservation equations. However, we need the ability to transform

between volume integrals in the Lagrangian and Eulerian specifications. This can be done

with Reynolds’ Transport Theorem. In the Lagrangian reference frame the total time

derivative of some property α integrated over some arbitrary control volume V is

D

Dt

∫
V (t)

α(t) dV = lim
δt→0

{
1

δt

[∫
V (t+δt)

α(t+ δt) dV −
∫
V (t)

α(t) dV

]}
.

If we add and subtract the quantity α(t+ δt) integrated over the control volume V at time

t we get

D

Dt

∫
V (t)

α(t) dV = lim
δt→0

{
1

δt

[∫
V (t+δt)

α(t+ δt) dV −
∫
V (t)

α(t+ δt) dV

]

+
1

δt

[∫
V (t)

α(t+ δt) dV −
∫
V (t)

α(t) dV

]}
.
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V(t)

V(t + δt)

S(t)

S(t + δt)

n
u

n
u

δS

(a)

(b)

Figure 1.6: (a) Control volume V (surrounded by surface S) at time t and at some later
time t+ δt. Note that the distance moved by the control volume within the time interval δt
is exaggerated. (b) Control volume at different times superimposed on one another. Vectors
u and n indicate the velocity and unit normal at a surface point, and a small surface piece
in indicated by δS.

The first two integrals on the RHS involve the same integrand but different integration

volumes, while the last two integrals involve different integrands but the same integration

volumes. Thus, we can group each pair of integrals correspondingly:

D

Dt

∫
V (t)

α(t) dV = lim
δt→0

{
1

δt

[∫
V (t+δt)−V (t)

α(t+ δt) dV

]

+
1

δt

[∫
V (t)

(α(t+ δt)− α(t)) dV

]}
.

Since the last integral has integration limits that are independent of δt we can bring the 1
δt
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into the integration producing

D

Dt

∫
V (t)

α(t) dV = lim
δt→0

{
1

δt

[∫
V (t+δt)−V (t)

α(t+ δt) dV

]

+

[∫
V (t)

α(t+ δt)− α(t)

δt
dV

]}
.

In the limit as δt → 0 the last term being integrated can now be seen to be the Eulerian

time derivative of α:

D

Dt

∫
V (t)

α(t) dV = lim
δt→0

{
1

δt

[∫
V (t+δt)−V (t)

α(t+ δt) dV

]}
+

∫
V (t)

∂α

∂t
dV.

The first integral on the RHS can be transformed into a surface integral in the following way.

As the control volume V (t) moves it changes size and shape into V (t+ δt) (see Figure 1.6).

A small surface area δS on surface S(t) that surrounds V (t) has velocity u and an outward

normal vector n; therefore, the perpendicular distance between small surface elements on

S(t) and S(t + δt) is u · nδt. Thus, a small surface area δS will correspond to a volume

change of δV ≈ u · nδtδS, or in the limit as δS → 0, dV = u · nδtdS. We can therefore

replace dV in the first integral on the RHS in the equation above with u ·nδtdS (and noting

that the integration will now be over a surface for each δt) to get

D

Dt

∫
V (t)

α(t) dV = lim
δt→0

{
1

δt

[∫
S(t)

α(t+ δt)u · nδt dS

]}
+

∫
V (t)

∂α

∂t
dV.

and canceling out the δt values for the first term on the RHS we have

D

Dt

∫
V (t)

α(t) dV = lim
δt→0

{[∫
S(t)

α(t+ δt)u · n dS

]}
+

∫
V (t)

∂α

∂t
dV

=

∫
S(t)

α(t)u · n dS +

∫
V (t)

∂α

∂t
dV.

This result is Reynolds’ Transport Theorem. We can see that this result allows us to recast

the material derivative of an integrated quantity into other integrated quantities (where the
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differential operator is now within an integral). However, we need to get this equation into

a more useable form via this form of the Divergence theorem:

∫
S(t)

α(t)u · n dS =

∫
V (t)

∇ · (αu) dV.

We can insert the RHS of the above equation into the previous equation to obtain

D

Dt

∫
V (t)

α(t) dV =

∫
V (t)

[
∂α

∂t
+ ∇ · (αu)

]
dV

or, in tensor notation as

D

Dt

∫
V (t)

α(t) dV =

∫
V (t)

[
∂α

∂t
+

∂

∂xk
(αuk)

]
dV. (1.16)

We will now use this form of the Reynolds’ Transport Theorem to demonstrate the conser-

vation of mass and momentum for a specific mass in the Lagrangian framework.

1.2.4 Conservation of Mass

For a specific control volume V , the mass is
∫
V ρ dV , where ρ is the density of a

single fluid. Thus, the conservation of mass in the Lagrangian framework can be expressed

as

D

Dt

∫
V
ρ dV = 0.

Using Reynolds’ Transport Theorem (eq. 1.16) we see that the above equation is equal to

∫
V

[
∂ρ

∂t
+

∂

∂xk
(ρuk)

]
dV = 0.

Since the control volume is chosen arbitrarily, the integrand above must be zero:

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0. (1.17)
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This is called the continuity equation since it involves a partial derivative of velocity; thus,

the velocity is assumed to be continuous. Expanding this equation via the chain rule we get

∂ρ

∂t
+ uk

∂ρ

∂xk
+ ρ

∂uk
∂xk

= 0.

The first two terms on the LHS are the Eulerian form of the material derivative (eq. 1.15),

so we can replace them by the Lagrangian form of the material derivative to get

Dρ

Dt
+ ρ

∂uk
∂xk

= 0.

However, if we now ignore variations in density we can make a further simplification to the

equation above. So we consider a single fluid of a single phase. For a constant density and

constant mass of a control volume, the volume must remain the same. Therefore, we can

regard the fluid as incompressible. No variation in density is described by

Dρ

Dt
= 0.

Thus, the continuity equation for an incompressible fluid is

∂uk
∂xk

= ∇ · u = 0. (1.18)

1.2.5 Conservation of Momentum

Now we will make use of Newton’s second law as well as information discussed thus

far to express conservation of momentum for flows. More specifically, the rate of change

of momentum is equal to the sum of forces acting on some mass (i.e., the control volume).

Let f be the vector that represents the body forces per unit mass. Then the sum of the

body forces over the control volume will be
∫
V ρf dV . Now let T be the surface vector that
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represents the surface force per unit area. Then the sum of the surface forces acting over

surface S (that contains V) will be
∫
S T dS. Additionally, the momentum contained in the

control volume is
∫
V ρu dV and the change of momentum in the Lagrangian reference frame

is D
Dt

∫
V ρu dV . If we equate this change in momentum to the sum of all external forces

acting on the mass we have

D

Dt

∫
V
ρu dV =

∫
S

T dS +

∫
V
ρf dV.

This vector form can be transferred into tensor form by utilizing our previous discussion of

traction being the sum of stresses multiplied by corresponding normal vector components

(see eq. 1.3). Thus, the above equation becomes

D

Dt

∫
V
ρuj dV =

∫
S
σijni dS +

∫
V
ρfj dV.

The LHS can be replaced using Reynolds’ transport theorem (eq. 1.16) using ρuj in place

of α. The first term on the RHS can be changed to a volume integral via the Divergence

theorem. Therefore the equation above becomes

∫
V

[
∂(ρuj)

∂t
+

∂

∂xk
(ρujuk)

]
dV =

∫
V

∂σij
∂xi

dV +

∫
V
ρfj dV.

All of these volume integrals could be collected and placed on the LHS with the RHS being

zero. And since we chose the control volume arbitrarily, the integrands must sum to zero.

Therefore, we can use the integrands in the above equation to form the following:

∂(ρuj)

∂t
+

∂

∂xk
(ρujuk) =

∂σij
∂xi

+ ρfj .

The first term on the LHS can be expanded via the chain rule. The second term on the

LHS can also be expanded using the chain rule and by considering ρujuk to be the product
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of ρuk and uj .

ρ
∂uj
∂t

+ uj
∂ρ

∂t
+ uj

∂

∂xk
(ρuk) + ρuk

∂uj
∂xk

=
∂σij
∂xi

+ ρfj .

The second and third terms on the LHS in the equation above sum to zero since they are

the continuity equation (eq. 1.17) multiplied by uj . Finally, the nonlinear equation that

expresses the conservation of momentum for a fluid can be written as

ρ
∂uj
∂t

+ ρuk
∂uj
∂xk

=
∂σij
∂xi

+ ρfj . (1.19)

The first term on the LHS is the familiar acceleration due to velocity change with time.

The second term on the LHS represents a spatial acceleration (i.e., a convective term). The

RHS involves spatial gradients of stress and body forces, both of which contribute the net

external forces on the mass.

1.2.6 A Constitutive Relationship for Stress and Rate of Strain

For Newtonian fluids the stress tensor is linearly related to the rate of strain

tensor. In other words, viscous stresses – that arise during flow – are linearly proportional

to the deformation rate for certain fluids under certain conditions. The justification for

this concept is through experimentation. Under many conditions, water is one example of

a Newtonian fluid. More specifically, the deviatoric stress tensor τij (deviation from static

pressure) is linearly related to the rate of strain tensor ėij through the fourth-rank tensor

cijkl (i, j, k, l = {1, 2, 3}) by

τij = cijkl
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
= cijklėkl.

The fourth-rank tensor cijkl, with 34 elements, can be simplified by noting isotropic con-

ditions and that the deviatoric stress tensor is related to the rate of strain tensor (not the
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rotation tensor). The most general isotropic fourth-rank tensor has 3 independent scalar

coefficients (e.g., Currie, 2013); and the rate of strain tensor (which is symmetric) requires

that cijkl be minor-symmetric with cijkl = cijlk (e.g., Hughes, 2000), further reducing the

number of scalar coefficients from 3 to 2. Therefore, we have

τij = λδij
∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)

where δij is the Kronecker delta and where λ and µ (i.e., the 2 scalar coefficients) are

referred to as viscosity coefficients since they relate stress to spatial derivatives of velocity.

These parameters need to be determined experimentally. The full stress tensor needs to

incorporate a static pressure term, and so it is of the form

σij = −pδij + τij

= −pδij + λδij
∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

) (1.20)

where p is the pressure (that is negative in compression) in a fluid at rest. This equation

along with the conservation of momentum equation (eq. 1.19) form the Navier-Stokes

equations.

1.2.7 Velocity Potential and the Bernoulli Equation

Kelvin’s theorem states that an ideal (i.e., inviscid and incompressible) flow that

originates as irrotational will remain irrotational (the theorem is explained in more detail in

fluid mechanics texts: e.g., Owczarek, 1968; Currie, 2013). Therefore, the vorticity vector

ω in the fluid will be zero. The vector ω is defined by the curl of the velocity vector and

so ω = ∇ × u = 0. We also know that the curl of any gradient is zero, so we can write
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ω = ∇×∇φ = 0 where φ is referred to as the velocity potential. Thus, we choose

u = ∇φ.

If we regard the fluid as incompressible, then the continuity equation to be satisfied is eq.

1.18 and this gives us the Laplace equation

∇2φ = 0. (1.21)

The momentum equation (eq. 1.19) may be simplified and integrated to yield the Bernoulli

equation. Doing so requires that the fluid be inviscid (i.e., negligible viscosity with the

viscosity coefficients µ and λ being zero), the body forces being conservative (i.e., the work

done on a particle is independent of the path along which that particle moves), and the flow

either being steady (unchanging with time) or irrotational. The Bernoulli equation with

the irrotational assumption and with constant pressure p = P is

∂φ

∂t
+
P

ρ
+

1

2
∇φ ·∇φ−G = F (t) (1.22)

where G is a scalar function that is related to some body force f by fj = ∂G
∂xj

and F (t)

is some function of time that results from an integrated term in the Bernoulli equation

derivation under the stated assumptions (e.g., Dean and Dalrymple, 1991). Note that we

can also write the Bernoulli equation in terms of velocity:

∂φ

∂t
+
P

ρ
+

1

2
u · u−G =

∂φ

∂t
+
P

ρ
+

1

2

(
u2 + v2 + w2

)
−G = F (t).
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1.2.8 Small Amplitude, Long Wavelength Surface Waves

in Shallow Water

Gravity waves on a liquid surface are an overarching topic here. This section

demonstrates the basics of shallow water wave theory in 1-D, where the wave amplitude is

along the z-axis and the wave propagation is along the x-axis. In doing so we go from general

surface wave conditions to more specific assumptions that allow further simplification. As

with many other areas in physics, one key aspect is clearly stating the problem to be solved

as well as the assumptions to be made. We assume that liquid gravity waves are irrotational

for our purposes; this follows from the assumption that a long period surface wave will have

very small changes in the vertical velocity component with respect to the horizontal direction

and vice versa (i.e., the velocity components satisfy the Laplace equation). If we assume

zero vorticity and incompressibility, the Laplace equation (eq. 1.21) must be satisfied. We

let the x-axis of the coordinate system be at the mean level of the free surface of the liquid,

and the z-axis be the vertical axis (see Figure 1.7). The depth of the liquid is h. The

amplitude of the wave is denoted by A, and the free surface is defined by z = η(x, t) or

z − η = 0.

Physical Boundary Conditions for Surface Gravity Waves

Perhaps the most important part of modeling physical processes is correctly deter-

mining and implementing physical boundary conditions. We describe the free surface (the

water-air interface in this case) and the bottom surface (e.g., the water-ground interface)

boundary conditions now. These boundary conditions, along with some assumptions, will
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z

bottom

h

A z = η(x , t)

Figure 1.7: A snapshot of a liquid wave (blue curve) and corresponding coordinate system.

give us a frequency dispersion relation. The kinematic free surface boundary condition

states that a particle of fluid on the free surface remains on that free surface with time, and

thus

D

Dt
(z − η) = 0.

In other words, if we move with the free surface it does not change. In the Eulerian

specification (using eq. 1.15) this becomes

∂(z − η)

∂t
+ (u ·∇)(z − η) = 0.

Since the z coordinate does not depend on time in the Eulerian framework (η does!), η

depends only on x and t, and the spatial coordinates are independent of each other we have

−∂η
∂t
− u∂η

∂x
+ w = 0

where w is the velocity component (within the velocity vector u) in the z-direction. Using

the velocity potential φ we can then turn this equation into

∂η

∂t
+
∂φ

∂x

∂η

∂x
=
∂φ

∂z
. (1.23)
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We also need to specify a dynamic free surface boundary condition. Naturally,

this involves specifying pressure on the free surface, which can be done with the irrotational

Bernoulli equation (eq. 1.22) where the scalar function G is related to the force of gravity

by G = −gz = −gη on the free surface:

∂φ

∂t
+
P

ρ
+

1

2
∇φ ·∇φ+ gη = F (t). (1.24)

Lastly, the boundary condition at the bottom must also be imposed. We are

assuming that the fluid/solid interface along the bottom is continuous (i.e., there are no

voids along the bottom). This boundary condition is relatively intuitive, and for an inviscid

fluid amounts to the velocity component that is normal to the bottom being zero at that

location:

∂φ

∂z
= 0 on z = −h. (1.25)

We note that many boundary conditions for surface gravity waves are not described here,

such as lateral boundary conditions that characterize long-period ocean waves as they ap-

proach and inundate coastlines and bottom boundary conditions that characterize wave

formation and propagation. Additionally, other physical parameters such as bottom fric-

tion and geostrophic effects (e.g., the Coriolis effect) are not described here. The reader

is referred to texts on marine geophysics (e.g., Dean and Dalrymple, 1991; Liu, 2009) and

fluid mechanics (e.g., Currie, 2013) for details on how such boundary conditions and physical

parameters affect surface gravity waves in the ocean.
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A Small-Amplitude, Linear Approximation of the Free Surface

The boundary conditions described above (eqs. 1.23, 1.24, 1.25) apply to surface

gravity waves. Now we will assume small amplitude waves where the amplitude η is much

less than the other characteristic lengths, namely the wavelength λ and the depth h: η � λ

and η � h. In this approximation the slope of the free surface, ∂η
∂x , will be small. Also, the

velocity component in the x-direction, ∂φ
∂x , will be small since surface waves have relatively

low frequencies. In other words, any movement in the x-direction occurs within a long

period of oscillation. Thus, terms that are quadratically small (e.g., ∂η
∂x

∂φ
∂x ) are considered

negligible. Therefore, we can approximate the kinematic free surface boundary condition

(eq. 1.23) as

∂η

∂t
(x, t) ≈ ∂φ

∂z
(x, η, t).

We note that φ depends on x, η, and t. But since η is considered to be small, we can expand

the following in terms of its Taylor series:

∂φ

∂z
(x, η, t) =

∂φ

∂z
(x, 0, t) + η

∂2φ

∂z2
(x, 0, t) +O(η2).

where the O term is the order of convergence (this is explained further in a subsequent

section). Thus we can use the first term in this approximation, that is, a first order approx-

imation, for the previous equation to obtain

∂η

∂t
(x, t) ≈ ∂φ

∂z
(x, 0, t). (1.26)

In a similar fashion, keeping only the linear terms within the dynamic free surface

boundary condition (eq. 1.24) results in

∂φ

∂t
(x, η, t) +

P

ρ
+ gη(x, t) ≈ F (t).
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The ∂φ
∂t (x, η, t) term can be expanded in a Taylor series (about z = 0) where we will

retain only the first term. Additionally, we can absorb F (t) into the velocity potential via

φ(x, z, t) +
∫
F (t) dt→ φ′(x, z, t) (e.g., Dean and Dalrymple, 1991) to get

∂φ′

∂t
(x, 0, t) +

P

ρ
+ gη(x, t) ≈ 0.

Using φ′(x, z, t) in place of φ(x, z, t) results in no alteration of the previous boundary con-

ditions (since both variables produce the same result), so we can switch back to φ(x, z, t):

∂φ

∂t
(x, 0, t) +

P

ρ
+ gη(x, t) ≈ 0.

A more useful form of this equation is found by taking the derivative with respect to time

and noting eq. 1.26:

∂2φ

∂t2
(x, 0, t) + g

∂φ

∂z
(x, 0, t) ≈ 0. (1.27)

Note that the bottom boundary condition (eq. 1.25) remains the same since there is no

need for linearization.

Wave Celerity From the Laplace and Boundary Conditions

So that later we can show a simple dispersion relation that relates wave celerity

(phase speed relative to stationary water) to wavelength, we now list the Laplace equation

(eq. 1.21), the approximated (small-amplitude linearized) free surface boundary conditions
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(eqs. 1.26, 1.27), and the bottom boundary condition (eq. 1.25):

Laplace Equation→ ∂2φ

∂x2
+
∂2φ

∂z2
= 0

Kin. Free Surface Condition→ ∂φ

∂z
(x, 0, t) =

∂η

∂t
(x, t)

Dyn. Free Surface Condition→ ∂2φ

∂t2
(x, 0, t) + g

∂φ

∂z
(x, 0, t) = 0

Kin. Bottom Surface Condition→ ∂φ

∂z
(x,−h, t) = 0.

(1.28)

Let us assume that the free surface takes the form of a sinusoidal wave

η(x, t) = A sin(κx− ωt) = A sin(κx− κct)

where κ is the angular wavenumber, ω is the angular frequency, c is the wave celerity, and

A is the amplitude. Now, if we utilize the kinematic free surface boundary condition we get

∂φ

∂z
(x, 0, t) =

∂η

∂t
(x, t) = −Aκc cos(κx− κct).

This tells us that ∂φ
∂z is trigonometric with respect to x and t. Note that ∂φ

∂z , which is the

derivative with respect to z, results in a function that depends on x and t. This provides

some insight into a solution for the Laplace equation (where, in this case, we would like to

know φ); specifically, φ can be expected to be a function that is trigonometric with respect

to x and t. When finding a solution to the Laplace equation using the separation of variables

method, the separation constant should be the same for both x and z directions (e.g., Dean

and Dalrymple, 1991). In this case, the separation constant is κ, which we know is a real,

postive number. Furthermore, the solution to the Laplace equation will be trigonometric

in x and exponential (or, equivalently, hyperbolic) in z. A solution is of the form (e.g.,

Owczarek, 1968; Dean and Dalrymple, 1991)

φ(x, z, t) = cos(κx− κct) [C1 sinh(κz) + C2 cosh(κz)] . (1.29)
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Now that we have the general form of φ(x, z, t) we can implement the bottom

boundary condition (and noting that cosh is an even function while sinh is an odd function)

to get

cos(κx− κct) [κC1 cosh(κh)− κC2 sinh(κh)] = 0.

