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Systems biology and synthetic biology are increasingly used to examine and
modulate complex biological systems. As such, many issues arising during
scaling-up microbial production processes can be addressed using these
approaches. We review differences between laboratory-scale cultures and
larger-scale processes to provide a perspective on those strain characteristics
that are especially important during scaling. Systems biology has been used to
examine a range of microbial systems for their response in bioreactors to
fluctuations in nutrients, dissolved gases, and other stresses. Synthetic biology
has been used both to assess and modulate strain response, and to engineer
strains to improve production. We discuss these approaches and tools in the
context of their use in engineering robust microbes for applications in large-
scale production.

Challenges during Industrial Scale-up
It is well recognized that microbes can produce a vast range of compounds, from fuels and
commodity chemicals to pharmaceuticals and fine chemicals [1–3]. Correspondingly, efforts to
broaden the scope and demonstrate proof-of-concept pathways for new molecules are
gaining in number and scope [2,4,5]. However, despite the development of microbial platforms
to convert nearly any carbon source into any desired product, a rather modest number of these
cases have seen successful transition to industrial-scale processes and marketed products.
Economic competitiveness with established chemical or biosynthetic routes is an important
factor. Low titers and yields in the laboratory setting also need to be overcome to proceed with
the scale-up. However, at the level of core bioconversion technology, a dominant cause for this
dearth of implementation is the challenge associated with predicting the strain performance in
industrial-scale bioreactors. The environment of a commercial-scale bioreactor is drastically
different from that of laboratory-scale cultures such as shake flasks. It has long been recog-
nized that most strains do not perform the same way in the two scenarios [6]. Thus, strain
development for industrial scale-up necessarily goes beyond pathway engineering [7,8]. A
recent review places the cost of scaling-up a large-volume chemical in the range of $100 million
to $1 billion USD [9]. The risk and cost of failure is high, and de-risking of the microbial chassis
itself should be an important aspect of strain engineering.

Process engineering practices for industrial scale-up of a microbial production system are fairly
well established, with multiple reviews written on the topic [10–12]. In contrast, the response of
microbial phenotype to fluctuating bioreactor conditions, genotypic drift during long-term
cultivation, and other physiological factors has been less explored, and the potential impacts
of such factors on scale-up performance have only recently been addressed [8,13]. The best
efforts in this area are in scale-down models, where large numbers of strains are generated and
tested under conditions representative of large-scale growth and production, allowing better
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selection of strains that will scale up more predictably [14–18]. However, it remains difficult to
develop strains that will maintain the desired production characteristics when scaled up.

Advances in systems and synthetic biology [8,19] may be able to provide solutions in this space.
Beyond improvements such as the use of strains without plasmids or inducer requirement, there
are some ambitious questions to be posed. Can we create genetically and phenotypically stable
strains to prevent a phenotypic drift during subculturing of the seed cultures? Can we reliably
increase the duration of the production phase to increase the profitability of the process? Can we
track subpopulations and the causal parameters for phenotypic drift or heterogeneity within the
culture? Can we dynamically regulate genes and pathways to respond to inhibitory byproducts
and fluctuating stresses to reduce negative selections and enhance robust strain performance?
There are examples of studies that address these questions individually and which, when
presented collectively, reveal the full potential of the approach.

Most ambitiously, we envision microbial engineering approaches that can predict how a strain
will behave in a commercial-scale bioreactor environment and that will enable us to pre-
emptively design strains that meet those needs (Figure 1). In this review, we focus on systems
and synthetic biology methods that may allow a better understanding of physiological changes
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Figure 1. Workflow from Proof-of-Principle Strain Development to an Optimized Conversion System for Industrial Scale-up. Strains exhibiting the
desired phenotype at laboratory scale can be further examined through �omics and other analytical approaches to compare biological states at higher scales. Host
selection, pathway optimization, and process optimization can and should be geared towards titer, yield, and rates, and also robustness in commercial-scale
performance.

2 Trends in Microbiology, Month Year, Vol. xx, No. yy



TIMI 1664 No. of Pages 14
during scale-up and under industrial conditions, and synthetic biology methods that may
provide ways to mitigate or control these responses. Though these methodologies are as
yet underutilized, there are some excellent examples that illustrate the potential of these
approaches in predictive design of engineered strains.

