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Abstract

Noise-adding and beyond: A study in data-adaptive methods for differential privacy

by

Rachel Redberg

As technology has evolved, so too have our privacy needs. AI is now a household

name and machine learning (ML) applications a part of daily life. But an ML model is

only as good as the data on which it’s trained — and what happens when that data needs

to be protected?

Differential privacy (DP) is a rigorous mathematical definition which can be used to

provably bound the privacy leakage (or loss) of running a machine learning algorithm.

This relatively young field of study has started to gain considerable traction in the ML

research community. There is, however, a narrowing but still precipitous gap between

theory and practice which has prevented DP from seeing widespread deployment in the

real world. This dissertation proposes several tools and algorithms to bridge this gap.

In Chapter 2, we parameterize the privacy loss as a function of the data and investigate

how to privately publish these data-dependent DP losses for the objective perturbation

mechanism. These data-dependent DP losses might be significantly smaller than the worst-

case DP bound, thus serving as justification for using a looser privacy guarantee — hence

achieving better utility — in practice. Chapter 3 then demonstrates how data-dependent

DP losses can be used in order to develop DP algorithms which can adapt to favorable

properties of the data, in order to achieve a better privacy-utility trade-off. Chapter 4

returns to objective perturbation and provides this time-honored DP mechanism with

new tools and privacy analyses that allow it to compete with more modern algorithms.
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Chapter 1

Introduction
“That the individual shall have full protection in person and in property is a
principle as old as the common law; but it has been found necessary from time to
time to define anew the exact nature and extent of such protection.”

— Samuel D. Warren II and Louis Brandeis, The Right to Privacy, 1890

In 2006 Netflix staged an open competition to improve its recommendation algorithm

for films. Thousands of teams from over 100 countries competed for the $1 million prize

(Thompson, 2008). Each competing team had access to a dataset containing movie ratings

created by almost 500,000 Netflix subscribers between December 1999 and December 2005

(Lohr, 2009). The dataset had been anonymized by removing all customers’ identifying

information; only ratings and dates remained.

Netflix announced a winner in 2009, and plans for a second contest were already

underway. This second contest never saw the light of day (Singel, 2010). The culprit was

privacy concerns: In a 2008 paper, researchers at University of Texas were able to identify

users from the “anonymous” Netflix prize dataset by linking it with an auxiliary IMDB

dataset (Narayanan and Shmatikov, 2008).

Stories like these demonstrate that by the first years of the millenium, there was a

clear need for rigorous and provable privacy protection for data. But what properties

should such a framework have?

1



Introduction Chapter 1

1.1 Differential Privacy

Suppose that we can query a dataset D of manatee preferences. We ask, "How many

users in D like manatees?" and then we ask, "How many users in D like manatees, who are

not Rachel?" If an adversary knows that I do, in fact, like manatees, then a differencing

attack like this could reveal whether or not my data is in dataset D.

From this example, we might desire that our privacy definition is robust against

auxiliary information (such as the fact that I like manatees) and also that our privacy

definition is agnostic to the differences between nearly identical datasets (such as datasets

which differ only in the presence or absence of a Rachel).

Our goal is to learn something meaningful about the data in aggregate without leaking

information about any particular individual in the dataset. One way to view this is that

the outcome of analyzing a dataset should be roughly the same regardless of whether an

individual contributed her data or not. Now, let’s say that our study of dataset D has

taught us that swimming increases the odds of liking manatees. Should swimmers be wary

of having contributed their data to D? Maybe, but there’s nothing we can (or rather,

should) do about it. A privacy definition that prevents us from drawing meaningful

conclusions from data is not particularly useful!

These guiding principles motivated the development of differential privacy (Dwork

et al., 2006), now the gold standard for data privacy protection. Differential privacy is

defined as a bound over neighboring datasets D and D′ which are identical up to a single

datapoint, e.g. one could obtain D′ by adding or removing a datapoint from D.

Definition 1.1.1 (Differential privacy). A mechanism M : D → R satisfies (ϵ, δ)-

differential privacy if for all neighboring datasets D,D′ ∈ D and output sets S ⊆ R,

Pr [M(D) ∈ S] ≤ eϵPr [M(D′) ∈ S] + δ.

2



Introduction Chapter 1

Suppose that we apply a randomized algorithmM to a dataset D and to one of its

neighbors D′, which differs from D by only one datapoint. Differential privacy guarantees

that an adversary will have difficulty distinguishing whether an output was produced

from runningM(D) or runningM(D′) — in other words, an adversary can’t tell from

the output whether or not an individual datapoint was present in the dataset. The degree

of difficulty is determined by the parameter ϵ, which effectively bounds the log probability

density ratio between the output distributions ofM(D) andM(D′). The parameter δ

allows for some slack in this bound.

1.2 Dissertation Overview

This dissertation is organized around three papers which share common goals and

themes. The first of these is developing data-adaptive tools and algorithms for differential

privacy (Chapters 2 and 3), which can provide a more meaningful privacy-utility trade-off

for “typical” data compared to the worst-case data hypothesized by DP. Another main

theme (which we will see in Chapters 2 and 4) is moving beyond the common DP paradigm

of calibrating noise to the sensitivity of a function, i.e. the maximum change in a function

between any two neighboring datasets.

1.2.1 Privately Publishable Per-instance Privacy

In Chapter 2 we consider how to privately share the personalized privacy losses

incurred by the objective perturbation mechanism, using per-instance differential privacy

(pDP). Differential privacy gives us a worst-case bound that might be orders of magnitude

larger than the privacy loss to a particular individual relative to a fixed dataset. The

pDP framework provides a more fine-grained analysis of the privacy guarantee to a target

individual, but the per-instance privacy loss itself might be a function of sensitive data. In

3



Introduction Chapter 1

this chapter, we will analyze the per-instance privacy loss of releasing a private empirical

risk minimizer learned via objective perturbation, and propose a group of methods to

privately and accurately publish the pDP losses at little to no additional privacy cost.

1.2.2 Generalized Propose-Test-Release

The “Propose-Test-Release” (PTR) framework [Dwork and Lei, 2009] is a classic recipe

for designing differentially private (DP) algorithms that are data-adaptive, i.e. those

that add less noise when the input dataset is “nice”. In Chapter 3 we extend PTR to a

more general setting by privately testing data-dependent privacy losses rather than local

sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g.

to queries with unbounded or undefined sensitivity. We demonstrate the versatility of

generalized PTR using private linear regression as a case study. Additionally, we apply

our algorithm to solve an open problem from “Private Aggregation of Teacher Ensembles

(PATE)” [Papernot et al., 2017, 2018] — privately releasing the entire model with a

delicate data-dependent analysis.

1.2.3 Improving Objective Perturbation

In the arena of privacy-preserving machine learning, differentially private stochastic

gradient descent (DP-SGD) has outstripped the objective perturbation mechanism in

popularity and interest. Though unrivaled in versatility, DP-SGD requires a non-trivial

privacy overhead (for privately tuning the model’s hyperparameters) and a computational

complexity which might be extravagant for simple models such as linear and logistic

regression. Chapter 4 revamps the objective perturbation mechanism with tighter privacy

analyses and new computational tools that boost it to perform competitively with DP-SGD

on unconstrained convex generalized linear problems.

4



Chapter 2

Privately Publishable Per-instance

Privacy

2.1 Introduction

An explosion of data has fueled innovation in machine learning applications and

demanded, in equal turn, privacy protection for the sensitive data with which machine

learning practitioners train and evaluate models.

Differential privacy (DP) (Dwork et al., 2006, 2014a) has become a mainstay of privacy-

preserving data analysis, replacing less robust privacy definitions such as k -anonymity

which fail to protect against sufficiently powerful de-anonymization attacks (Narayanan

and Shmatikov, 2008). In contrast, DP offers provable privacy guarantees that are robust

against an arbitrarily strong adversary.

The data curator could trivially protect against privacy loss by reporting a constant

function, or by releasing only data-independent noise. The key challenge of DP is to

release privatized output that retains utility to the data analyst.

A desired level of utility in a machine learning application might necessitate a high

5
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value of ϵ, but the privacy guarantees degrade quickly past ϵ = 1. Triastcyn and Faltings

(2020) construct an example whereby a differentially private algorithm with ϵ = 2 allows

an attacker to use a maximum-likelihood estimate to conclude with up to 88% accuracy

that an individual is in a dataset. For ϵ = 5, the theoretical upper bound on the accuracy

of an optimal attack is 99.3%.

Moreover, practical applications of differential privacy commonly use large values of ϵ.

A study of Apple’s deployment of differential privacy (Tang et al., 2017) revealed that

the overall daily privacy loss permitted by the system was as high as ϵ = 6 for Mac OS

10.12.3 and ϵ = 14 for iOS 10.1.1 – offering only scant privacy protection!

Recent work (Yu et al., 2021) has empirically justified large privacy parameters by

conducting membership inference attacks to demonstrate that these seemingly tenuous

privacy guarantees are actually much stronger in practice. These results are unsurprising

from the perspective that DP gives a data-independent bound on the worst-case privacy

loss which is likely to be a conservative estimate of the risk to a particular individual

when a DP algorithm is applied to a particular input dataset.

Per-instance differential privacy provides a theoretically sound alternative to the

empirical approach for revealing the gap between the worst-case DP bound and the actual

privacy loss in practice. The privacy loss to a particular individual relative to a fixed

dataset might be orders of magnitude smaller than the worst-case bound guaranteed by

standard DP. In this case, an algorithm meeting a desired level of utility but providing

weak DP guarantees may, for the same level of utility, achieve drastically more favorable

per-instance DP guarantees.

The remaining challenge is that the per-instance privacy loss is a function of the

entire dataset; publishing it directly would negate the purpose of privately training a

model in the first place! In this chapter, we propose a methodology to privately release

the per-instance privacy losses associated with private empirical risk minimization. Our

6
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contributions are as follows:

• We introduce ex-post per-instance differential privacy to provide a sharp characteri-

zation of the privacy loss to a particular individual that adapts to both the input

dataset and the algorithm’s output.

• We present a novel analysis of the ex-post per-instance privacy losses incurred by the

objective perturbation mechanism, demonstrating that these ex-post pDP losses are

orders of magnitude smaller than the worst-case guarantee of differential privacy.

• We propose a group of methods to privately and accurately release the ex-post

pDP losses. In the particular case of generalized linear models, we show that

we can accurately publish the private ex-post pDP losses using a dimension- and

dataset-independent bound.

• One technical result of independent interest is a new DP mechanism that releases the

Hessian matrix by adding a Gaussian Orthogonal Ensemble matrix, which improves

the classical “AnalyzeGauss” (Dwork et al., 2014b) by roughly a constant factor of

two.

2.1.1 Related Work

This chapter builds upon Wang (2019), which proposed the per-instance DP framework

and left as an open question the matter of publishing the pDP losses. We extend the pDP

framework to an ex-post setting to provide privacy guarantees that adapt even more fluidly

to data-dependent properties of our algorithms. Another fundamental ingredient in our

privacy analysis is the objective perturbation algorithm (Obj-Pert) of Chaudhuri et al.

(2011), further analyzed by Kifer et al. (2012), which privately releases the minimizer of an

empirical risk by adding a linear perturbation to the objective function before optimizing.

7
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Per-instance DP and ex-post per-instance DP belong to a growing family of DP

definitions that provide a more fine-grained characterization of the privacy loss. Among

these are data-dependent DP (Papernot et al., 2018b), which conditions on a fixed dataset;

personalized DP (Ghosh and Roth, 2011; Ebadi et al., 2015; Liu et al., 2015), which

conditions on a fixed individual’s datapoint; and ex-post DP (Ligett et al., 2017), which

conditions on the realized output of the algorithm. Per-instance DP conditions on both a

fixed dataset and a fixed individual’s datapoint, and ex-post per-instance DP adapts even

further to the realized output of the algorithm. A more detailed comparison of these DP

variants is included in the supplementary materials.

Other data-adaptive methodologies include propose-test-release (Dwork and Lei, 2009)

and local sensitivity (Nissim et al., 2007). In addition, Bayesian differential privacy

(Triastcyn and Faltings, 2020) provides data-dependent privacy guarantees that afford

strong protection to "typical" data by making distributional assumptions about the

sensitive data. The Rényi-DP-based privacy filters of Feldman and Zrnic (2020) are

also closely related to our work; the authors study composition of personalized (but not

per-instance) privacy losses using adaptively-chosen privacy parameters.

2.2 Preliminaries

2.2.1 Symbols and Notation

We write the output of a randomized algorithm A as A(·), and for continuous

distributions we take Pr[A(D) = o] to be the value of the probability density function at

output o.

We will let z ∈ Z refer to both an individual and their data; for example, individual z

holds data z = (x, y) in a supervised learning problem. We take Z∗ = ∪∞n=0Zn to be the

8
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space of datasets with an unspecified number of data points. D±z ∈ Z∗ denotes the fixed

dataset D = {z1, . . . , zn} ∈ Z∗ with the data point z removed from D if z ∈ D, or added

to D if z /∈ D. In our mathematical expressions, we use "±" to mean "add if z /∈ D,

subtract otherwise". Similarly. "∓" means "subtract if z /∈ D, add otherwise".

We distinguish between ϵ as fixed input to a DP algorithm, and ϵ(·) as a function

parameterized according to a particular DP relaxation — e.g., ϵ(o,D,D±z) means the

ex-post per-instance privacy loss conditioned on output o, dataset D, and data point z.

2.2.2 Differential Privacy

Let Z denote the data domain, and R the set of all possible outcomes of algorithm A.

Fix ϵ, δ ≥ 0.

Definition 2.2.1. (Differential privacy) A randomized algorithm A : Z∗ → R satisfies

(ϵ, δ)-DP if for all datasets D ∈ Z∗ and data points z ∈ Z, and for all measurable sets

S ⊂ R,

Pr
[
A(D) ∈ S

]
≤ eϵPr

[
A(D±z) ∈ S

]
+ δ.

Differential privacy guarantees that the presence or absence of any particular data

record has little impact on the output distribution of a randomized algorithm. In this

paper we use the "add/remove" notion of DP, by which we construct neighboring dataset

D±z by adding or removing an individual z from dataset D.

DP is powerful and universal in that its guarantee applies to any D, z and set of

output events. However, there are often situations where the privacy losses of A vary

drastically depending on its input data, and the privacy loss bound ϵ (protecting even

the worst-case pair of neighboring datasets) may not be informative of the privacy loss

9
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incurred to individuals when the input to A is typical. This motivated Wang (2019) to

consider a per-instance version of the DP definition.

Definition 2.2.2. (Per-instance differential privacy) A randomized algorithmA : Z∗ → R

satisfies
(
ϵ(D,D±z), δ

)
-pDP if for dataset D and data point z, and for all measurable sets

S ⊂ R,

Pr
[
A(D) ∈ S

]
≤ eϵPr

[
A(D±z) ∈ S

]
+ δ,

Pr
[
A(D±z) ∈ S

]
≤ eϵPr

[
A(D) ∈ S

]
+ δ.

The pDP definition can be viewed as using a function ϵ(D,D±z) that more precisely

describes the privacy guarantee in protecting a fixed data point z when A is applied to

dataset D.

As it turns out, it is most convenient for us to work with an even more instance-specific

description of the privacy loss that is further parameterized by the realized output of A

ex-post — after the random coins of A are flipped and the outcome released.

Definition 2.2.3. (Ex-post per-instance differential privacy) A randomized algorithm

A satisfies ϵ(·)-ex-post per-instance differential privacy for an individual z and a fixed

dataset D at an outcome o ∈ Range(A) if

∣∣∣∣∣log
(

Pr
[
A(D) = o

]
Pr
[
A(D±z) = o

])∣∣∣∣∣ ≤ ϵ(o,D,D±z).

This definition generalizes the ex-post DP definition (Ligett et al., 2017) (introduced for

a different purpose) to a per-instance version that depends on a given pair of neighboring

datasets. The above quantity is essentially the absolute value of the log-odds ratio,

used extensively in hypothesis testing. Intuitively, the ex-post per-instance privacy

loss ϵ(o,D,D±z) describes how confidently an attacker could infer, given the output of
10
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algorithm A, whether or not individual z is in dataset D.

Despite (or perhaps because of) its precise accounting for privacy, ex-post pDP

could reveal sensitive information about the dataset, as the following example explicitly

illustrates.

Example 2.2.4 (The privacy risk of exposing ex-post pDP). Consider a standard Gaussian

mechanism A that adds noise to a counting query Q applied to dataset D, i.e. A(D) =

Q(D)+N (0, σ2). Q has global sensitivity ∆Q = 1. We will show that an attacker, knowing

only the output o of algorithm A, her ex-post pDP loss and that her individual data is not

contained in dataset D, can conclusively uncover the sensitive quantity Q(D) protected by

algorithm A.

Following the proof of Theorem A.6.1, the ex-post pDP can be directly calculated as

ϵ(o,D,D±z) =
|Q(D)−Q(D±z)||2o−Q(D)−Q(D±z)|

2σ2
.

Enter attacker z, who has auxiliary information: she knows that her own individual

data is not contained in D. After algorithm A is applied to D, attacker z receives output

o = 1 and is informed of her ex-post pDP ϵ(o,D,D+z). Since Q(D+z) = Q(D) + 1 is

known, attacker z can solve for Q(D) and obtain Q(D) = o− 0.5± σ2ϵ(o,D,D+z). With

probability 1, only one of the two possibilities is an integer1. Therefore, exposing ex-post

pDP in this case completely reveals Q(D).

Problem statement. The lesson of Example 2.2.4 is that we cannot directly reveal the

ex-post pDP losses without potentially nullifying the algorithm’s privacy benefits. How,

then, can we privately and accurately publish the ex-post pDP losses?

The goal of this paper is to develop an algorithm that publishes a function ϵ̃ : Z → R

whose output estimates the ex-post pDP loss to an individual z of releasing the output θ̂P

1Take Q(D) = 0 and o = 0.1 as an example, the two possibilities are 0 and −0.8.
11
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from the objective perturbation mechanism. Any individual (not just those whose data is

contained in the dataset) can plug her own data z into this function in order to receive a

high-probability bound on her ex-post pDP loss which does not depend directly on any

sensitive data except her own.

This requirement offers the same type of privacy protection as joint differential privacy

(Kearns et al., 2014), which relaxes the standard DP definition by allowing an algorithm’s

output to individual z to be sensitive only in her own private data. Our notion of privacy

is slightly more general in that it holds for individuals both in and out of the dataset.

The difference lies in how the algorithm’s output space is defined; whereas a joint DP

algorithm produces a fixed-length tuple partitioning the output to each individual in the

dataset, our algorithm outputs a function whose domain includes any data point z ∈ Z.

As a result, our methods are robust against collusion by arbitrary coalitions of adversaries,

allowing repeated queries by any group of individuals without invalidating the privacy

guarantees promised by the pDP losses.

2.2.3 Problem Setting

We consider a general family of problems known as private empirical risk minimization

(ERM), which aim to approximate the solution to an ERM problem while preserving

privacy. That is, we wish to privately solve optimization problems of the form

θ̂ = argmin
θ∈Θ

L(θ;D) + r(θ),

where r(θ) is a regularizer and L(θ;D) =
∑n

i=1 ℓ(θ; zi) a loss function. Throughout, we

assume that ℓ(θ; z) and r(θ) are convex and twice-differentiable with respect to θ. Dataset

D is given by D = {zi}ni=1, and zi = (xi, yi) for xi ∈ X ⊆ Rd and y ∈ Y ⊆ R, where

||x||2 ≤ 1 and |y| ≤ 1. We consider only unconstrained optimization over Θ = Rd.

12
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2.2.4 Objective Perturbation

The objective perturbation algorithm solves

θ̂P = argmin
θ∈Θ

L(θ;D) + r(θ) +
λ

2
||θ||22 + bT θ, (2.2.1)

where b ∼ N (0, σ2Id) and parameters σ, λ are chosen according to a desired (ϵ, δ)-DP

guarantee.

Algorithm 1 Release θ̂P via Obj-Pert (Kifer et al., 2012)
Input: Dataset D, noise parameter σ, regularization parameter λ, loss function

L(θ;D) =
∑

i ℓ(θ; zi), convex and twice-differentiable regularizer r(θ), convex set Θ.

Output: θ̂P , the minimizer of the perturbed objective.

Draw noise vector b ∼ N (0, σ2I).

Compute θ̂P according to (2.2.1).

Theorem 2.2.5 (Privacy guarantees of Algorithm 1 (Kifer et al., 2012)). Consider dataset

D = {zi}ni=1; loss function L(θ;D) =
∑

i ℓ(θ; zi); convex regularizer r(θ); and convex

domain Θ. Assume that ∇2ℓ(θ; zi) ≺ βId and ||∇ℓ(θ; zi)||2 ≤ ξ for all zi ∈ X × Y and

for all θ ∈ Θ. For λ ≥ 2β/ϵ1 and σ = ξ2(8 log(2/δ) + 4ϵ1)/ϵ
2
1, Algorithm 1 satisfies

(ϵ1, δ)-differential privacy.

The privacy guarantees stated in Theorem 2.2.5 apply even when θ is constrained to a

closed convex set, but for ease of our per-instance privacy analysis we will require Θ = Rd

from this point on.