Since this condition must be satisfied for all x and t the bracketed term above must be zero,

which gives

C1 = C2 tanh(κh).

Substituting the constants C1 and C2 back into the general form of φ(x, z, t) we have

φ(x, z, t) = C2 cos(κx− κct) [tanh(κh) sinh(κz) + cosh(κz)] .

Now, if we apply the dynamic free surface boundary condition to the above equa-

tion, and rearranging terms, the result is

C2 cos(κx− κct)
[
− (κc)2 + gκ tanh(κh)

]
= 0.

Since this condition must be satisfied for all x and t the bracketed term above must be zero,

which gives

c2

gh
=

1

κh
tanh(κh)

or

c2

gh
=

λ

2πh
tanh

(
2πh

λ

) (1.30)

where we have converted from the angular wavenumber to wavelength. This equation is

the result of assuming a small amplitude A in relation to the other characteristic lengths:

A� λ and A� h. Therefore, it is a dispersion relation for small amplitude surface gravity
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Figure 1.8: A dispersion relation for small amplitude sinuous waves with the prescribed
boundary conditions. The propagation speed c depends on the acceleration due to gravity
g, the water depth h, and the wavelength λ. The shallow water approximation is plotted
as an asymptote as the wavelength becomes much larger than the water depth.

waves. A graphic of this relation is shown in Figure 1.8. By considering the Taylor series

for hyperbolic sine and hyperbolic cosine we see that hyperbolic tangent has the following

properties:

tanh

(
2πh

λ

)
≈ 1 for large

2πh

λ

tanh

(
2πh

λ

)
≈ 2πh

λ
for small

2πh

λ

A large value of 2πh
λ implies that the wavelength λ is much smaller than the fluid depth h,

while a small value of 2πh
λ implies that λ is much larger than h. For these two endmember

cases we can write

c2

gh
≈ λ

2πh
for A� λ� h (1.31)

c2

gh
≈ 1 for A� h� λ (1.32)

Equation 1.31 is the dispersion relation for deep water, while equation 1.32 is the dispersion

relation for shallow water. We are particularly interested in the shallow water approximation

here, which directly becomes

c ≈
√
gh. (1.33)
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Thus, for large wavelength waves in shallow water (and small amplitude) we see that the

wave celerity is only dependent on the acceleration due to gravity and the depth of the water

(see Figure 1.8). This is an extremely fascinating, elegant result; it means that wave celerity

for shallow water waves does not depend on wavelength (i.e., dispersion is not significant).

In practice, shallow water theory often implies that λ is at least 20 times larger than h (e.g.,

Dean and Dalrymple, 1991).

The Shallow Water Wave Equations

Now we will show a derivation of the shallow water wave equations based on first

principles. It is also possible to derive the shallow water wave equations from the momentum

equation (eq. 1.19), the continuity equation (eq. 1.18), and the general kinematic free

surface (eq. 1.23) and kinematic bottom (eq. 1.25) boundary conditions. For reference

we state that such a derivation is done sufficiently well using the Leibniz integration rule

to vertically integrate the continuity equation (e.g., Dean and Dalrymple, 1991). We do

not show that derivation here. Instead, we start from intuitive conservation principles and

show a somewhat more instructive derivation (e.g., Currie, 2013). Note that we are not

assuming a sinusoidal wave here. However, Fourier analysis dictates that an arbitrarily

shaped wave can be decomposed into a sum of sinusoidal waves with different amplitudes,

frequencies, and wavelengths. Thus, for dispersion effects to be insignificant, shallow water

theory implies that the smallest wavelength component is still large compared to the water

depth. We are ignoring viscous effects and surface tension; although, surface tension is

negligible for long waves in shallow water (e.g., Owczarek, 1968). Also, since we derive

the equations for 2 spatial dimensions x and z, the conservation principles will be per unit
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length in the y-direction (into and out of the paper).

First, it is helpful to state the static equilibrium equation for a fluid. This equation

is based on the balance of pressure variations and weight of some control volume in a

homogeneous fluid (e.g., Halliday and Resnick, 1974):

p = p0 +

∫ η

z
ρg dz = p0 + ρg(η − z) (1.34)

where p is pressure, p0 is some reference pressure (usually taken at a free surface), g is the

acceleration due to gravity, and (η − z) is the vertical water column length. Note that we

use the general convention that pressure is measured inward-normal to any surface. This

needs to be remembered for consistency purposes.

For an arbitrarily-shaped wave that has significant dispersion effects (i.e., shorter

wavelength components), the wave will disperse with time. However, when we appropriately

employ the shallow water approximation dispersion has little effect on the initial waveform.

In other words, the waveform does not significantly change shape with time. Therefore, we

can use a 1-D propagation approximation. This means that the x-component of velocity

is constant with depth, and the z-component of velocity is very small (i.e., the traveling

waveform does not change much with time). If we consider a region under a progressive wave

(Figure 1.9) we can determine conservation principles. Mass flow rate (per unit length in the

y-direction) is defined as the density multiplied by the velocity across a surface multiplied

by that same surface’s area. Panel (b) of Figure 1.9 shows the mass flow rate into and out of

the region of interest. The mass flow rate at the left is ρu(h+ η). A truncated Taylor series

results in the mass flow rate at the right being approximately ρu(h+ η) + ∂
∂x [ρu(h+ η)] δx.

The mass flow rate at the top is approximately ρ ∂∂t(h+ η)δx = ρ∂η∂t δx if h is not changing
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       at top

x-momentum
      at right

Figure 1.9: (a) A shallow water wave of arbitrary form. (b) The mass flows into a control
volume and out of a control volume. (c) The momentum components, in the x-direction,
are shown for the same region.

with time (i.e., for a stationary bottom), where we are assuming mass flow is essentially

vertical there. Note that this is the same as determining how the volume (over the small

interval δx) changes with time. Since this is an Eulerian specification, we are looking at a

fixed region along the x-axis, so our volume will change shape by amplitude fluctuations

along the z-axis. Intuitively, for an incompressible fluid, the mass flow rate into the region

must equal the mass flow rate out of the region:

ρu(h+ η) ≈ ρu(h+ η) +
∂

∂x
[ρu(h+ η)] δx+ ρ

∂η

∂t
δx

or since the first terms on the LHS and RHS cancel, we can rearrange terms, divide by ρδx,
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and let δx→ 0 to obtain

∂η

∂t
+

∂

∂x
[u(h+ η)] = 0. (1.35)

This is the nonlinear continuity equation for shallow water waves over a stationary bottom.

Now we will focus on the nonlinear momentum equation for shallow water waves.

Panel (c) of Figure 1.9 shows that we have x-axis components of momentum at the left,

right, and top of the control volume region. Using Newton’s second law, we can set the

total rate of change in x-momentum (per unit length in the y-direction) equal to the total

applied force in the x-direction (per unit length in the y-direction). We can find the x-

component of momentum rate at the left by multiplying the mass flow rate by the velocity

in the x-direction. Thus, the x-momentum rate at the left is ρu2(h + η). A truncated

Taylor series results in the x-momentum rate at the right being approximately ρu2(h +

η) + ∂
∂x

[
ρu2(h+ η)

]
δx. Thus, the x-momentum rate changes from the left to the right

by an amount approximately equal to ∂
∂x

[
ρu2(h+ η)

]
δx. We also need to incorporate x-

momentum changes that result from changes in volume over the small interval δx. Note

that any volume changes will result from fluctuations in amplitude along the z-axis. Thus,

we need to multiply the volume by the velocity component in the x-direction and take

the time derivative of this approximated quantity: ∂
∂t [ρu(h+ η)] δx. This is, effectively,

the same as multiplying the mass flow rate at the top surface by the velocity component

in the x-direction, but with the velocity component included within the time derivative

operation since we are examining changes in momentum. Thus, the total rate of change of x-

momentum for the fluid element will be due to a difference in momentum rate (horizontally)
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across the element plus any rate of change of x-momentum for the top of the fluid element:

m
Du

dt
≈ ∂

∂x

[
ρu2(h+ η)

]
δx+

∂

∂t
[ρu(h+ η)] δx. (1.36)

We need to set this equal to the net external force in the x-direction. The net external force

(a)

(b)

δx

pressure at top

pressure at rightpressure at left

δr

p
0 dr

δx

δη

θ

θ

p0(∂ η/∂ x)dx

note:
tanθ ≈ δη/δx 

force from pressure at top

Figure 1.10: (a) Pressure on the left, right, and top of the control volume. (b) The force
that results from pressure on the top.

in the x-direction comes from the hydrostatic pressure under the free surface (see Figure

1.10). We use the hydrostatic pressure because, by definition, shallow water theory implies

surface waves with negligible vertical acceleration (that would lead to pressure fluctuations

in time). Let us assume that there is a constant pressure p0 at the free surface. Now, the

force at the left (per unit length in the y-direction) that tends to accelerate the control

volume in the positive x-direction (the pressure convention is inward-normal) is FatLeft =∫ η
−h p(x, z) dz, and the force at the right (per unit length in the y-direction) that tends to

accelerate the control volume in the negative x-direction is FatRight =
∫ η
−h p(x + δx, z) dz.
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From the static equilibrium equation we know that these forces are

FatLeft =

∫ η(x,t)

−h
p(x, z) dz =

∫ η(x,t)

−h
[p0 + ρg(η(x, t)− z)] dz

= p0 [h+ η(x, t)] +
ρg [h+ η(x, t)]2

2

FatRight = −
∫ η(x+δx,t)

−h
p(x+ δx, z) dz = −

∫ η(x+δx,t)

−h
[p0 + ρg(η(x+ δx, t)− z)] dz

= −p0 [h+ η(x+ δx, t)]− ρg [h+ η(x+ δx, t)]2

2
.

The sum of these forces is

FatLeft + FatRight = −p0 [h+ η(x+ δx, t)] + p0 [h+ η(x, t)]

−ρg [h+ η(x+ δx, t)]2

2
+
ρg [h+ η(x, t)]2

2
.

This can be multiplied by δx
δx to become

FatLeft + FatRight =
−p0 [h+ η(x+ δx, t)] + p0 [h+ η(x, t)]

δx
δx

+
−ρg [h+ η(x+ δx, t)]2 + ρg [h+ η(x, t)]2

2δx
δx

and we can write this as

FatLeft + FatRight = −p0
δ(h+ η)

δx
δx− ρg

2

δ(h+ η)2

δx
δx. (1.37)

Now we need to add the force at the top of the control volume as shown in panel (b) of

Figure 1.10. If the pressure is p0 everywhere along the free surface η then there is a force

(per unit length in the y-direction), with components pointing in the -z and +x directions,

that is equal to the length of the surface δr multiplied by p0. As shown in panel (b) of

Figure 1.10, tan(θ) ≈ δη
δx . Thus, the positive x-component of this force (while noting that

h is a constant) is

FatTop ≈ p0
δη

δx
δx = p0

δ(h+ η)

δx
δx. (1.38)
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Finally, we can add the left, right, and top x-component forces to get

FatLeft + FatRight + FatTop ≈ −p0
δ(h+ η)

δx
δx− ρg

2

δ(h+ η)2

δx
δx+ p0

δ(h+ η)

δx
δx

= −ρg
2

δ(h+ η)2

δx
δx

≈ −ρg
2

∂(h+ η)2

∂x
δx

(1.39)

Now, setting the total rate of change of momentum (eq. 1.36) equal to the sum of external

forces in the x-direction (eq. 1.39) gives

∂

∂x

[
ρu2(h+ η)

]
δx+

∂

∂t
[ρu(h+ η)] δx = −ρg

2

∂(h+ η)2

∂x
δx.

Dividing the preceding equation by ρδx, reordering the terms on the LHS, carrying out the

first differentiation from the chain rule on the RHS, and letting δx→ 0 results in

∂

∂t
[u(h+ η)] +

∂

∂x

[
u2(h+ η)

]
= −g(h+ η)

∂η

∂x
. (1.40)

This is the nonlinear momentum equation in shallow water. Therefore, the continuity and

momentum equations for shallow water are

∂η

∂t
+

∂

∂x
[u(h+ η)] = 0

∂

∂t
[u(h+ η)] +

∂

∂x

[
u2(h+ η)

]
= −g(h+ η)

∂η

∂x
.

(1.41)

These equations are conservative forms since they are derived from conservation of mass

and momentum. Many models employ an altered form of the momentum equation based

on velocities. By differentiating the LHS of the momentum equation, while noting that[
u2(h+ η)

]
is the product of u with u(h+ η) and that h is a constant, we can write

∂

∂t
[u(h+ η)] +

∂

∂x

[
u2(h+ η)

]
= (h+ η)

∂u

∂t
+ u

∂η

∂t
+ u

∂

∂x
[u(h+ η)] + u(h+ η)

∂u

∂x
.
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The second and third terms on the RHS are equal to the continuity equation multiplied by

u, so they sum to zero. Thus, we get

∂

∂t
[u(h+ η)] +

∂

∂x

[
u2(h+ η)

]
= (h+ η)

∂u

∂t
+ u(h+ η)

∂u

∂x
.

We can substitute this expression into the momentum equation (eq. 1.41) to get:

∂η

∂t
+

∂

∂x
[u(h+ η)] = 0

(h+ η)
∂u

∂t
+ u(h+ η)

∂u

∂x
+ g(h+ η)

∂η

∂x
= 0.

(1.42)

The terms in the momentum equation above all have a (h + η) term that can be divided

out. Therefore, this altered form of the continuity and momentum equations becomes

∂η

∂t
+

∂

∂x
[u(h+ η)] = 0

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0.

(1.43)

1.3 Numerical Methods

The computer codes used in the following studies utilize the Finite Difference

Method (FDM) and the Finite Element Method (FEM) to numerically calculate movement

(e.g., wave) properties in time. Therefore, it is critical to know, at a basic level, how the

FDM and FEM serve to approximate physical processes. Because some physical processes

can be described through continuous differential equations (e.g., the seismic wave equation,

eq. 1.9), it can be useful to approximate those continuous equations with other equations

over finite intervals. The FDM and FEM are two numerical techniques that approximate

solutions to properly defined differential equations by using those differential equations to

form discrete sets of algebraic equations (e.g., Hughes, 2000; Strang, 2007; LeVeque, 2007).
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Below we briefly describe the FDM and then more fully describe the FEM in the form of a

hydrodynamic example.

1.3.1 A Short Note on Finite Differences

Initial development of finite differences involves a classic definition of the derivative

of a locally continuous function f(x) from calculus (e.g., Strang, 2007):

d

dx
f(x) := lim

h→0

f(x+ h)− f(x)

h
.

Removing the limit, so that we can operate over a discrete interval, we can write the forward

(i.e., some value of x plus h) difference equation

FD :=
f(x+ h)− f(x)

h

and the analogous backward (i.e., some value of x minus h) difference equation

BD :=
f(x)− f(x− h)

h

and the centered (i.e., some value of x plus and minus h) difference equation

CD :=
f(x+ h)− f(x− h)

2h
.

Of course, we can have difference equations operate on each other so that the result is

differences of differences. For example, the backward difference can operate on the forward

difference:

BD[FD] = BD

[
f(x+ h)− f(x)

h

]

=

[
f(x+h)−f(x)

h

]
−
[
f(x)−f(x−h)

h

]
h

=
f(x+ h)− 2f(x) + f(x− h)

h2
.
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To determine the order of accuracy of the above finite differences, we need to write

the Taylor series for the function f(x+ h) as

f(x+ h) = f(x) + h
df

dx
+
h2

2!

d2f

dx2
+
h3

3!

d3f

dx3
+ . . .

and the Taylor series for the function f(x− h) as

f(x− h) = f(x)− h df
dx

+
h2

2!

d2f

dx2
− h3

3!

d3f

dx3
+ . . .

Therefore, we can substitute this expression for f(x+h) into the forward difference equation

to obtain

FD =
f(x+ h)− f(x)

h

=
f(x) + h dfdx + h2

2!
d2f
dx2

+ h3

3!
d3f
dx3

+ . . .− f(x)

h

=
df

dx
+
h

2!

d2f

dx2
+
h2

3!

d3f

dx3
+ . . .

=
df

dx
+O(h)

where we say that the forward difference equation is first order accurate since the error

terms (big ‘O’ terms) contain h to the power of one as well as higher powers (LeVeque,

2007). Similarly, the backward difference formula is first order accurate. We can repeat

this process for the centered difference formula, using the Taylor series for both f(x + h)

and f(x− h):

CD =
f(x+ h)− f(x− h)

2h

=
f(x) + h dfdx + h2

2!
d2f
dx2

+ h3

3!
d3f
dx3

+ . . .− f(x) + h dfdx −
h2

2!
d2f
dx2

+ h3

3!
d3f
dx3
− . . .

2h

=
df

dx
+
h2

3!

d3f

dx3
+ . . .

=
df

dx
+O(h2)
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where the centered difference equation is second order accurate since the error terms contain

h to the power of two as well as higher powers. These finite difference equations are approx-

imations of derivatives; therefore, it is somewhat evident that finite difference equations can

approximate more complex differential equations that describe physical processes. We note

that the functions being approximated can be functions of both time and space, and thus

there can be difference equations with respect to each dimension. Of course, there are many

different theoretical and numerical techniques for efficiently and accurately approximating

such equations using the FDM (e.g., LeVeque, 2007), and we will not go into further detail

here.

1.3.2 The Finite Element Method

In the following section we describe the finite element method (FEM) through an

example of the 1-D (more specifically, 1 propagation dimension, 1 amplitude dimension,

and 1 time dimension) shallow water wave equations (eq. 1.43). The FEM solution process

involves the following key steps:

(1) Define the problem to be solved in the form of differential equations. This will ultimately

involve an integral form of the differential equations. A critical part of defining the problem

is to specify the boundary and initial conditions.

(2) Select the finite element type (e.g., lines, curves, etc. in 1-D; rectangles, triangles, etc.

in 2-D).

(3) Define the mesh for the problem using the element type. This includes descriptions of

node and element layouts for the model space.

(4) Select the shape function type (e.g., linear, quadratic, etc.) to be integrated over the
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selected element type.

(5) Compute the system matrices and system vectors. For time-dependent problems, this

involves finite difference techniques to perform numerical integration at each time step.

(6) Solve the resulting set of linear algebraic equations for the system variables.

(7) Save and output the results of the nodal and element variables.

To simplify the shallow water wave equations, we can define H := h + η. Noting

that h is a constant, we can write eq. 1.43 as

∂H

∂t
+

∂

∂x
(uH) = 0

∂u

∂t
+ u

∂u

∂x
+ g

∂H

∂x
= 0

(1.44)

where these equations apply to our open model domain Ω = (0, L), where the origin (x = 0)

is the left edge of the domain and L is the right edge of the domain,. We can now define,

for our example, boundary and initial conditions. We know that u(x, t) is the particle

velocity in the x-direction, and that H(x, t) is the total fluid height. On the boundary

σ = {0, L} of our model, we set u(0, t) = u(L, t) = 0 and H(0, t) = H(L, t) = H0 where H0

is some constant. For the initial conditions (i.e., the first time node), we set u(x, 0) = 0 and

H(x, 0) = H0 + Ae
−B
[
(x−L2 )

2
]

(i.e, a smooth Gaussian function plus a constant; although,
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we can model a variety of functions here). We can now define the problem in strong form:

(S)



∂H
∂t + ∂

∂x(uH) = 0, on Ω

∂u
∂t + u∂u∂x + g ∂H∂x = 0, on Ω

u(0, t) = u(L, t) = 0, on σ

H(0, t) = H(L, t) = H0, on σ

u(x, 0) = 0, on Ω

H(x, 0) = H0 +Ae
−B
[
(x−L2 )

2
]
, on Ω.

(1.45)

The strong form is the set of differential equations that directly describe the problem to

be solved. We now transform the strong form into the weak form of the problem. In order

to do so, we need to define collections of trial solutions of u(x, t) and H(x, t) as well as

the collections of trial weighting functions w(x) for the problem. Note that, unlike the trial

solutions, the weighting functions are only functions of x (not time!). All of these collections

u,H, and w need to be in a Sobolev space at a given point in time. In this case, a function

f is in a Sobolev space if

∫ L

0
f2 dx <∞;

∫ L

0

(
∂f

∂x

)2

dx <∞.

