
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Fluctuations in Water and their Relation to the Hydrophobic Effect

Permalink
https://escholarship.org/uc/item/37h7b6n5

Author
Varilly, Patrick Stephen

Publication Date
2011
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/37h7b6n5
https://escholarship.org
http://www.cdlib.org/


Fluctuations in Water and their Relation to the Hydrophobic Effect

by

Patrick Stephen Varilly

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David Chandler, Co-chair
Associate Professor Jan T. Liphardt, Co-chair

Associate Professor Phillip L. Geissler
Associate Professor Joel Moore

Fall 2011



Fluctuations in Water and their Relation to the Hydrophobic Effect

Copyright 2011
by

Patrick Stephen Varilly



1

Abstract

Fluctuations in Water and their Relation to the Hydrophobic Effect

by

Patrick Stephen Varilly

Doctor of Philosophy in Physics

University of California, Berkeley

Professor David Chandler, Co-chair

Associate Professor Jan T. Liphardt, Co-chair

The hydrophobic effect, or the tendency for oil and water not to mix, is a fundamen-
tal force that strongly influences the shape, behavior and assembly of solutes in solution.
Hydrophobicity emerges from the collective behavior of large numbers of solvent molecules,
so its accurate treatment is challenging. A decade ago, Lum, Chandler and Weeks (LCW)
addressed this challenge indirectly by modeling how solvent density fluctuations couple to
external solutes and constraints, and then inferring hydrophobic behavior from the resulting
mean solvent density. LCW theory is successful because it distinguishes between, and sep-
arately models, small-length-scale and large-length-scale density fluctuations. In this thesis,
we develop methods for probing the statistics of large-length-scale density fluctuations in
computer simulations of water. We use these tools to study solvation phenomena in model
systems and in proteins, in bulk water and near surfaces, and we rationalize these phenomena
in terms of LCW ideas. Building on these ideas and on past efforts by others, we construct
a tractable, efficient and accurate theory of solvation on a coarse-grained lattice. The final
theory allows us to model the solvation behavior of uncharged, static solutes of arbitrary
shape, and we outline the steps necessary to model charged, dynamic solutes in the future.
A unifying thread in our solvation studies is the importance of fluctuations of liquid-vapor
interfaces. At the end of this thesis, we describe how these fluctuations may play a role in
water evaporation.
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Chapter 1

Introduction

Water is a fascinating liquid. Unlike most simple liquids, its structure is not determined
by packing constraints, but is instead dictated by a strong, dynamic network of hydrogen
bonds, the result of strong electrostatic interactions between small, polar molecules [13].
Most biological processes, as well as many important chemical and industrial ones, take
place in aqueous solution. In these processes, water is not just a passive solvent, but an
active participant, whose unusual interaction with other solutes is key to the functions that
these processes accomplish.

One of water’s many unusual properties, which we explore in detail in this thesis, is
the hydrophobic effect, or the tendency for oil and water to demix.1 Qualitatively, the
effect arises because favorable hydrogen bonding interactions between waters induce them
to interact with themselves rather than with oil. Quantitatively, however, the effect is much
more subtle. We discuss three such subtleties below.

It has long been observed that water hydrates small solutes differently than large solutes.
On the one hand, gases of small molecules are less soluble in warm water than in cold
water [105], a fact that renders warm beer unpleasant and makes warm oceans less capable
of dissolving carbon dioxide. On the other hand, larger solutes, like micron-sized oil droplets,
are more soluble in warm water, not less, which is why it’s more effective to wash dishes and
clothes with warm water. For simple solutes, this length-scale dependence can be explained in
terms of hydrogen bonding. Small solutes can be accommodated in water without breaking
hydrogen bonds, so the primary cost to solvating them is a reduction in entropy of the
surrounding water. Large solutes, however, cannot be dissolved without breaking large
numbers of hydrogen bonds, so a liquid-vapor-like interface forms around them. The surface
tension of this interface decreases with temperature, rendering the solutes more soluble.
While this explanation is qualitatively satisfying, the distinction between “small” and “large”
is not transparent for many interesting solutes. Most prominently, the building blocks of
proteins (amino acids) are “small”, the folded protein is “large”, and the topographical

1Most solvents exhibit a “solvophobic” effect on solutes with which they interact only weakly [49], but
water is unique in the magnitude and importance of the effect.
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features on the surface of the protein, where drugs, signaling molecules and other proteins
bind, are intermediate in size.

Another subtle manifestation of hydrophobicity is the effective interactions between so-
lutes in water, such as when oil droplets on the surface of water in a pot of pasta come
together and coalesce into larger and larger droplets. In biology, many proteins are driven
to fold to bring many of their hydrophobic amino acids into a compact core, leaving mostly
hydrophilic amino acids on their outer surface [1]. When heated, most proteins denature (un-
fold) because the larger entropy of extended random conformations can overcome the forces,
hydrophobic ones among them, that stabilize the folded state. More puzzlingly, though,
some proteins also denature when they are cooled or when subjected to high pressures [91].
This phenomenon is believed to be caused by changes to the hydrophobic effect that affect
the folded and unfolded states differently [12]. For example, cold denaturation can be ra-
tionalized in terms of the small amino acids becoming more soluble while the large folded
protein becomes less so, which favors exposing the hydrophobic groups in an unfolded state.

When hydrophobic solutes assemble, the water around them plays a surprisingly active
role. Näıvely, since hydrophobicity is a collective effect that results from the statistical
behavior of large numbers of water molecules, one might expect that the net effect of the
solvent could be reduced to an effective potential on the solute. This assumes that solutes
in water move very slowly compared to the water molecules, and is analogous to using the
Born-Oppenheimer approximation to construct effective potentials for the nuclei of atoms
in molecules. While this approach is often sensible, it fails spectacularly in important cases.
Studies of model hydrophobic polymers undergoing hydrophobic collapse [78, 106] and of
model hydrophobic plates coming together [6, 52] both show that the two end states are
separated by large free energy barriers that are due entirely to the solvent degrees of freedom.
That is, the main bottleneck to collapse or assembly in these systems is a large-scale collective
rearrangement of the solvent. Such a bottleneck is invisible in a solute-centric description of
the process. Similar phenomena have been observed in simulations of protein systems [64],
and it is tempting to speculate that several puzzling free energy barriers observed in FRET
experiments between stable states of certain chaperones [77] may be due to solvent motions
and not protein rearrangements.

About a decade ago, Lum, Chandler and Weeks (LCW) presented a solid theoretical
framework for understanding various aspects of hydrophobicity [68]. LCW theory attempts
to reduce the behavior of water (and other solvents) to an understanding of solvent den-
sity fluctuations, from which hydrophobic behaviors can then be inferred. Solvent den-
sity fields are described in terms of a large-length-scale, smooth component and an over-
lying component of small-length-scale fluctuations. The physics describing fluctuations in
either component individually are transparent (interfacial energetics vs. Gaussian fluctua-
tions), and the two components are then coupled weakly. In this framework, most of the
subtleties of the hydrophobic effect arise from the interplay between large-scale interfacial
physics and molecular-scale fluctuations. The theory has been implemented at different
levels of detail and been used to quantify many of the above phenomena, with significant
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success [46–49, 68, 71, 106, 107, 123, 124]. Unfortunately, because of its technical complexity,
LCW theory is not yet used routinely in fields like biomolecular simulations, where many of
its most interesting consequences are yet to be discovered. This thesis makes an important
advance in this direction.

Before proceeding, we present an outline for the remainder of the thesis. In Chapter 2,
we lay down the statistical mechanical framework for quantifying the hydrophobic effect. We
summarize the theoretical aspects of small- and large-length-scale solvation, and conclude
with a presentation of LCW theory in its continuum formulation. In Chapter 3, we focus
on quantifying various kinds of fluctuations in atomistic models of water. We introduce
computational probes for performing the relevant probability distribution measurements
and systematically quantify large-length-scale fluctuations in bulk, near hydrophobic and
hydrophilic surfaces and around hydrophobic protein surfaces. We further discuss tools
to probe liquid-vapor interfaces and their relations to dissolved solutes. In Chapter 4, we
present a coarse-grained theory of solvation on a lattice, based on LCW ideas, improving
and extending previous attempts to do this. We discuss some of the pitfalls involved in
discretizing the LCW equations, their consequences, and satisfactory alternative discretiza-
tions that avoid them. We also discuss the validity of many of the approximations made.
A detailed comparison of the final theory is made with the detailed numerical results of
Chapter 3 to demonstrate the theory’s accuracy. We conclude with a discussion the future
developments necessary for widespread use of LCW theory in biological and other settings.
In Chapter 5, we consider how hydrophobic and hydrophilic surfaces influence the hydropho-
bic effect in nearby dissolved solutes. We first present detailed numerical results, and then
build a minimal LCW-like theory to rationalize all the observed behavior. Our main con-
clusion is that hydrophobic surfaces may act as generic catalysts for unfolding proteins, an
observation that may contribute to our understanding of chaperone function. Finally, in
Chapter 6, we employ our tools for looking at liquid-vapor interfaces to examine the process
of water evaporation. We find an interesting connection between local surface curvature
and evaporation. However, we also find that in our simulations, the process appears to be
barrierless, in slight disagreement with recent experiments, and we suggest a possible reason
for the disagreement.
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Chapter 2

Theories of Solvation

2.1 Preliminaries

At heart, hydrophobicity is a collective effect, so we need statistical mechanics to under-
stand it. On the other hand, quantum effects play an insignificant role in most liquids
at ambient conditions [41]. Hence, we work within the Born-Oppenheimer approxima-
tion and treat a system of N atoms as if the nuclei were classical point particles at po-
sitions RN = {R1,R2, . . . ,RN}. These nuclei interact via a classical many-body potential
U(RN) that results from integrating out the electronic degrees of freedom. We assume that
U(RN) is well modeled by a force field of (a) pairwise interactions that capture intermolec-
ular effects like Pauli exclusion, dispersive attractions and electrostatic attractions, and (b)
harmonic or low-order Fourier expansion terms that capture chemical bonding detail, and
involve between two and four atoms each. As in most other work in the field, we neglect the
effects of polarization on the electron densities of molecules.1

For concreteness, we use the following form of U(RN), common to many force fields like
AMBER [16] and CHARMM [70]:

U(RN) =
∑

i,j

4εij

[(
σij
Rij

)12

−
(
σij
Rij

)6
]

+
∑

i,j

qiqj
4πε0Rij

+
∑

i-j bonds

1

2
K

(b)
ij (Rij −R(0)

ij )2 +
∑

i-j-k angles

1

2
K

(a)
ijk(θijk − θ

(0)
ijk)

2

+
∑

i-j-k-l torsions

∑

n

1

2
K

(t)
ijkl,n[1 + cos(nχijkl − δijkl,n)] (2.1)

1For water in particular, this is approximation is reasonable. Its static dielectric constant, 80, results
primarily from molecular rearrangements, not electronic polarization. The dielectric constant at optical
frequencies, arising mostly from electronic polarization, is close to 2.
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The indices i through l denote atomic nuclei, and unrestricted sums are over all the nuclei in
the system. Here and everywhere, the vector Rij is defined as Ri−Rj, and its length is Rij,
i.e. the distance between nuclei i and j. The angle θijk is that formed between Rij and Rkj,
and the torsion angle χijkl is the angle between the vector Rlk and the plane containing atoms
i, j and k. The first term models Pauli exclusion and dispersion forces between all atoms
i and j via a Lennard-Jones potential [34]. The second term captures electrostatic effects, and
the charge density of molecules is modeled by point partial charges qi centered at the atomic
nuclei. All chemical bonds are taken to be fixed, and the harmonic terms are the first terms
in a Taylor expansion of U(RN) about the equilibrium lengths of bonds and the equilibrium
angles between bonded trios of atoms. Since rotation about single bonds is a relatively soft
degree of freedom, the potential energy as a function of torsion angle χ is instead modeled
by a few terms in a Fourier series. All remaining symbols are parameters of the force field.
The chemical identity of the system being modeled is encoded in these parameters. These
are determined through various heuristics [16,70], but are generally either fit systematically
to the results of detailed quantum-mechanical calculations for a representative set of small
molecules, or chosen to match a canonical set of experimental measurements like normal
mode frequencies, liquid densities and vaporization enthalphies.

When modeling bulk systems in a computer, we are restricted to small numbers of atoms.
To mitigate the effect of small system size, we impose periodic boundary conditions on our
systems [34]. That is, we imagine that the atomic nuclei are enclosed in a cubic box of
dimensions Lx×Ly×Lz that periodically tiles space. In such an infinite system, the potential
energy is infinite, but the potential energy density is finite. Hence, when calculating U(RN),
we restrict sums over i to be over the atoms in only one of the cubic boxes, and in terms
describing atomic bonding, Rij always refers to the vector joining atom i in one cubic box
to the nearest image of atom j in any periodically-replicated box. For conciseness, we call
the resulting value of U(RN) the system’s potential energy, although strictly speaking, it
is the potential energy density multiplied by the periodic box size. Because of periodic
boundary conditions, the function U(RN) depends implicitly on the system volume V , i.e.,
U(RN) = U(RN ;V ).

Thermodynamic quantities are derived from the potential energy function U(RN ;V ) in
the usual way. When studying solvation behavior, the most natural external conditions to
impose are fixed temperature T and fixed pressure P . This corresponds to working in the
isothermal-isobaric ensemble [41], where the system’s partition function, ∆(N,P, T ), is given
by

∆(N,P, T ) = C−1

∫
βPdV

∫ N∏

i=1

dRi

Λ3
i

exp
[
−βPV − βU(RN ;V )

]
. (2.2)

Here, C−1 is a constant that ensures proper Boltzmann counting, Λi = h/
√

2πmikBT is
the thermal wavelength of particle i, h is Planck’s constant, β is 1/kBT , and kB is Boltz-
mann’s constant. When integrating over volume V , the unit box’s shape is kept fixed. The
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corresponding Gibbs free energy is given by

G(N,P, T ) = −kBT ln ∆(N,P, T ). (2.3)

The thermal average of an observable A(RN ;V ), denoted by 〈A〉, is given by

〈A〉 =

∫
dV

∫
dRN e−βPV−βU(RN ;V ) A(RN ;V )∫

dV
∫

dRN e−βPV−βU(RN ;V )
. (2.4)

When the choice of potential U(RN ;V ) is ambiguous, it is specified as a subscript, i.e.,
〈A〉U . The free energy difference between two systems with potential energy functions
U1(RN ;V ) and U2(RN ;V ) is given by

G2(N,P, T )−G1(N,P, T ) = −kBT ln

∫
dV

∫
dRN e−βPV−βU2(RN ;V )

∫
dV

∫
dRN e−βPV−βU1(RN ;V )

(2.5a)

= −kBT ln
〈
e−β(U2−U1)

〉
U1
. (2.5b)

The last equation is a conceptually simple way of determining a free energy difference by
evaluating thermal averages only, which, unlike absolute free energies, can be estimated com-
putationally. In practice, free energy differences are computed using more efficient methods,
such as those described in Section 3.1.1.

In all subsequent sections, the distinction between the isothermal-isobaric ensemble and
the more familiar canonical ensemble is not significant. Hence, for compactness, we usually
write free energies and thermal averages in an ensemble-agnostic notation (as in Equa-
tion (2.5b)), and highlight the pressure dependence only where relevant.

In most cases, it is impractical and unnecessary to keep track of all the atomic nuclei
in a system. It suffices to keep track of a few select degrees of freedom, which evolve
approximately according to a mean field created by the remaining degrees of freedom. For
example, there may be a natural separation of time scales between fast and slow degrees
of freedom. Let qK = {q1(RN), . . . , qK(RN)} denote the K slow degrees of freedom. The
effective free energy surface on which the dynamics of these degrees of freedom takes place
is given by

G(qK) = −kBT ln

(〈
K∏

i=1

δ
(
qi(R

N)− qi
)
〉/〈

K∏

i=1

δ
(
qi(R

N
0 )− qi

)
〉)

. (2.6)

Here, RN
0 is an arbitrary reference configuration chosen to fix the zero of the effective free

energy. In the simplest description, when there indeed is a natural separation of time scales,
the system’s dynamics might be described by Langevin dynamics, i.e., diffusion along the
effective free energy surface, with the net effect of the fast degrees of freedom implicitly
accounted for by an effective noise and friction [10]. The simplest realization of such dynamics
is

miq̈i = −∂G/∂qi − γq̇i + ηi(t), 1 ≤ i ≤ K, (2.7)



CHAPTER 2. THEORIES OF SOLVATION 7

where mi is an effective mass for degree of freedom i, γ is an effective friction constant, and
ηi(t) is a random variable that, to be consistent with the fluctuation-dissipation theorem,
satisfies

〈ηi(t)ηj(t′)〉 = 2γkBTδijδ(t− t′), (2.8)

where the average is over all possible realizations of the noise. We discuss in Section 2.2.2
which degrees of freedom of water may be treated as “slow”.

2.2 Thermodynamics of solvation

The solvation behavior of a solute is characterized by its solvation free energy, ∆Gsol, defined
as the free energy of transferring the solute from vacuum into a solution. More precisely,
let rn and sm denote the positions of the n solute and m solvent nuclei. For the form of
potential energy in Equation (2.1), we can identify terms involving only solute nuclei, those
involving only solvent nuclei, and those coupling the two. These terms are grouped into
potential energies Urr, Uss and Urs, respectively, so that

U(rn, sm) = Urr(r
n) + Urs(r

n, sm) + Uss(s
m). (2.9)

With this separation, we define ∆Gsol precisely as2

∆Gsol = −kBT ln
〈
e−βUrs

〉
Urr+Uss

(2.10)

Conceptually, we can break down the transfer into three physically distinct steps [92], shown
schematically in Figure 2.1. First, a cavity is carved into the solvent in the shape of the solute,
at free energy cost ∆Gcav. Second, the solute and the solvent are allowed to interact via
short-range dispersive forces, at free energy cost ∆GvdW. Finally, the solute’s charge density
is allowed to interact with and polarize the surrounding solvent, at free energy cost ∆Gpol.
Operationally, these steps correspond to splitting Urs(r

n, sm) into three terms,

Urs(r
n, sm) = Ucav(rn, sm) + UvdW(rn, sm) + Upol(r

n, sm). (2.11)

and then, exactly as in Equation (2.10), calculating the free energy difference that arises
from incorporating each successive term, yielding

∆Gcav = −kBT ln
〈
e−βUcav

〉
Urr+Uss

, (2.12)

∆GvdW = −kBT ln
〈
e−βUvdW

〉
Urr+Uss+Ucav

, (2.13)

∆Gpol = −kBT ln
〈
e−βUpol

〉
Urr+Uss+Ucav+UvdW

. (2.14)

2Strictly speaking, the average volume of the system depends upon whether the term Urs(r
n, sm) is or

is not included, so a small concentration correction must be added to ensure that both initial and final
states represent equal concentrations of the solute. The correction is kBT ln 〈V 〉Urr+Uss

/ 〈V 〉Urr+Urs+Uss
,

and vanishes as 〈V 〉 → ∞.
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q
∆Gcav ∆GvdW ∆Gpol

∆Gsol

Figure 2.1: Schematic of solvation free energy ∆Gsol, broken into three physically distinct
free energies: a free energy of cavitation, ∆Gcav, a free energy of dispersive solute-solvent
interactions, ∆GvdW, and a free energy of polarization, ∆Gpol.

These free energy differences are related by the equation

∆Gsol = ∆Gcav + ∆GvdW + ∆Gpol. (2.15)

In general, ∆Gcav is positive, whereas ∆GvdW and ∆Gpol are negative. The sign of ∆Gsol is
the simplest characterization of hydrophobicity. Solutes for which ∆Gsol > 0 are hydropho-
bic, since it takes positive reversible work to insert one solute molecule into the solvent,
whereas solutes for which ∆Gsol < 0 are hydrophilic3. Indeed, the experimentally measured
values of ∆Gsol of amino-acid side chains form the basis of the widely used Kyte-Doolittle
hydropathy scale for measuring the hydrophobic character of the twenty naturally occurring
amino acids [62].

The definitions of the various ∆G above include the difference in free energy owing to
internal motions of the solute. For example, a butane molecule dissolved in water is found
in a compact cis configuration slightly more often than in the gas phase [53]. We can remove
this complication by defining a configuration-dependent solvation free energy ∆Gsol(q

n) to
be the free energy of transferring the solute frozen into configuration qn from vacuum into
solution. Explicitly,

∆Gsol(q
n) = −kBT ln

〈
e−βUrs

n∏

i=1

δ(ri − qi)

〉

Urr+Uss

(2.16)

In general, for a large macromolecule, ∆Gsol(q
n) will have a non-trivial dependence on qn.

Hence, ∆Gsol(q
n) acts as an effective potential on the macromolecule that describes the

effect of the solvent on the molecule’s configurations. For purely hydrophobic polymers, for

3These criteria apply for a solute in bulk vapor or in bulk liquid. The issue is more subtle in the presence
of interfaces, as the recent work of Pat Shaffer and Phill Geissler has demonstrated (personal communication,
in preparation). For example, a surface-adsorbed ion has ∆Gsol < 0, so overall, the ion is “hydrophilic” (it
prefers the water to the vapor). However, from the point of view of bulk water, it appears hydrophobic, as
it is expelled towards the interface.
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example, ∆G(qn) is much lower when the polymer is collapsed into a globule than when it is
extended, which reflects the hydrophobic polymer’s tendency to adopt a compact shape when
in solution. Similarly, in the context of proteins, ∆Gsol(q

n) is much lower than otherwise for
configurations qn in which the protein’s hydrophobic residues are buried inside a globular core
and only the hydrophilic residues are exposed to the surrounding water. The configurational
dependence of ∆Gsol(q

n) thus captures the collective effects that lead to the hydrophobic
effect. Thermodynamically, understanding the hydrophobic effect means having a tractable
theory for estimating the configurational dependence of ∆Gsol(q

n).

2.2.1 Length-scale dependence of solvation free energies

We can estimate ∆Gsol analytically in several limits, where the essential physics of the
hydrophobic effect is transparent. Before proceeding, we introduce the simplifying concept
of an ideal solute, one that interacts with the solvent only by excluding solvent atoms from
its interior, denoted by V (rn), so that ∆GvdW = ∆Gpol = 0. More precisely,

Ucav(rn, sm) =

{
∞, any si in V (rn),

0, otherwise,
(2.17a)

UvdW(rn, sm) = 0, (2.17b)

Upol(r
n, sm) = 0. (2.17c)

Such solutes are strongly hydrophobic, and we can understand most aspects of the hy-
drophobic effect by focusing on ∆Gcav alone.

For a macroscopic solute of volume v and surface area A, ∆Gcav is dominated by pressure,
p, and surface tension, γ, so that

∆Gcav ≈ pv + γA. (2.18)

The surface tension is that of the liquid solvent with vacuum. For a liquid near its triple
point, such as water at ambient conditions (T = 298 K and p = 1 atm), it is essentially equal
to the liquid-vapor surface tension at saturation, γlv. Its value at 298 K in various common
units is [63]

γlv = 72.00 mJ/m2, (2.19a)

= 17.50 kBT/nm2, (2.19b)

= 43.36 kJ/mol/nm2, (2.19c)

= 103.6 cal/mol/Å2. (2.19d)

Microscopically, this high surface tension is due to large numbers of hydrogen-bonds being
broken at a liquid-vapor interface. That is, when a large solute is embedded in water, it
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is impossible for the hydrogen-bonding network of water to deform and accommodate the
presence of the solute without many such bonds being broken.

The surface tension of water decreases nearly linearly with increasing temperature essen-
tially up to the very near the critical point (Tc = 647 K). At the critical point, it is exactly
zero. Its temperature derivative at ambient conditions is

∂γlv
∂T

= −0.15 mJ/m2. (2.20)

Hence, ∆Gsol decreases with increasing temperature, so that macroscopic solutes are more
soluble in hot water than in cold water.

Owing to liquid water’s high surface tension, and the fact that 1 atm of pressure is
essentially equal to zero pressure at molecular scales, the surface tension term generally
overwhelms the pressure term for all but the largest common solutes. For example, for a
sphere of radius R at 1 atm pressure, the term γA exceeds pv when R . 2µm. Moreover,
the excluded volume v is nearly independent of solute configuration, so that most of the
configurational dependence of ∆Gsol(r

n) results from changes in surface area. For these two
reasons, we can safely ignore the pv term in subsequent discussions.

For nanoscopic solutes, ∆Gsol behaves differently. When v is tiny, the number of water
molecules inside it, N , will almost always be 0, only every so often be 1, and almost never
be any higher.4 Let p0 and p1 ≈ 1− p0 be the probabilities of observing 0 or 1 waters in v.
The average number of waters observed in this cavity is ρ`v, where ρ` ≈ 33.3 waters/nm3

is the number density of water molecules at ambient conditions. Hence, p1 ≈ ρ`v, so that
p0 ≈ 1− ρ`v. It follows from Equation (2.12) that

∆Gcav ≈ −kBT ln(1− ρ`v) ≈ kBTρ`v, (tiny v). (2.21)

Hence, for a tiny solute, the solvation free energy scales with excluded volume and temper-
ature, so small solutes are less soluble in hot water than in cold water. Physically, small
solutes, unlike large ones, can be accommodated within the existing hydrogen-bonding net-
work of water. The volume exclusion merely reduces the number of configurations available
to the surrounding water, so the solvation free energy is dominated by entropic considera-
tions.

The solutes where the above argument applies are impossibly tiny. For the argument to
work, we need ρ`v � 1, so that v � 30 Å3, the volume of a sphere of radius 1.9 Å. This
is roughly the solvent-excluding volume of a hydrogen atom. If we admit using additional
empirical information, we can treat somewhat larger solutes analytically, as follows.

Computer simulations of various liquids near their triple point have shown that small den-
sity fluctuations in them are Gaussian to an excellent approximation (Chapter 3 describes

4It is generally clear from context whether N is the total number of waters in the system or just the
number of waters inside the probe volume v.



CHAPTER 2. THEORIES OF SOLVATION 11

10−6

10−5

10−4

10−3

10−2

10−1

1

0 5 10 15 20 25 30

P
v
(N

)

N

10−6

10−5

10−4

10−3

10−2

10−1

1

0 5 10 15 20 25 30

P
v
(N

)

N

(a) (b)

Figure 2.2: (a) Probability Pv(N) of finding N water molecules inside spheres of radius 2.5 Å,
3.75 Å and 5.0 Å. After Ref. [53]. (b) Same, for a fluid of hard spheres of radius σ at number
density ρ = 0.5σ−3, with v a sphere of radius 1.0σ, 1.5σ and 2.0σ, respectively. Adapted
from Ref. [18].

methods to probe large fluctuations, where deviations from Gaussian behavior become ev-
ident). Indeed, Chandler showed that many approximate theories of liquid structure are
equivalent to assuming Gaussian statistics for small density fluctuations [11]. One way to
test this approximation, introduced by Hummer et al [53], is to measure the probability
of finding N water molecules inside a probe volume v, denoted by Pv(N). Similar mea-
surements have been made for a fluid of hard spheres [18] and for a fluid of Lennard-Jones
particles [46]. Figure 2.2 shows a representative set of probability distributions for spherical
volumes of various sizes, and corresponding Gaussian fits that confirm the accuracy of the
Gaussian approximation.

The moments of Pv(N) can be estimated analytically using only experimentally accessible
information. The mean, 〈N〉v, is given by

〈N〉v ≈ ρ`v, (2.22)
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and the variance, 〈(δN)2〉v is equal to σv, given by

σv =
〈
(δN)2

〉
v
≈
∫

r∈v

∫

r′∈v
〈δρ(r)δρ(r′)〉 . (2.23)

It can be shown [41] that the integrand, denoted by χ(r, r′), is trivially related to the pair
distribution function,5 g(r), by the equation

χ(r, r′) = 〈δρ(r)δρ(r′)〉 = ρ`δ(r− r′) + ρ2
` [g(|r− r′|)− 1]. (2.24)

The Gaussian model predicts that Pv(N) is well approximated by

Pv(N) ≈ 1√
2πσv

exp
[
−(N − 〈N〉v)2/2σv

]
. (2.25)

For small enough volumes, the Gaussian approximation to Pv(N) holds even at N = 0.
From Equation (2.12), we deduce that

∆Gcav = −kBT lnPv(0), (2.26)

so
∆Gcav ≈ kBT 〈N〉2v /2σv + kBT ln

√
2πσv. (2.27)

This analytical expression for ∆Gcav is surprisingly powerful and accurate. For example,
when the solvent is water, it correctly predicts the solvation free energies of spheres of up to
about 4 Å in radius, the potential of mean force between two methyl-sized cavities (including
an effective “hydrophobic bond” between the cavities stabilized by a single water molecule
between them) and the bias for the cis configuration of butane with respect to the trans
configuration in water [53].

We can approximate the right-hand side of Equation (2.27) further by noting that χ(r, r′)
is translationally invariant and local. As a result, when v is not too small, we may approxi-
mate

σv ≈
∫

r∈v

∫

r′
〈δρ(r)δρ(r′)〉 = v

∫

r

〈δρ(0)δρ(r)〉 = ρvχ, (2.28)

where χ = ∂ρ/∂βp is the unitless isothermal compressibility of water [41], related to the
unitful isothermal compressibility, χT = −(1/V )(∂V/∂P )T , by the relation χT = ρkBTχ. Its
value for water at ambient conditions is about 0.06. Using this approximation and neglecting
the typically small log-term in Equation (2.27), we obtain

∆Gcav ≈ kBT
ρ

2χ
v. (2.29)

5This is strictly the pair distribution function of oxygen nuclei, which is equal, to an excellent approxi-
mation, to the pair distribution function of scattering centers measured by X-ray diffraction [81].
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Figure 2.3: Solvation free energy per surface area for spherical cavities of radius R in SPC/E
water. After Ref. [49].

Quantitatively, the approximation is not too accurate, but qualitatively, it reveals that the
solvation free energies of small volumes, up to about 1 nm in size, scales with volume and
temperature, and arises primarily from entropic constraints on the surrounding solvent.

Considering the microscopic and macroscopic regimes just described, it must be the
case that the underlying physics of solvation depends significantly on the length scale of
the solutes. The solvation free energy of small solutes is proportional to temperature and
volume, while that of large solutes is proportional to surface area and surface tension (so it
decreases with temperature). Solutes of intermediate size will exhibit intermediate behavior.
This is indeed the case [12,49], as is shown in Figure 2.3.

The length scale at which the solvation physics crosses over from entropic considerations
to that of formation of liquid-vapor-like interfaces is about 1 nm. This is precisely the scale
at which several fundamental steps of biological processes, like folding and substrate binding,
take place. For instance, proteins are polymers made of amino acids, whose side chains have
dimensions between a few Angstroms and about 1 nm. Similarly, many common drugs are
small molecules of nanometric size that act by binding a complementary pocket on a protein
surface.
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The length-scale dependence of solvation free energies in Figure 2.3 is related to the
effective hydrophobic force of assembly. When a set of small solutes is dispersed in solution,
their total solvation free energy scales with their cumulative volume, whereas when they
aggregate, the solvation free energy scales like the area of the aggregate. The temperature
dependence of this force of assembly is somewhat surprising. The free energy of aggregation
increases with increasing temperature, since the isolated monomers are less soluble, whereas
the aggregate is more so. This is in contrast what would be expected if solvation free
energies of solutes of all sizes were proportional to surface area and surface tension. In that
case, assembly of small solutes would also be observed, since the total surface area would
then be reduced, but the free energy of aggregation, being proportional to surface tension,
would decrease with increasing temperature. An example where this difference is strikingly
visible is in protein folding. Proteins are observed to denature when heated, since at high
temperatures, disordered conformations are always favored. However, many proteins also
denature when cooled. This puzzling fact can be explained by noting that the hydrophobic
force of assembly decreases when the solvent is colder, and forming a hydrophobic core is
a key mechanism for proteins to fold. The unusual temperature dependence of assembly
can also quantitatively explain other puzzling experimental observations, such as the non-
monotonic temperature dependence of the critical concentration of amphiphilic monomers
above which micelles form in solution [71].

2.2.2 The role of solvent in hydrophobic collapse and assembly

When a hydrophobic polymer collapses, as well as when two hydrophobic solutes come
together, the solvent plays an important dynamical role beyond simply creating an effective
free energy surface for the solute’s degrees of freedom. In essence, aggregation and collapse
both involve a microscopic phase transition6 in the solvent: the individual monomers are
hydrated by accommodating them in cavities that form spontaneously in the solvent, but
the aggregate is embedded in a vapor-like region of the solvent. The barrier to nucleating
such a vapor-like region and its concomitant liquid-vapor interface can be high, and may in
fact be the highest free energy barrier to collapse or assembly.

Solvent-dominated free energy barriers have been observed explicitly in the collapse of
model hydrophobic polymers, as shown in the two examples of Figure 2.4. In both examples,
a model hydrophobic 12-mer with high bending resistance is embedded in a solvent, which
stabilizes a collapsed-globule conformation. The transition paths between the extended and
collapsed states are then examined, either by explicit sampling [7] or by constructing a min-
imum free energy path between the states.7 In one example, the solvent is represented by

6By “microscopic phase transition”, we mean a prominent bistability in the system’s free energy landscape.
Since the aggregate size is fixed, we cannot consider a thermodynamic limit for this transition, in which some
free energy derivative becomes discontinuous. As a result, this bistability is not a true phase transition.

7A minimum free energy path is a curve in a space of collective coordinates, such as the qK coordinates
of Section 2.1, that (a) connects two fixed points in this space (here, the extended and collapsed states of
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a coarse-grained model based on Lum-Chandler-Weeks theory (discussed in Section 4.4.4),
while in the second example, the water is modeled in atomistic detail. In both exam-
ples, a free energy surface is constructed by integrating out the small-length-scale density
fluctuations of the solvent, while retaining an explicit description of the large-length-scale
fluctuations. What is observed is that there are large free energy barriers along the solvent
coordinates in this reduced description, which are absent when the free energy surface is
further collapsed onto the solute coordinates alone. What this implies is that there is a
subset of solvent degrees of freedom that evolves at least as slowly as the solute degrees of
freedom. Hence, to capture the dynamics of hydrophobic collapse or assembly in these cases,
qualitatively if not quantitatively, it is essential to represent these slow solvent degrees of
freedom explicitly. A Langevin model for dynamics, like the one in Equation (2.7), where
all the solvent degrees of freedom have been integrated out will instead underestimate the
time scales for hydrophobic association and collapse by many orders of magnitude.

2.3 Lum-Chandler-Weeks theory

As discussed above, small-length-scale and large-length-scale solvent density fluctuations
have qualitatively different thermodynamics and kinetics. One way to build a theory that
describes solvation might therefore start by modeling these two kinds of density fluctuations
separately, then introduce an effective coupling between the two. This is precisely what Lum-
Chandler-Weeks theory (LCW) does [67, 68]. Our discussion of LCW theory here closely
follows the modern presentation found in Ref. [13], instead of that found in the original
LCW paper [68].

The aim of LCW theory is to describe the probability of observing any particular real-
ization of the solvent density field, ρ(r), in terms of an effective Hamiltonian. Orientational
effects, such as hydrogen bonding, are captured implicitly in this Hamiltonian. To begin, it
is useful to split the solvent density into a smooth part that varies slowly in space and time,
and a field of overlying fluctuations, as follows

ρ(r) = ρ`n(r) + δρ(r). (2.30)

In doing so, we imagine that n(r) captures the slow, large-length-scale features of the solvent
density, and that δρ(r) time-averages to near zero on a few-picosecond time scale.