13
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2.3 Privately Publishable pDP

2.3.1 pDP Analysis of Objective Perturbation

Our goal in this section is to derive the personalized privacy losses (under Defini-

tion 2.2.3) associated with observing the output θ̂P of objective perturbation. This ex-post

perspective is highly adaptive and also convenient for our analysis of Algorithm 1, whose

privacy parameters are a function of the data. Since we are analyzing the per-instance

privacy cost of releasing θ̂P , it makes perfect sense to condition the pDP loss on the

privatized output of the computation.

Our first technical result is a precise calculation of the ex-post pDP loss of objective

perturbation.

Theorem 2.3.1 (ex-post pDP loss of objective perturbation for a convex loss function).

Let J(θ;D) = L(θ;D) + r(θ) + λ
2
||θ||22 such that L(θ;D) + r(θ) =

∑
i ℓ(θ; zi) + r(θ) is

a convex and twice-differentiable regularized loss function, and sample b ∼ N (0, σ2Id).

Then for every privacy target z = (x, y), releasing θ̂P = argminθ∈Rd J(θ;D)+ bT θ satisfies

ϵ1(θ̂
P , D,D±z)-ex-post per-instance differential privacy with

ϵ1(θ̂
P , D,D±z) =

∣∣∣∣∣− log
d∏

j=1

(
1∓ µj

)
+

1

2σ2
||∇ℓ(θ̂P ; z)||22 ±

1

σ2
∇J(θ̂P ;D)T∇ℓ(θ̂P ; z)

∣∣∣∣∣ ,
where µj = λju

T
j

(
∇b(θ̂P ;D) ∓∑j−1

k=1 λkuku
T
k

)−1

uj according to the eigendecomposition

∇2ℓ(θ; z) =
∑d

k=1 λkuku
T
k .

Proof sketch. Following the analysis of Chaudhuri et al. (2011), we establish a bijection

between the mechanism output θ̂P and the noise vector b, and use a change-of-variables

defined by the Jacobian mapping between θ̂P and b in order to rewrite the log-probability

ratio in terms of the probability density function of b. First-order conditions then allow

14
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us to solve directly for the distribution of b. To calculate the first term of the above

equation, we use the eigendecomposition of the Hessian ∇2ℓ(θ̂P ; z) and recursively apply

the matrix determinant lemma. The rest of the proof is straightforward algebra. The full

proof is given in Appendix A.5.

The above expression holds for any convex loss function, but is a bit unwieldy. The

calculation becomes much simpler when we assume ℓ(·) to be a generalized linear loss

function, with inner-product form ℓ(θ; z) = f(xT θ; y). For the sake of interpretability, we

will defer further discussion of the ex-post pDP loss of objective perturbation until after

presenting the following corollary.

Corollary 2.3.2 (ex-post pDP loss of objective perturbation for GLMs). Let J(θ;D) =

L(θ;D) + r(θ) + λ
2
||θ||22 such that L(θ;D) =

∑
i ℓ(θ; zi) is a linear loss function, and

sample b ∼ N (0, σ2Id). Then for every privacy target z = (x, y), releasing θ̂P =

argminθ∈Rd J(θ;D) + bT θ satisfies ϵ1(θ̂
P , D,D±z)-ex-post per-instance differential privacy

with

ϵ(θ̂P , D,D±z) ≤
∣∣∣∣− log

(
1± f ′′(·)µ(x)

)
+

1

2σ2
||∇ℓ(θ̂P ; z)||22 ±

1

σ2
∇J(θ̂P ;D)T∇ℓ(θ̂P ; z)

∣∣∣∣ ,
where µ(x) = xT

(
∇2J(θ̂P ;D)

)−1
x, ∇ℓ(θ̂P ; z) = f ′(xT θ̂P ; y)x and f ′′(·) is shorthand for

f ′′(·) = f ′′(xT θ̂P ; y). The notation b(θ̂P ;D) means the realization of the noise vector b

for which the output of Algorithm 1 will be θ̂P when the input dataset is D.

Note that the quantity µ(x) in the first term is the generalized leverage score (Wei

et al., 1998), quantifying the influence of a data point on the model fit. The second and

third terms are a function of the gradient of the loss function and provide a complementary

measure of how well the fitted model predicts individual z’s data.
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Since the ex-post pDP is a function of θ̂P , we don’t even need to run Algorithm 1

to calculate ex-post pDP losses – we can plug in directly to Corollary 2.3.2 in order

to calculate the pDP distribution induced by any hypothetical θ̂P . For Figure 2.3.1,

we use a synthetic dataset D sampled from the unit ball with two linearly separable

classes separated by margin m = 0.4. Then we solve for θ̂ = argmin J(θ;D) with λ = 1

to minimize the logistic loss, and directly perturb the output by rotating it by angle

ω ∈ [0, π
12
, π
4
, π
2
, 3π

4
, π]. We then denote θ̂P := θ+ω to mean θ rotated counter-clockwise by

angle ω. The color scale is a function of the ex-post pDP loss of data point z.

Figure 2.3.1 illustrates how the mechanism output θ̂P affects the ex-post pDP distribu-

tion of objective perturbation for our logistic regression problem. For ω ∈ [0, π
12
], the data

points closest to the decision boundary have the highest ex-post pDP loss. These data

points have a strong effect on the learned model and would therefore have high leverage

scores, making the first term dominate. As the perturbation (and model error) increases,

the second and third terms dominate; the more badly a model predicts a data point, the

less protection this data point has.
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Hidden in this analysis are the δ’s of Theorem 2.2.5, which along with the choice of

σ and λ could affect which of the three terms is dominant. Fortunately, the probability

of outputting something like θ̂P = θ+π is astronomically low for any reasonable privacy

setting!

2.3.2 Releasing the pDP losses

Next we consider: after having released θ̂P and calculated the per-instance privacy

losses of doing so, how do we privately release these pDP losses? Our goal is to allow any

individual z ∈ Z (in the dataset or not) to know her privacy loss while preserving the

privacy of others in the dataset.

Observe that the expression from Theorem 2.3.1 depends on the dataset D only

through two quantities: the leverage score µ(x) = xT
(
∇2J(θ̂P ;D)

)−1
x and the inner

product ∇J(θ̂P ;D)T∇ℓ(θ̂P ; z). As a result, if we can find a data-independent bound for

these two terms, or privately release them with only a small additional privacy cost, then

we are done.

Data-independent bound of ex-post pDP losses

Below, we present a pair of lemmas which will allow us to find a high-probability,

data-independent bound on the ex-post pDP loss.

Theorem 2.3.3. Suppose ℓ(·) is a function with continuous second-order partial deriva-

tives. Then

∣∣∣∣∣− log
d∏

j=1

(
1∓ µj

)∣∣∣∣∣ ≤ −
d∑

j=1

log(1− λj

λ
),

where µj = λju
T
j

(
∇b(θ̂P ;D) ∓ ∑j−1

k=1 λkuku
T
k

)−1

uj according to the eigendecomposi-
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tion ∇2ℓ(θ̂P ; z) =
∑d

k=1 λkuku
T
k . When specializing to linear loss functions such that

ℓ(θ; z) = f(xT θ; y), λj = 0 for all j > 1 and the above bound can be simplified to

− log
(
1− f ′′(xT θ̂P ; y)||x||22/λ

)
.

Theorem 2.3.4. Let θ̂P be a random variable such that θ̂P = argmin
(
J(θ;D) + bT θ

)
as in (2.2.1), where b ∼ N (0, σ2Id) and ℓ(θ; z) is a convex and twice-differentiable loss

function. Then for z ∈ Z, the following holds with probability 1− ρ:

∣∣∣∇J(θ̂P ;D)T∇ℓ(θ̂P ; z)
∣∣∣ ≤ σ

√
2 log(2d/ρ)∥∇ℓ(θ̂P ; z)∥1.

For linear loss functions the bound can be substantially strengthened to

∣∣∣∇J(θ̂P ;D)T∇ℓ(θ̂P ; z)
∣∣∣ ≤ f ′(xT θ̂p; y)σ||x||2

√
2 log(2/ρ).

We make a few observations on the bounds. First, the general bound in Theorem 2.3.4

holds simultaneously for all z and it depends only logarithmically in dimension when the

features are sparse. Second, the bound for a linear loss function is dimension-free and

somewhat surprising because we are actually bounding an inner product of two dependent

random vectors (both depend on θ̂P ).

Finally, we remark that the bounds in this section are data-independent in that they

do not depend on the rest of the dataset beyond already released information θ̂P . It allows

us to reveal a pDP bound of each individual when she plugs in her own data without

costing any additional privacy budget!

2.3.3 The privacy report

For certain regimes, we may wish to consider privatizing the data-dependent quantities

of the ex-post pDP losses, at an additional privacy cost, as an alternative to using data-
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independent bounds. Of course, it only makes sense to do so if we can show that (a)

these data-dependent estimates are more accurate than the data-independent bounds; (b)

the overhead of releasing additional quantities (the additional privacy cost in terms of

both DP and pDP) is not too large; and (c) we can share the pDP losses of the private

reporting algorithm using data-independent bounds (so we do not have to recursively

publish such reports).

Full details are in the appendix. We show that by adding slightly more regularization

than required by Obj-Pert (i.e., making λ just a bit larger so that the minimum eigenvalue

of the Hessian H = ∇2J is above a certain threshold), we can find a multiplicative bound

that estimates µ(x) = xTH−1x uniformly for all x. We do so by adding noise to the

Hessian using a natural variant of "Analyze Gauss" (Dwork et al., 2014b), hence privately

releasing µP : X → R. See Algorithm 2 for details.

For brevity, we use the short-hands f ′(·) := f ′(xT θ̂P ; y) and f ′′(·) := f ′′(xT θ̂P ; y),

where ℓ(θ; z) = f(xT θ; y) for GLMs. F−1
N (0,1) is the inverse CDF of the standard normal

distribution, and F−1
GOE(d) is the inverse CDF of the largest eigenvalue of the Gausian

Orthogonal Ensemble (GOE) matrix, whose distribution is calculated exactly by Chiani

(2014). Algorithm 2 specializes to GLMs for clarity of presentation, but we could adapt it

to any convex loss function by replacing the GLM-specific bounds with the more general

ones.

We implicitly assume that the data analyst has already decided the privacy budgets

ϵ2 and ϵ3 for the data-dependent release of the gradient (third term of ϵ1(·)) and of the

Hessian (first term of ϵ1(·)). Inputs σ2 and σ3 are then calibrated to achieve (ϵ2, ρ)-DP

and (ϵ3, ρ)-DP, respectively.
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Algorithm 2 Privacy report for Obj-Pert on GLMs

Input: θ̂p ∈ Rd from Obj-Pert, noise parameter σ, σ2, σ3; regularization parameter

λ; Hessian H :=
∑

i∇2ℓ(θ̂p; zi) + λId, Boolean B ∈ [DATA-INDEP, DATA-DEP], failure

probability ρ

Require: λ ≥ 2σ3F
−1
λ1(GOE(d))(1− ρ/2)

Output: Reporting function ϵ̃ : (x, y), δ → R3
+

if B = DATA-INDEP then

Set ϵ2(·) := 0, ϵ3(·) := 0.

Set gP (z) := σ||f ′(·)x||2F−1
N (0,1)(1− ρ/2) and set µp(x) := ∥x∥2

λ
.

else if B = DATA-DEP then

Privately release ĝp by Algorithm 10 with parameter σ2.

Set ϵ2(·) according to Theorem A.3.4.

Set gP (z) := min

 f ′(·)[ĝP (z)]Tx+ σ2||f ′(·)x||2F−1
N (0,1)(1− ρ/2),

σ||f ′(·)x||2F−1
N (0,1)(1− ρ/2).

Privately release Ĥp by a variant of "Analyze Gauss"2with parameter σ3.

Set ϵ3(·) according to Statement 2 of Theorem 2.3.5.

Set µp(x) = 3
2
xT [Ĥp]−1x.

end if

Set ϵp1(z) :=
∣∣− log

(
1− f ′′(·)µp(x)

)∣∣+ ||f ′(·)x||22
2σ2 +

∣∣gP (z)

∣∣
σ2 .

Output the function ϵ̃(z) :=
(
ϵp1(z), ϵ2(z), ϵ3(z)

)
.

Note that the pDP functions ϵ2(·) and ϵ3(·) – which we use to report the additional

pDP losses of releasing the private estimates of the gradient and the Hessian – do not

depend on the dataset, and thus are not required to be separately released. The privately
2Instead of adding “analyze-gauss” noise, we sample from the Gaussian Orthogonal Ensemble (GOE)

distribution to obtain a random matrix (Appendix A.4). Under this model we show that τ is on the
order of O(

√
d(1 + log(C/ρ)3/2)).
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released pDP functions depend on θ̂P ; to reduce clutter, we omit this parameter in our

presentation of Algorithm 2.

Theorem 2.3.5. There is a universal constant C such that if λ > Cσ2

√
d(1+(log(1/ρ))2/3),

then Algorithm 2 satisfies the following properties

1. ( ξ2

2σ2
2
+ β2

4σ2
3
+
√

ξ2

σ2
2
+ β2

2σ3
3

√
2 log(1/δ), δ)-DP

2. (f
′(θ̂p;z)2∥x∥2

2σ2
2

+ f ′′(θ̂p;z)2∥x∥4
4σ2

3
+
√

f ′(θ̂p;z)2∥x∥2
σ2
2

+ f ′′(θ̂p;z)2∥x∥4
2σ2

3

√
2 log(1/δ), δ)-pDP for all

x ∈ X and 0 ≤ δ < 1.

3. For a fixed input z and D, and all ρ > 0, the privately released privacy report ϵ̃(·)

satisfies that ϵ1(θ̂p, D,D±z) ≤ ϵp1(z) ≤ 12ϵ1(θ̂
p, D,D±z) +

|f ′(·)|∥x∥
σ2

√
2 log(2/ρ) with

probability 1− 3ρ where ϵ1(·) is the expression from Theorem 2.3.1.

Accurate approximation with low privacy cost. This theorem shows that if we use

a slightly larger λ in ObjPert then we get an upper bound of the pDP for each individual

z up to a multiplicative and an additive factor. The multiplicative factor is coming from

a multiplicative approximation of − log
(
1± f ′′(·)µ(x)

)
and the additive error is due to

the additional noise added for releasing the third term 1
σ2∇J(θ̂P ;D)T∇ℓ(θ̂P ; z). The

additional DP and pDP losses for releasing H and g are comparable to the DP and pDP

losses in Objective Perturbation itself if σ2 ≍ σ3 ≍ σ.

Moreover, while using a large λ may appear to introduce additional bias, the required

choice of λ ≍
√
dσ is actually exactly the choice to obtain the minimax rate in general

convex private ERM (Bassily et al., 2014) (Figure 2.1 demonstrates the impact of increasing

λ).

Joint DP interpretation. Finally, we can also interpret our results from a joint-DP

perspective (Kearns et al., 2014). Given any realized output θ̂p ∈ Rd, the tuple of
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{ϵ̃(z1, θ̂p), ..., ϵ̃(z1, θ̂p)} satisfies joint DP with the same ϵ parameter as in Theorem 2.3.5.

This follows from the billboard lemma (Hsu et al., 2016).

2.4 Experiments

Here we evaluate our methods to release the pDP losses using logistic regression as a

case study. In Section 2.4.1, we demonstrate that the stronger regularization required

by Algorithm 2 does not affect the utility of the model. In Section 2.4.2 we show that

by carefully allocating the privacy budget of the data-dependent release, we can achieve

a more accurate estimate of the ex-post pDP losses of Algorithm 1 compared to the

data-independent release, with reasonable overhead (same overall DP budget and only a

slight uptick in the overall pDP losses).

Experiments with linear regression, with additional datasets and with alternative

privacy budget allocation schemes are included in the supplementary materials.

2.4.1 Stronger regularization does not worsen model utility

In this experiment we use a synthetic dataset generated by sampling xi, θ ∼ N (0, Id)

and normalizing each xi ∈ X so that ||xi||2 = 1. Then we rescale Y = Xθ to ensure

yi ∈ [0, 1] for each yi ∈ Y .

Algorithm 2 requires a larger λ than suggested by Theorem 2.2.5 in order to achieve

a uniform multiplicative approximation of µ(·). We investigate the effect of stronger

regularization on the utility of a private logistic regression model applied to a synthetic

dataset (n = 1000, d = 50), for several settings of ϵ1.

E.g., for logistic regression the objective perturbation mechanism requires λ ≥ 1
2ϵ

, and

so in Figure 2.1 a λ-inflation value of 10 means that we set λ = 5
ϵ
. For each λ-inflate

value c , we run Algorithm 1 with λ = cλObj-Pert. In particular, the star symbol marks
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the level of λ-inflation enforced by Algorithm 2.
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Figure 2.1: Utility of Obj-Pert with larger λ.

The experimental results summarized in Figure 2.1 show that the performance of the

private logistic regression model (as measured by the 0-1 loss) remains roughly constant

across varying scales of λ.

2.4.2 Comparison of data-independent and data-dependent bounds

The following experiments feature the credit card default dataset (n = 30000, d = 21)

(Yeh and Lien, 2009) from the UCI Machine Learning Repository. We privately train a

binary classifier to predict whether or not a credit card client z defaults on her payment

(Algorithm 1), and calculate the true pDP loss ϵ1(·) as well as the data-independent and

-dependent estimates ϵP1 (·) for each z in the training set (Algorithm 2).

The failure probabilities for both Algorithms 1 and 2 are set as δ = ρ = 10−6. Our

choices of σ and λ depend on ϵ1 and follows the requirements stated in Theorem 2.2.5

to achieve DP. We don’t use any additional regularization, i.e. r(θ) = 0. For the data-
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dependent release, the noise parameters σ2, σ3 are each calibrated according to the analytic

Gaussian mechanism of Balle and Wang (2018).
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((a)) Distribution of privately released ex-
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losses ϵP1 (·) and their true values ϵ1(·).

Figure 2.2: True and privately released pDP losses when the total privacy budget is ϵ = 1.

For the data-independent release we use the entire privacy budget on releasing θ̂P (ϵ1 = 1).

For the data-dependent release we reserve some of the privacy budget for releasing µP (·)

and gP (·) (ϵ1 = 0.2, ϵ2 = 0.7, ϵ3 = 0.1).

Using ϵ = 1 as a DP budget, we investigate how to allocate the privacy budget among

the components of the data-dependent release (ϵ = ϵ1 + ϵ2 + ϵ3) to achieve a favorable

comparison with the data-independent release which requires no additional privacy cost

(ϵ = ϵ1). The configuration described in Figure A.3, which skews the data-dependent

privacy budget toward more accurately releasing ϵP1 (·), was empirically chosen as an

example where the sum ϵP1 (·) + ϵ2(·) + ϵ3(·) of privately released pDP losses of the data-

dependent approach are comparable to the privately released ex-post pDP loss ϵP1 (·) of
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the data-independent approach. Note that ϵ2(·) and ϵ3(·) aren’t ex-post in the traditional

sense; however, we feel comfortable summing ϵP1 (·) + ϵ2(·) + ϵ3(·) since all three terms

are a function of θ̂P and individual z’s data. Note also that since the total budget ϵ

is the same for both the data-independent and -dependent releases, ϵ1 differs between

them. Therefore Figure 2.2(b) compares the accuracy of both approaches using the ratio

between ϵP1 (·) and ϵ1(·) rather than their raw values.

When including the additional privacy budget incurred by the data-dependent ap-

proach, the data-dependent approach loses its competitive edge over the data-independent

approach. Note that setting ϵ2 = ϵ3 = 0 would reduce the data-dependent approach to

the data-independent one. The real advantage of the data-dependent approach can be

best seen by allotting only a small portion of the overall privacy budget to Algorithm 1;

then we can release θ̂P and ϵP1 (·) with reasonable overhead while achieving tighter and

more accurate upper bounds for µP (·) and gP (·). By suffering a small additional ex-post

pDP loss (Figure 2.2(a)), we can release the ex-post pDP losses of Algorithm 1 much

more accurately (Figure 2.2(b)). The downside to this is that reducing ϵ1 reduces the

accuracy of the output θ̂P . Deciding how to allocate the privacy budget between ϵ1, ϵ2

and ϵ3 thus requires weighing the importance of an accurate θ̂P against the importance of

an accurate ϵP1 (·).

2.5 Conclusion

In this chapter we have derived the ex-post per-instance privacy losses of objective per-

turbation, and shown how to privately and accurately publish them. These data-dependent

privacy losses are significantly smaller than the worst-case DP bound, demonstrating that

the large values of ϵ commonly used in practice may offer stronger protection to most

data than is implied by the loose privacy guarantee.
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Publishing these data-dependent privacy losses, however, does not improve the privacy

guarantee based on the worst-case DP bound. In the next chapter we will introduce an

adaptive algorithm which uses data-dependent privacy losses in order to improve the

privacy-utility trade-off.
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Chapter 3

Generalized Propose-Test-Release

3.1 Introduction

The guarantees of differential privacy (DP) (Dwork et al., 2006) are based on worst-

case outcomes across all possible datasets. A common paradigm is therefore to add noise

scaled by the global sensitivity of a query f , which measures the maximum change in f

between any pair of neighboring datasets.