In other words, we need to be able to properly integrate these functions and their derivatives

over the domain. Such functions are often called H1-functions (since the function itself and

its 1st derivative are square integrable), and this notation should not be confused with the

fluid height H. The collection of trial solutions of u are

L =
{
u|u ∈ H1, u(0, t) = u(L, t) = 0, u(x, 0) = 0

}
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and the collection of trial solutions for H and collection of trial weighting functions w are

M =

{
H|H ∈ H1, H(0, t) = H(L, t) = H0, H(x, 0) = H0 +Ae

−B
[
(x−L2 )

2
]}

V =
{
w|w ∈ H1, w(0) = w(L) = 0,where w = w(x)

}
.

The weighting functions are defined to be zero on the boundaries since we fix the values of

u and H there. Approximations to these collections need to be employed within the FEM.

Often, approximations are denoted by a superscript h such as uh being an approximation of

u. We will not be employing this notation, but each u, v, and w will be considered to be an

approximation of the above collection when implementing the finite discretization below.

The strong form of the continuity equation is

∂H

∂t
+

∂

∂x
(uH) = 0.

Multiplying by our weighting function w and integrating from 0 to L we get∫ L

0
w
∂H

∂t
dx+

∫ L

0
w
∂

∂x
(uH) dx = 0.

For two functions f(x) and g(x) and constants a and b, integration by parts yields
∫ b
a g

df
dx dx =

fg|ba−
∫ b
a f

dg
dx dx. Therefore, we can transform the second term in the above equation using

integration by parts:
∫ L

0 w ∂
∂x(uH) dx = wHu|L0 −

∫ L
0 Hu∂w∂x dx. However, wHu|L0 = 0 due

to our boundary conditions, so we can write the equation above as∫ L

0
w
∂H

∂t
dx−

∫ L

0
Hu

∂w

∂x
dx = 0. (1.46)

This is the weak form of the continuity equation as it has been multiplied, integrated, and

manipulated. The strong form of the momentum equation is

∂u

∂t
+ u

∂u

∂x
+ g

∂H

∂x
= 0.
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Multiplying by our weighting function w and integrating from 0 to L we get∫ L

0
w
∂u

∂t
dx+

∫ L

0
wu

∂u

∂x
dx+

∫ L

0
wg

∂H

∂x
dx = 0. (1.47)

This is the weak form of the momentum equation.

One of the key aspects of the Galerkin approach to the FEM is that trial solutions

and trial weighting functions are composed of the same spatial shape functions (or basis

functions). We will explain this further now. We choose trial solutions and weighting

functions that consist of linear combinations of the shape functions NA, where A indicates

the global node number in the mesh: A = {1, 2, 3, . . . , n}. Each shape function NA will

have a value of 1 at node A and a value of zero at every other node (see Figure 1.11). As

such, the weighting functions can be written as

w =

n∑
A=1

CANA(x)

where the CAs are arbitrary constants. For the velocity u(x, t), we define the total set of

nodes as η and the set of nodes on the boundary σ as ηp. For the height H(x, t), we define

the total set of nodes as η and the set of nodes on the boundary σ as ηr. For each time

step, we define

v =
∑

B∈η−ηp

uB(t)NB(x)

q =
∑

C∈η−ηr

HC(t)NC(x)

where uB and HC are nodal values that depend on time only. However, the shape functions

do not depend on time, so we have separated the desired variables into time and space

components. Additionally, we let

s =
∑
B∈ηp

pNB(x)
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t =
∑
C∈ηr

rNC(x)

where p is the velocity boundary condition and r is the height boundary condition. From

the strong form of the problem, we know that p = 0 and r = H0, and we will utilize these

variables now. Note that the shape functions are the same functions for each approximation

(albeit a different subscript A, B, or C). Now we can write u = v + s, H = q + t, and w as

u =
∑

B∈η−ηp

uB(t)NB(x) +
∑
B∈ηp

pNB(x) =
∑

B∈η−ηp

uB(t)NB(x)

H =
∑

C∈η−ηr

HC(t)NC(x) +
∑
C∈ηr

rNC(x) =
∑

C∈η−ηr

HC(t)NC(x) +
∑
C∈ηr

H0NC(x)

w =
∑

A∈η−ηr

CANA(x) +
∑
A∈ηr

0NA(x) =
∑

A∈η−ηr

CANA(x).

Note that w can be written as containing non-zero values at nodes in either η−ηr or η−ηp,

since the boundary values for u and H lie on the same nodes. The weak form of the problem

is the following: Given p and r are real, defined values, find u ∈ L and H ∈ M such that

for all w ∈ V

(W )


∫ L

0 w ∂H
∂t dx−

∫ L
0 Hu∂w∂x dx = 0

∫ L
0 w ∂u

∂t dx+
∫ L

0 wu∂u∂x dx+
∫ L

0 wg ∂H∂x dx = 0.

(1.48)

For this problem, we choose to use constant length, linear, one-dimensional elements along

the x-axis. The shape functions are linear hat functions (see Figure 1.11). The approximated

variables H and u will be made up of these shape functions; for example, see Figure 1.11

panel (b) for a cartoon schematic of H. Using the above definitions, we can re-write the

weak form of the continuity equation (eq. 1.46) as

∫ L

0
w
∂H

∂t
dx−

∫ L

0
Hu

∂w

∂x
dx = 0
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Figure 1.11: (a) Cartoon schematic of shape functions. (b) Cartoon schematic of the
approximated water height.

and then transform the equation above into

∫ L

0

 ∑
A∈η−ηr

CANA(x)
∂

∂t

 ∑
C∈η−ηr

HC(t)NC(x) +
∑
C∈ηr

H0NC(x)

 dx
−
∫ L

0

 ∑
C∈η−ηr

HC(t)NC(x)

+
∑
C∈ηr

H0NC(x)

 ∑
B∈η−ηp

uB(t)NB(x)

 ∂

∂x

∑
A∈η−ηr

CANA(x)

 dx = 0.

We can place the sum over CAs in the front of the terms to get

∑
A∈η−ηr

CA

∫ L

0

NA(x)
∂

∂t

 ∑
C∈η−ηr

HC(t)NC(x) +
∑
C∈ηr

H0NC(x)

 dx
−

∑
A∈η−ηr

CA

∫ L

0

 ∑
C∈η−ηr

HC(t)NC(x)

+
∑
C∈ηr

H0NC(x)

 ∑
B∈η−ηp

uB(t)NB(x)

( ∂

∂x
NA(x)

) dx = 0.

Since the CAs are arbitrary constants, the other terms must sum to zero. Therefore, we
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have

∫ L

0

NA(x)
∂

∂t

 ∑
C∈η−ηr

HC(t)NC(x) +
∑
C∈ηr

H0NC(x)

 dx
−
∫ L

0

 ∑
C∈η−ηr

HC(t)NC(x)

+
∑
C∈ηr

H0NC(x)

 ∑
B∈η−ηp

uB(t)NB(x)

( ∂

∂x
NA(x)

) dx = 0.

Now the time derivative of H0NC is zero since H0 is a constant and NC does not depend

on time, so we can write the equation above as

∫ L

0

NA(x)
∂

∂t

 ∑
C∈η−ηr

HC(t)NC(x)

 dx
−
∫ L

0

 ∑
C∈η−ηr

HC(t)NC(x)

+
∑
C∈ηr

H0NC(x)

 ∑
B∈η−ηp

uB(t)NB(x)

( ∂

∂x
NA(x)

) dx = 0.

The second term in square brackets can be broken up and we can write

∫ L

0

NA(x)
∂

∂t

 ∑
C∈η−ηr

HC(t)NC(x)

 dx
−
∫ L

0

 ∑
C∈η−ηr

HC(t)NC(x)

 ∑
B∈η−ηp

uB(t)NB(x)

( ∂

∂x
NA(x)

) dx
−
∫ L

0

∑
C∈ηr

H0NC(x)

 ∑
B∈η−ηp

uB(t)NB(x)

( ∂

∂x
NA(x)

) dx = 0.

(1.49)

This is the discretized form of the continuity equation. Using the same process, the dis-

55



cretized form of the momentum equation is

∫ L

0

NA(x)
∂

∂t

 ∑
C∈η−ηp

uC(t)NC(x)

 dx
+

∫ L

0

NA(x)

 ∑
B∈η−ηp

uB(t)NB(x)

 ∂

∂x

 ∑
C∈η−ηp

uC(t)NC(x)

 dx
+

∫ L

0

NA(x)g
∂

∂x

 ∑
C∈η−ηr

HC(t)NC(x)

 dx
+

∫ L

0

NA(x)g
∂

∂x

∑
C∈ηr

H0NC(x)

 dx = 0.

(1.50)

The reader may notice that in some integral terms there are two unknown variables u and

H (i.e., there are multivariable integral terms). This is due to the nonlinear nature of the

shallow water wave equations. We now use the method of Navon (1979) to quasilinearize

these terms by approximating u, only in the nonlinear integral terms, with

u∗ = uN+ 1
2 =

3

2
uN − 1

2
uN−1 +O(∆t2)

where the superscripts indicate the time node. We can re-write the discretized forms of

the continuity (eq. 1.49) and momentum (eq. 1.50) equations, respectively, using u∗, using

summation notation (while remembering whether sums are taken inside the domain or at
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the boundaries), and removing the explicit dependence on x and t, as∫ L

0
NA

∂HC

∂t
NC dx

−
∫ L

0
HCNCu

∗
BNB

∂NA

∂x
dx

−
∫ L

0
H0NCu

∗
BNB

∂NA

∂x
dx = 0

and∫ L

0
NA

∂uC
∂t

NC dx

+

∫ L

0
NAu

∗
BNBuC

∂NC

∂x
dx

+

∫ L

0
NAgHC

∂NC

∂x
dx

+

∫ L

0
NAgH0

∂NC

∂x
dx = 0.

(1.51)

The u∗ terms can be thought of as constants since they can be found from the previous time

steps. Additionally, we couple the continuity and momentum equations in H by inputing

the values for H calculated from the continuity equation, at a given time step, into the

momentum equation at that same time step. Therefore, any summation over H in the

momentum equation can be thought of as a constant. If we define the following system

matrices and vectors as

MAC =

∫ L

0
NANC dx =

n−1∑
e

∫
Ωe

NANC dx

K1AC =

∫ L

0
NCu

∗
BNB

∂NA

∂x
dx =

n−1∑
e

∫
Ωe

NCu
∗
BNB

∂NA

∂x
dx

K11A =

∫ L

0
H0NCu

∗
BNB

∂NA

∂x
dx =

n−1∑
e

∫
Ωe

H0NCu
∗
BNB

∂NA

∂x
dx

K2AC =

∫ L

0
NAu

∗
BNB

∂NC

∂x
dx =

n−1∑
e

∫
Ωe

NAu
∗
BNB

∂NC

∂x
dx
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K21A =

∫ L

0
NAgHC

∂NC

∂x
dx =

n−1∑
e

∫
Ωe

NAgHC
∂NC

∂x
dx

K22A =

∫ L

0
NAgH0

∂NC

∂x
dx =

n−1∑
e

∫
Ωe

NAgH0
∂NC

∂x
dx

where each matrix entry can be written as a sum of integrals over each element (i.e., piece-

wise integration). Note that each term in the RHS sum of each equation above represents

an entry in the element matrices and vectors. We can write the continuity and momentum

equations, respectively, using the system matrices and vectors, as

MAC
∂HC

∂t
−K1ACHC −K11A = 0

or

MAC
∆HC

∆t
−K1ACHC −K11A = 0

and

MAC
∂uC
∂t

+K2ACuC +K21A +K22A = 0

or

MAC
∆uC
∆t

+K2ACuC +K21A +K22A = 0.

(1.52)

A Crank-Nicolson finite difference scheme of order 2 in time (i.e., O(∆t2)) (e.g., Navon,

1979) can be used for the time stepping that results in the following difference equations

for the continuity and momentum equations:

MHn+1 − ∆t

2
K1Hn+1 = MHn +

∆t

2
K1Hn +

∆t

2
K11 + +

∆t

2
K11

and

Mun+1 +
∆t

2
K2un+1 +

∆t

2
K21n+1 = Mun − ∆t

2
K2un − ∆t

2
K21n − ∆t

2
K22− ∆t

2
K22.

(1.53)
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where the superscripts indicate the time node. Following Hughes (2000), we compute ele-

ment matrices and vectors (i.e., for each element), and then build the system matrices and

vectors that are shown above. We can then solve for the variables H and u using the above

FEM approach. First we find H from the continuity difference equation (using u∗), then we

find u from the momentum difference equation using H and u∗, then update u∗ and repeat

the process. From the strong form of the problem, we use p = 0 (in velocity units), H0 = 1

(in length units), A = 1
10 , B = 1

20 , L = 100 (in length units), and g = 1 (in acceleration

units). Using these values along with an element size of 1 length unit and a time step size of

1
4 time units, Figure 1.12 shows H and u at different points in time. According to shallow

water wave theory, the surface wave should propagate at approximately 1 unit length per

unit time, or
√
gh ≈

√
1 = 1 unit length per unit time. We see that this is indeed true.

Note that u is not the propagation speed, but the particle speed. The propagation speed is

partial confirmation that our code is performing correctly.

1.4 Dynamically Modeling Earthquakes and Tsunamis

Above we discuss some of the basic principles and equations that help describe

motion from earthquakes and tsunamis. Actual earthquake-generated tsunamis are among

the most destructive natural hazards, with recent examples including the 2004 Mw 9.1

Sumatran-Andaman earthquake and tsunami (Lay et al., 2005) and the 2011 Mw 9.0

Tohoku-Oki earthquake and tsunami (Simons et al., 2011). Tsunamis like these that are

generated along the Pacific Rim and other regions can can cause widespread devastation.

In particular, tsunamis generated along the Alaskan-Aleutian megathrust offshore of the
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Figure 1.12: (left) Height of water surface at 0 s, 10 s, and 30 s. (right) Particle velocity of
water surface at 0 s, 10 s, and 30 s.

Alaska Peninsula could have large adverse effects on Pacific coasts (Ryan et al., 2012).

The earthquake source is one of the largest sources of uncertainty for earthquake-generated

tsunami hazard analysis. The seismic moment, slip distribution, and time-dependent rup-

ture path of future earthquakes are often poorly constrained, but these parameters produce

a first-order effect on tsunami generation (Geist, 1998; Geist and Dmowska, 1999; Geist

and Bilek, 2001; Geist, 2002; Wendt et al., 2009). Typical tsunami generation methods

rely on static or kinematic models of the earthquake source, in which the seismic moment,
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slip distribution, and rupture path are assumed a priori, usually based on models of prior

earthquakes and/or a probabilistic slip model (Kanamori, 1972; Satake, 1985; Satake, 2002;

Geist, 2002). However, such models are not guaranteed to be consistent with any physically

plausible faulting scenario, and may span a range of parameter space far beyond what is

physically realistic. In addition, the historical record is incomplete for very large (Mw 9+)

earthquakes, and may not encompass all the physically possible earthquake scenarios. One

way to ensure that tsunami models are grounded in realistic physics and span a realistic

range of earthquake sizes and slip patterns is to use spontaneous dynamic earthquake rup-

ture models to simulate the earthquake source (e.g., Day, 1982; Olsen et al., 1997; Kame

et al., 2003; Oglesby and Mai, 2012). Such models start with the fault geometry, the ma-

terial properties, the loading stress on the system, and the frictional behavior on the fault.

However, we note that these initial input parameters can be uncertain and in many cases

such parameters involve assumptions that are difficult to constrain (e.g., the stress field

within the real Earth is not known!). Based on these input parameters and physical laws,

the earthquake rupture and ground motion processes (including the final size of the earth-

quake, the rupture path, the spatiotemporal slip distribution, and the near-source ground

motion time history) are calculated results of the models. The ground motion can then be

used directly as a boundary condition in tsunami models (Wendt et al., 2009).

Although large-magnitude earthquakes generate tsunamis that cause extensive de-

struction, smaller earthquakes can produce local tsunamis that provide little warning time

and heavily damage restricted regions. The Ventura Basin in southern California is an

area that is increasingly recognized to present a significant seismic and tsunami hazard.
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The region contains several faults – in close proximity – that extend offshore, raising the

possibility that they may rupture in a large multi-segment earthquake with moment mag-

nitude potentially up to 7.8 (Hubbard et al., 2014). At least two large thrust faults – the

Ventura/Pitas Point and Red Mountain – extend offshore, and may thus produce a sig-

nificant local tsunami whether they rupture separately or in tandem. The Ventura Basin

region is cut by several large thrust/reverse faults, including the Ventura, Pitas Point, Red

Mountain, and San Cayetano faults (Sarna-Wojeicki et al., 1976; Perry and Bryant, 2002;

Hubbard, 2014). Uplifted marine terraces (Rockwell, 2011) indicate single-event uplifts of

5-10 m, with fault slip potentially even larger. The coastline region has populated areas

(such as metropolitan Ventura), so an earthquake and tsunami hazard assessment based

on these faults is critically important; however, the hazard from such events is still under

development. Dynamic earthquake and tsunami models can help constrain the range and

distribution in the size of future earthquakes and locally generated tsunamis.

The exact mechanisms of at least a few severe tsunami disasters within the last

few decades still remain inconclusive, with one example being the 1998 Papua New Guinea

earthquake and tsunami that resulted in more than 2,000 casualties (Fujima et al, 1999; Mat-

suyama et al., 1999). Considerable discrepancies have been pointed out between tsunami

models and tsunami observations, particularly in tsunami height and travel time (Ohmachi

et al., 2001). Such discrepancies may result from uncertainties in earthquake source models

that are based on seismic-wave and tsunami data (Imamura et al., 1994). Earthquake source

parameters such as seismic moment and slip distribution have first-order effects on tsunami

size (e.g., Geist, 1998), and these source parameters are related to the dynamic elastic wave
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field generated during earthquakes. By constraining earthquake source parameters from

characteristics of the Rayleigh-wave field, one may also constrain tsunami properties such

as size and wave train structure (Dutykh and Dias, 2008). When generated by tsunamigenic

earthquakes, Rayleigh waves travel along the ocean floor with faster horizontal phase veloci-

ties than corresponding tsunamis (Okal, 1988). The possibility of a tsunami warning system

using acoustic ocean waves has been previously suggested (Ewing et al., 1950; Yamashita

and Sato, 1976), but accurate tsunami warning is still elusive due to large uncertainties in

what causes the distribution of tsunami size and devastation. Tsunami disaster mitigation

leads to a need for tsunami early warning, and constraining properties of the tsunami from

leading Rayleigh waves can provide a route to more enhanced early warning that includes

local effects from properties such as fault slip distribution and bathymetry.
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Chapter 2

Modeling Seafloor Deformation

and Tsunami Generation Offshore

Southern Alaska Using Dynamic

Finite Element Analysis

2.1 Abstract

Motivated by the 2011 Mw 9 Tohoku-Oki earthquake and potential earthquakes

on the Alaskan-Aleutian Megathrust, we use computational simulations to investigate the

effects of fault rupture dynamics on slip, free surface deformation, and resulting tsunami

formation from scenario Mw 9 megathrust earthquakes. Unlike static dislocation models,

dynamic models account for the force that the entire fault system exerts on each individual
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element of the model for each time step, so that earthquake rupture takes a path that is

consistent with the physics of the model. To isolate the effects of different physical vari-

ables, we model four different dynamic rupture scenarios: a spatially-homogenous prestress

and frictional parameter scenario, two scenarios with rate-strengthening-like friction (e.g.,

Dieterich, 1992), and one scenario with spatially-heterogeneous prestress. Given geometric,

material, and plate-coupling data along the Alaska-Aleutian megathrust assembled from

the USGS-led Science Application For Risk Reduction (SAFRR) team (Bruns et al., 1987;

Johnson and Satake, 1994; Santini et al., 2003; Wells et al., 2003; Wells et al., 2011; Hayes

et al., 2012), we are able to dynamically model rupture of a Mw 9 earthquake. The ho-

mogeneous model shows an average fault slip of 18.6 m, with the same seismic moment

as the source model used by the SAFRR team to investigate large-scale effects on western

U.S. coastlines from a tsunami generated along the Alaskan-Aleutian subduction zone, and

a maximum vertical free surface displacement of 5.77 m. However, adding a frictional-

strengthening zone to an along-strike region of the fault reduces average fault slip to 14.6

m and the maximum vertical free surface displacement to 5.74 m, while significantly re-

ducing the maximum free surface displacement in the area up-dip from the strengthening

zone. Adding a frictional-strengthening zone to an updip region of the fault reduces average

fault slip to 10.4 m and the maximum vertical free surface displacement to 2.86 m, while

significantly reducing the maximum free surface displacement over the entire megathrust.