Scale-up Parameters That Are Not Accounted for in Laboratory-Scale Strain
Development
A wide range of chemical, physical, and biological factors can negatively impact microbial
growth and product formation during bioprocess scale-up from microtiter plates, to shake
flasks, to bench-scale bioreactors, and ultimately to commercial bioreactors. Compounding
this issue is the fact that mimicking the environments encountered in these different stages of
scale-up during high-throughput phenotypic screening in the initial strain engineering phase is
not straightforward. Moreover, the associated challenges that need to be addressed during
scale-up vary for different host microbes and cultivation products.

Furthermore, many measurements performed in microtiter plates and shake flasks are different
from the analyses conducted during bioreactor studies (Figure 2). This exacerbates the risk that
laboratory-scale strain optimization does not address or resolve challenges that will subse-
quently be seen as bioprocesses are scaled toward commercialization.

Physical and Mechanical Stresses
One conspicuous difference between laboratory-scale and large-scale cultivation is the
operating pressure. As bioreactor volumes increase, the height of the water column in a
bioreactor creates an increasing hydrostatic pressure gradient. In principle, pressure can
influence biological properties, including enzyme activity and cell membrane permeability
that are important to cell viability and metabolic flux [18]. The increased hydrostatic
pressure at the bottom of a commercial-scale bioreactor raises the concentration of
dissolved gases. For instance, dissolved CO2 (dCO2) is in equilibrium with bicarbonate
and carbonate ions which contribute to medium osmolarity and affect broth pH. Thus, the
physiological effect of dCO2 could be a result of the accumulation of the dissolved gas
itself, of osmotic pressure changes, of pH changes, or even a combination of all three
factors [20].

Other colloidal or thermodynamic properties, such as broth bulk viscosity, emulsion stability,
and product or biomass settling, could also be influenced by pressure, among other factors.
Adverse effects on the cultivation may also persist during product harvest and impact the
efficiency and quality of the downstream process (e.g., solid–liquid separation, chromatogra-
phy, extraction, crystallization, distillation, chemical upgrading, and polymerization), resulting in
higher production costs and reduced product quality [21].

Chemical Stresses
With increasing bioreactor volume, the mixing time increases from a few seconds (laboratory-
scale) to several minutes (hundreds of cubic meters) [6,12]. Furthermore, other bioreactor
internal components, such as spargers, baffles, and cooling coils, can create dead zones with
poor mixing, heat transfer, and gas–liquid mass transfer. In large-scale production processes
imperfect mixing results in microenvironments and inhomogeneities, resulting in gradients of
bioprocess parameters such as pH, temperature, dissolved oxygen (DO), dCO2, and the
concentration of nutrients. Combined, these variations could lead to transient or permanent
insults such as oxidative damage, nutrient limitations, and other stress responses that reduce
microbial viability, stability, and productivity [22].
Trends in Microbiology, Month Year, Vol. xx, No. yy 3
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Figure 2. Measurements during Strain Development in Microtiter Well Plates, Shake-Flasks, and Bior-
eactors. The measurements are not only different, but they also vary in availability. Whereas high-throughput studies at
laboratory scale, such as in microtiter well plates (e.g., flower plates from BioLector Pro1) and shake-flasks, enable
testing of a large number of conditions and strains in parallel, bioreactors offer an opportunity for time-series testing but
at very low relative throughput to compare strains and operating conditions. DCW, dry cell weight; OD, optical density;
WCW, wet cell weight.
Additional chemical stresses in large-scale industrial cultivations arise from raw material and
microbial contaminants. To reduce production costs, many processes utilize crude raw
materials which are utilized with little or no refinement and thus introduce impurities that
accumulate in the broth to inhibitory/toxic levels. Some examples of these real-world feed-
stocks include corn slurry, corn steep liquor, sugar cane juice, molasses, sugar beet juice,
agricultural residues, food-processing waste, municipal solid waste, and waste gases. Micro-
bial contamination of the raw materials, harsh raw material pretreatment conditions, and
microbial contamination of the cultivation can further increase the levels of deleterious
4 Trends in Microbiology, Month Year, Vol. xx, No. yy
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impurities and reduce product titer rate yield (TRY) metrics [22–26]. These factors can and
should be addressed in host strain selection and strain-screening assays, but the priority may
be underappreciated and thus the sensitivities understudied at the early stages of a strain/
cultivation development program where sterile technique and very pure raw materials are
commonly used during small-scale screening and optimization. If strain engineering and strain
screening could account for these risks and mitigate them from the outset, process scaling
would become more predictable, especially in the case of developing novel microbes as
production platforms.