A given dataset X might have a local sensitivity ∆LS(X) that is much smaller than

the global sensitivity ∆GS, in which case we can hope to add a smaller amount of noise

(calibrated to the local rather than global sensitivity) while achieving the same privacy

guarantee. This must not be undertaken naïvely; the local sensitivity is a dataset-

dependent function and so calibrating noise to the local sensitivity could leak information

about the dataset (Nissim et al., 2007).

The “Propose-Test-Release” (PTR) framework (Dwork and Lei, 2009) resolves this

issue by introducing a test to privately check whether a proposed bound on the local

sensitivity is valid. Only if the test “passes” is the output released with noise calibrated

to the proposed bound on the local sensitivity.
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PTR is a powerful tool for designing data-adaptive DP algorithms, but it has several

limitations. First, it applies only to noise-adding mechanisms which calibrate noise

according to the sensitivity of a query. Second, the test in “Propose-Test-Release” is

computationally expensive for all but a few simple queries such as privately releasing the

median or mode. Third, while some existing works (Decarolis et al., 2020; Kasiviswanathan

et al., 2013; Liu et al., 2021) follow the adaptive approach of privately testing properties

of an input dataset for “niceness”1, there has not been a systematic recipe for discovering

which properties should be tested.

In this paper, we propose a generalization of PTR which addresses these limitations.

The centerpiece of our framework is a differentially private test on the data-dependent

privacy loss. This test does not directly consider the local sensitivity of a query and is

therefore not limited to additive noise mechanisms. Moreover, in many cases the test can

be efficiently implemented by privately releasing a high-probability upper bound, thus

avoiding the need to search an exponentially large space of datasets. Furthermore, the

derivation of the test itself often spells out exactly what properties of the input dataset

need to be checked, which streamlines the design of data-adaptive DP algorithms.

Our contributions are summarized as follows:

1. We propose a generalization of PTR which can handle algorithms beyond noise-

adding mechanisms. Generalized PTR allows us to plug in any data-dependent DP

analysis to construct a high-probability DP test that adapts to favorable properties

of the input dataset, without painstakingly designing each test from scratch.

2. We show that many existing examples of PTR and PTR-like methods can be unified

under the generalized PTR framework, sometimes resulting in a tighter analysis

(see an example of report-noisy-max in Section B.3.1).
1We refer to these as PTR-like algorithms.
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3. We demonstrate that one can publish a DP model through privately upper-bounding

a one-dimensional statistic — no matter how complex the output space of the

mechanism is. We apply this result to solve an open problem from PATE (Papernot

et al., 2017, 2018a).

4. Our results broaden the applicability of private hyperparameter tuning (Liu and

Talwar, 2019; Papernot and Steinke, 2021) in enabling joint selection of DP-specific

parameters (e.g., noise level) and native parameters of the algorithm (e.g., regular-

ization).

3.2 Related Work

Data-dependent DP algorithms. Privately calibrating noise to the local sensitivity

is a well-studied problem. One approach is to add noise calibrated to the smooth sensitivity

(Nissim et al., 2007), an upper bound on the local sensitivity which changes slowly between

neighboring datasets. An alternative to this — and the focus of our work — is Propose-

Test-Release (PTR) (Dwork and Lei, 2009), which works by calculating the distance

Dβ(X) to the nearest dataset to X whose local sensitivity violates a proposed bound

β. The PTR algorithm then adds noise to Dβ(X) before testing whether this privately

computed distance is large enough to permit releasing the output with noise calibrated to

β.

PTR spin-offs abound. Notable examples include stability-based methods (Thakurta

and Smith, 2013) (stable local sensitivity of 0 near the input data) and privately releasing

upper bounds of local sensitivity (Kasiviswanathan et al., 2013; Liu et al., 2021; Decarolis

et al., 2020). We refer readers to Chapter 3 of Vadhan (2017) for a concise summary of

these classic results. More recently, Wang et al. (2022) have provided Rényi DP bounds
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(Mironov, 2017) for PTR and demonstrated its applications to robust DP-SGD. Our work

(Section 3.6.2) also considers applications of PTR in data-adaptive private deep learning:

Instead of testing the local sensitivity of each gradient step as in Wang et al. (2022), our

PTR-based PATE algorithm tests the data-dependent privacy loss as a whole.

Liu et al. (2021) proposed the High-dimensional Propose-Test-Release (HPTR) frame-

work. HPTR provides a systematic way of solving DP statistical estimation problems by

using the exponential mechanism (EM) with carefully constructed scores based on certain

one-dimensional robust statistics, which have stable local sensitivity bounds. HPTR

focuses on designing data-adaptive DP mechanisms from scratch; our method, in contrast,

converts existing randomized algorithms (including EM and even some that do not satisfy

DP) into those with formal DP guarantees. Interestingly, our proposed method also

depends on a one-dimensional statistic of direct interest: the data-dependent privacy loss.

Data-dependent DP losses. The flip side of data-dependent DP algorithms is the

study of data-dependent DP losses (Papernot et al., 2018a; Soria-Comas et al., 2017;

Wang, 2017), which fix the randomized algorithm but parameterize the resulting privacy

loss by the specific input dataset. For example: In the simple mechanism that adds

Laplace noise with parameter b, data-dependent DP losses are ϵ(X) = ∆LS(X)/b. The

data-dependent DP losses ϵ(X) are often much smaller than the DP loss ϵ, but they

themselves depend on the data and thus may reveal sensitive information; algorithms

satisfying a data-dependent privacy guarantee are not formally DP with guarantees any

smaller than that of the worst-case. Existing work has considered privately publishing

these data-dependent privacy losses (Papernot et al., 2018a; Redberg and Wang, 2021),

but notice that privately publishing these losses does not improve the DP parameter of

the given algorithm. Part of our contribution is to resolve this conundrum by showing

that a simple post-processing step of the privately released upper bound of ϵ(X) gives a

formal DP algorithm.
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Private hyperparameter tuning. Our work has a nice connection with private

hyperparameter tuning. Prior work (Liu and Talwar, 2019; Papernot and Steinke, 2021)

requires each candidate configuration to be released with the same DP (or Rényi DP)

parameter set. Another hidden assumption is that the parameters must not be privacy-

correlated (i.e., parameter choice will not change the privacy guarantee). Otherwise we

need to use the largest DP bound across all candidates. For example, Liu and Talwar

(2019) show that if each mechanism (instantiated with one group of hyperparameters) is

(ϵ, 0)-DP, then running a random number of mechanisms and reporting the best option

satisfies (3ϵ, 0)-DP. Our work directly generalizes the above results by (1) considering a

wide range of hyperparameters, either privacy-correlated or not; and (2) requiring only

that individual candidates have a testable data-dependent DP.

3.3 Preliminaries

Datasets X,X ′ ∈ X are neighbors if they differ by no more than one datapoint; we

say X ≃ X ′ if d(X,X ′) ≤ 1.

We measure the distance d(·) between same-sized datasets X = {xi}ni=1 and X̃ =

{x̃i}ni=1 as the number of coordinates that differ between them:

d(X, X̃) = #{i ∈ [n] : xi ̸= x̃i}.

We use || · || to denote the radius of the smallest Euclidean ball that contains the input

set, e.g. ||X || = supx∈X ||x||.

For mechanisms with continuous output space, the probability density ofM(X) at y

is denoted Pr[M(X) = y].

Definition 3.3.1 (Differential privacy (Dwork et al., 2006)). Fix ϵ, δ ≥ 0. A randomized
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algorithmM : X → R satisfies (ϵ, δ)-DP if for all neighboring datasets X ≃ X ′ and for

all measurable sets S ⊆ R,

Pr
[
M(X) ∈ S

]
≤ eϵPr

[
M(X ′) ∈ S

]
+ δ.

Definition 3.3.2 (Sensitivity). The global ℓ∗-sensitivity of a function f is defined as

∆GS = max
X,X′:X≃X′

||f(X)− f(X ′)||∗

and its local sensitivity at dataset X is

∆LS(X) = max
X≃X′

||f(X)− f(X ′)||∗.

Theorem 3.3.3 (Noise-adding mechanisms (Dwork et al., 2006; Balle and Wang, 2018)).

Consider a real-valued function f : X → R with global ℓ1-sensitivity ∆1 and global

ℓ2-sensitivity ∆2.

The Laplace mechanism M(X) = f(X) + Lap (∆1/ϵ) satisfies ϵ-differential privacy.

The Gaussian mechanism M(X) = f(X) + N (0, σ2) satisfies (ϵ, δ(ϵ))-differential

privacy for all ϵ ≥ 0 with δ(ϵ) = Φ(∆2

2σ
− ϵσ

∆2
)− eϵΦ(−∆2

2σ
+ ϵσ

∆2
), where Φ is the cumulative

density function of a standard normal distribution.

3.3.1 Propose-Test-Release

Calibrating the noise level to the local sensitivity ∆LS(X) of a function would allow us

to add less noise and therefore achieve higher utility for releasing private queries. However,

the local sensitivity is a data-dependent function and naïvely calibrating the noise level

to ∆LS(X) will not satisfy DP.
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PTR resolves this issue in a three-step procedure: propose a bound on the local

sensitivity, privately test that the bound is valid (with high probability), and if so calibrate

noise according to the bound and release the output.

PTR privately computes the distance Dβ(X) between the input dataset X and the

nearest dataset X ′′ whose local sensitivity exceeds the proposed bound β:

Dβ(X) = min
X′′
{d(X,X ′′) : ∆LS(X

′′) > β}.

Algorithm 3 Propose-Test-Release (Dwork and Lei, 2009)
1: Input: Dataset X; privacy parameters ϵ, δ; proposed bound β; query function

f : X → R.

2: if Dβ(X) + Lap
(
1
ϵ

)
≤ log(1/δ)

ϵ
then output ⊥,

3: else release f(X) + Lap
(
β
ϵ

)
.

Theorem 3.3.4 (PTR (Dwork and Lei, 2009)). Algorithm 3 satisfies (2ϵ, δ)-DP.

Rather than proposing an arbitrary bound β on ∆LS(X), one can also privately release

an upper bound of the local sensitivity and calibrate noise according to this upper bound.

This was used for node DP in graph statistics (Kasiviswanathan et al., 2013), and for

fitting topic models using spectral methods (Decarolis et al., 2020).

3.4 Related Work

Data-dependent DP algorithms. Privately calibrating noise to the local sensitivity

is a well-studied problem. One approach is to add noise calibrated to the smooth sensitivity

(Nissim et al., 2007), an upper bound on the local sensitivity which changes slowly between
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neighboring datasets. An alternative to this — and the focus of our work — is Propose-

Test-Release (PTR) (Dwork and Lei, 2009), which works by calculating the distance

Dβ(X) to the nearest dataset to X whose local sensitivity violates a proposed bound

β. The PTR algorithm then adds noise to Dβ(X) before testing whether this privately

computed distance is large enough to permit releasing the output with noise calibrated to

β.

PTR spin-offs abound. Notable examples include stability-based methods (Thakurta

and Smith, 2013) (stable local sensitivity of 0 near the input data) and privately releasing

upper bounds of local sensitivity (Kasiviswanathan et al., 2013; Liu et al., 2021; Decarolis

et al., 2020). We refer readers to Chapter 3 of Vadhan (2017) for a concise summary of

these classic results. More recently, Wang et al. (2022) have provided Rényi DP bounds

(Mironov, 2017) for PTR and demonstrated its applications to robust DP-SGD. Our work

(Section 3.6.2) also considers applications of PTR in data-adaptive private deep learning:

Instead of testing the local sensitivity of each gradient step as in Wang et al. (2022), our

PTR-based PATE algorithm tests the data-dependent privacy loss as a whole.

Liu et al. (2021) proposed the High-dimensional Propose-Test-Release (HPTR) frame-

work. HPTR provides a systematic way of solving DP statistical estimation problems by

using the exponential mechanism (EM) with carefully constructed scores based on certain

one-dimensional robust statistics, which have stable local sensitivity bounds. HPTR

focuses on designing data-adaptive DP mechanisms from scratch; our method, in contrast,

converts existing randomized algorithms (including EM and even some that do not satisfy

DP) into those with formal DP guarantees. Interestingly, our proposed method also

depends on a one-dimensional statistic of direct interest: the data-dependent privacy loss.

Data-dependent DP losses. The flip side of data-dependent DP algorithms is the

study of data-dependent DP losses (Papernot et al., 2018a; Soria-Comas et al., 2017;

Wang, 2017), which fix the randomized algorithm but parameterize the resulting privacy
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loss by the specific input dataset. For example: In the simple mechanism that adds

Laplace noise with parameter b, data-dependent DP losses are ϵ(X) = ∆LS(X)/b. The

data-dependent DP losses ϵ(X) are often much smaller than the DP loss ϵ, but they

themselves depend on the data and thus may reveal sensitive information; algorithms

satisfying a data-dependent privacy guarantee are not formally DP with guarantees any

smaller than that of the worst-case. Existing work has considered privately publishing

these data-dependent privacy losses (Papernot et al., 2018a; Redberg and Wang, 2021),

but notice that privately publishing these losses does not improve the DP parameter of

the given algorithm. Part of our contribution is to resolve this conundrum by showing

that a simple post-processing step of the privately released upper bound of ϵ(X) gives a

formal DP algorithm.

Private hyperparameter tuning. Our work has a nice connection with private

hyperparameter tuning. Prior work (Liu and Talwar, 2019; Papernot and Steinke, 2021)

requires each candidate configuration to be released with the same DP (or Rényi DP)

parameter set. Another hidden assumption is that the parameters must not be privacy-

correlated (i.e., parameter choice will not change the privacy guarantee). Otherwise we

need to use the largest DP bound across all candidates. For example, Liu and Talwar

(2019) show that if each mechanism (instantiated with one group of hyperparameters) is

(ϵ, 0)-DP, then running a random number of mechanisms and reporting the best option

satisfies (3ϵ, 0)-DP. Our work directly generalizes the above results by (1) considering a

wide range of hyperparameters, either privacy-correlated or not; and (2) requiring only

that individual candidates have a testable data-dependent DP.
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3.5 Generalized PTR

This section introduces the generalized PTR framework. We first formalize the notion

of data-dependent differential privacy that conditions on an input dataset X.

Definition 3.5.1 (Data-dependent privacy). Suppose we have δ > 0 and a function

ϵ : X → R+. We say that mechanism M satisfies (ϵ(X), δ) data-dependent DP2 for

dataset X if for all possible output sets S and neighboring datasets X ′,

Pr
[
M(X) ∈ S

]
≤ eϵ(X)Pr

[
M(X ′) ∈ S

]
+ δ,

Pr
[
M(X ′) ∈ S

]
≤ eϵ(X)Pr

[
M(X) ∈ S

]
+ δ.

In generalized PTR, we propose a value (or set of values) ϕ with which to parameterize

mechanism Mϕ. For instance, in Example 3.5.5 we might propose ϕ = (γ, λ) as a

parameter set that includes the noise scale and regularization strength. For a given δ, we

then say that mechanismMϕ satisfies ϵϕ(X) data-dependent DP for dataset X.

The following example illustrates how to derive the data-dependent DP for a familiar

friend – the Laplace mechanism.

Example 3.5.2. (Data-dependent DP of Laplace Mechanism.) Given a function f :

X → R, we will define

Mϕ(X) = f(X) + Lap (ϕ) .

We then have

log
Pr[Mϕ(X) = y]

Pr[Mϕ(X ′) = y]
≤ |f(X)− f(X ′)|

ϕ
.

Maximizing over all possible outputs y yields an equality between the two expressions above.
2We will sometimes write that M(X) satisfies ϵ(X) data-dependent DP w.r.t. δ.
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Using Definition 3.5.1,

ϵϕ(X) = max
X′:X≃X′

|f(X)− f(X ′)|
ϕ

=
∆LS(X)

ϕ
.

Maximizing ϵϕ(X) over X recovers the standard DP guarantee of running M with

parameter ϕ.

Algorithm 4 distills the generalized PTR framework into a simple procedure: we run

mechanismM with proposed parameter ϕ only if the test T “passes”.

Let’s suppose that our privacy budget for mechanism Mϕ is (ϵ, δ); that our test

T satisfies (ϵ̂, δ̂)-DP; and that T has a “false positive” rate δ′, meaning T passes an

insufficient proposal ϕ (whereMϕ exceeds its privacy budget) with probability at most δ′.

Theorem 3.5.3 states the privacy guarantee of generalized PTR under these assumptions.

Algorithm 4 Generalized Propose-Test-Release

1: Input: Dataset X; mechanism Mϕ : X → R and its privacy budget ϵ, δ; (ϵ̂, δ̂)-DP

test T ; false positive rate ≤ δ′; data-dependent DP function ϵϕ(·) w.r.t. δ.

2: if not T (X) then output ⊥,

3: else release θ =Mϕ(X).

Theorem 3.5.3 (Privacy guarantee of generalized PTR). Consider a proposal ϕ and

a data-dependent DP function ϵϕ(X) w.r.t. δ. Suppose that we have an (ϵ̂, δ̂)-DP test

T : X → {0, 1} such that when ϵϕ(X) > ϵ,

T (X) =


0 with probability 1− δ′,

1 with probability δ′.
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Then Algorithm 4 satisfies (ϵ+ ϵ̂, δ + δ̂ + δ′)-DP.

Proof sketch. We can split the possible input datasets X into two main cases based on

the data-dependent DP for a given δ: ϵϕ(X) > ϵ and ϵϕ(X) ≤ ϵ. At a high level, we can

analyze both cases using the composition property of DP (that ϵ’s and δ’s “add up”) and

then combine them by taking an upper bound of the maximum value of the ϵ’s and δ’s

between the two cases.

By the “false positive” assumption on the test T , the first case can be viewed as a

composition of an (ϵ̂, δ̂)-DP mechanism and a (0, δ′)-DP mechanism. The second case,

when the data-dependent DP is at most ϵ, is a composition of an (ϵ̂, δ̂)-DP mechanism

and an (ϵ, δ)-DP mechanism.

Full details of the proof are provided in the appendix.

Remark 3.5.4. The appendix (Section B.2.4) also includes an RDP (Mironov, 2017)

analysis of Algorithm 4, where we demonstrate that by assuming a data-independent

RDP bound ofMϕ, it is possible to replace DP budgets and tests from Algorithm 4 with

their RDP counterparts. The overall RDP guarantee can then be amplified by the false

positive rate δ′.

Generalized PTR is a strict generalization of Propose-Test-Release. For some function

f , defineMϕ and T as follows:

Mϕ(X) = f(X) + Lap(ϕ);

T (X) =


0 if Dβ(X) + Lap

(
1
ϵ

)
> log(1/δ)

ϵ
,

1 otherwise.

Notice that our choice of parameterization is now ϕ = β
ϵ
, where ϕ is the scale of the
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Laplace noise. In other words, we know from Example 3.5.2 that ϵϕ(X) > ϵ exactly when

∆LS(X) > β.

For noise-adding mechanisms such as the Laplace mechanism, the sensitivity is

proportional to the privacy loss in both the global and local sense: ∆GS ∝ ϵ and

∆LS(X) ∝ ϵ(X). Therefore for these mechanisms the only difference between privately

testing the local sensitivity (Algorithm 3) and privately testing the data-dependent DP

(Theorem 3.5.3) is a change of parameterization.

3.5.1 Limitations of local sensitivity

Why do we want to generalize PTR beyond noise-adding mechanisms? Compared

to classic PTR, the generalized PTR framework allows us to be more flexible in both

the type of test conducted and also the type of mechanism whose output we wish to

release. For many mechanisms, the local sensitivity either does not exist or is only defined

for specific data-dependent quantities (e.g., the sensitivity of the score function in the

exponential mechanism) rather than the mechanism’s output.

The following example illustrates this issue.

Example 3.5.5 (Private posterior sampling). LetM : X ×Y → Θ be a private posterior

sampling mechanism (Minami et al., 2016; Wang et al., 2015; Gopi et al., 2022) for

approximately minimizing FX(θ).

M samples θ ∼ P (θ) ∝ e−γ(FX(θ)+λ/2||θ||22) with parameters γ, λ. Note that γ, λ cannot

be appropriately chosen for this mechanism to satisfy DP without calculating the sensitivity

of argminFX(θ), which in many cases (e.g., logistic regression) lacks a closed-form

solution. In fact, the global and local sensitivity of the minimizer is unbounded even in

linear regression problems, i.e when FX(θ) =
1
2
||y −Xθ||22.

Output perturbation algorithms do work for the above problem when we regularize,
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but they are known to be suboptimal in theory and in practice (Chaudhuri et al., 2011).

In Section 3.6.1 we demonstrate how to apply generalized PTR to achieve a data-adaptive

posterior sampling mechanism.

Even in the cases of noise-adding mechanisms where PTR seems to be applicable,

it does not lead to a tight privacy guarantee. Specifically, by an example of privacy

amplification by post-processing (Example B.3.1 in the appendix), we demonstrate that

the local sensitivity does not capture all sufficient statistics for data-dependent privacy

analysis and thus is loose.