This split is not unique, so there is not a 1-1 mapping from ρ(r) to n(r). However, we
can visualize a typical n(r) associated with ρ(r) by convoluting ρ(r) with a Gaussian of
width ξ comparable to a correlation length in water (about 3-4 Å at ambient conditions).
Two examples of this procedure are shown in Figure 2.5. In these systems, a slab of water
is prepared in coexistence with its vapor, and a hard-sphere solute is inserted in the slab’s

the polymer) and (b) is everywhere parallel to the average direction of low-temperature diffusive motion in
the reduced free energy landscape. It captures the dominant transition path between two states separated
by a free energy barrier.
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the coil to the collapsed globule is one where, initially, the radius
of gyration decreases, while the size of the largest bubble is still
essentially zero. In this regime, the solvent still wets the polymer
(i.e., ni is mostly 1 for cells occupied by the solute), and the free
energy hardly changes. When the radius of gyration becomes
small enough, however, a bubble starts to grow. Here, the free
energy increases sharply by about 9 kBT where it reaches a saddle
point at (U, Rg

2) ! (98, 23.5 l2). Beyond that saddle point, the
bubble grows spontaneously to a size that eventually envelopes
the fully collapsed globule. The height of the barrier only weakly
depends on chain stiffness because it is due primarily to solvent
reorganization.

A close examination of the free-energy landscape reveals a
small barrier of height 2 kBT at (U, Rg

2) ! (6.5, 70 l2). This feature,
not visible on the scale of the graph plotted in Fig. 3, separates
the coil from a more compact metastable intermediate. The
presence of these two states arises from a competition between
the entropy of the chain, which favors the coil state, and weak
depletion forces, which favor a more compact state. Weak
depletion forces are caused by the reduction in the volume from
which the solutes exclude the solvent, when solutes come to-
gether while still wet. The attraction between two small hydro-
phobic objects predominantly arises from this effect (7, 18, 19),
although its full description (with the characteristic oscillations
in potentials of mean force) requires a more accurate evaluation

of "!ex (vi) than Eq. 2. Whether evaluated to high accuracy or
approximately, this driving force is relatively small, and it is not
responsible for spontaneous assembly of hydrophobic units (20).
The free-energy difference is 30 kBT between the coil and the
fully collapsed globule, whereas it is only a few kBT between the
coil and the intermediate state. The strong driving force for the
collapse of the polymer comes from the emptying of cells (i.e.,
solvent cavitation or drying) and thus the demixing of the
hydrophobic units and water. The resulting stabilization follows
from the fact that the solvent is close to liquid–vapor equilibrium
so that the large length-scale interfacial free energy of the cavity
is far lower than the small length-scale entropic cost of main-
taining a wet state, #i "!ex (vi). Thus, nucleating the collapsed
hydrophobic chain involves the same physical effect that is
responsible for the crossover phenomenon discussed above in
reference to Fig. 1.

To judge the extent to which Rg
2 and U describe the pertinent

dynamics of the collapse, and are thus good reaction coordinates,
we have performed extensive transition path sampling of an
ensemble of trajectories, each of length 150 ps. Points taken from
these transition trajectories are shown in juxtaposition with the
free-energy surface in Fig. 3. Although ten times shorter than the
one illustrated in Fig. 2, the 150-ps trajectories are sufficiently
long to capture the mechanism of the collapse because 150 ps is
significantly longer than the time for a trajectory starting at the
dynamical bottleneck to commit to a basin of attraction. Fig. 3
shows that the flow through the bottleneck in this system is
primarily due to the solvent, and the solvent in this transition
state regime moves on the time scale of picoseconds. To identify
the bottleneck (i.e., transition-state surface), we have located the
configurations on each trajectory from which newly initiated
trajectories have equal probability of ending in the coil or globule
states. These points in configuration space are members of the
transition state ensemble (17, 21, 22). We project them onto Fig.
3, where it is seen that points in the transition state ensemble are
indeed close to the saddle point in the free-energy surface. Thus,
U and Rg

2 are the predominant reaction coordinates for this
system. The transition-state ensemble is slightly tilted in the (U,
Rg

2)-plane, showing that the larger the polymer, as measured by
its radius of gyration, the larger the size of the critical vapor
bubble. However, the scatter of the transition-state ensemble
from a line in that plane is notable, indicating that at least one
other variable in addition to U and Rg

2 plays a quantitative role
in the reaction coordinate.

The transition paths shown in Fig. 3 differ from the lowest
free-energy path, and the differences are generally larger than
kBT. This behavior shows that the polymer and the solvent move
on significantly different time scales when passing through and
moving beyond the dynamical bottleneck. After a vapor bubble
is nucleated, the polymer does not respond on the time scale at
which the bubble grows. In fact, by taking an artificially large
value for Ms (3,600) to accelerate the dynamics of the chain
relative to that of the solvent by a factor of 100, the projected
dynamical paths closely follow the lowest free-energy path.

Discussion
Trajectories of the hydrophobic collapse are generally parallel to
U as they pass over the transition state. This finding demon-
strates unambiguously that the dynamics of collapse of a hydro-
phobic polymer in water is dominated by the dynamics of water,
specifically the collective emptying of regions of space near a
nucleating cluster of hydrophobic species. Further, both the
solvent and chain remain out of equilibrium throughout the
collapse transition. Real hydrophobic molecules have some
affinity to water, and vice versa, because of ubiquitous van der
Waals interactions. The ideal hydrophobic chain considered
here, however, has no such property because it is composed
simply of hard spheres. Nevertheless, we expect our conclusions

Fig. 3. Contour plot of the free-energy landscape for the collapse of our
hydrophobic polymer, computed by Monte Carlo umbrella sampling (14),
using the weight functional exp{$"H[{nk}, {vi}] $ "V[{r#}] }, where the intra-
chain potential, V[{r#}], and the excluded volumes, vi[{r#}], are determined as
described in the caption to Fig. 2. The curves of constant free energy are drawn
as a function of the squared radius of gyration and the size of the largest
bubble in the system (see text). Neighboring lines are separated by 2.5 kBT.
Superimposed is a scatter plot (in black) of the harvested 150-ps trajectories
going from the coil to the globule state. The transition states are indicated in
green. The harvesting was performed with transition path sampling, making
8,400 moves in trajectory space, of which 75% were shooting and 25% were
shifting (17). We find that the plateau regime of the flux correlation function
is reached after 50–70 ps (16, 17), implying that the typical commitment time
for trajectories to pass over the barrier is on the order of 0.1 ns. Given this time
and the fact that the figure shows the free-energy barrier separating the
extended coil and compact globule states to be about 9 kBT, the half-life of the
extended chain is about 0.1 ns % exp(9) & 10$5 s.
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restrained to be empty, ensure that the reference distribution is
recovered in detail. Here, kBT denotes Boltzmann’s constant times
temperature T.

Defining the MFEP. We used the coarse-graining procedure to obtain
collective variables that describe the position of the hydrophobic
chain and the water density field. Specifically, let x ! (xc, w) be the
position vector of length n ! 3 " 12 # 3 " 3" N for the atomistic
representation of the entire system, where xc is the position vector
for the hydrophobes in the chain and w is the position vector for the
atoms in the water molecules. Then, z(x) ! (xc, P) is the vector of
length ! ! 3 " 12 # 48 " 48 " 56 for the collective variable
representation of the system, where the elements of P are defined
in Eq. 1.

The MFEP is a curve in the space of collective variables. It is
represented by z*(!), where ! ! 0 corresponds to the collapsed
chain and ! ! 1 corresponds to the extended chain. For interme-
diate values ! ! (0, 1), the MFEP obeys the condition

dz*i$!%

d!
parallel to !

j!1

!

Mij$z*$!%%
"F$z*$!%%

"zj
, [3]

where F(z) ! &#&1ln'(!
i!1$(zi & zi(x))) is the free-energy

surface defined in the collective variables, and

Mij$z% % exp*#F$z%+

& " !
k!1

n

mk
&1 "zi$x%

"xk

"zj$x%

"xk
#
i!1

!

$$zi ' zi$x%%$ . [4]

Here, angle brackets indicate equilibrium expectation values, #&1 !
kBT, and mk is the mass of the atom corresponding to coordinate
xk. The matrix Mij(z), which arises from projecting the dynamics of
the atomistic coordinates onto the collective variables (and, thus, in
general, curving the coordinate space) (3, 19), ensures that the
various collective variables evolve on a consistent time scale. As is
seen in Eq. 10, the matrix scales the relative diffusion coefficients
for the collective variables.

If the used collective variables are adequate to describe the
mechanism of the reaction (here, the hydrophobic collapse),
then it can be shown that the MFEP is the path of maximum
likelihood for reactive MD trajectories that are monitored in the
collective variables (3). For the current application, we checked
the adequacy of the collective variables a posteriori by running
MD trajectories that are initiated from the presumed rate-
limiting step along the MFEP (i.e., the configuration of maxi-
mum free energy) and verified that these trajectories led with
approximately equal probability to either the collapsed or ex-
tended configurations of the chain (see Hydrophobic Collapse of
a Hydrated Chain: ‘‘The Committor Function and a Proof of
Principle for Course-Graining’’).

String Method in Collective Variables. The string method yields the
MFEP by evolving a parameterized curve (i.e., a string) according
to the dynamics (3, 20)

"z*i$!, t%
"t % ' !

j!1

!

Mij$z*$! , t%%
"F$z*$! , t%%

"zj

( )$! , t%
"z*i$! , t%

"!
, [5]

where the term )(!, t)"z*i (!, t)/"! enforces the constraint that the
string remain parameterized by normalized arc length. The end-

points of the string evolve by steepest descent on the free-energy
surface,

"z*i $!, t%
"t % '

"F$z*$! , t%%
"zi

, [6]

for ! ! 0 and ! ! 1. These artificial dynamics of the string yield
the MFEP, which satisfies Eq. 3.

In practice, the string is discretized by using Nd configurations
of the system in the collective variable representation. The
dynamics in Eqs. 5 and 6 are then accomplished in a three-step
cycle, where (i) the endpoint configurations of the string are
evolved according to Eq. 6 and the rest of the configurations are
evolved according to the first term in Eq. 5, (ii) the string is
(optionally) smoothed, and (iii) the string is reparameterized to
maintain equidistance of the configurations in the discretization.
This cycle is repeated until the discretized version of Eq. 3 is
satisfied. Step i requires evaluation of the mean force elements
"F(z)/"zi and the tensor elements Mij(z) at each configuration.
These terms are obtained by using restrained atomistic MD
simulations of the sort illustrated for the solvent degrees of
freedom in Fig. 1C. The details of the string calculation are
provided in SI Text: ‘‘String Method in Collective Variables.’’

Hydrophobic Collapse of a Hydrated Chain
MFEP. Fig. 2 shows the MFEP for the hydrophobic collapse of the
hydrated chain. It was obtained by using the string method in the
collective variables for the chain atom positions and the grid-based
solvent density field. The converged MFEP was discretized by using
Nd ! 40 configurations of the system, and we shall hereafter refer
to these configurations by their index number, s ! 1, . . ., Nd. The
free-energy profile was obtained by integrating the projection of the
mean force along the MFEP, using

F*$!% % %
0

!

!F$z*$!,%% ! dz*$!,% . [7]

The resolution of F*(!) in Fig. 2 could be improved by employing
a larger Nd but at larger computational cost.

Fig. 2. The minimum free-energy path obtained by using the string method.
(Upper) The free-energy profile exhibits a single peak at configuration 22.
(Lower) The configurations of the path in the vicinity of the free-energy peak
are shown with configuration numbers indicated in white text.

Miller et al. PNAS & September 11, 2007 & vol. 104 & no. 37 & 14561
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Figure 2.4: (a) Free energy for a model hydrophobic polymer in a coarse-grained model of
water, as a function of radius of gyration, Rg (Å), and size of largest contiguous vapor-
like region, U (arbitrary units of volume). From Ref. [106]. The dots trace configurations
observed in representative hydrophobic collapse trajectories, with the transition state of each
one marked in green. The transition states involve the formation of a vapor bubble in the
liquid. (b) Free energy along minimum free energy path for a collapse of the same model
hydrophobic polymer, in explicit SPC/E water. The collective variables are the polymer
configurations and a coarse-grained solvent density. The barrier to collapse is dominated by
solvent motions, not solute motions. From Ref. [78].
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center. The field n(r) is essentially uniform in the liquid and the vapor regions, but capillary-
wave fluctuations are clearly observed at the slab’s edge and around the larger solute.

The n(r) field describes the solvent on a mesoscopic scale, where a region of space is either
liquid-like or vapor-like, with thin interfacial regions in between them. Such a behavior is
well modeled by a Landau-Ginzburg Hamiltonian,

HL[n(r)] =

∫

r

w(n(r), µ) +
m

2
|∇n(r)|2 . (2.31)

Here and throughout we use an abbreviated integration notation for clarity. The function
w(ρ/ρ`, µ) is the grand free energy density for the liquid solvent at a given density, ρ, and
chemical potential, µ, relative to that of the gas. It has two minima, at n = 0 and n = 1,
corresponding to vapor-like and liquid-like phases, with a large barrier between them. The
square-gradient term reflects the inability of the n(r) field to switch instantaneously from
liquid-like to vapor-like values. The value of m and the shape of the barrier in w(n, µ)
determine the shape and width of the interfacial region, as well as the effective surface
tension of the vapor-liquid interface [93].

In a region where n(r) is uniformly liquid-like, the field δρ(r) has Gaussian statistics,
as discussed previously. We assume that even in the non-uniform case, δρ(r) has Gaussian
statistics, although the fluctuation spectrum might depend on the field n(r). Hence, we have
a model Hamiltonian for this fluctuating field

HS[δρ(r);n(r)] =
kBT

2

∫

r

∫

r′
δρ(r)χ−1

(
r, r′;n(r)

)
δρ(r′), (2.32)

where χ−1
(
r, r′;n(r)

)
is defined by the relation

∫

r′
χ−1
(
r, r′;n(r)

)
χ
(
r′, r′′;n(r)

)
= δ(r− r′′), for all r, r′′, (2.33)

and χ
(
r, r′;n(r)

)
is, by this construction, the fluctuation spectrum of δρ(r) in the presence

of a particular configuration of the slowly-varying field,

χ
(
r, r′;n(r)

)
= 〈δρ(r)δρ(r′)〉[n(r)] . (2.34)

In LCW theory, this fluctuation spectrum is assumed to be modeled well by the following
formula, which is exact for uniform n(r) = 0 and n(r) = 1, and interpolates smoothly
between these two limits:

χ
(
r, r′;n(r)

)
≈ ρ`n(r)δ(r− r′) + ρ2

`n(r)[g(|r− r′|)− 1]n(r′). (2.35)

For clarity, we henceforth omit the dependence of χ(r, r′) on the field n(r).
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(a) (b)

Figure 2.5: Approximate n(r)-like fields derived from a full density field ρ(r) extracted from
an atomistically detailed simulation of water. A 60× 60× 60 Å3 slab of SPC/E water is set
up in a 60×60×70 Å3 periodic box and evolved in time. At a fixed time, an n(r)-like field is
constructed by convoluting the atomistic water density with a Gaussian of width 4 Å. Shown
is a cross-section of the density field in the presence of a sphere at the center of the slab
of radius (a) 2.5 Å, or (b) 10 Å (yellow outline). The bulk region of the liquid is essentially
smooth, but liquid-vapor interfaces are clearly seen at the slab edges and around the 10 Å
hard sphere.
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Finally, when there are large-length-scale inhomogeneities in the solvent density, there
arises an effective coupling between the small- and large-length-scale solvent densities. In
that case, the total Hamiltonian for the density fields n(r) and δρ(r) is

H[n(r), δρ(r)] = HL[n(r)] +HS[δρ(r);n(r)] +HI [n(r), δρ(r)], (2.36)

where

HI [n(r), δρ(r)] =

∫

r

∫

r′
[n(r)− 1]u(r, r′)δρ(r′) +Hnorm[n(r)]. (2.37)

Here, u(r, r′) is a short-ranged, translationally- and rotationally-invariant coupling strength,
discussed below in detail. The specific form is chosen so that HI [n(r), δρ(r)] is zero for the
uniform liquid n(r) = 1, and Hnorm[n(r)] is chosen so that

∫
Dδρ(r) e−βH[n(r),δρ(r)] = e−βHL[n(r)]. (2.38)

It can be shown that up to an irrelevant additive constant, Hnorm[n(r)] is given by the
equation

Hnorm[n(r)] =
kBT

2

∫

r

∫

r′

∫

s

∫

s′
[n(r)− 1]βu(r, s)χ(s, s′)βu(s′, r′)[n(r′)− 1]. (2.39)

These and other derivations are shown explicitly in Chapter 4.
The physical origin of this coupling has been worked out rigorously by Weeks and cowork-

ers [114, 118, 120–122] for simple liquids in terms of “unbalancing forces”, as explained in
detail in Appendix A. Physically, solvent molecules deep in the bulk liquid are attracted
equally in all directions, so they experience zero net force, but particles near a liquid-vapor
interface feel an unbalanced attraction towards the bulk, as shown in Figure 2.6. When
the total density is divided into slowly and quickly varying portions, the unbalanced attrac-
tions between the slowly varying portions give rise to the square-gradient term in Equa-
tion (2.31), and the remaining coupling to the quickly varying field δρ(r) gives rise to the
term HI [n(r), δρ(r)]. The coupling strength u(r, r′) describes the short-range attractions
between solvent molecules, and the results of LCW theory are only appreciably sensitive to
the energy and length scale of this attraction, not its exact form. To bring out these consid-
erations explicitly, it is useful to rewrite the coupling in terms of an unbalancing potential,
φ(r), given by

φ(r) = −2aρ`[n(r)− 1]. (2.40)

Here, the “smearing” overbar operator smooths out the field n(r) over a few Angstroms, the
range of the coupling strength u(r, r′), and the parameter a characterizes the strength of the
coupling. Notice that φ(r) depends on n(r), but we will generally omit this dependence for
clarity. With this potential, the interaction Hamiltonian can be written as

HI [n(r), δρ(r)] =

∫

r

φ(r)δρ(r) +Hnorm[n(r)], (2.41)
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(a)

(b)

x

φ(x)

n(x)

Figure 2.6: (a) Around a density inhomogeneity, such as near a hard wall (grey), solvent
molecules (blue disks) experience unbalanced attractions, which result in effective forces
(red arrows) towards higher density regions. (b) Such forces can be modeled by coupling an
unbalancing potential φ(r) (solid), given by Equation (2.40), to the solvent density (dashes).
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with

Hnorm[n(r)] =
kBT

2

∫

r

∫

r′
φ(r)χ(r, r′)φ(r′). (2.42)

Since the formal derivation of the unbalancing potential coupling doesn’t extend to complex
molecular liquids like water, the coupling shown here is to be regarded as a phenomenological
model for the physically justified unbalancing forces that we expect are common to all
cohesive liquids. The parameter a and the effect of the smearing operator n(r) are chosen
either on physical grounds or to fit the results of a representative set of LCW calculations
to results from atomistically detailed simulations.

The three energy terms discussed above, characterizing large- and small-length-scale den-
sity fluctuations and their coupling, form the basis of LCW theory. They describe the free
energy cost of setting up a particular configuration of the slowly-varying density field n(r)
and the quickly-varying field δρ(r). For future reference, we group all the terms in a single
equation,

H[n(r), δρ(r)] =

∫

r

w(n(r), µ) +
m

2
|∇n(r)|2 (= HL[n(r)])

+
kBT

2

∫

r

∫

r′
δρ(r)χ−1(r, r′;n(r))δρ(r′) (= HS[δρ(r);n(r)]) (2.43)

+

∫

r

φ(r)δρ(r) +Hnorm[n(r)] (= HI [n(r), δρ(r)]),

where φ(r) is given in Equation (2.40) and χ(r, r′;n(r)) is given by Equation (2.24). The
Hamiltonian is built so that when the field δρ(r) is thermally averaged, the resulting effective
Hamiltonian is HL[n(r)] (see Equation (2.38)).

Chandler has shown [11] that the presence of an ideal solute that excludes solvent from
a region v can be effectively modeled as the constraint ρ`n(r) + δρ(r) = 0 for all points
r in v. When the field δρ(r) is thermally averaged subject to this constraint an effective
Hamiltonian Heff[n(r)] results, as follows

e−βHeff[n(r)] =

∫
Dδρ(r) e−βH[n(r),δρ(r)]

∏

r∈v
δ
(
ρ`n(r) + δρ(r)

)
. (2.44)

Since the Hamiltonian H[n(r), δρ(r)] is quadratic in δρ(r), the integral can be performed
analytically, as shown in Chapter 4. The result is

Heff[n(r)] = HL[n(r)] +
kBT

2
ln det(2πχv)

+
kBT

2

∫

r∈v

∫

r′∈v

[
ρ`n(r)−

∫

s

χ(r, s)βφ(s)

]

χ−1
v (r, r′)

[
ρ`n(r′)−

∫

s′
χ(r′, s′)βφ(s′)

]
, (2.45)
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where χ−1
v (r, r′) is the operator that satisfies

∫

r′′∈v
χ−1
v (r, r′′)χ(r′′, r′) = δ(r− r′), for all r, r′ in v. (2.46)

Equation (2.45) should be compared to the Gaussian model of Equation (2.27). The expres-
sion in square brackets is the linear response expression for the average solvent density at a
point in the presence of the external field φ(r), so its integral over the volume v is the average
number of solvent particles in v. The last two terms of Equation (2.45) are thus revealed to
be the multi-variable generalization of the Gaussian model expression of Equation (2.27).

The original LCW theory [68] is a mean field theory solution to Equation (2.45), as
described in Appendix A. If the mean-field approximation is omitted, then Equation (2.45)
encodes valuable information about the energetics of large-length-scale fluctuations, as first
observed by Ten Wolde, Sun and Chandler [107].

Using the LCW Hamiltonian, the values of interesting observables can be immediately
calculated. For example, the solvation free energy of an ideal solute that excludes solvent
from volume v is given by

∆Gsol = −kBT ln
〈
e−β(Heff[n(r)]−HL[n(r)])

〉
HL
. (2.47)

For small solutes, where the n(r) = 1 configuration dominates the thermal average, this for-
mula reverts to the Gaussian model of small-solute solvation, Equation (2.27). Conversely,
for large solutes, the field n(r) is most likely 0 inside the solute and 1 outside, and the sol-
vation free energy is dominated by the interfacial energetics, captured by the term HL[n(r)].
The theory provides a physically sound interpolation between the small- and large-solute
limits, without restrictions to simple geometries like spheres. In fact, LCW theory was the
first quantitative theory of solvation to possess all of these attributes.

Another interesting observable is the average solvent density at a point r, shown in
Chapter 4 to be

〈ρ(r)〉 =

〈
ρ`n(r)−

∫

r′∈v

∫

s∈v
χ(r, r′)χ−1

v (r′, s)

[
ρ`n(s)−

∫

s′
χ(s, s′)βφ(s′)

]〉

Heff

. (2.48)

For large solutes, the mean density is depleted just outside the solute, as would be expected
from the entropy of capillary waves on the liquid-vapor interface around such solutes. When
additional solute-solvent interactions are considered, this depletion layer disappears [48].

LCW theory is flexible enough to encompass microscopic phase transitions, since there
is no a priori reason why Heff[n(r)] should not have more than one prominent minimum. As
such, it captures the dewetting phenomena that play a critical role in assembly of model
hydrophobic plates [51, 115], and the collapse of model hydrophobic polymers [78, 106], as
discussed above.

Since LCW theory captures all of these important solvation phenomena, it is an attractive
candidate for modeling solvation in more complicated contexts, such as protein folding,
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drug discovery and self-assembly, where treating solvation too crudely is inappropriate and
treating it explicitly is too expensive to be practical. A principal thrust of this thesis is to
construct a tractable, efficient theory of solvation based on LCW ideas, which may eventually
be used in these contexts.
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Chapter 3

Molecular-scale probes for solvent
density fluctuations

In this chapter, we develop tools to probe solvent density fluctuations in computer sim-
ulations of water, and discuss the implications of the results we find. In previous work,
such density fluctuations have been probed in Lennard-Jones fluids and hard-sphere fluids
using Monte Carlo simulations and umbrella sampling [18, 46]. When the solvent is water,
simulations of equal statistical value are orders of magnitude more expensive to perform, so
it’s important to distribute the computational effort over many computers. In this context,
the straightforward methodology used in Refs. [18, 46] becomes impractical. An important
objective of this chapter is to develop practical alternatives [84,85].

The main tool we use for probing solvent density fluctuations are water number distribu-
tions, denoted Pv(N), which measure the probability of finding N water molecules in a probe
volume v. These are the distributions that, for small v, were examined by Hummer et al [53]
and discussed in Section 2.2.1. When v is large, the distributions are qualitatively different:
for N significantly below 〈N〉v, the distributions deviate from the Gaussian behavior that
occurs around the mean value. These deviations, or “fat tails”, belie the formation of a va-
por bubble inside v, as it is much easier to grow this vapor bubble than it is to isotropically
rarify the bulk liquid. When v is located near a hydrophobic object, the fat tails appear
at N much closer to 〈N〉v. This difference reflects the presence of a preformed liquid-vapor
interface around the hydrophobic object, which can simply be enlarged to encompass v and
evacuate the water molecules it contains. The consequences of this observation are appar-
ent when two hydrophobic objects are brought close together. Water number distributions
between two model hydrophobic plates are bistable, as anticipated by LCW theory. One
stable state is a “wet” state, where the interplate region is filled with water, and the other is
a corresponding “dry” state. Such bistabilities are present in more realistic systems, such as
nearby dimers of the protein melittin, the main component of bee venom. Melittin dimers
have a large hydrophobic patch that mediates assembly into tetramers, as has been observed
in dynamical simulations [64]. Mutations to this protein affect the dewetting transition in
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observable ways.
The remainder of this chapter is devoted to extensions of the methods we develop to

probe density fluctuations. First, to further test whether small fluctuations in water and
other liquids are truly Gaussian, we develop tools to probe the distribution functions for
the Fourier components of the solvent density field. These tools are generally applicable in
other contexts. Second, we develop tools to study fluctuations of the liquid-vapor interface.
Our efforts are motivated by a recent development in identifying instantaneous liquid-vapor
interfaces [125]. In Chapter 6, we use the tools we develop here to compute the potential of
mean force for progressively pulling one water molecule out of the bulk liquid, an important
object in water evaporation. These tools are also generally applicable, for instance, to study
the driving forces for ions to move towards or away from liquid-vapor interfaces [59,82,87].

3.1 Umbrella sampling

In studying the thermodynamics of a system, many quantities of interest, including probabil-
ity density functions, may be expressed as thermal averages of an observable. These averages
may be estimated through sampling, as follows. A set of M statistically independent con-
figurations of the system are first generated with a probability given by their Boltzmann
weight [34], with the mth such configuration denoted by RN

m. The thermal average of an
observable A(RN) is then estimated as

〈A〉 ≈ 1

M

M∑

m=1

A(RN
m). (3.1)

The statistical error associated with this estimate is small if the configurations that dominate
the Boltzmann ensemble also have values of A that are close to 〈A〉, but is much larger if
the important configurations are badly sampled.

One common observable that is hard to estimate in this manner is the distribution func-
tion for A, P (A), defined as

P (A) =
〈
δ(A(RN)− A)

〉
. (3.2)

Practically, it is more convenient to bin this probability distribution, i.e., measure its integral
over small, consecutive ranges of values of width ∆A. When doing this, the observable being
estimated is

P (A)∆A ≈
〈
h∆A(A(RN)− A)

〉
, (3.3)

where

h∆A(x) =

{
1, −∆A/2 < x < +∆A/2,

0, otherwise.
(3.4)

When P (A)∆A is exponentially small, the straightforward sampling estimate is extremely
unreliable, because a tiny number is being estimated as the average of a large number of 0s
and an exponentially small number of 1s.
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Umbrella sampling, known as importance sampling in the general context of Monte Carlo
integration, is a technique to avoid the problems of rare but important configurations. The
key idea is to draw samples from a distribution that is not the Boltzmann distribution, but
where the important configurations are well-represented, and then weighing any averages to
recover Boltzmann statistics. Formally, this procedure corresponds to the trivial identity

〈A〉U =

∫
dRN e−βU(RN )A(RN)∫

dRN e−βU(RN )
(3.5a)

=

∫
dRN e−βU(RN )−β∆U(RN )A(RN)eβ∆U(RN )

∫
dRN e−βU(RN )−β∆U(RN )

/∫
dRN e−βU(RN )−β∆U(RN )e+β∆U(RN )

∫
dRN e−βU(RN )−β∆U(RN )

(3.5b)

=

〈
Aeβ∆U

〉
U+∆U

〈eβ∆U〉U+∆U

. (3.5c)

In other words, sampling is performed in the Boltzmann ensemble of a system with potential
energy U + ∆U instead of U . The ratio of the thermal averages of Aeβ∆U and eβ∆U yields
the thermal average of A in the original Boltzmann ensemble. With an appropriate choice
of ∆U , the configurations that dominate the average of A can be sampled well.

The above discussion may be generalized substantially. Thermal averages may be esti-
mated with great precision by collecting samples in many different but related ensembles,
and then combining all the information in an optimal way. The resulting algorithm, the
Multi-state Bennett Acceptance Ratio (MBAR) [97], is very powerful and is critical to the
rest of this thesis, so we discuss it in detail below. It generalizes the closely related Weighted
Histogram Analysis Method (WHAM) [32]. Both algorithms also provide an optimal esti-
mate of the free energy difference between the sampled ensembles.

The derivation of MBAR that we present below differs substantially from the original
presentation and is inspired by similar derivations of related methods [2, 60, 96]. To the
author’s knowledge, however, it is not available in this form in the literature.

3.1.1 Maximum-likelihood derivation of MBAR equations

We begin with a Boltzmann ensemble, called the “unbiased” ensemble, defined by a potential
energy U , whose partition function is Z and related free energy is F . These quantities are
given by

Z =

∫
dRN exp[−βU(RN)], (3.6)

F = −kBT lnZ. (3.7)

We then have K biasing potentials, also called umbrella potentials, labeled V1 through Vk.
For each biasing potential Vk, we collect Nk statistically independent samples, labeled RN

k,n,
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that are Boltzmann-weighted with the potential U + Vk. The partition function, Zk, and
associated free energy, Fk, of this ensemble are given by

Zk =

∫
dRN exp[−βU(RN)− βVk(RN)], (3.8)

Fk = −kBT lnZk, (3.9)

We denote by ∆Fk the free energy difference between this ensemble and the unbiased en-
semble, given by

∆Fk = Fk − F = kBT ln(Z/Zk). (3.10)

As in any sampling method, a model for the full probability density of the unbiased
ensemble, P (RN), is constructed as a sum of Dirac δ-functions centered at each of the
N1 + · · ·+NK samples observed, with unknown weights pj,n. In other words,

P (RN) ≈ Z−1

K∑

j=1

Nj∑

n=1

pj,nδ(R
N −RN

j,n). (3.11)

The probability density of the kth biased ensemble, Pk(R
N), is then given by

Pk(R
N) ≈ Z−1

k

K∑

j=1

Nj∑

n=1

pj,ne
−βVk(RN )δ(RN −RN

j,n). (3.12)

The normalization constants Z and Zk are given by

Z =
K∑

j=1

Nj∑

n=1

pj,n, (3.13a)

Zk =
K∑

j=1

Nj∑

n=1

pj,ne
−βVk(RN

j,n). (3.13b)

Up to an undetermined measure factor, these normalization constants are the best estimates
of the partition functions Z and Zk corresponding to the sample weights {pj,n}, so that
Z/Zk ≈ Z/Zk. The choice of weights {pj,n} parametrizes the model for the underlying
probability distributions. Given the observed data, we can calculate the likelihood L of
having observed that data by the relation

L =
K∏

j=1

[
Nk∏

n=1

Pj(R
N
j,n)

]
. (3.14)

The data has a finite probability of being observed no matter what the model is. If we
regard the model as a random variable for which we have no preconceived notion, then Bayes’
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theorem tells us that the probability of observing the data given the model is proportional
to the probability of the model being correct given the observed data. Hence, the choice
of weights that maximizes the former, i.e., maximizes L, is also the most likely model that
explains the data.

We thus proceed to find the choice of weights {pj,n} that maximizes L, or equivalently,
that maximizes lnL. We have

lnL =
K∑

j=1

Nk∑

n=1

ln(pj,ne
−βVj(RN

j,n)/Zj) + const. (3.15)

Setting ∂ lnL/∂pj,n = 0 yields the equation

1

pj,n
−

K∑

k=1

Nk
e−βVk(RN

j,n)

Zk
= 0. (3.16)

Solving for pj,n and dividing throughout by Z yields

pj,n
Z =

1∑K
k=1Nk exp

[
β∆Fk − βVk(RN

j,n)
] . (3.17)

Hence, an estimate of the free energy difference between the biased ensembles and the unbi-
ased ensemble is enough to estimate the probability of every observed sample in the unbiased
ensemble. Using Equation (3.13), we find the following set of K equations that relate these
free energies to each other,

∆Fi = −kBT ln
K∑

j=1

Nj∑

n=1

exp[−βVi(RN
j,n)]

∑K
k=1Nk exp

[
β∆Fk − βVk(RN

j,n)
] . (3.18)

These relations are known as the MBAR equations [97], and encompass the WHAM equations
of Ref. [32]. They can be solved by self-consistent iteration, and are guaranteed to converge
regardless of what starting guess is used for {∆Fk}. The solution is defined up to an additive
constant, which can be fixed in many different ways. A clean, symmetric choice is to demand
that Z be 1.

Once the free energy differences {∆Fk} have been determined, the probability of observ-
ing each sample in the unbiased ensemble can be determined using Equation (3.17). The
MBAR estimate of 〈A〉 is then given by

〈A〉 ≈ Z−1

K∑

j=1

Nj∑

n=1

pj,nA(RN
j,n). (3.19)
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This is the procedure we use for estimating all mean values and observable distributions in
the rest of the thesis. The umbrellas we use are typically of the form

Vk(R
N) =

κ

2
(A(RN)− Ak)2. (3.20)

With such an umbrella potential, we can sample well configurations with values of A clustered
within about 1/

√
βκ of a mean value that is close to Ak.

Since MBAR is a maximum-likelihood estimator for free energy differences and thermal
averages, it has a number of advantages over most other estimators. In particular, it is the
asymptotically unbiased estimator with smallest statistical uncertainty [97]. For this reason,
it is preferable to use MBAR to any other method (such as Equation (2.5b)) when estimating
free energy differences between many ensembles. Indeed, when only two umbrellas are used,
MBAR reduces to the Bennett Acceptance Ratio (BAR) estimator for the free energy dif-
ference between the two biased ensembles, for which the optimality proof is transparent [4].
The performance of MBAR depends on the amount of “overlap” between the K ensembles.
Two ensembles A and B “overlap” if the probability of observing a configuration in A is
not too different from that of observing the configuration in B. The free energy difference
between A and B is only well estimated if there is a sequence of ensemble between A and B,
each of which overlaps with the previous and subsequent ensembles.

We now turn to two important details: sample correlation and error bar estimation. In
general, it is not known how to draw statistically independent samples from a Boltzmann
distribution. Instead, computer simulations use either Monte Carlo procedures, such as
Metropolis sampling [76], or molecular dynamics, i.e., Newtonian evolution of the system’s
equations of motion [34]. In both cases, consecutive samples are highly correlated. The
correlation can be quantified by a correlation time τk, with units of samples, of some rep-
resentative observable, such as the value of the umbrella potential Vk(R

N). Accounting for
this correlation results in a simple modification of the MBAR equations [32], namely

pj,n
Z

=
1/gj∑K

k=1 Nk/gk exp
[
β∆Fk − βVk(RN

j,n)
] , (3.21a)

∆Fi = −kBT ln
K∑

j=1

1

Nj

Nj∑

n=1

Nj/gj exp[−βVi(RN
j,n)]

∑K
k=1Nk/gk exp

[
β∆Fk − βVk(RN

j,n)
] , (3.21b)

where gk is the so-called statistical inefficiency of the sampling in ensemble k, defined as

gk = 1 + 2τk. (3.22)

The precise value of gk depends on the observable used, but ratios of these statistical ineffi-
ciencies, the only quantities that appear in Equation (3.21), are more robust.