A model with heterogeneous prestress results in a more heterogeneous slip distribution,

relative to the homogeneous model; this slip distribution qualitatively matches the slip

distribution of the source model used by the SAFRR team. The heterogeneous prestress
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model has the same average fault slip as the homogeneous model, and a maximum vertical

free surface displacement of 7.04 m. Corresponding tsunami models, which use a finite dif-

ference method to solve linear long-wave equations (i.e., shallow water equations) (Shuto,

1991; Satake, 2002), match sea floor deformation, in time, to the free surface deformation

from the rupture simulations (Tanioka and Satake, 1996). Tsunami models show reduced

peak amplitudes in the area above the frictional-strengthening zones, relative to the homo-

geneous case. A tsunami resulting from a heterogeneous fault prestress model results in

peak amplitudes immediately above the hanging wall that are spatially more varied than

the homogeneous model, but the overall beaming pattern and maximum amplitudes along

the local coasts are similar. All tsunami models also show the resultant gravity wave from

the breakout of the earthquake rupture to the sea floor (Oglesby et al., 2000). Tsunamis

generated in this region could have large adverse effects on Pacific coasts (Ryan et al., 2012).

2.2 Introduction

Megathrust earthquakes in subduction zones are known generators of large, trans-

oceanic tsunamis (e.g., Kanamori, 1972). Ryan et al. (2012) demonstrated that a tsunami

resulting from a large megathrust earthquake on the Alaskan-Aleutian subduction zone

(their Figure 1) would propagate across the Pacific Ocean and bombard the U.S west coast,

potentially causing significant damage to ports and other populated areas. Due to its

earthquake and tsunami hazard, the Alaskan-Aleutian subduction zone has been well stud-

ied seismically and geodetically (e.g., Freymueller et al., 2008). Using GPS measurements,

Freymueller and Beavan (1999) show that the western Shumagin segment of the Alaskan-
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Aleutian subduction zone is creeping (their Figure 1). They further suggest that the entire

downdip extent of this section of the megathrust may be unlocked, and thus slipping at the

local plate convergence rate. Surface deformation along the Alaskan-Aleutian megathrust

is a complex process that results from different mechanisms, including postseismic deforma-

tion, spatial variations in plate coupling, and movement of large crustal blocks (Freymueller

et al., 2008). Additionally, Freymueller et al. (2008) find that both the width of the seismo-

genic zone and the distribution of locked and creeping zones vary substantially along strike

throughout the Alaskan-Aleutian subduction zone.

The distribution of locked and creeping sections along subduction zones is impor-

tant for tsunami generation and coastline inundation. Kanamori (1972) notes that sediments

in the trench could be a mechanism for tsunami earthquakes – earthquakes that produce

relatively small ground shaking but larger than expected tsunamis. Specifically, sediments

could alter the frictional properties of the fault, making it a locally creeping (stable sliding)

section, as well as producing slower rupture propagation during earthquakes. Hyndman et

al. (1997) point out that stable sliding regions can be caused by unconsolidated sediments

updip and either higher temperature or hydrated serpentinite at depth, and that global seis-

mogenic zones typically lie between 10 km and 40 km depth. Bilek and Lay (2002) show,

for 525 earthquakes around the circum-Pacific including earthquakes along the Alaskan-

Aleutian subduction zone, longer rupture durations for shallow (< 15 km) thrust events

than for deeper (> 15 km) thrust events. Furthermore, they suggest that conditionally

stable and fully stable sliding zones located on the most updip section of a thrust fault can

be a valid mechanism to slow rupture velocity and increase duration.
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Dynamic rupture models of dip-slip faults are extremely helpful in understanding

the free surface deformation that leads to tsunami generation. Specifically, using seafloor

deformation from rupture dynamics as time-dependent boundary conditions for tsunami

generation may provide insight into tsunami formation and local propagation. Standard

dislocation models use a static slip distribution to model the resulting tsunami (Okada,

1985), while for dynamic models the slip distribution is not known before hand, rather,

it is a calculated result of the model. Dynamic models can validate existing dislocation

models by using realistic friction parameterizations and fault geometry to match the slip

distribution of the dislocation model and to analyze the resulting tsunami in time. Although

dynamic modeling cannot replace the utility of standard dislocation modeling, it can be a

useful complement.

Numerical and experimental models show that dip-slip faults exhibit normal stress

fluctuations from seismic wave reflections off the free surface (Brune, 1996; Nielsen, 1998;

Oglesby et al., 1998; Oglesby and Archuleta, 2000; Oglesby et al., 2000). For non-vertical

dip-slip faults, the free surface allows seismic waves to reflect back and hit the fault again,

altering the stress field on the fault near the free surface. Oglesby et al. (1998) show that

as rupture approaches the free surface along a thrust/reverse fault, there is an increase in

normal stress ahead of the crack tip and a decrease in normal stress behind the crack tip;

this effect leads to amplified fault motion near the surface (relative to a normal or strike-slip

fault rupture). Furthermore, when rupture travels updip along a dip-slip fault and reaches

the free surface, it produces a breakout phase (a slip pulse traveling back downdip) and a

strong Rayleigh wave traveling along the surface (Burridge and Halliday, 1971; Oglesby et
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al., 1998), with reverse/thrust faults having stronger breakout phases than normal or strike-

slip faults. The particle displacement is also greatly enhanced on the hanging wall relative

to the footwall. In agreement with numerical models, Brune’s (1996) laboratory thrust

foam block models also produce these effects. Enhanced slip near the trench is capable of

generating larger amplitude tsunamis than equivalent slip at depth (Geist, 1998; Geist and

Bilek, 2001; Geist, 2002).

In the first part of this work, we use the dynamic finite element code FaultMod

(Barall, 2009) to show that simple slip-weakening friction (e.g., Ida, 1972) can serve as a

very accurate proxy for rate-strengthening friction as derived from the rate-state framework

(Dieterich, 1978, 1979; Ruina, 1980, 1983; Linker and Dieterich, 1992). With this approach

to friction thus validated, we then use the dynamic finite element code EQDyna (Duan

and Oglesby, 2006) to model 3-D ruptures, using time-weakening friction (Andrews, 2004),

along a megathrust approximating a portion of the Alaskan-Aleutian subduction zone. We

parameterize time-weakening friction as a proxy for rate-strengthening friction. In order

to model megathrust faults more realistically, it is important to simulate unstable and

stable sliding zones (e.g., outer boundaries of seismogenic zones); such models typically use

a rate- and state-dependent (RS) friction parameterization (e.g., Hyndman et al., 1997;

Scholz, 1998) to capture the physics of slip under varying degrees of frictional stability. In

particular, an increase in the steady-state friction coefficient with slip rate can characterize

the stable sliding zones that border the seismogenic zones.

The general form of RS friction is (Dieterich, 1978, 1979; Ruina, 1980, 1983):

τ =

[
µ0 + a ln

(
V

V0

)
+ b ln

(
θ

θ0

)]
σeff (2.1)
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where τ is the shear stress, µ0 represents a constant reference value for the coefficient of

friction; a and b are constitutive parameters estimated from laboratory experiments; V0

and θ0 are reference values for slip rate and the state of the sliding surface, respectively,

such that when V = V0 and θ = θ0 the friction coefficient is µ0; θ abstractly represents

the average age of contacts at some sliding velocity; and σeff is the effective normal stress.

Within the RS formulation, a positive rate-strengthening parameter (a − b), where a and

b are experimentally determined (Dieterich, 1978, 1979) through observed stress drop, in-

dicates velocity strengthening or stable slip, and a negative parameter indicates velocity

weakening or the potential for unstable slip. For reverse/thrust faults it has been suggested

that such rate-strengthening zones can simulate weak zones in the inner margin of the

trenches, possibly characterized by large amounts of sedimentation. Sliding experiments on

ultrafine-grained quartz (Chester and Higgs, 1992) suggest that rate-weakening behavior

occurs between 100o and 300o C under wet conditions, while higher temperatures lead to a

rate-strengthening parameter (a−b) of 0.03. Experiments on granite (Blanpied et al., 1998)

found rate-weakening at lower slip speeds (e.g., 1 µm
s ) with a rate-strengthening parameter

of approximately 0.004 and rate-strengthening at higher slip speeds (e.g., 1000 µm
s ) with a

rate-strengthening parameter of approximately 0.01.

Real faults likely have heterogeneous stress regimes in addition to distributed fric-

tionally stable and unstable sliding zones; these features can lead to complex stress interac-

tions during rupture. In order to reproduce accurate slip distributions from real earthquakes,

dynamic modeling studies incorporate heterogeneous prestress distributions (e.g., Olsen et

al., 1997; Peyrat et al., 2001; Guatteri et al., 2003; Olsen et al., 2009). However, the result-
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ing total slip distributions typically are much smoother than prestress distributions, due

to stress interactions from large portions of the fault slipping simultaneously. Beroza and

Mikumo (1996) suggest that slip duration for a point on a fault can decrease in cases of

high prestress heterogeneity due to a self-healing mechanism. Thus, modeling earthquakes

with heterogeneous prestress should result in both heterogeneous rupture propagation (i.e.,

highly variable rupture speed) and heterogeneous slip distributions.

Tsunami generation and propagation are influenced by the slip distribution, ge-

ometry, and material properties along the tsunami-generating fault (Geist, 1998; Geist

and Dmowska, 1999; Geist and Bilek, 2001; Geist, 2002). These studies indicate that slip

distribution near the trench most significantly affects tsunami generation, amplitude and

local runup, versus slip distribution further downdip. Geist and Dmowska (1999) show

that dip-directed slip variations affect the maximum amplitude and steepness of the local

tsunami, whereas along-strike slip variations result in strike-parallel amplitude changes in

the tsunami that are conserved during local propagation, altering the beaming pattern of

the tsunami. Geist and Bilek (2001) point out that estimates of initial tsunami size depend

on shear modulus estimates with depth. They analyzed 360 circum-Pacific subduction zone

earthquakes and found that in order to match observed source time functions, a relative

reduction in shear modulus as well as an increase in slip near the trench is needed.

Additionally, megathrust earthquakes can incorporate complex slip distributions

on multiple fault segments. Thrust events involving rupture of a splay fault can greatly affect

the distribution of seafloor deformation and the resultant tsunami (Cummins and Kaneda,

2000). DeDontney and Rice (2012) suggest that the 2004 Indian Ocean tsunami may have
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resulted from two major areas of uplift, the main thrust and a splay fault, and further

note that splay faults with steeper dip angles require less slip to produce the same vertical

seafloor deformation as the main thrust fault. Whether or not a rupture can propagate onto

a splay fault can depend on the dynamics of the earthquake (Wendt et al., 2009). Wendt

at al. (2009) dynamically modeled the time-dependent earthquake and tsunami generation

process, on a large thrust fault with a connected, steeper splay fault. They show that if a

barrier is introduced on the main thrust fault, rupture can propagate onto the smaller splay

fault and produce larger vertical seafloor deformation and correspondingly larger (local)

maximum tsunami wave heights.

2.3 Method Part 1: Friction Parameterizations

In this study we simulate zones of weak fault coupling for an updip portion and

for an along-strike portion of the Alaska-Aleutian megathrust (Figure 2.2). Although the

primary finite element method (FEM) code EQDyna (Duan and Oglesby, 2006) used in

this study can model 3-D, shallow dipping, megathrust ruptures, it does not incorporate

rate-state friction. Thus, in order to approximate rate-strengthening frictional properties

from rate-state friction using a simple slip-weakening-type friction formulation (e.g., time-

weakening friction, Andrews, 2004), we test three different friction laws using a secondary

2-D FEM code FaultMod (Barall, 2009) that does incorporate rate-state friction: linear

slip-weakening (SW) friction and two forms of rate- and state-dependent friction: ageing

law (RS-AL), and slip law (RS-SL). We use results from the secondary code FaultMod to

model mode II (slip parallel to rupture propagation) dynamic rupture, with a frictional in-
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terface, along a planar fault in a half space (Figure 2.1, top). Generally, finite element codes

divide a given continuum of mass (e.g., the Earth’s surface) into a number of elements that

can then be used to run computations on applied forces, assuming elasticity and a frictional

parameterization. FaultMod has been validated in SCEC/USGS rupture benchmark prob-

lems (Barall, 2009; Harris et al., 2009; Harris et al., 2011). The code incorporates artificial

viscous damping (Dalguer and Day, 2007) as well as algorithmic damping to help damp

spurious oscillations, and energy-absorbing boundary conditions along the mesh edges to

avoid artificial reflections from the model boundaries.
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Figure 2.1: (top) We model a frictional-strengthening zone in the middle of a homogeneous,
planar, 2-D fault in a whole space using slip-weakening (SW), rate-state ageing law (RS-AL),
and rate-state slip law (RS-SL) friction parameterizations in finite element code FaultMod.
The red star denotes the nucleation zone (1.5 km radius). We increase the size of the
strengthening zone, for each friction formulation, until rupture cannot tunnel through the
entire strengthening zone. (bottom) SW (green) and RS-AL (blue) models tunnel through
similar maximum-sized strengthening zones with equivalent slip-weakening distances (solid
bars), while SW (green), RS-AL (blue), and RS-SL (red) models tunnel through similar
maximum-sized strengthening zones with equivalent fracture energy (dashed bars). For our
models, the condition for strengthening using slip-weakening friction is eq. 2.8.

The criterion for linear slip-weakening friction is as follows (Ida, 1972):

µ =


µk−µs
d0

u+ µs, if u < d0

µk, if u ≥ d0

(2.2)

where u is the cumulative slip, and where the friction coefficient µ drops from a static value

to a kinetic value over a slip-weakening distance d0.

Following Lapusta et al. (2000), we use a modified form of the bracketed term in
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eq. 2.1 that does not become singular for very small slip velocities:

µ = a arcsinh

[
V

2V0
e

(
µ0+ψ
a

)]
≈ µ0 + a ln

(
V

V0

)
+ ψ. (2.3)

This form of the RS law closely approximates eq. 2.1 for slip velocities of seismological

interest. Note that the right hand side of eq. 2.3 has the form of the effective friction

coefficient in eq. 2.1 with ψ = bln
(
θ
θ0

)
, or conversely, θ = θ0e

(ψb ). Conceptually, ψ

represents the strength of contacts. For the RS-AL, the state variable evolves according to

the equation:

dθ

dt
=
−1

θss
(θ − θss) . (2.4)

In the RS-SL, the state variable evolves according to the equation

dψ

dt
=
−V
L

(ψ − ψss) . (2.5)

Both the RS-AL (eq. 2.4) and the RS-SL (eq. 2.5) reduce to the standard formula for

steady-state sliding:

ψss = −b ln

(
V

V0

)
. (2.6)

Rupture is constrained to take place on a 40 km fault (Figure 2.1, top). We add a frictional-

strengthening zone to the center of the fault. For the rate-state simulations this is a rate-

strengthening zone governed by the steady state equation

dµss
d lnV

= a− b (2.7)

such that when constitutive parameter b is larger than constitutive parameter a, the steady

state friction value decreases as velocity increases, and thus represents a velocity-weakening

zone. However, when constitutive parameter b is smaller than constitutive parameter a,
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the steady state friction value increases with increasing velocity, and represents a velocity-

strengthening zone. Dieterich (1978; 1979) experimentally determined a and b values to be

on the order of 0.01; we use values of 0.008 and 0.012 for parameters a and b, respectively,

to simulate rate-weakening. We use values of 0.016 and 0.012 for parameters a and b,

respectively, to represent a region of rate-strengthening. The length of strengthening zone

is variable and allows us to determine the maximum strengthening zone length rupture can

tunnel through for each of the three friction laws. We find that the friction coefficients

in linear slip-weakening (SW) friction can be tuned to match the rate-state models, so

that each friction law tunnels through a similar-sized strengthening zone. Specifically, by

analyzing stress-versus-slip weakening curves for the rate-state models within the rate-

strengthening zones and within the rate-weakening zones (black segments in Figure 2.1),

we tune µs and µk so that the three friction laws have similar stress-versus-slip weakening

curves. For equivalent slip-weakening distances, both SW friction and RS-AL models can

tunnel through similar-sized strengthening zone lengths (Figure 2.1, bottom) and result in

similar slip distributions. We note that the relatively nonlinear RS-SL tunnels though larger

strengthening zones, but that with equivalent fracture energy (Andrews, 1976, Guatteri and

Spudich, 2000) all three models tunnel through similar-sized zones and result in similar slip

distributions. The general equation required by SW friction to match RS formulations in

the strengthening zone is

τ0 < µkσ0 (2.8)

where τ0 is the initial shear stress, µk is the kinetic friction coefficient, and σ0 is the initial

normal stress. Thus, we have found a useful approximation for rate-strengthening friction
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using a simpler slip-weakening formulation. Note that this is not the same as slip-hardening,

which requires the kinetic friction coefficient to be larger than the static friction coefficient.

In this study, we simulate rate-strengthening behavior by altering µk within the strengthen-

ing zones. Under our configuration, shear stress will ultimately increase with slip, assuming

no normal stress change. However, dip-slip faults involve dynamic normal stress fluctua-

tions, including reductions that could result in a shear stress drop even in the presence of

rate-strengthening.

2.4 Method Part 2: Earthquake and Tsunami Models

In this study we use the 3-D finite element method (FEM) code EQDyna (Duan

and Oglesby, 2006) to model mode II dynamic rupture, with a frictional interface along a

megathrust intersecting the free surface (Figure 2.2, top), and the corresponding free surface

deformation. Rupture is constrained to take place only on the fault. The megathrust is 358

km along strike, 205.1 km downdip, and 35.6 km in depth, with a constant dip angle of 10o

(Kirby et al., 2013). EQDyna also has been validated in SCEC/USGS rupture benchmark

problems (Harris et al., 2009; Harris et al., 2011). The code incorporates artificial damping

(Duan and Day, 2007) to help reduce spurious oscillations. Additionally, we implement a

large enough buffer around the fault so that a P-wave cannot travel to the edge of the model

and back to the fault within the model duration, 200 s. We consider fault ruptures with

model and material properties given in tables 2.1 and 2.2.

We note that the nucleation zone (shown as a red star in Figure 2.3) used in all

models in this study has a radius of 16 km (as indicated by Table 2.1). The nucleation zone
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size is small relative the size of the modeled megathrust, and does not significantly affect the

overall slip distribution in our models; for example, there are no obvious asymmetric slip

patterns near or around the nucleation zone in Figure 2.6. Additionally, we implement a

finite element size of approximately 2 km along the modeled fault. Decreasing the element

size is not possible due to computational limitations. However, we have tested smaller

fault models (34 km along strike and 20 km downdip) – with the same homogeneous input

parameters used in this study – for grid-size dependent results. We found similar slip

distributions, slip rates, and rupture velocities for these earthquake models using 0.5 km,

1 km, 1.5 km, and 2 km element sizes. We therefore assume that a 2 km element size

is reasonable and appropriate in this study of a much larger modeled fault, although we

cannot directly test this. For simplicity we use a homogeneous material structure with

average mid-crustal material properties (e.g., Harris et al., 2009), although future models

will incorporate 3-D material structure heterogeneity. We use a time-weakening friction law

(Andrews, 2004; Duan and Day, 2008), in which the stress at a point drops from its static

to sliding frictional level over a characteristic time. This friction law produces behavior

similar to that of slip-weakening friction, with an effective slip-weakening distance d0 that

is proportional to the square root of rupture velocity multiplied by the distance rupture has

propagated:

d0 ∝
∆τ

G

√
Vruptt0L

k
(2.9)

where ∆τ is the stress drop, G is the shear modulus, Vrupt is the rupture velocity, t0 is the

time over which the friction coefficient drops from its static value to its kinetic value, L is
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Figure 2.2: (top) Cartoon fault geometry of the hanging wall using 3-D finite element code
EQDyna (Duan and Oglesby, 2006). We use a planar fault geometry with a constant dip
of 10o, an along-strike distance of 358 km, a depth of 35.6 km, and a downdip distance
of 205.1 km. The fault intersects the free surface. Each element along the fault surface is
approximately 2 km along strike and 2 km downdip. Additionally, we implement a buffer
zone around the fault to ensure waves do not reflect off the model boundary and return to
the fault. (bottom-right) Geographic region of interest with the section of the Aleutian-
Alaskan megathrust we are approximating (image from SAFRR Earthquake Source working
group).

the distance rupture has propagated, and with different values of k depending on the shape

of the stress-slip weakening curve. As recommended by Andrews (2004), we use a time-

weakening value t0 that is the amount of time it would take for an S-wave to traverse more

than three elements (we use 5 elements) along the fault interface. This parameterization

allows us to achieve accuracy and smoothness of the breakdown zone as the rupture front

increases in speed and amplitude away from the nucleation zone. As noted above, the

computer code EQDyna does not incorporate rate- and state-dependent friction, so we use

time-weakening friction with eq. 2.8 as a proxy for rate-strengthening-like zones.
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Table 2.1: Model and material properties for all simulations in this study.