3.5.2 Which ϕ to propose

A limitation of generalized PTR (inherited from its predecessor) is that one needs to

“propose” a good guess of parameter ϕ. Take the example of ϕ being the noise level in a

noise-adding mechanism. Choosing too small a ϕ will result in a useless output ⊥, while

choosing too large a ϕ will add more noise than necessary. Finding this ‘Goldilocks’ ϕ

might require trying out many different possibilities – each of which will consume privacy

budget.

This section introduces a method to jointly tune privacy parameters (e.g., noise scale)

along with parameters related only to the utility of an algorithm (e.g., learning rate or

batch size in stochastic gradient descent) — while avoiding the ⊥ output.

Algorithm 5 takes a list of parameters as input, runs generalized PTR with each of

the parameters, and returns the output with the best utility. We show that the privacy

guarantee with respect to ϵ is independent of the number of ϕ that we try.

Formally, let ϕ1, ..., ϕk be a set of hyperparameters and θ̃i ∈ {⊥,Range(M)} the

output of running generalized PTR with ϕi on dataset X. Let Xval be a public validation

set and q(θ̃i) be the score of evaluating θ̃i with Xval (e.g., validation accuracy). The goal
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is to select a pair (θ̃i, ϕi) such that DP model θ̃i maximizes the validation score.

The generalized PTR framework with privacy calibration is described in Algorithm 5;

its privacy guarantee is an application of Liu and Talwar (2019).

Algorithm 5 PTR with hyperparameter selection
1: Input: Privacy budget per PTR algorithm (ϵ∗, δ∗), cut-off T , parameters ϕ1:k, flipping

probability τ and validation score function q(·).

2: Initialize the set S = ∅.

3: Draw G from a geometric distribution Dτ and let T̂ = min(T,G).

4: for i = 1 ,..., T̂ do

5: pick a random ϕi from ϕ1:k.

6: evaluate ϕi: (θ̃i, q(θ̃i))← Algorithm 4(ϕi, (ϵ
∗, δ∗)).

7: S ← S ∪ {θ̃i, q(θ̃i)}.

8: end for

9: Output the highest scored candidate from S.

Theorem 3.5.6 ( Theorem 3.4 (Liu and Talwar, 2019) ). Fix any τ ∈ [0, 1], δ2 > 0 and

let T = 1
τ
log 1

δ2
. If each oracle access to Algorithm 4 is (ϵ∗, δ∗)-DP, then Algorithm 5 is

(3ϵ∗ + 3
√
2δ∗,
√
2δ∗T + δ2)-DP.

The theorem implies that one can try a random number of ϕ while paying a constant

ϵ. In practice, we can roughly set τ = 1
10k

so that the algorithm is likely to test all k

parameters. We emphasize that the privacy and the utility guarantee (stated in the

appendix) is not our contribution. But the idea of applying generalized PTR to enforce a

uniform DP guarantee over all choices of parameters with a data-dependent analysis is

new.

In the appendix (Section B.2.3), we also show how to avoid hyperparameter selection

by directly tuning (rather than proposing) ϕ using a uniform bound of ϵϕ(X). We use
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this technique to tune γ in Example 3.6.2.

3.5.3 Construction of the DP test

Classic PTR uses the Laplace mechanism to construct a differentially private upper

bound of Dβ(X), the distance from input dataset X to the closest dataset whose local

sensitivity exceeds the proposed bound β. The tail bound of the Laplace distribution

then ensures that if Dβ(X) = 0 (that is, if ∆LS(X) > β), then the output will be released

with only a small probability δ.

The following theorem shows that we could instead use a differentially private upper

bound of the data-dependent DP ϵϕ(X) in order to test whether to run the mechanism

Mϕ.

Theorem 3.5.7 (Generalized PTR with private upper bound). Suppose we have a

differentially private upper bound of ϵϕ(X) w.r.t. δ such that with probability at least

1− δ′, ϵPϕ (X) > ϵϕ(X). Further suppose we have an (ϵ̂, δ̂)-DP test T such that

T (X) =


1 if ϵPϕ (X) < ϵ,

0 otherwise.

Then Algorithm 4 is (ϵ+ ϵ̂, δ + δ̂ + δ′)-DP.

In Section 3.6.2, we demonstrate how to upper-bound the data-dependent DP through

a modification of the smooth sensitivity framework applied on ϵϕ(X). In Section 3.6.1 we

provide a direct application of Theorem 3.5.7 with private linear regression by making

use of the per-instance DP technique (Wang, 2017).

The applications in Section 3.6 are illustrative of two distinct approaches to construct-

ing the DP test for generalized PTR:
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1. Private sufficient statistics release (used in the private linear regression example

of Section 3.6.1) specifies the data-dependent DP as a function of the dataset and

privately releases each data-dependent component.

2. The second approach (used in the PATE example of Section 3.6.2) uses the smooth

sensitivity framework to privately release the data-dependent DP as a whole, and

then construct a high-confidence test using the Gaussian mechanism.

These two flavors cover most of the scenarios arising in data-adaptive analysis. For

example, in the appendix we demonstrate the merits of generalized PTR in handling

data-adaptive private generalized linear models (GLMs) using private sufficient statistics

release. Moreover, sufficient statistics release together with our private hyperparameter

tuning (Algorithm 5) can be used to construct data-adaptive extensions of DP-PCA and

Sparse-DP-ERM (see details in the future work section).

3.6 Applications

In this section, we put into action our approaches to construct the DP test and provide

applications in private linear regression and PATE.

3.6.1 Private Linear Regression

Theorem 3.6.1 ((Wang, 2017)). For input data X ∈ X and Y ∈ Y, define the following:

• λmin(X) denotes the smallest eigenvalue of XTX;

• ||θ∗λ|| is the magnitude of the solution θ∗λ = (XTX + λI)−1XTY ;

• and L(X, Y ) := ||X ||
(
||X || ||θ∗λ||+ ||Y||

)
is the local Lipschitz constant, denoted L

in brief.
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Figure 3.1: Differentially private linear regression algorithms on UCI datasets. y-axis
reports the MSE error with confidence intervals. ϵ is evaluated with δ = 1e−6.

For brevity, denote λ∗ = λ+ λmin(X). The algorithm used in Example 3.5.5 with proposal

ϕ = (λ, γ) obeys (ϵϕ(Z), δ) data-dependent DP for each dataset Z = (X, Y ) with ϵϕ(Z)

equal to √
γL2 log(2/δ)

λ∗ +
γL2

2(λ∗ + ||X ||2) +
1 + log(2/δ)||X ||2

2λ∗ .

Notice that ϵϕ(Z) is a function of the data-dependent quantities λmin(X) and L (which

is itself a function of ||θ∗λ||). Could we privately release ϵϕ(Z) and tune the privacy

parameters ϕ = (λ, γ) based on the sanitized data-dependent DP? Unfortunately in this

case, ||θ∗λ|| is a complicated function of λ and it is not clear how to choose an optimal λ.

The calibration of γ, however, is fairly straightforward from the expression for ϵϕ(Z)

given in Theorem 3.6.1. We can apply the generalized PTR framework to the private

posterior sampling problem described in Example 3.5.5 by proposing ϕ = λ as the

regularization parameter; releasing a high-probability upper bound ϵPλ (Z) of the data-

dependent DP, as a function of γ; and tuning the noise scale γ to achieve the desired

utility under the constraint ϵPλ (Z) ≤ ϵ.

Example 3.6.2 (OPS for linear regression with PTR). Consider the posterior sampling
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mechanism described in Example 3.5.5 and the expression ϵϕ(Z) given in Theorem 3.6.1.

Suppose we have a quality score q(·) that measures the utility of the input parameter, e.g.

q(γ) = γ for the inverse noise scale. We can apply generalized PTR as follows.

• Given a proposed value ϕ = λ, privately release λmin(X) and L with combined privacy

budget (ϵ̂, δ̂) in order to obtain ϵPλ (Z) such that with probability 1−δ′, ϵPλ (Z) ≤ ϵλ(Z).

• Calibrate γ∗ = supq(γ){γ | ϵPλ (Z) ≤ ϵ}.

• Output θ ∼ e−
γ∗

2 (||Y−Xθ||22+λ||θ||22) if γ∗ exists; else output ⊥.

In the appendix, we provide full details of the above algorithm and show that it

satisfies (ϵ+ ϵ̂, δ + δ̂ + δ′)-DP.

The main idea of the above algorithm boils down to privately releasing all data-

dependent quantities in data-dependent DP, constructing high-probability confidence

intervals of these quantities, and then deciding whether to run the mechanismM with

the proposed parameters. In Example 3.5.5, we need only propose λ as we can tune γ

directly based on ϵPλ (Z).

Remark 3.6.3. Tuning λ is even more troublesome for generalized linear models (GLMs)

beyond linear regression. The data-dependent DP there involves a local strong-convexity

parameter that is a complex function of the regularizer λ and for which we only have

zeroth-order access. In the appendix, we demonstrate how to apply generalized PTR to

provide a generic solution to a family of private GLMs where the link function satisfies a

self-concordance assumption.

We next apply Algorithm 5 for Example 3.6.2 with UCI regression datasets. Standard

z-scoring is applied and each data point is normalized with a Euclidean norm of 1. We

consider (60%, 10%, 30%) splits for the train, validation and test sets.

Baselines
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• Output Perturbation (Outpert) (Chaudhuri et al., 2011): θ = (XTX + λI)−1XTy.

Release θ̂ = θ + b with an appropriate λ, where b is a Gaussian random vector.

• Posterior sampling (OPS). Sample θ̂ ∼ P (θ) ∝ e−γ(F (θ)+0.5λ||θ||2) with parameters

γ, λ.

• Adaptive posterior sampling (AdaOPS) (Wang, 2018). Run OPS with (λ, γ) chosen

adaptively according to the dataset.

Outpert and OPS serve as two non-adaptive baselines. In particular, we consider OPS-

Balanced (Wang, 2018), which chooses λ to minimize a data-independent upper bound

of empirical risk and dominates other OPS variants. AdaOPS is one state-of-the-art

algorithm for adaptive private regression, which automatically chooses λ by minimizing

an upper bound of the data-dependent empirical risk.

We implement OPS-PTR as follows: propose a list of λ through grid search (we choose

k = 30 and λ ranges from [2.5, 2.510] on a logarithmic scale); instantiate Algorithm 5

with τ = 0.05/k, T = 1
τ
log(1/δ2) and δ2 = 1/2δ; calibrate the per-PTR privacy budget

(ϵ∗, δ∗) according to Theorem 3.5.6; set ϵ = ϵ̂ = 0.5ϵ∗ and δ = 1/6δ∗, δ′ = 1/2δ∗, δ̂ = 1/3δ∗;

calibrate γ to meet the privacy requirement for each λ; sample θ̂ using (λ, γ) and return

the one with the best validation accuracy.

Figure 3.1 demonstrates how the MSE error of the linear regression algorithms varies

with the privacy budget ϵ. OutPert suffers from the large global sensitivity of output θ.

OPS performs well but does not benefit from the data-dependent quantities. AdaOPS

is able to adaptively choose (λ, γ) based on the dataset, but suffers from the estimation

error of the data-dependent empirical risk. On the other hand, OPS-PTR selects a (λ, γ)

pair that minimizes the empirical error on the validation set directly, and the privacy

parameter γ adapts to the dataset thus achieving the best result.
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3.6.2 PATE

In this section, we apply generalized PTR to solve an open problem from Private

Aggregation of Teacher Ensembles (PATE) (Papernot et al., 2017, 2018a) — privately

publishing the entire model through sanitizing the data-dependent DP losses. Our

algorithm uses of smooth sensitivity (Nissim et al., 2007) and the Gaussian mechanism

to construct a high-probability test of the data-dependent DP. Data-dependent DP is

one-dimensional, enabling efficient computation under the smooth sensitivity framework.

This approach is thus generally applicable for private data-adaptive analyses beyond

PATE.

PATE is a knowledge transfer framework for model-agnostic private learning. In this

framework, an ensemble of teacher models is trained on the disjoint private data and

uses the teachers’ aggregated consensus answers to supervise the training of a “student”

model agnostic to the underlying machine-learning algorithms. By publishing only the

aggregated answers and by the careful analysis of the “consensus”, PATE has become a

practical technique in recent private model training.

The tight privacy guarantee of PATE heavily relies on a delicate data-dependent DP

analysis, for which the authors of PATE use the smooth sensitivity framework to privately

publish the data-dependent privacy cost. However, it remains an open problem to show

that the released model is DP under data-dependent analysis. Our generalized PTR

resolves this gap by carefully testing a private upper bound of the data-dependent privacy

cost. Our algorithm is fully described in Algorithm 6, where the modification over the

original PATE framework is highlighted in blue.

Algorithm 6 takes the input of privacy budget (ϵ′, ϵ̂, δ), unlabeled public data x1:T

and K teachers’ predictions on these data. The parameter ϵ denotes the privacy cost of

publishing the data-dependent DP and ϵ′ is the predefined privacy budget for testing.
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Algorithm 6 PATE with generalized PTR
1: Input: Unlabeled public data x1:T , aggregated teachers prediction n(·), privacy

parameter ϵ̂, ϵ′, δ, noisy parameter σ1.

2: Set α = 2 log(2/δ)
ϵ̂

+ 1, σs = σ2 =
√

3α+2
ϵ̂

, δ2 = δ/2, smoothness parameter β = 0.2
α

.
3: Compute noisy labels: yi

p ← argmaxj∈[C]{nj(xi) +N (0, σ2
1)} for all i ∈ [1 : T ].

4: σ1(α,X)← data-dependent RDP at the α-th order.
5: SSβ(X)← the smooth sensitivity of upper

σ1
(α,X).

6: Privately release µ := log(SSβ(X)) + β · N (0, σ2
2) +

√
2 log(2/δ2) · σ2 · β

7: upper
σ1

(α)← an upper bound of data-dependent RDP through Lemma 3.6.5.
8: ϵσ1 ← DP guarantee converted from upper

σ1
(α).

9: If ϵ′ ≥ ϵσ1 return a student model trained using (x1:T ; y
p
1:T ).

10: Else return ⊥.

nj(xi) denotes the the number of teachers that agree on label j for xi and C denotes

the number of classes. The goal is to privately release a list of plurality outcomes —

argmaxj∈[C]nj(xi) for i ∈ [T ] — and use these outcomes to supervise the training of a

“student” model in the public domain. The parameter σ1 denotes the noise scale for the

vote count.

In their privacy analysis, Papernot et al. (2018a) compute the data-dependent σ1(α,X)

of labeling the entire group of student queries. σ1(α,X) can be orders of magnitude

smaller than its data-independent version if there is a strong agreement among teachers.

Note that σ1(α,X) is a function of the RDP order α and the dataset X, analogous to our

Definition 3.5.1 but subject to RDP (Mironov, 2017).

Theorem 3.6.4 ((Papernot et al., 2018a)). If the top three vote counts of xi are n1 >

n2 > n3 and n1−n2, n2−n3 ≫ σ1, then the data-dependent RDP of releasing argmaxj{nj+

N (0, σ2
1)} satisfies (α, exp{−2α/σ2

1}/α)-RDP and the data-independent RDP (using the

Gaussian mechanism) satisfies (α, α
σ2
1
)-RDP.

However, σ1(α,X) is data-dependent and thus cannot be revealed. The authors

therefore privately publish the data-dependent RDP using the smooth sensitivity frame-

work (Nissim et al., 2007). The smooth sensitivity calculates a smooth upper bound
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on the local sensitivity of σ1(α,X), denoted as SSβ(X), such that SSβ(X) ≤ eβSSβ(X
′)

for any neighboring dataset X and X ′. By adding Gaussian noise scaled by the smooth

sensitivity (i.e., releasing ϵσ1(α,X) + SSβ(X) · N (0, σ2
s)), the privacy cost can be safely

published.

Unlike most noise-adding mechanisms, the standard deviation σs cannot be published

since SSβ(X) is a data-dependent quantity. Moreover, this approach fails to provide a

valid privacy guarantee of the noisy labels obtained through the PATE algorithm, as

the published privacy cost could be smaller than the real privacy cost. Our solution in

Algorithm 6 looks like the following:

• Privately release an upper bound of the smooth sensitivity SSβ(X) with eµ.

• Conditioned on a high-probability event of eµ, publish the data-dependent RDP

with upper
σ1

(α).

• Convert upper
σ1

(α) back to the standard DP guarantee using RDP to DP conversion

at δ/2.

• Test if the converted DP is above the predefined budget ϵ′.

The following lemma states that upper
σ1

(α) is a valid upper bound of the data-dependent

RDP.

Lemma 3.6.5 (Private upper bound of data-dependent RDP). We are given a RDP

function (α,X) and a β-smooth sensitivity bound SS(·) of (α,X). Let µ (defined in Algo-

rithm 6) denote the private release of log(SSβ(X)). Let the (β, σs, σ2)-GNSS mechanism

be

upper(α):=(α,X)+SSβ(X)·N (0,σ2
s)+σs

√
2 log( 2

δ2
)eµ

Then, the release of upper(X) satisfies (α, 3α+2
2σ2

s
)-RDP for all 1 < α < 1

2β
; w.p. at least

1− δ2, upper(α) is an upper bound of (α,X).
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Figure 3.2: Privacy and utility tradeoffs with PATE. When σ1 is aligned, the three
algorithms provide the same utility if the privacy budget of PATE-PTR is chosen from
the purple region. y-axis plots the privacy cost of labeling T = 200 public data with
δ = 10−5. The left figure considers the high-consensus case, where the data-adaptive
analysis is preferred.

The proof (deferred to the appendix) makes use of the facts that: (1) the log of

SSβ(X) has a bounded global sensitivity β through the definition of smooth sensitivity;

(2) releasing σ1(α,X) + SSβ(X) · N (0, σ2
s) is (α, α+1

σ2
s
)-RDP (Theorem 23 from Papernot

et al. (2018a)).

Now we can state the privacy guarantee of Algorithm 6.

Theorem 3.6.6. Algorithm 6 satisfies (ϵ′ + ϵ̂, δ)-DP.

In the proof, the choice of α ensures that the cost of the δ/2 contribution (used in

the RDP-to-DP conversion) is roughly ϵ̂/2. Then the release of upper
σ1

(α) with σs =
√

2+3α
ϵ̂

accounts for another cost of (ϵ/2, δ/2)-DP.

Empirical results. We next empirically evaluate Algorithm 6 (PATE-PTR) on the

MNIST dataset. Following the experimental setup from Papernot et al. (2018a), we

consider the training set to be the private domain, and the testing set is used as the public

domain. We first partition the training set into 400 disjoint sets and 400 teacher models,
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each trained individually. Then we select T = 200 unlabeled data from the public domain,

with the goal of privately labeling them. To illustrate the behaviors of algorithms under

various data distributions, we consider two settings of unlabeled data, high-consensus

and low-consensus. In the low-consensus setting, we choose T unlabeled data such that

there is no high agreement among teachers, so the advantage of data-adaptive analysis is

diminished. We provide further details on the distribution of these two settings in the

appendix.

Baselines. We consider the Gaussian mechanism as a data-independent baseline,

where the privacy guarantee is valid but does not take advantage of the properties of

the dataset. The data-dependent DP ( Papernot et al. (2018a)) serves as a non-private

baseline, which requires further sanitation. Note that these two baselines provide different

privacy analyses of the same algorithm (see Theorem 3.6.4).

Figure 3.2 plots privacy-utility tradeoffs between the three approaches by varying the

noise scale σ1. The purple region denotes a set of privacy budget choices (ϵ̂+ ϵ′ used in

Algorithm 6) such that the utility of the three algorithms is aligned under the same σ1.

In more detail, the purple region is lower-bounded by ϵ̂+ ϵσ1 . We first fix σs = σ2 = 15

such that ϵ̂ is fixed. Then we empirically calculate the average of ϵσ1 (the private upper

bound of the data-dependent DP) over 10 trials. Running Algorithm 6 with any choice of

ϵ̂+ ϵ′ chosen from the purple region implies ϵ′ > ϵσ1 . Therefore, PATE-PTR will output

the same noisy labels (with high probability) as the two baselines.

Observation As σ1 increases, the privacy loss of the Gaussian mechanism decreases,

while the data-dependent DP curve does not change much. This is because the data-

dependent DP of each query is a complex function of both the noise scale and the data

and does not monotonically decrease when σ1 increases (see more details in the appendix).

However, the data-dependent DP still dominates the Gaussian mechanism for a wide

range of σ1. Moreover, PATE-PTR nicely interpolates between the data-independent DP
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guarantee and the non-private data-adaptive DP guarantee. In the low-consensus case, the

gap between the data-dependent DP and the DP guarantee of the Gaussian mechanism

unsurprisingly decreases. Meanwhile, PATE-PTR (the purple region) performs well when

the noise scale is small but deteriorates when the data-independent approach proves more

advantageous. This example demonstrates that using PTR as a post-processing step

to convert the data-dependent DP to standard DP is effective when the data-adaptive

approach dominates others.

3.7 Limitations and Future Work

One weakness of generalized PTR is that it requires a case-specific privacy analysis.