In principle, an alternative strategy would be to subsample the collected data in each
umbrella k by keeping only one of every gk samples. These samples are then independent,
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so Equations (3.17) and (3.18) can be used directly. Moreover, in the large-sample limit, the
likelihood L (Equation (3.14)) is approximately Gaussian, so error bars may be estimated
directly by computing the Hessian of L with respect to the weights {pj,n}. This is the
approach taken in Ref. [97]. We have found this approach unsatisfactory because of the
difficulty of estimating gk reliably, which results in underestimation of the error bars. When
MBAR is applied independently in this way to two halves of the sampled data, the estimates
for thermal averages in each half differ by much more than would be expected from the size
of the error bar estimates. Instead, we have chosen a more straightforward and conservative
method for estimating errors. We divide our sample data into a number of blocks (usually
6 to 8), each of which is reasonably independent, then apply MBAR independently on each
set, and then calculating the mean and standard error of the independent MBAR estimates
of thermal averages. Unlike the direct error bar estimate, this procedure does yield consistent
error estimates when the data is split into two halves and analyzed independently.

3.2 Probing density fluctuations in real space

In this section, we describe a method for computing water number distributions, i.e., Pv(N).
For concreteness, we define the position of a water molecule to be the position of its oxygen
atom, which nearly coincides with its center of mass and its center of electron density. Let
O be the subset of system atoms that are water oxygen atoms. Given a configuration RN ,
we define the observable N(RN) by the relation

N(RN) =
∑

i∈O

∫

r∈v
δ(Ri − r). (3.23)

It is useful to recast this expression in terms of an indicator function h(r) defined as

h(r) =

∫

r′∈v
δ(r′ − r). (3.24)

This function takes the value 1 when r is in v, and 0 otherwise. With this notation, we have

N(RN) =
∑

i∈O
h(ri). (3.25)

In principle, we could use MBAR to calculate Pv(N), using umbrellas of the form

Vk(R
N) =

κ

2
(N(RN)−Nk)

2. (3.26)

This procedure is straightforward to implement in a Monte Carlo simulation, where only
Vk(R

N) needs to be computed, and is essentially the method used in Refs. [18, 46]. How-
ever, Monte Carlo simulations are hard to parallelize, since the Metropolis algorithm that
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underpins them is inherently serial.1 An enormous community effort, on the other hand, has
gone into implementing parallelized molecular dynamics (MD) codes, of which NAMD [88],
LAMMPS [89] and GROMACS [44] are three of the most widely used.

In MD, system configurations are generated by propagating configurations according to
the forces implied by the system’s potential energy. We thus need to calculate ∇jVk(R

N) for
all atoms j in the system. This quantity is proportional to ∇jN(RN), given by the following
integral over the surface, ∂v, of the probe volume,

∇jN(RN) =

{∫
∂v
−δ(Rj − r)dA, j ∈ O,

0, otherwise.
(3.27)

The forces implied by the umbrella potential in Equation (3.26) are thus impulsive, and so
cannot be treated by most existing MD codes. We now describe an alternative method that
circumvents this issue.

3.2.1 Basic method: cubic cavities

We first construct an observable Ñ(RN) that correlates closely with N(RN) but is a smooth,
continuous function of particle positions. To this end, we replace the Dirac δ-function in
Equation (3.24) by a finite-width approximation, denoted by Φ(r), resulting in a smooth
indicator function, h̃(r). We obtain

h̃(r) =

∫

r′∈v
Φ(r′ − r), (3.28)

Ñ(rN) =
∑

i∈O
h̃(ri). (3.29)

To be useful, the smearing function Φ(r) must satisfy several conditions. It must be normal-
ized, so

∫
r

Φ(r) = 1. For prescribed volumes v, we must be able to quickly and analytically
calculate the integrals in Equation (3.29), as well as their gradients with respect to atomic
positions. In order to correlate strongly with N(RN), Φ(r) must be sharply localized. Fi-
nally, for the computational cost of calculating Ñ(RN) to scale with the size of v and not
with the size of the entire system, Φ(r) should have finite support.

For the simplest case where v is a cube, all of the above conditions are satisfied when
Φ(r) is a product of truncated Gaussians along each coordinate. Explicitly, our choice is

Φ(r) = φ(x)φ(y)φ(z), (3.30)

where r = (x, y, z) and

φ(α) = k−1
[
e−α

2/2σ2 − e−α2
c/2σ

2]
Θ(αc − |α|). (3.31)

1Parallelization is possible and beneficial in certain restricted cases, e.g., Ref. [33].
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Here, σ is the width of the truncated Gaussian, αc is distance from the mean at which the
Gaussian is truncated, Θ is the Heaviside step function, and the normalization constant k
has the value

√
2πσ2 erf(αc/

√
2σ2)− 2αc exp(−α2

c/2σ
2). The generic label α denotes one of

the coordinate axes, x, y or z. We generalize to different coordinate systems in Section 3.2.6.
For a cubic probe volume, we need to calculate the integral of φ(α − αi) in the range

[αmin, αmax], where αi is the α-coordinate of atom i. We denote this integral by h̃α(αi), which
is a smooth indicator function of whether the α-coordinate of particle i is within the range
of α values that define the probe volume. Explicitly,

h̃α(αi) =

∫ αmax

αmin

dαφ(α− αi), (3.32)

so

h̃α(αi) =

[
k1 erf

(
αmax − αi√

2σ2

)
− k2(αmax − αi)−

1

2

]
Θ(αc − |αmax − αi|)

+

[
k1 erf

(
αi − αmin√

2σ2

)
− k2(αi − αmin)− 1

2

]
Θ(αc − |αi − αmin|)

+ Θ

(
αc +

1

2
(αmax − αmin)−

∣∣∣∣αi −
1

2
(αmin + αmax)

∣∣∣∣
)
, (3.33)

where k1 = k−1
√
πσ2/2 and k2 = k−1 exp(−α2

c/2σ
2). The derivative of h̃α(αi) with respect

to αi is particularly simple, namely,

h̃′α(αi) = −[φ(αmax − αi)− φ(αmin − αi)]. (3.34)

With these functions, the full indicator function h̃(r) is given by

h̃(r) = h̃x(x)h̃y(y)h̃z(z), (3.35)

where the boundaries of the cube define the ranges of integration along each coordinate. The
value of the observable Ñ(RN) follows from Equation (3.29). Its gradient with respect to
the position of atom j is

∇jÑ(RN) =

{
∇h̃(rj), j ∈ O,
0, otherwise,

(3.36)

where

∇h̃(r) =



h̃′x(x)h̃y(y)h̃z(z)

h̃x(x)h̃′y(y)h̃z(z)

h̃x(x)h̃y(y)h̃′z(z)


 . (3.37)

This gradient is a finite and smooth function of particle coordinates, unlike the gradient in
Equation (3.27). As a result, Ñ(RN) can be used to define an umbrella potential in MD
simulations.
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To determine Pv(N) in a particular context, we employ umbrella potentials of the form

Vk(R
N) =

κ

2
(Ñ(RN)− Ñk)

2, (3.38)

which are incorporated into MD simulations as an additional force on each atom j given by

−∇jVk(R
N) = −κ(Ñ(RN)− Ñk)∇jÑ(RN). (3.39)

In constant pressure simulations, these forces also contribute to the calculation of the
virial [85].

Arbitrarily-shaped probe volumes v can be approximated by a union of small, disjoint
cubic cavities. We make use of this simple extension below when looking a density fluctu-
ations in melittin. The details of this and other extensions to cavities of general shape are
discussed in Section 3.2.6.

We have implemented the calculation of Ñ(RN) in LAMMPS, NAMD and GROMACS.
The evaluation of the right-hand side of Equation (3.29) is well-suited to parallelization.
In particular, we exploit a design decision of all MD codes we have used, whereby each
computational node “owns” a certain subset of the system’s atoms. At all times, the positions
of those atoms are available to the owning node without inter-node communication. Thus,
in each node, we compute a partial sum of indicator functions h̃(ri) for particles i that
are both in O and owned by the node. Then, using a single global reduce operation, we
add up these partial sums and distribute the result, the value of Ñ(RN), to all the nodes.
The calculation of umbrella forces on each atom then proceeds independently in each node.
Figure 3.1 shows that our NAMD code to calculate Ñ(RN) scales nearly perfectly with the
number of computational nodes. Our LAMMPS and GROMACS codes perform similarly.

Typically, we prepare an initial set of simulations with umbrellas at Ñk = 0, 4, 8, . . .
up to about Ñk ≈ 1.2ρv, with κ = kBT/2

2, so that there is sufficient overlap between
consecutive umbrellas. The MBAR equations (3.18) are then solved self-consistently. Finally,
the distribution Pv(N), recast in the form

Pv(N) =
〈
δN,N(RN )

〉
, (3.40)

is estimated from all the sampled data using Equation (3.19). If it becomes clear that there
are insufficient statistics for a given N , additional umbrellas are employed. Empirically,
we have found that setting αc = 0.3 Å and σ = 0.1 Å results in forces small enough to be
handled by standard MD codes, and a correlation between N and Ñ that is strong enough
for the umbrella runs to effectively sample configurations with all values of N . For some
of the results below, the procedure we used was sometimes slightly different, but always in
inconsequential ways (e.g., using αc = 0.2 Å). Since these discrepancies don’t influence the
results, we don’t state them explicitly.

One important consideration in all of the following computations regards the ensemble
that is used. In order to allow the probe volume v to be fully evacuated, there must be
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Figure 3.1: Performance of Ñ(RN) umbrella code, as implemented in NAMD. The test
system is has nearly 4000 water molecules (modeled with the TIP3P potential) forming a
50×50×50 Å3 slab in a 50×50×80 Å3 periodic box. The probe volume v is a 10×10×10 Å3

cube in the center of the water slab. Each MD step evolves the system dynamics over 2 fs.
A typical sampling run consists of about 1 ns of data, or 500, 000 MD steps. Perfect scaling
would be achieved if the overhead of nodes communicating with each other were negligible.
NAMD is built to scale close to perfectly, and our code to calculate Ñ(RN) leaves this scaling
behavior nearly intact.
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room in the rest of the simulation box to accommodate the expelled waters. In a constant
pressure simulation, the simulation box will automatically grow (at free energy cost P∆V )
to accommodate the expelled waters. Implementing a constant pressure MD simulation,
however, is technically challenging2 and rife with subtle complications (for example, see
Refs. [54,56,66,74,126]). In preferring simplicity, we instead perform most of our calculations
in a fixed-volume simulation, with the important addition of a thin vapor layer in the box.
This vapor layer ensures that the system’s effective pressure is equal to the vapor pressure
of water at the simulated temperature. Like atmospheric pressure, the vapor pressure is
negligible at the molecular scale. The vapor layer, however, is large enough to accommodate
any expelled water molecules, ensuring that the system remains at its vapor pressure.

Our usual simulation setup, shown in Figure 3.2, resembles a thick slab of water, parallel
to the xy-plane, that is periodically replicated in space. Between the slabs, we place a fixed
wall of purely repulsive particles, to prevent the slabs from drifting in the z direction. We
always place our probe volumes and other solutes at least 10 Å away from the liquid-vapor
interface to ensure that we probe bulk water behavior. shows a typical water slab setup.
Below, we show that results derived with this setup are indistinguishable from those obtained
in constant-pressure simulations.

3.2.2 Water number distributions in bulk

Using the tools developed in the previous section, we have calculated the water number distri-
bution for a 12×12×12 Å3 cube in water. Our results, computed in both the constant-volume
setup of Figure 3.2 and in a constant-pressure bulk water system, are shown in Figure 3.3.
For N � 〈N〉v, the value of Pv(N) is much higher than would be predicted from Gaussian
statistics alone (Equation (2.25)). We can rationalize this behavior by supposing that the
most probable mechanism for evacuating δN = 〈N〉v −N water molecules from v when δN
is large is for a spherical vapor bubble of volume δN/ρ` to form inside the probe volume v.
The free energy cost of the liquid-vapor interface around this bubble scales as γ(δN)2/3, and
we make the crude assumption that geometric factors and other entropic factors contribute
a constant amount to the total free energy. This vapor bubble model, shown in red dashes
in Figure 3.3, captures the majority of the deviation of Pv(N) from the Gaussian model. A
more detailed treatment that accounts for the freedom of the vapor bubble to move inside
the volume v, applied to a Lennard-Jones solvent in Ref. [46], rationalizes the downturn
near N = 0 as an entropic cost to localizing the center of the vapor bubble to the center
of v.

At higher pressure, the cost of creating a vapor bubble increases, and the free energy
cost of emptying v can, in fact, exceed the cost predicted by the Gaussian model. The
water number distributions of the same cube calculated at pressures of up to 10 kbar are

2To wit, when first computing the Pv(N) distributions in Figure 3.4, we discovered a bug in the imple-
mentation of one of the constant pressure MD algorithms in GROMACS.
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z

Figure 3.2: Typical water slab setup for calculating Pv(N) distributions at water-vapor
coexistence conditions. The blue outline depicts the boundaries of the periodic simulation
box. The green particles are purely repulsive hard spheres that keep the intervening water
slab (red and white particles) from drifting in the z-direction.
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Figure 3.3: Water number distribution for a cubic probe volume of side 12 Å, in bulk wa-
ter at 298 K. Black: computed in a fixed-volume simulation with a vapor bubble. Blue:
computed in a fixed-pressure simulation at 1 bar. Dashes: Gaussian distribution with equal
mean and variance. Red dashes: Distribution expected from vapor bubble model (see text).
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shown in Figure 3.4. From the value of Pv(0), we can derive the solvation free energy of
the cubes (Equation (2.26)). These are linear in P , as shown in Figure 3.4 and as expected
from the macroscopic limit of Equation (2.18). Quantitatively, there are important finite-size
corrections. We fit the solvation free energies to the form

∆Gsol = c1Pv + c2γA, (3.41)

and find that c1 ≈ c2 ≈ 0.7 for the 12 Å-side cube. This value of c2 results from the cross-over
in the dominant solvation physics from entropic to enthalpic for solutes of size about 1 nm
(Figure 2.3). The value of c1 results from density oscillations around the empty cavity v.
That is, when water is expelled from v, the system’s volume increases by somewhat less
than v because the density of water around v is driven to be higher than the bulk density.
The magnitude of both corrections is proportional to the cavity’s surface area, so both
c1 and c2 tend to 1 for macroscopic solutes. In Figure 3.5, we also show the solvation free
energies of a 9 Å-side cube under various pressures to illustrate this limiting behavior. To
the best of our understanding, approximate equality of c1 and c2 in the case of cubic solutes
appears to be a geometric coincidence.

3.2.3 Water number distributions near a model plate

In this section, we build a set of model hydrophobic and hydrophilic solutes that we will
use throughout the rest of the thesis. We use them here to explore how water number
distributions are modified when the probe volume is next to a solute.

To build the model solutes, we first prepare and equilibrate a bulk water system at
298 K in the presence of a vapor bubble. At an arbitrary time, we record the positions and
orientations of all the water molecules whose oxygen atoms are inside a 3×24×24 Å3 cuboid.
These molecules, frozen and treated as one solute, are our model hydrophilic solute. To build
a model hydrophobic solute, we replace all water molecules by WCA particles centered at
the original oxygen atom positions. The energy and size parameters of the particles are as
those of an OPLS/UA sp3-hybridized CH2 group, so that the model solute appears “oily” to
the surrounding water.3 The van der Waals radius of these particles is about 2 Å, and the
effective hard-sphere radii of their solvent-excluded volume is 3.37 Å, so the plate’s complete
solvent-excluding volume is approximately that of a 10 × 31 × 31 Å3 cuboid. The atomic
coordinates of the model hydrophobic solute are recorded in the Supplementary Information
of Ref. [111].

To tune the hydrophobicity of the model solute, we scale the WCA attractive tail by a
parameter η. When η is 0, the model solute is essentially ideal in the sense of Equation (2.17).
As η is increased, a gradually more hydrophilic solute results.

3The exact parameters are ε = 0.118 kcal/mol and σ = 3.905 Å, taken from Ref. [58]. Lorentz-Berthelot
mixing rules are used to obtain the water-solute interaction parameters.
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Å

-150

-120

-90

-60

-30

0

0 10 20 30 40 50 60 70

ln
P
v
(N

)

N

η = 0

η = 1

η = 2
∆∆Gsol (η = 0)

(a) (b)

Figure 3.6: Effect of a large solute on the density fluctuations of the surrounding solvent. (a)
The model hydrophobic plate and the probe volume v. (b) Water number distributions for v
in bulk (solid blue), next to the hydrophilic plate (dashed red) and next to the hydrophobic
plate (dark grey error bars). Error bars for v in bulk and next to the hydrophilic plate are
comparable to those for v next to the hydrophobic plate, and are omitted for clarity.

To probe the effect of a solute on the surrounding solvent, we calculate Pv(N) for a probe
volume of size 3× 24× 24 Å3 adjacent to the model hydrophilic or hydrophobic solute, and
compare it to Pv(N) in the absence of the solute. Figure 3.6 shows that the distributions in
bulk and next to the hydrophilic solute are essentially indistinguishable, but when the probe
volume is placed next to the model hydrophobic solute (with η one of 0, 1 or 2), a fat tail
appears. In other words, it is orders of magnitude easier to empty the probe volume when it
is next to the hydrophobic solute than when it is next to the hydrophilic solute or in bulk.
Physically, the model hydrophobic solute is large enough to disrupt the hydrogen-bonding
network of the surrounding water. As such, a soft liquid-vapor interface forms around the
solute. To evacuate v, this interface need simply be deformed, which costs much less free
energy than to evacuate v in bulk. This physics is modeled in detail in Chapter 5.

Figure 3.6 also illustrates the effective attraction that would arise between the model
hydrophobic solutes and an ideal solute with solvent-excluding volume v. The difference in
free energy between evacuating v in bulk and next to the model solute, denoted by ∆∆Gsol
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in the figure, is precisely the free energy gained by bringing these two solutes together
in water. In contrast, Pv(0) next to the hydrophilic plate is equal to Pv(0) in bulk, so
the v and the model hydrophilic plate experience no effective attraction. Conversely, the
hydrophobic attraction between v and the model solute is highest when η = 0, and decreases
as η grows, since evacuating v next to the solute results in a loss of solute-water adhesive
energy. As a practical matter, ∆∆Gsol provides a quantitative measure of the model solute’s
hydrophobicity.

3.2.4 Dewetting transitions: water number distributions between
two model plates

In this section, we look at water number distributions in the region between two hydrophobic
plates. The basic setup is shown in Figure 3.7. We place two model hydrophobic plates
oriented parallel to the xy-plane, with the line joining their centers parallel to ẑ. Since the
plates are about 7 Å thick, placing one plate’s center at z = 0 Å and the other at z = d+ 7 Å
creates an interplate space that is d Å thick and has a 24 × 24 Å2 cross-section. When
d = 3 Å, a water molecule just fits between the plates. The interplate space, reduced by 3 Å
in thickness to account for the size of a water molecule, serves as our probe volume v.

Figure 3.8 shows the calculated Pv(N) distributions for various values of d and η in the
ranges 7 ≤ d ≤ 11 Å and 0 ≤ η ≤ 1. In all cases, there is an evident concavity in these
distributions. When η = 1, the plates are mildly hydrophobic, and at large separations
(d = 11 Å), there is only one stable state of the interplate region, a “wet”, high-N state.
Nevertheless, it is clear that for sufficiently low N , a second “dry” state can be induced,
where a vapor tube forms between the two plates. At lower separations (d . 9 Å), this dry
state becomes meta-stable, and eventually around d = 7 Å, it becomes more stable than
the wet state. This observation is congruent with the dewetting transitions observed in
dynamical simulations of the hydrophobic association of paraffin plates [52]. With our water
number distributions, we can glean the existence of the dry state at very large separations
where it is not yet metastable. From these observations, it is possible to predict that any
small perturbation to the system, such as bringing the two plates together or changing the
strength η of the attractive tail, may make the dry state meta-stable or even stable. This
expectation is borne out in the Pv(N) distributions calculated at η = 0.5 and η = 0.0.

3.2.5 Dewetting in biology: water number distributions between
melittin dimers

Having characterized dewetting transitions between model hydrophobic plates, we now ex-
plore dewetting between hydrophobic proteins. Our model protein is melittin (PDB: 2MLT),
a 22 amino acid alpha-helical protein that is the main component of bee venom [108, 109].
Its key structural feature, shown in Figure 3.9, is a long string of hydrophobic amino acids at
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d

z

Figure 3.7: Setup for examining water fluctuations under confinement (here, d = 8 Å). The
model hydrophobic plates (grey particles) are placed a distance d apart: taking into account
the van der Waals radii of about 2 Å of the plates’ oily particles and the 3 Å thickness of each
plate, the center of the first plate is placed at z = 0 Å, the center of the second plate is placed
at z = d+ 7 Å. The van der Waals radius of water (red and white sticks) being about 1.5 Å,
the 24 × 24 × (d − 3) Å3 probe volume (green) extends from z = 5 Å to z = d + 2 Å. The
plates are not perfectly flat, so some waters fit between the plates and the probe volume.
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Figure 3.8: Pv(N) distributions for interplate region in Figure 3.7 for η equal to (a) 0.0, (b)
0.5 and (c) 1.0. The plate separation runs from d = 7 Å (red) to d = 11 Å (orange).
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(a) (b)

Figure 3.9: Crystal structure of melittin dimer (PDB: 2MLT), looking down the face that
mediates tetramerization in (a) cartoon and (b) solvent-accessible surface representation.
Residues are colored according to whether they are non-polar (white), polar but uncharged
(green) or positively charged (blue). Figures prepared with VMD. VMD was developed by
the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced
Science and Technology at the University of Illinois at Urbana-Champaign [55].

its center (mainly isoleucine, leucine, valines and alanines), capped by charged, hydrophilic
amino acids (lysines and arginines). At physiological conditions, melittin remains monomeric
and unfolded in solution, but at other conditions, like high ionic concentrations, it assembles
into tetramers [21]. The tetramers are formed from two symmetry-related dimers, whose
interaction is mediated by a large hydrophobic patch on each dimer. In vivo, melittin acts
monomerically by attacking membranes and helping to create pores in them. The pores are
only weakly structured, having about 4 to 7 melittin monomers each [50].

Our interest in melittin is primarily as a model hydrophobic protein, so we focus on its
hydrophobic assembly in conditions where the tetramer is stable. We extend the study of
Liu et al [64], which we summarize briefly now. In that study, the melittin dimers present in
the crystal structure were separated by a distance d, ranging from 4 Å to 8 Å, and solvated
in water at 298 K and 1 atm. The system was then evolved for up to 10 ns. When the
separation was below about 7 Å, the two initially separated melittin dimers collapsed within
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Figure 3.10: Hydrophobic amino acids pertinent to the study of melittin mutations. Ile is
the most hydrophobic, while Gly is the least.

less than 1 ns. On careful analysis, it was seen that in many trajectories, before the collapse
occurs, most of the water between the melittin dimers is evacuated. Mutations affected this
dewetting behavior. Specifically, the authors looked at point mutations of the isoleucine
residues in the protein (Ile2, Ile17 and Ile20), which are very hydrophobic, into smaller,
less hydrophobic residues: valine, alanine and glycine. The structures of these four amino
acids are shown in Figure 3.10, and the location of the isoleucine residues in the melittin
dimer is highlighted in Figure 3.11. Liu et al. found that any mutation to the Ile2 residue
suppressed dewetting completely. They interpreted this finding as evidence that the Ile2
residue provides a unique topographical feature on the surface of the protein that is essential
for dewetting to occur. Additionally, mutations to Ile20 slowed down the evacuation of the
inter-melittin cavity, with the Ile20Gly mutation in particular resulting in large fluctuations
in the number of waters in the cavity.

Here, we study dewetting in melittin in the language of water number distributions. In
all our studies, we focus on the behavior of water, not the protein, so we have anchored
the positions of all the atoms in the protein backbone. Doing so allows us to study the
thermodynamics of dewetting at a fixed separation, instead of observing a dynamical collapse
as reported in Ref. [64].

We begin by making a concrete definition of the inter-melittin cavity. The hydrophobic
core of each monomer roughly spans residues 8 through 20. We have thus found it effective
to define the inter-melittin cavity as the convex hull4 of the α-carbons of residues 8 and 20
of each monomer (8 points in total), which we calculate using the algorithm of Ref. [20]. To
focus on the behavior of water and not the protein side chains, we then remove all points
from this convex hull that are within a van der Waals radius of a non-hydrogenic protein
atom. Denote this volume by v′. This volume is overlaid on a 1 Å-resolution grid, and the
final volume v is taken to be the union of all the grid cells whose center lies inside v′.

We first quantify the hydrophobicity of the melittin dimer’s top face. Figure 3.12(a) shows

4The convex hull of a set of points is the smallest convex volume that contains them. It has roughly the
shape of a membrane stretched tautly over these points.
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Ile2

Ile20

(a) Top view (looking down at hydrophobic face)

Ile2
Ile20

(b) Side view

Ile2Ile17

(c) Bottom view

Figure 3.11: Isoleucine residues in melittin dimer, mutated here and in Ref. [64] to less
hydrophobic residues. Dimer shown in solvent-accessible surface representation, colored as
in Figure 3.9. Highlighted residues are Ile2 (orange), Ile17 (yellow) and Ile20 (purple).
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the simulation setup used. We use a probe volume defined by the convex hull procedure
above, starting from the tetramer configuration at 4 Å separation, but where we remove the
van der Waals interior only of the non-hydrogenic atoms of the unmutated bottom dimer.
Figure 3.12(b) shows the calculated water number distributions for this volume v in bulk and
next to 10 melittin mutants. As with the model hydrophobic plate system of Section 3.2.3,
these distributions have a much fatter tail next to the melittin dimer than in bulk. This
demonstrates that there is a liquid-vapor-like interface that spans the hydrophobic patch of
the melittin dimer, which can be easily deformed to evacuate a probe volume next to it. We
can also discern that the hydrophobicity of the different mutants, quantified by ∆∆Gsol, is
similar. The different mutations, as expected, tend to render the hydrophobic patch slightly
less hydrophobic.

We now look at Pv(N) distributions for a cavity between two melittin dimers held at
various separations. The distributions for the unmutated protein are shown in Figure 3.13.
These distributions qualitatively resemble those in the region between two model plates,
shown in Figure 3.8, even though the melittin dimers are topographically heterogeneous and
contain charges and polar regions. As with the model plate system, the Pv(N) distribution
for the largest separation in melittin (9 Å) already contains a large plateau region at low N ,
corresponding to a “dry” state. As the separation between dimers is reduced to 8 Å, this
dry state becomes metastable, and around a separation between 6.5 Å and 7.0 Å, it becomes
stable with respect to the wet state. Between the wet and dry state, there is a barrier that
is several kBT high, which suggests that the states will be long-lived, so that the collapse
dynamics of the protein will be dominated by solvent motion. These distributions provide a
thermodynamics rationalization for the observations in the dynamical collapse trajectories
of Ref. [64].

Calculating Pv(N) helps us better understand the effects of mutations. Already in Fig-
ure 3.12, it is evident that mutations to the Ile residues of melittin make only minor changes
to the hydrophobic character of its binding face. On the other hand, because the water
number distributions in Figure 3.13 are close to being bistable, small changes to these dis-
tributions can result in large apparent changes in the mean behavior of the water between
the melittin dimers. This sensitivity is analogous to the sensitivity of a magnet’s behavior
to small changes in the magnetic field when the state point is close to the phase boundary
between the magnetized and unmagnetized phases.

Figures 3.14, 3.15 and 3.16 show the water number distributions in the cavity between
two dimers mutated at the Ile2, Ile17 and Ile20 residues, respectively. Qualitatively, all these
distributions are quite similar, with only small shifts in the relative stabilities of the dry and
wet basins with respect to the behavior of the unmutated dimer. However, these small shifts
result in large changes in the mean number of waters between the melittin cavities, which
imply large changes in the dynamics of tetramerization. The changes that we observe, such
as lack of dewetting for the Ile2Ala and Ile2Gly mutants and the flat low-N plateau in the
Ile20Gly mutant, are consistent with those noted by Ref. [64], but our distributions are more
informative. Our distributions clearly emphasize the delicate balance that exists between
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Figure 3.12: Measuring the hydrophobicity of the melittin dimer’s hydrophobic face. (a)
Probe volume v (orange) next to unmutated dimer (colors as in Figure 3.9). (b) Pv(N)
distributions of v in bulk and next to 10 melittin mutants.
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the wet and dry states. Whether or not dewetting is present under particular conditions is
seen to be a very delicate question, one that might even have a different answer in nature
than in simulations with a particular molecular field. However, the character of these water
number distributions is quite robust to small changes in the system, so we can confidently
predict that any dewetting in experiments would be very sensitive to external conditions.

3.2.6 Probing cavities of general shape

The method described in Section 3.2.1 for computing Ñ(RN) is readily generalized to shapes
beyond the union of non-overlapping cubes. Here, we describe three simple strategies in
detail. All of them focus on constructing smooth indicator functions h̃(r) for general-shaped
probe volumes.

The first strategy, analogous to constructive solid geometry in computer aided design,
starts by building the probe volume v by applying union, intersection and complement oper-
ators to simpler volumes. For a given volume A, we denote by hA(r) the indicator function
and by h̃A(r) its smooth counterpart. When A is a cube, hA(r) is given by Equation (3.24)
and h̃A(r) by Equation (3.28). The indicator function for the complement of A, denoted A′,
is given by

h(A′)(r) = 1− hA(r). (3.42)

Similarly, the indicator functions for the union and intersection of two volumes, A and B,
are given by

h(A∩B)(r) = hA(r)hB(r), (3.43)

h(A∪B)(r) = hA(r) + hB(r)− hA(r)hB(r). (3.44)

These definitions immediately suggest the following definitions for the corresponding smooth
indicator functions:

h̃(A′)(r) = 1− h̃A(r), (3.45)

h̃(A∩B)(r) = h̃A(r)h̃B(r), (3.46)

h̃(A∪B)(r) = h̃A(r) + h̃B(r)− h̃A(r)h̃B(r). (3.47)

These compound smoothed indicator functions can be used to define Ñ(RN) for the com-
pound volume as in Equation (3.29). Practically, a union v of non-overlapping volumes
{v1, . . . , vn} is an important special case, for which the smoothed indicator function takes
the simple form

h̃v(r) =
n∑

i=1

h̃vi(r). (3.48)

A second strategy is to find volumes for which integrals of the form in Equation (3.32)
can be calculated analytically. Shapes with spherical and cylindrical symmetry fall into this
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Figure 3.14: Dewetting behavior of the Ile2 series of melittin mutants. Curves as in Fig-
ure 3.13. Mutants are: (a) Ile2Val, (b) Ile2Ala and (c) Ile2Gly.
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Figure 3.15: Dewetting behavior of the Ile17 series of melittin mutants. Curves as in Fig-
ure 3.13. Mutants are: (a) Ile17Val, (b) Ile17Ala and (c) Ile17Gly.
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Figure 3.16: Dewetting behavior of the Ile20 series of melittin mutants. Curves as in Fig-
ure 3.13. Mutants are: (a) Ile20Val, (b) Ile20Ala and (c) Ile20Gly.
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category. A probe volume can be specified by three ranges of orthogonal coordinates in a
non-Cartesian coordinate system. For example, we can define a hemispherical shell in this
way. If the three coordinates are denoted by α, β and γ, then the smooth indicator function
for the full volume is given by

h̃(r) = h̃α(α)h̃β(β)h̃γ(γ). (3.49)

In pursuing this generalization, it is useful to construct integrals of φ(α) that are open at
one or both ends. Explicitly, when the integral is open at its lower end, the smooth indicator
function is given by

h̃α(αi) =

∫ αmax

−∞
dαφ(α− αi), (3.50)

=

[
k1 erf

(
αmax − αi√

2σ2

)
− k2(αmax − αi)−

1

2

]
Θ(αc − |αmax − αi|)

+ Θ(αc + αmax − αi), (3.51)

h̃′α(αi) = −φ(αmax − αi), (3.52)

where k1 is as in Equation (3.33). Similarly, when the integral is open at both sides, the
expressions for h̃α(αi) and its derivative are trivially given by

h̃α(αi) =

∫ ∞

−∞
dαφ(α− αi) = 1, (3.53)

h̃′α(αi) = 0. (3.54)

A third strategy is to define h̃v(r) directly instead of as an integral of Φ(r). To be useful,
this function must have finite support, be approximately normalized, i.e.

∫
r
h̃v(r) ≈ v,

closely resemble the exact indicator function, h(r), and its value and gradient must be easy
to calculate. For example, a smooth indicator function for a sphere of radius R centered at
r0 is

h̃(r) =

{
kA

[
1− tanh

(
|r−r0|−R

δ

)
− kB

]
, |r− r0| < R +Rc,

0, otherwise,
(3.55)

where δ defines a smearing length for blurring the edge of the probe volume and Rc is a
cutoff distance for ensuring that h̃(r) has finite support. These parameters are analogous
to σ and αc in Equation (3.31). The other constants are kA = 1/{tanh[(Rc − R)/δ] −
tanh(−R/δ)} and kB = 1− tanh[(Rc −R)/δ]. The gradient of h̃(r) is then

∇h̃(r) =

{
−kA

2δ
sech2

(
|r−r0|−R

δ

)
r−r0

|r−r0| , |r− r0| < R +Rc,

0. otherwise
(3.56)
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Figure 3.17: Pv(N) for spheres of radius (left-to-right) 2.5 Å, 3.75 Å and 5.0 Å, in bulk water.
Gaussian approximation shown in dashes.

To illustrate these generalizations, we have computed Pv(N) for spheres in bulk, shown
in Figure 3.17, using Equation (3.55). This data augments that shown in Figure 2.2(a) with
information at low N . The distributions evidence fat tails already at radii of 5 Å, which
coincides with the nanometric length scale crossover discussed in Section 2.2.1.

3.3 Probing density fluctuations in Fourier space

A fundamental assumption underlying many liquid-state theories is that small-length-scale
density fluctuations are Gaussian [11], as discussed in Section 2.2.1. Traditionally, this as-
sumption has been tested by computing water number distributions in small volumes. A
more direct way to test this assumption is to calculate distributions for the Fourier compo-
nents of the density field,

ρ̂(k) =
1√
N

∫

r

e−ik·rρ(r) =
1√
N

N∑

i=1

e−ik·Ri . (3.57)
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The normalization of the transform is chosen so that ρ̂(k) has a finite variance in the ther-
modynamic limit. If density fluctuations were perfectly Gaussian, in the sense of Equa-
tion (2.32), then ρ̂(k) should also exhibit Gaussian statistics. Moreover the values for dif-
ferent wavevectors k should be independent. That is, for any two nonzero wavevectors
k1 and k2, we would have a joint distribution for the values of ρ̂(k1) and ρ̂(k2) given by

P [ρ̂(k1), ρ̂(k2)] ∝ exp
[
−|ρ̂(k1)2|/2S(k1)− |ρ̂(k2)2|/2S(k2)

]
, (3.58)

where S(k) = 〈ρ(−k)ρ(k)〉 is the static structure factor of the liquid measured by scattering
experiments [41].

To permit testing such assumptions, we have implemented umbrella sampling with respect
to ρ̂(k) in LAMMPS. To simplify the problem, we have chosen to umbrella sample only its
magnitude, |ρ̂(k)|. By translational symmetry, its phase should be uniformly distributed,
but the phase of ρ̂(k) at different wavevectors may, in principle, be correlated. We do not
address these issues here. Were ρ̂(k) Gaussian, the probability distribution for its magnitude
would resemble a Maxwell-Boltzmann distribution, i.e.

P [|ρ̂(k)|] ∝ |ρ̂(k)|2 exp[−|ρ̂(k)2|/2S(k)]. (3.59)

When simulations are performed in a finite, periodic box, the wavevector k must be of the
form k = (2πnx/Lx, 2πny/Ly, 2πnz/Lz).

The umbrella potentials we have implemented are of the form

Vn(RN) =
κ

2
(|ρ̂(k)| − ρ̂(n)

0 )2, (3.60)

where κ is an umbrella strength parameter, ρ̂
(n)
0 defines the center of the nth umbrella, and

ρ̂(k) is defined by Equation (3.57). The corresponding forces have the form

−∇iVn(RN) = −κ(|ρ̂(k)| − ρ̂(n)
0 )
<[ρ̂∗(k) · (−ik) exp(−ik ·Ri)]√

N |ρ̂(k)|
. (3.61)

The computation of the instantaneous value of ρ̂(k) can be efficiently parallelized in a man-
ner exactly analogous to Ñ(RN), described in Section 3.2.1, as can the computation of
the umbrella forces. Our code thus allows efficient calculation of the probability distribu-
tion P [|ρ̂(k)|].