Systems Biology Approaches Can Generate Actionable Knowledge to
Address the Effects of Scale-Related Factors
Exposure to heterogeneous conditions in large fermenters can trigger genetic and physiological
responses in production microbes [18,27,28]. High-throughput analytics, such as automated
DNA sequencing and �omics technologies (fluxomics, transcriptomics, proteomics, and
metabolomics), as well as high-throughput screening platforms, enable these to be charac-
terized by simulating industrial conditions in scaled-down laboratory experiments. Mathemati-
cal models of large-scale fermenters provide important guidance in designing the scaled-down
conditions and in forecasting the impact of small-scale learnings in the large-scale environment.
This approach increases the probability that key performance metrics, such as TRY, will
translate fully and quickly from the laboratory to the manufacturing plant, thereby minimizing
start-up costs [8,29]. Heterogeneity in gas mixing, in substrates and nutrient, as well as in the
inherent heterogeneity in a microbial population have all been examined in this context.

Gas Mixing
Gas mixing, such as for CO2 and O2, is a key parameter resulting in measurable differences in
microbial cell response in a bioreactor. In recombinant Escherichia coli cultures grown in batch
cultivation, increasing dCO2 in the broth resulted in a slower growth rate and higher by-product
accumulation [30]. Another study found that fluctuating dCO2 increased the time needed for E.
coli to produce green fluorescent protein (GFP), and to observe a transcriptional response of
glutamate decarboxylase and a-ketoglutarate dehydrogenase [15]. A comparative analysis of
transcript levels revealed a fast transcriptional response of Corynebacterium glutamicum to
alternating CO2 and bicarbonate levels, which appeared to be strongly correlated with both
strength and duration of the pCO2 stimulus [31]. The authors observed increased expression of
genes encoding enzymes necessary for oxaloacetate production and hypothesized this to be
the result of rapid enhanced bicarbonate availability for PEP/pyruvate carboxylation. The first
findings of the impact of oxygen supply were reported by Oosterhuis et al. [32]. In these early
studies, Gluconobacter oxydans was cycled between zones with low and high oxygen
availability to study the effect on gluconic acid production. More recent studies used similar
approaches to study the effect of oxygen availability on intracellular processes in E. coli and C.
glutamicum [18,33–36]. In these studies, transcriptional changes between aerobic and anaer-
obic environments explained observed alterations in stoichiometry and kinetics, as well as
production of ethanol and organic acids, indicating that E. coli responds rapidly to dissolved
oxygen gradients [33]. Fu et al. [37] carried out exometabolome measurements to study the
physiological effects of scale-up of a high-density fed-batch process of Saccharomyces
cerevisiae which revealed reduced oxygen availability at commercial scale, resulting in overflow
metabolism. As one approach to mitigate the effects of oxygen availability in large bioreactors,
Liu et al. introduced VHb (Vitreoscilla hemoglobin, a membrane protein facilitating O2 transport)
into a fatty-acid-producing strain of E. coli to promote oxygen supply and energy metabolism.
The resulting strain yielded a 70% higher fatty acid titer as compared to its parental strain [38].
While host response to such parameters in large-scale production remains a challenge (see
Trends in Microbiology, Month Year, Vol. xx, No. yy 5
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Outstanding Questions), the selection of a host that is natively resilient to such fluctuations [35]
and designing processes to overcome metabolic bottlenecks [39] or laboratory evolution [40]
are a few approaches that may be used to address this issue.

Substrate and Nutrient Heterogeneity
Besides leading to suboptimal gas transfer effects, imperfect mixing in large-scale bioreactors
can impose substrate supply gradients on bioreactor cultures. Recent findings have shown that
E. coli can adopt both short- and long-term strategies to withstand stress conditions regarding
changing nutrient availability [41–44].