Have we simply exchanged the problem of designing a data-adaptive DP algorithm

with the problem of analyzing the data-dependent privacy loss? We argue that this

limitation is inherited from classic PTR. In situations where classic PTR is not applicable,

we’ve outlined several approaches to constructing the DP test for our framework (see

Sections 3.5.3 and 3.6.2).

Furthermore, the data-dependent privacy loss is often more straightforward to compute

than local sensitivity, and often exists in intermediate steps of classic DP analysis already.

Most DP analysis involves providing a high-probability tail bound of the privacy loss

random variable. If we stop before taking the max over the input dataset, then we get a

data-dependent DP loss right away (as in Example 3.5.2).

There are several exciting directions for applying generalized PTR to more problems.

Sufficient statistics release with private hyperparameter tuning can be used to construct

data-adaptive extensions of DP-PCA (Dwork et al., 2014b) and Sparse-DP-ERM (Kifer

et al., 2012). For DP-PCA we could use Algorithm 5 to tune the variance of the noise

added to the spectral gap; for Sparse-DP-ERM we would test the restricted strong
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convexity parameter (RSC) and not add additional regularization if the RSC is already

large.

3.8 Conclusion

Generalized PTR extends the classic “Propose-Test-Release” framework to a more

general setting by testing the data-dependent privacy loss of an input dataset, rather

than its local sensitivity. In this paper we’ve provided several examples – private linear

regression with hyperparameter selection and PATE – to illustrate how generalized PTR

can enhance DP algorithm design via a data-adaptive approach.
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Chapter 4

Improving the Privacy and Practicality

of Objective Perturbation

4.1 Introduction

The rise of deep neural networks has transformed the study of differentially private

learning no less than any other area of machine learning. Differentially private stochastic

gradient descent (DP-SGD) (Song et al., 2013; Bassily et al., 2014; Abadi et al., 2016)

has thus gained widespread appeal as a versatile framework for privately training deep

learning models.

How does DP-SGD fare on simpler models such as linear and logistic regression?

The verdict is unclear. Clearly an algorithm capable of privately optimizing non-convex

functions represented by millions of parameters is up to the computational task of fitting

a linear model. A more pressing concern is that DP-SGD is up to too much. Look, for

example, at the algorithm’s computational complexity: DP-SGD requires O(n2) steps to

achieve the optimal excess risk bounds for DP convex empirical risk minimization (Bassily

et al., 2014).

54



Improving the Privacy and Practicality of Objective Perturbation Chapter 4

DP-SGD furthermore takes after its non-private counterpart in sensitivity to hy-

perparameters. A poor choice of learning rate or batch size, for instance, could lead

to suboptimal performance or slow convergence. There are well-established procedures

for hyperparameter optimization that typically involve evaluating the performance of

the model trained using different sets of candidate hyperparameters. But with privacy

constraints, there is a catch: tuning hyperparameters requires multiple passes over the

training dataset and thereby constitutes a privacy cost.

At best, existing work tends to circumvent this obstacle by optimistically assuming

the availability of a public auxiliary dataset for hyperparameter tuning. More often the

procedure for private hyperparameter selection is left largely to the reader’s imagination.

Only recently have Liu and Talwar (2019) and subsequently Papernot and Steinke

(2021) studied how to obtain tighter privacy loss bounds for this task beyond standard

composition theorems.

In the meantime, objective perturbation (Chaudhuri et al., 2011; Kifer et al., 2012)

has been to some extent shelved as a historical curiosity. Sifting through the literature,

we find that opinions are divided: some tout objective perturbation as "[o]ne of the

most effective algorithms for differentially private learning and optimization" (Neel et al.,

2020), whereas other works (Wang et al., 2017) dismiss objective perturbation as being

impractical and restrictive. Some empirical evaluations (Yu et al., 2019; McKenna et al.,

2021) suggest that DP-SGD often achieves better utility in practice than does objective

perturbation; others (Iyengar et al., 2019) report the opposite.

Our goal in this chapter is to lay some of this debate to rest and demonstrate that for

generalized linear problems in particular, objective perturbation can outshine DP-SGD.
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4.1.1 Our Contributions

• We establish an improved (ϵ, δ)-DP bound for objective perturbation via

privacy profiles, a modern tool for privacy accounting that bounds the

hockey-stick divergence. The formula can be computed numerically using only

calls to Gaussian CDFs. We further obtain a dominating pair of distributions as

defined by Zhu et al. (2022) which enables tight composition and amplification by

subsampling of the privacy profiles.

• We present a novel Rényi differential privacy (RDP) (Mironov, 2017)

analysis of the objective perturbation mechanism. Using this analysis,

we show empirically that objective perturbation performs competitively

against DP-SGD with “honestly” 1-tuned hyperparameters. The tightest

analyses to date of private hyperparameter tuning are the RDP bounds derived in

Papernot and Steinke (2021). This tool allows us to empirically evaluate objective

perturbation against DP-SGD on a level playing field (Section 4.5).

• We fix a decade-old oversight in the privacy analysis of objective pertur-

bation. Existing literature overlooks a nuanced argument in the privacy analysis

of objective perturbation, which requires a careful treatment of the dependence

between the noise vector and the private minimizer. Without assuming GLM

structure, the privacy bound of objective perturbation is subject to a dimensional

dependence that has gone unacknowledged in previous work2.

• We introduce computational tools that expand the applicability of ob-

jective perturbation to a broader range of loss functions. The privacy

guarantees of objective perturbation require the loss function to have bounded
1“Honest” hyperparameter tuning is a term coined by Mohapatra et al. (2022).
2The concurrent work of Agarwal et al. (2023) has independently identified this bug as well.
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gradient. Our proposed framework extends the Approximate Minima Perturbation

framework of Iyengar et al. (2019) to take any smooth loss function as a black-

box, then algorithmically ensure that it has bounded gradient. We also provide a

computational guarantee O(n log n) on the running time of this algorithm, in

contrast to the O(n2) complexity of DP-SGD for achieving information-theoretic

limits.

4.1.2 A Short History of DP Learning

Differentially private learning dates back to Chaudhuri et al. (2011), which extended

the output perturbation method of Dwork et al. (2006) to classification algorithms and also

introduced objective perturbation. In its first public appearance, objective perturbation

required gamma-distributed noise; Kifer et al. (2012) provided a refined analysis of the

mechanism with Gaussian noise, which is the entry point into our work.

Differentially private stochastic gradient descent (DP-SGD) (Song et al., 2013; Bassily

et al., 2014; Abadi et al., 2016) brought DP into the fold of modern machine learning,

allowing private training of models with arbitrarily complex loss landscapes that can scale

to enormous datasets. DP-SGD adds Gaussian noise at every iteration to an aggregation

of clipped gradients, and thus privacy analysis for DP-SGD often boils down to finding

tight composition bounds (of the subsampled Gaussian mechanism).

The initial version of DP-SGD based on standard strong composition (Bassily et al.,

2014) is not quite practical; but that has changed, thanks to a community-wide effort

over the past few years in developing modern numerical privacy accounting tools. These

include the moments accountant which composes Rényi DP functions (Abadi et al., 2016;

Wang et al., 2019; Mironov et al., 2019) and the Fourier accountant (also known as PLV

or PLD accountant) which directly composes the privacy profile (Sommer et al., 2019;
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Koskela et al., 2020; Gopi et al., 2021; Zhu et al., 2022) of a mechanism. It is safe to

conclude that the numerically computed privacy loss of DP-SGD using these modern

tools is now very precise.

Because DP-SGD releases each intermediate model, the algorithm can stop after any

number of iterations and simply accumulates privacy loss as it goes. In contrast, the

privacy guarantees of objective perturbation hold only when the output of the mechanism

is the exact minima of the perturbed objective. This requirement is at odds with practical

convex optimization frameworks which typically use first-order methods to search for an

approximate solution.

To remedy this, Iyengar et al. (2019) proposed an approach to approximately min-

imize a perturbed objective function while maintaining privacy. Approximate Minima

Perturbation (AMP) was introduced as a tractable alternative to objective perturbation

whose privacy guarantees permit the output to be an approximate (rather than exact)

solution to the perturbed minimization problem. In this paper we extend AMP to a

broader range of loss functions, whose gradient can be unbounded; Algorithm 7 can be

viewed as a special case of AMP with a transformation of the loss function.

4.2 Preliminaries

4.2.1 Differential Privacy

Differential privacy (DP) (Dwork et al., 2006) offers provable privacy protection by

restricting how much the output of a randomized algorithm can leak information about a

single data point.

DP requires a notion of how to measure similarity between datasets. We say that

datasets Z and Z ′ are neighboring datasets (denoted Z ≃ Z ′) if they differ by exactly
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one datapoint z, i.e. Z ′ = Z ∪ {z} or Z ′ = Z \ {z} for some data entry z.

Definition 4.2.1 (Differential privacy). A mechanism M : Z → R satisfies (ϵ, δ)-

differential privacy if for all neighboring datasets Z,Z ′ ∈ Z and output sets S ⊆ R,

Pr [M(Z) ∈ S] ≤ eϵPr [M(Z ′) ∈ S] + δ.

When δ > 0,M satisfies approximate DP. When δ = 0,M satisfies the stronger notion

of pure DP.

We say that M is tightly (ϵ, δ)-DP if there is no δ′ < δ for which M would be

(ϵ, δ′)-DP.

In what follows, we overview two different styles of achieving DP guarantees: one via

hockey-stick divergence, and the other via Rényi divergence.

DP via hockey-stick divergence

Definition 4.2.2 (Hockey-stick divergence). Denote [x]+ = max{0, x} for x ∈ R. For

α > 0 the hockey-stick divergence Hα from a distribution P to a distribution Q is defined

as

Hα(P ||Q) =

∫
[P (x)− α ·Q(x)]+ dx.

Now (with some abuse of notation) we will discuss how to bound the hockey-stick

divergence between distributionsM(Z) andM(Z ′) via the concept of privacy profiles.

Definition 4.2.3 (Privacy profiles Balle et al., 2018). The privacy profile δM(ϵ) of a

mechanismM is defined as

δM(ϵ) := maxZ≃Z′ He ϵ

(
M(Z)||M(Z ′)

)
.
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Tight (ϵ, δ)-DP bounds can then be obtained as follows.

Lemma 4.2.4 (Zhu et al., 2022, Lemma 5). MechanismM satisfies (ϵ, δ)-DP if any only

if δ ≥ δM(ϵ).

Dominating pairs of distributions are useful for bounding the hockey-stick diver-

gence He ϵ

(
M(Z)||M(Z ′)

)
accurately and, in particular, for obtaining tight bounds for

compositions.

Definition 4.2.5 (Zhu et al. 2022). A pair of distributions (P,Q) is a dominating pair of

distributions for mechanismM : Z → R if for all neighboring datasets Z and Z ′ and for

all α > 0,

Hα(M(Z)||M(Z ′)) ≤ Hα(P ||Q).

DP via Rényi divergence

Definition 4.2.6. (Rényi divergence.) Let α > 0. For α ̸= 1, the Rényi divergence Dα

from distribution P to distribution Q is defined as

Dα(P ||Q) =
1

α− 1
logEx∼Q

[(
P (x)

Q(x)

)α ]
.

When α = 1, Rényi divergence reduces to the Kullback–Leibler (KL) divergence:

D1(P ||Q) = Ex∼P

[
log

(
P (x)

Q(x)

) ]
.

Rényi differential privacy (RDP) is a relaxation of pure DP (δ = 0) based on Rényi

divergence.

Definition 4.2.7 (Rényi differential privacy). A mechanism M : Z → R satisfies
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(α, ϵ)-Rényi differential privacy if for all neighboring datasets Z,Z ′ ∈ Z,

Dα

(
M(Z) || M(Z ′)

)
≤ ϵ,

RDP implies (ϵ, δ)-DP for any 0 < δ ≤ 1 with ϵ = minα>1{ϵ(α) + log(1/δ)/(α −

1)}. Tighter but more complex conversion formulae were derived by Balle et al. (2020)

and Canonne et al. (2020), which we adopt numerically in our experiments whenever

approximate DP is needed.

4.2.2 Differentially Private Empirical Risk Minimization

Given a dataset Z ∈ Z and a loss function ℓ(θ; z), we want to solve problems of the

form

θ̂ = argmin
θ∈Θ

∑
z∈Z

ℓ(θ; z) + r(θ),

where z = (x, y) ∈ X × Y is a data point and r(θ) is a regularization term. The feature

space is X ⊆ Rd and the label space is Y ⊆ R. We will assume that ||x||2 ≤ 1 and |y| ≤ 1.

This work focuses on unconstrained convex generalized linear models (GLMs): we

require that ℓ(θ) and r(θ) are convex and twice-differentiable and that Θ = Rd. The loss

function is assumed to have GLM structure of the form ℓ(θ; z) = f(xT θ; y).

Objective Perturbation Construct the perturbed objective function by sampling

b ∼ N (0, σ2Id):

LP (θ;Z, b) =
∑
z∈Z

ℓ(θ; z) +
λ

2
||θ||22 + bT θ.

The objective perturbation mechanism (ObjPert) outputs θ̂P (Z) = argminθ∈Θ LP (θ;Z, b).
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Theorem 4.2.8 (DP guarantees of objective perturbation (Kifer et al., 2012)). Let ℓ(θ; z)

be convex and twice-differentiable such that ||∇ℓ(θ; z)||2 ≤ L and ∇2ℓ(θ; z) ≺ βId for all

θ ∈ Θ and z ∈ X × Y. Then objective perturbation satisfies (ϵ, δ)-DP when λ ≥ 2β
ϵ

and

σ ≥ L
√

8 log(2/δ)+4ϵ

ϵ
.

Differentially Private Gradient Descent DP-SGD is a differentially private

version of stochastic gradient descent which ensures privacy by clipping the per-example

gradients at each iteration before aggregating them and adding noise to the result. The

update rule at iteration t is given by

θt+1 = θt − ηt

(∑
z∈Bt

clip
(
∇ℓ(θt; z)

)
+N (0, σ2Id)

)
,

where ηt is the learning rate at iteration t, Bt is the current batch at iteration t, σ is the

noise scale, and clip is a function that bounds the norm of the per-example gradients.

4.3 Analytical Tools

Existing privacy guarantees of the objective perturbation mechanism (Chaudhuri

et al., 2011; Kifer et al., 2012) pre-date modern privacy accounting tools such as Rényi

differential privacy and privacy profiles. In this section, we present two new privacy

analyses of objective perturbation: an (ϵ, δ)-DP bound based on privacy profiles, and an

RDP bound.

4.3.1 Approximate DP Bound

Theorem 4.3.1 (Approximate DP guarantees of objective perturbation for GLMs).

Consider a loss function ℓ(θ; z) = f(xT θ; y) with GLM structure. Suppose that f is

β-smooth and ||∇ℓ(θ; z)||2 ≤ L for all θ ∈ Rd and z ∈ X × Y. Fix λ > β. Let ϵ ≥ 0 and
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let ϵ̃ = ϵ− log
(
1− β

λ

)
, ϵ̂ = ϵ− log

(
1− β

λ

)
− L2

2σ2 , and let P and Q be the density functions

of N (L, σ2) and N (0, σ2), respectively. Objective perturbation satisfies
(
ϵ,δ(ϵ)

)
-DP for

δ(ϵ) =


2 ·Heϵ̃

(
P ||Q

)
, if ϵ̂ ≥ 0,

(1− e ϵ̂) + e ϵ̂ · 2 ·H
e
L2

σ2

(
P ||Q

)
, otherwise.

(4.3.1)

Notice that we can express (4.3.1) analytically using (C.2.1). To obtain the bound (4.3.1)

we repeatedly use the fact that the privacy loss random variable (PLRV) determined

by the distributions N (1, σ2) and N (0, σ2) is distributed as N ( 1
2σ2 ,

1
σ2 ). As the upper

bound (4.3.1) is obtained using a PLRV that is a certain scaled and shifted half-normal

distribution, we can also find certain scaled and shifted half-normal distributions P and Q

which give the dominating pair of distributions for the objective perturbation mechanism

such that the hockey-stick divergence between P and Q is exactly the upper bound (4.3.1)

for all ϵ (shown in the appendix).

4.3.2 Rényi Differential Privacy Bound

If our sole objective is to obtain the tightest possible approximate DP bounds for

objective perturbation, we can stop at Theorem 4.3.1! Directly calculating the privacy

profiles of objective perturbation using the hockey-stick divergence, as in the previous

section, will achieve this goal (until more privacy accounting tools come along).

In this section we turn instead to Rényi differential privacy, a popular relaxation of

pure differential privacy (δ = 0) which avoids the “catastrophic privacy breach” possibility

permitted by approximate DP (δ > 0). Below, we present an RDP guarantee for objective

perturbation.

Theorem 4.3.2 (RDP guarantees of objective perturbation for GLMs). Consider a

loss function ℓ(θ; z) = f(xT θ; y) with GLM structure. Suppose that f is β-smooth and
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||∇ℓ(θ; z)||2 ≤ L for all θ ∈ Rd and z ∈ X × Y. Fix λ > β. Objective perturbation

satisfies (α, ϵ)-RDP for any α > 1 with

ϵ = − log

(
1− β

λ

)
+

L2

2σ2
+

1

α− 1
logE

X∼N
(
0,L

2

σ2

) [e(α−1)|X|] .
For α = 1, the RDP bound holds with

ϵ = − log

(
1− β

λ

)
+

L2

2σ2
+ logE

X∼N
(
0,L

2

σ2

) [e|X|] .
One of our main motivations for improving the privacy analysis of objective perturba-

tion comes from the observation that it can be competitive to DP-SGD when the privacy

cost of hyperparameter tuning is included in the privacy budget. As the tightest results for

DP hyperparameter tuning are stated in terms of RDP (Papernot and Steinke, 2021), in

our experiments we use RDP bounds of objective perturbation to get a clear understanding

of the differences in the privacy-utility trade-offs between these two approaches.

Remark 4.3.3. Privacy profile and RDP bounds (such as Theorems 4.3.1 and 4.3.2) are

unified in the sense that they are both based on a certain bound of the PLRV ϵZ,Z′

(Definition C.10.4) for a fixed pair of datasets Z,Z ′. From Definitions 4.2.2 and 4.2.7 we

see that for ϵ ∈ R, the hockey-stick divergence is

He ϵ

(
M(Z) || M(Z ′)

)
= Eθ∼M(Z)

[
1− eϵ−ϵZ,Z′ (θ)

]
+
,

and for α > 1 we have that the Rényi divergence is

Dα

(
M(Z) || M(Z ′)

)
=

1

α− 1
logEθ∼M(Z)

[
eα ϵZ,Z′ (θ)

]
.
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4.3.3 Distance to Optimality

How close to optimal are the bounds of Theorems 4.3.1 and 4.3.2? We can in fact show

that the Gaussian mechanism is a special case of the objective perturbation mechanism —

thereby providing a lower bound on its approximate DP and RDP.

Lemma 4.3.4. Consider a loss function ℓ(θ; z) with gradient norm bounded by ||∇ℓ(θ; z)||2 ≤

L, and the objective perturbation mechanism θ̂P (Z) with noise parameter σ > 0 and regu-

larization parameter λ > 0. For all α > 1 and neighboring datasets Z ≃ Z ′ we then have

the following:

Hα

(
θ̂P (Z) || θ̂P (Z ′)

)
≥ Hα

(
N (0, σ

2

λ2 ) || N (L
λ
, σ

2

λ2 )
)
= Hα

(
N (0, σ2) || N (L, σ2)

)
.

Proof. Consider the loss function ℓ(θ;x) = xT θ and choose neighboring datasets X = {x}

and X ′ = ∅, for some x ∈ Rd. Fix λ > 0 and sample b ∼ N (0, σ2Id). Then the objective

perturbation mechanism solves

θ̂P (X) = argmin
θ∈Rd

xT θ +
λ

2
||θ||22 + bT θ = −1

λ
(x+ b),

θ̂P (X ′) = argmin
θ∈Rd

λ

2
||θ||22 + bT θ = −1

λ
b.

Observe that θ̂P (X) ∼ N (− 1
λ
x, σ

2

λ2 Id) and θ̂P (X ′) ∼ N (0, σ
2

λ2 Id). Following the problem

setting described in Theorem 4.2.8, we have that ||x||2 = ||∇ℓ(θ;x)||2 ≤ L. In this

case, objective perturbation reduces directly to the Gaussian mechanism with sensitivity

∆f = L
λ

and noise scale σ
λ
. Lemma 4.3.4 then holds due to the scaling invariance of the

hockey-stick divergence.

The argument works the same for the Rényi divergence Dα which is similarly invariant

to scale. Lemma 4.3.4 implies that we can measure the tightness of the bounds given
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in Theorems 4.3.1 and 4.3.2 by comparing them to the tight bounds of the Gaussian

mechanism (C.2.1) with sensitivity ∆f = L and noise scale σ.