Figure 3.18 shows an example distribution computed in this way.5 The system con-
tains 342 molecules of the TIP4P/2005 model of water in a periodic cubic box, simulated
at 298 K and at fixed density 1 g/ml. The wavevector k is parallel to the x-axis and its
magnitude is chosen to approximately coincide with the maximum of S(k) for this water
model.

5The author would like to thank Ulf Pedersen for allowing this data from his study of density fluctuations
in Fourier space to be included in this thesis, to illustrate the use of the ρ̂(k) umbrella potential code.
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Figure 3.18: P [|ρ̂(k)|] distribution for TIP4P/2005 water, with |k| = 2.89 Å−1. The dashed
curve is the expected result when density fluctuations are Gaussian (Equation (3.59)).

3.4 Probing interfacial fluctuations

In this final section, we describe tools to characterize rare fluctuations relating to liquid-vapor
interfaces. At a molecular level, these interfaces are not unambiguously defined, so in order to
proceed, we need to pick one concrete definition of such an interface. We take advantage the
recent work of Willard and Chandler [125], who have shown that a molecular-scale interface
can be reasonably defined as the isosurface

ρ̃(r) = (1/2)ρ` (3.62)

of a smooth density field, ρ̃(r), given by the convolution of the exact oxygen density field,
ρ(r), with a normalized Gaussian of molecular width. That is,

ρ̃(r) =
∑

i∈O
φ(r−Ri), (3.63)

where
φ(r) = (2πξ2)−3/2 exp(−r2/2ξ2). (3.64)

Here, ξ is a molecular length scale. In practice, the smearing function is truncated at
|r| = 3ξ to faciliate calculations. This change affects most properties only negligibly, but
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has important ramifications with respect to the curvature of the interface. We revisit this
subtlety in Section 6.2.4.

Thorughout, we refer to the interface defined above as a “Willard interface”. Willard
and Chandler found that ξ = 2.4 Å is the smallest length scale for which the field ρ̃(r) of
a bulk configuration of water has few, if any, voids. Figure 3.19 illustrates this interface,
calculated for an instantaneous configuration of SPC/E water from a water slab simulation.

The height fluctuations of the Willard interface are consistent with those of capillary-
wave theory [8], which models an interface along the xy-plane as a surface z = h(x, y) with
the Hamiltonian H[h(x, y)] =

∫
γ dA =

∫
γ
√

1 + |∇h(x, y)|2 dx dy. The Fourier components

of such a membrane, h̃(k), are approximately independent harmonic oscillators, with

〈
|h̃(k)|2

〉
∼ 1/βγk2. (3.65)

The exact proportionality constant depends on the Fourier transform convention. Figure 3.20
shows the measured Fourier component magnitudes of the liquid-vapor interfaces at the top
and bottom of a 24 × 24 × 3 nm3 slab of SPC/E water at 298 K. The results agree with
capillary-wave theory for wavevectors below about 2π/9 Å, and are independent of the ξ
smearing length in that regime. In other words, liquid-vapor interfaces behave macroscopi-
cally already at length scales of about 1 nm. At smaller length scales, the measured height
fluctuations are sensitive to the precise definition of the interface and to molecular detail.
At this high resolution, where the contours of individual water molecules start becoming ap-
parent, it is questionable whether any definition of a liquid-vapor interface can be physically
sensible.

The Willard interface provides a convenient reference surface to characterize interfacial
structure. When atomic positions are measured relative to the closest point on the Willard
interface, capillary-wave fluctuations are removed, and effects such as density layering and
orientational preferences near the interface are clearly revealed [125]. We have thus developed
an umbrella potential to bias solute positions with respect to the position of the Willard
interface immediately above or below this solute. In Chapter 6, we use this umbrella potential
to map out the free energy of extracting a single water molecule from the bulk.

The umbrella potential we have chosen to implement is of the form

Vk(R
N) =

κ

2

[
zn − h(xn, yn; RN)− ak

]2
. (3.66)

Here, n is the index of a particle whose position we are biasing, and ak is its target distance
from the Willard interface. The value of h(xn, yn; RN) is defined implicitly by the equation

ρ̃
(
xn, yn, h(xn, yn; RN)

)
= (1/2)ρ`. (3.67)

We henceforth suppress the dependence of it on RN . In a slab of water, there are usually
two disjoint interfaces at the slab’s top and bottom, so this equation has two solutions. For
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Figure 3.19: Willard interface, with ξ = 2.4 Å, for an instantaneous configuration of a slab
of SPC/E water at 298 K. The periodic box is 21.7 × 21.7 × 43.4 Å3 in size and contains
343 water molecules.
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Figure 3.20: Power spectrum of liquid-vapor interface in a 24×24×3 nm3 slab of SPC/E water
at 298 K, defined as the Willard interface with ξ = 2.0 Å (red), 2.4 Å (blue) or 3.0 Å (green).
A fit to Equation (3.65) in the range 0.01 Å−1 < k < 0.3 Å−1 (dashes) yields γ = 62.0 ±
0.5 mJ/m2, in reasonable agreement with the experimental value (solid) of 72 mJ/m2. Note:
the error bar for the power spectrum at the lowest k value is hard to estimate reliably due
to the long correlation time of h̃(k) for low k. Thus, it is likely that the value shown here,
which deviates significantly from the trend of the remaining points, has a larger statistical
error than our error estimate suggests.
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concreteness, we always refer to the top interface of the slab. The value of h(xn, yn) depends
on the position of the tagged particle, as well as the positions of all oxygen atoms close to
the point (xn, yn, h(xn, yn)).

In order for this umbrella potential to be useful, it must be possible to calculate h(xn, yn)
quickly at every timestep, as well as its gradient with respect to particle positions. Both
calculations must be efficiently parallelizable. The problem is simplified by observing that
the value of h(xn, yn) at one timestep is similar to its value at the next timestep. We have
thus implemented a parallel Newton-Raphson solver to calculate h(xn, yn), with the starting
guess at one timestep equal to the value of h(xn, yn) at the previous timestep. Specifically,
let hi be a guess for the value of h(xn, yn). An improved guess, hi+1, is constructed with the
relation

hi+1 = hi −
ρ̃(xn, yn, hi)− (1/2)ρ`

∂zρ̃(xn, yn, hi)
. (3.68)

Both ρ̃ and ∂zρ̃ can be calculated in parallel from Equation (3.63) with a procedure analogous
to that for calculating Ñ (Section 3.2.1). In a typical molecular dynamics simulation, the
Newton-Raphson method converges after one or two iterations.

In order to calculate forces, we need to take the gradient of Equation (3.66) with respect
to particle positions. In the expressions below, h and its derivatives are evaluated at (xn, yn),
while ρ̃ and its derivatives are evaluated at (xn, yn, h(xn, yn)). To simplify the calculation, we
assume that the tagged particle n is not a water oxygen, and relax this restriction below. By
taking the total derivative of Equation (3.67) with respect to the position of oxygen atom i,
we find that

d(ρ̃− ρ`/2)

dri
=
∂ρ̃

∂z

dh

dri
+
∂ρ̃

∂ri
= 0. (3.69)

Hence,
dh

dri
= − ∂ρ̃

∂ri

/
∂ρ̃

∂z
. (3.70)

The derivative with respect to the position of particle n is obtained similarly, so

d(ρ̃− ρ`/2)

dxn
=
∂ρ̃

∂x
+
∂ρ̃

∂z

dh

dxn
= 0, (3.71a)

d(ρ̃− ρ`/2)

dyn
=
∂ρ̃

∂y
+
∂ρ̃

∂z

dh

dyn
= 0, (3.71b)

d(ρ̃− ρ`/2)

dzn
= 0. (3.71c)
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Hence,

dh

dxn
= −∂ρ̃

∂x

/
∂ρ̃

∂z
, (3.72a)

dh

dyn
= −∂ρ̃

∂y

/
∂ρ̃

∂z
, (3.72b)

dh

dzn
= 0. (3.72c)

If particle n is a water oxygen atom, then dh/drn is the sum of the right-hand sides of
Equations (3.70) and (3.72).

Assembling all the pieces, we obtain the following umbrella force corresponding to the
umbrella potential of Equation (3.66):

−∇iVk(R
N) = κ

[
zn − h− ak

]
(∇ih− δinẑ). (3.73)

We have implemented this umbrella potential in LAMMPS and GROMACS. Figure 3.21
illustrates this code in action. It shows a snapshot of a simulation where a tagged water
molecule was held suspended about 5 Å above the Willard interface at all times.
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Figure 3.21: Snapshot from a simulation of SPC/E waters (licorice), with an additional
umbrella potential of the form in Equation (3.66). Here, the tagged water molecule (solid)
is suspended at at a distance ak = 5 Å above the Willard interface.
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Chapter 4

An improved coarse-grained model of
solvation and the hydrophobic effect

In this chapter, we construct a lattice field theory based on the physical ideas of Lum-
Chandler-Weeks (LCW) theory [68, 111]. As described in Section 2.3, LCW theory models
solvation by constructing an effective free energy surface for the solvent density field ρ(r).
The key idea is to split this density into a slowly-varying density field, ρ`n(r), that supports
interfaces, and a quickly-varying overlying fluctuation field, δρ(r), with Gaussian statistics.
The energetics of these two fields, when uncoupled, are simple to model, and the two fields
are coupled using Weeks and coworkers’ unbalancing potential formalism, described in detail
in Appendix A. Since the fluctuating field is Gaussian, we can integrate it out analytically
to construct an effective field theory for the slowly-varying field alone. External solutes are
incorporated as constraints on the total density and then external potentials that couple to
solvent density.

We begin our discussion by reviewing constrained Gaussian field theory [11]. Its three
main results are: an effective free energy of a Gaussian field in the presence of constraints,
the average field configuration and the field’s fluctuation spectrum. Using this field theory,
we construct the effective LCW Hamiltonian for the slowly-varying field and recast it in a
form that is suitable for discretization.

We then discuss how to discretize the effective LCW Hamiltonian. Using a straightfor-
ward lattice gas model, isomorphic to the Ising model of magnetism, to capture interfacial
energetics, as has been done previously, is shown to suffer from undesirable degeneracies that
result in large spurious entropies. We identify the source of these degeneracies and remove
them by carefully discretizing a Landau-Ginzburg Hamiltonian. We then discretize the re-
mainder of the effective Hamiltonian. The final equations, compiled in Table 4.7, constitute
the main result of this chapter, a simple lattice gas-like Hamiltonian for modeling solvation.

In the remainder of the chapter, we compute solvation free energies and water number
distributions in a number of settings, and compare the model results to the explicit-water
simulation results obtained in Chapter 3. These comparisons demonstrate that the coarse-
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grained model of Table 4.7 accurately captures many of the important phenomena that we
associate with hydrophobic solvation.

In the appendices to the chapter, we discuss some of the implementation details of the
model. We also consider the extensions to the model that would be necessary to implement
dynamics and solvent polarization, two aspects that are crucial to biological solvation.

4.1 Preliminaries

4.1.1 Gaussian integrals

We begin by reviewing Gaussian integrals, which play a central role in this chapter. Let
x and y beN -component vectors, with components {xi} and {yi}, and let A be anN×N real,
symmetric matrix, with matrix elements Aij. By diagonalizing A, it can be shown that

∫ ( N∏

i=1

dxi
2π

)
exp

[
−1

2
xTAx

]
=

1√
det(2πA)

. (4.1)

If A is invertible, we can obtain the more general result,

∫ ( N∏

i=1

dxi
2π

)
exp

[
−1

2
xTAx− xTy

]

=

∫ ( N∏

i=1

dxi
2π

)
exp

[
−1

2
(x + A−1y)TA(x + A−1y) +

1

2
yTA−1y

]

= exp

[
1

2
yTA−1y

]
1√

det(2πA)
. (4.2)

We can regard the components of x as dynamical variables of a system whose Hamiltonian
is H(x) = (kBT/2)xTAx. If we regard the components of the vector kBTy as conjugate
variables that are coupled to the components of x, then Equation (4.2) is the partition
function of the coupled system. By taking partial derivatives of the logarithm of this partition
function, we find that

〈xi〉 = −
∑

j

(A−1)ijyj. (4.3)

Moreover, letting δxi = xi − 〈xi〉, we find that

〈δxiδxj〉 = (A−1)ij. (4.4)
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These results can be generalized to Gaussian integrals over fields. Let f(r) and g(r) be
arbitrary fields and u(r, r′) be a linear operator. Then,

∫
Df(r) exp

[
−1

2

∫

r

∫

r′
f(r)u(r, r′)f(r′)−

∫

r

f(r)g(r)

]

= exp

[
1

2

∫

r

∫

r′
g(r)u−1(r, r′)g(r′)

]
1√

det(2πu)
. (4.5)

Note that there are factors of 2π implicit in the notation Df(r). The operator u−1(r, r′) is
defined by the relation

∫

r′′
u−1(r, r′′)u(r′′, r′) = δ(r− r′), ∀r, r′. (4.6)

Equation (4.5) is derived by expanding f(r) in a finite basis, and then applying Equa-
tion (4.2). The functional determinant of 2πu is only defined in this basis, and will have a
different numerical value in a different basis. However, the ratio of two such determinants is
independent of basis in the limit of a complete basis, so only ratios of integrals like those on
the left-hand side of Equation (4.5) have physical meaning.

We now regard f(r) as a dynamical field, with Hamiltonian,

H[f(r)] = (kBT/2)

∫

r

∫

r′
f(r)u(r, r′)f(r′), (4.7)

and couple f(r) to the field kBTg(r). Equation (4.5) is the partition function for this system.
Generalizing the results for 〈xi〉 and 〈δxiδxj〉 above, we find that

〈f(r)〉 = −
∫

r′
u−1(r, r′)g(r′), (4.8)

〈δf(r)δf(r′)〉 = u−1(r, r′). (4.9)

4.1.2 Unconstrained Gaussian solvent density fields

Chandler has demonstrated that many successful liquid-state theories, such as Percus-Yevick
theory and the mean spherical approximation [41], result from assuming Gaussian statistics
for solvent density fluctuations [11]. The total density field for a non-uniform solvent is first
decomposed into slowly-varying and quickly-varying components, as described in Section 2.3,

ρ(r) = ρ`n(r) + δρ(r). (4.10)

The special case of a uniform fluid is represented by setting n(r) = 1 everywhere. The
solvent density fluctuation field δρ(r) is then well-modeled by a Hamiltonian of the form

H[δρ(r)] =
kBT

2

∫

r

∫

r′
δρ(r)χ−1(r, r′)δρ(r′). (4.11)
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Solvent density field ρ(r) = ρ`n(r) + δρ(r)

External potential Φ(r)

Bare Hamiltonian H[δρ(r)] =
kBT

2

∫

r

∫

r′
δρ(r)χ−1(r, r′)δρ(r′)

Partition function Z[Φ(r)] =

∫
Dδρ(r) e−βH[δρ(r)]−β

∫
r Φ(r)δρ(r)

Free energy F [Φ(r)] = −kBT

2

∫

r

∫

r′
βΦ(r)χ(r, r′)βΦ(r′)

Fluctuation spectrum 〈δρ(r)δρ(r′)〉 = χ(r, r′)

Mean density 〈ρ(r)〉 = ρ`n(r)−
∫

r′
χ(r, r′)βΦ(r′)

Table 4.1: Main results of unconstrained Gaussian field theory for solvent density field.
The free energy is measured with respect to the ensemble where Φ(r) = 0, so F [Φ(r)] =
−kBT lnZ[Φ(r)]/Z[0].

Here, the coupling strength χ−1(r, r′) is the operator that satisfies the relation

∫

r′′
χ−1(r, r′′)χ(r′′, r′) = δ(r− r′), (4.12)

for all r and r′. By construction, the thermal average of δρ(r)δρ(r′) under this Hamiltonian
is χ(r, r′). If a field Φ(r) is coupled to the solvent density fluctuation field δρ(r), then the
resulting mean solvent density and fluctuation spectrum are given by analogs to Equations
(4.8) and (4.9). These results are summarized in Table 4.1, and recapitulate the linear
response regime of normal liquids [41].

4.1.3 Constrained Gaussian solvent density fields

Chandler then considered the free energy cost of imposing constraints on the density fluc-
tuations as a way to model solvent density exclusion. Following his argument, we impose
the requirement ρ`n(r) + δρ(r) = 0 for all r in a given volume v. The solvent density in
the remaining volume, denoted v̄, is unconstrained. To facilitate later calculations, we again
couple an external field Φ(r) to δρ(r). The partition function of the resulting ensemble is

Zv[Φ(r)] =

∫
Dδρ(r) exp

[
−βH[δρ(r)]− β

∫

r

Φ(r)δρ(r)

]∏

r∈v
δ
(
ρ`n(r) + δρ(r)

)
. (4.13)
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The integral is most easily evaluated by using the Fourier space representation of the δ-
function. In particular,

Zv[Φ(r)] =

∫
Dδρ(r)

∫

v

Dψ(r) exp

[
−1

2

∫

r

∫

r′
δρ(r)χ−1(r, r′)δρ(r′)

− β
∫

r

Φ(r)δρ(r)−
∫

r

iψ(r)
(
ρ`n(r) + δρ(r)

)]
, (4.14)

where the subscript v in the integral over the dummy conjugate field ψ(r) signifies that the
ψ(r) is only non-zero when r is in v. The integral over δρ(r) is now purely a Gaussian
integral, so it can be evaluated analytically using Equation (4.5). The result is

Zv[Φ(r)] =
1√

det(2πχ−1)∫

v

Dψ(r) exp

{
1

2

∫

r

∫

r′
[βΦ(r) + iψ(r)]χ(r, r′)[βΦ(r′) + iψ(r′)]−

∫

r

iψ(r)ρ`n(r)

}
. (4.15)

The integral over the field ψ(r) can be reduced to the following Gaussian integral,

Zv[Φ(r)] =
1√

det(2πχ−1)
exp

[
1

2

∫

r

∫

r′
βΦ(r)χ(r, r′)βΦ(r′)

]

∫

v

Dψ(r) exp

{
−1

2

∫

r∈v

∫

r′∈v
ψ(r)χ(r, r′)ψ(r′)

− i
∫

r∈v
ψ(r)

[
ρ`n(r)−

∫

r′
χ(r, r′)βΦ(r′)

]}
(4.16)

When evaluated, the result is

Zv[Φ(r)] =
1√

det(2πχ−1)
exp

[
1

2

∫

r

∫

r′
βΦ(r)χ(r, r′)βΦ(r′)

]

1√
det(2πχv)

exp

{
−1

2

∫

r∈v

∫

r′∈v

[
ρ`n(r)−

∫

r′′
χ(r, r′′)βΦ(r′′)

]

χ−1
v (r, r′)

[
ρ`n(r′)−

∫

r′′′
χ(r′, r′′′)βΦ(r′′′)

]}
. (4.17)

Here, χ−1
v (r, r′) is the operator that satisfies

∫

r′′∈v
χ−1
v (r, r′′)χ(r′′, r′) = δ(r− r′), ∀r, r′ ∈ v. (4.18)
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The free energy difference between the free ensemble and the constrained ensemble in
the presence of the external field Φ(r), defined as −kBT lnZv[Φ(r)]/Z[0], is given by

Fv[Φ(r)] = kBT ln
√

det(2πχv)−
kBT

2

∫

r

∫

r′
βΦ(r)χ(r, r′)βΦ(r′)

+
kBT

2

∫

r∈v

∫

r′∈v

[
ρ`n(r)−

∫

r′′
χ(r, r′′)βΦ(r′′)

]

χ−1
v (r, r′)

[
ρ`n(r′)−

∫

r′′′
χ(r′, r′′′)βΦ(r′′′)

]
. (4.19)

In this expression, we can recognize the terms in square brackets as the local solvent density
that would result from a linear response in the absence of constraints of the mean solvent
density at r to a field Φ(r) that couples to δρ(r) (see Table 4.1). The free energy Fv[Φ(r)] is
thus a multi-variable generalization of the Gaussian model expression of Equation (2.27).

At this point, we hit an impasse: because of the term det(2πχv), this free energy de-
pends on the basis used to evaluate the functional integral in Equation (4.13). In Sec-
tion 4.1.5, we discuss the origin of this problem and argue that a pragmatic resolution is to
replace det(2πχv) with 2πσv, where σv is defined by Equation (2.23). For the moment, we
sidestep this issue and discuss other consequences of Equation (4.19).

By taking functional derivatives of Fv[Φ(r)] with respect to Φ(r), we can calculate the
mean value of various observables in the presence of constraints and external fields. We use
the subscript v to denote that the thermal averages are evaluated with these constraints and
external fields. In this way, we obtain two key results. First, the average solvent density is
given by

〈ρ(r)〉v = ρ`n(r) +
δβFv[Φ(r)]

δβΦ(r)

= ρ`n(r)−
∫

r′
χ(r, r′)βΦ(r′)−

∫

r′∈v

∫

r′′∈v
χ(r, r′)χ−1

v (r′, r′′)

[
ρ`n(r′′)−

∫

r′′′
χ(r′′, r′′′)βΦ(r′′′)

]
. (4.20)

Second, the fluctuation correlation function, denoted henceforth by χ(m)(r, r′), is given by

χ(m)(r, r′) = 〈δρ(r)δρ(r′)〉v =
δ2βFv[Φ(r)]

δβΦ(r)δβΦ(r′)

= χ(r, r′)−
∫

r′′∈v

∫

r′′′∈v
χ(r, r′′)χ−1

v (r′′, r′′′)χ(r′′′, r′). (4.21)

This modified fluctuation spectrum differs from χ(r, r′) principally in that it is 0 if either
r or r′ is in v, a result that follows from Equation (4.18). Since χ(r, r′) is usually short-
ranged (it decays to near-zero if r and r′ are more than about 10 Å from each other),
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χ(m)(r, r′) and χ(r, r′) are equal whenever both r and r′ are far from v. In the vicinity
of v, χ(m)(r, r′) differs quantitatively but not qualitatively from χ(r, r′).

The expression for the mean solvent density, Equation (4.20), has a clean physical inter-
pretation. To reveal it, we first construct an auxiliary field, c(r), that satisfies,

−
∫

r′∈v
χ(r, r′)c(r′) = −ρ`n(r), r ∈ v, (4.22a)

c(r) = 0, r 6∈ v. (4.22b)

In other words, kBTc(r) is a field, zero outside of v, that induces a solvent density re-
sponse −ρ`n(r) inside of v. With this field, we can rewrite Equation (4.20) as

〈ρ(r)〉v = ρ`n(r)−
∫

r′∈v
χ(r, r′)c(r′)−

∫

r′∈v̄
χ(m)(r, r′)βΦ(r′). (4.23)

The restricted domains of the integrals only emphasize the regions in which the integrand is
not trivially zero. This expression can be interpreted as follows: the effect of the constraints
is identical to that of an external field kBTc(r) that couples to the solvent density in v, chosen
to make the mean solvent density 0 in this region; the solvent further responds linearly to the
external field Φ(r), but with the modified fluctuation spectrum χ(m)(r, r′). This expression
makes evident that 〈ρ(r)〉v is zero inside v, as required by the density constraints, and that
its value outside of v is independent of the value of the field Φ(r) in v.

By using the expressions for c(r) and χ(m)(r, r′), we can rewrite the free energy of the
constrained field in a way that emphasizes the physical effects of the constraints. We obtain

Fv[Φ(r)] = kBT ln
√

det(2πχv) +
kBT

2

∫

r∈v
ρ`n(r)c(r)−

∫

r∈v
Φ(r)ρ`n(r)

− kBT

2

∫

r

∫

r′
βΦ(r)χ(m)(r, r′)βΦ(r′)−

∫

r∈v̄

∫

r′∈v
Φ(r)χ(r, r′)c(r′). (4.24)

The results of constrained Gaussian field theory are summarized in Table 4.2

4.1.4 Effective LCW Hamiltonian

We now consider the full LCW Hamiltonian, discussed in depth in Section 2.3. The mi-
croscopic details of this Hamiltonian, in the presence of an external potential u(r), are
summarized in Table 4.3.

Using the results of the previous section, we can derive an effective Hamiltonian Heff[n(r)]
for the field n(r), which is the result of thermally averaging over the fluctuating field δρ(r)
under the constraint of no solvent density in v. The Hamiltonian is built so that in the
absence of constraints and external field u(r), then Heff[n(r)] = HL[n(r)]. This effective
Hamiltonian can be decomposed into portions owing to the interfacial energetics, HL[n(r)],
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Solvent density field ρ(r) = ρ`n(r) + δρ(r)

External potential Φ(r)

Bare Hamiltonian H[δρ(r)] =
kBT

2

∫

r

∫

r′
δρ(r)χ−1(r, r′)δρ(r′)

Partition function Zv[Φ(r)] =

∫
Dδρ(r) e−βH[δρ(r)]−β

∫
r Φ(r)δρ(r)

∏

r∈v
δ
(
ρ`n(r) + δρ(r)

)

Solvent exclusion
potential

c(r) =

{∫
r′∈v χ

−1
v (r, r′)ρ`n(r′), r ∈ v

0, otherwise

Free energy Fv[Φ(r)] = kBT ln
√

det(2πχv) +
kBT

2

∫

r∈v
ρ`n(r)c(r)

−
∫

r∈v
Φ(r)ρ`n(r)−

∫

r∈v̄

∫

r′∈v
Φ(r)χ(r, r′)c(r′)

− kBT

2

∫

r

∫

r′
βΦ(r)χ(m)(r, r′)βΦ(r′).

Fluctuation spectrum 〈δρ(r)δρ(r′)〉v = χ(m)(r, r′)

= χ(r, r′)−
∫

r′′∈v

∫

r′′′∈v
χ(r, r′′)χ−1

v (r′′, r′′′)χ(r′′′, r′)

Mean density 〈ρ(r)〉v = ρ`n(r)−
∫

r′∈v
χ(r, r′)c(r′)−

∫

r∈v̄
χ(m)(r, r′)βΦ(r′)

Table 4.2: Main results of constrained Gaussian field theory for solvent density field. The
free energy is measured with respect to the unconstrained ensemble where Φ(r) = 0, so
Fv[Φ(r)] = −kBT lnZv[Φ(r)]/Z[0].
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Solvent density field ρ(r) = ρ`n(r) + δρ(r)

Unbalancing potential φ(r) = −2aρ`[n(r)− 1]

Hamiltonian H[n(r), δρ(r)] = HL[n(r)] +HS[δρ(r);n(r)]

+HI [n(r), δρ(r)] +Hu[n(r), δρ(r)]

Interfacial energy HL[n(r)] =

∫

r

w(n(r), µ) +
m

2
|∇n(r)|2

Fluctuation energy HS[δρ(r);n(r)] =
kBT

2

∫

r

∫

r′
δρ(r)χ−1

(
r, r′;n(r)

)
δρ(r′)

Length-scale coupling HI [n(r), δρ(r)] =

∫

r

φ(r)δρ(r) +Hnorm[n(r)]

Normalization Hnorm[n(r)] =
kBT

2

∫

r

∫

r′
φ(r)χ(r, r′)φ(r′)

External coupling Hu[n(r), δρ(r)] =

∫

r

u(r)[ρ`n(r) + δρ(r)]

Table 4.3: Microscopic LCW model.
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to the constrained solvent fluctuations, HS[n(r)], the effect of the unbalancing potential,
HI [n(r)], and finally, the effect of the coupling to the external field, Hu[n(r)]. Expressions
for all these Hamiltonians are collected in Table 4.4.

Before proceeding, we introduce two important simplifications. First, instead of solving
Equation (4.22) to obtain the value of the field c(r) in v, we replace c(r) there by its average
value, c1, and obtain the much simpler relation

c1 = 〈N〉v /σv, (4.25)

where

〈N〉v =

∫

r∈v
ρ`n(r), (4.26)

σv =

∫

r∈v

∫

r′∈v
χ(r, r′). (4.27)

As described below, this approximation is closely connected to the effective Hamiltonian
that would result if in Equation (4.13) we enforced only that

∫
r∈v ρ`n(r) + δρ(r) = 0, in-

stead of imposing the multitude of constraints that ρ`n(r) + δρ(r) be zero at every point
r in v. We present numerical evidence below that this approximation, dubbed the “one-basis
set approximation” in previous works [48, 107], does not appreciably change the results we
obtain. Crucially, this approximation replaces the large (though sparse) linear system of
Equation (4.22) with the trivial relation of Equation (4.25), and is therefore very advanta-
geous computationally. With it, the term HS[n(r)] is given by

HS[n(r)] ≈ kBT [〈N〉2v /2σv + C/2]. (4.28)

The normalization constant C should strictly be equal to ln(2πσv), but this quantity tends to
negative infinity as v becomes tiny, since in that limit, σv ≈ 〈N〉v. This deficiency arises from
a breakdown of Gaussian statistics for solvent number fluctuations in sub-Angstrom volumes.
Since solvent molecules are discrete entities, these statistics are instead Poissonian. The free-
energy cost of evacuating such a cavity is approximately kBT 〈N〉v (Equation (2.21)). We
thus define C by the relation

C =

{
ln(2πσv), 〈N〉v > 1,

max[ln(2πσv), 〈N〉v], otherwise.
(4.29)

This is a simple, continuous way of compensating for the difference in fluctuation statistics
at tiny length scales. The crossover1 to C = 〈N〉v occurs at 〈N〉v ≈ (2π − 1)−1 ≈ 0.19.

A second important simplification is that in all the solute geometries we have used, the
sum of the last two terms of HI [n(r)] in Table 4.4 are, on average, opposite in sign but nearly

1In Ref. [111], there is an inconsequential typo in the value of this crossover.
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Solvent density field ρ(r) = ρ`n(r) + δρ(r)

Unbalancing potential φ(r) = −2aρ`[n(r)− 1]

Partition function Zv[n(r)] =

∫
Dδρ(r) e−βH[n(r),δρ(r)]

∏

r∈v
δ
(
ρ`n(r) + δρ(r)

)

Effective Hamiltonian Heff[n(r)] = HL[n(r)] +HS[n(r)] +HI [n(r)] +Hu[n(r)]

Interfacial energy HL[n(r)] =

∫

r

w(n(r), µ) +
m

2
|∇n(r)|2

Solvent exclusion
potential

c(r) =

{∫
r′∈v χ

−1
v (r, r′)ρ`n(r′), r ∈ v

0, otherwise

Solvent exclusion
energy

HS[n(r)] = kBT ln
√

det(2πχv) +
kBT

2

∫

r∈v
ρ`n(r)c(r)

Length-scale coupling HI [n(r)] = −
∫

r∈v
φ(r)ρ`n(r)−

∫

r∈v̄

∫

r′∈v
Φ(r)χ(r, r′)c(r′)

+
kBT

2

∫

r

∫

r′
βΦ(r)(χ− χ(m))(r, r′)βΦ(r′).

External coupling Hu[n(r)] =

∫

r

u(r) 〈ρ(r)〉v +
kBT

2

∫

r

∫

r′
βu(r)χ(m)(r, r′)βu(r′)

Fluctuation spectrum 〈δρ(r)δρ(r′)〉v = χ(m)(r, r′)

= χ(r, r′)−
∫

r′′∈v

∫

r′′′∈v
χ(r, r′′)χ−1

v (r′′, r′′′)χ(r′′′, r′)

Mean density 〈ρ(r)〉v = ρ`n(r)−
∫

r′∈v
χ(r, r′)c(r′)−

∫

r∈v̄
χ(m)(r, r′)β(u+φ)(r′)

Table 4.4: Effective LCW Hamiltonian for slowly-varying field n(r). The microscopic Hamil-
tonian H[n(r), δρ(r)] is summarized in Table 4.3.
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proportional to the much simpler remaining term involving φ(r) (as described in detail below
in Section 4.4.3). Physically, these three terms capture the energetic bonus of driving δρ(r)
to 0 inside v where φ is positive, the energetic cost of the consequent density enhancement
just outside of v, and the small difference between (a) the entropic cost associated with
φ modifying the solvent density in the presence of a solute and (b) that same cost in the
absence of a solute. In typical configurations, the three terms are roughly proportional to
the subvolume of v where n(r) = 1, and capture how solvation free energies are modified
by the microscopic curvature of v. We have found it accurate to model the effect of these
three terms using only the first term of HI [n(r)], whose strength is then renormalized by a
factor K. The resulting approximation for HI [n(r)] is

HI [n(r)] ≈ −K
∫

r∈v
φ(r)ρ`n(r). (4.30)

The effective LCW Hamiltonian with these simplifications is summarized in Table 4.5.
In the remainder of this chapter, we propose and evaluate discretization schemes for these
equations.

4.1.5 Shortcomings of the Gaussian model

Before concluding this section, we return to the basis-dependence problem in Equation (4.19).
In particular, the value of det(2πχv) depends on the basis used to evaluate the functional
integral of Equation (4.16). The problem is a symptom of the Gaussian model breaking down
when the particulate nature of the solvent becomes evident. That is, the Gaussian model
allows the total number of particles in a given volume to be non-integer or even negative.
This is the same problem that appears in calculating the solvation free energy of a tiny cavity
with the Gaussian model, and is alleviated by our definition of C above.

If the functional integral over density fields in Equation (4.13) could be restricted so that
the total solvent density was everywhere non-negative, then the single constraint

∫
r∈v ρ`n(r)+

δρ(r) = 0 would be equivalent to the multitude of constraints imposed in Equation (4.13).
When only the single constraint is imposed on the Gaussian model, the resulting free energy
difference is

βF (1)
v [Φ(r)] = ln

√
2πσv +

[∫
r∈v ρ`n(r)−

∫
r′ χ(r, r′)βΦ(r′)

]2

2σv

− 1

2

∫

r

∫

r′
βΦ(r)χ(r, r′)βΦ(r′), (4.31)

with σv defined by Equation (2.23). In the absence of an external field Φ(r), this free energy
is equal to HS[n(r)] in the one-basis approximation (Table 4.5). The free energy is also
exactly the Gaussian model of Equation (2.27), which we know to be quantitatively accurate
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Solvent density field ρ(r) = ρ`n(r) + δρ(r)

Unbalancing potential φ(r) = −2aρ`[n(r)− 1]

Partition function Zv[n(r)] =

∫
Dδρ(r) e−βH[n(r),δρ(r)]

∏

r∈v
δ
(
ρ`n(r) + δρ(r)

)

Effective Hamiltonian Heff[n(r)] = HL[n(r)] +HS[n(r)] +HI [n(r)] +Hu[n(r)]

Interfacial energy HL[n(r)] =

∫

r

w(n(r), µ) +
m

2
|∇n(r)|2

Solvent exclusion
potential

c1 = 〈N〉v /σv

〈N〉v =

∫

r∈v
ρ`n(r)

σv =

∫

r∈v

∫

r′∈v
χ(r, r′)

Solvent exclusion
energy

HS[n(r)] ≈ kBT [〈N〉2v /2σv + C/2],

C =

{
ln(2πσv), 〈N〉v > 1,

max[ln(2πσv), 〈N〉v], otherwise.

Length-scale coupling HI [n(r)] ≈ −K
∫

r∈v
φ(r)ρ`n(r)

External coupling Hu[n(r)] =

∫

r

u(r) 〈ρ(r)〉v +
kBT

2

∫

r

∫

r′
βu(r)χ(m)(r, r′)βu(r′)

Fluctuation spectrum 〈δρ(r)δρ(r′)〉v = χ(m)(r, r′)

= χ(r, r′)−
∫

r′′∈v

∫

r′′′∈v
χ(r, r′′)χ−1

v (r′′, r′′′)χ(r′′′, r′)

Mean density 〈ρ(r)〉v = ρ`n(r)−
∫

r′∈v
χ(r, r′)c1 −

∫

r∈v̄
χ(m)(r, r′)β(u+ φ)(r′)

Table 4.5: Approximate effective LCW Hamiltonian for slowly-varying field n(r). The mi-
croscopic Hamiltonian H[n(r), δρ(r)] is summarized in Table 4.3.
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for cavities of up to a few Angstroms in size. This correspondence suggests that the basis-
independent expression 2πσv is a reasonable replacement for det(2πχv). We emphasize that
the solution we have chosen is purely pragmatic, and cannot be rigorously justified. In fact,
the replacement has some undesirable properties, such as the total solvation energy of two
distant cavities being kBT ln

√
2π ≈ 1 kBT less than the sum of the solvation energies of

the individual cavities. In most cases we have examined, however, the term kBT ln
√

2πσv
contributes negligibly to the total solvation free energy. We have thus chosen to accept the
inadequacies of our pragmatic replacement as a shortcoming of the otherwise rather useful
Gaussian model.