In a scale-down study of penicillin production in Penicillium chrysogenum, the influence of
substrate gradients on process performance and cell physiology was investigated by imposing
an intermittent feeding regime on a laboratory-scale culture [17]. The authors observed that,
while the biomass yield remained the same, the production of penicillin was reduced signifi-
cantly in the intermittently fed cultures and based this observation on a reduction in flux of the
pathway which was possibly caused by fluctuations in intracellular ATP and AMP levels. In S.
cerevisiae, genome-wide analysis of transcriptional cross-regulation by different environmental
parameters under different nutrient limitations (C,N,P,S) in both aerobic and anaerobic labora-
tory-scale chemostat cultures identified 155 oxygen-responsive genes and several other genes
responsive to different macronutritional limitations [45,46].

Data obtained from studies mirroring cellular responses to typical large-scale stimuli could be
used to derive and validate adequate models for in silico predictions of commercial-scale
performance. These predictions could be used to optimize the bioreactor hardware design
configuration as well as the process operating conditions. This would mitigate potential
reductions in performance and TRY metrics and could be used to derive design criteria to
engineer production strains for improved robustness during commercial-scale manufacturing.
Recently, a metabolically structured kinetic model developed for penicillin production by P.
chrysogenum showed sufficient accuracy to enable the simulation of dynamic metabolic
processes at relevant timescales for bioreactor mixing (which can range from seconds to
minutes) in commercial-scale fed-batch cultivations [47].

Nitrogen-responsive regulation can be another source of culture heterogeneity or variation, as
the C/N balance is known to impact metabolic output. One study in E. coli identified that relA,
the key regulator responsible for the synthesis of signal molecule guanosine tetraphosphate
(ppGpp) during the stringent response, is also activated during nitrogen starvation and thus the
two major bacterial stress responses are coupled to manage conditions of nitrogen limitation
[48]. Michalowski et al. combined mechanistic knowledge from this and several other studies to
engineer a strain of E. coli which maintained a constant ppGpp pool independently of nutritional
supply, thus allowing for increased intracellular pyruvate accumulation and greater metabolic
flux towards a desired final product [49].

Phenotypic and Genetic Heterogeneity
Stochasticity of gene expression is commonly considered the main source of phenotypic
heterogeneity in a microbial population, due to cell-to-cell variation in promoter expression,
unequal transporter distribution, or bet-hedging after a diauxic shift [29,50]. For cells grown in
large-scale bioreactors, this inherent heterogeneity may be exacerbated by emerging sub-
populations associated with insufficient mixing [43,51]. Poor mixing or oscillations in nutrient
levels can result in subpopulations of cells in different metabolic states, which in turn affects the
activity of native metabolic pathways [52,53]. For instance, stationary-phase cultures
6 Trends in Microbiology, Month Year, Vol. xx, No. yy
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comprised of quiescent and nonquiescent cell populations may have different gene expression
and respiratory profiles [52,54] and consequently different production levels relative to a
homogeneous culture.

An early report which tried to differentiate the intrinsic heterogeneity of microbial populations
from extracellular perturbations originating from bioreactor heterogeneity suggested that
environmental fluctuations impact the level of biological ‘noise’ [55]. Tools for monitoring
the physiology of subpopulations can be useful in this area. Recent advances in fluores-
cence-activated cell sorting (FACS) methods have enabled higher-throughput analysis [56],
potentially enabling identification of cellular responses at the single-cell level. Heterogeneity and
associated stresses in large-scale bioreactors may cause an increase in deleterious genetic
mutations, thereby reducing TRY metrics over extended cultivations relative to laboratory-scale
[13]. In addition to these aspects, the metabolic burden from engineered pathways is an
important concern and is a well-reviewed topic [57]. The target compound and pathway may
further impact phenotypic drift and loss of performance [58]. As a solution, a synthetic
dependence on a nonconditional essential gene was used to generate E. coli strains with a
reduced mutation rate and enhanced production stability [13]. Moreover, genome-scale
models of microbial metabolism that take into account spatial and temporal variability in a
bioreactor have also been reviewed as an approach to overcome the effects of the bioreactor
environment heterogeneity [59].