Density 2670 kg/m3 
Shear Modulus 40.00 GPa 
Bulk Modulus 66.67 GPa 
S-wave speed 3.871 km/s 
P-wave speed 6.704 km/s 
Fault Area 73,426 km2 
Nucleation Depth 15.50 km 
Nucleation Radius 16.00 km 
Nucleation Speed 2.000 km/s 
Nucleation Location (along strike) 22.38 km 
Nucleation Location (downdip) -89.26 km 
Element Size (along fault) ≈2 km 
Time Step 0.01 s 
Distance Along-Strike 358.0 km 
Distance Downdip 205.1 km 
Dip Angle 10° 
to 2.600 s 
Hydrodynamic Grid Size 2 km 
Hydrodynamic Time Step 0.1 s 
!
!
!
!
!
!

In this study we use four different rupture models: a spatially-constant prestress

and frictional coefficient model (hereinafter referred to as the homogeneous model), two

models with frictional-strengthening zones, and a spatially-heterogeneous prestress model.

For frictional-strengthening zone models, we use eq. 2.8 with time-weakening friction to

simulate rate-strengthening-like zones on updip and along-strike portions of the megathrust

(Figure 2.3, see Table 2.2 for friction coefficients). Specifically, we implement frictional-

strengthening zones in either the western-most portion of the fault (100 km to 179 km

along strike) or the updip-most portion of the fault (0 km to −50 km downdip). As an

example of how time weakening in these models corresponds to either rate-weakening or
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Table 2.2: Initial shear stress τ0, initial normal stress σ0, the static friction coefficient µs,
the kinetic friction coefficient µk, and the strengthening friction coefficient µk (strength) (if
applicable) for all four models in this study.!

!
!
!
!

 τo [MPa]        σo [MPa] µ s µk µk 
(strength) 

Homogeneous 
Prestress/Friction 

3.172 11.06 0.5630 0.1333  

West Frictional-
strengthening 

3.172 11.06 0.5630 0.1333 0.3218 

Updip Frictional-
strengthening 

3.172 11.06 0.5630 0.1333 0.3218 

Heterogeneous Prestress 0 – 24.26 1.090 – 
84.60 

0.5630 0.1333  

rate-strengthening, Figure 2.4 shows stress-slip weakening curves for a point in a frictional-

weakening zone and a point in a frictional-strengthening zone for the western frictional-

strengthening zone model (locations marked in Figure 2.8). There is a clear stress drop

from the initial stress in the weakening zone, and a stress increase in the strengthening

zone. However, we note that a stress increase may not occur for all points in our frictional-

strengthening zone, since large dynamic reductions in normal stress can still result in a shear

stress drop during sliding. For the heterogeneous prestress model, we divide the fault into

64 subfault sections, each section with a different prestress. The objective of this model is

to qualitatively match the slip distribution used by the Earthquake Source working group

within the SAFRR Tsunami Scenario team (Kirby et al., 2013). Previous studies show

that scaling the prestress distribution in dynamic earthquake models is one way to match

observed slip distributions (e.g., Olsen et al., 1997; Olsen et al., 2009).

A dynamic finite element code produces not just a rupture pattern on a fault;

it also produces the full wave field and surface deformation. After dynamically modeling

earthquake rupture, we feed the resulting time-dependent free surface (i.e., seafloor) dis-
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Figure 2.3: We implement two models with frictional-strengthening zones in the (top)
western most portion and the (bottom) updip most portion of the fault. Note that the
point of view is from above the hanging wall, perpendicular to the fault surface. Stars
indicate the nucleation zone that is at the same location for all models. The strengthening
areas are 16, 203 km2 and 17, 900 km2 for the top and bottom models, respectively. See
Table 2.2 for frictional coefficients.

placements into a hydrodynamic code using a 2-D (i.e., waves propagate in two spatial di-

mensions) finite difference method to solve linear long wave equations (Shuto, 1991; Satake,

2002). In this way, we may model the generation of a tsunami from our dynamic earthquake

models. Specifically, time dependent 3-D seafloor deformation from our earthquake models

is used as a time-dependent boundary condition for our hydrodynamic models, assuming

that the water surface is displaced due to the combined effects from vertical and horizontal
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Figure 2.4: Shear stress-versus-slip weakening curves for a point in the weakening zone (red,
left) and a point in the strengthening zone (blue, right), using time-weakening friction to
model a 3-D megathrust earthquake within the Alaskan-Aleutian subduction zone. Point
locations are marked by red and blue stars in Figure 2.8 below (3rd panel down). Results
show a decrease in shear stress within the frictional-weakening zone, and an increase in
shear stress in the frictional-strengthening zone. Note that shear stress depends on both
friction coefficient and normal stress during sliding.

seafloor displacement (Tanioka and Satake, 1996). The leap-frog, finite difference method of

computing of tsunami propagation, described by Satake (2007), is used with the ETOPO1

digital elevation model (http://www.ngdc.noaa.gov/mgg/global/global.html). Incorpora-

tion of both dynamic codes allows us to simulate tsunami formation and local propagation

in time. Hydrodynamic model parameters are given in Table 2.1.

2.5 Results

In this study we focus on rupture dynamics, fault slip distribution, free surface

deformation, and the resulting tsunami for four different models: a homogeneous set of pre-

stress and frictional conditions, a western frictional-strengthening zone, an updip frictional-

strengthening zone, and a heterogeneous prestress condition (Figures 2.3 through 2.17).

Both the homogeneous and heterogeneous prestress models match the seismic moment of
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the dislocation model determined by the Earthquake Source working group within the

SAFRR Tsunami Scenario team (Kirby et al., 2013). For each model, differences in the

rupture dynamics ultimately result in different tsunami formations, local maximum water

wave amplitudes, and tsunami beaming patterns. We note two key parameters: the maxi-

mum vertical free surface displacement Zmax and the average fault slip <S> for each model

(Table 2.3) that affect maximum tsunami height and the initial tsunami height distribution.

Table 2.3: Maximum vertical free surface displacements Zmax and average fault slip <S>
for all four models in this study.!

! Zmax [m] <S> [m] 

Homogeneous 
Prestress/Friction 

5.77 18.6 

West Frictional-strengthening 5.74 14.6 

Updip Frictional-
strengthening 

2.86 10.4 

Heterogeneous Prestress 7.04 18.6 

2.5.1 Homogeneous Stress and Friction

Figure 2.5 shows slip-rate snapshots of the homogeneous earthquake rupture at 27

s, 52 s, and 70 s into the simulation. The fault experiences large slip rate pulses near the free

surface due to dynamic unclamping of the fault and geometric asymmetry of the hanging

wall/footwall (Brune, 1996; Nielsen, 1998; Oglesby et al., 1998; Oglesby and Archuleta,

2000; Oglesby et al., 2000), resulting in a strong breakout phase and the generation of an

oceanic Rayleigh wave. Rupture proceeds over the entire fault zone. Fault slip (top) and

total vertical free surface deformation (bottom) for the homogeneous model are shown in
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Figure 2.6. The largest amount of slip is near the surface, corresponding to large vertical

displacement on the surface near the fault trace. Average fault slip is 18.6 m, and maximum

vertical surface displacement is 5.77 m. Figure 2.7 displays local peak tsunami amplitude

resulting from the homogeneous earthquake rupture model, in the geographic region of

interest. Water height corresponds well with free surface deformation, and the largest

tsunami amplitudes are located closest to the trench. In the model, the Shumagin Islands,

Alaska Peninsula, and Kodiak Island are particularly hit with large wave height from the

local tsunami. The tsunami amplitude has a strong southward beaming effect, indicating

potential damage to coastlines in Hawaii and the western U.S. as well as other coastlines

around the Pacific rim in the simulation.
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Figure 2.5: Snapshots of slip rate (i.e., rupture propagation) in m
s for a homogeneous

(spatially-constant prestress, dip angle, and frictional coefficients) model. Rupture shows
large slip rate pulses nearest the free surface. Rupture proceeds over the entire fault zone
(entire region shown), beginning at the nucleation zone (indicated in Figure 2.3).
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Figure 2.6: Fault slip (top) and total vertical free surface deformation (bottom) for the
homogeneous model. The largest amount of slip is near the surface, corresponding to large
vertical displacement on the surface near the fault trace. Average fault slip is 18.6 m, and
maximum vertical surface displacement is 5.77 m.
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North

Figure 2.7: Peak tsunami amplitudes resulting from the homogeneous earthquake rupture
model in the geographic region of interest. The white line represents the Aleutian trench.
Water height corresponds well with free surface deformation (Figure 2.6, bottom). The
Shumagin Islands, Alaska Peninsula, and Kodiak Island are particularly bombarded with
large water height from the local tsunami. Additionally, the tsunami amplitude has a strong
southward beaming effect.

2.5.2 Western Frictional-Strengthening Zone Rupture

The above model assumes homogeneous frictional conditions along the entire ex-

tent of the fault. Realistically, however, faults are likely heterogeneous in frictional prop-

erties as well as in their initial stress conditions. GPS models show an unlocked (plate)

section that borders our study area to the west known as the Shumagin Gap (Freymueller

and Beavan, 1999; Freymueller et al., 2008). In an effort to incorporate a more realistic

frictional regime, we implement a frictional-strengthening zone in the western-most 79 km
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of the megathrust (Figure 2.3, top) as a proxy that characterizes the Shumagin creeping

section. Figure 2.8 shows slip-rate snapshots of rupture propagation for a model with a

western frictional-strengthening zone. This model shows large slip rate pulses nearest the

free surface like the homogeneous model, however, the strengthening zone diminishes the

slip rate pulse significantly relative to the homogeneous model. Note the difference in slip

rate between the two models at 70 s. Rupture proceeds over the entire fault, including

through the strengthening zone. The largest slip in the strengthening zone occurs near the

free surface, most likely due to dynamic unclamping and the geometric asymmetry near the

free surface. We note that the extent that rupture can penetrate a frictional-strengthening

zone depends on fault geometry, friction coefficients, initial stress regimes, and location of

the nucleation zone. While a strengthening zone in principle releases no seismic energy,

slip can still occur, and is driven by seismic energy released on other (weakening) parts

of the fault. Figure 2.9 illustrates fault slip (top) and total vertical free surface deforma-

tion (bottom) for the western frictional-strengthening zone model. Average fault slip is

decreased by 4 m (18.6 to 14.6 m), relative to the homogeneous model. Surface defor-

mation is substantially decreased in the region above the strengthening zone, relative to

the homogeneous model; however, the maximum vertical surface displacement is decreased

only marginally (from 5.77 to 5.74 m). The local peak modeled tsunami amplitudes result-

ing from the western frictional-strengthening zone model are shown in Figure 2.10. Water

height corresponds well with vertical free surface deformation, with the largest tsunami

amplitude distributed above the frictional-weakening zone. Converting a western portion of

the fault to a frictional-strengthening zone greatly reduces tsunami amplitude locally north
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of the strengthening zone in the Shumagin Islands region of the heterogeneous model, and

redirects the beaming pattern of the basin-propagating (far-field) tsunami slightly in a coun-

terclockwise direction, but with similar maximum amplitude, relative to the homogeneous

model.

Figure 2.8: Snapshots of slip rate (i.e., rupture propagation) in m
s for a model with a

frictional-strengthening zone from 100 to 179 km along-strike and over the entire downdip
extent of the model (see Figure 2.3, top), motivated by GPS models showing an unlocked
(plate) section that borders our study area to the west (Freymueller and Beavan, 1999).
Rupture shows large slip rate pulses nearest the free surface, however, the strengthening
zone diminishes the slip rate pulse substantially, relative to the homogeneous model. Note
the difference in slip rate between this model and the homogeneous model at 70 s. Rupture
proceeds over the entire strengthening zone. The red and blue stars correspond to the
sampling points for the stress weakening plots in Figure 2.4.
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Figure 2.9: Fault slip (top) and total vertical free surface deformation (bottom) for the
western frictional-strengthening zone model. Average fault slip is decreased by 4 m (18.6
to 14.6 m) in the strengthening model, relative to the homogeneous model. Surface defor-
mation is substantially decreased in the region above the strengthening zone, relative to
the homogeneous model; however, the maximum vertical surface displacement is decreased
marginally (5.77 to 5.74 m).
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Figure 2.10: Peak tsunami amplitudes resulting from the western frictional-strengthening
zone model. Water height corresponds well with free surface deformation (Figure 2.9,
bottom). Converting a western portion of the fault to a frictional strengthening zone greatly
reduces tsunami amplitudes locally above the strengthening zone in the Shumagin Islands
region and alters the beaming pattern of the basin-propagating (far-field) tsunami to a more
counterclockwise direction, relative to the homogeneous model. Also, peak amplitudes are
reduced near the coasts of the Shumagin Islands.

2.5.3 Updip Frictional-Strengthening Zone Rupture

It has been suggested that subduction zones can have frictional-strengthening

regimes close to the trench due to material and frictional properties (e.g., Kanamori, 1972;

Hyndman et al., 1997). As a first-order effort to model such a frictional regime, we imple-

ment a frictional-strengthening zone in the updip-most 50 km of the megathrust (Figure 2.3,

bottom). Figure 2.11 shows slip-rate snapshots for this model. In contrast to the models

discussed above, the fault experiences its largest slip rate pulses at roughly 100 km downdip
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from the free surface, and the slip rate pulse is dramatically reduced over the entire fault

relative to the homogeneous model. Note the difference in slip rate between the homoge-

neous and updip frictional-strengthening models at 52 and 70 s. Rupture proceeds over

the entire fault, including through the strengthening zone. Within the strengthening zone,

the largest slip rates occur along the free surface. Figure 2.12 displays fault slip (top) and

total vertical free surface deformation (bottom) for the updip frictional-strengthening zone

model. Average fault slip is decreased by 8.2 m (18.6 to 10.4 m) in the updip strengthening

model, relative to the homogeneous model. Surface deformation is decreased broadly along

the free surface, relative to the homogeneous model, and the maximum vertical surface

displacement is decreased (5.77 to 2.86 m). Adding an updip frictional-strengthening zone

reduces slip across the entire fault more than a western strengthening zone with similar

area and the same frictional coefficients. Local peak tsunami amplitudes resulting from the

updip frictional-strengthening zone model are shown in Figure 2.13. Water height corre-

sponds well with vertical free surface deformation, showing a broad decrease in the local

maximum tsunami height, compared to the homogeneous model. Adding a strengthening

zone to the updip portion of the fault greatly reduces tsunami amplitudes locally above

the strengthening zone near the trench, and reduces the maximum amplitude of the south-

ward beam, but does not change the beam direction of the far-field tsunami, relative to the

homogeneous rupture.
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Figure 2.11: Snapshots of slip rate (i.e., rupture propagation) in m
s for a model with a

frictional-strengthening zone from 0 to −50 km downdip and across the entire along-strike
extent of the model (see Figure 2.3, bottom). Rupture shows largest slip rate pulses around
100 km downdip from the surface, and the slip rate pulse is dramatically reduced over the
entire fault, relative to the homogeneous model. Note the difference in slip rate between
this and the homogeneous models at 52 and 70 s. Rupture proceeds through the entire
strengthening zone.

94



Figure 2.12: Fault slip (top) and total vertical free surface deformation (bottom) for the
updip frictional-strengthening zone model. Average fault slip is decreased by 8.2 m (18.6
to 10.4 m) in the strengthening model, relative to the homogeneous model. Surface defor-
mation is decreased broadly along the free surface, relative to the homogeneous model, and
the maximum vertical surface displacement is significantly decreased (5.77 to 2.86 m). Note
that adding an updip strengthening zone reduces slip across the entire fault – much more
so than a western strengthening zone with similar area.
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Figure 2.13: Peak tsunami amplitude resulting from the updip frictional-strengthening zone
model. Water height corresponds well with free surface deformation (Figure 2.12, bottom).
Adding a strengthening zone to the updip portion of the fault greatly reduces tsunami
amplitude locally above the strengthening zone as well as broadly above the free surface,
relative to the homogeneous model, and reduces the amplitude of the far-field beaming
pattern. In addition, peak amplitudes are substantially reduced near the coasts of the
Shumagin Islands, the Alaska Peninsula, and Kodiak Island.

2.5.4 Heterogeneous Prestress Rupture

The above models assume homogeneous prestress conditions along the entire extent

of the fault. However, observational data imply that earthquakes typically have strongly

heterogeneous slip distributions that further imply heterogeneous prestress (e.g., Olsen et

al., 1997). Indeed the SAFRR tsunami models use a heterogeneous slip model motivated

by the 2011 Tohoku-Oki event, and supported by seismic, geodetic, and geologic data along

the Alaskan-Aleutian subduction zone (Kirby et al., 2013). Figure 2.14 shows slip-rate
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snapshots of rupture propagation for a heterogeneous prestress model designed to quali-

tatively match the SAFRR dislocation model. As in the case of the homogeneous stress

distribution, the fault experiences large slip-rate pulses nearest the free surface. However,

due to some high-stress areas down-dip, it also experiences high slip rate in other locations.

Additionally, the main slip pulse is spatially heterogeneous; it does not have roughly ellipti-

cal symmetry, reflecting a rupture speed that varies across the fault. Note the difference in

slip rate between the homogeneous model and heterogeneous prestress model for each snap-

shot. Rupture proceeds over the entire fault zone for the heterogeneous prestress model.

Figure 2.15 shows shear prestress (top) and normal prestress (bottom) distributions. The

limiting values are shown in Table 2.2. Figure 2.16 displays the slip distribution used in the

SAFRR Tsunami Scenario (Kirby et al., 2013) (top), as well as fault slip (middle) and total

vertical free surface deformation (bottom) for the dynamic heterogeneous prestress model.

Average fault slip is the same as the homogeneous model (18.6 m), and the maximum ver-

tical surface displacement is increased (5.77 to 7.04 m), relative to the homogeneous model.