4.2 Discretized LCW Hamiltonian

In order to implement a simulation with the Hamiltonian in Table 4.5, we must discretize
it. We begin by describing n(r) with reference to a cubic grid of spacing λ, depicted in
Figure 4.1, and we denote its value at the center of cell i by ni. Then, n(r) is given by

n(r) =
∑

i

niΨ(r− ri), (4.32)

where ri is the center of cell i and ni is 1 or 0, and the sum is over all cells i. The function
Ψ(r) is maximal with value 1 at r = 0; it is cubic symmetric about the origin; and it is zero
when the magnitude of any of the Cartesian components of r is greater than λ. Additionally,
it satisfies for all r the property ∑

i

Ψ(r− ri) = 1,

so that when all cells have ni = 1, the resulting field n(r) is uniformly 1. The cell size λ
should be no smaller than the intrinsic width of the liquid-vapor interface. Based upon the
interfacial profile of the SPC/E model [5,49], we therefore pick λ = 4 Å. This is the minimal
scale over which the time-averaged solvent density can transition from liquid-like to vapor-
like values. The typical size of interfacial energies between cells on this grid is γλ2, where γ
is the liquid-vapor surface tension of the solvent.

4.2.1 Interfacial Energetics

Implementing an LCW-like theory on a lattice has been attempted previously [106,107,123].
In these efforts, the term HL[n(r)] has been approximated by an Ising Hamiltonian with
nearest-neighbor coupling

HL[{ni}] ?→ γλ2
∑

〈ij〉
(ni − nj)2 − µρ`λ3

∑

i

ni.
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n(r) = 1

n(r) = 0

λ

v

cell ivi

Figure 4.1: Schematic showing the solute and the large-length-scale density field on a grid

Unfortunately, the use of this Hamiltonian results in serious artifacts. Consider, for instance,
the energetics of a convex vapor bubble embedded in the liquid, as represented by the
field {ni}. Many configurations of the field that are physically distinct nonetheless have equal
surface area, and thus equal statistical weight. In particular, all convex shapes with equal
projections onto the xy-, yz- and xz-planes have the same surface area. Hence, the use of this
Hamiltonian results in an unphysical excess of entropy, as shown in detail in Section 4.4.4.
Moreover, the energetic cost of common configurations of the field {ni} is substantially
overestimated. The Ising Hamiltonian assigns a large vapor bubble of radius R an interfacial
energy of about 6πγR2, not 4πγR2. Whereas using a renormalized γ, as in Ref. [78], can
alleviate this latter problem, the problem of excess entropy is more fundamental.

Figure 4.2 illustrates the entropy problem in the Ising model. Here, a two-dimensional
27× 27-cell Ising model is constructed. Filled cells (ni = 1) are shown in black. The cells in
the shape of a cross in the middle are constrained to be filled at all times, those at the edges
to be empty at all times, and the system is initially prepared with all other cells empty. The
system is then evolved using Metropolis dynamics. At temperature T = 0, the expectation
is for the system to evolve to a state that minimizes the surface area (perimeter) of the filled
region. What is instead observed is an uncontrolled meandering of the boundary between
filled and unfilled cells. All the observed configurations after the initial expansion of the
filled region have exactly the same energy, namely γλ2 × 4 × 25. At a temperature where
γλ2 = 5 kBT , one would expect capillary waves of appreciable amplitude to form along the
boundary between filled and unfilled cells. Instead, the observed trajectory is essentially
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(a) T = 0

t = 0 20 50 100 150 200

(b) T > 0

t = 0 20 50 100 150 200

Figure 4.2: Excess entropy in the Ising model. The two-dimensional model has its central
cells constrained to be filled (ni = 1) and its edges to be empty (ni = 0). The time t is
measured in units of Metropolis sweeps through the lattice. (a) Model with T = 0. (b)
Model with γL2 = 5 kBT .

indistinguishable from the T = 0 trajectory.
Motivated by the above deficiencies of the Ising Hamiltonian, we have instead chosen to

evaluate the Landau-Ginzburg integral in Equation (2.31) numerically using the representa-
tion of Equation (4.32) for n(r). The value of the integral is conveniently expressed as the
sum

HL[{ni}] = γλ2
∑

i

hi − µρ`λ3
∑

i

ni, (4.33)

with the local integrals

hi =
1

γλ2

∫ xi+λ

xi

dx

∫ yi+λ

yi

dy

∫ zi+λ

zi

dz
[
w(n(x, y, z), 0) +

m

2
|∇n(x, y, z)|2

]
. (4.34)

The quantity hi depends only on the values of nj for cells j that share one of the corners of
cell i. There are only 14 distinct possible values of hi, which can be precalculated numerically
for a given free energy density w(n, 0) and cell size λ. To calculate hi, we need concrete
choices for Ψ(r), w(n, µ) and m, which we describe below. The resulting values of hi are
given in Table 4.6.

Our choice for basis function Ψ(r), depicted in Figure 4.3 for water, approximates at a
local level the usual van der Waals construction (described in detail in Chapter 3 of Ref. [93]).
We first construct a 1D basis function ψ(x) satisfying

w′(ψ(x), 0)−mψ′′(x) = 0, (4.35)
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1 0 0 0
1 0 0 0
1 1 1 0
1 1 1 1

0

1

-4 -2 0 2 4

ψ
(x

)

x (Å)

Figure 4.3: Constructing n(r) from {ni}. The binary field specifies whether the density at
the center of each lattice cell should be that of the liquid or that of the vapor. Between cell
centers, the density is interpolated using the basis function ψ(x) (whose form for water is
shown below the arrow). The dashed lines delineate the domain of integration of the local
free energy hi given by Equation (4.34).

with boundary conditions ψ(0) = 1 and ψ(λ) = 0. We then extend the range of ψ(x) and
symmetrize it so that

ψ(x > λ) = 0, (4.36)

and
ψ(x < 0) = ψ(−x). (4.37)

Finally, the three-dimensional basis function Ψ(r) is constructed from the one-dimensional
profiles ψ(x) to give

Ψ(x, y, z) = ψ(x)ψ(y)ψ(z).

The field n(r) constructed from Equation (4.32) using this basis function has many useful
properties: the value of n(r) at the center of each cell i corresponds to the state encoded
in ni; the density interpolates smoothly between adjacent cells; and the density profile of a
configuration representing an axis-aligned wall, where all ni’s are 1 on one side of a plane
and 0 on the other, nearly reproduces the interface profile given by the van der Waals
construction.

For water, following Ref. [48], we use the free-energy density

w(n, µ) =
2m

d2
(n− 1)2n2 − µρ`n, (4.38)
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where the parameter d captures the thickness of the liquid-vapor interface, as described
shortly. This choice results in both sides of Equation (4.35) being proportional to m, so the
function ψ(x) is independent of m. In the free van der Waals theory, where the boundary
conditions on Equation (4.35) are ψ(−∞) = 1 and ψ(+∞) = 0, the density profile ψ0(z)
that results is

ψ0(z) = [1 + tanh(z/d)]/2,

which accurately describes the average density profile of an SPC/E water slab at ambient
conditions. The thickness parameter d can thus be determined from simulation. A complica-
tion due to capillary waves is that d grows logarithmically with simulation box size [79,117],
so different authors quote different values of d: 1.27 Å for a 19× 19 Å2 interface in Ref. [48]
and 1.54 Å for a 30× 30 Å2 interface in Ref. [112]. We choose the smaller value because the
instantaneous configuration of n(r) should be blurred only by small-length-scale fluctuations,
not by large-length-scale capillary waves, which correspond instead to different conforma-
tions of n(r). The profile shown in Figure 4.3 corresponds to the solution of Equation (4.35)
when the more restrictive boundary conditions described above are imposed, with λ = 4 Å
and d = 1.27 Å.

In principle, the value of m is related to the surface tension by the relation [93]

γ =

∫ λ

0

[
w(ψ(x), 0) +mψ′(x)2/2

]
dx. (4.39)

On a lattice, as exemplified above by the Ising Hamiltonian, this choice results in perfect
interfacial energies for flat axis-aligned interfaces at the expense of more common curved in-
terfaces. Thus, we instead choose m self-consistently such that ψ(x) satisfies Equation (4.35)
and the calculated interfacial energy of some reference geometry of surface area A is γA.
Equation (4.39) corresponds to a cubic reference geometry. Since curved surfaces are far
more common than flat one in realistic solutes, we instead use large spheres as our reference
geometry.

For the specific form of w(n, µ) that we use for water, hi is proportional to m and ψ(x)
is itself independent of m. The above self-consistent procedure can hence be implemented
quite simply. We first calculate the hi quantities up to a factor of m, and then pick m to
obtain the correct interfacial energies.

With concrete choices of Ψ(r), w(n, 0), m and λ, the integrals hi defined by Equa-
tion (4.34) can be evaluated. The value of hi depends only on the values of nj for the
8 cells j that share one of the corners of cell i. Out of the 256 possible configurations of
{nj}, only 14 are unique when one accounts for reflection, rotation and inversion symmetry.
Thus, only 14 distinct integrals need to be evaluated numerically. This decomposition bears
a strong resemblance to the marching cubes algorithm [65] that reconstructs interfaces in
volumetric data, and is widely used in computerized tomography. The resulting values of hi
are given in Table 4.6.
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Local {nj} configuration
hi (Present model) 0.000 0.387 0.676 0.725 0.754 0.851 0.965
hi (Ising model) 0.000 0.750 1.000 1.500 1.500 1.250 1.750

Local {nj} configuration
hi (Present model) 0.983 0.857 0.910 1.104 0.965 1.040 1.134
hi (Ising model) 2.250 1.000 1.500 2.000 1.500 2.000 3.000

Table 4.6: Relative interfacial free energy hi for each distinct neighboring cell configuration
(diagrams after Ref. [65]). Highlighted corners denote cells j with nj = 1, whereas the
others refer to cells with nj = 0; cell i is the lower-left corner in the back. To aid the eye, a
schematic of the implied liquid-vapor interface of each configuration is shown in orange. The
values of hi are inversion-symmetric: interchanging highlighted and unhighlighted corners
yields the same interface and interfacial energy. Also shown are the values of hi that would
reproduce the energetics of the standard Ising lattice gas, namely γλ2

∑
〈ij〉(ni − nj)2.

To illustrate the effect of this improved Hamiltonian for the interfacial energetics, we
consider the limit d → ∞. There, the free energy density w(n, µ) is 0 for all n, and the
above procedure can be implemented analytically. The resulting expression for HL[{ni}] is

HL[{ni}] = γL2
∑

i

ni

[
8

3
− 1

6

∑(2)

j

nj −
1

12

∑(3)

j

nj

]
− µρ`λ3

∑

i

ni, (4.40)

where both superscripted sums are over cells j that share at least one vertex with cell i:
the sum

∑(2) is over the 12 cells that are two cells away from i, while the sum
∑(3) is over

the 8 cells that are three cells away from i. Curiously, there is no nearest-neighbor coupling
in this limit. What Equation (4.40) reveals about the above discretization of the Landau-
Ginzburg Hamiltonian is that it augments the nearest-neighbor coupling of the Ising model
with additional information about the local shape of the liquid-vapor interface.

In two dimensions, the analogous Hamiltonian in the d→∞ limit is

HL[{ni}] = γL2
∑

i

ni

[
8

3
− 1

3

∑(1)

j

nj −
1

3

∑(2)

j

nj

]
− µρ`λ3

∑

i

ni, (4.41)

using notation analogous to that in Equation (4.40). Figure 4.4 shows how the system in
Figure 4.4 behaves when the interfacial energetics are those of Equation (4.41). At zero
temperature, the field quickly evolves to minimize the surface area (perimeter) between the
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(a) T = 0

t = 0 20 50 100 150 200

(b) T > 0

t = 0 20 50 100 150 200

Figure 4.4: Discretized Landau-Ginzburg model of Equation (4.41). Labels as in Figure 4.2.

filled and unfilled regions, while at a moderate temperature, capillary waves of controlled
magnitude appear on this interface. The energy of the stable field configuration at T = 0 is
also quite close to its continuum value of γL2 × 4× 25/

√
2.

4.2.2 Solvent exclusion

To construct a discretized version of HS[n(r)] in Table 4.5, we would ideally simply use
Equation (4.32) to express HS[n(r)] in terms of the {ni} variables. The resulting equations
are somewhat unwieldy computationally, so we instead proceed heuristically. We first need
a discretized analog of the fluctuation spectrum χ(r, r′). To define it, we introduce the
projector bV (r) for a given volume V ,

bV (r) =

{
1, r ∈ V,
0, otherwise.

(4.42)

The complement of V is denoted by V̄ , so that bV (r) + bV̄ (r) = 1. We denote the overlap
of v or v̄ with cell i by vi and v̄i, respectively. In the uniform fluid, the solvent number
fluctuation correlations between the portions of cells i and j that overlap with two volumes
V and V ′, respectively, form the elements of a matrix

χij(V, V
′) =

∫

r∈i

∫

r′∈j
bV (r)χ0(r− r′)bV ′(r

′), (4.43)

where
χ0(r) = ρ`δ(r) + ρ2

` [g(|r|)− 1]. (4.44)



CHAPTER 4. AN IMPROVED COARSE-GRAINED MODEL OF SOLVATION 85

The domain of the r and r′ integrals are restricted to the volume of cells i and j, as indicated.
A way to estimate these elements is outlined in Section 4.4.1.

With the above notation, we can approximate the quantities 〈N〉v and σv that are referred
to in HS[n(r)] by the expressions

〈N〉v =
∑

i

niρ`vi, (4.45)

σv =
∑

i,j

niχij(v, v)nj. (4.46)

4.2.3 Length-scale coupling

The integral defining HI [n(r)] in Table 4.5 can be approximated as a lattice sum,

HI [{ni}] = −K
∑

i

φiρ`nivi, (4.47)

where φi is the average value of φ(r) in cell i. To proceed, we need to choose a concrete
implementation of the overbar operation that is used to define φ(r). Following Ref. [107],
we approximate it as a weighted average involving the cell containing r and its nearest
neighbors,2 given by

n(r) ≈
[1

2
ni +

1

12

∑′

j (nni)

nj

]
. (4.48)

The primed sum over j(nni) is a sum over the six cells j that are nearest neighbors to cell i.
The quantity φi then follows directly,

φi = 2aρ`

[
1− 1

2
ni −

1

12

∑′

j (nni)

nj

]
. (4.49)

4.2.4 Solute-solvent interactions

The remaining term in the effective Hamiltonian in Table 4.5, Hu[n(r)], captures the energetic
effect of a field u(r) that couples to ρ(r). This potential can be used to model the attractive
interactions between a solute and the solvent.

To discretize Hu[n(r)], we define a discretized analog ui of u(r),

ui =
1

v̄i

∫

r∈i
bv̄(r)u(r). (4.50)

2In Ref. [107], the term proportional to ni is omitted. Since φ(r) only acts on cells with ni = 1, this
omission is inconsequential, and shows up as an extra factor of 2 in their value of a.
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Notice that ui is independent of u(r) for values of r inside the solute. The apparent diver-
gence, where v completely overlaps cell i, has no effect in the final expression. The natural
discretization of Hu[n(r)] is then

Hu[{ni}] =
∑

i

uini

[
ρ`v̄i −

∑

j

χij(v̄, v)nj 〈N〉v /σv −
∑

j

χij(v̄, v̄)njβ(uj + φj)
]

+
kBT

2

∑

i,j

βuiniχij(v̄, v̄)njβuj. (4.51)

Note the use of the volume v̄ in the matrix elements χij. In this expression, we have
approximated χ(m)(r, r′) as equal to χ(r, r′) if both r and r′ are in v, and 0 otherwise.

The complete discretized version of the effective LCW Hamiltonian is summarized in
Table 4.7. Although the derivation of the model is somewhat tortuous (and torturous), the
model itself is quite simple.

4.2.5 Parameters of the Hamiltonian

The model of Table 4.7 has a number of parameters that specialize it to water at ambient
conditions, T = 298 K and 1 atm pressure, p. We have discussed our choices for cell size λ =
4 Å and interfacial relative free energies hi in Section 4.2.1. In this section, we discuss
appropriate choices for the remaining parameters. Further, we comment upon what changes
are required for applications at different states of water.

The bulk liquid density ρ` is the experimental value [63], whereby a liquid cell contains
ρ`λ

3 ≈ 2.13 waters on average. At ambient conditions, the experimental value for the
surface tension [63] yields γλ2 ≈ 2.80 kBT . The relative chemical potential is given by
µ ≈ (p − pvap)/ρ`, where pvap is the vapor pressure at 298 K. This relationship gives µ ≈
7.16 × 10−4 kBT , which is quite small, reflecting that water at ambient conditions is nearly
at coexistence with its vapor.

The matrix elements χij(V, V
′) are computed from the radial distribution function, g(r),

and we derive this function from Narten and Levy’s tabulated data [81]. It is a convenient
data set because it covers a broad range of temperatures for the liquid at and near p = 1 atm.
At one temperature, 25◦C, we have checked that a different estimate of the radial distribution
function, that of the SPC/E model, yields similar matrix elements, and the resulting solvation
properties are essentially identical to those obtained when the χij(V, V

′)’s are computed from
the Narten-Levy data at the same temperature (see Figure 4.12).

The only parameters that we estimate through fitting are the strength a of the un-
balancing potential and the renormalization constant K. In the absence of solute-solvent
attractions, only the product of a and K is relevant. Values of a and K with Kaρ` = 2.1 kBT
allow us to match the solvation free energies of hard spheres in SPC/E water (see below).
By comparing the average value of the computationally convenient approximate expression
involving φi in Equation (4.47) with that of its complete and unrenormalized counterpart,
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Effective Hamiltonian Heff[{ni}] = HL[{ni}] +HS[{ni}] +HI [{ni}] +Hu[{ni}]

Interfacial energy HL[{ni}] = γλ2
∑

i

hi − µρ`λ3
∑

i

ni,

Solvent exclusion
energy

HS[n(r)] ≈ kBT [〈N〉2v /2σv + C/2],

C =

{
ln(2πσv), 〈N〉v > 1,

max[ln(2πσv), 〈N〉v], otherwise.

〈N〉v =
∑

i

niρ`vi

σv =
∑

i,j

niχij(v, v)nj

Unbalancing potential φi = 2aρ`

[
1− 1

2
ni −

1

12

∑′

j (nni)

nj

]

Length-scale coupling HI [{ni}] = −K
∑

i

φiρ`nivi

External field ui =
1

v̄i

∫

r∈i
bv̄(r)u(r)

External coupling Hu[{ni}] =
∑

i

uini

[
ρ`v̄i −

∑

j

χij(v̄, v)nj 〈N〉v /σv

−
∑

j

χij(v̄, v̄)njβ(uj + φj)
]

+
kBT

2

∑

i,j

βuiniχij(v̄, v̄)njβuj

Table 4.7: Discretized effective LCW Hamiltonian. The values of hi are those in Table 4.6.
The matrix elements χij(V, V

′) are given by Equation (4.43). The primed sum over j(nni)
is a sum over the six cells j that are nearest neighbors to cell i.
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as is done in Section 4.4.3, we find that K is about 1/2, so that aρ` ≈ 4.2 kBT . This value
for a is close to the original LCW estimate [68], arrived at from a different criterion.

These values are applicable at ambient conditions. As temperature and pressure vary,
only γ, µ and g(r) vary appreciably, while K varies slightly. In particular, surface tension
decreases roughly linearly with temperature [63] (with dγ/dT ≈ −0.15 mJ/m2·K which is
−5.8×10−3 kBT/λ

2·K at T = 298 K). As noted above, µ increases roughly linearly with pres-
sure. The pair correlation function g(r) loses some structure for temperatures above 50 ◦C.
The terms that are modeled by the renormalization constant K reflect the degree to which
solvent density layers next to a solute. Since this layering reflects the structure of g(r), we
expect K to be slightly state-dependent, with its value increasing with temperature.

Conversely, liquid water has a nearly constant density and bulk correlation length at the
temperatures and pressures where our model would be useful, so ρ` and λ can be taken as
constant as well. The value of a in simple liquids (Equation (A.3)) is state-independent, so
we expect that in water, a will be nearly state-independent as well [47].

4.3 Applications and Results

4.3.1 Solvation Free Energies

To test our model’s ability to capture the length-scale dependence of solvation, and to
parametrize the strength of the unbalancing potential, we have calculated the solvation free
energy of hard spheres of different radii. Whether within our model or using explicit water
simulations, we calculate the solvation free energy of a solute following the guidelines of
Ref. [90]. Briefly, we first define a series of M + 1 solutes S0 through SM that slowly inter-
polate from an empty system (S0) to the final solute of interest (SM). We then sequentially
calculate the free energy difference between solute m and solute m + 1 using the Bennett
acceptance ratio estimator (BAR [4]), and, where necessary, the linear interpolation strati-
fication procedure of Ref. [90]. Error estimates are calculated using BAR, and are generally
smaller than 0.5%.

Our model (Table 4.7) involves only simple arithmetic, so free energies can be calculated
with little computational effort. For example, calculating the solvation free energy of hard
spheres of up to 14 Å in radius in increments of 0.5 Å (Figure 4.5) takes about 1 hour on
a single 2 GHz machine with a code that has not been fully optimized, whereas a similar
calculation in explicit SPC/E waters with GROMACS [44] would take around 600 hours on
the same machine to obtain a similar statistical accuracy.

As discussed in Section 2.2.1, hard-sphere solvation free energies scale as solute volume
for small spheres, and as surface area for large spheres, with a smooth crossover at inter-
mediate sizes. Figure 4.5 illustrates this behavior and compares the results of our model
to previous simulation results using SPC/E water [49]. As the model manifestly reproduces
the small- and large-length-scale limits, the most significant feature illustrated in Figure 4.5
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is the gradual crossover from volume to surface area scaling. Ignoring the unbalancing po-
tential leads to a qualitatively correct scaling behavior. However, adjustment of the single
parameter a, which determines the strength of the unbalancing potential, yields a near-exact
agreement between our model and the SPC/E results for all sphere sizes. In all subsequent
results, the parameter a is fixed at this value.

The model results have small lattice artifacts—results that depend upon the position of
the solute relative to that of the coarse-grained lattice—as shown in the inset of Figure 4.5.
When studying stationary solutes, lattice artifacts may be mitigated by performing multiple
calculations, differing only by small displacements of the solutes, and then averaging the
results. When studying dynamical phenomena, lattice artifacts tend to pin solutes into
alignment with the coarse-grained lattice. For arbitrary molecular solutes, we expect that
pinning forces acting on one portion of the molecule will generically oppose pinning forces
on other parts of the molecule, so that the total pinning forces will largely cancel out.
However, when treating many identical molecules, lattice artifacts can add constructively,
and additional steps are needed to mitigate them [103].

Since the unbalancing potential is explicitly parametrized with the solvation free energy
of hard spheres, it is useful to evaluate the accuracy of the results in other geometries. To
this effect we computed the solvation free energies of a family of hexagonal plates, consisting
of 37 methane-like oily sites arranged into three concentric rings. We control the size of these
plates, depicted in Figure 4.6, by varying the distance d between neighboring oily sites. For
our calculations with explicit SPC/E water, the sites are uncharged and interact with the
solvent molecules via a standard3 water-methane Lennard-Jones potential. To study the role
of attractive interactions, we split this Lennard-Jones potential using the Weeks-Chandler-
Andersen (WCA) prescription [119] into a repulsive part u0(r) and an attractive part ∆u(r).
The magnitude of the attractive tail can be varied systematically with a scaling parameter η,
such that

uη(r) = u0(r) + η∆u(r). (4.52)

For the ideal hydrophobic plate, we set η to zero.
In the coarse-grained model, the repulsive core of the solute is represented as an excluded

volume. To construct it, we replace each solute particle by a thermally-equivalent hard
sphere, whose radius R0 is estimated according to

R0 =

∫ ∞

0

dr [1− exp(−βu0(r))],

which is a first approximation to the WCA value of this radius (Section 5.3 of Ref. [41], also
see Ref. [113]) and is essentially the radius at which u0(r) is kBT . The excluded volume is
then the union of the hard-sphere volumes of each solute site.

3The parameters of the solute-solute Lennard-Jones potential are those of Ref. [58]: σ = 3.905 Å and ε =
0.118 kcal/mol. Lorentz-Berthelot mixing rules were used to obtain the water-solute interaction parameters.
These are the same oily sites used in the model hydrophobic plate of Chapter 3
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Figure 4.5: Solvation free energies G of hard spheres of increasing radii, as calculated from
explicit SPC/E water simulations [49] (solid blue), from the coarse-grained model (solid
black), and from one of the most common variants of GBSA [14] (arrow at bottom right).
Different parametrizations of GBSA yield non-polar solvation energies that may differ by as
much as a factor of ten, reflecting the crudeness of the SA portion of the model [14]. When the
coarse-grained model has no unbalancing potential (a = 0, dashed gray), the intermediate-
size regime is only qualitatively reproduced. For large spheres, the ratio of G to surface area
tends to the liquid-vapor surface tension γ (horizontal red dots). Inset: Illustration of lattice
artifacts. The spheres are centered at different offsets from the lattice: a generic position
(0.98 Å, 0.79 Å, 1.89 Å) that breaks all rotational and mirror symmetries (black), a lattice cell
corner (blue) and a lattice cell center (red). All three curves are identical for R ≤ 0.35 nm.
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Figure 4.6: Solvation free energies G of hexagonal plates, as a function of plate size, as
calculated by the coarse-grained model (solid lines), by explicit SPC/E water simulations
(points), and by the same GBSA variant as in Figure 4.5 (arrow on right). Three values
of the attractive interaction strength η are shown: 0.0 (black), 0.5 (red) and 1.0 (blue).
Solvent-accessible surface areas (SASAs) were calculated using VMD [55], with a particle
radius of 1.97 Å, a solvent radius of 1.4 Å, and 1,000,000 samples per atom. The bulk liquid-
vapor surface tension of water (horizontal red dots) is shown. Inset: Detail of the hexagonal
plate. The solvent-excluded volume of each oily site is a sphere of radius R0 = 3.37 Å.
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Figure 4.6 compares the solvation free energies for this family of solute plates computed
from our atomistic simulations with those computed from the coarse-grained model with
the unbalancing parameter a determined above for solvated hard spheres. Now, with this
different geometry, the coarse-grained model continues to perform well. The discrepancies
are primarily due to the small underestimation, shown in Figure 4.5, of the solvation free
energy of small spheres. Figure 4.6 also compares the solvation free energies of plates with
increasing attractions to the corresponding results from explicit-water simulations.

4.3.2 Fluctuations

In the present model, we estimate water number distributions, PV (N), by a two-step proce-
dure. For any given solvent configuration {ni}, the small-length-scale fluctuations of δρ(r)
give rise to a Gaussian distribution in the numbers of waters, so that

PV (N |{ni}) ∝ exp
[
−(N − 〈N〉V )2/2σV

]
, (4.53)

where, assuming V and v are disjoint,

σV =

∫

r∈V

∫

r′∈V
χ(m)(r, r′) ≈

∑

ij

niχij(V, V )nj, (4.54)

and the mean number of solvent particles in the volume V , 〈N〉V , is computed by a discrete
approximation of the integral of 〈ρ(r)〉v in Table 4.5 over the volume V . That computation
gives

〈N〉V =
∑

i

ni

[
ρ`Vi −

∑

j

χij(V, v)nj 〈N〉v /σv −
∑

j

χij(V, v̄)njβ(uj + φj)
]
. (4.55)

Here, Vi is the overlap of the probe volume with cell i. Notice the use of the probe volume
V in the χij matrices. Formally, we then thermally average the above result over all possible
solvent configurations to obtain

PV (N) ∝
∑

{ni}
PV (N |{ni}) exp(−βHeff[{ni}]).

In practice, we estimate this sum by sampling a lattice variable n that closely correlates
with N , given by

n =
∑

i∈V
ni.

This procedure is analogous to obtaining the atomistic PV (N) by biasing the closely related
observable Ñ(RN), as described in Section 3.2.1. More precisely, we divide the range of pos-
sible values of n into small overlapping windows, and sample relevant configurations at every
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value of n using Wang-Landau sampling [116] along n, together with replica exchange [26],
to obtain good sampling and avoid kinetic traps. We then used MBAR (Section 3.1.1) to
reconstruct from these runs the probability distribution for n, P (n). During the umbrella
sampling runs, lattice configurations with equal n are observed in proportion to their Boltz-
mann weight. Using the notation {ni} ∈ n to denote all observed lattice gas configurations
with a particular value of n, we finally obtain

PV (N) =
∑

n

P (n)
∑

{ni}∈n
PV (N |{ni}). (4.56)

To estimate the statistical errors in our procedure, we calculate PV (N) in five independent
Monte Carlo runs, and estimate the standard error in the mean of lnPV (N).

In the absence of a solute, PV (N) is sensitive only to the interfacial energetics of the
lattice gas. Figure 4.7 compares the PV (N) curve obtained using the present model for a
12× 12× 12 Å3 volume with the atomistic results of Figure 3.3 and with (a) a version of the
coarse-grained model that lacks an unbalancing potential (a is set to zero), and (b) a version
that additionally uses the naive Ising lattice gas for estimating interfacial energetics in n(r).
Our present model captures the observed deviations from Gaussian behavior better than
these simpler models, which reflects its higher accuracy in estimating interfacial energetics
and microscopic curvature effects.

We next evaluate our model’s ability to capture how hydrophobic solutes affect water
number fluctuations in nearby probe volumes. We use the same model hydrophobic plate
and probe volume that was used in Section 3.2.3. Figure 4.8 shows a set of water number
distributions in the probe volume adjacent to the plate, as calculated with the present model,
which compare favorably to the atomistic results in Figure 3.6. With no solute-solvent
attractive interactions, the probability computed from the lattice model has a clear fat tail
towards lower numbers of waters in the probe volume. At higher attractive interactions, this
fat tail is correspondingly depressed, but not entirely suppressed.

Figure 4.8 also evidences some of the limitations of the present model. The probe vol-
ume being less than one lattice cell thick, large lattice artifacts are inevitable. Moreover,
since PV (N) distributions are much more detailed probes of solvent structure than solva-
tion free energies, we expect more room for disagreement with simulation. Nevertheless,
we emphasize that, by construction, no implicit solvation models can capture the above
effects on solvent structure, which underlie the pathways of hydrophobic assembly. Other
coarse-grained solvation models (for example, see Ref. [95]), on the other hand, can probe
rare solvent fluctuations, and it would be useful to evaluate their accuracy in this respect as
compared to explicit-water models and the present lattice model.

4.3.3 Confinement

To conclude, we evaluate our model’s ability to reproduce the dewetting phenomenology ob-
served in Section 3.2.4. There, we placed two model hydrophobic plates of varying attractive
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SPC/E water simulations (Figure 3.3), the present model, the present model without the
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adjacent to the model plate solute (inset) with varying attractive strength η, in the coarse-
grained model (solid lines) and in explicit SPC/E water (points). See Section 3.2.3 for setup
details.
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strength η at a distance d from each other, and looked at the water number distributions in
the inter-plate volume. Figure 4.9, analogous to Figure 3.8, shows the resulting water num-
ber distributions. Using our model, we can further densely sample the space of the variables
d and η to obtain more accurate information about the dewetting transition. Figure 4.10
summarizes the results in the form of a phase diagram. At small separations and low attrac-
tive strengths, the dry state (low N) is most stable, whereas high attractive strengths and
large separations stabilize the wet state (high N).

The general, though not quantitative, agreement between the coarse-grained model and
the SPC/E data is very encouraging: bistability is observed in the PV (N) distributions in
both cases, with the barriers at the nearly equal values of N , and with barrier heights that
track the SPC/E barrier heights. The phase boundary in Figure 4.10 closely tracks the
phase boundary observed in explicit water, with a shift of less than 2 Å for all η. Moreover,
as shown in Figure 4.11, once the general shift in the phase boundaries is accounted for,
the PV (N) distributions for systems near that boundary obtained by the coarse-grained
model and the SPC/E simulations agree reasonably well. Hence, the present model is better
suited than implicit solvation models for studies of nanoscale self-assembly or protein-protein
interactions driven by the hydrophobic effect.

4.4 Appendices

4.4.1 Estimating χij(V, V
′)

An essential ingredient of the model we present is the matrix χij(V, V
′), given by the integral

in Equation (4.43). The terms involving the delta-functions of Equation (4.44) are trivial.
Owing to the rapid oscillations in g(r)−1, the remaining integrals are harder to estimate. We
employ a two-step procedure to estimate these integrals efficiently. We begin by subdividing
the λ = 4 Å-resolution grid of cells into a much finer grid of resolution λf = 1 Å. For clarity,
below we explicitly distinguish between cells in the coarse grid, indexed by the letters i and j,
and cells in the fine grid, indexed by the letters a and b. We evaluate the integrals of the
non-delta-function portion of χ0 on the fine grid without otherwise restricting the arguments
to particular volumes V and V ′, and denote the result by χab. Each fine cell is so small that
the effect of a restriction on the integration domain can be estimated accurately with a
simple interpolation formula. We then use these interpolated values in the fine grid to build
up the elements of χij(V, V

′) over the coarse grid.
To evaluate χab, we use the Narten-Levy data [81] for the structure factor S(k) of water.

Since the S(k) is unavailable for wave-numbers k higher than 16 Å−1, we blur the domains of
integration over a range of about 2π/16 Å, which makes the values of the integrals practically
insensitive to this missing data. Concretely, we introduce a basis function Φ, given by

Φ(x, y, z) = ϕ(x)ϕ(y)ϕ(z),
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Figure 4.9: PV (N) distributions for interplate region in Figure 3.7 for η equal to (a) 0.0, (b)
0.5 and (c) 1.0. The plate separation runs from d = 7 Å (red) to d = 11 Å (orange).
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with

ϕ(x) =
1

2

[
tanh

x− λf/2
∆

− tanh
x+ λf/2

∆

]
.

The function ϕ is unity around x = 0, and goes rapidly to zero as |x| & λf/2, with ∆
controlling the range of x over which this transition occurs. We have found a value of 0.1 Å
for ∆ to be adequate. Using the notation ra to denote the center of fine cell a, the value of
χab is given by

χab = ρ2
`

∫

r

∫

r′
Φ(r− ra)[g(|r− r′|)− 1]Φ(r′ − rb). (4.57)

The integral is best evaluated in Fourier space, where the term in square brackets appears as
the experimental S(k) profile. We overcome the convergence problems of a rapidly oscillating
integrand by using the Haselgrove-Conroy integration algorithm [15,42]. To properly account
for g(r) being exactly zero for r . 2.35 Å, we further set χab to exactly −ρ2

` if all points in a
are within rc = 2.35 Å from all points in b. To limit the range of χab, we also set it to
zero if all points in a are more than 10 Å from all point in b. The values of χab need only
be calculated once at each state point of water, and we have spent considerable effort in
compiling them at ambient conditions. Our results are tabulated in the Supplementary
Information of Ref. [111].