This means that in Figure 4.1, the hockey-stick divergence of the Gaussian mechanism

is a lower bound on the hockey-stick divergence for objective perturbation. While our

hockey-stick divergence bound is unsurprisingly a bit tighter than the RDP bound for

objective perturbation, we see that both significantly improve over the classic (ϵ, δ)-DP

bounds of Kifer et al. (2012).
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Figure 4.1: Comparison of different (ϵ, δ)-bounds for objective perturbation: the (ϵ, δ)-
bound by Kifer et al. (2012) given in Thm. 4.2.8, the RDP bound of Thm. 4.3.2, the
approximate DP bound of Thm. 4.3.1 using the hockey-stick divergence and the approx-
imate DP lower bound obtained using the hockey-stick divergence and Cor. ??. Left:
σ = 5, β = 1 and λ = 20. Right: σ = 10, β = 1 and λ = 5.

Remark 4.3.5. The RDP and approximate DP bounds in this section require a careful

analysis of the dependence between the noise vector b and the private minimizer θP . In

the appendix, we show how the GLM assumption simplifies this issue.

4.4 Computational Tools

In this section we present Algorithm 7, which extends the Approximate Minima

Perturbation of Iyengar et al. (2019) to handle loss functions with unbounded gradient.
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Approximate minima The privacy guarantees of objective perturbation hold only

when its output is an exact minimizer of the perturbed objective. Approximate Minima

Perturbation (AMP) (Iyengar et al., 2019) addresses this issue by finding an approximate

minimizer to the perturbed objective, then privately releases this approximate minimizer

with the Gaussian mechanism.

Gradient clipping DP-SGD requires no a priori bound on the gradient of the

loss function; at each iteration, the algorithm clips the per-example gradients above

a pre-specified threshold in order to bound the gradient norms. We extend this same

technique to objective perturbation.

Given a loss function ℓ(θ; z) and a clipping threshold C, we can transform the gradient

of ℓ(θ; z) as follows:

∇ℓC(θ; z) =


∇ℓ(θ; z) if ||∇ℓ(θ; z)||2 ≤ C,

C
||∇ℓ(θ;z)||2∇ℓ(θ; z) if ||∇ℓ(θ; z)||2 > C.

Then we can define the aggregation of clipped gradients as ∇LC(θ;Z) =
∑
z∈Z
∇ℓC(θ; z).

The aggregation of clipped gradients ∇LC(θ;Z) corresponds to an implicit "clipped-

gradient" objective function LC(θ;Z). For convex GLMs, Song et al. (2020) define this

function precisely and show that it retains the convexity and GLM structure of the original

objective function L(θ;Z). We furthermore demonstrate that this function retains the

same bound β on the Lipschitz smoothness (Theorem C.6.3).

Algorithm 7 extends the privacy guarantees of AMP (Iyengar et al., 2019) to loss

functions with unbounded gradient. Notice that for smooth loss functions with gradient

norm bounded by L, we can set C = L in order to recover Approximate Minima

Perturbation.
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Algorithm 7 Approximate Minima Perturbation with Gradient Clipping
Input: dataset Z; noise levels σ, σout; β-smooth loss function ℓ(·) ; regularization

strength λ; gradient norm threshold τ ; clipping threshold C.

1. Construct the set of clipped-gradient loss functions {ℓC(θ; z) : z ∈ Z}.

2. Sample b ∼ N (0, σ2Id).

3. Let LP
C(θ;Z, b) =

∑
z∈Z ℓC(θ; z) +

λ
2
||θ||22 + bT θ.

4. Solve for θ̃ such that ||∇LP
C(θ̃;Z)||2 ≤ τ .

Output: θ̃P = θ̃ +N (0, σ2
outId).

Theorem 4.4.1 (RDP guarantees of Algorithm 7). Consider a loss function ℓ(θ; z) =

f(xT θ; y) with GLM structure, such that f is β-smooth. Fix λ > β. Algorithm 7 satisfies

(α, ϵ)-RDP for any α > 1 with

ϵ ≤ − log

(
1− β

λ

)
+

C2

2σ2
+

1

α− 1
logE

X∼N
(
0,C

2

σ2

) [e(α−1)|X|]+ 2τ 2α

σ2
outλ

2
.

Remark 4.4.2. Gradient clipping aside, our proof of Theorem 4.4.1 takes a different

tack than the proof of Theorem 1 (for AMP) in Iyengar et al. (2019). We observe

that Algorithm 7 is essentially an adaptive composition of the objective perturbation

mechanism and the Gaussian mechanism. We can write θ̃ = θP + (θ̃ − θP ) to see that we

are releasing two quantities: θP (with objective perturbation) and the difference θ̃ − θP

(with the Gaussian mechanism). Algorithm 7 stops iterating only after the gradient norm

||∇LP
C(θ̃;Z)||2 is below the threshold τ . This along with the λ-strong convexity of the

objective function ∇LP
C(θ;Z) ensures a bound on the ℓ2-sensitivity of the difference θ̃−θP ,

so that we can apply the Gaussian mechanism.
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4.4.1 Computational Guarantee

To achieve the optimal excess risk bounds for DP-ERM in the convex setting, DP-SGD

clocks in at a hefty O(n2) gradient evaluations (Bassily et al., 2014). It has been an

open problem to obtain an optimal DP-ERM algorithm that runs in subquadratic time

(Kulkarni et al., 2021). One of our contributions is to show that when we further restrict

to smooth GLM losses (so that ObjPert is applicable) Algorithm 7 can achieve the same

optimal rate with only O(n log n) gradient evaluations.

A formal claim and proof that Algorithm 7 — with appropriately chosen parameters

— achieves the optimal rate is deferred to Appendix C.8. The analysis is largely the same

as that in Kifer et al. (2012) but with the bug fixed (details in Appendix C.5) by adding

a GLM assumption.

The improved computational complexity is due to the fact that we can apply any

off-the-shelf optimization algorithm to solve Step 4 of Algorithm 7. Observing that

LP (θ;Z, b) has a finite-sum structure, we can employ the Stochastic Averaged Gradient

(SAG) method (Schmidt et al., 2017) which halts in O(n log n) with high probability.

Details are provided in Appendix C.7.

4.5 Empirical Evaluation

In this section we evaluate Algorithm 7 against two baselines: “dishonest” DP-SGD

and “honest” DP-SGD. Dishonest DP-SGD does not account for the privacy cost of

hyperparameter tuning; honest DP-SGD follows the private selection algorithm and RDP

bounds from Papernot and Steinke (2021).

Our experimental design includes some guidelines in order to make it a fair fight. One

of the strengths of Algorithm 7 that we advocate for is its blackbox optimization. Whereas

DP-SGD consumes privacy budget for testing each set of hyperparameter candidates,
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an advantage of approximate minima perturbation is that the privacy guarantees are

independent of the choice of optimizer used to solve for θ̃. We can therefore test out any

number of optimization hyperparameters for Algorithm 7 at no additional privacy cost,

provided that these parameters are independent of the privacy guarantee (e.g. learning

rate, batch size). More specifically, once the loss function is perturbed with the noise b in

Algorithm 7, any θ̃ that satisfies the convergence guarantees with the tolerance parameter

τ will have the RDP guarantees of Theorem 4.4.1 and therefore we are free to also carry

out tuning of the optimization algorithm without an additional privacy cost.

Because we are interested in measuring the effect of the privacy cost of hyperparameter

tuning, we tune only the learning rate which does not affect the privacy guarantee of the

base algorithm. This isolates the effect of hyperparameter tuning as we will need to appeal

to Papernot and Steinke (2021) to get valid DP bounds for DP-SGD, but Algorithm 7

enjoys hyperparameter tuning “for free”.

The following table summarizes the optimization-related parameters for all three

methods.

Dishonest DP-SGD Honest DP-SGD Algorithm 7

clipping C =
√
2 C =

√
2 C =

√
2

learning rate log(10−8, 10−1) log(10−8, 10−1) linear(.08, .5)

grid size s = 10 µ ≈ 15.4. s = 10

optimizer Adam Adam L-BFGS

convergence after T iterations after T iterations ||∇L(θ̃)||2 ≤ τ

The choice of C =
√
2 is a natural value for logistic regression in that ||∇ℓ(θ, z)|| ≤

√
2

for all θ, z due to data-preprocessing and the bias term. Dishonest DP-SGD selects s = 10

learning rate candidates evenly log-spaced from the range of values between 10−8 and 10−1.

Honest DP-SGD selects learning rate candidates from the same range of values, but with

granularity determined by a random variable K sampled from the Poisson distribution
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Poisson(µ). We select µ so that with 90% probability, K is larger than the grid size s

used for dishonest DP-SGD, resulting in µ ≈ 15.4.

We use the Adam optimizer for both honest and dishonest DP-SGD. For Algorithm 7

we use the L-BFGS optimizer whose second-order behavior allows us to get within a

smaller distance to optimal (as required by Algorithm 7).

For DP-SGD we set the subsampling ratio such that the expected batch size is 256 and

we run for 60 "epochs". We calculate the number of iterations as T = 60 · num_batches,

where num_batches is the number of batches in the training dataset (we pass the train

loader through the Opacus privacy engine, so the size of each batch is random). To

calibrate the scale of the noise for DP-SGD, we use the analytical moments accountant

(Wang et al., 2019) with Poisson sampling (Zhu and Wang, 2019; Mironov et al., 2019).

The parameters specific to AMP are σout, the noise scale for the output perturbation

step; and τ , the gradient norm bound. A larger τ will improve our computational cost,

though our approximate minimizer θ̃ will be farther away from the true minimizer θP .

We can achieve a smaller τ by choosing a larger σout, but this will mean that our release

of θ̃ will be noisier. In our experiments we fix τ = 0.01 and σout = 0.15.

The privacy parameters of objective perturbation are the noise scale σ and the

regularization strength λ. Balancing these parameters is a classic exercise in bias-variance

trade-off. A larger σ will allow us to use less regularization, but if σ is too large then we

risk adding too much noise to the objective function and hurting utility.

Our strategy is to find the smallest possible λ such that σ isn’t too large. To quantify

when σ is “too large”, we use the Gaussian mechanism as a reference point: the noise

scale σ for objective perturbation shouldn’t be too much larger than the noise scale σG

for the Gaussian mechanism. Let’s say that the Gaussian mechanism with noise scale

σG satisfies (ϵ, δ)-DP, then we want our σ for (ϵ, δ)-DP objective perturbation to satisfy

σ ≤ fσG for some small constant factor f . In our experiments, we set f = 1.3.
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For objective perturbation, we can thus select the privacy parameters σ and λ using

fixed values (e.g., ϵ, δ, σG) that are independent of the data. Likewise, the choices of

σout and τ are fixed across all datasets. This is noteworthy since σ, λ, σout and τ each

have an effect on the privacy guarantee, outside of the blackbox algorithm. Tuning these

parameters on the data would require us to use the same private selection algorithm as

we need for honest DP-SGD.
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Figure 4.2: Comparison of Algorithm 7 against honest and dishonest DP-SGD baselines,
varying ϵ ∈ {0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0} and fixing δ = 10−5. On all three
methods, we train the model for each learning rate on its grid (see Table 4.5) and report
the test accuracy for the best learning rate on the grid. Results are averaged over 10
trials and the error bars on both sides of the mean values depict 1.96 times the standard
error, giving the asymptotic 95% coverage.

We evaluate our methods for binary classification on the Adult, Synthetic-L, Synthetic-
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H and Gisette datasets provided by Iyengar et al. (2019). We normalize each row xi to

have unit ℓ2-norm. Note that the assignment xi ← xi

||xi||2 doesn’t require expending any

privacy budget as each data point is transformed only by its own per-sample norm.

Table 4.1: Synthetic-L

Dishonest Alg 7 Honest

ϵ = 0.1 93.85% 90.05% 77.34%

ϵ = 1 95.25% 94.50% 93.15%

ϵ = 8 95.43% 95.30% 95.17 %

Table 4.2: Adult

Dishonest Alg 7 Honest

ϵ = 0.1 81.61% 81.37% 78.32%

ϵ = 1 83.54% 83.18% 82.40%

ϵ = 8 84.19% 83.99% 83.66%

Results from Figure 4.5 in numerical format for the low-dimensional datasets, Synthetic-L
and Adult. For ϵ = 0.1, these can be cross-referenced with the results in Fig. 3 from
Iyengar et al. (2019).

The experimental results shown in Figure 4.5, Table 4.1 and Table 4.2 paint a consistent

picture. While dishonest DP-SGD is clearly the best-performing algorithm, when we

account for the cost of hyperparameter tuning then Algorithm 7 can compete with and

often best honest DP-SGD. This effect is especially pronounced under small ϵ, for which

diverting some of the limited privacy budget to hyperparameter tuning could be more

impactful.

Is it fair? Our experimental design aims to fairly compare ObjPert to DP-SGD. One

limitation, however, is that the state-of-the-art tools for private hyperparameter tuning

from Papernot and Steinke (2021) are RDP bounds — and RDP is not state-of-the-art

for DP-SGD privacy accounting. At this moment, the tighest privacy accounting tools

for DP-SGD belong to a family of work (Koskela et al., 2020; Gopi et al., 2021; Zhu

et al., 2022) which numerically computes its privacy curve. These are the counterparts to

our privacy profiles analysis for ObjPert (Theorem 4.3.1). Unfortunately, even though

dishonest DP-SGD would benefit from using these numerical accountants, for private

hyperparameter tuning we would then have to use the sub-optimal private selection
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bounds for approximate DP from Liu and Talwar (2019). In our experiments we therefore

use RDP-based privacy accounting for both ObjPert and DP-SGD. Comparing DP-SGD

with numerical accounting of privacy profiles against ObjPert with Theorem 4.3.1 will

have to wait until more private selection tools are available.

One might also object that by tuning only the learning rate for DP-SGD, we didn’t

explore the full range of hyperparameters relevant to DP-SGD’s performance. While

tuning additional hyperparameters such as the batch size and number of epochs could

benefit dishonest DP-SGD, it would likely worsen the privacy-utility tradeoff for honestly-

tuned DP-SGD due to the increased privacy cost of the hyperparameter tuning algorithm

from Papernot and Steinke (2021).

4.6 Conclusion

One point that we really wanted to drive home is that while DP-SGD works extraordi-

narily well across a wide variety of problem settings, it’s not necessarily the best solution

for every problem setting. But at the same time, DP-SGD has received the benefit of

an enormous amount of attention that other DP learning algorithms haven’t received.

A goal of our paper was to hone in on a particular problem setting and give a different

algorithm the same star treatment.

Objective perturbation now boasts two new privacy analyses. One is an improved

(ϵ, δ)-DP analysis based on bounding the hockey-stick divergence. The other is an RDP

analysis which allows us to fairly compare objective perturbation against DP-SGD — the

workhorse of differentially private learning — with honest hyperparameter tuning. We’ve

also expanded the approximate minima perturbation algorithm of Iyengar et al. (2019)

in order to encompass a broader range of loss functions which need not have bounded

gradient. Our algorithm moreover can be used in conjunction with SVRG to guarantee a
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running time of O(n log n) to achieve the optimal excess risk bounds, improving on the

O(n2) computational guarantee of DP-SGD.
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Supplementary Material for Chapter 2

A.1 DP Variants

Algorithm design is a typical use case for differential privacy: given a privacy budget

of ϵ, the data curator would like to add noise calibrated to meet the privacy demands.

Our work in Chapter 2 concerns the converse problem of how to calculate and report

the incurred privacy loss to an individual after a randomized algorithm is run on a fixed

dataset. The table below summarizes the relevant variations of the DP definition which

characterize the privacy loss with varying degrees of granularity.

Let P,Q be distributions over Ω, taking p(ω) and q(ω) to be the probability den-

sity/mass function of each at ω. Then the probability metrics used in the table are defined

as follows:

• D∞(P ||Q) = sup
S⊂Ω

(
log

P (S)

Q(S)

)
(max divergence)

• Dδ
∞(P ||Q) = sup

S⊂Ω:P (ω)≥δ

(
log

P (S)− δ

Q(S)

)
(δ-approximate max divergence),

• Dα(P ||Q) =
1

α− 1
logEω∼Q

[(
p(ω)

q(ω)

)α]
(Rényi divergence).
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Pure DP sup
D

sup
z,D′:D′≃zD

D∞
(
A(D)||A(D′)

)
≤ ϵ

Approximate DP sup
D

sup
z,D′:D′≃zD

Dδ
∞
(
A(D)||A(D′)

)
≤ ϵ

Rényi DP sup
D

sup
z,D′:D′≃zD

Dα

(
A(D)||A(D′)

)
≤ ϵ

Data-dependent DP sup
z,D′:D′≃zD

Dα

(
A(D)||A(D′)

)
≤ ϵ(D)

Personalized DP sup
D,D′:D′≃zD

max

{
Dδ

∞
(
A(D)||A(D′)

)
,

Dδ
∞
(
A(D′)||A(D)

) } ≤ ϵ(z)

Per-instance DP max

{
Dδ

∞
(
A(D)||A(D′)

)
,

Dδ
∞
(
A(D′)||A(D)

) } ≤ ϵ(D, z)

Ex-post per-instance DP

∣∣∣∣∣log Pr
[
A(D) = o

]
Pr
[
A(D′) = o

]∣∣∣∣∣ ≤ ϵ(o,D,D′) where D′ ≃z D
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A.2 Additional Experiments

A.2.1 Varying dimension and dataset size

Our first experiment uses a synthetic dataset for logistic regression as described in

the experiments section of the main paper. Figure A.1 illustrates how the worst-case

pDP loss over all individuals in the dataset – i.e., maxz∈D ϵ1(θ̂
P , D,D±z) – changes as a

function of the dataset size (number of individuals in the dataset) n, compared to the

worst-case pDP bounds given by the data-independent and data-dependent approaches.

We fix d = 50 and vary n from n = 100 to n = 10000.

Figure A.1 illustrates how the worst-case pDP loss and bounds change as a function

of the data dimension d. We fix n = 1000 and vary d from d = 1 to d = 60. Figures A.1

and A.2 demonstrate that for GLMs, the strength of our ex-post pDP bounds ϵP1 (·) does

not depend on the size of the dataset or the dimensionality of the data.
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Figure A.1: Worst-case pDP while varying n.
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Figure A.2: Worst-case pDP while varying d.

A.2.2 Privacy budget allocation

Here we investigate how to distribute the privacy budget between the components of

Algorithm 1 and Algorithm 2, with the same experimental setup as in Section 2.4.2.

As before, we use the UCI credit default dataset. Our experiments show that a careful

allocation of the privacy budget is essential to reaping the benefits of the data-dependent

approach to releasing the ex-post pDP losses.

The plots in Figures A.3 and A.4 are ordered by increasing ϵDEP
1 . ϵINDEP

1 = 1 is

fixed, as are (implicitly) ϵINDEP
2 = ϵINDEP

3 = 0. We see that as ϵDEP
1 approaches the total

privacy budget of ϵINDEP
1 = 1, leaving less budget for ϵDEP

2 and ϵDEP
3 , the data-dependent

release is little better than the data-independent release – worse, even, because we’ve

expended additional privacy cost without significantly boosting the accuracy of the release.

Deciding between the data-independent or data-dependent approach is a delicate choice

which depends on the particular problem setting. However, based on our theoretical and

experimental results we can offer some loose guidelines:

• For non-GLMs, the data-independent bound has a dimension dependence. Therefore

in the high-dimensional case, we recommend the data-dependent approach for generic

convex loss functions and the data-independent approach for GLMs.
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• For GLMs, the data-independent approach gives tight bounds without any overhead.

The only reason to use the data-dependent approach for GLMs would be to gain an

even more accurate estimate of the ex-post pDP losses, in which case it would be

necessary to either suffer an additional privacy cost, or maintain the privacy cost

by suffering a less accurate estimate of θ̂P .
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Figure A.3: Data-independent release uses a privacy budget ϵ1 = 1 for each plot. Left:

ϵ1 = 0.2, ϵ2 = 0.7, ϵ3 = 0.1. Right: ϵ1 = 0.4, ϵ2 = 0.5, ϵ3 = 0.1.
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Figure A.4: Data-independent release uses a privacy budget ϵ1 = 1 for each plot. Left:

ϵ1 = 0.5, ϵ2 = 0.25, ϵ3 = 0.25;. Right: ϵ1 = 0.8, ϵ2 = 0.1, ϵ3 = 0.1.
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A.2.3 Comparison of pDP losses and private upper bounds
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Figure A.5: pDP losses ϵ1(·) and upper bounds ϵP1 (·) for private logistic regression applied

to the UCI kidney dataset. DP budget for releasing θ̂P is ϵ = 1, marked in red.

We run both the data-independent and -dependent variations of Algorithm 1 as

described in the experimental setup. Note that in this experiment the additional DP

budget for the data-dependent release is ϵ2 = ϵ3 = 1, i.e. the privacy budget for the

data-dependent release is three times the DP budget for the data-independent release.

Figures A.5 and A.6 compare the pDP losses ϵ1(·) and private upper bounds ϵP1 with ϵ1

(indicated by the vertical red line), the DP budget for Algorithm 1. Figure A.5 shows

results for private logistic regression on the UCI kidney dataset; Figure A.6 shows results

for private linear regression on the UCI wine quality dataset (Dua and Graff, 2017). Our
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experimental results indicate that for smaller ϵ1 << 1 (larger σ), the data-dependent

approach provides a markedly tighter bound on ϵ1()·.
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Figure A.6: pDP losses ϵ1(·) and upper bounds ϵP1 (·) for private linear regression applied

to the UCI wine quality dataset. Since we are dealing with an unbounded domain Rd,

the algorithm does not satisfy worst-case DP for any ϵ <∞.