The heterogeneous prestress leads to a more heterogeneous slip distribution and vertical

free surface deformation, compared with the homogeneous model. For comparison, the top

panel shows the slip distribution model from the Earthquake Source working group within

the SAFRR Tsunami Scenario (Kirby et al., 2013). The slip distribution from the dynamic

model (middle panel) and the top panel are qualitatively similar, indicating that the slip

distribution used by Kirby et al. (2013) is self-consistent from a physical standpoint: it is

possible to obtain such a slip distribution using relatively rigorous physics from a hetero-

geneous prestress pattern. The total slip distribution is spatially much smoother (Figure
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2.16, middle) than our initial stress configurations. We note that tuning initial prestress to

get a certain slip distribution is an iterative process, and that further tuning would likely

result in a more closely matched slip distribution to the top panel in Figure 2.16, but with

gradually diminishing returns. Figure 2.17 shows local peak tsunami amplitudes resulting

from the heterogeneous prestress model. Water height corresponds well with vertical free

surface deformation, showing peak tsunami amplitudes above regions of the fault nearest the

trench with maximum slip. Although the peak amplitudes immediately above the hanging

wall are spatially more varied than the homogeneous model, the overall beaming patterns

and maximum amplitudes along the local coasts are similar.
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Figure 2.14: Snapshots of slip rate (i.e., rupture propagation) in m
s for a heterogeneous

prestress model. The fault experiences large slip rate pulses nearest the free surface, and
for some areas downdip (in contrast to the homogeneous model). Note the difference in slip
rate between the homogeneous model and heterogeneous prestress model for each snapshot.
Rupture proceeds over the entire fault zone.
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Figure 2.15: Initial shear stress (top) and normal stress (bottom) for the heterogeneous pre-
stress model. The limiting values of stress are shown in Table 2.2. The total slip distribution
is spatially much smoother (Figure 2.16, middle) than our initial stress configuration.
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Figure 2.16: The slip distribution used in the SAFRR Tsunami Scenario (top). Fault slip
(top) and total vertical free surface deformation (bottom) for the dynamic heterogeneous
prestress model. Average fault slip is the same as the homogeneous model (18.6 m), and
the maximum vertical surface displacement is increased (5.77 to 7.04 m) relative to the
homogeneous model. The heterogeneous prestress leads to a more heterogeneous slip distri-
bution and vertical free surface deformation, compared with the homogeneous model. The
dynamic slip distribution (middle panel) qualitatively resembles the top panel.
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Figure 2.17: Peak tsunami amplitudes resulting from the heterogeneous prestress model.
Although the peak amplitudes immediately above the hanging wall are spatially more vari-
able than the homogeneous model, the overall beaming patterns and amplitudes along the
local coasts are similar.

2.6 Discussion

The four earthquake rupture models in this study generate four different tsunami

models along a portion of the Alaskan-Aleutian subduction zone. How a tsunami is locally

generated in this region affects inundation and runup on local coasts (i.e., Alaska Peninsula)

and could affect propagation across the Pacific Ocean onto coastlines along the Pacific Rim.

For the homogeneous model, there are large slip pulses near the free surface (Figure 2.5)

that result from the dynamic unclamping of the fault and the geometric asymmetry of the

hanging wall/footwall. In turn, this effect results in large slip near the free surface, and
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therefore large vertical free surface deformation near the trench (Figure 2.6). The conse-

quent modeled tsunami most significantly propagates northward/southward into/from the

Alaska Peninsula (Figure 2.7). A completely homogeneous pre-stress and frictional param-

eter earthquake rupture model that produces the largest slip near the trench has important

implications for the resulting tsunami, since sea floor displacement is most sensitive to fault

slip near the trench (Okada, 1985). Large amplitude tsunamis can be generated by slip

distributions localized near the trench.

Including a frictional-strengthening segment (emulating rate-strengthening behav-

ior) along the Shumagin sector in the model significantly affects the slip distribution and

initial tsunami wave field. The rupture propagates through the entire strengthening zone,

but with greatly reduced slip rate, and this effect reduces the overall average slip on the

fault commensurately (Figures 2.8 and 2.9). The surface deformation is consequently scaled

downward in this zone of lower slip. Importantly, the beaming pattern of the far-field

tsunami is shifted for the western strengthening rupture, relative to the homogeneous rup-

ture (Figure 2.10). Therefore, far-field tsunami propagation can shift, potentially changing

inundation and runup on coastlines along the Pacific Rim. It is interesting to note that

the computationally simulated rupture can penetrate a strengthening zone that is as large

as 80 km wide along-strike. The dynamic reduction of normal stress due to the dip-slip

geometry may facilitate this rupture propagation near the free surface. In other words,

in our models time-dependent normal stress induced by the free surface may allow thrust

rupture to more easily penetrate a rate-strengthening region near the surface. This result

raises the prospect that rupture might be able to propagate through such a zone into an-
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other frictional weakening zone in future earthquakes, generating a larger earthquake and

tsunami.

Including a frictional-strengthening segment updip near the trench also signifi-

cantly affects the slip distribution and initial tsunami wave field (Figures 2.11 through

2.13). Adding a strengthening zone updip more significantly affects average fault slip than

a strengthening zone along strike. Without a frictional-strengthening zone updip (e.g., the

homogeneous model), rupture propagates energetically updip, sending radiation to the en-

tire fault, promoting slip. Because it prevents the strong seismic radiation from the most

updip section of a thrust fault during rupture, there are broad effects on slip and slip rate

for the rest of the fault from a frictional-strengthening zone updip. As a result, we see a

broad decrease in maximum tsunami amplitude, but with a similar beaming pattern when

compared to the homogeneous rupture. Slip distributions near the trench are known to be

important for tsunami generation (Geist, 1998; Geist and Dmowska, 1999; Geist and Bilek,

2001; Geist, 2002). Our results show slowed rupture propagation in frictional-strengthening

zones with a lower peak slip rate, but these zones still have significant slip in those regions.

This result hints at a possible mechanism for tsunami earthquakes (Kanamori, 1972).

We note that adding a frictional-strengthening zone along strike or updip does

not preclude the ruptures from having static stress drops. Static stress drop depends on

the rupture dynamics. It is possible to obtain a stress drop in a frictional-strengthening

zone due to a large free-surface-induced reduction in normal stress (Ryan, 2012; Kozdon

and Dunham, 2013), since the sliding frictional resistance is equal to the friction coefficient

multiplied by the normal stress.

104



A heterogeneous prestress model significantly affects the slip distribution and ini-

tial tsunami wave field, with the largest peak tsunami amplitudes above portions of the fault

with the largest slip (Figure 2.16). Although average slip is the same between the homo-

geneous rupture and the heterogeneous prestress rupture, the latter has a larger maximum

vertical free surface displacement because slip is more localized. Nonetheless, the beaming

pattern of the far-field tsunami is similar for both models (Figures 2.7 and 2.17). We match

the seismic moment in the heterogeneous prestress model to the source model used by Kirby

et al. (2013) through a trial and error process. We also qualitatively match the slip distri-

bution of the dynamic model to the source model (Figure 2.16). The total slip distribution

is spatially much smoother than the initial stress configurations (Figures 2.15 and 2.16),

in agreement with previous studies (Olsen et al., 1997; Olsen et al., 2009). Considering all

four rupture models in this study as well as previously studied and observed megathrust

events in other parts of the world (e.g., Ammon et al., 2011), the SAFRR Tsunami Scenario

dislocation model appears to be self-consistent as a tsunami source, even when modeled as

a complex rupture that involves frictional-strengthening updip and/or along strike as well

as a heterogeneous prestress. Adding more precise source parameters in 3-D (e.g., complex

fault geometry, material properties, and stochastic stress fields) would further this study

and help produce more realistic modeled seafloor deformation.

We use a simple planar fault geometry in this study; however, previous work by

Oglesby and Archuleta (2003) suggests that fault slip and low-frequency ground motion

are relatively unchanged for a nonplanar thrust fault with an abrupt change in dip when

compared to a planar fault with an equivalent dip near the free surface. This result suggests
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that the shallow dipping rupture process is most important in producing ground motion.

Combined with the strong dependence of tsunami generation on slip near the trench (an

area that generally has the shallowest dip for a subduction zone), we feel comfortable (at

least to first order) using a planar fault with a small dip in this study to study effects on

local tsunami generation. However, to better model the dynamics of the rupture process

as well as the resultant tsunami, more accurate fault geometry should be used in future

modeling efforts.

Using dynamic earthquake rupture models coupled, in time, with hydrodynamic

models can be a very useful tool. We show that rupture dynamics on a megathrust can

play an important role in tsunami generation and local propagation. It is true that tsunami

formation is relatively insensitive to the temporal evolution of rupture. In other words,

taking the final seafloor deformation as an initial condition for tsunami generation would

produce a tsunami not tremendously different from one produced by the time-dependent

seafloor deformation. However, this does not mean that the tsunami generation is insensitive

to the spatiotemporal details of the rupture process. Indeed, the rupture path and overall

slip distribution (which are first-order determinants of the tsunami) crucially depend on

dynamic stress interactions (e.g., Harris and Day, 1993), and thus on these spatiotemporal

effects. For thrust faults in particular, it very instructive to analyze results from dynamic

models, since time-dependent normal stress fluctuations that arise from the free surface

affect slip rates and slip distribution. Additionally, rupture propagation through stable-

sliding zones can be accurately modeled dynamically, and therefore may be used in future

endeavors to simulate tsunami earthquakes.
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Chapter 3

Dynamic Models of an Earthquake

and Tsunami Offshore Ventura,

California

3.1 Abstract

The Ventura basin in southern California includes coastal dip-slip faults that can

likely produce earthquakes of magnitude 7 or greater, and significant local tsunamis (Rock-

well, 2011; Hubbard et al., 2014). We construct a 3-D dynamic rupture model of an earth-

quake on the Pitas Point and Lower Red Mountain faults to model low-frequency ground

motion and the resulting tsunami, with a goal of elucidating the seismic and tsunami

hazard in this area. Our model results in an average stress drop of 6 MPa, an average

fault slip of 7.4 m, and a Mw of 7.7, consistent with regional paleoseismic data (Rock-
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well, 2011). Our corresponding tsunami model uses final seafloor displacement from the

rupture model as initial conditions to compute local propagation and inundation, resulting

in large peak tsunami amplitudes northward and eastward due to site and path effects.

Modeled inundation in the Ventura area is significantly greater than that indicated by state

of California’s current reference inundation line (http://www.conservation.ca.gov/cgs/

geologic_hazards/tsunami/inundation_maps/).

3.2 Introduction

Earthquakes are among the chief sources of tsunamis – long ocean waves sustained

by gravity that increase in amplitude as water depth decreases. Therefore, such waves are

particularly hazardous along populated coastlines near offshore faults that produce vertical

displacement of the seafloor and water column. Although the hazard from earthquake-

generated tsunamis offshore southern California has received relatively little attention, there

have been reports of several significant local tsunamis in the past 200 years (Townley and

Allen, 1939; Ulrich, 1942; Lander et al., 1993; Borrero et al., 2001). Lander et al. (1993)

explain that both locally generated tsunamis (e.g., tsunamis generated from the 1812 and

1854 Santa Barbara earthquakes and possible submarine landslides) as well as far-field

generated tsunamis (e.g., the tsunami generated from the 1946 Aleutian earthquake) have

impacted the California coast. In particular, the 1812 Santa Barbara earthquake (that likely

occurred in the Santa Barbara Channel), estimated to have a local magnitude (ML) of 7

(e.g., Hamilton et al., 1969), created a tsunami throughout the region that was reported

as a “huge” sea wave (Townley and Allen, 1939), while the earthquake ground motion
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significantly damaged Mission San Buenaventura in Ventura (Townley and Allen, 1939).

Due to propagation speeds of 700 km
hour , tsunamis generated by distant sources

allow for early coastal warning on the order of hours. However, tsunamis generated locally

by faulting and landslides offshore California can impact the California coastline in a matter

of minutes, making it imperative to understand the likelihood of such events. Ross et al.

(2004) examined seismic and secondary hazards (e.g., tsunamis and liquefaction) along

the coast of Ventura County, California, suggesting that the area is at risk of damaging

tsunamis from both the far field (e.g., offshore Alaska) and the near field (e.g., Santa

Barbara Channel). Wilson et al. (2014) conducted a California statewide survey to examine

possible evidence from tsunami impacts along the coastline, including 20 coastal marshlands.

Potential tsunami deposits were assessed at the Carpinteria Salt Marsh Reserve in Santa

Barbara County. In particular, at this location they found sand layers consistent with

tsunami deposition. However, observed microfossils in those same sand layers did not

have a marine origin. Therefore, current evidence of prehistoric tsunamis impacting the

Carpinteria Salt Marsh Reserve is somewhat ambiguous.

The ground motion from submarine earthquakes can generate tsunamis, and stud-

ies have shown that the ground motion distribution depends quite strongly on the geometric

pattern of ruptured faults (e.g., Nason, 1973; McGarr, 1984; Cocco and Rovelli, 1989; Abra-

hamson and Somerville, 1996; Oglesby et al., 1998). Therefore, fault geometry can have

first-order effects on tsunami generation (Wendt et al., 2009). The distribution of slip on a

fault can have important effects on the generated tsunami as well (Geist, 1998, Geist and

Dmowska, 1999; Geist 2002). Unfortunately, the rupture path and slip pattern of an earth-
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quake on a complex fault system are not easy to estimate a priori. Dynamic earthquake

rupture models are a useful way of providing realistic earthquake scenarios on geometrically

complex faults; such models are physics-based and do not assume a fault slip distribution or

ground motion a priori; rather, slip distribution and ground motion are calculated results

of the models based on estimates of fault stress, geometry, and material properties. The

use of such methods in tsunami modeling is quite new; very few studies (e.g., Wendt et

al., 2009) have used dynamic rupture modeling to estimate tsunami generation from ge-

ometrically complex faults. Furthermore, there have been few tsunami modeling studies

offshore Ventura, California (see Figure 3.1). Borrero et al. (2001) perform hydrodynamic
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analysis from a locally generated tsunami offshore southern California on the Channel Is-

lands Thrust system, a north-dipping fault that is located approximately 50 km south of

Santa Barbara. Assuming a homogeneous slip distribution on a planar fault, they find re-

gional tsunamis with about 2 m of runup from a moment magnitude (Mw) 7.3 earthquake

source, and up to 15 m of local runup from submarine landslides that could be triggered

from nearby earthquakes. However, they do not incorporate any geometrical complexity or

spatially-heterogeneous slip in their earthquake models, nor do they investigate potential

tsunamis from other offshore reverse faults in the region, including the Red Mountain and

Pitas Point faults, which are closer to some populated regions. The Pitas Point and Red

Mountain faults are north-dipping and generally trend east-west (e.g., Fisher et al., 2009).

Hubbard et al. (2014) used several available datasets, including industry seismic profiles

as well as their own seismic profiles to improve the subsurface fault model for this fault

system. The model presented by Hubbard et al. (2014) suggests a complex, segmented

fault system that extends to seismogenic depth (roughly 20 km). Rockwell (2011) used

aerial photography to identify marine terraces in the Ventura region along the coast of

southern California, suggesting discrete movements in the past with 5-10 m of uplift, with

the last event occurring approximately 800 years ago. Therefore, a proper tsunami hazard

analysis should incorporate modeled earthquakes that produce deformation consistent with

such events.
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3.3 Dynamic Rupture on the Pitas Point and Lower Red

Mountain Faults

We use a 3-D finite element method (FEM) (Barall, 2009) to model earthquake

rupture on a connected, nonplanar Pitas Point and Lower Red Mountain fault geometry

(see Figures 3.1 and 3.2) with spatially constant initial traction and a homogeneous linear

elastic Earth structure. The output consists of the rupture pattern on the fault as well as the

full seismic wave field and surface deformation. A key input is the fault system geometry.

Plesch et al. (2007) developed a new 3-D community fault model for southern California

that consists of major fault systems defined by geologic and seismic evidence (e.g., surface

traces and seismicity). Hubbard et al. (2014) further improved upon fault geometries

both on and offshore Ventura County by utilizing additional datasets, including seismic

reflection profiles and drill-hole data. Therefore, we use a fault system geometry consistent

with Hubbard et al. (2014) to dynamically model earthquake rupture on the Pitas Point and

Lower Red Mountain faults offshore Ventura. In particular, we utilize a fault geometry that

connects the Pitas Point fault at depth to the deeper Lower Red Mountain fault via a more

horizontal section of fault (see Figure 3.2). We employ a relatively curved fault geometry

(e.g., the transition from the Lower Red Mountain fault to the Pitas Point fault is curved)

that can result in a relatively smoother rupture transition along dip and slightly smoother

ground deformation when compared to the kinked fault geometry in Hubbard et al. (2014)

with analogous fault rupture. The resultant tsunami is not likely to be sensitive to these

small spatial and temporal wavelength features. The utilized material properties (e.g.,
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Figure 3.2: Fault geometry and slip rate snapshots. Panel A shows the fault geometry
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rate snapshots in m/s at 8 s, 12 s, and 16 s after earthquake nucleation, respectively. Solid
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Christensen and Mooney, 1995), prestress regime, and computational parameters (Table

3.1) are quite generic, and are not tuned to produce a worst-case earthquake. FaultMod is

validated in rupture benchmarks published by the Southern California Earthquake Center

and the US Geological Survey (Barall, 2009; Harris et al., 2009). The code incorporates

artificial viscous damping (Dalguer and Day, 2007) as well as algorithmic damping to help

damp spurious oscillations, and energy-absorbing boundary conditions along the mesh edges

to avoid artificial seismic wave reflections from the model boundaries. Friction is a crucial

part of earthquake processes. We use an empirically based rate- and state-dependent friction

law (Dieterich, 1978; 1979; Ruina, 1983) that is controlled by physical parameters such as
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slip rate and time evolution of contact surfaces. Following the work of Lapusta et al. (2000)

and Harris et al. (2009), we employ a modified version of the rate-state ageing law that

is computationally stable at very small slip rates (Ryan and Oglesby, 2014), with the bulk

of the fault having rate-weakening (unstable) friction, and the top most 5 km of the fault

having rate-strengthening (stable sliding) properties (see Figure 3.2).

The depth extent of the modeled rate-strengthening zone is consistent with in-

ferred stable sliding zones at subduction zones and crustal faults (e.g., Scholz, 1998). We

note that an analogous model without the rate-strengthening zone (i.e., completely rate-

weakening) has twice the average slip and twice the maximum vertical seafloor displacement,

approximately, when compared to the model that incorporates the rate-strengthening zone.
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Rupture nucleation (see red star in Figure 3.2 panel a) is achieved by increasing the shear

stress over an expanding front in time; following nucleation, rupture propagates along the

rest of the fault spontaneously. The dynamic rupture code treats the seafloor as a traction-

free surface and does not model the water movement (i.e., compressional waves through the

water column are not modeled). The rupture model produces final seafloor displacement,

which is then used as input for the tsunami modeling code.

The Cornell Multi-grid Coupled Tsunami (COMCOT) Model (Liu et al., 1995;

Wang and Liu, 2006) solves the discretized, nonlinear shallow-water wave equations, us-

ing an explicit leap-frog finite-difference algorithm. The nonlinear convection term in the

momentum equation is discretized using an upwind scheme. Attenuation from shear stress

along the sea floor is included using Manning’s formulation, where a constant Manning’s

coefficient of 0.013 is used. Runup and inundation over initially dry cells are also included

through the implementation of moving boundary conditions. The merged bathymetric and

topographic digital elevation models (DEMs) used for the tsunami model are from 1 and

3 arc-second resolution Southern California Coastal Relief Model version 2 from the Na-

tional Geophysical Data Center. The reference elevation for both DEMs is mean sea level

(MSL). A mean high water (MHW) vertical datum is used for the calculations by adjusting

the DEMs according to the MHW-MSL difference listed at the Santa Barbara tide gauge

station. The duration of the simulation is 160 min., sufficient for the maximum amplitude

to be recorded in the model domain. Because the phase speed of tsunami waves is much

slower than the velocity of the rupture front, particularly in the shallow ocean above the

Pitas Point fault, the time-varying effects of tsunami generation are small (cf. Geist et al.,
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2007). Therefore, the instantaneous initial condition for tsunami generation is thought to

be an adequate approximation.

The dynamic rupture model using the parameters listed in Table 3.1 results in

a Mw 7.7 earthquake scenario on the Pitas Point and Lower Red Mountain faults. The

fault geometry causes strong perturbations in slip rate that result from dynamic normal-

stress perturbations as rupture travels updip (e.g., Oglesby et al., 1998), with an average

final slip of 7.4 m and an average static stress drop of approximately 6 MPa. Figure 3.2

shows the fault geometry and dip-slip rate snapshots at 8 s, 12 s, and 16 s. As rupture

propagates updip, slip rate fluctuates owing to changes in fault geometry and consequent

changes in dynamic normal stress. As rupture propagates through the first main bend,

slip on the basal segment results in reduced normal stress (unclamping) on the connecting

(nearly horizontal) section, which in turn results in increased slip rate on that connecting

segment. As the rupture rounds the second fault bend the steeper updip section of fault

is dynamically clamped, inhibiting fault slip; however, the rupture is strong enough to

continue updip. At 12 s, the rupture is propagating into the rate-strengthening (stable)

zone, resulting in reduced slip rate. Rupture extends to the free surface, with a breakout

shown at 16 s. A breakout phase occurs when the rupture penetrates or “breaks out of”

the free surface (i.e., seafloor) (e.g., Oglesby et al., 1998). At and around 16 s, there is a

reduction in normal stress that corresponds to the breakout phase with an accompanying

increase in slip rate.