For specific volumes V and V ′, we estimate the value of χij(V, V
′) as a weighted average

of the pertinent values of χab,

χij(V, V
′) ≈ ρ`(V ∩ V ′) +

∑

a∈i

∑

b∈j
(Va/λ

3
f )χab(V

′
b /λ

3
f ), (4.58)

where (V ∩ V ′) is the volume of the overlap between V and V ′. This interpolation formula
for χij is manifestly linear in its arguments, so that

χij(V, V
′) + χij(V, V

′′) = χij(V, V
′ ∪ V ′′),

whenever V ′ and V ′′ do not overlap. Most importantly, the interpolation procedure is simple,
convenient, and correct for the limiting cases of where all the values of Va are either 0 or λ3

f .
For comparison, we have also calculated values of χab from an explicit SPC/E water

simulation in GROMACS at temperature T = 298 K and pressure p = 1 atm. The values
are also included in the Supplementary Information of Ref. [111]. For the quantities we have
studied in the main text, using these values for χab instead of those derived from the Narten-
Levy data yields nearly identical results. For example, Figure 4.12 shows the solvation free
energies for spheres calculated using the SPC/E values for χab instead of the Narten-Levy
ones used in Figure 4.5. The agreement is representative of what we have observed for all
the other observables discussed in Section 4.3.
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Figure 4.12: Solvation free energies G of hard spheres of increasing radii, calculated using
SPC/E values for χab. See Figure 4.5 for an explanation of the curves shown.
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4.4.2 Accuracy of the one-basis approximation

In the final model of Table 4.5, we don’t compute the full field c(r) defined in Equation (4.22),
but instead use the one-basis approximation of Equation (4.25). To test this approximation,
we have implemented a discretized version of Equation (4.22) to calculate the values of a
field ci, the discrete analog of c(r),

∑

j

niχij(v, v)njcj = ρ`nivi. (4.59)

This equation only determines the values of ci for cells i that are wet (ni = 1) and overlap the
excluded volume (vi 6= 0). This is enough information to calculate a lattice approximation
to HS[n(r)] in Table 4.4,

HS[{ni}] =
kBT

2

∑

i

ρ`nivici + C/2, (4.60)

with C defined by Equation (4.29). Note that at every step of a Monte Carlo simulation used
to simulate the model with this expression for HS[{ni}], the linear system of Equation (4.59)
must be solved. In our experience, this makes the model without the one-basis approximation
about an order of magnitude slower to simulate than the model of Table 4.5.

Figure 4.13 shows the solvation free energy of spheres calculated with the above expression
for HS[{ni}], and is analogous to Figure 4.5. The unbalancing potential used here to fit the
SPC/E solvation free energies, aρ` = 5.4 kBT , is slightly higher than the one used in the
final model. From the general agreement of the two Figures, we conclude that the one-basis
approximation is a reasonably accurate one, especially given its significant computational
advantage. Fortuitously, the one-basis approximation leads to lesser lattice artifacts than
the purportedly more accurate model presented in this section.

4.4.3 Accuracy of the renormalization approximation to HI [n(r)]

Above, we replaced the three terms involving φ(r) in the expression for HI [n(r)] in Table 4.4
by the simpler expression given in (4.30). We now justify this replacement.

Denote by H+[n(r)] the terms dropped from HI [n(r)] in Table 4.4. They are

H+[n(r)] = −
∫

r∈v̄

∫

r′∈v
φ(r)χ(r, r′)c(r′) +

kBT

2

∫

r

∫

r′
βφ(r)(χ− χ(m))(r, r′)βφ(r′). (4.61)

Approximating χ(m)(r, r′) as zero if r or r′ are in v and χ(r, r′) otherwise, and using the
one-basis set approximation of Equation (4.25), we discretize these terms to obtain a lattice
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Figure 4.13: Solvation free energies G of hard spheres of increasing radii, calculated with-
out the one-basis approximation and without the correction for Poisson statistics for small
spheres (Equation (4.60), but with C = ln(2πσv)). See Figure 4.5 for an explanation of the
curves shown.
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version of H+[n(r)],

H+[{ni}] = −
∑

i,j

φiniχij(v̄, v)nj 〈N〉v /σv

+ kBT
∑

i,j

βφini[χij(v, v)/2 + χij(v̄, v)]njβφj. (4.62)

Because of the double sums in the formula, calculating H+[{ni}] is the most computationally-
demanding part of calculating Heff[{ni}]. Since a single cell flip changes the value of φi in
up to 7 cells, calculating incremental changes to H+[{ni}] is also much more expensive than
calculating incremental changes to Hu[{ni}] (Equation (4.51)), which has a similar structure.

Figure 4.14 presents the solvation free energies of hard spheres calculated when the
H+[{ni}] term is included and the renormalization constant K is set to 1. As can be seen,
the term corresponding to HI [{ni}] has a much larger absolute value, and in the region
where their values are not negligible, the average values of HI [{ni}] and H+[{ni}] are, as
claimed, essentially proportional. The renormalization procedure we implement thus seems
justified, a conclusion borne out by the results in the text. For completeness, we have verified
that the solvation free energies of the hexagonal plate solute (Figure 4.6) calculated when
H+[{ni}] is included and K is 1 are essentially identical to the ones calculated using the
simpler Hamiltonian of Table 4.5.

4.4.4 Comparison to the ten Wolde-Chandler model

A particularly clean previous attempt to implement a lattice theory based on LCW ideas is
that of ten Wolde and Chandler [106]. Using the notation in this chapter, the Hamiltonian
of that model is

H[{ni}] = γλ2
∑

〈ij〉
(ni − nj)2 − µρ`λ3

∑

i

ni +
kBT

2
c0λ

3
∑

i

nivi, (4.63)

where c0 is a constant approximation to the one-basis value of c1 (Equation (4.25)) with a
value of about 120 nm−3. This value is chosen to obtain the correct solvation free energy of
a 5 Å-radius sphere. The lattice cell size λ was chosen as 2.1 Å in that work. The resulting
solvation free energies for spheres of radii of up to 14 Å are shown in Figure 4.15 (solid black
line).

Above, we argued that the Ising Hamiltonian estimate for HL[n(r)] overestimates the
interfacial energy of a sphere of radius R by a factor of 3/2. However, the ten Wolde-
Chandler model uses precisely this Hamiltonian, yet the solvation free energy of spheres
seems to tend to the correct value as R grows. This apparent paradox is explained in the
remainder of Figure 4.15, which shows how the solvation energies of spheres obtained with
the ten Wolde-Chandler model differ when the lattice cell size of λ = 2.1 Å is changed to
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Figure 4.14: Solvation free energiesG of hard spheres as a function of sphere radius, where the
term H+[{ni}] (Equation (4.61)) has been included and the renormalization constant K has
been set to 1 (solid black), compared to the simpler model of Table 4.5 (circles). The averages
of −〈Hint[{ni}]〉 (red) and 〈H+[{ni}]〉 (black) are nearly proportional to each other. Left
Inset: implied renormalization constant K, equal to 〈Hint[{ni}] +H+[{ni}]〉 / 〈Hint[{ni}]〉.
Note that both the numerator and denominator take on essentially zero value for R . 0.4 nm.
Right Inset: Implied value of K for hexagonal plate solute (Figure 4.6) with η = 1.0. The
implied value of K is similar for different η.
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Figure 4.15: Solvation free energies G of spheres in the model of Ref. [106] (black), for cell
sizes λ = 2.1 Å (solid) and λ = 2.3 Å (dashes). The use of the Ising Hamiltonian causes
the average value of HL[{ni}] (red) to significantly exceed the solvation free energy, but also
leads to large excess entropies (blue, TS = 〈H〉 −G). At λ = 2.1 Å, but not at λ = 2.3 Å, a
fortuitous cancellation leads to correct solvation free energies.

λ = 2.3 Å. As claimed, 〈HL[{ni}]〉 is much larger than it should be, but for λ = 2.1 Å, the
excess entropy resulting from the unphysical degeneracies of the Ising Hamiltonian exactly
cancels this excess energy. This fortuitous cancellation does not occur for different cell sizes,
and will not, in general, hold for solutes of different geometries.

4.4.5 Moving solutes

The solvent degrees of freedom in the model of Table 4.5, {ni}, can be efficiently sampled
using Metropolis Monte Carlo. On the other hand, sampling the solute degrees of freedom
is more complex. The principal problem is to calculate the overlap volume va between the
excluded volume v and a given fine cell a (see Section 4.4.1). The volume v is typically a
union of overlapping spheres, one for each atom in the solute. For the results of this chapter,
we calculated these overlap volumes for a fixed solute geometry using expensive, brute-force
Monte Carlo integration. In Refs. [106] and [123], an interpolation scheme was used that
only works if no point in space is within the solvent-excluding radius of three or more spheres
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simultaneously, and a solute geometry was chosen that avoids this situation. Neither scheme
is adequate for a generic, moving solute. Moreover, if the solute is propagated through
some variant of molecular dynamics, such as Langevin dynamics [106], then the gradient
of Heff[{ni}] with respect to solute positions is also needed.

Here, we discuss a partial solution to the above problem. Specifically, we present an
approximate method of calculating va when v is, as above, a union of possibly overlapping
spheres of a few different sizes.4 The gradient of va with respect to the centers of these
spheres is also easy to calculate. In principle, propagating these gradients to obtain gradients
of Heff[{ni}] is then simply a (non-trivial) bookkeeping exercise.

In describing our scheme, we treat cell indices a as vectors that can be added and sub-
tracted. We denote by ra the coordinates of the corner of cell a with lowest Cartesian
components. For a solvent-excluding sphere of radius R centered at r0, we can precalculate
the overlap volumes v̂s of all cells s by any method, such as Monte Carlo integration. We do
this once at the beginning of a simulation.

Generically, the center R of a solvent-excluding sphere will not coincide with a cell corner.
We denote the indices of the eight corners of the cell containing R by a1, . . . , a8, and their
positions by r1, . . . , r8. We construct eight non-negative weights c1(R), . . . , c8(R), the sum
of which is 1 and whose value depends continuously on R, such that R =

∑8
k=1 ck(R)rk.

Any scheme with these characteristics, such as trilinear interpolation, can be used. The
overlap volumes for cells a near r are then estimated by

ṽa(R) ≈
8∑

k=1

ck(R)v̂a−ak . (4.64)

The gradient of this volume is easy to calculate,

∇ṽa(R) ≈
8∑

k=1

∇ck(R)v̂a−ak . (4.65)

This interpolation scheme has the desirable property that the total volume of a sphere, given
by
∑

a ṽa(R), is independent of R.
When a solute is composed of multiple spheres, centered at RN , we simply add together

the overlap volumes given by Equation (4.64) for each solute, but we cap the sum at the
total volume of each fine cell, λ3

f . In summary, we have

va ≈ min

[
λ3
f ,

N∑

n=1

ṽa(Rn)

]
, (4.66)

∇nva ≈
{

0, va = λ3
f ,

∇ṽa(Rn), otherwise.
(4.67)

4This method was developed with Tuomas Knowles.
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Figure 4.16: Total volume excluded by two spheres of radius R = 3.37 Å when a distance d
apart, as calculated exactly (Equation (4.68)) and by the numerical scheme of Section 4.4.5.

This scheme is correct whenever one or more spheres overlaps cell a completely, as well as
when two spheres both overlap cell a but not each other. When two or more spheres both
partially overlap cell a and each other, our scheme mildly overestimates the overlap volume.

We have evaluated the precision of our scheme by calculating the total volume of two
spheres of radius R whose position is varied, and the two spheres are placed at arbitrary
positions with respect to the fine grid. The total volume can be calculated analytically when
the two sphere centers are a distance d apart,

Vtot(d) =

{
2× 4

3
πR3, d > 2R,

2× 4
3
πR3 − π

12
(4R + d)(2R− d)2, otherwise.

(4.68)

The results of this comparison are shown in Figure 4.16 when R = 3.37 Å and the fine
grid resolution is 1 Å. As expected, the exact and numerical results agree closely. Of equal
importance, the spread in the numerical estimate of the total volume is small, which suggests
that the lattice artifacts of our overlap-volume scheme are quite modest.
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4.4.6 Electrostatics

The model presented in this chapter approximates the cavity formation (∆Gcav) and dis-
persion interaction (∆GvdW) parts of the solvation energy (∆Gsol in Equation (2.15)). The
remaining part, ∆Gpol, accounts for solvent polarization. Here, we summarize a few methods
for estimating ∆Gpol that could, in the future, augment the model of Table 4.5. All of these
methods treat the solvent as a linear dielectric continuum, and so neglect any coupling be-
tween density and polarization fluctuations. The excluded volume v and the volumes lacking
solvent (where n(r) = 0) create a non-uniform dielectric constant ε(r). The methods then
estimate the work of inserting the partial charges of the solute into place in this non-uniform
medium.

Conceptually, the solute charges induce charges in the dielectric medium, which can be
calculated using Poisson’s equation

∇ ·D(r) = ρf (r), (4.69)

where

D(r) = ε(r)E(r), (4.70)

E(r) = −∇φ(r), (4.71)

and
ρf (r) = qiδ(r−Ri). (4.72)

For the purposes of computing polarization energies, we can regard the simulation box as
infinite, so the boundary conditions of the Poisson equation would be φ(r)→ 0 as |r| → ∞.
The total work to create all the partial charges (including their self-energies) is then [40]

W =
1

2

∫

r

D · E =
1

2

∫

r

ε(r)|∇φ(r)|2. (4.73)

The polarization energy ∆Gpol is then equal to this work minus the self-energy of the charges.
Numerical methods exist to solve the Poisson equation (or the related Poisson-Boltzmann
equation where the effect of ions is included approximately) and calculate ∆Gsol to arbitrary
accuracy (see introduction of Ref. [72]). Most of these methods, however, are unsuitable for
a dynamical treatment of solvation, either because they are too computationally demanding
or suffer from serious discretization errors (i.e., ∆Gsol is a discontinuous function of partial
charge positions).

A pragmatic alternative to solving the Poisson equation is the Generalized Born (GB)
method [3, 102]. Following Ref. [3], we first consider the solvation free energy of N point
charges {qi} at the centers of spherical cavities of radii {ai} inside a medium with dielectric
constant εw. Charges i and j are separated by a distance rij. In the limit where all dis-
tances {rij} are much larger than any cavity radius, we obtain the usual Born expression for



CHAPTER 4. AN IMPROVED COARSE-GRAINED MODEL OF SOLVATION 110

polarization term of the solvation free energy,

∆Gpol =
N∑

i=1

q2
i

2ai
(ε−1
w − 1) +

1

2

N∑

i=1

N∑

j 6=i

qiqj
rij

(ε−1
w − 1). (4.74)

The GB method generalizes this formula to any charge distribution in an arbitrarily shaped
cavity as

∆Gpol =
1

2

∑

i,j

qiqj
fGB(rij)

(ε−1
w − 1), (4.75)

where

fGB(rij) =
√
r2
ij +RiRj exp(−r2

ij/4RiRj). (4.76)

Here, the constants {Ri} are the so-called effective Born radii of the atoms, chosen so that
when all charges but charge i are turned off, Equation (4.75) is exact. In the limit of well sep-
arated spherical cavities, Ri and ai coincide, and Equation (4.75) reduces to Equation (4.74).
The particular form of fGB(rij) in Equation (4.76) is chosen to enforce these two limits, as
well as recovering the polarization energy of a small point dipole in a spherical cavity.

The effective Born radii are approximated using the so-called Coulomb field approxi-
mation. When all charges but charge i are turned off, the displacement field, D(r), is
approximated by the formula

D(r) ≈ qi
4π|r− ri|3/2

(r− ri). (4.77)

This approximation is exact when the cavity is spherical. From Equations (4.73) and (4.75),
it follows that

R−1
i ≈

∫

r out

1

|r− ri|4
, (4.78)

where “out” is the region of space with dielectric constant εw. When the “out” region is
a collection of possibly overlapping spherical cavities, efficient algorithms exist to estimate
Ri and its gradients with respect to particle positions [43,83]. In order to integrate the Gen-
eralized Born method with our model of the hydrophobic effect, one would need to generalize
these estimates to allow the solvent-deficient region (where n(r) = 0) to be included in the
“cavity” region.

Finally, a third approach would be to model the statistics of the polarization field using
a Marcus-Felderhof free energy functional [30,73], an approach that is closely related to the
Gaussian field theory of Song et al. [100, 101]. These theories start from the following free
energy functional of the polarization field P(r),

Fpol[P(r)] =
1

2

∫

r

P(r) · κ(r)−1 ·P(r)

− 1

2

∫

r

∫

r′

(∇ ·P(r))(∇ ·P(r′))

|r− r′| −
∫

r

(
∇ ·P(r)

)
φ0(r), (4.79)
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where φ0(r) is the potential energy set up by the charges in vacuum,

φ0(r) =
N∑

i=1

qi
|r− ri|

, (4.80)

and
κ(r) = ε(r)− 1. (4.81)

The free energy of Equation (4.79) encodes the free energy cost of establishing the polariza-
tion field (as determined by the dielectric constant), and the interaction of the bound charge
density ∇ ·P(r) with itself and with the free charges. Minimizing Fpol[P(r)] with respect to
variations in P(r) yields the usual equations for electric fields in non-uniform media. How-
ever, the idea of minimizing a free energy can be approximated in a dynamical simulation
via a Car-Parrinello-like extended Lagrangian [9, 34]. A clean realization of this proposal is
the model of Marchi et al. [72].

The free energy functional in Equation (4.79) contains information beyond macroscopic
dielectric continuum theory, since it allows for thermal fluctuations in the polarization field.
Recasting this free energy as a Gaussian field theory for P(r) yields

Fpol[P(r)] =
1

2

∫

r

P(r) · κ(r)−1 ·P(r)− 1

2

∫

r

∫

r′
P(r) · ∇∇′ 1

|r− r′| ·P(r′) +

∫

r

P(r) · E0(r),

(4.82)
which follows from integration by parts. Here, E0(r) = −∇φ0(r). In a language closer to
that of Gaussian fields, we have

Fpol[P(r)] =
kBT

2

∫

r

∫

r′
P(r) · χ−1(r, r′) ·P(r′) +

∫

r

P(r) · E0(r), (4.83)

where

kBTχ
−1(r, r′) =

1

ε(r)− 1
δ(r− r′)−∇∇′ 1

|r− r′| . (4.84)

Note that χ(r, r′) here is a tensor. Since Equation (4.83) is a Gaussian free energy functional,
we can immediately obtain the free energy of polarization from the results in Table 4.1,

∆Gsol = −kBT

2

∫

r

∫

r′
βE0(r) · χ(r, r′) · βE0(r′) +

∑

i 6=j

qiqj
rij

. (4.85)

The last term corresponds to the interaction of the partial charges in vacuum. In practice,
this equation is not useful in the case of a non-uniform dielectric constant ε(r), because
calculating χ(r, r′) in that case amounts to obtaining the Green’s function of the relevant
Poisson equation. Song et al.’s contribution [100,101] is to recast the non-uniform dielectric
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as a zero-fluctuation constraint inside a cavity volume c of an otherwise uniform dielectric.
The function χ(r, r′) for a uniform dielectric with dielectric constant ε is known [30],

βχ(r, r′) =
ε− 1

ε

(
δ(r− r′) + (ε− 1)∇∇′ 1

|r− r′|

)
. (4.86)

The constrained fluctuation spectrum, solvation free energy and average polarization field
then follow directly from the results of Table 4.2. Song and Chandler [100] discuss a numerical
scheme to calculate these properties for cavities of fixed shape.

We thus expect that a model for the polarization can be constructed, similar to the one
we have built in this Chapter for the solvent density. However, there are serious obstacles in
doing this that we have not attempted to address. First, while the solvent density fluctuation
spectrum was quite local, the polarization fluctuation spectrum is distinctly non-local. Thus,
we can’t approximate χ(m)(r, r′) as χ(r, r′) for r and r′ outside of v and zero otherwise, as
we could with the solvent density. Equally problematic, the “one-basis approximation” that
we used to simplify HS[n(r)] is thoroughly inadequate in the case of polarization. To see
this, we implement this approximation as a generalization of Equation (4.31) and obtain,

∆Gsol ≈
∑

i 6=j

qiqj
rij

+ kBT ln
√

det 2πχv +
1

2

[∫

r∈c
P0(r)

]
· χ−1

c ·
[∫

r∈c
P0(r)

]
, (4.87)

where P0(r) = −
∫
r′ χ(r, r′)E0(r) = (ε− 1)E0(r) is the polarization field in the absence of a

constraint, the matrix χc is the 3× 3 matrix given by

χc =

∫

r∈c

∫

r′∈c
χ(r, r′), (4.88)

with χ(r, r′) the uniform fluctuation spectrum of Equation (4.86), and we’ve omitted the
last term in Equation (4.31) that corresponds to the self-energy of the charges in the di-
electric medium. In the limit of widely separated spherical cavities around each charge
(Equation (4.74)),

∫
r∈c P0(r) is zero, so in this limit, Equation (4.87) fails to capture any

polarization effects. Thus, implementing the constrained Gaussian field theory for dielectric
media in a way that allows for large-length-scale solvent density fluctuations remains an
open problem.



113

Chapter 5

Hydrophobic effects at surfaces

In this chapter, we explore how hydrophobic forces are modified near large surfaces of
different chemical character [86]. As discussed in Chapter 3 and modeled in Chapter 4, solutes
in bulk are accommodated in water through a combination of two mechanisms: spontaneous
density fluctuations and inclusion within vapor bubbles. The balance between these two
mechanisms shifts from the former to the latter as the size of the solute increases. In making
this statement, the term “solute” means everything that is dissolved in the solvent. This
perspective is not always the most natural one. One might want to think of the “solute” as
only a small part of the system, and regard the remaining part as some external constraint,
like a large surface. From this perspective, the manifestations of the hydrophobic effect differ
considerably with respect to when the solute is isolated in bulk water.

In Section 3.2.3, we briefly assumed this perspective when calculating water number
distributions near a large hydrophobic plate. There, we found that the existing liquid-vapor
interface around the plate facilitates solvating a cavity next to the solute, compared with
solvating the same cavity in bulk. In this chapter, we delve much more deeply into these
issues, and rationalize them to near-quantitative accuracy using a minimal model based on
LCW ideas.

We begin by calculating the solvation free energy of cavities of varying size next to
model surfaces of varying chemical character and hydrophobicities. We further calculate the
temperature dependence of these free energies to discover whether entropic or enthalpic con-
siderations prevail in each case. These two sets of observations capture the phenomenology
of solvation at surfaces.

Next, we construct a minimal solvation model, adapted to solvation near surfaces, based
on LCW ideas, and discuss the pertinent implementation details. Using this model, we
calculate a set of solvation free energies and their temperature dependence analogous to the
ones described above. In all cases, we find reasonable agreement in both qualitative and
quantitative aspects. Having reduced the hydrophobic effect to its essence, we rationalize
all the observed behavior in terms of the simple picture of a precarious balance between
spontaneous density fluctuations and liquid-vapor interfacial fluctuations.
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We conclude the chapter by considering the broader implications of our results. In
particular, we argue that hydrophobic surfaces can be regarded as generic catalysts for
disassembly and unfolding of hydrophobically collapsed polymers. This finding may be
relevant in the functioning of chaperonin proteins.

5.1 Phenomenology

5.1.1 Setup

Our simulation setup is depicted in Figure 5.1. In a 7× 7× 9 nm3 simulation box at temper-
ature T = 300 K, we prepare a slab of SPC/E water that is open at the top and is adjacent
to a model self-assembled monolayer (SAM) at the bottom. The model SAM, similar to one
used in previous studies [39], consists of a periodic, crystalline array of fixed gold atoms, to
each of which are attached two alkyl chains (12 carbons in length) capped by a head group
of our choosing. The particular head group controls the SAM’s hydrophobicity. The head
groups we use, in ascending hydrophilicity, are CH3, OCH3, CH2CN, CONH2 and OH. The
contact angle calculated in simulations between a droplet of water and the SAM agrees well
with experiment [39].

In this setup, we calculate the solvation free energy, ∆Gsol, of an L× L×W nm3 probe
volume, V , immediately adjacent to the SAM (shown in green in Figure 5.1) with the relation
∆Gsol = −kBT lnPV (0). The width W is fixed at 0.3 nm to specifically capture hydrophobic
effects at the SAM surface, and the side length L ranges from 0.5 to 3.0 nm. For L < 1 nm,
we measured PV (0) directly in an unperturbed system, whereas for larger L, we used the
method of Section 3.2.1. For comparison, we also calculate ∆Gsol for the same cavity in bulk
water.

5.1.2 Solvation free energies at surfaces

Figure 5.2 shows the calculated solvation free energies, scaled by the cavity’s surface area,
A = 2L2 + 4WL. In bulk, we observe the expected length-scale dependence of the quantity
∆Gsol/A (Figure 2.3), namely a gradual transition from ∆Gsol scaling as the volume of the
cavity to it scaling as the cavity’s surface area. The solvation free energies next to the -OH-
capped SAM are virtually identical, as expected for a hydrophilic surface (Figure 3.6(b))
and are substantially reduced as the SAM is made more hydrophobic. For the most part,
this reflects the reduced attraction between the SAM and the water when the head groups
are hydrophobic, although we argue below that enhance fluctuations at the SAM-water sur-
face also contribute to this reduced solvation free energy. For the most hydrophobic SAM,
∆Gsol/A is essentially constant. Below, we argue that this behavior is a consequence of sol-
vation near a hydrophobic SAM-water interface being dominated by interfacial fluctuations
at both small and large length scales.
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x
y

z

Figure 5.1: Simulation setup for calculating ∆Gsol for a thin probe cavity (green) in water
(red and white spheres, partially removed for clarity) atop a model SAM (top alkyl chains
in grey; gold atoms and bottom alkyl chain not shown). The SAM head group was varied
from hydrophobic (-CH3, shown here in black and white) to hydrophilic (-OH).
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Figure 5.2: Solvation free energy per unit area, ∆Gsol/A, for an L × L × 0.3 nm3 probe
volume next to SAM surfaces with different head groups, at temperature T = 300 K. The
quantity ∆Gsol/A for the same cavity in bulk water is shown in black.
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Figure 5.3: Solvation free energy per unit area, ∆Gsol/A, for an L×L×0.3 nm3 probe volume
next to SAM surface and in bulk water at temperature T , relative to its value at T = 280 K.

5.1.3 Temperature dependence of solvation free energies

To assess the temperature dependence of ∆Gsol/A, one could in principle calculate the sol-
vation entropy ∆Ssol = −∂∆Gsol/∂T directly from one simulation at T = 300 K, using the
relation ∆Ssol = (∆Hsol − ∆Gsol)/T , where ∆Hsol = 〈H〉N=0 − 〈H〉. However, this direct
estimate has large statistical errors, since a small quantity is estimated as a difference be-
tween two large quantities. Instead, we have calculated ∆Gsol at two other temperatures,
280 K and 320 K, and approximated the derivative numerically, as would be done in an ex-
periment. When L is large, calculating ∆Gsol is expensive, so we have only done so for the
most hydrophobic and most hydrophilic SAMs, as well as in bulk water.

Figure 5.3(a) summarizes the results at large length scales (L = 3.0 nm). In this regime,
all solvation free energies decrease with increasing temperature. This result is consistent
with interfacial physics dominating solvation at these length scales, since the liquid-vapor
surface tension of water decreases with temperature (Equation (2.20)). The absolute decrease
in ∆Gsol is equal, within errors, for the three systems depicted, even though ∆Gsol is about
four times as large for bulk water and next to the -OH-capped SAM than next to the -CH3-
capped SAM. We rationalize this observation below.

Figure 5.3(b) summarizes the results at small length scales (L = 0.5 nm). In this regime,
the solvation thermodynamics is more subtle. On the one hand, in bulk and next to the
hydrophilic SAMs, ∆Gsol increases with temperature, which implies that solvating the cavity
primarily reduces the entropy of the surrounding water (Equation (2.27)). On the other hand,
next to the most hydrophobic SAM, ∆Gsol decreases with temperature, as would occur if
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in bulk water is shown for comparison.

interfacial physics dominated even at this length scale. For intermediate hydrophobicities,
an intermediate behavior is observed.

These observations are summarized for all length scales in Figure 5.4. For the most
hydrophobic SAM, the solvation entropy is nearly constant at all length scales, whereas for
the most hydrophilic SAM, the solvation entropy crosses over from negative to positive as
length scales grow, as happens in bulk.

5.2 Theory

5.2.1 Minimal model

To rationalize the observations of the previous section, we have constructed a minimal sol-
vation model, adapted to the geometry in Figure 5.1, based on LCW ideas. Specifically,
given the thin probe volumes that we consider, we expect that the slowly-varying field of
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Figure 5.5: (a) A typical configuration of the model interface z = h(x, y) (color-coded by z).
The grey region represents the model surface. (b) Important volumes in estimating the
free energy ∆Gsol of emptying the probe volume V (green) via Equation (5.2). The region
z > h(x, y) is the volume B (blue), and the intersection of V and B is v (dark green).

LCW theory, ρ`n(r), will be uniformly 1 in the bulk and uniformly 0 inside the SAM, with a
single, continuous interface separating the two regions. Hence, instead of modeling the entire
field ρ`n(r), we model only the interface, which we describe as a periodic elastic membrane,
z = h(x, y). The associated Hamiltonian, H[h(x, y)], captures its surface tension and its
interaction with the underlying surface,

H[h(x, y)] =

∫

x,y

[
γ

2
|∇h(x, y)|2 +

∫ ∞

z=h(x,y)

ρ`U(r)

]
. (5.1)

Here, γ is the experimental liquid-vapor surface tension of water, ρ` is the bulk number
density of water, and U(r) is the interaction potential between the surface below and a water
molecule at position r = (x, y, z). The square-gradient term in Equation (5.1) accurately
captures the energetics of interfacial capillary waves only for wavelengths that are large
compared to atomic dimensions, so we restrict h(x, y) to contain only modes with wavevectors
below 2π/9 Å (see Figure 3.20). Figure 5.5(a) depicts a typical configuration of h(x, y).

Figure 5.5(b) shows a side view of an L × L × W probe volume, V , located at the
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surface-water interface. At any instant in time, part of V can be empty due to an interfacial
fluctuation. The number of waters, N , in the remaining volume, v, fluctuates according to
a distribution Pv(N). For V to be empty, N must be 0. Thus, we estimate the free energy
for emptying V to be

∆Gsol(V ) = −kBT ln

∫
DhZ−1e−βH[h(x,y)]Pv(0), (5.2)

where the constant Z =
∫
Dh exp{−βH[h(x, y)]} is the partition function of the membrane.

The volume v depends on the interfacial configuration h(x, y), i.e., v = v[h(x, y)].
For small v, we know that Pv(N) is well-approximated by the Gaussian model (Equa-

tion (2.25)). If water were far from liquid-vapor coexistence, then Pv(N) would also be close
to Gaussian for arbitrarily large v. The fact that water at ambient conditions is near liquid-
vapor coexistence, and that there is a liquid-vapor-like interface near the SAM, is captured
by the additional interfacial energy factor Z−1 exp{−βH[h(x, y)]} in Equation (5.2). The net
result is that the thermal average in Equation (5.2) is dominated by interface configurations
where v is small, so that even at ambient conditions, we can approximate Pv(N) using the
Gaussian model. Explicitly,

Pv(N) ≈ (2πσv)
−1/2 exp

[
−(N − 〈N〉v)2/2σv

]
, (5.3)

where 〈N〉v is the average number of waters in v and σv = 〈(δN)2〉v is its variance. We
estimate these by assuming that the solvent density responds linearly to the attractive po-
tential, U(r), in the volume occupied by the water, B, depicted in Figure 5.5(b). Hence,

〈N〉v ≈ ρ`v −
∫

r∈v

∫

r′∈B
χ(r, r′)βU(r′),

σv ≈
∫

r∈v

∫

r′∈v
χ(r, r′),

where
χ(r, r′) ≈ ρ`δ(r− r′) + ρ2

` [g(|r− r′|)− 1]. (5.4)

Here, g(r) is the oxygen-oxygen radial distribution function of water [81].
The surface-water interaction is modeled by a potential, U(r), chosen to closely mimic

the attractive potential that the -CH3 SAM exerts on the water above it. It is composed of
three terms,

U(r) = Uwall(r) + ηUhead(r) + Utail(r).

The first term, Uwall(r), is a sharply repulsive potential in the region z < R0 that captures
the hard-core exclusion of a plane of head groups at z = 0 with hard-sphere radius R0.
The second term, Uhead(r), captures the head group–water interaction, with the head groups
modeled as a plane of Lennard-Jones (LJ) interaction sites of area density µhead at z = 0
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and the LJ parameters of an OPLS/UA CH3 group interacting with an SPC/E water oxygen
atom [58]. It is scaled by a parameter η that we discuss shortly. The final term, Utail(r),
similarly captures the alkane tail–water interaction, with the tail groups modeled as a uniform
half-space of LJ interaction sites of volume density ρtail at a distance ζ below the head groups
and the LJ parameters of an OPLS/UA CH2 group interacting with an SPC/E water oxygen
atom. The parameters R0, ζ, µhead and ρtail are dictated by the geometry of the SAM. Their
values and the explicit form of the potential are given below.

The parameter η is used to tune the strength of the surface-water interaction. A surface
with η = 1 resembles a -CH3-capped SAM, while higher values of η result in more hydrophilic
surfaces. Such surfaces, however, lack the specific details of hydrogen bonding interactions,
such as those between an -OH-capped SAM and water, so comparisons between high-η model
surfaces and hydrophilic SAMs are qualitative in nature.

5.2.2 Implementation details

This section describes in detail how we perform computations with the minimal solvation
model. The results we obtain in Sections 5.2.3 and 5.2.4 can be understood independently
of the material in this section.

Interface description

We describe the liquid-vapor-like interface next to the model surface by a periodic height
function h(a), with a = (x, y) and −D/2 ≤ x, y < D/2. This function is sampled discretely
at a resolution ∆, at points satisfying

a = (nx∆, ny∆), − D

2∆
≤ nx, ny <

D

2∆
.

This results in N2 discrete sampling points {a}, with N = D/∆. In the following, sums over
a denote sums over these N2 sampling points. We have used D = 60 Å and ∆ = 1 Å.

The discrete variables {ha} represent the interface height at each sample point a, so that

ha = h(a), for a = (nx∆, ny∆).

This notation clearly distinguishes between the N2 height variables ha and the continuous
height function h(a) that they represent.

The discrete Fourier transform of {ha} is denoted by {h̃k}, and is defined at wavevec-
tors k = (2π/L)(mx,my), with−N/2 ≤ mx,my < N/2. We use the symmetric normalization
convention throughout for Fourier transforms.
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Energetics

The essential property of the liquid-vapor-like interface is its surface tension. For a free
interface, the resulting capillary-wave Hamiltonian [8] is

H0[{ha}] ≈
γ∆2

2

∑

a

|∇ha|2 ≈
γ∆2

2

∑

k

k2|h̃k|2,

where ∇ha is a finite-difference approximation to ∇h(a).
With the Willard-Chandler definition of the instantaneous liquid-vapor interface [125],

the power spectrum of capillary waves in SPC/E water agrees with the spectrum predicted
by the above Hamiltonian for wavevectors smaller than about 2π/`, but is substantially lower
for higher wavevectors (see Figure 3.20). This result is consistent with the liquid-vapor-like
interfaces being sensitive to molecular detail at high wavevectors [94]. At T = 300K, we
have found that ` ≈ 9 Å. We thus constrain all Fourier components h̃k to be zero for high k,
i.e.

h̃k = 0, |k| > 2π/`. (5.5)

In our model, the liquid-vapor-like interface interacts with a model surface via a potential
that depends on {ha}. As discussed below, it is also convenient to introduce additional
umbrella potentials to aid in sampling. The Hamiltonian of the interface subject to this
additional potential energy H ′[{ha}] is

H[{ha}] =
γ∆2

2

∑

k

k2|h̃k|2 +H ′[{ha}]. (5.6)

When expressed as a function of the Fourier components {h̃k}, we denote the Hamiltonian
by H̃[{h̃k}] and the external potential by H̃ ′[{h̃k}], so that

H̃[{h̃k}] =
γ∆2

2

∑

k

k2|h̃k|2 + H̃ ′[{h̃k}].

Dynamics

We calculate thermal averages of interface configurations by introducing a fictitious Langevin
dynamics and replacing thermal averages by trajectory averages. We first assign a mass per
unit area µ to the interface. The Lagrangian in real space is

L[{ha, ḣa}] =
µ∆2

2

∑

a

ḣ2
a −H[{ha}].