Figures A.7 and A.8 plot the ratio of the private upper bound ϵP1 (·) for both the

data-independent and -dependent approaches to the true pDP loss ϵ1(·). This illustrates

the relative accuracy of the pDP estimates ϵP1 (·). For both logistic regression on the

UCI kidney dataset (Figure A.7) and linear regression on the UCI wine quality dataset

(Figure A.8), the data-dependent approach provides a more accurate estimate of the pDP

loss ϵ1(·), especially for logistic regression on the kidney dataset.
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Figure A.7: Ratio of private upper bound ϵP1 (·) to actual pDP loss ϵ1(·) for private logistic

regression applied to the UCI kidney dataset.
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Figure A.8: Ratio of private upper bound ϵP1 (·) to actual pDP loss ϵ1(·) for private linear

regression applied to the UCI wine quality dataset.
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A.3 Even Stronger Privacy Report

A.3.1 More Accurate Privacy Report by Adapting to the Data

We now present a more adaptive version of Algorithm 2 that could be even more

accurate depending on the intrinsic stability of the dataset itself. The key technical

components include:

• Adapting to a well-conditioned H by releasing λmin.

• A “regularized” construction of µ̂P (·) that provides valid upper bounds of µ(·) for

all choices of λ > 0.

Algorithm 9 makes use of a subroutine to add noise to the smallest eigenvalue of H,

presented below along with its privacy guarantees.

Algorithm 8 Releasing the smallest eigenvalue of H
Input: Dataset D, noise parameter σ4, λmin denoting the smallest eigenvalue of H.

Output: λ̂P
min.

Output λ̂P
min = λmin +N (0, σ2

4) .

Theorem A.3.1. Algorithm 8 satisfies pDP with

ϵ4(·) =
f

′′
(·)2∥x∥4
2σ2

4

+
f

′′
(·)∥x∥2

√
2 log(1/δ)

σ4

,

and if f ′′
(·)∥x∥2 ≤ β for all x then Algorithm 8 also satisfies (ϵ, δ)-DP with ϵ = β2

2σ2
4
+

β
√

2 log(1/δ)

σ4
.

Proof. Algorithm 8 is a standard Gaussian mechanism. By Weyl’s lemma, the smallest

singular value satisfies a perturbation bound of f ′′(θ̂P ; z)∥xxT∥2 = f ′′(θ̂P ; z)∥x∥2 from

adding or removing one individual data point. The stated result follows from the theorem
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of the Gaussian mechanism with per-instance (and global) sensitivity set as the above

perturbation bound.

In the more general smooth-loss case we can simply replace f
′′
(θ̂P ; z)∥x∥2 with

∥∇2ℓ(θ̂P ; z)∥F .

Algorithm 9 More adaptive privacy report for Obj-Pert

Input: θ̂P from Obj-Pert, noise parameter σ, σ2, σ3, σ4; regularization parameter λ;

Hessian H :=
∑

i∇2ℓ(θ̂P ; zi) + λId, failure probability ρ.

Output: Reporting function ϵ̃ : (x, y), ρ→ R2
+.

Privately release ĝP by Algorithm 10 with parameter σ2.

Set ϵ2(·) according to Theorem A.3.4.

Set gP (z) := f ′(·)[ĝP ]Tx+ σ2||f ′(·)x||2F−1
N (0,1)(1− ρ/2).

Set τ = F−1
λ1(GOE(d))(1− ρ/2).

Privately release ĤP by Algorithm 11 with parameter σ3.

Set ϵ3(·) according to Theorem A.4.1

Privately release λ̂P
min = λmin +N (0, σ2

4) (Algorithm 8).

Set ϵ4(·) according to Theorem A.3.1.

Set λ̂P
min := max{λ, λ̂P

min − σ4F
−1
N (0,1)(1− ρ/2)}.

if λ̂P
min ≥ 2τσ3 then

Set µP (x) = min
{

λ̂P
min+τσ3

λ̂P
min

xT (ĤP )−1x, ∥x∥2

λ̂P
min

}
. (use the standard estimator)

else

Set µP (x) = min
{

λ̂P
min+2τσ3

λ̂P
min

xT (ĤP +τσ3Id)
−1x, ∥x∥2

λ̂P
min

}
. (use the regularized estimator)

end if

Set ϵP1 (·) :=
∣∣∣− log

(
1− f ′′(·)µP (x)

)∣∣∣+ ||f ′(·)x||22
2σ2 + |gP (z)|

σ2 .

Return the “privacy report” function ϵ̃ = (ϵP1 , ϵ2 + ϵ3 + ϵ4), i.e., the ex-post pDP of

Algorithm 1 and the pDP of Algorithm 9 (i.e., overhead).
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This algorithm allows any choice of λ to be used in ObjPert, so that the privacy

report is non-intrusive and can be attached to an existing workflow without changing

the main algorithm at all. The following proposition shows that µP (x) is always a valid

upper bound of the leverage score µ(x) and it is accurate if λmin is large (from either the

Hessian or the regularization).

Proposition A.3.2 (Uniform multiplicative approximation). Let λ̂P
min and ĤP be constructed

as in Algorithm 9. Then with probability 1− 2ρ,

λmin − σ4F
−1
N (0,1)(1− ρ/2) ≤ λ̂P

min ≤ λmin + σ4F
−1
N (0,1)(1− ρ/2)

and for all x ∈ Rd simultaneously, the regularized estimator obeys that

xT (ĤP + τσ3Id)
−1x ≤ µ(x) ≤

λ̂P
min + 2τσ3

λ̂P
min

xT (ĤP + τσ3Id)
−1x.

Moreover, under the same high-probability event, if λ̂P
min ≥ 2τσ3, then the standard

estimator obeys that

λ̂P
min − τσ3

λ̂P
min

xT (ĤP )−1x ≤ xTH−1x ≤
λ̂P
min + τσ3

λ̂P
min

xT (ĤP )−1x.

Proof. By Lemma A.4.4, if we choose τ = F−1
λ1(GOE(d))(1−ρ/2), then with probability 1−ρ,

the GOE noise matrix G satisfies that ∥G∥2 ≺ τ , the following holds: −τId ≺ G ≺ τId.

Next, by the definition of Gaussian CDF, with probability 1− ρ,

λmin − σ4F
−1
N (0,1)(1− ρ/2) ≤ λ̂P

min ≤ λmin + σ4F
−1
N (0,1)(1− ρ/2)
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which implies that λmin ≥ λ̂P
min, i.e.,

H − λ̂P
minId ≻ 0

Therefore with probability 1− 2ρ,

H ≺ H +G+ τσ3Id ≺ H + 2τσ3I = H − λ̂P
minId + λ̂P

minId + 2τσ3Id

≺
λ̂P
min + 2τσ3

λ̂P
min

(H − λ̂P
minId + λ̂P

minId) =
λ̂P
min + 2τσ3

λ̂P
min

H,

where the first semidefinite inequality uses that H − λ̂P
minId is positive semi-definite.

Taking the inverse on both sides, we get

λ̂P
min

λ̂P
min + 2τσ3

H−1 ≺ (ĤP + τσ3Id)
−1 ≺ H−1.

Thus for all x ∈ Rd, xT (ĤP +τσ3Id)
−1x ≤ xTH−1x ≤ λ̂P

min+2τσ3

λ̂P
min

xT (ĤP +τσ3Id)
−1x, which

finishes the proof for the regularized estimator.

Now we turn to the standard (unregularized) estimator. Under the same high-

probability event:

H +G ≺H + τσ3I = H − λ̂P
minId + λ̂P

minId + τσ3Id

≺
λ̂P
min + τσ3

λ̂P
min

(H − λ̂P
minId + λ̂P

minId) =
λ̂P
min + τσ3

λ̂P
min

H.
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Similarly,

H +G ≻H − τσ3Id ≻ H − λ̂P
minId + λ̂P

minId − τσ3Id

≻
λ̂P
min − τσ3

λ̂P
min

(H − λ̂P
minId + λ̂P

minId) =
λ̂P
min − τσ3

λ̂P
min

H.

Together the above two inequalities give

λ̂P
min − τσ3

λ̂P
min

H ≺ H +G ≺
λ̂P
min + τσ3

λ̂P
min

H.

Take the inverse on both sides we get

λ̂P
min

λ̂P
min + τσ3

H−1 ≺ (ĤP )−1 ≺
λ̂P
min

λ̂P
min − τσ3

H−1,

which implies that for all x ∈ Rd,
λ̂P
min−τσ3

λ̂P
min

xT (ĤP )−1x ≤ xTH−1x ≤ λ̂P
min+τσ3

λ̂P
min

xT (ĤP )−1x

as stated in the proposition.

The privacy (DP and pDP) of Algorithm 9 is a composition of the stated results in

Theorem 2.3.5 with the the privacy guarantees stated in Theorem A.3.1. Observe that if

we choose σ3 = σ1 then the additional DP and pDP losses are smaller than those of the

main algorithm, i.e., we have a constant overhead in terms of the privacy loss.

The next theorem shows that when λmin(H) → +∞ as the number of data points

n→ +∞, we could improve the leverage score part of the pDP losses from a multiplicative

factor of 12 to 1 + o(1).

Theorem A.3.3 (Utility of Adaptive privacy report.). Assume λmin(H) ≥ max{2β, 2τσ3}.

There is a universal constant 0 < C ≤ 4τσ3 + 2β such that for a fixed z ∈ X ×Y, and all
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ρ > 0, the privately released privacy report ϵP1 (·) from Algorithm 9 obeys that

ϵ1(·) ≤ ϵP1 (·) ≤ (1 +
C

λmin

)ϵ1(·) +
|f ′(·)|∥x∥

σ2

√
2 log(2/ρ)

with probability 1− 3ρ where ϵ1 is the expression from Theorem 2.3.1.

Proof of Theorem A.3.3. Similar to the proof of Theorem 2.3.5, it suffices to consider

the approximation of the first term when we replace µ with µP . First of all, by a

union bound, the high probability event in Proposition A.3.2 and the high probability

event in Theorem 2.3.4 (to bound the third term in the ex-post pDP of ObjPert) holds

simultaneously with probability at least 1− 3ρ. The remainder of the proof conditions on

this event.

Observe that it suffices to construct a multiplicative approximation bound for the first

term log(1 + f ′′(·)µ) or − log(1− f ′′(·)µ).

By our assumption that λ > 2β, as well as the pointwise minimum in the construction

of µP from Algorithm 9, we know that µP ≤ 1/2 and log(1− f ′′(·)µP ) is well-defined.

Using the fact that for all a ≥ −1, a
1+a
≤ log(1 + a) ≤ a, we will now derive the

multiplicative approximation for both log(1 + f ′′(·)µ) or − log(1 − f ′′(·)µ) using the

plug-ins: log(1 + f ′′(·)µP ) or − log(1− f ′′(·)µP ).

For brevity, in the subsequent derivation we will be using a to denote f ′′(·)µ(x) and â

to denote f ′′(xT θ̂P ; y)µP (x).

Thus

log(1 + a) ≤ log(1 + â) ≤ â ≤ (1 +
2τσ3

λ̂P
min

)a ≤ (1 +
2τσ3

λ̂P
min

)(1 + a) log(1 + a)

≤(1 + 4τσ3

λmin

)(1 +
β

λmin

) log(1 + a) ≤ (1 +
C

λmin

) log(1 + a)

where C can be taken as 4τσ3 + 2β, by our assumption on λmin and a high probability
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bound under which λ̂P
min ≥ λmin/2.

Similarly,

− log(1− a) ≤ a

1− a
≤ â

1− a
≤

(1 + 2τσ3

λ̂P
min

)a

1− a
≤

(1 + 2τσ3

λ̂P
min

)

1− β
λmin

(− log(1− a))

where
(1 + 2τσ3

λ̂P
min

)

1− β
λmin

= 1 +
2τσ3

λ̂P
min

+
β/λmin

1− β/λmin

≤ 1 +
4τσ3 + 2β

λmin

under our assumption for λmin, β. The additive error term in the third term follows from

the same bound as in the non-adaptive result without any changes.

The version for the standard (non-regularized) version is similar and is left as an

exercise.

A.3.2 Dataset-Dependent Privacy report for general smooth

learning problems

So far, we have focused on generalized linear losses. Most of our results can be

extended to general smooth learning problems.

For the third term in the pDP bound of Theorem 2.3.5, the challenge is that the two

vectors are now nontrivially coupled with each other via θ̂P . For this reason we propose

to privately release the gradient at θ̂P , which helps to decouple the dependence and allow

a tighter approximation at a small cost of accuracy and additional privacy budget.

For convenience, we will denote g = ∇J(θ̂P ;D)T∇ℓ(θ̂P ; z). Below, we present an

algorithm that outputs gP (a private approximation of g) as well as the additional privacy

cost ϵ4(·) of outputting gP .
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Algorithm 10 Release gP , a private approximation of g = ∇J(θ̂P ;D)T∇ℓ(θ̂P ; z)
Input: Dataset D, privatized output θ̂P , noise parameter σ2, linear loss function

L(θ;D) =
∑

i ℓ(θ; zi), regularization parameter λ, convex and twice-differentiable

regularizer r.

Output: gP (·), ϵ2(·).

Construct noise vector e ∼ N (0, σ2
2I).

Set JP := ∇L(θ̂P ;D) +∇r(θ) + λθ̂P + e.

Set gP (·) s.t. gP (z) = (JP )T∇ℓz(θ̂P ; z).

Set ϵ2(·) s.t. ϵ2(z) =
∥∇ℓ(θ̂P ;z)∥2

2σ2
2

+
∥∇ℓ(θ̂P ;z)∥

√
2 log(2/δ)

σ2
.

Theorem A.3.4. Let θ̂P be fixed, Algorithm 10 satisfies

1. (ϵ2(D,D±z), δ)-pDP, with

ϵ2(D,D±z) =
∥∇ℓ(θ̂P ; z)∥2

2σ2
2

+
∥∇ℓ(θ̂P ; z)∥

√
2 log(1/δ)

σ2

.

2. ϵ2(o,D,D±z)-ex post pDP with probability 1− ρ,

ϵ2(o,D,D±z) =
∥∇ℓ(θ̂P ; z)∥2

2σ2
2

+
∥∇ℓ(θ̂P ; z)∥

√
2 log(2/ρ)

σ2

.

Proof. This is a Gaussian mechanism and the proof follows from Corollary A.6.2.

The theorem avoids an additional dependence in d from the ℓ1-norm ∥∇ℓ(θ̂P ; z)∥1 in

the dataset-independent bound.

We remark that Algorithm 10’s pDP loss is dataset-independent and if we choose

σ2 = σ1, the pDP losses for running Algorithm 10 are on the same order as those of the

main algorithm. Thus the additional overhead is on the same order and no recursive

privacy reporting is needed.
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For the first term, our release of H and λmin extends without any changes to the more

general case. The estimator of the leverage score needs to be modified accordingly. Add

the plug-in estimator that replaces H with ĤP in the general case here.

We defer the analysis of how accurately this estimator approximates the first term of

ϵ1(·) to a longer version of the paper.

A.3.3 Uniform Privacy Report and Privacy Calibration

The “privacy report” algorithm (Algorithm 2) that we presented in the main paper

and the “adaptive privacy report” (Algorithm 9 is straightforward and omitted. focus

on releasing a reporting function ϵ̃ that is accurate with high probability for every fixed

input.

Sometimes there is a need to ensure that with high probability, ϵ̃ is accurate si-

multaneously for all z1, ..., zn in the dataset, or even for all z ∈ Z for a data domain

Z. The following theorem shows that this is possible at a mild additional cost in the

accuracy. These results are stated for Algorithm 2), but extensions to that of Algorithm 9

is straightforward and thus omitted.

Proposition A.3.5 (Uniform privacy report). With probability 1−2ρ, simultaneously for all

n users in the dataset, the output of Algorithm 2 obeys that ϵ1(θ̂P , D,D±z) ≤ ϵP1 (θ̂
P , z) ≤

12ϵ1(θ̂
P , D,D±z) +

|f ′(·)|∥x∥
σ2

√
2 log(n/ρ).

If we, instead, use the data-independent bound |f ′(xT θ̂P ;y)|∥x∥1
√

2 log(2d/ρ)

σ
to replace the

third-term in ϵP1 (·), then with probability 1− 2ρ, simultaneously for all x ∈ X , the ex-post

pDP report ϵP1 from Algorithm 2 satisfies that

ϵ1(·) ≤ ϵP1 (z, θ̂
P ) ≤ 12ϵ1(·) +

|f ′(·)|∥x∥1
√

2 log(2d/ρ)

σ
.

Proof. We note that the approximation of µx is uniform for all x. It remains to consider
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a uniform bound for the third term over the randomness of ObjPert. The first statement

follows by taking a union bound. The second result is achieved by Holder’s inequality,

the concentration of max of i.i.d. Gaussians.

Sometimes it is desirable to calibrate the noise-level to a prescribed “worst-case” DP

parameter ϵ, δ. The following corollary explains that the additional DP loss and pDP losses

when we calibrate Algorithm 2 with the same privacy parameter as those in Algorithm 1

will yield a total DP and pDP that are at most twice as large under an additional condition

that f ′′ ≤ f ′.

Corollary A.3.6 (The additional privacy cost). If we calibrate σ2 such that the Algorithm 2

satisfies the same (ϵ, δ)-DP as Algorithm 1, i.e., when ϵ < 1, we could choose σ2 =

ρmax

ϵ

√
2 log(1.25/δ). Then Algorithm 2 satisfies (ϵ(·), δ)-pDP with

ϵ(·) = ϵ2(f ′′(·))2∥x∥4
8ρ2max log(1.25/δ)

+
ϵ(f ′′(·))∥x∥2
ρmax

√
2

.

For those cases when (f ′′(·))∥x∥2
ρmax

≤ |f ′(·)|∥x∥
β

(which is the case in logistic regression for all x

s.t., ∥x∥ ≤ 1), the additional overhead in releasing a dataset-dependent pDP is smaller

than the ex post pDP bound in Theorem 2.3.1.

A.4 Improved “Analyze Gauss” with Gaussian Orthog-

onal Ensembles

In this section we propose a differentially private mechanism that releases a matrix H

when

H =
n∑

i=1

Hx

where Hx ∈ Rd×d is a symmetric matrix computed from individual data point x.
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Examples of this include

1. (unnormalized / uncentered) sample covariance Hx = xxT

2. Empirical Fisher information Hx = ∇ℓ(θ;x)∇ℓ(θ;x)T where ℓ is the log-likelihood

and θ is the true parameter;

3. Hessian of a generalized linear loss function Hx = f ′′(x, θ)xxT .

4. Hessian of a smooth loss function Hx = ∇2ℓ(x, θ).

In the first three cases Hx is a rank-1 matrix and our use case in this paper is the third

and fourth example. Throughout this section we assume ∥Hx∥F ≤ β for all x ∈ X .

The mechanism we propose is a variant of “Analyze-Gauss” (Dwork et al., 2014b)

but it reduces the required variance of the added noise by a factor of 2 in almost all

coordinates hence resulting in higher utility.

The standard “Analyze-Gauss” leverages the symmetry of H and uses the standard

Gaussian mechanism to release the upper triangular region (including the diagonal) of

the matrix H with an ℓ2-sensitivity upper bound:

∥UpperTriangle(H)− UpperTriangle(H ′)∥2 ≤ ∥Hx∥F ≤ β.

where UpperTriangle(H) ∈ Rd2/2+d/2 is the vector that enumerates the elements of the

upper-triangular region of H. The resulting Gaussian noise is distributed i.i.d as N (0, σ2
3)

and it satisfies (ϵ, δ)-DP with

ϵ =
β2

2σ2
3

+
β
√

2 log(1/δ)

σ3

.

The alternative that we propose also adds a symmetric noise but doubles the variance

on the diagonal elements.
95



Supplementary Material for Chapter 2 Chapter A

Algorithm 11 Release H (a natural variant of “Analyze-Gauss”)

Input: Dataset D, noise parameter σ3, H =
∑n

i=1∇2ℓ(zi, θ̂
P ) + λId.

Output: ĤP .

Draw a Gaussian random matrix Z ∈ Rd×d with Zi,j ∼ N (0, σ2
3) independently.

Output ĤP = H + 1√
2
(Z + ZT ).

The symmetric random matrix 1√
2
(Z + ZT ) is known as the Gaussian Orthogonal

Ensemble (GOE) and well-studied in the random matrix theory. We will first show this

this mechanism obeys DP and pDP.

Theorem A.4.1. Algorithm 11 satisfies pDP with

ϵ(·) = ∥Hx∥2F
4σ2

3

+
∥Hx∥F

√
2 log(1/δ)√
2σ3

,

and Ĥp satisfies ex post pDP of the same ϵ with probability 1 − 2δ. If in addition

supx∈X ∥Hx∥F ≤ β then, Algorithm 11 satisfies (ϵ, δ)-DP with

ϵ ≤ β2

4σ2
3

+
β
√

2 log(1/δ)√
2σ3

.