Figure 3.3 shows vertical surface (i.e., seafloor) displacement and total slip result-

ing from the earthquake model. The largest vertical displacement, over 7 m, occurs on the
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Figure 3.4: Map of regional peak tsunami amplitude in meters resulting from an earthquake
on the Pitas Point and Lower Red Mountain fault system. The thin solid black line indicates
the coastline and the thick black line indicates the fault trace. Note that significant regional
tsunami inundation occurs.

hanging wall (north) side of the fault, consistent with observations of the Ventura fault –

the onshore fault that is likely connected to the Pitas Point fault (e.g., Rockwell, 2011;

Hubbard et al., 2014). The largest slip on the fault occurs updip from the nucleation zone

(> −12 km depth), with somewhat reduced slip on the most updip section due to rate-

strengthening friction. These results indicate that unclamping of normal stress induced

by the updip-propagating rupture allows rupture to penetrate a rate-strengthening region

near the surface (Ryan, 2012; Kozdon and Dunham, 2013). Additionally, the curved fault

geometry and constant traction result in an energetic rupture that produces significant slip

within the surficial rate-strengthening zone, similar to that inferred in the 2011 Tohoku,

Japan Earthquake (Yamazaki et al., 2011).
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3.4 Local Tsunami Propagation and Inundation

The tsunami resulting from our modeled rupture on the Pitas Point and Lower

Red Mountain faults was modeled using COMCOT. Table 3.2 indicates the hydrodynamic

model parameters. The vertical displacement field calculated by the dynamic rupture mod-

els at 60 s provides the instantaneous initial condition for the tsunami model. Almost all

of the fault slip occurs within the first 20 s of the model; the vertical displacement field

at 60 s is the static configuration of the seafloor. The vertical seafloor displacement from

the earthquake scenario produces a strong local tsunami wave train. Coastal areas with

the largest local amplitude are northward (i.e., Santa Barbara) and eastward (i.e., Ventura

and Oxnard) of the surface rupture (see Figure 3.4). Large amplitudes northward result

from the direct propagation of the northward-directed tsunami toward decreasing water

depth as the tsunami approaches the coastline. The more unexpected large amplitudes to

the east result from two main effects: strong eastward refraction of the southward-directed

tsunami wave train as the waves encounter deeper water to the south in the Santa Barbara

Channel (Figure 3.1), and focusing of the waves guided by bathymetry (e.g., intersection

of slower near-shore waves with faster deep-water waves in the channel). Figure 3.5 shows

localized peak tsunami amplitude around Ventura and Oxnard, CA. Figure 3.1 outlines the

area in Figure 3.5 in red. The solid black line indicates the coastline, and the solid red

line is the statewide tsunami inundation border used by the California Emergency Man-

agement Agency (http://www.conservation.ca.gov/cgs/geologic_hazards/tsunami/

inundation_maps/). Letters indicate key geographic locations, including Santa Barbara,

Ventura Harbor, the Santa Clara River Mouth, McGrath State Beach, and the Channel
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Islands Harbor Entrance. Our modeled tsunami inundation exceeds the state estimate in

multiple locations. For comparison, Figure A.1 in the appendix shows orthographic im-

agery of coastline indicated in Figure 3.5, with modeling results removed. Supplementary

movie 1 shows how tsunami propagation from variations in the regional bathymetry leads

to strong northward and eastward beaming effects. Note that inundation is not shown in

the movie; the supplementary movie is intended to show only propagation properties of the

modeled tsunami. At less than 1 min., the surface break is apparent, with the tsunami

splitting into 2 main waves propagating north and south. At approximately 9 min. there

are strong reflections of the northward wave off the northward shore, and refraction (i.e.,

rotation counter clockwise) of the southward beaming tsunami due to water depth changes.

Focusing occurs to the east (toward Ventura and Oxnard), shown at about 17 min., due to

this refraction and reflection off local shorelines.

This study describes one potential earthquake and tsunami scenario along the

Pitas Point and Lower Red Mountain faults, but it is not intended to give an overall

distribution of all possible earthquake and tsunami hazards in this region. The size of future

earthquakes, their slip patterns, and thus their seafloor displacement are largely unknown

a priori. It is therefore extremely helpful to combine dynamic earthquake models, which

provide physically plausible earthquake scenarios in which the slip is a calculated result of

the model, with tsunami models to study effects from tsunami generation and propagation;

such models can help to fill in gaps in the historic and prehistoric record of earthquakes

and tsunamis. Additionally, it is possible that a potential earthquake rupture on the Pitas

Point fault would not penetrate the seafloor. Therefore, we provide one alternative model
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set that is the same configuration as previously discussed with the exception that the fault

terminates 1 km below the seafloor. The appendix shows figures for fault slip (Figure A.2),

vertical seafloor deformation (Figure A.2), maximum regional tsunami amplitude (Figure
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A.3), and localized maximum tsunami amplitude for the Ventura/Oxnard region (Figure

A.4). In that case, significant local inundation still occurs, albeit on a somewhat lower level.

3.5 Implications for Tsunami Hazard Offshore Southern Cal-

ifornia

Generally, tsunamis can show complex wave effects, including reflection and re-

fraction due to changes in topography/bathymetry along shorelines. Such wave properties

have implications for tsunamis propagating along the southern California coastline. Results

from the models in this study indicate that the coastal areas of Santa Barbara, Ventura,

and Oxnard are particularly vulnerable to earthquake and tsunami hazard from rupture

on the Pitas Point and Lower Red Mountain faults. Our modeled inundation exceeds, in

most places, the state estimate of inundation in Ventura and Oxnard, owing to a com-

bination of the seafloor displacement from our scenario earthquake, refraction, focusing,

and flat topography that facilitates water flowing inland. Therefore, the tsunami hazard

in Ventura and Oxnard may be higher than has been previously inferred. Additionally,

we note that our earthquake model is not a worst-case scenario, since we use 1) a stress

parameterization that is not an outlier in terms of overall stress drop when compared to

calculated stress drops in the southern California area (Hauksson, 2014), and 2) a some-

what conservative estimate for the spatial extent of the Pitas Point Fault (which may in fact

connect to the Ventura fault on shore). However, it is worth noting that the hypothetical

earthquake scenario in this study would be among the top three or four largest magni-

tude earthquakes ever recorded in California, dating back to the mid eighteenth century
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(http://earthquake.usgs.gov/earthquakes/eqarchives/). The probability of such an

event in a given time frame is low compared to smaller earthquake events. Nonetheless,

it is crucial to investigate the possible effects from such rare but plausible earthquake and

tsunami scenarios so that a full hazard assessment can be made. While the details of an

actual future event are likely to be more complex, our model likely captures many important

aspects for the purposes of tsunami generation. Results from these modeling efforts can

help reveal potential regions of high tsunami hazard. Additionally, further development of

this methodology in tsunamigenic regions worldwide can contribute to hazard assessments.

We acknowledge some limitations in this study so that future studies can expand

on the current results. The marine terraces along the coast could be the result of localized

rupture effects since the uplift measurements are taken over a limited area (Hubbard et al.,

2014). Additionally, multi-fault ruptures including, for example, the Ventura, Pitas Point,

Red Mountain, and San Cayetano faults along the Ventura coast could produce the large

amount of average slip needed to produce the terraces. The historical record for ruptures on

the faults within this study is not well characterized; however, the available data suggest the

possibility of large earthquakes with long recurrence intervals in this area, including multi-

segment ruptures producing earthquakes up to Mw 7.8 (Hubbard et al., 2014). Therefore,

it will be important to model several different rupture scenarios on such fault systems, since

the complete earthquake history of these faults is unknown. More comprehensive trenching

onshore, sediment coring offshore, and sediment analysis onshore (i.e., sand grain analysis)

to determine the occurrence of earthquakes and tsunami in this region is an area of active

research (Wilson et al., 2014). Other regional reverse faults certainly have the capability
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of tsunamigenesis. The Santa Cruz Island and Anacapa-Dume faults, the largest known

offshore fault zone near Ventura, CA, is roughly 30 km to the south of the Pitas Point fault,

and is thought to be capable of generating large earthquakes with Mw greater than 7 (e.g.,

Pinter et al., 1998; Ross et al., 2004). Incorporating the upper Red Mountain fault, which

branches off near the intersection of the lower Red Mountain and Pitas Point faults, could

strongly affect local tsunami properties in this area (Fisher et al., 2005). Finally, the current

study assumes constant traction across the fault. However, we note that smaller magnitude

stress regimes near the free surface would decrease the amount of energy available for seismic

wave radiation and therefore would decrease, relative to the current model, fault slip near

the free surface. Incorporating spatially varying initial stress distributions on the faults

may provide valuable insight into a broader range of scenario ruptures. Earthquake size,

rupture propagation, and slip distribution are directly dependent on nucleation location

and stress regime (e.g., Oglesby et al., 2008). In addition, including elastic properties and

plausible stress distributions from Global Positioning System (GPS) models (e.g., Marshall

et al., 2013) may help provide robust, interdisciplinary earthquake and tsunami scenarios.

We also note that submarine landslides can generate large tsunamis in and near the Santa

Barbara Channel, and some landslides are documented in this region (Ross et al., 2004;

Fisher et al., 2005). In fact, modeling of the “Goleta Slide” indicates that a tsunami

with local wave heights between 2 and 20 m could have been generated (Borrero et al.,

2001). Our simple model is not complete enough to provide a true quantitative measure

of tsunami hazard or the precise spatial extent of the inundation zone in the Ventura and

Oxnard region; such a calculation would require the contribution of multiple faulting and
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landslide scenarios from a variety of near- and far-field sources. However, the current model

gives an indication of what may be possible in this region, and points toward future work

to ameliorate the effects of tsunamis here and elsewhere around the globe.

Table 3.1: Stress values, material properties, model properties, and friction parameters used
for the earthquake model.
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Table 3.2: Model properties and friction parameter used for the hydrodynamic model.
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Chapter 4

Rayleigh-Wave Breakout Phases

from 2-D Thrust/Reverse Fault

Geometries Under Equivalent

Prestress Conditions

4.1 Abstract

The asymmetric geometry of thrust/reverse faults leads to greater slip and greater

peak slip rate near the free surface (e.g., the surface of the Earth) (Nielsen, 1998; Oglesby et

al., 1998; Oglesby et al., 2000) than analogous vertical faults. Furthermore, when rupture

travels updip along a dip-slip fault and reaches the free surface, it produces a Rayleigh-

wave breakout phase, a pulse traveling back downdip and along the free surface (Savage,
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1965; Burridge and Halliday, 1971; Oglesby et al., 1998; Madariaga, 2003) that has the

potential to be readily observed. Properties of the Rayleigh-wave breakout phase are un-

doubtedly related to the fault slip distribution, and the details of this relationship are not

well understood. In particular, these breakout phases are related to fault slip near the free

surface, which efficiently generates tsunamis when submarine faults rupture (Okal, 1988;

Geist and Bilek, 2001; Geist 2002). We begin to evaluate 2-D earthquake source parame-

ters from characteristics of the Rayleigh-wave field by running 2-D dynamic rupture models

on thrust/reverse faults that vary in dip angle and fault curvature, and with equivalent

prestress conditions such as constant traction across the fault or variable prestress distribu-

tions. We compare traveling Rayleigh-wave breakout properties (vertical amplitude) with

fault rupture parameters (e.g., slip distribution) for a variety of fault geometries and two

prestress conditions. Preliminary results show that a curved fault geometry with an average

dip angle of 30◦ (15◦ to 45◦ dip with constant curvature), relative to a straight fault with a

constant 30◦ dip, shows larger slip rates near the free surface and a larger vertical amplitude

of the Rayleigh-wave breakout phase. Additionally, using this average dip angle compar-

ison, curved fault geometries result in reduced free surface deformation and reduced slip.

For constant prestress models, and for faults with constant dip, preliminary results show

that steeper dip angles produce greater peak vertical displacements, greater slip in most

cases, and smaller maximum vertical amplitudes of Rayleigh-wave breakout phases along

the footwall; whereas for curved faults, preliminary results show that larger average fault

dip angles produce smaller peak vertical displacements, smaller slip, and smaller maximum

vertical amplitudes of Rayleigh-wave breakout phases along the footwall. Similar results are
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seen for variable (decreased shear and normal stress near the free surface) prestress mod-

els, but with reduced peak vertical displacements, slip, and maximum vertical amplitude

of Rayleigh-wave breakout phases. Such Rayleigh-wave analysis has implications for early

estimation of far-field tsunami amplitude, since source parameters are directly related to

tsunami generation and propagation.

4.2 Introduction

Numerical models of dip-slip faults show normal stress fluctuations from the free

surface boundary condition as rupture propagates updip (e.g., toward the seafloor) (Nielsen,

1998; Oglesby et al., 1998; Oglesby and Archuleta, 2000; Oglesby et al., 2000). Specifically,

seismic waves from the rupture hit the free surface, bounce off the free surface, and return

to the fault again during the rupture process thereby altering the dynamic stress field on the

fault. Moreover, as rupture travels updip along a dip-slip fault and reaches the free surface, a

breakout phase results (the rupture front “breaks out” of the elastic material), part of which

is a strong Rayleigh wave traveling along the free surface and fault surface (Burridge and

Halliday, 1971; Oglesby et al., 1998). These surface waves are directly related to fault slip,

and in turn, slip distribution is directly related to tsunami formation. Ma and Archuleta

(2006) use dynamic rupture modeling to show that a large fraction of seismic radiation

is in the forward direction of rupture propagation (i.e., for surface waves this would be

toward the free surface of the footwall) implying that ocean-bottom sensors on the seaward

side of subduction zones can potentially record strong Rayleigh waves. Experimental and

observational studies provide complementary evidence that reverse faults can produce strong
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ground motion, with a possible mechanism being the free surface effect described above.

Brune (1996) shows that experiments on foam block fault models indicate enhanced slip for

reverse fault models relative to normal fault models. Observationally, the 1994 Northridge,

California and 1971 San Fernando, California earthquakes – both of which were thrust

events – produced larger ground motion than expected (Nason, 1973; Abrahamson and

Somerville, 1996).

In this current precursory work, we begin to investigate earthquake source prop-

erties in relation to Rayleigh waves so that more robust relationships between earthquakes,

tsunamis, and detectable surface waves can be developed. Correlating observed surface

waves with accurate faulting properties such as earthquake magnitude and slip distribution

is an interesting and ongoing challenge in seismology (Satake, 1985). Additionally, dynamic

Rayleigh-wave analysis in relation to earthquake and tsunami properties is in its infancy,

with few studies combining realistic time-dependent seafloor movement with tsunami for-

mation and propagation (e.g., Ohmachi et al., 2001). Theoretical studies on seismic seafloor

deformation point to areas in earthquake/tsunami science that are in need of further inves-

tigation. For example, Kajiura (1970) notes that generated wave energy varies for gravity

versus compressional water waves depending on the duration of seafloor deformation, with

relatively shorter durations (seconds) resulting in possibly transferring more energy to com-

pressional waves than gravity waves. Similarly, characteristics of tsunamis (e.g., initial wave

height distribution) depend on earthquake source parameters such as rise time, fault geom-

etry, and slip distribution (Yamashita and Sato, 1974). However, there are complex and

unintuitive relationships between earthquake properties and tsunami properties. Yamashita
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and Sato (1976) point out that large tsunamis can result from relatively small earthquakes,

and small tsunamis can result from relatively large earthquakes. As an example, the 1946

Ms 7.4 Aleutian earthquake (and possible submarine landslide) generated an unexpectedly

large tsunami offshore Alaska with wave heights above 100 ft, destroying a lighthouse 45

ft tall at Unimak Island (Yamashita and Sato, 1976). Okal (1988) found effects on tsunami

amplitude from temporal and spatial earthquake properties such as directivity due to rup-

ture propagation along the fault, which can produce changes in tsunami radiation patterns.

4.3 Method

We use the 2-D FEM to model dynamic earthquake rupture on both planar and

nonplanar thrust/reverse faults as well as their corresponding surface wave fields. Specif-

ically, we use planar fault geometries with constant dip angles of 15◦, 30◦, 45◦, and 60◦

(green lines, Figure 4.1), and curved fault geometries with dip angles of 15◦ (shallow) to

30◦ (deep), 15◦ to 45◦, and 15◦ to 60◦ (red lines). The total downdip distance is 40 km for

each fault geometry, and each fault intersects the free surface. Artificial nucleation occurs as

an expanding rupture front by raising the shear stress to the yield value at 35 km downdip

and spreads 3 km (in each direction) along dip from the center nucleation point. We utilize

linear slip-weakening friction (e.g., Andrews, 1976), in which the friction coefficient drops,

linearly, from a yield value to a kinetic value over a characteristic slip-weakening distance,

d0 = 0.6 m. See Table 4.1 for model and material parameters. Fault shear and normal

prestress configurations are both set up to be either completely homogeneous across each

fault geometry (horizontal solid and dashed lines in Figure 4.2), or to be constant to a
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depth of 5 km and then decrease toward the free surface (horizontal solid lines and tilted

dashed lines in Figure 4.2). Therefore each fault model starts with either constant shear

and normal stress configurations, or variable shear and normal stress configurations near

the free surface and constant prestress below a depth of 5 km.
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Figure 4.1: Cartoon fault geometries of thrust/reverse faults with constant dip angles of
15◦, 30◦, 45◦, and 60◦ (green lines), and curved fault geometries with dip angles of 15◦

(shallow) to 30◦ (deep), 15◦ to 45◦, and 15◦ to 60◦ (red lines). Stars indicate the nucleation
zone for each fault.
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Table 4.1: Stress values, material properties, model properties, and friction parameters.
!
τo!(initial!shear!stress)! 0!to!15.00!MPa!
σo!(initial!normal!stress)! 2.400!to!24.00!MPa!
τnuc!(nucleation!shear!stress)! 20.00!MPa!
Density! 2670!kg/m3!
PAwave!speed! 6.000!km/s!
SAwave!speed! 3.464!km/s!
Nucleation!Radius! 3.000!km!
Nucleation!Speed! 2.000!km/s!
Element!Size!(along!fault)! 100.0!m!
Time!step! 3.333eA3!s!
Distance!Downdip! 40.00!km!
Dip!Angle! 15°!to!60°!
µyield! 0.8299!
µdynamic! 0.5487!
do! 0.6000!m!
!
!
!
!
!
!
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4.4 Results

4.4.1 Rupture Propagation and Vertical Free Surface Deformation

Rupture propagation and vertical free surface deformation for both a straight fault

geometry with a constant dip of 30◦ and a curved fault geometry with variable dip from

15◦ to 45◦ and an average dip of 30◦ are shown in Figures 4.3 through 4.6. Both faults are

parameterized with constant prestress. For the planar 30◦ dipping fault (green curves in

Figures 4.3 through 4.6), rupture propagates updip at 4 s, 10 s, and 16 s with increased slip

rate (Nielsen, 1998; Oglesby et al., 1998; Oglesby and Archuleta, 2000; Oglesby et al., 2000).

Rupture penetrates to the free surface after 16 s, and a Rayleigh-wave breakout phase can

be seen at 31 s (see Figure 4.6) traveling along the hanging wall (HW) and footwall (FW)

surfaces. For the nonplanar 15◦ to 45◦ dipping fault (red curves in Figures 4.3 through 4.6),

rupture propagates updip at 4 s, 10 s, and 15 s, with increased slip rate and with increased

amplification relative to the straight fault. Rupture penetrates to the free surface after 15

s, and a Rayleigh-wave breakout phase can be seen at 30 s traveling along the hanging

wall (HW) and footwall (FW) surfaces. Rupture on the curved fault produces hanging wall

deformation that is less peaked than the straight fault geometry. Note that we plot the

maximum vertical Rayleigh-wave amplitude at 100 km perpendicular to strike along the

footwall (see for example, Figure 4.3, black dots) in Figures 4.7 and 4.8 for constant and

variable prestress configurations, respectively.
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Figure 4.3: Rupture propagation and vertical free surface deformation, at 4 s, for a straight
fault geometry (left) with a constant dip of 30◦ and a curved fault geometry (right) with
variable dip from 15◦ to 45◦ (with an average dip of 30◦). Both geometries have a constant
prestress regime.
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Figure 4.4: Rupture propagation and vertical free surface deformation, at 10 s, for a straight
fault geometry (left) with a constant dip of 30◦ and a curved fault geometry (right) with
variable dip from 15◦ to 45◦ (with an average dip of 30◦). Both geometries have a constant
prestress regime.
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Figure 4.5: Rupture propagation and vertical free surface deformation, at 16 s and 15 s,
respectively, for a straight fault geometry (left) with a constant dip of 30◦ and a curved
fault geometry (right) with variable dip from 15◦ to 45◦ (with an average dip of 30◦). Both
geometries have a constant prestress regime.