The corresponding Lagrangian in Fourier space is

L̃[{h̃k, ˙̃hk}] =
µ∆2

2

∑

k

| ˙̃hk|2 − H̃[{h̃k}].
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Since all ha are real, the amplitudes of modes k and −k are related, h̃k = h̃∗−k. Taking this
constraint and Equation (5.5) into account, the Euler-Lagrange equations yield equations of
motion in Fourier space. To thermostat each mode, we add Langevin damping and noise
terms. The final equation of motion has the form

µ∆2¨̃hk = −γ∆2|k|2h̃k −
∂H̃ ′[{h̃k}]

∂h̃k
− η ˙̃hk + ξ̃k(t), (|k| < 2π/`), (5.7)

The Langevin damping constant η is chosen to decorrelate momenta over a time scale τ , so
η = µ∆2/τ. The zero-mean Gaussian noise terms {ξ̃k(t)} have variance such that

〈ξ̃∗k(t)ξ̃k′(t
′)〉 = 2ηkBTδ(t− t′)δk,k′ .

As with h̃k, the ξ̃k variables satisfy the related constraint ξ̃k = ξ̃∗−k. Hence, for k = 0, the
noise is purely real and its variance is twice that of the real and imaginary components of
all other modes.1

We propagate these equations of motion using the Velocity Verlet algorithm [34]. At each
force evaluation, we use a Fast Fourier Transform (FFT [35]) to calculate {ha} from {h̃k}.
We then calculate ∂H ′[{ha}]/∂ha in real space and perform an inverse FFT to obtain the
force ∂H̃ ′[{h̃k}]/∂h̃k on mode h̃k due to H ′[{ha}]. We then add the forces due to surface
tension, Langevin damping and thermal noise, as in Equation (5.7).

For the Velocity Verlet algorithm to be stable, we choose a timestep equal to 1/20th of the
typical time scale of the highest-frequency mode of the free interface, ∆t = 1

20

√
µ`2/γ. To

equilibrate the system quickly but still permit natural oscillations, we choose the Langevin
damping time scale so that τ = 100∆t. Finally, we choose a value of µ close to the mass of
a single water layer, µ = 100 amu/nm2.

This interface dynamics is entirely fictitious. However, it correctly samples configurations
of the interface, Boltzmann-weighted by the Hamiltonian H[{ha}]. This is true irrespective
of the exact values of µ, ∆t and τ , so our choices have no effect on the results. We have
simply chosen reasonable values that do not lead to large discretization errors when solving
the system’s equations of motion.

Surface-interface interactions

The liquid-vapor-like interface interacts with the model surface via a potential H ′surf[{ha}]. In
the atomistic simulations, the SAM sets up an interaction potential U(r) felt by the atoms in
the water molecules. To model this interaction potential, we smear out the atomistic detail
of the SAM and replace it with three elements:

1The constraint on the magnitude of k ensures that no Nyquist modes, i.e., modes with kx or ky equal
to ±π/D, are ever excited. If they were included, these modes would also be purely real, and the variance
of the real component of their noise terms would likewise be twice that of the real component of the interior
modes.
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• A uniform area density µhead of Lennard-Jones sites (with length and energy scales
σhead and εhead) in the z = 0 plane to represent the SAM head groups.

• A uniform volume density ρtail of Lennard-Jones sites (with length and energy scales
σtail and εtail) in the half-space z < −ζ to represent the SAM tail groups.

• Coarse-graining the head-group atoms into a uniform area density results in a softer
repulsive potential allowing the interface to penetrate far deeper into the model surface
than would be possible in the actual SAM. To rectify this, we apply a strongly repulsive
linear potential in the half-space z < R0, where R0 is the radius of the head group’s
hard core. The repulsive potential is chosen to be 1 kBT when 1 nm2 of interface
penetrates the region z < R0 by a “skin depth” δ.

The head groups are thus modeled by the following potential acting on a water molecule at
position r:

Uhead(x, y, z ≥ R0) = µhead

∫ ∞

−∞
dx′

∫ ∞

−∞
dy′ uLJ (|r− r′|; εhead, σhead)

∣∣
z′=0

,

where uLJ(r; ε, σ) = 4ε[(σ/r)12 − (σ/r)6] is the Lennard-Jones pair potential. Similarly, the
effect of the tail groups is captured by

Utail(x, y, z ≥ R0) = ρtail

∫ ∞

−∞
dx′

∫ ∞

−∞
dy′

∫ −ζ

−∞
dz′ uLJ (|r− r′|; εtail, σtail) .

Finally, the repulsive wall is modeled by the potential

Uwall(x, y, z < R0) = 2ρ−1
` · (1 kBT/1 nm2)(R0 − z)/δ,

where ρ` = 0.03333 Å
−3

is the number density of liquid water.
These smeared interaction potentials depend only on z, not on x or y. As described in

the main text, we also scale the head-group interaction by a parameter η. Putting everything
together, we obtain an explicit expression for the surface-interface interaction potential,

H ′surf[{ha}] = ρ`∆
2
∑

a

h′surf(ha),

where

h′surf(ha) =

∫ ∞

ha

dz ηUhead(z) + Utail(z) + Uwall(z),

=





ηπεheadµheadσ
3
head

[
4
45

(σhead/z)9 − 2
3
(σhead/z)3

]

+πεtailρtailσ
4
tail

[
1
90

(σhead/[z + ζ])8 − 1
3
(σhead/[z + ζ])2

]
, z ≥ R0,

h′surf(R0) + ρ−1
` · (1 kBT/1 nm2)([R0 − z]/δ)2, z < R0.

To model the -CH3-capped SAM, we chose the following values for the parameters
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• The head groups are modeled as OPLS united-atom CH3 groups interacting with
SPC/E water, so σhead = 3.5355 Å and εtail = 0.68976 kJ/mol.

• The tail groups are modeled as OPLS united-atom CH2 groups (sp3-hybridized) inter-
acting with SPC/E water, so σtail = 3.5355 Å and εtail = 0.5664 kJ/mol.

• The tail region is inset from the plane of the head groups by a distance equal to a CH2-
CH3 bond length (1.50 Å), minus the van der Waals radius of a CH2 group (1.9525 Å),
so ζ = −0.4525 Å.

• The head group density is known from the atomistic SAM geometry to be µhead =
0.0462 Å−2. The mass density of the SAM tails was estimated to be 935 kg/m3 [39],
resulting in a CH2 group number density of ρtail = 0.0402 Å−3.

• The equivalent hard sphere radius R0 of a -CH3 group at room temperature was esti-
mated to be 3.37 Å, as described in Section 4.3.1. It has a small temperature depen-
dence, which we neglect.

• The wall skin depth δ was set to 0.1 Å, which is small enough so that the repulsive
potential is essentially a hard wall at z = R0, but large enough that we can propagate
the interfacial dynamics with a reasonable timestep.

Umbrella sampling

Calculating ∆Gsol(V ) from Equation (5.2) as a thermal average 〈Pv(0)〉 over Boltzmann-
weighted configurations of h(a) is impractical for large V . The configurations that dominate
this average simply have a vanishingly small Boltzmann weight. To solve this problem, and
in analogy to what we do in atomistic simulations, we perform umbrella sampling on the
size of the sub-volume v of the probe cavity V that is above the interface.

We begin by defining the volume V corresponding to a probe cavity of dimensions L×L×
W as the set of points satisfying |x|, |y| ≤ L/2 and R0 ≤ z ≤ R0 +W . We then define v[{ha}]
as the size of the sub-volume of V that is above the interface. Using umbrella sampling and
MBAR (Section 3.1.1), we calculate the probability distribution for v, P (v), down to v = 0.
To do this, we use quadratic umbrellas defined by a center v̄ and width (δv)2, which result
in the addition to the Hamiltonian of

H ′umb[{ha}] = kBT
(v[{ha}]− v̄)2

2(δv)2
.

During each umbrella run, we also record the configurations {ha} which yield each observed
value of v. We then approximate the right-hand side of Equation (5.2) by summing over
these configurations with appropriate weights, and obtain

∆Gsol(V ) ≈ −kBT ln

∑
{ha} Pv(0)P (v[{ha}])∑
{ha} P (v[{ha}])

,
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Figure 5.6: Solvation free energy per unit areas calculated using Equation (5.2) for the same
cavities as in Figure 5.2.

where, as in the main text, the term Pv(0) depends on the interface configuration {ha},
and the sum {ha} is over all interface configurations in all the different umbrellas. To
evaluate Pv(0), we use the discrete versions of the integrals defining σv and 〈N〉v analogous
to Equations (4.54) and (4.55).

5.2.3 Solvation free energies at surfaces

Figure 5.6, analogous to Figure 5.2, shows the solvation free energies calculated using Equa-
tion (5.2). The essential features of solvation next to the SAM surfaces are captured well by
this model. This is particularly true for the hydrophobic surfaces (with η around 1), where
the potential U(r) closely mimics the effect of the real SAM on the adjacent water, and the
agreement between theory and simulation is nearly quantitative. For the more hydrophilic
SAMs, as stated above, the comparison is qualitative, because the simple form for U(r) does
not represent dipolar interactions well.
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5.2.4 Temperature dependence of solvation free energies

Figure 5.7(a), analogous to Figure 5.3(a), shows that the observed trends in temperature de-
pendence of ∆Gsol are captured nearly quantitatively by the simple model of Equation (5.2).
In the model, the solvation free energies of the large probe volumes have large but mostly
athermal contributions from the attractions between water and the model surface, since
the average solvent density in the probe volume is nearly equal to its value in bulk. The
main temperature-dependent contribution to ∆Gsol is the cost to deform the liquid-vapor-
like interface near the surface to accommodate the large probe volume. Since the necessary
deformation is similar, regardless of the hydrophobicity of the surface, the variation of ∆Gsol

with temperature is similar as well.
Figure 5.7(b), analogous to Figure 5.3(b), shows a similar comparison of temperature

dependence of ∆Gsol for small probe volumes. The phenomenology of a crossover in sign is
recovered by the simple model of Equation (5.2), though the correspondence is clearest at
a slightly larger cavity size (L = 0.75 nm). Near hydrophilic model surfaces, the interface is
pulled close to the surface by a strong attraction, so it is costly to deform it. As a result,
the cavity is emptied through bulk-like spontaneous density fluctuations, which is associated
with a negative solvation entropy. In contrast, near a hydrophobic surface, the interface is
easy to deform, which provides an additional mechanism for creating cavities. In fact, this
mechanism dominates near sufficiently hydrophobic surfaces, and since the surface tension of
water decreases with increasing temperature, so does ∆Gsol. Hence, even small cavities have
a positive solvation entropy near hydrophobic surfaces. The continuous spectrum of negative
to positive solvation entropies observed in Figures 5.3(b) and 5.7(b) is thus revealed to be
a direct consequence of the balance between bulk-like water density fluctuations and liquid-
vapor-like interfacial fluctuations, represented explicitly by the two factors in the integrand
of Equation (5.2).

Figure 5.8 shows that our simple implementation of LCW ideas recovers many of the
observed trends in solvation entropy. It is everywhere positive for the smallest attraction
strength η, and a thermodynamic crossover length of just under 1 nm emerges for the more
hydrophilic model surfaces, similar to that in bulk water. Nevertheless, the agreement be-
tween Figures 5.8 and 5.4 is somewhat qualitative, mostly as a result of the crude form of
U(r) used to model hydrophilic surfaces.

5.3 Discussion: hydrophobic surfaces are catalysts for

unfolding

The results of our systematic study of solvation near surfaces expand upon the results of
Section 3.2.3 in three important ways, which we now discuss.

First, our results reveal and explain the temperature dependence of the binding free
energy of a hydrophobe to an extended surface. The binding free energies of the probe
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Figure 5.7: Temperature dependence of solvation free energies in the model of Equation (5.2).
Analogous simulation results are shown in Figure 5.3.

cavities to each SAM, as measured by the difference in ∆Gsol in bulk and next to the SAM
(Figure 5.2) are all positive, so there is a net hydrophobic attraction between the cavities
and the SAMs. As expected from Section 3.2.3, the binding strength is correlated with the
SAM’s hydrophobicity. However, the temperature dependences shown in Figure 5.3 reveal
that when the temperature rises, small objects will bind more strongly to the SAMs, but
the binding free energy of large objects remains mostly unchanged. At heart, this difference
arises because solvation of even small objects is dominated by interface formation. Because
we have rationalized this result, we can make non-trivial predictions about the effect of other
perturbations on binding free energies. For example, adding table salt to the water raises
the surface tension of the solution (because the small, charged ions are repelled from the
interface) but makes little difference to the probabilities of cavity formation (at 1 M salt
concentration, there are, on average, only 0.1 ions in a 5× 5× 3 Å cavity). Hence, we expect
that adding salt to the solution would reduce the binding free energy of small objects to a
hydrophobic surface. Similar changes can be confidently predicted for the conclusions that
follow.

Second, our results show that the force for hydrophobic assembly is weakened near a
surface. When n monomers are dispersed, their total solvation free energy scales linearly
with n. When aggregated, in bulk or near a surface, their total solvation free energy scales
sublinearly with n. Hence, for large enough n, the free energy of assembly is proportional to
the solvation free energy of the isolated monomers. Since ∆Gsol is smaller for monomers near
hydrophobic surfaces than in bulk, so is the free energy of assembly there. The difference
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arises from interfacial physics dominating small-object solvation at surfaces, as rationalized
by the LCW-like model. We thus expect our observation about the free energy of assembly
to hold generically at any surface and with a variety of monomers, not simply the surfaces
and cavities we have explicitly investigated numerically.

Third, the free energy barrier separating the dispersed and assembled states differs sig-
nificantly in bulk and at surfaces. In bulk, the principal free energy barrier to assembly is
the nucleation of a liquid-vapor interface in the solvent (Figure 2.4). At a surface, there
is a pre-existing liquid-vapor interface solvating the dispersed monomers, which can be de-
formed continuously to solvate the assembled state. We thus expect no solvent-dominated
free energy barrier to assembly.

Since the relative stability of the assembled and dispersed states is shifted towards the
dispersed state at a surface, and the free energy barrier between these two states is removed,
we suggest that hydrophobic surfaces can generically acts as catalysts for disassembly of
structures that are assembled in bulk. In the context of protein folding, our findings suggest
that hydrophobic surfaces may generically catalyze the unfolding of proteins.

Our suggested catalytic activity of hydrophobic surfaces may play a role in chaperonin
function [31]. The interior walls of chaperonins in the open conformation are hydrophobic
and can bind misfolded proteins, whereupon their unfolding is catalyzed [27,57]. Subsequent
ATP-driven conformational changes render the chaperonin walls hydrophilic [27, 31]. As a
result, the unfolded protein is released from the wall, as the free energy for a hydrophobe
to bind to a hydrophilic surface is much lower than that to bind to a hydrophobic one
(Figure 5.2).
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Chapter 6

A microscopic view of water
evaporation

In this chapter, we examine the process of water evaporation in molecular detail. Our
goal is to determine whether evaporation is an activated process, and if so, characterize the
relevant barriers. In a sample of water at equilibrium with its vapor, the rate of evaporation
is equal to the rate of condensation. If every vapor molecule that hit the liquid surface
condensed, then the rate of condensation would simply be the rate at which vapor particles
hit the liquid surface. This collision rate, which can be estimated by treating the vapor as
an ideal gas, places an upper bound on the evaporation rate. To the extent that the two
differ, there is a barrier to evaporation (or condensation) beyond the mere cohesive strength
of the liquid.

We are inspired by a set of water evaporation rate measurements carried out at Berkeley,
themselves motivated by the importance of water evaporation and condensation in atmo-
spheric science and climate prediction. Surprisingly, measurements of the evaporation rate
of pure water have been controversial, with estimates varying by as much as 3 orders of
magnitude over the past century [25], and converging to within 1 order of magnitude in the
last decade [24]. The two main difficulties faced by experimenters are the effect of impuri-
ties in the water samples, and avoiding or accounting for recondensation of the evaporated
molecules. The Saykally and Cohen groups have attempted these measurements using Ra-
man thermometry of a continuous jet of liquid microdroplets. They have examined H2O
and D2O, with and without dissolved salts, under carefully controlled conditions [22–24,99],
ingeniously selected to avoid both the impurity and recondensation problems, so we suspect
that their results are among the most trustworthy in the literature. Evaporation rates are
usually reported as an evaporation coefficient, defined as the ratio of the evaporation rate to
the ideal gas collision rate. The Saykally and Cohen groups report an evaporation coefficient
of 62± 9 %.

To uncover the molecular origins of this result through simulation, we use transition
path sampling [7] to harvest a statistically representative collection of short trajectories of
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rare evaporation events, with Boltzmann-distributed initial conditions and energy-conserving
dynamics. An alternate strategy pursued by others is to examine the complementary process,
condensation, which is not rare at all [110]. However, this introduces the uncontrolled
approximation that the velocities and angular momenta of the evaporated water molecule
are Boltzmann-distributed, with a temperature equal to that of the liquid. Our approach
sidesteps this issue by specifying the initial ensemble of the liquid, with the velocity and
angular momentum distributions of the evaporated water molecules being an output of the
calculation. The result, not knowable a priori, is that the velocities and angular momenta
are indeed Boltzmann-distributed. As such, the fact that others have observed near-unity
condensation coefficients in simulations suggests that the evaporation coefficient for water is
also close to unity in simulations, at odds with the experiments of the Saykally and Cohen
groups.

To explore the details further, we examine properties of the harvested evaporation trajec-
tories to determine what barriers, if any, are being overcome. In particular, we estimate the
positions of the transition states along each trajectory, and project these transition states
onto various possible reaction coordinates. We find that the most relevant coordinates con-
trolling evaporation are the distance of the water molecule from the water surface and its
component of velocity along the average surface normal. Motivated by this find, we measure
the effective free energy of a water molecule as a function of its distance from the water
surface, i.e., the effective cohesive potential of the liquid. Along this coordinate, we find no
significant barrier. Regarding the free energy approximately as a potential energy surface, we
further show that transition states cluster around states of threshold energy. This suggests
that evaporation can usefully be thought of as a thermal escape from a deep, barrierless
potential well.

A barrierless evaporation process can nonetheless be characterized by the collective fluc-
tuations observed in the rare configurations visited during evaporation (not rare during
condensation). In particular, we find that the mean curvature of the liquid-vapor interface
correlates with the distance of the evaporated water molecule from the surface. This finding
might be of relevance if the curvature of the interface could be controlled externally.

Having found that our simulations disagree qualitatively from the experimental results,
we critically examine the experiments. We find, in particular, that the Raman thermometry
used relies on a linear extrapolation of calibration data into supercooled temperatures, and
that the extrapolation need not be accurate. We suggest that the deviation from linearity
may have been observed before, and that only a small deviation from linearity would be
needed to reconcile the experimental measurements with an evaporation rate equal to the
ideal-gas collision rate. Our suggestions motivate both repeating the experiments at higher
temperature and extending the calibration procedure down to supercooled temperatures,
so that the range of temperatures observed in the experimental data matches that of the
calibration data. Both suggestions are currently being implemented by our experimental
colleagues.
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Figure 6.1: Simplified schematic of experimental setup for measuring evaporation rate of
water. Adapted from Ref. [99].

6.1 Preliminaries

6.1.1 Experimental motivation

The full details of the Saykally and Cohen groups’ experiment are given in Ref. [99]. Here,
we summarize the aspects that are relevant to our study. A simplified schematic of the
experimental apparatus is shown in Figure 6.1. The experimenters inject a continuous train
of liquid microdroplets of tunable radius, r0, ranging from 3 to 10µm±0.1µm, into a chamber
that is continuously evacuated to a pressure of less than 5×10−4 Torr, or about 7×10−7 atm.
At the end of the chamber, a liquid nitrogen pool collects and freezes the droplets, so as
to maintain the chamber vacuum. The droplets are injected with uniform velocity, and
the center-to-center distance between consecutive droplets is 6r0. As a droplet progresses
through the vacuum chamber, it undergoes evaporative cooling, as described below. At any
point along the droplet’s flight, its temperature is measured indirectly by measuring its total
Raman scattering intensity, I(ω), as a function of angular frequency ω. This spectrum is
a useful thermometer because it varies sensitively with temperature. The end result of the
experiment is the average temperature of a microdroplet as a function of time elapsed since
injection. From this cooling curve, the rate of evaporation can be extracted, as described
below. A typical cooling curve is shown in Figure 6.2.

The flux of evaporating water molecules at the droplet surface, Je, can be expressed as a
fraction γ, called the “evaporation coefficient”, of the ideal-gas collision rate, Jmax

e ,

Je = γJmax
e , (6.1)

where Jmax
e , given by

Jmax
e =

Pvap√
2πmkBT

. (6.2)
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Figure 6.2: Example cooling curve of H2O measured with the setup of Figure 6.1. Adapted
from Ref. [99].

Here, Pvap is the vapor pressure of water at a given temperature, and m is the mass of a water
molecule. This result follows from calculating the flux of mass-m particles of an ideal gas at
pressure Pvap and temperature T through a flat surface. The substantial temperature and
isotope dependence of Jmax

e reflect thermodynamic properties of the liquid and the vapor,
whereas the evaporation coefficient γ reveals information about barriers to evaporation.

An evaporation coefficient can be deduced from a cooling curve by modeling the evap-
oration process. Each evaporating water molecule removes from the droplet an amount of
energy equal to, on average, ∆Hvap, the enthalpy of vaporization of water1. On average, this
evaporation event lowers the temperature of the droplet by an amount ∆T = ∆Hvap/CPM ,
where CP is the constant-pressure specific heat capacity of water and M is the mass of the
droplet. Hence, the rate of change of droplet temperature is given by

dT

dt
= −γJmax

e

∆Hvap

CPM
. (6.3)

1Strictly speaking, the per-molecule enthalpy on vaporization, ∆Hvap ≈ 16 kBT at T = 300 K, includes
the work needed to increase the volume of the system by an amount 1/ρg against the external pressure p,
where ρg is the number density of the gas at pressure p. This work, equal to p/ρg = kBT at any pressure
for an ideal gas, is absent in the experiment, so should not be included in the model of Equation (6.3).
Implementing this correction results in an estimate of the rate of evaporation that is about 7 % larger than
reported in Ref. [99].
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The only unknown in this differential equation is the evaporation coefficient γ. If γ is
assumed constant, the experimental cooling curves may be fit numerically to the cooling
curves predicted by Equation (6.3). The main result of Ref. [99] is that for pure H2O,

γ = 0.62± 0.09. (6.4)

This result is actually derived from a more elaborate model that accounts for a small
(about 4◦C) radial temperature gradient arising in the droplet, coupled to evaporation
through thermal diffusion. However, Smith et al. [99] remark that this elaboration on the
simple cooling curve model of Equation (6.3), and others such as introducing an Arrhenius
dependence of γ on temperature, do not change the result appreciably.

Before proceeding to describe our theoretical investigations, we dwell on one aspect of
the experiment in further detail. In particular, Raman thermometry relies on the Raman
scattering intensity, I(ω), exhibiting so-called van’t Hoff behavior [98]. That is, for an

arbitrary frequency ω∗, the quantity ln
(∫ ω∗
−∞ dω I(ω)/

∫∞
ω∗ dω I(ω)

)
is approximately linear in

inverse temperature, 1/T , around a small temperature range. An example set of calibration
data from Ref. [99] is shown in Figure 6.3. As shown by Geissler [36], van’t Hoff behavior is
expected in any spectra that suffers from inhomogeneous broadening, and the linear relation
to inverse temperature holds only approximately over a small enough temperature range, such
as 0◦C to 100◦C for water [98]. It is important to note that while Smith et al. calibrated
their Raman thermometer over the temperature range 0◦C to 50◦C, most of the observed
droplet temperatures are below 0◦C (Figure 6.2).

6.1.2 Transition path sampling

We now turn to our simulation study of evaporation. Since evaporation is a rare event,
happening about once per 1 ns per 1 nm2 at ambient conditions, we need special techniques
to collect a statistically relevant number of examples of evaporation. The alternate strategy of
running a single simulation for an extended period of time is computationally expensive, and
samples only an anecdotal number of events at undesirable conditions that favor evaporation
(e.g., in Ref. [75], 70 evaporation events were collected from a simulation of water at 350 K).
The strategy we pursue here is to use transition path aampling (TPS), a method we now
summarize.

To sample static configurations of a system that are Boltzmann-distributed, one can use
the Metropolis algorithm, which implements a biased random walk through configuration
space with a move set and acceptance criteria chosen to sample the Boltzmann distribution.
Similarly, transition path sampling implements a biased random walk in trajectory space,
with a move set and acceptance criteria chosen to sample a specific path ensemble [7].
Specifically, let X = {x1, . . . ,xT} denote the configurations (positions and momenta) along
a dynamical trajectory of length T . To each trajectory, we assign a path weight P [X]
given by the initial ensemble of the system and its dynamics. For example, a system in the
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Figure 6.3: Calibration curve for Raman thermometry. The Raman scattering in-
tensity, I(ω), at angular frequency ω is measured experimentally. The tempera-
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here range from 4.4◦C (1000/T = 3.60 K−1) to 56.5◦C (1000/T = 3.03K−1). Adapted from
Ref. [99].



CHAPTER 6. A MICROSCOPIC VIEW OF WATER EVAPORATION 137

q

p

A B

ρ(q, p) = e−βH(q,p)/Z

Figure 6.4: Schematic representation of the path ensemble P0[X] in a one-dimensional sys-
tem. The intensity of the grey background at any point in phase space is proportional to
its Boltzmann weight. Typical paths of length T are shown as traces over this phase space.
When there is a natural partition of phase space into two basins, A and B, most short tra-
jectories remain in one of these basins. Only the trajectories connecting A and B (orange)
are members of the restricted path ensemble, PAB[X] (Equation (6.10)).

canonical ensemble propagated with Newtonian dynamics has a path weight functional

P0[X] =
e−βH(x1)

Z

T−1∏

i=1

δ(xi+1 − G1xi), (6.5)

where G1 is the propagator that evolves the configuration of the system for one time unit
(e.g., one step in the Velocity Verlet algorithm). This path weight is chosen to integrate to
unity over all possible trajectories. Its value is the probability that an arbitrary subtrajectory
of length T extracted from a long trajectory of the system is identical to X. As with the
Boltzmann weight, the choice of path weight P [X] defines a path ensemble. A schematic
path ensemble is shown in Figure 6.4.

Given an “old” path X(o), we can construct a related “new” path X(n) in this path
ensemble in many different ways, called “moves” in analogy to typical Monte Carlo moves.
Two particularly simple and efficient moves are shifting and shooting. In a shifting move, the
old path is altered by advancing or regressing it in time, in much the same way that a snake
propagates on the ground: an initial or final end of the path is discarded, and the system
is evolved dynamically at the other end to construct a new path of length T . In a shooting
move, a time point along the path is picked, the system’s configuration is slightly perturbed,
and the system’s dynamics are evolved forwards and backwards in time to construct a new
path of length T .
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As in the Metropolis algorithm, we can use moves to construct a biased random walk
in trajectory space. Let P (o → n) be the probability that a single step in this random
walk starting with a path X(o) yields the path X(n), and define P (n → o) analogously.
The trajectories observed in this random walk occur with a probability given by the path
ensemble P [X] if the following detailed balance condition [34] is satisfied:

P [X(o)]P (o→ n) = P [X(n)]P (n→ o). (6.6)

The probability P (o→ n) can be expressed as a product, Pgen(o→ n)Pacc(o→ n), of a gen-
eration probability, Pgen(o→ n), which one is free to choose, and an acceptance probability,
Pacc(o→ n), chosen to satisfy the detailed balance condition. If the generation probabilities
are chosen symmetrically, i.e., Pgen(o → n) = Pgen(n → o), as is usually the case, then the
usual Metropolis acceptance probability guarantees detailed balance:

Pacc(o→ n) = min

[
1,
P [X(n)]

P [X(o)]

]
. (6.7)

In the path ensemble P0[X], a shifting move has a trivial acceptance probability,

P shift
acc (o→ n) = 1, (path ensemble: P0[X]). (6.8)

The acceptance probability of a shooting move only depends on the configuration at the
shooting point, denoted here by s:

P shoot
acc (o→ n) = min

[
1, exp

{
−β(H

(
x(n)
s

)
−H

(
x(o)
s

)
)
}]
, (path ensemble: P0[X]). (6.9)

Though one can sample paths from the unrestricted path ensemble P0[X] with the above
algorithm, doing so is not very useful, since a long trajectory samples the same trajectories
with similar efficiency. However, we can define a path ensemble that is restricted to tra-
jectories, or transition paths, that connect two distinct regions of phase space, commonly
denoted A and B. For a system with equal ensemble and dynamics to that used to define
P0[X], the restricted path ensemble weight, PAB[X], is given by

PAB[X] = hA(x1)
e−βH(x1)

ZAB

T−1∏

i=1

δ(xi+1 − G1xi)hB(xT ), (6.10)

where hA(x) and hB(x) are indicator functions that are 1 if x is in A or B, respectively,
and 0 otherwise. The normalization constant ZAB ensures that the path weight integrates
to unity over all possible paths. This change in ensemble results in analogous changes to
the shifting and shooting acceptance probabilities. The resulting random walk efficiently
samples trajectories of length T that start at A and end in B. If A and B are separated
by a large free energy maximum, so that short paths that cross from A to B are rare, then
sampling these trajectories with TPS is orders of magnitude more efficient than running a
long simulation and waiting for the crossing to happen spontaneously.
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Figure 6.5: Snapshots of a 3 ps-long initial evaporation trajectory, used to start the TPS
random walk through trajectory space. See text for details.

6.1.3 Simulation setup

To examine water evaporation, we set up a 30× 30× 30 Å3 simulation box in LAMMPS [89]
filled with SPC/E water (about 900 molecules) at a number density 0.0333 waters/Å3 (mass
density 0.997 g/ml). Lennard-Jones interactions are truncated and shifted at a distance
of 10 Å. Electrostatic interactions are calculated using the particle-particle particle-mesh
(PPPM) method [45]. The geometry of each water molecule is kept fixed using the SETTLE
algorithm [80]. The system is evolved using Langevin dynamics, with a timestep of 2 fs and
a velocity damping time constant of 3 ps.

After an initial equilibration of 50 ps, the size of the simulation box in the z direction is
tripled, resulting in a 30×30×90 Å3 system with a slab of water at its center. This system is
then equilibrated again for another 50 ps, using a Langevin thermostat with velocity damping
time constant of 2 ps. Finally, to generate an initial evaporation trajectory in this system, we
remove the thermostat, create a condensation trajectory, and then reverse this trajectory in
time. In detail, we add a new water molecule to the system at a point that is 15 Å above the
top of the water slab, with a thermal momentum in the negative z-direction, no momentum
in the x or y directions, and zero angular momentum. We then evolve this trajectory for
3 ps in the absence of a thermostat. We check that the water molecule has indeed condensed
(see below): if it has not, we extend the trajectory by up to 6 ps more, until condensation
occurs, and use the last 3 ps of the extended trajectory. In principle, it is possible for this
procedure to fail if the inserted water “bounces” off of the water slab and we never considered
it to have condensed, but in practice, we have not seen this happen. Finally, we reverse the
condensation trajectory in time to obtain an initial evaporation trajectory, which we use to
start the TPS random walk in trajectory space. An example initial trajectory is depicted in
Figure 6.5.
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To perform a TPS study, the initial and final states of the rare event being sampled must
be precisely defined. Here, basin A, encompassing the fully “condensed” configurations of
the system, consists of all configurations where every water that is not hydrogen-bonded to
any other water2 is at most 4 Å away from the nearest water3. Basin B, where exactly one
water molecule is indisputably detached from the bulk liquid, is defined as all configurations
of the system where there is exactly one water molecule with no hydrogen-bonding partner
that is more than 8 Å away from its nearest neighbor. While the 4 Å distance used to define
basin A is merely convenient, the 8 Å distance used to define basin B is critical. We have
noted that an isolated water molecule that is less than about 8 Å away from its nearest
neighbor will spontaneously recondense into the slab of liquid water. This observation is
rationalized in Section 6.2.2.

The TPS random walk is performed as follows. At every step, we choose to perform a
shifting move 90 % of the time, and a shooting move 10 % of the time, reflecting the low cost
of shifting versus shooting. In a shifting move, we shift the trajectory forwards or backwards
by a time ∆t uniformly distributed between −1 and 1 ps. Shooting moves are performed as
in the appendices of Refs. [38] and [37]. Briefly, a shooting point is picked uniformly along
the length of the trajectory. Then, to each component of velocity of each atom of mass m is
added a Gaussian perturbation of zero mean and variance c2

1 × kBT/m, where c1 is a small
parameter used to tune the size of the shooting perturbation, here chosen to be 0.5. The
components of the resulting velocities along fixed bond directions are then removed. The
center-of-mass velocity is also set to 0. The velocities are then rescaled to yield the same
kinetic energy as before the shooting move. This portion of the move is symmetric, and
amounts to a random rotation of the 3N -dimensional mass-weighted velocity vector of the
system that respects the bond constraints of each water molecule. Finally, we attempt to
change the kinetic energy from K to K ′ by adding to it a Gaussian perturbation of zero mean
and variance c2

2 × kBT × d/2, where d is the number of degrees of freedom in the system
(here equal to 6Nw− 3, with Nw equal to the number of waters) and c2 is a small parameter
used to tune the size of the kinetic energy change in a shooting move, here chosen to be 0.5
as well. The change in kinetic energy is accepted with probability

P [K → K ′] = min

[
1, e−β(K′−K)

(
K ′

K

)d/2−1
]
. (6.11)

When the new configuration is generated with this procedure, the generation probabilities
Pgen(o → n) and Pgen(n → o) are not symmetric, due to phase space factors. It can be
shown [37] that detailed balance (Equation (6.7)) is satisfied if the acceptance probability

2Two waters are considered hydrogen bonded if the distance between their oxygen atoms is below 3.5 Å
and the angle between the OH bond of the donor and the line connecting the two oxygen atoms is below 30◦,
as was done in Ref. [69]. For our purposes, any other reasonable definition of a hydrogen bond should yield
nearly identical results.

3The “position of a water” means the position of its oxygen atom, unless otherwise stated.
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of such asymmetric shooting moves is 1, provided that the new trajectory starts in basin A
and ends in basin B.

For each set of initial conditions, we performed 10,000 TPS steps, recording a trajectory
every 100 TPS steps. Each recorded trajectory is reasonably independent of the previous one.
To further improve the sampling, we repeated the entire procedure outlined in this section
40 times. The final outcome of this exercise is a set of thousands of mostly uncorrelated
trajectories of evaporation events, with initial conditions drawn from a canonical ensemble
at temperature 300 K and evolved in time with energy-conserving Newtonian dynamics.

6.2 Results

We now analyze the properties of the collected evaporation trajectories. We estimate the
value of each observable independently in each of the 40 full TPS runs. The reported estimate
is the mean of these values, and the error bar is the standard error of the mean.

We first consider the time that it takes for evaporation events to occur, to verify that a
TPS trajectory length of 3 ps is sufficiently large. For each trajectory, let tA be the largest
time for which x(tA) is in basin A, and let tB be the largest time for which x(tB) is not
in basin B. These times roughly characterize the points along the trajectory at which
the evaporation rare event begins and ends. Figure 6.6 shows the distribution of the time
difference tB − tA. Most evaporation events take under 1 ps, and very few take just under
3 ps. Hence, the 3 ps trajectory length we chose to use for our TPS sampling is long enough.
Correcting for the bias towards short evaporation events owing to their larger number of
possible starting times does not change this conclusion. This is demonstrated in Figure 6.7,
which shows the distributions of times tB. If the TPS trajectory length is sufficiently long,
then this distribution should rise from zero at small tB and plateau to a constant for tB much
larger than the typical time for an A-to-B transition to occur. This is indeed observed. Were
the TPS trajectory length too short, there would be no plateau region.

For all subsequent results, we consider only the trajectories for which tB > 2 ps, i.e.,
the plateau region of Figure 6.7. This choice avoids any biases towards unusually short
evaporation trajectories that are overrepresented in the ensemble of trajectories with tB �
2 ps.

6.2.1 Post-evaporation momenta are Boltzmann-distributed

Here, we examine the center-of-mass velocities and angular momenta at the end of each
trajectory. Figure 6.8 shows the distributions of the component of the center of mass velocity
along a direction perpendicular to ẑ. These velocities are consistent with a Boltzmann
distribution at temperature T = 300 K.