Selection of the host microbe is an important consideration in developing robust bioconversion
processes (Box 1). Some microbial hosts may have native physiological abilities to overcome the
bioreactor environment heterogeneity. For example, performance loss during scale-up was
explored in C. glutamicum producing 1,5-diaminopentane [34]. Systems biology approaches
revealed that the central metabolism of C. glutamicum is flexibly rearranged under short-term
oxygen depletion and carbon source excess to overcome a limitation in NAD+ recycling. In two-
compartment experiments, where dissolved oxygen could be swiftly varied, the authors found
that, to balance the redox state, key enzymes for the non-oxygen-dependent fermentative NAD+

regeneration were significantly upregulated while nonessential pathways were downregulated.
Overall, C. glutamicum maintained carbon and redox equivalents, and these experiments indi-
cated that it is a robust host that can withstand heterogeneity in large-scale processes.

Approaches to Engineer Strains for Stable and Reliable Production in Large-
Scale Bioreactors
A systematic approach to engineering strains for scale-up first requires envisioning large-scale
production conditions in order to simulate these conditions at a small scale and then screen for
host/pathway combinations that will meet relevant requirements. Chemical inhibition (by media
components, metabolites, and products) and the dependence of production on growth are two
considerations that can be addressed via systems and synthetic biology approaches in small-
scale screening environments.

Tolerance Engineering and Growth-Coupled Production
Engineering microbial strains for improved tolerance to raw materials, metabolic intermediates,
by-products, and final products has been undertaken in a large number of cases using both
targeted and combinatorial methods. Protein targets for tolerance engineering range from
chaperones to transporters and may be identified by screening natural diversity or by directed
evolution experiments. Since tolerance phenotypes require consolidation with production
phenotypes, semitargeted approaches have also been developed to obtain mixed phenotypes
such as via transcription factors and global regulators. Tolerance engineering has been
Trends in Microbiology, Month Year, Vol. xx, No. yy 7
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Box 1. Choice of the Host Microbe

The choice of the microbial host has a critical bearing on the robustness of process scale-up. Model microbes, Escherichia coli
and Saccharomyces cerevisiae, areoften thedefault hosts for laboratory syntheticbiology studies.However, microbial systems
used in the industry for large-scale production, and for demonstration at pilot-scale, reveal a larger set of host choices based on
diverse metabolic capabilities and phenotypes (Table 1). An excellent example for host selection based on process require-
ments is the CB1 yeast strain developed by Cargill for lactic acid production. Though the initial process used lactobacilli [89],
issues of contamination (including phage), the need for expensive broth neutralization, and associated salt waste motivated the
isolation and engineering of the organic-acid-tolerant CB1 yeast, which bypassed both of these issuesii.

Selection and engineering of the host strains is an essential aspect to ultimately ensure not only commercial relevance but
also the optimum economic outcome [9]. This involves many considerations beyond the engineered pathway, as discussed
in this review. If the microbial host lacks one or more of these phenotypes natively, it necessitates process accommodations
and/or results in performance deterioration that increase production costs. Even when the ultimate commercial con-
sequences are recognized, the choice of host microbe often tracks with microbes for which we have the most genetic tools
and knowledge. This bias holds especially true when the top priority is the discovery and development of the metabolic
conversion pathway in highly controlled laboratory conditions. Evaluating and optimizing an engineered strain for perfor-
mance during scale-up and in industrially relevant conditions are too often deferred or even ignored altogether.

Postgenomic era approaches now allow us to evaluate the suitability of a microbe for a particular scale-up process
upfront and may neutralize the current bias towards model microbes. As examples, retrosynthetic-based pathway
predictor algorithms that reveal the metabolic potential of a microbial host are invaluable to guide this choice [5,90].
Another example is an evaluation of growth couple-able metabolites in a given microbe [65], which would reveal critical
caveats in selecting a host, such as its ability to maintain growth-coupled production under different respiratory modes.
These resources will become increasingly available in a larger set of microbes as they are adopted for genome-scale
modeling [91] and functional genomics evaluations (RB-TnSeq, [92]), and allow de-risking of the host microbe itself,
separate from the considerations for product pathways.