!"" #"" " #"" !""
!
"
!
$

%&
'()
*+
,-.

)/
01
-23

4

5&'01-(6-7(')8&-2834

9: ;:

$" <" !" #" "
"
!
$
=
>

7,
)0
-?
+(
&-
23
@/
4

.6ABC)0-2834

()3&-D-<#-/&*6BC/

!"" #"" " #"" !""
!
"
!
$

%&
'()
*+
,-.

)/
01
-23

4

5&'01-(6-7(')8&-2834

9: ;:

$" <" !" #" "
"
!
$
=
>

7,
)0
-?
+(
&-
23
@/
4

.6ABC)0-2834

()3&-D-<"-/&*6BC/

Vertical Deformation and Slip Rate

Rayleigh-wave breakout phase Rayleigh-wave breakout phase

Figure 4.6: Rupture propagation and vertical free surface deformation, at 31 s and 30 s,
respectively, for a straight fault geometry (left) with a constant dip of 30◦ and a curved
fault geometry (right) with variable dip from 15◦ to 45◦ (with an average dip of 30◦). Both
geometries have a constant prestress regime.
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4.4.2 Vertical Free Surface Deformation, Total Slip, and Maximum Ver-

tical Rayleigh-wave Amplitude

Vertical free surface deformation, total slip, and maximum vertical Rayleigh-wave

amplitude at 100 km perpendicular to strike along the footwall (see, for example, Figure

4.3, black dots) for thrust/reverse faults with constant normal and shear prestress configu-

rations are shown in Figure 4.7. For constant dip models, larger dip angles produce greater

(positive and negative) peak vertical surface displacements, greater slip, and smaller maxi-

mum vertical amplitudes of Rayleigh-wave breakout phases along the footwall. With respect

to total slip, an exception occurs for the 15◦ dipping fault which shows the greatest slip,

possibly due to the fault’s proximity to the free surface (i.e., reduced normal stress for

a significant portion of the fault during the rupture process). For variable dip models,

larger average fault dip angles produce smaller (positive and negative) peak vertical surface

displacements, smaller slip, and smaller maximum vertical amplitudes of Rayleigh-wave

breakout phases along the footwall. Vertical free surface deformation, total slip, and maxi-

mum vertical Rayleigh-wave amplitude at 100 km perpendicular to strike along the footwall

(see, for example, Figure 4.3, black dots) for thrust/reverse faults with variable normal and

shear prestress configurations are shown in Figure 4.8. For constant dip models, larger

dip angles produce greater (positive and negative) peak vertical displacements, greater slip,

and smaller maximum vertical amplitudes of Rayleigh-wave breakout phases along the foot-

wall. For variable dip models, larger average fault dip angles produce smaller (positive and

negative) peak vertical displacements, smaller slip that tends to converge near the free sur-

face, and smaller maximum vertical amplitudes of Rayleigh-wave breakout phases along the
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footwall. Overall, models with reduced shear and normal prestress near the free surface

show reduced maximum vertical amplitudes of Rayleigh-wave breakout phases, but have a

pattern corresponding to dip angle that is similar to that of the constant prestress models.
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Figure 4.7: Vertical free surface deformation, total slip, and maximum vertical Rayleigh-
wave amplitude at 100 km perpendicular to strike along the footwall (see, for example,
Figure 4.3, black dots) for thrust/reverse faults with constant normal and shear prestress
configurations (Figure 4.2).
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Figure 4.8: Vertical free surface deformation, total slip, and maximum vertical Rayleigh-
wave amplitude at 100 km perpendicular to strike along the footwall (see, for example,
Figure 4.3, black dots) for thrust/reverse faults with variable normal and shear prestress
configurations (Figure 4.2).
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4.5 Conclusions and Future Work on Rayleigh Waves and

Tsunamis

We evaluate source parameters and Rayleigh-wave breakout phases for 2-D thrust/reverse

faults that vary in dip angle and fault curvature, and with equivalent prestress conditions

such as constant traction across the fault or variable prestress distributions. We compare

traveling Rayleigh-wave breakout (vertical) amplitudes with earthquake source parameters

– including slip distribution and vertical free surface deformation – for a variety of fault ge-

ometries and two prestress conditions. Overall, models with larger slip near the free surface

result in greater vertical amplitude Rayleigh waves (Figures 4.7 and 4.8). Using an average

dip angle comparison, curved fault geometries result in reduced free surface deformation and

slip, but increased slip rate near the free surface and greater amplitude Rayleigh-wave break-

out phases (Figures 4.3 through 4.6), relative to the straight fault geometries. For constant

prestress models, and for faults with constant dip, steeper dip angles produce greater peak

vertical displacements, greater slip, and smaller maximum amplitudes of Rayleigh-wave

breakout phases along the footwall (with the exception of the 15◦-dipping fault; whereas

for faults with variable dip, larger average fault dip angles produce smaller peak vertical

displacements, smaller slip, and smaller maximum amplitudes of Rayleigh-wave breakout

phases along the footwall. Similar results are seen for models with decreased shear and

normal stress near the free surface, but with reduced peak vertical displacements, slip, and

maximum amplitudes of Rayleigh-wave breakout phases. Models like these can provide a

foundation for future work on the dynamics of submarine earthquakes, their Rayleigh wave

fields, and corresponding tsunamis. One important factor in this study appears to be the
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shallowest dipping faults. For the faults that dip at 15◦, this relatively small dip angle

appears to have a very strong influence on the displacement and particle velocity fields.

Further investigation is needed to determine how the dynamic fluctuations in normal stress

contribute to these results. For curved fault geometries, the radius of curvature may have

significant effects on fault slip distribution and free surface displacement, and this needs to

be explored further as well.

Considerable discrepancies have been pointed out between tsunami models and

tsunami observations, particularly in tsunami height and travel time (Ohmachi et al., 2001).

Such discrepancies may result from uncertainties in earthquake source models that are

based on seismic-wave and tsunami data (Imamura et al., 1994). Future work will involve

stochastic prestress distributions that decrease (to zero) in magnitude toward the fault

edges (e.g., Andrews and Barall, 2011). Additionally, we will use the time-dependent free

surface deformation from the rupture models as input into a tsunami code. Lastly, we plan

to compare our results to observed earthquakes and tsunamis – such as the 2012 Haida

Gwaii Earthquake and Tsunami – that appears to have Rayleigh-wave phases recorded on

ocean bottom pressure sensors ahead of the main tsunami (http://www.ndbc.noaa.gov/

dart.shtml). Such Rayleigh-wave analysis has implications for early estimation of far-field

tsunami amplitude, since source parameters are directly related to tsunami generation and

propagation.
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Chapter 5

Conclusions

It is important to combine physics-based, dynamic earthquake models, which do

not prescribe fault slip, with tsunami models. This method is still in its infancy, and as

such needs to be explored more extensively. The potential occurrence of earthquakes and

tsunamis offshore southern Alaska is relatively high and is one prime location for modeling

efforts to examine effects from earthquake-generated tsunamis (e.g., Ryan et al., 2012).

The physical properties of the plate interface, such as the functional form of the friction

coefficient during sliding, can have significant effects on rupture dynamics (e.g., Harris and

Day, 1993). We are able to incorporate rate-strengthening-like zones in dynamic earthquake

rupture models by tuning the friction coefficients in time-weakening friction. Ultimately,

strengthening zones result in a reduction in fault slip, and therefore a reduction in tsunami

amplitude above and near the strengthening zone. The location of the strengthening zone

can have a great impact on the overall slip distribution, and for strengthening zone models,

the beaming pattern of the near-field tsunami is significantly altered, which could have
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implications for distant coastlines. Future work will involve more accurate integration

of plate coupling data from GPS models (e.g., Freymueller et al., 2008). Additionally,

we will implement stochastic prestress (e.g., Andrews and Barall, 2011) and stochastic

frictional zones that are likely more representative of natural stress and friction distributions.

Including a more accurate fault geometry (e.g., changing dip angle with depth) and material

properties (e.g., velocity structure models) into the earthquake rupture code can also make

modeling efforts more realistic.

In addition to large megathrust earthquakes and their associated tsunamis, smaller

earthquakes are capable of generating devastating local tsunamis that do not provide much

warning time. For southern California, the Ventura Basin and surrounding coastal region

pose a significant earthquake and tsunami threat (Rockwell, 2011; Hubbard et al., 2014).

Earthquake sources on the Pitas Point and Red Mountain faults should be included in

tsunami hazard assessments offshore California. Our dynamic models show large northward

and eastward tsunami amplitudes from rupture on the Pitas Point and Lower Red Mountain

faults. However, this parameterization results in a large earthquake that is less likely, in

a given time frame, than smaller earthquake scenarios on this fault system. A range of

dynamic earthquake and tsunami models is needed for this area so that we can begin

to robustly determine earthquake/tsunami scenarios that are more likely versus scenarios

that are less unlikely. Such suites of models will involve different prestress and velocity

distributions, different friction distributions, and may encompass several regional faults.

Constraining properties of the tsunami from leading Rayleigh waves can provide

a route to more enhanced early warning that includes local effects from properties such as
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fault slip distribution and bathymetry. We have begun to evaluate some source parameters

and Rayleigh-wave breakout phases for 2-D thrust/reverse faults that vary in dip angle and

fault curvature, and with equivalent prestress conditions such as constant traction across

the fault or variable prestress distributions. Models with larger slip near the free surface

result in greater vertical amplitude Rayleigh waves. Using an average dip angle comparison,

curved fault geometries result in reduced free surface deformation and slip, but increased slip

rate near the free surface and greater amplitude Rayleigh-wave breakout phases, relative

to the straight fault geometries. For constant prestress models, and for faults with con-

stant dip, steeper dip angles produce greater peak vertical displacements, greater slip, and

smaller maximum amplitudes of Rayleigh-wave breakout phases along the footwall; whereas

for faults with variable dip, larger average fault dip angles produce smaller peak vertical

displacements, smaller slip, and smaller maximum amplitudes of Rayleigh-wave breakout

phases along the footwall. Similar results are seen for models with decreased shear and

normal stress near the free surface, but with reduced peak vertical displacements, slip, and

maximum amplitudes of Rayleigh-wave breakout phases. Future work will involve stochas-

tic prestress distributions. Using time-dependent free surface deformation from the rupture

models as input into a tsunami code may help shed some light on observed earthquake and

tsunami processes – such as the 2012 Haida Gwaii Earthquake and Tsunami – that ap-

pear to show Rayleigh-wave phases recorded on ocean bottom pressure sensors ahead of the

main tsunami. Transient vertical seafloor displacements from passing Rayleigh waves may

be detectable by ocean bottom pressure sensors if the Rayleigh-wave speed is much faster

than the speed of sound in the ocean (i.e., traveling Rayleigh waves will produce pressure
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changes in the water column). However, determining how such pressure observations relate

to both fault slip distributions (in time) as well as the corresponding tsunami wave-train

properties will be challenging.

Tsunami disaster mitigation leads to a need for tsunami early warning, especially

on coastlines prone to large megathrust earthquakes and their resultant tsunamis such as

highly populated coastal regions along the Pacific Rim. Earthquake source parameters such

as seismic moment and slip distribution have first-order effects on tsunami size (e.g., Geist,

1998). Therefore, by constraining earthquake source parameters from characteristics of

the Rayleigh-wave field, one can also constrain tsunami properties such as size and wave

train structure (Dutykh and Dias, 2008). Such Rayleigh-wave analysis has implications for

early estimation of far-field tsunami amplitude, since source parameters are directly related

to tsunami generation and propagation. More accurate tsunami warning is still elusive

due to large uncertainties in what causes the distribution of tsunami size and devastation;

therefore, Rayleigh-wave observations from tide gauges and ocean bottom seismometers

should be compared to wave models, serving as a model validation, while models can help

bound the spatial and temporal limits for potential observations so that we can assess the

ability of Rayleigh-wave analysis in determining tsunami wave train structure.

144



Bibliography

Abrahamson, N. A. and Somerville, P. G. (1996). Effects of the hanging wall and footwall
on ground motions recorded during the northridge earthquake. Bull. Seismol. Soc. Am.,
86:S93–S99.

Aki, K. and Richards, P. G. (2009). Quantitative Seismology. University Science Books,
2nd edition.

Ammon, C. J., Lay, T., Kanamori, H., and Cleveland, M. (2011). A rupture model of the
2011 off the pacific coast of tohoku earthquake. Earth Planets Space, 63:693–696.

Andrews, D. J. (1976). Rupture propagation with finite stress in antiplane strain. Journal
of Geophysical Research, 81(20):3575–3582.

Andrews, D. J. (2004). Rupture models with dynamically determined breakdown displace-
ment. Bulletin of the Seismological Society of America, 94(3):769–775.

Andrews, D. J. and Barall, M. (2011). Specifying initial stress for dynamic heterogeneous
earthquake source models. Bull. Seismol. Soc. Am., 101(5):2408–2417.

Barall, M. (2009). A grid-doubling finite-element technique for calculating dynamic three-
dimensional spontaneous rupture on an earthquake fault. Geophys. J. Int., 178:845–859.

Beroza, G. C. and Mikump, T. (1996). Short slip duration in dynamic rupture in the
presence of heterogeneous fault properties. J. Geophys. Res., 101(22):449–460.

Bilek, S. L. and Lay, T. (2002). Tsunami earthquakes possibly widespread manifestations
of frictional conditional stability. Geophys. Res. Lett., 29:doi:10.1029/2002GL015215.

Blanpied, M. L., Tullis, T. E., and Weeks, J. D. (1998). Effects of slip, slip rate, and shear
heating on the friction of granite. J. Geophys. Res., 103:489–511.

Borrero, J. C., Dolan, J. F., and Synolakis, C. E. (2001). Tsunamis within the eastern
santa barbara channel. Geophys. Res. Lett., 28(4):643–646.

Brune, J. N. (1996). Particle motions in a physical model of shallow angle thrust faulting.
Proc. Indian Acad. Sci. (Earth Planet. Sci.), pages L196–L206.

145



Bruns, T. R., von Huene, R., Culotta, R. C., Lewis, S. D., and Ladd, J. W. (1987). Geology
and Potential of the Continental Margin of Western North America and Adjacent Basis,
Circumpacific Council for Energy and Mineral Resources, chapter Geology and Petroleum
Potential of the Shumagin Margin, Alaska, pages 157–189.

Burridge, R. and Halliday, G. S. (1971). Dynamic shear cracks with friction as models for
shallow focus earthquakes. Geophys. J. R. astr. Soc., 25:261–283.

Chester, F. M. and Higgs, N. G. (1992). Multimechanism friction constitutive model for
ultrafine quartz gouge at hypocentral conditions. J. Geophys. Res., 97:1859–1870.

Christensen, N. I. and Mooney, W, D. (1995). Seismic velocity structure and composition
of the continental crust: A global view. J. Geophys. Res., 100:9761–9788.

Cocco, M. and Rovelli, A. (1989). Evidence for the variation of stress drop between normal
and thrust faulting earthquakes in italy. J. Geophys. Res., 94:9399–9416.

Cummins, P. R. and Kaneda, Y. (2000). Possible splay fault slip during the 1946 nankai
earthquake. Geophys. Res. Lett., 27:2725–2728.

Currie, I. G. (2013). Fundamental Mechanics of Fluids. Taylor and Francis Group, 4th
edition.

Dalguer, L. A. and Day, S. M. (2007). Staggered-grid split-node method for spontaneous
rupture simulation. J. Geophys. Res., 112:doi:10.1029/2006JB004467.

Day, S. M. (1982). Three-dimensional simulation of spontaneous rupture: The effect of
nonuniform prestress. Bull. Seismol. Soc. Am., 72:1881–1902.

Dean, R. G. and Dalrymple, R. A. (1991). Water Wave Mechanics for Engineers and
Scientists. World Scientific Publishing Co. Pte. Ltd.

Dedontney, N. and Rice, J. R. (2012). Tsunami wave analysis and possibility of splay fault
rupture during the 2004 indian ocean earthquake. Pure Appl. Geophys., 169:1707–1735.

Dieterich, J. H. (1978). Time-dependent friction and the mechanics of stick-slip. Pure and
Applied Geophysics, 116:790–806.

Dieterich, J. H. (1979). Modeling of rock friction 1. experimental results and constitutive
equations. Journal of Geophysical Research, 84(B5):2161–2168.

Dieterich, J. H. (1992). Earthquake nucleation on faults with rate- and state-dependent
strength. J. Geophys. Res., 211:115–134.

Duan, B. and Day, S. M. (2008). Inelastic strain distribution and seismic radiation from
rupture of a fault kink. J. Geophys. Res., 113:doi:10.1029/2008JB005847.

Duan, B. and Oglesby, D. D. (2006). Heterogeneous fault stresses from previous earth-
quakes and the effect on dynamics of parallel strike-slip faults. J. Geophys. Res.,
111:doi:10.1029/2005JB004138.

146



Dutykh, D. and Dias, F. (2008). Tsunami generation by dynamic displacement of sea bed
due to dip-slip faulting. Mathematics and Computers in Simulation, 80(4):837–848.

Ewing, M., Tolstoy, I., and Press, F. (1950). Proposed use of the t phase in tsunami
warning systems. Bull. Seismol. Soc. Am., 40:53–58.

Fisher, M. A., Normark, W. R., Greene, H. G., Lee, H. J., and Sliter, S. W. (2005).
Geology and tsunamigenic potential of submarine landslides in santa barbara channel,
southern california. Mar. Geol., 224:1–22.

Fisher, M. A., Sorlien, C. C., and Sliter, R. W. (2009). Potential earthquake faults offshore
southern california, from the eastern santa barbara channel south to dana point. pages
271–290. Geol. Soc. Am., Spec. Pap.

Freymueller, J. T. and Beavan, J. (1999). Absence of strain accumulation in the western
shumagin segment of the alaska subduction zone. Geophys. Res. Lett., 26:3233–3236.

Freymueller, J. T., Woodard, H., Cohen, S. C., Cross, R., Elliot, J., Larsen, C. F.,
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Figure A.1: Orthographic imagery of coastline indicated in figure 3.5, with modeling results
removed.
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Figure A.2: Vertical free surface deformation and total slip. Top: Vertical surface (i.e.,
seafloor) deformation resulting from slip on the fault system, with a maximum vertical
displacement of over +5 m. The map view inset shows the same vertical deformation and
indicates the fault trace by a solid black line. Bottom: Amplitude of slip on the fault
system, with an average of 5.9 m. Note that the final deformation and slip are shown at 60
s after nucleation. The Mw for the earthquake is 7.6.
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Figure A.3: Map of regional peak tsunami amplitude in meters resulting from an earthquake
on the Pitas Point and Lower Red Mountain fault system. The thin solid black line indicates
the coastline and the thick black line indicates the fault trace. Note that significant regional
tsunami inundation occurs.
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Figure A.4: Map (red box shown in figure 3.1) of localized peak tsunami amplitude, in m
(around Ventura, CA), resulting from slip on the Pitas Point and Lower Red Mountain
fault system. The solid black line indicates the coastline. The sold red line is the statewide
tsunami inundation map coordinated by the California Emergency Management Agency.
Letters indicate example locations (approximate): SB = Santa Barbara; VH = Ventura
Harbor; SCRM = Santa Clara River Mouth; MSB = McGrath State Beach; CIHE = Chan-
nel Islands Harbor Entrance. Inset shows the map boundary in black. Note that inundation
from the model is significantly greater in many places than the statewide estimate.
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