Figure 6.9 shows that, similarly, the distribution of the observed components of angular
momenta along the principal axes of inertia of the evaporating water molecule are compatible
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distributions at temperature T = 300 K are shown (dashed line). Inset: principal axes of
inertia of a water molecule.

with a Boltzmann distribution at T = 300 K.
The component of the velocity along the z direction has a more interesting distribution,

shown in Figure 6.10. By construction, water molecules evaporate in the +ẑ direction, so no
water molecule should have a negative vz if the definition of basin B were sufficiently strict4,
Naively, one might thus expect the distribution of vz to be Boltzmann for vz > 0, unlike
what is actually observed in Figure 6.10.

To get a sense for the expected distribution, we examine the simpler situation, depicted
in Figure 6.11, of thermal ideal gas particles evaporating from a deep, barrierless potential
well of depth ∆U . Particles inside the well have a thermal distribution of velocities, P (vi),

4In practice, the definition of basin B used here does not perfectly discriminate between the evaporated
states and states where recondensation will occur. Since the trajectories examined here are finite, a trajectory
where the system that transiently enters B before recondensing may appear as an evaporation event, but
with vz < 0 at the end of the trajectory. Only about 1% of our trajectories exhibit this problem, which can
in principle be mitigated by using longer trajectories and a stricter definition of basin B.
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given by

P (vi) ∝ exp

(
−1

2
βmv2

i

)
. (6.12)

A particle with initial velocity velocity vi can only escape the well if vi is above a threshold
velocity, vt, given by 1

2
mv2

t = ∆U . Were there a barrier, this threshold velocity would
be higher, but the remainder of this discussion would carry through unchanged. The final
velocity of this particle, vf , is determined by conservation of energy,

1

2
mv2

i =
1

2
mv2

f + ∆U. (6.13)

This equation relates the distributions of initial and final velocities, P (vi) and P (vf ) respec-
tively. In particular,

P (vf )dvf ∝ P (vi)dvi, (6.14)

so

P (vf ) ∝ P (vi)
dvi
dvf
∝ exp

(
−1

2
βmv2

i

)
vf√

v2
f + 2∆U

m

. (6.15)

For ∆U sufficiently large, the denominator in the last fraction is essentially constant over the
range where the exponential factor is appreciable. Using this approximation, Equation (6.13),
and the requirement that vi exceed vt, we obtain the approximation

P (vf ) ≈
{

m
kBT

vf exp
(
−1

2
βmv2

f

)
, vf > 0,

0, vf ≤ 0.
(6.16)

While Equation (6.16) applies only to an ideal gas of thermal particles escaping from a
deep, barrierless potential well, it describes the observed distribution of vz for evaporating
molecules surprisingly well (dashed line in Figure 6.10). The small but systematic deviations
are presumably due to the evaporating water molecule dissipating a small amount of energy
to the remainder of the liquid as it escapes from the effective well set up by the bulk (see
Section 6.2.2). It is worth noting that similar velocity distributions have been reported in
simulations of evaporation of argon, where evaporation can be observed straightforwardly
without special sampling techniques like TPS [110].

This distribution of evaporating water velocities has an apparent problem: it results in〈
1
2
mv2

z

〉
= 1 kBT . Thus, whereas evaporating water molecules have a mean kinetic energy of

7/2 kBT (not shown), the mean kinetic energy of water molecules in the vapor that recondense
is only 6/2 kBT ! Naively, it would seem that this situation is incompatible with the liquid and
the vapor being at equilibrium. Of course, this contradiction is illusory. While it is true that
the mean kinetic energy of an arbitrary water in the vapor is 6/2 kBT , the mean per-molecule
flow of kinetic energy in the −ẑ direction through the z = 0 plane is actually 7/2 kBT . This
is because for a particle to flow through this plane in a time ∆t, it must be in the region
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Figure 6.10: Observed distribution of z-component of velocity of evaporating water molecules
(error bars). This distribution compares favorably to that of thermal ideal gas particles
evaporating from a deep, barrierless potential well (Equation (6.16), dashed line).

 ∆U

z

U(z)

Figure 6.11: Ideal gas particles at the bottom of a deep, barrierless potential well have a
Boltzmann distribution of velocities. Only a fraction of particles have enough energy to
escape the well. After evaporating, but before thermalizing outside the well, the distribution
of velocities of these particles is given by Equation (6.16).
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defined by z + vz∆t < 0. Hence, water molecules with higher vz are overrepresented in the
ensemble of water molecules flowing through the z = 0 plane per unit time. In fact, the
distribution of observed velocities is given, up to a sign difference, by an expression identical
to Equation (6.16). As a result, the rate at which energy and mass flow from the vapor to
the liquid can exactly compensate the flows due to evaporation.

Non-equilibrium evaporation experiments have reported steady state temperature distri-
butions where the temperature of the vapor immediately above the liquid is higher than that
of the liquid [29]. Our discussion on velocity distributions may have some bearing on this
observation. Moreover, it has been observed in molecular dynamics simulations of water con-
densation [110] that the condensation coefficient decreases with increasing temperature. The
ideal gas evaporation model of Equation (6.15) is only compatible with a unit condensation
coefficient if the well depth is much larger than kBT . As temperature is raised, the relative
depth of the potential well set up by the liquid is reduced. In such a case, it may be possible
to use Equation (6.15), together with the known distribution of velocities for condensing
particles, to derive an upper bound on the condensation and evaporation coefficients of the
liquid at high temperature. We have not pursued this possibility here.

6.2.2 Potential of mean force for removing a water molecule from
bulk is barrierless

The height of a water molecule i above (or below) the liquid-vapor interface, a∗i , is a natural
order parameter for describing the evaporation of this molecule. Following Ref. [125], we
define this height independently of the orientation of the slab as follows. We first construct
the instantaneous liquid-vapor interface formed by the other water molecules, as described
in Section 3.4. Next, we find the point si on the interface closest to water molecule i at ri,
and denote by n̂i the vapor-pointing normal vector to the interface at si. Then, a∗i is defined
as the distance from ri to si projected along the n̂i direction,

a∗i = n̂i · (ri − si). (6.17)

Figure 6.12 shows the free energy, F (a∗), of an arbitrary water molecule in our system as
a function of a∗, calculated using the umbrella potential described in Section 3.4 and MBAR
(Section 3.1.1). The essential feature of this free energy is that it is barrierless. Apart
from density layering in the bulk, manifest as oscillations in F (a∗) for a∗ . 0 Å, the bulk
liquid simply sets up a deep potential well for any individual water molecule, and a molecule
in the vapor can simply roll downhill into this well. While the absence of a barrier along
the a∗ coordinate does not preclude the existence of barriers along other coordinates, we
demonstrate below that the transition states of the evaporation trajectories are consistent
with a∗ describing the majority of the evaporation reaction coordinate.

The depth of the well in F (a∗), denoted by ∆F ∗, quantifies the cohesiveness of the liquid
with respect to the vapor. Indeed, if we regard a single water molecule as an independent
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Figure 6.12: Free energy for a single water molecule at a height a∗ from the liquid-vapor
interface defined by the remaining water molecules. The red lines are the free energies of the
stable liquid and vapor phases, and are guides to the eye.
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particle moving in the potential well F (a∗), then the relative density of this particle in the
liquid, ρ`, with respect to that in the vapor, ρg, is given by

ρg = ρ`e
−β∆F ∗ . (6.18)

We estimate from Figure 6.12 a value of ∆F ∗ of 11.5 ± 0.2 kBT . This compares favorably
with the value of 11.8 kBT obtained by setting ρg = Pvap/kBT and using the computed value
of Pvap for SPC/E water at a temperature of 300 K and pressure of 1 atm [28]. For real water,
the analogous calculation yields ∆F ∗ = 10.5 kBT .

The range of F (a∗) also characterizes the effective range of attraction between a molecule
in the vapor and the bulk slab. It is this range that motivates the definition of basin B
described in Section 6.1.3.

6.2.3 Transition states are consistent with diffusion out of a deep
well

We now focus on characterizing the transition states between condensed and evaporated
states. Ordinarily [7], a transition states are identified using committor functions. The
committor, pB(x), of a spatial configuration x is defined as the fraction of short trajectories
that start at x with random thermal velocities, and finish in basin B. At most point in a
transition path, this function is either 0 or 1, with a quick crossover around the configurations
that dominate the dynamical bottleneck between A and B. Thus, a pragmatic definition of
a transition state along a trajectory is the point where pB(x) = 0.5.

Implicit in the above definition is the assumption that momenta are not important in
characterizing the transition state. In a dense system, this assumption is generally true, since
the velocity of any particle decorrelates rapidly, usually within 1 ps [10]. When examining
evaporation, the assumption breaks down, since the velocity of an evaporated water molecule
decorrelates over much longer timescales. The clearest manifestation of the problem is that
pB < 1 for a configuration containing a single, clearly evaporated water molecule, since the
water can will recondense if its velocity points towards the liquid slab.

As a compromise, we have chosen to redefine the committor function to include the z-
component of the velocity of the evaporated water molecule. Strictly speaking, it’s impossible
to tell which water molecule is “the evaporated molecule” in an arbitrary configuration, but
this is not a problem for identifying transition states along a transition path. Figure 6.13
illustrates the typical behavior of pB(t) = pB(x(t), vevap

z (t)) defined in this way, estimated by
spawning 10 short trajectories at every time point.

We have identified the transition states in a moderately-sized subset of the evaporation
trajectories by finding the time along each trajectory where pB(t) ≈ 0.5. Since calculat-
ing pB(t) in full for each trajectory is expensive, we have instead implemented a bisection
algorithm in t to locate the transition state with reasonable accuracy. At each value of t,
we estimate t with 10 short trajectories. If pB(t) < 0.3 or pB(t) > 0.7, we eliminate the
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Figure 6.14: Evaporation trajectory traces projected onto variables v
(evap)
z and a∗ (black

lines). The transition state of each trajectory, identified as described in the text, is high-
lighted by a green dot. Red line: the expected transition state ensemble for a coarse model
of ballistic escape from a potential shaped as in Figure 6.12, given by Equation 6.19.

configurations at all times before or after t, respectively, as candidates for the transition
state. Otherwise, if 0.3 ≤ pB(t) ≤ 0.7, we abort the bisection search, and calculate estimates
of pB(t) at times ±40 fs and ±80 fs from where the bisection algorithm was stopped. Finally,
we fit all the pB(t) estimates to the functional form pB(t) = (1 + tanh[(t − tc)/τ ])/2, with
tc and τ being the fit parameters. The resulting estimate for the transition state is the
configuration at time closest to tc.

Figure 6.14 depicts traces of many evaporation trajectories projected onto the two co-
ordinates v

(evap)
z and a∗, with the transition state of each trajectory highlighted in green.

Unlike similar traces onto many other pairs of coordinates (not shown), there is a definite
correlation between the distance of the evaporated water from the liquid-vapor interface and
its speed in the z direction. We can partially rationalize this dependence by conceiving of
the free energy along a∗ (Figure 6.12) as an actual potential energy well, and approximating

the velocity along the a∗ direction with v
(evap)
z . If evaporation were a ballistic escape from

this well, then the transition states would satisfy the condition

1

2
m(v(evap)

z )2 = F (a∗). (6.19)

The points satisfying this relation are shown as a thick red line in Figure 6.14. The transition
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states clearly cluster around this line.
Together with the distribution of the z-component of the velocities of evaporated water

molecules (Section 6.2.1), the fact that the transition states are well-captured by the coarse
model of an escape from a deep, barrierless potential well suggests that there is practically
no additional barrier to evaporation for SPC/E water at 300 K. This is consistent with
the near-unit condensation coefficient measured in simulations in Ref. [110]. This finding
is in apparent contradiction with the experimental results, which suggested a barrier of
around −kBT ln(γ) ≈ 0.5 kBT . We discuss this point further in Section 6.3.1.

6.2.4 Evaporation correlates with negative mean curvature

Although it appears that evaporation is barrierless in simulations, we can nonetheless char-
acterize some of the microscopic details of this process. Our motivation was initially to
characterize potential barriers to evaporation, which seem to be absent under the conditions
studied here. However, we anticipate that external influences might be used to alter the
microscopic details we describe, and so may perhaps be used to exert control over evapora-
tion. Additionally, our characterization establishes a baseline for understanding evaporation
under different conditions where barriers are observed in simulations, such as at higher tem-
peratures [110] or in the presence of surfactants [104]. Here, we focus on how curvature of
the liquid-vapor interfacial couples to evaporation.

We approximate the liquid-vapor interface using the procedure of Willard and Chan-
dler [125], and focus on the point s on the surface that is closest to the evaporating water
molecule. The mean curvature, KM , of the surface at s serves as a concise characterization
of collective fluctuations of water molecules at the liquid-vapor surface. The mean curvature
is defined as [61]

KM =
k1 + k2

2
, (6.20)

where k1 and k2 are the principal curvatures at s. The magnitude of a principal curvature
is the reciprocals of the principal radius of curvature, and its sign specifies whether the
surface curves towards (positive) or away (negative) from the normal direction along the
corresponding principal direction. Our interest in mean curvature stems from its relation
to infinitesimal surface area changes. An deformation along the normal direction by an
infinitesimal distance ε changes the area element dA as follows5

dA 7→ (1− 2εKM)dA. (6.21)

5One way to understand this result is as follows. Consider an infinitesimal patch dA of a surface that
curves away from the normal in every direction. Its radii of curvature are R1 and R2, so the principal
curvatures are −1/R1 and −1/R2. Before the deformation, the boundaries of the area element are arcs
of length R1dθ1 and R2dθ2, so that dA = R1R2 dθ1dθ2. After the deformation, the radii of curvature are
R1 + ε and R2 + ε, so that the area element is dA(1 + ε/R1 + ε/R2) = dA(1− 2εKM ).
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This relation justifies regarding KM as a local characterization of the force of surface tension
on the liquid-vapor surface.

A technical complication arises when calculating the curvature of the liquid-vapor inter-
face defined by Willard and Chandler. Owing to the truncation in the Gaussian smearing
kernel used to define the smooth density field ρ̃(r) (Equation (3.63)), the surface has discon-
tinuous gradients. Since curvature captures second-derivative information about a surface,
the curvature at these points is infinite. To avoid these complications, here we define ρ̃(r)
using a smoothing function φ(r) = ϕ(r) that is slightly different than the one used in
Ref. [125] and in the preceding chapters. Our chosen ϕ(r) stitches together two continuous
cubic functions at a point r = 0.7ξ so that ϕ(r) is continuous and has continuous first and
second derivatives. It also satisfies ϕ(3ξ) = 0, ϕ′(0) = ϕ′(3ξ) = 0 and ϕ′′(0) = ϕ′′(3ξ) = 0,
and the resulting smearing function, φ(r), is normalized to 1. These properties uniquely
specify ϕ(r). The location of the stitching point is chosen empirically so that φ(r) closely
resembles a Gaussian with standard deviation ξ.

To establish a baseline, we first calculate the distribution of KM as a function of the
height a∗ of a probe water molecule from the liquid-vapor interface. In doing this, the probe
water molecule can be either included in or exclude from the calculation of the liquid-vapor
surface. It is not clear that either choice is superior, so we have repeated the calculation
with both choices. Figure 6.15 shows the results as a joint free energy for KM and a∗. At
very low and very high a∗, only a trivial bias in KM is seen as a function of a∗, resulting from
the nearest point on the surface being preferentially one where the surface is bending most
towards the probe water molecule. However, an evident additional bias towards negative
mean curvature can be seen for a∗ just above the surface, indicating that a water molecule
suspended there significantly deforms the surface below it. Figure 6.16 shows an example of
this kind of deformation in one of the harvested evaporation trajectories.

Figure 6.17 overlays the transition states of the evaporation trajectories on the free en-
ergies of Figure 6.15. To a certain extent, the transition states exhibit some of the bias
towards negative curvature that can be seen in the equilibrium free energies. The bias is
slight when the probe molecule is not included in the definition of the liquid-vapor surface,
but is clearer when the probe molecule is included. The definition of a liquid-vapor interface
during the evaporation process is somewhat ambiguous, and we regard full inclusion and
full exclusion as the two limiting extremes for a suitable definition. Since the bias towards
negative curvature is present in both cases, our finding should be robust with respect to
reasonable changes in the definition of the interface.

6.3 Discussion

We have examined the process of evaporation of SPC/E water in detail, and all the evi-
dence suggests that there is no barrier to evaporation in this model. In other words, to
evaporate, a water molecule near the surface need simply spontaneously acquire enough ki-
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Figure 6.15: Free energy for height a∗ of a probe water molecule and the mean curvature,
KM , at the nearest point on the liquid-vapor surface. Contours are spaced at 1 kBT . The
probe water molecule can either be (a) excluded from, or (b) included in the definition of
the liquid-vapor surface.
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Figure 6.16: Example of the interfacial deformation that accompanies an evaporation event.
The system is depicted at the time when the last hydrogen bond between the bulk and the
evaporated water breaks.

netic energy in the direction of the liquid-vapor interface normal. This view is consistent
with the distribution of vz for the final velocities (Figure 6.10), the fact that the potential
of mean force along a coordinate a∗ perpendicular to the liquid-vapor surface is barrierless
(Figure 6.12) and the fact that the transition states cluster around values of vz and a∗ that
have a threshold amount of energy to escape from the potential well set up by the remainder
of the bulk (Figure 6.14). It is difficult, if not impossible, for evaporation to be a mildly
activated process and still be consistent with these three pieces of evidence.

One possible explanation for the discrepancy is that the experimentally observed barrier
is a fundamentally quantum effect. By construction, these effects are beyond the scope of the
classical molecular dynamics simulations used here. Important quantum effects are plausible
because librational motions of water, with wavenumbers around 500 cm−1, have strong quan-
tization effects (a photon with energy kBT at T = 300 K has a wavenumber of 1300 cm−1). If
this were the source of the discrepancy, a simulation study that explicitly accounts for quan-
tum effect (e.g., using ring-polymer molecular dynamics [17]) could elucidate the details of
the barrier. However, any account of such quantum effects playing a dominant role would
have to be compatible with the observation that the evaporation coefficient of D2O is equal,
within errors, to that of H2O [22].

An alternate explanation that we pursue here is that of a systematic error in the calibra-
tion of the experiments.
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Figure 6.17: Representative transition states of evaporation trajectories (red) projected onto
the KM and a∗ coordinates. The free energies of these coordinates are shown for comparison.
Labels as in Figure 6.15.
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6.3.1 Experimental temperature calibration may explain discrep-
ancies between simulations and experiments

As described in Section 6.1.1, in the experiment that motivated this study, the evapora-
tion coefficient is deduced from cooling curves of microdroplets. The droplet temperature is
estimated by measuring its Raman scattering spectrum and assuming a linear van’t Hoff rela-
tion between ratios of integrated scattering intensities and inverse temperature (Figure 6.3).
However, this linear behavior is an approximation that only holds over small temperature
ranges [36]. Further, whereas the temperature is calibrated using the Raman spectra of water
samples at temperatures above 0◦C, most of the observed temperatures are below 0◦C.

We first determine whether significant deviations from linear van’t Hoff behavior can be
observed in water. Very few experiments have measured the Raman scattering spectrum
of supercooled water, with the notable exception of the work of D’Arrigo et al [19]. They
report a Raman spectrum of water at −24◦C, as well as five other temperatures ranging
from 20◦C to 95◦C. Using their data, we have produced a van’t Hoff calibration curve
analogous to that of Figure 6.3. Our result, shown in Figure 6.18, clearly shows that while
the five points data point taken above 0◦ can be fit to a straight line, the data point at
deeply supercooled temperatures deviates from this line significantly. The conditions under
which the spectra of D’Arrigo et al and those of Smith et al [99] are taken are not directly
comparable, and troublingly, to the author’s knowledge, the D’Arrigo et al data has not
been reproduced, but we interpret the deviation from linearity observed in Figure 6.18 as
evidence of the plausibility of calibration errors affecting the results in Ref. [99].

To bolster this argument, we have reinterpreted the cooling curves reported in Ref. [99] as
reporters of calibration non-linearities. That is, if we assume that the temperature T of the
droplet is in fact the expected temperature when γ = 1, then the “measured” temperature
can be viewed as a calibration measurement of the ratio of integrated Raman scattering
intensities at temperature T . The resulting calibration curve is shown in Figure 6.19. This
figure illustrates that the amount of deviation from linearity required for the data to be
compatible with γ = 1 is small, and within the range suggested by the above results.

One way to compensate for non-linearity empirically is to use a quadratic fit, instead
of a linear fit, to describe the calibration data: the calibration data of Smith et al already
has a slight but measurable curvature. The result of this fit is also shown in Figure 6.19.
The deviation from linearity observed for T < 0◦C is indeed roughly consistent with the
proposed nonlinearity (Figure 6.19)6.

Ultimately, the best way to address the issues with the current calibration procedure is
to either inject warmer microdroplets into the experimental observation chamber to begin
with, or to measure calibration data for water at supercooled conditions, or both. Our
experimental collaborators are presently pursuing both of these avenues.

6Recently, Kaitlin Duffey in Richard Saykally’s group has implemented this quadratic fit on a more
accurate calibration dataset, and reports that the deduced evaporation coefficient is closer to 1, but that a
result of exactly 1 would still be incompatible with the measured cooling curves.
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Kuczera, D. Yin, and M. Karplus. All-atom empirical potential for molecular modeling
and dynamics studies of proteins. J. Phys. Chem. B, 102(18):3586–3616, 1998.

[71] L. Maibaum, A. R. Dinner, and D. Chandler. Micelle formation and the hydrophobic
effect. J. Phys. Chem. B, 108(21):6778–6781, 2004.

[72] M. Marchi, D. Borgis, N. Levy, and P. Ballone. A dielectric continuum molecular
dynamics method. J. Chem. Phys., 114(10):4377–4385, 2001.

[73] R. Marcus. On the theory of oxidation-reduction reactions involving electron transfer.
I. J. Chem. Phys., 24(5):966–978, 1956.

[74] G. Martyna, D. Tobias, and M. Klein. Constant pressure molecular dynamics algo-
rithms. J. Chem. Phys., 101:4177, 1994.

[75] P. E. Mason. Molecular dynamics study on the microscopic details of the evaporation
of water. J. Phys. Chem. A, 115(23):6054–6058, 2011.

[76] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equa-
tion of state calculations by fast computing machines. J. Chem. Phys., 21(6):1087–
1092, 1953.

[77] M. Mickler, M. Hessling, C. Ratzke, J. Buchner, and T. Hugel. The large conforma-
tional changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat. Struct. Mol.
Biol., 16(3):281–286, 2009.

[78] T. F. Miller, E. Vanden-Eijnden, and D. Chandler. Solvent coarse-graining and the
string method applied to the hydrophobic collapse of a hydrated chain. P. Natl. Acad.
Sci. U.S.A., 104(37):14559–64, 2007.

[79] J. Mittal and G. Hummer. Static and dynamic correlations in water at hydrophobic
interfaces. P. Natl. Acad. Sci. U.S.A., 105(51):20130–20135, 2008.



BIBLIOGRAPHY 166

[80] S. Miyamoto and P. A. Kollman. SETTLE: An analytical version of the SHAKE and
RATTLE algorithm for rigid water models. J. Comput. Chem., 13(8):952–962, 1992.

[81] A. H. Narten and H. A. Levy. Liquid water: Molecular correlation functions from
X-ray diffraction. J. Chem. Phys., 55(5):2263–2269, 1971.

[82] J. Noah-Vanhoucke and P. L. Geissler. On the fluctuations that drive small ions toward,
and away from, interfaces between polar liquids and their vapors. P. Natl. Acad. Sci.
U.S.A., 106(36):15125–15130, 2009.

[83] A. Onufriev, D. Bashford, and D. A. Case. Exploring protein native states and large-
scale conformational changes with a modified Generalized Born model. Proteins,
55(2):383–394, 2004.

[84] A. J. Patel, P. Varilly, and D. Chandler. Fluctuations of water near extended hy-
drophobic and hydrophilic surfaces. J. Phys. Chem. B, 114(4):1632–1637, 2010.

[85] A. J. Patel, P. Varilly, D. Chandler, and S. Garde. Quantifying density fluctuations
in volumes of all shapes and sizes using indirect umbrella sampling. (accepted for
publication in J. Stat. Phys., arXiv:1105.0895).

[86] A. J. Patel, P. Varilly, S. N. Jamadagni, H. Acharya, S. Garde, and D. Chandler.
Hydrophobic effects in interfacial environments. (submitted, arXiv:1105.0907).

[87] P. Petersen and R. J. Saykally. On the nature of ions at the liquid water surface. Annu.
Rev. Phys. Chem., 57:333–364, 2006.

[88] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,
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Appendix A

Unbalancing forces in LCW theory

Weeks and coworkers’ work on modeling non-uniform liquids [114,118,120–122] provides
the basis for the term in Equation (2.37) that couples small-length-scale and large-length-
scale density fluctuations. This term can be justified rigorously (within certain approxima-
tions) in the case of simple (monatomic and isotropic) liquids, as we do in this appendix,
and it can be regarded as a useful approximation in the case of more complex liquids like
water.

Particles in a simple liquid interact via a pairwise potential u(r) that may be decomposed
into a repulsive (positive) portion, u0(r), and an attractive (negative) portion, ua(r), where
ua(r) is finite and slowly-varying. A common separation when u(r) is a Lennard-Jones
potential is the Weeks-Chandler-Andersen separation [119], described in Section 4.1. In
order to model the thermodynamics of non-uniform liquids, Weeks and coworkers considered
two related liquid systems: the original liquid of particles that interact via the potential u(r),
and a related reference liquid R, whose particles interact with each other via the repulsive
potential u0(r) alone, as well as with an external field ψ(r). In both cases, the chemical
potentials are chosen to yield a uniform density ρ` in the absence of external constraints or
other fields. Using the first equation in the Yvon-Born-Green hierarchy with an approximate
closure relation, they showed that there exists a unique choice of ψ(r) that results in identical
mean densities in both systems, i.e.,

〈ρ(r)〉 = 〈ρ(r)〉R . (A.1)

If the liquid is close to its triple point, so that its structure is essentially determined by
packing constraints [119], then they found that

ψ(r1) ≈
∫

r2

ua(r12)[〈ρ(r2)〉 − ρ`] = ρ`

∫

r2

ua(r12)[〈n(r2)〉 − 1] +

∫

r2

ua(r12) 〈δρ(r2)〉 . (A.2)

In order to discuss the consequences of introducing this potential, it is useful to estab-
lish some notation. Following Ref. [67], we define the positive moments a and m of the
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potential ua(r) by the relations

a = −1

2

∫

r

ua(r), (A.3)

m = −1

6

∫

r

r2u(r). (A.4)

Given a field f(r), we define the smeared field f(r) by the relation

f(r1) =

∫
r2
ua(r12)f(r2)∫
r2
ua(r12)

. (A.5)

With this notation, we can write

ψ(r) = −2a
[
〈ρ(r)〉 − ρ`

]
= −2aρ`

[
〈n(r)〉 − 1

]
− 2aρ`

〈
δρ(r)

〉
. (A.6)

Returning to our discussion, since the reference fluid only has repulsive forces, we can
model its thermodynamics with a simple Hamiltonian HR. In particular, consider splitting
the density of the reference system into slowly and quickly varying parts as in Section 2.3.
Because of the lack of attractive forces in the reference fluid, the free energy density of the
slowly varying part at any given point depends approximately only on the local density
and not on its gradients,1 and its small-length-scale density fluctuations are approximately
Gaussian [18], so

HR[n(r), δρ(r)] =

∫

r

wR(n(r))

+
kBT

2

∫

r

∫

r′
δρ(r)χ−1

R

(
r, r′;n(r)

)
δρ(r′) +

∫

r

ψ(r)[ρ`n(r) + δρ(r)]. (A.7)

Here, wR(n) is the free-energy density of the uniform reference system at density ρ`n. The
fluctuation spectrum of the (non-uniform) reference system is χR

(
r, r′;n(r)

)
, and as in

the main text, we henceforth suppress its dependence on n(r) for clarity. By definition,
χR(r, r′) = χR(r′, r).

Equation (A.1) holds only when ψ(r) is chosen self-consistently, i.e. the fields 〈n(r)〉
and 〈δρ(r)〉 obtained with the Hamiltonian HR[n(r), δρ(r)] are equal to the fields 〈n(r)〉
and 〈δρ(r)〉 in the definition of ψ(r). We impose this condition approximately by finding
the fields n(r) and δρ(r) that minimize HR[n(r), δρ(r)] and identifying them with 〈n(r)〉
and 〈δρ(r)〉. To the extent that HR[n(r), δρ(r)] is quadratic about this minimum, this

1Strictly speaking, the free energy as a functional of density of the reference system is unknown. The
approximation made here is equivalent to the hydrostatic approximation made by Weeks [118].
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approximation is exact. The solution satisfies the relations

w′R(n(r1)) +
kBT

2

∫

r

∫

r′
δρ(r)

δχ−1
R (r, r′)

δn(r1)
δρ(r′)

+ρ2
`

∫

r2

ua(r12)
[
n(r2)− 1

]
+ ρ`

∫

r2

ua(r12)δρ(r2) = 0, (A.8)

kBT

∫

r2

χ−1
R (r1, r2)δρ(r2) + ρ`

∫

r2

ua(r12)[n(r2)− 1] +

∫

r2

ua(r12)δρ(r2) = 0. (A.9)

To account for fluctuations around the average behavior, we propose a Hamiltonian for
the full fluid, H[n(r), δρ(r)], whose minimum satisfies these two Equations, regardless of
boundary conditions. In other words, the stable states of this Hamiltonian are identical
to those of the reference fluid subject to the self-consistent field ψ(r). Such a condition is
satisfied by the Hamiltonian

H[n(r), δρ(r)] =

∫

r

wR(n(r)) +
ρ2
`

2

∫

r1

∫

r2

[
n(r1)− 1

]
ua(r12)

[
n(r2)− 1

]

+
kBT

2

∫

r1

∫

r2

δρ(r1)
[
χ−1
R (r1, r2;n(r)) + βua(r12)

]
δρ(r2) +

∫

r

φ(r)δρ(r), (A.10)

where

φ(r1) ≈ ρ`

∫

r2

ua(r12)[n(r2)− 1] = −2aρ`
[
n(r1)− 1

]
. (A.11)

This Hamiltonian is defined uniquely up to a physically irrelevant constant, which is cho-
sen here so that when the liquid is uniform, i.e., when n(r) = 1 and δρ(r) = 0, then
HR[n(r), δρ(r)] = H[n(r), δρ(r)].

Equation (A.10) can be recast into a physically appealing form by a few manipulations.
First, since n(r) varies slowly in space and u1(r) is short-ranged, we can Taylor expand n(r2)
about r2 = r1 in the second term of the right-hand side of Equation (A.10) and truncate the
expansion to second order [67], so

ρ2
`

2

∫

r1

∫

r2

[
n(r1)− 1

]
u(r12)

[
n(r2)− 1

]

≈ ρ2
`

2

∫

r1

[
n(r1)− 1

]2
{∫

r

u(r)

}
+
ρ2
`

2

∫

r1

∫

r2

[
n(r1)− 1

]
u(r12)(r12 · ∇)

[
n(r1)− 1

]

+
ρ2
`

4

∫

r1

∫

r2

[
n(r1)− 1

]
u(r12)(r12 · ∇)2

[
n(r1)− 1

]
(A.12)

In the right-hand side of this expression, the first term depends only locally on n(r), so it
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can be viewed as a change to the free energy density from wR(n) to w(n), given by2

w(n) = wR(n)− aρ2
`(n− 1)2. (A.13)

The second term on the right-hand side of Equation (A.12) is zero due to symmetry. Finally,
the third term can be written as

ρ2
`

4

∫

r1

∫

r2

[n(r1)− 1]u1(r12)(r21 · ∇)2n(r1) =
ρ2
`

4

∫

r1

∫

r21

[n(r1)− 1]u1(r12)(r21 · ∇)2n(r1)

=
ρ2
`

12

∫

r1

[n(r1)− 1]∇2n(r1)

∫

r21

r2
21u1(r12),

=

∫

r

m

2
|∇ρ`n(r)|2, (A.14)

where in the second line, we’ve used the result that for any tensor A,

∫

r

ua(r) rTAr =
1

3
Tr A

∫

r

r2ua(r). (A.15)

In other words, the third term in Equation (A.12) gives rise to a square-gradient term.
Finally, we define the symmetric operator χ

(
r1, r2;n(r)

)
so that

χ−1
(
r1, r2;n(r)

)
= χ−1

R

(
r1, r2;n(r)

)
+ βu1(r12). (A.16)

The form of Equation (A.10) indicates that χ(r1, r2) is the fluctuation spectrum of the full
liquid. Equation (A.16) corresponds to the random phase approximation of standard liquid-
state theory (Equations (3.5.9) and (3.5.17) in Ref. [41]).

Assembling the above results, we find that the Hamiltonian of Equation (A.10) may be
written in the form

H[n(r), δρ(r)] ≈
∫

r

w(n(r)) +
m

2
|∇ρ`n(r)|2

+

∫

r

∫

r′
δρ(r)χ−1(r, r′;n(r))δρ(r′) +

∫

r

φ(r)δρ(r), (A.17)

We can identify w(n(r)) as the free energy density of the full fluid, χ(r, r′) as the fluctuation
spectrum of the full fluid and the φ(r)δρ(r) term as an effective coupling between the small-
and large-length-scale density fields. This approximate form of the Hamiltonian, derived

2The difference between w(n) and wR(n) has a physical interpretation. The part that is proportional
to n2 corresponds to an additional energy density −aρ2`n2 resulting from solvent-solvent attractions that
stabilize the fluid phase, analogous to the energy density in traditional van der Waals theory [93]. The part
that is linear in n corresponds to a chemical potential difference ∆µ = −2aρ` between the reference and full
fluid. The remaining part reflects a choice of integration constant and is not meaningful.
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above for simple dense liquids with isotropic interactions, serves as the starting point for the
phenomenological modeling of water in LCW theory.3

We conclude this Appendix by making the explicit connection between the original LCW
theory, Equations (5) and (6) of Ref. [68], and the formulation used in this thesis. To
this end, we use an expansion analogous to that of Equation (A.12) to rewrite Equations
(A.8) and (A.9). We obtain

w′(n(r1)) +
kBT

2

∫

r

∫

r′
δρ(r)

δχ−1
R (r, r′)

δn(r1)
δρ(r′)−mρ2

`∇2n(r1) = 2aρ`δρ(r1), (A.18)

kBT

∫

r2

χ−1(r1, r2)δρ(r2) = −φ(r1). (A.19)

In the notation of Ref. [68], the slowly varying density field is defined as ns(r) = ρ`n(r),
and the free energy density wLCW(ns) is defined as a function of ns, not n. Hence, w′LCW(ns) =
w′(n)/ρ`. Dividing Equation (A.18) throughout by ρ`, we obtain

w′LCW(ns(r1)) +
kBT

2

∫

r

∫

r′
δρ(r)

δχ−1
R (r, r′)

δns(r1)
δρ(r′) = m∇2ns(r1) + 2aδρ(r1). (A.20)

This Equation corresponds to Equation (5) in Ref. [68] when the dependence of χR(r, r′)
on ns(r) is neglected.

As discussed in Chapter 4, solvent exclusion from a volume v results in the addition to
the right-hand side of Equation (A.19) of a term −kBTc(r1) that is zero for r1 outside v,
and chosen so that ρ`n(r) + δρ(r) = 0 for r inside v. Rearranging this new equation yields
to give

δρ(r1) = −
∫

r2

χ(r1, r2)
[
βφ(r1) + c(r2)

]
, (excluded solvent constraint). (A.21)

Equation (A.21) thus corresponds to Equation (6) in Ref. [68] if the contribution of the
field φ(r) is neglected with respect to the much larger contribution due to c(r).

Our discussion here shows that the original LCW theory [68] corresponds to a mean-field
construction of fields n(r) and δρ(r) that approximately minimize Equation (A.17), as hinted
to in Ref. [107].

3In the main text, a factor of ρ2` has been subsumed into the constant m.