It is worth recognizing that, as we attempt to convert increasingly complex and crude carbon sources to larger groups of
final products, no one microbe will natively provide all the desired properties for an optimum process. But with many
more well-developed, well-understood hosts, including systems biology data on how strains will behave in a scaled-up
format, the options improve and the choices become better informed.
reviewed recently [8,26]. Genome-wide approaches for tolerance engineering include labora-
tory evolutions [60], and a sophisticated version of this emerging approach is automated
laboratory evolution (ALE). ALE shows potential in a wide range of applications such as
improving and broadening catabolic potential and tolerance to different cultivation conditions
and metabolites [25,40,61]. In a recent example, ALE was applied to improve strain tolerance to
catechol, a toxic intermediate arising during the conversion of renewable plant biomass and
known to negatively affect product titers. Correspondingly, the adapted strain, with increased
tolerance to catechol, showed improved production in the presence of this inhibitor [62].
However, these strains have yet to be tested under large-scale conditions.

Product tolerance and the growth dependence of production are related concepts in strain
engineering. If production is independent of growth requirement, growth inhibition due to
expression of a burdensome pathway and/or production of an inhibitory compound can cause
strains to drift from their optimal production phenotype due to selective advantage. Therefore,
engineering strains with increased tolerance to stresses and inhibitors is critical where pro-
duction is independent of growth requirement. However, if applicable, coupling growth with
production is a powerful strategy for evolving strains to maintain high titers, rates, and yield. For
example, the Optknock1 tool uses metabolic models to identify gene deletion targets that
couple growth and product biosynthesis, making the production of the target compound
obligatory. The Optknock1 approach to predict gene deletions in E. coli that successfully
coupled succinate overproduction with growth [63] is an example of systems-biology-aided
strain improvement (Table 1). Using similar tools, 1,4-butanediol production is an example of
overcoming final product toxicity to meet commercial TRY goals using E. coli as a production
8 Trends in Microbiology, Month Year, Vol. xx, No. yy
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Table 1. Examples of Production Scale-upa for a Range of Engineered Microbial Strains

Microbe Scale (l) Titer rates and yields and sourceb Product Company Refs/resources

Escherichia coli 13 000c 99 and 2.1 g l�1 0.35 g/g (glucose) 1,4-Butanediol Genomatica [63,64]

Saccharomyces cerevisiae 300d 900 g l�1

Cane Syrup
b-Farnesene Amyris iii

CB1 yeast 1 000 000 Glucose Lactic acid Cargill ii

Corynebacterium glutamicum 1500 92.5 and 81.2 g l�1 0.35 g/g glucose l-Arginine [93]

Pseudomonas putida 500 52% (w/w)
(octanoic acid and levulinic acid)

Polyhydroxy alkanoate [94]

Rhodosporidium toruloides 20 2.2 g l�1

(sorghum hydrolysate)
Bisabolene [87]

Mannheimia succiniciproducens 7 15.4 g l�1 and 0.86 g/g glucose Succinate [95]

aRanging from demonstration-scale bioreactors to commercial-scale.
bAs available.
cCurrent scales for 1,4-butanediol production are at 200 000–600 000 l.
dResults from pilot-scale in a reportiii. Commercial scales for b-farnesene production are at 200 000 l.
host [64]. Applying genome-scale metabolic models, studies have shown that coupling of
growth and production is feasible under appropriate conditions for almost all metabolites in five
major production organisms [65]. Emerging applications seek to combine growth-coupled
production with laboratory evolution experiments, leveraging these two powerful approaches
to rapidly generate high producing strains that maintain the desired phenotype.

Growth-Decoupled Production
For some metabolic targets, it is not possible to biochemically couple the target metabolism
with a growth dependence. In other cases, efficient growth coupling may be restricted to
certain cultivation conditions [65]. Consequently, selective pressure is needed to maintain the
production pathway and to avoid selecting for strains with improved growth at the expense of
production [8,66]. In these cases, decoupling growth from production is seen as an alternative
strategy to maintain stable strain performance during production.

One approach to decouple growth from production is to activate production pathways only
after a culture reaches a cell density threshold or stationary phase [67]. An example of the
former is the development of an E. coli strain engineered to induce sustained glucose
conversion to fatty alcohols during nitrogen-limited stationary phase [68]. In another recent
example of growth-decoupled production [69], vanillin production from ferulic acid was
limited to the stationary phase by coupling vanillin production to glucose starvation, after a
high biomass had been reached. Starvation-inducible promoters, such as csiD, used in this
case, are easily adapted to constrain activity of a heterologous gene pathway to stationary
phase. However, as csiD is expressed only in response to glucose starvation [70], such a
sensor would have to be further modified for use in fluctuating levels of glucose present in
large-scale bioreactors. In this regard, dynamically activated pathways in response to
intracellular inhibitors [71], cell density [72], and nutrients [73] have also been used for
decoupled approaches. Most recently, a synthetic biology approach that combined a
quorum sensing-based and biosensor-based system was used for mutually independent
and tunable dynamic regulation of two different enzymes to improve heterologous produc-
tion of d-glucaric acid in E. coli [74], resulting in the highest reported titers for this
compound.
Trends in Microbiology, Month Year, Vol. xx, No. yy 9
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Biosensors/Biocontrollers
Biosensors, such as RNA aptamers or proteins which bind to small molecules and elicit a
transcriptional or allosteric response, are key synthetic biology tools and have been compre-
hensively reviewed [75–77]. As noted in earlier sections, applications of biosensors range from
reporting metabolic states or heterogeneity in cellular response to being coupled to regulation,
enabling a dynamic response to stresses. Multiple biosensors have been discovered and
successfully developed that regulate genes for optimal expression and reduce inhibitory
intermediates or toxic proteins, without the aid of inducers [78,79]. There are biosensors
and corresponding regulators that control pathways by responding to metabolic switches [80].
Biosensors have also been used to consolidate multiple signals. These complex biosensor
circuits can be deployed for sophisticated feedback regulation to maintain the response of an
engineered system in a heterogeneous bioreactor environment. An example of such a circuit is
a 4-input AND gate with 3 circuits that controls 4 inducible systems, thus integrating the
response from up to four different signals [81]; it could be used to report bioreactor stresses or
developing strains for scale-up. The efficacy of such genetic circuits has been evaluated for
their applicability in bioreactors [82]. Biosensors that can report on the target metabolite
production, especially those that can otherwise be detected only via lower-throughput analyti-
cal methods, are also of value � for example, yeast G-protein display systems [83] and evolved
sensors [84]. A potential pitfall in the use of these designed systems is that circuits using
biosensors to regulate pathways or to develop reporter systems suffer from interference from
cellular physiology and cross talk with other synthetic circuits. These shortcomings have begun
to be addressed via automated gene circuit design platforms [82,85] to enable construction of
circuits that are insulated from each other, presenting a new and challenging area of
investigation.

Tools That Provide the Data for Systems and Synthetic Biology Approaches
Unlike microtiter plates and shake flasks, well-instrumented bioreactors provide real-time
measurements of DO and gas metabolism that are used to calculate oxygen transfer rate
(OTR), oxygen uptake rate (OUR), carbon dioxide evolution rate (CER), and respiratory quotient
(RQ). These parameters are representative of metabolic activity and can be controlled by
adjusting air flow and nutrient feed rates. However, these measurements are based on the
liquid and gas phases of the bioreactor and do not adequately represent the various cellular
states of the potentially heterogeneous culture. As such, multi-omics comparison of laboratory-
scale and bioreactor cultures can help to identify additional indicators of scale-up performance,
for example genetic drift, differences in metabolite levels, protein stability changes, oxidative
damage, and gene-expression perturbation. In turn, these indicators can be applied in labora-
tory-scale engineering of strains for more predictable scale-up performance. Bioreactors offer
an opportunity for time-series testing, due to a higher level of process measurement and
control. However, since bioreactor operation can be an expensive endeavor, the scope of
testing process conditions can be very limited when compared to laboratory-scale strain
performance screening in plate- or flask-based assays. Coordinated analysis of real-time
measurements from a bioreactor together with multi-omics approaches can provide substan-
tial information on growth and production performance sensitivities across a range of cultivation
scales.

Bioreactor-based process development studies are resource intensive, limiting our ability to
replicate multiple experiments. Recent high-throughput growth measurement plate designs
cater to both laboratory-scale requirements of low volume and high-throughput testing while
providing several bioreactor-scale datatypes. The flower plate-based BioLector Pro1 system
from m2p Labs Inc. is equipped with pH, fluorescence (for optical density), and DO optical
10 Trends in Microbiology, Month Year, Vol. xx, No. yy
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Outstanding Questions
What are the best measures to ensure
that process performance goals drive
the design of the microbial conversion
systems that are being developed for
commercial applications?

How can laboratory experiments be
conducted to better reflect key
aspects of growth and metabolism in
larger scales and regimes? While some
approaches exist, this topic remains
challenging.

What key phenotypic requirements,
other than the development of a bio-
conversion pathway, should drive our
selection or engineering of a host
microbe? Examples may include prod-
uct and inhibitor tolerance, feedstock
utilization, genetic stability, and meta-
bolic robustness with respect to het-
erogeneous conditions and process
fluctuations.

What types of data sets and tools will
allow us to better assess host require-
ments for a given process and facilitate
the use of alternative production
hosts?

Some parameters in large commercial
bioreactors remain especially chal-
lenging as factors that negatively
impact productivity. These include
fluctuations in oxygen transfer rate
due to heterogeneous mixing and ver-
tical pressure gradients. Can we iden-
tify or engineer microbial strains to
overcome these impediments?

Can microbes be engineered not only
to improve titers, rates, and yields at
the laboratory scale, but also
scalability?
probes (optodes) to measure and control these parameters that are otherwise unavailable in
shake-flask culturing [86]. Mixing and off-gas data available in 250 ml Ambr1 high-throughput,
multiparallel bioreactors systemsi can further bridge the gap by introducing shear effects and
OUR-based control of the cultivation process that mimic pilot-scale bioreactors. HEL’s Bio-
Xplorers can be used to conduct fed-batch cultivations at pressures up to 5 bar. By working
with these 1–250 ml size reactors, researchers can perform reasonably high-throughput
cultivations in more commercially relevant conditions.

Miniaturizing commercial-scale culture conditions and the associated cost-effective, high-
throughput capabilities can significantly increase the quantity of parameters tested at labora-
tory-scale. This has allowed testing new hosts for performance at different scales [87] (Table 1).
However, the traditional statistical design-of-experiments (DOE) approach to process develop-
ment is often limited by researchers’ understanding of commercial-scale conditions. The quality of
parameters selected for testing should also be improved along with the quantity of parameters
being tested. For example, one study used computational fluid dynamics to simulate 54 000 l
cultivation with P. chrysogenum to predict gradients of glucose, dissolved oxygen, etc. to select
parameters and their levels needed to test a pool of mutants for production robustness [88]. By
‘beginning with end in mind’, strain developers can identify relevant parameters (stresses from
thermal, mechanical, and chemical sources; gradients of oxygen, CO2, glucose, etc.; toxicity from
water, substrates, intermediates, products, etc.) and develop strategies (dynamically regulated
pathways, growth coupling/decoupling) and analytics (sensors and biosensors) needed to
develop strains for bioprocessing with high titer, rates, yields, and robustness in production.

Concluding Remarks
Many research efforts are now focused on developing strains that address challenges specific to
industrial scale-up [22,96]. Genomatica’s announcement that production of biobutanediol using
its technology exceeded 10 000 tonsiv is a key milestone in demonstrating both systematic strain
engineering and the application of interdisciplinary tools toachieve industrial biobased production.

In the current state of the art, synthetic and systems biology tools are increasingly enabling
characterization of strain physiology under industrially relevant conditions in a bioreactor.
Various methods already exist to engineer or evolve strains that are robust under these
conditions, including methods to couple production phenotypes with growth. Miniaturization
and automation of strain design, strain construction, and high-throughput measurements
provide the data and data-driven approaches to translate production performance from
laboratory to pilot and commercial scales. Implementation of advanced statistical methods,
such as machine learning, can expedite strain-engineering cycles [80,97,98] and are being
adopted by the biotech industry focused on high-throughput strain engineering [99,100]. The
state of computational approaches and modeling has not been a focus of this review but has
been discussed recently in several comprehensive articles [8,101].

The recent establishment of microbiological platforms for classes of bioproducts provides a
promising outlook for more rapid introduction of additional new products with lower R&D
investment and risk. Synthetic and systems biology tools could be used as the starting point to
assess physiology of the strain for suitability of performance in the industrially relevant con-
ditions of a bioreactor (see Outstanding Questions). As our mechanistic understanding of the
biological processes grows stronger, and our ability to use large systematically collected data
sets becomes more sophisticated, microbial conversion can provide powerful implementable
solutions for large-scale biomanufacturing of commodities, materials, food, pharmaceuticals,
and fuels.
Trends in Microbiology, Month Year, Vol. xx, No. yy 11
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