Improvements over “Analyze Gauss”. Notice that if we choose σ3 to be 1/
√
2 of

the noise scale with used in the standard “Analyze Gauss”, we will be adding the same

amount of noise on the diagonal, achieve the same DP and pDP bounds, while adding

noise with only half the variance in the off-diagonal elements. The idea is to add noise

with respect to the natural geometry of the sensitivity, as we illustrate in the proof.

Proof. Algorithm 11 is equivalent to releasing the vector [f1, f2] using a standard Gaussian

mechanism withN (0, σ2
3I d2

2
+d/2

), where f1 ∈ Rd is the diagonal of H/
√
2 and f2 ∈ R(d2−d)/2

is the vectorized the strict upper triangular part of H.
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The per-instance ℓ2-sensitivity of [f1, f2] is

∥∆x∥2 =
√ ∑

1≤i<j≤d

Hx[i, j]2 +
∑
k=1d

Hx[k, k]2(1/
√
2)2

=

√√√√1

2

( ∑
1≤i<j≤d

Hx[i, j]2 +
∑

1≤j<i≤d

Hx[i, j]2 +
∑
k=1d

Hx[k, k]2

)

=
1√
2
∥Hx∥F

The result then follows from an application of the pDP computation of the Gaussian

mechanism.

A.4.1 Exact statistical inference with the Gaussian Orthogonal

Ensemble

Besides a constant improvement in the required noise, another major advantage of

using the Gaussian Orthogonal Ensemble is that we know the exact distribution of its

eigenvalues (Chiani, 2014) which makes statistical inference, e.g., constructing confidence

intervals, easy and constant-tight.

Lemma A.4.2 (Largest singular value of Gaussian random matrix (Rudelson and Vershynin,

2010, Equation (2.4))). Let A ∈ Rd×d be a random matrix with i.i.d. σ2-subgaussian

entries, then there exists universal constants C, c such that for all t > 0

P[smax(A) ≥ (2 + t)
√
dσ2] ≤ Ce−cdt3/2 .

i.e., with probability 1− δ

∥A∥2 ≤
(
2 +

((log(C/δ))
cd

)2/3)√
dσ2.
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Notice that the symmetric matrix, i.e., Gaussian orthogonal ensemble is identically

distributed to 1√
2
(Z + ZT ) where Z is a iid Gaussian random matrix, thus by triangular

inequality, we have

Lemma A.4.3 (Largest eigenvalue of Gaussian orthogonal ensemble). Let A be a Gaussian

orthogonal ensemble (i.e., a symmetric random matrix with N (0, σ2) on the off-diagonal

and N (0, 2σ2) on the diagonal), with probability 1− δ,

∥A∥2 ≤
√
2

(
2 +

((log(C/δ))
cd

)2/3)√
dσ2.

Proof. The proof follows from triangular inequality of the spectral norm.

The above bound is asymptotic and we will use it for deriving the theoretical results.

For practical computation, the the exact formula of the CDF of the largest eigenvalue of

GOE matrices is given by (Chiani, 2014, Theorem 2). We could use this to bound the

spectral norm of the noise added to Algorithm 11.

Lemma A.4.4. Let A be described as in Lemma A.4.3.

∥A∥2 ≤ σF−1
λ1 of GOE(1− ρ/2)

where Fλ1 of GOE is the CDF of the largest eigenvalue of the standard GOE matrix with

constructed by 1√
2
(Z+ZT ) where each element of matrix Z is drawn i.i.d. from a standard

gaussian.

Proof. Notice that the GOE matrix is symmetric, so the largest eigenvalue λ1 and the

negative of the smallest eigenvalue −λd are identically distributed. Thus the operator

norm ∥A∥2 ≤ max{|λ1|, |λd|} ≤ F−1
λ1 of GOE(1− ρ/2) with probability 1− ρ.
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Numerical computation: Chiani (2014, Theorem 2) characterized the distribution of

λ1 and provided an exact analytical formula with stable numerical implementation to

compute Fλ1 of GOE. Thus F−1
λ1 of GOE can be evaluated using a binary search.

Using the Mathematica implementation provided by (Chiani, 2014), we find that

F−1
λ1 of GOE(50)(1 − ρ/2) = 12 for ρ = 8.465 × 10−6. Therefore in our experiments with

d = 50, we choose τ ≈ 12.

Explain how we got that 1.7
√
d constant here (what is the corresponding ρ when we

choose 1.7?). The author has also provided a Mathematica implementation. I don’t have

one installed but I think UCSB has it for free for students. I think it will be an ease of mind

if we can try running the authors’ implementation to figure out and comment here that we

got this number not just from the figure but also from the author’s provided code. You may

find the code here https://sites.google.com/site/marcochianigroup/articles

This is of a slightly lower-priority, but I think we should provide an implementation of

this in python and make it available. A general inference tool for the GOE-Analyze-Gauss

is very useful.

A.5 Omitted Proofs

With the two technical components presented, we are now ready to present the detailed

proofs of our main results: Theorem 2.3.1 and Theorem 2.3.5.

A.5.1 Proofs for the pDP analysis of objective perturbation

appendix/proofs/pdpalg1proof

Proof of Theorem 2.3.3. Using the eigendecomposition ∇2ℓ(θ̂P ; z) =
∑d

k=1 λkuku
T
k , for
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0 ≤ j ≤ d we have that

µj(x) =


λju

T
j

(
−∇2L(θ̂P ;D)− λId −∇2r(θ̂P )−∑j−1

k=1 λkuku
T
k

)−1

uj if z /∈ D

λju
T
j

(
− ∑

zi∈D
zi ̸=z

∇2ℓ(θ̂P ; zi)− λId −∇2r(θ̂P )−∑d
k=j λkuku

T
k

)−1

uj if z ∈ D.

:=


λju

T
j H

−1
+zuj if z /∈ D

λju
T
j H

−1
−zuj if z ∈ D.

The second equality introduces the shorthand µj(x) := λju
T
j H

−1
±zuj. Observe that

∇2ℓ(θ̂P ; zi),∇2r(θ̂P ) ∈ Rd×d are positive semi-definite, since ℓ(·) and r(θ) by assumption

are convex functions with continuous second-order partial derivatives. Since ∇2ℓ(θ̂P ; zi)

is PSD, its eigenvalues are non-negative and so λk ≥ 0 for all 0 ≤ k ≤ d. Then for any

x ∈ Rd, xTuku
T
k x = (xTuk)

2 ≥ 0. So uku
T
k is also PSD, and we then have that H+z + λId

and H−z + λId are both negative semi-definite. Therefore, H±z ≺ −λId and after taking

the inverse, we see that µj(x) ≤ −λj

λ
≤ 0 or equivalently −µj(x) ≥ λj

λ
≥ 0.

For −1 < µj(x) ≤ 0, we have that

∣∣− log(1− µj(x))
∣∣ = log(1 + (−µj(x)))

≤ −µj(x)

≤ − log(1 + µj(x))

=
∣∣− log(1 + µj(x))

∣∣
≤ − log(1− λj

λ
).

The rest of the proof follows from converting the log-product into a sum of logs. For a linear

loss function ℓ(θ; z) = f(xT θ; y), the simplified bound can be achieved due to the rank-one
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Hessian ∇2ℓ(θ̂P ; z) = f ′′(xT θ; y)xxT whose only eigenvalue is λ1 = f ′′(xT θ̂P ; y)||x||22.

Proof of Theorem 2.3.4. By Holder’s inequality,

∣∣∣∇J(θ̂P ;D)∇ℓ(θ̂P ; z)
∣∣∣ ≤ ||∇J(θ̂P ;D)||∞||ℓ(θ̂P ; z)||1.

Recall from (??) that ∇J(θ̂P ;D) = −b(θ̂P ;D). Therefore ||∇J(θ̂P )||∞ = max
i∈[d]
|bi|, where

bi ∼ N (0, σ2). Applying a union bound and using the standard Gaussian tail bound,

Pr
[
max
i∈[d]
|bi| ≥ t

]
= Pr

[⋃
i

|bi| ≥ t

]

≤
∑
i∈[d]

Pr
[
|bi| ≥ t

]
≤ 2de−

t2

2σ2 .

So with probability 1− ρ, we have ||∇J(θ̂P ;D)||∞ ≤ σ
√

2 log(2d/ρ). The stronger bound

for linear loss functions comes from substituting ||∇ℓ(θ̂P )||1 = f ′(xT θ; y)||x||1.

A.5.2 Proofs for the Privacy Report in the main paper

The proof of Theorem 2.3.5 relies on the following intermediate result.

Proposition A.5.1 (Uniform multiplicative approximation). If λmin(H) ≥ 2σ2F
−1
λ1(GOE(d))(1−

ρ/2), then with probability 1− ρ, for all x ∈ Rd simultaneously

1

2
xT (ĤP )−1x ≤ xTH−1x ≤ 3

2
xT (ĤP )−1x.

Proof. By the choice of τ = F−1
λ1(GOE(d))(1− ρ/2), with probability 1− ρ, the noise matrix

Z from the release of ĤP satisfies that ∥Z∥2 ≤ σ2τ ≤ λmin/2. Thus −H
2
≺ −λmin

2
Id ≺
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Z ≺ λmin

2
Id ≺ H

2
. Adding H on both sides

H

2
≺ H + Z ≺ 3H

2

which implies that
2

3
H−1 ≤ (H + Z)−1 ≺ 2H−1.

By definition of semidefinite ordering, for all x ∈ Rd

2

3
xTH−1x ≤ xT (H + Z)−1x ≤ 2xTH−1x.

In other word, 1
2
µ̂p
1(x) ≤ µ1(x) ≤ 3

2
µ̂p
1(x).

Proof of Theorem 2.3.5. The privacy guarantees (Statement 1-3) follow directly from the

pDP analysis in Theorem A.4.1 that analyzes the release of H by adding a GOE noise

matrix and the Gaussian mechanism that releases g.

By the result follows from Proposition A.5.1 we know that with probability 1− ρ, for

all x

µ(x) ≤ 3

2
µ̂p(x) ≤ 3µ(x)

For all a ≥ −1 a
1+a
≤ log(1 + a) ≤ a. Recall that β ≥ supz ∥∇2ℓ(θ̂p; z)∥2. By our

condition that λ > 2β, as well as the pointwise minimum in the construction of µp, we

have that f ′′µp ≤ 1
2

and

f ′′µp

2
≤ max{log(1 + f ′′µp),− log(1− f ′′µp} ≤ 2f ′′µp.

Thus

log(1+f ′′µ) ≤ f ′′µ ≤ f ′′µp ≤ 2 log(1+f ′′µp) ≤ 2f ′′µp ≤ 3f ′′µ̂p ≤ 6f ′′µ ≤ 12 log(1+f ′′µ),
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and similarly

− log(1−f ′′µ) ≤ 2f ′′µ ≤ 2f ′′µp ≤ −2 log(1−f ′′µp) ≤ 4f ′′µp ≤ 6f ′′µ̂p ≤ 12f ′′µ ≤ −12 log(1−f ′′µ).

This concludes the factor 12 multiplicative approximation in the first term of ϵ1(·). The

second term of ϵ1(·) does not involve an approximation. The third term of ϵ1(·) is random

and the bound is off by an additive factor of min{σ, σ2}|f ′(·)|∥x∥2
√
2 log(2/ρ) — via the

smaller of the data-dependent bound and the data-independent bound, each holds with

probability 1− ρ/2.

A.6 pDP Analysis of the Gaussian mechanism

Theorem A.6.1 (ex-post pDP of Gaussian mechanism). Let Q : Z∗ → Rd be a function

of the data. Let |Q(D±z) − Q(D)| ≤ ∆z. Then the Gaussian mechanism that releases

o ∼ Q(D) +N (0, σ2Id) obeys ex-post pDP with

ϵ(o,D,Dz) =

∣∣∣∣∥∆z∥2
2σ2

− ∆T
z (o−Q(D))

σ2

∣∣∣∣ .
Proof. We can directly calculate the log-odds ratio:

1

2σ2

(
∥o−Q(D)∥2 − ∥o−Q(D±z)∥2

)
=

1

2σ2

(
(Q(D±z)−Q(D))T (2o−Q(D)−Q(D±z))

)
=

1

2σ2

(
∆T

z (2o− 2Q(D)−∆z)
)

=
−∥∆z∥2
2σ2

+
∆T

z (o−Q(D))

σ2
.

The proof is complete by taking the absolute value.
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Corollary A.6.2 (pDP bound and high-probability ex-post pDP of Gaussian mechanism).

Let Φ be the cumulative distribution function (CDF) of a standard normal random variable.

The Gaussian mechanism that releases o ∼ Q(D)+N (0, σ2Id) satisfies dataset independent

pDP bound with

ϵ(D,D±z) ≤
∥∆z∥2
2σ2

+
∥∆z∥Φ−1(1− δ)

σ
≤ ∥∆z∥2

2σ2
+
∥∆z∥Φ−1(1− δ)

σ
.

Moreoever, with probability at least 1− ρ over the distribution of the randomized output o,

the Gaussian mechanism satisfies obeys the following dataset-independent ex post pDP

bound

ϵ(o,D,D±z) ≤
∥∆z∥2
2σ2

+
∥∆z∥Φ−1(1− ρ/2)

σ
≤ ∥∆z∥2

2σ2
+
∥∆z∥

√
2 log(2/ρ)

σ
. (A.6.1)

Proof. Since o ∼ Q(D)+N (0, σ2Id), we have ∆T
z (o−Q(D)) ∼ N (0, σ2∥∆z∥2). The results

of pDP follows from the tailbound of the privacy loss random variable and Lemma A.7.4.

For the high-probability bound of the ex post pDP, we need to bound both sides of the

privacy loss random variable. It suffices to show that the absolute value of the added noise

is bounded with a union bound on the two-sided tails, each with probability 1− ρ/2.

A tighter pDP bound can be obtained using the analytical Gaussian mechanism (Balle

and Wang, 2018). We choose to present the tail bound-based formula above for the

interpretability of the results.
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A.7 Technical Lemmas

Lemma A.7.1 (Sherman-Morrison-Woodbury Formula). Let A,U,C, V be matrices of

compatible size. Assuming A,C and C−1 + V A−1U are all invertible, then

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1.

Lemma A.7.2 (Determinant of Rank-1 perturbation). For invertible matrix A and vector

c, d of compatible dimension

det(A+ cdT ) = det(A)(1 + dTA−1c).

Lemma A.7.3 (Gaussian tail bound). Let X ∼ N (0, σ2). Then

P(X > σϵ) ≤ e−ϵ2/2

ϵ
.

A convenient alternative representation (slightly weaker) is

P(X > σ
√

2 log(1/δ)) ≤ δ,

and

P(|X| > σ
√

2 log(2/δ)) ≤ δ.

for all δ > 0.

Lemma A.7.4 (Tail bound to (ϵ, δ)-DP conversion). Let ϵ(o) = log( p(o)
p′(o)

) where p and p′

are densities of θ. If

Pp(ϵ(o) > ϵ) ≤ δ
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then for any measurable set S

Pp(θ ∈ S) ≤ eϵPp′(θ ∈ S) + δ.

Two useful applications of this result for DP are:

1. if Pp(ϵ(o) > ϵ) ≤ δ for all pairs of neighboring dataset D,D′ such that p = A(D), p′ =

A(D′) then A is (ϵ, δ)-DP.

2. If D′ = D±z, p = A(D), p′ = A(D±z) and that Pp(ϵ(o) > ϵ) ≤ δ and Pp′(−ϵ(o) <

−ϵ) ≤ δ, then A satisfies (ϵ, δ)-pDP for individual z and dataset D.

Proof. Let E be the event that |ϵ(θ)| > t, by definition it implies that for any Ẽ ⊂ E,

Pp(θ ∈ Ẽ) ≤ etPp′(θ ∈ Ẽ). Now consider any measurable set S:

Pp(θ ∈ S) = Pp(θ ∈ S ∩ Ec) + Pp(θ ∈ S ∩ E)

≤ Pp′(θ ∈ S ∩ Ec)et + Pp(θ ∈ E) ≤ etPp′(θ ∈ S) + δ.

The two applications follow directly from the definitions of (ϵ, δ)-DP and pDP.

Lemma A.7.5 (maximum of subgaussian). Let X1, ..., Xn be iid σ2-subgaussian random

variables.

P[max
i

Xi ≥
√
2σ2(log n+ t)] ≤ e−t.

Proof. The proof is by standard subgaussian concentration and union bound.

Lemma A.7.6 (Weyl’s theorem; Theorem 4.11, p. 204 in Stewart (1990)). . Let A,E be

given m× n matrices with m ≥ n, then

max
i∈[n]
|σi(A)− σi(A+ E)| ≤ ∥E∥2 (A.7.1)
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Lemma A.7.7 ("Change-of-variables" for density functions). Let g : Rd → Rd be a bijective

and differentiable function, and let X, Y be continuous random variables in Rd related by

the transformation Y = g(X). Then the probability density of Y is

fY (y) = fX(g
−1(y))

∣∣∣∣det [∂g−1(y)

∂y

]∣∣∣∣ ,
with

[
∂g−1(y)

∂y

]
denoting the d× d Jacobian matrix of the mapping X = g−1(Y ).

Lemma A.7.8. (Billboard lemma) Suppose A : D → R satisfies (ϵ, δ) differential privacy.

Consider any set of functions fi : Di ×R → R, where Di is the portion of the dataset

containing individual i’s data. The composition {fi(ΠiD,A(D))} satisfies (ϵ, δ)-joint

differential privacy, where Πi : D → Di is the projection to individual i’s data.
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B.1 Summary of PTR Variants

PTR Generalized PTR

Private Test Test ∆LS ≤ β for a proposed
bound β, then add noise ∝ β if
the test passes (Vadhan, 2017,
Sec 3.2).

Test ϵϕ ≤ ϵ for a proposed pa-
rameter ϕ, then runMϕ if the
test passes (Alg 4)

Private point-
wise bounds no analogous algorithm

Release ϵ̄ s.t. ϵϕ ≤ ϵ̄ for a fixed
ϕ w.h.p. for general random-
ized mechanismMϕ, then run
Mϕ if ϵ̄ ≤ ϵ (Alg 4).

Private uni-
form bounds

Release ∆̄ s.t. ∆LS ≤ ∆̄ w.h.p
for a noise-adding mechanism
with noise ∝ ∆̄ (Vadhan, 2017,
Sec 3.4). (Choose appropriate
noise level σ, no ⊥.)

Release ϵ̄ϕ s.t. ϵϕ ≤ ϵ̄ϕ for all
ϕ w.h.p. for general random-
ized mechanismMϕ (Choose
appropriate ϕ, no ⊥, as in
Alg 12)

Stability-
based

Test ∆LS = 0 before releas-
ing stable numerical value de-
terministically (Vadhan, 2017,
Sec 3.3).

Test ϵϕ = 0 before releasing
stable general output deter-
ministically (special case of
Alg 4).

What to pro-
pose?

Select β ∈ {β1, ..., βM} s.t.
∆LS ≤ β passes the test (using
e.g. AboveThreshold)1

Select ϕ ∈ {ϕ1, ..., ϕM}, s.t. ϵϕ
passes the test (using private
selection as in Alg 5).

108



Supplementary Material for Chapter 3 Chapter B

The table above compares our generalization to the standard variants of PTR. Vanilla

PTR, typically implemented using a distance test, was proposed originally in Dwork and

Lei (2009). The stability-based argument was originally proposed by Thakurta and Smith

(2013). We are citing the book of Vadhan (2017) for a clean treatment to these PTR-like

mechanisms. The corresponding generalized version are from this paper.

B.2 Omitted algorithms and proofs in Section 3.5

B.2.1 Main privacy result of Theorem 3.5.3

Proof of Theorem 3.5.3. The proof of our main privacy result relies on two central prop-

erties of differential privacy: composition and immunity to post-processing. We review

these below.

Theorem B.2.1 (Composition (Dwork et al., 2014a)). For i ∈ [k], let Mi : Z → Ri be a

randomized algorithm satisfying (ϵi, δi)-DP. Define the mechanism M : Z →∏k
i=1Ri as

M(Z) = (M1(Z),M2(Z), . . . ,Mk(Z)). Then M satisfies
(∑k

i=1 ϵi,
∑k

i=1 δi

)
-DP.

Theorem B.2.2 (Closure under post-processing (Dwork et al., 2014a)). Consider a mech-

anism M : Z → R that satisfies (ϵ, δ)-DP. Let f : R → R′ be a data-independent

(randomized or deterministic) mapping. Then f ◦M satisfies (ϵ, δ)-DP.

LetM denote the mechanism described in Algorithm 4. We split the input space X into

two cases.

Case I: ϵϕ(X) > ϵ

We restrict the input space to X̃ = {X ∈ X | ϵϕ(X) > ϵ}, forM : X̃ → R ∪ {⊥}. Let E

be the event T (X) = 1 and consider a possible output set S ⊆ R∪ {⊥}. Recall that the
1This is probably folklore. We could not find the particular approach with AboveThreshold presented

in the literature — the original PTR work by Dwork and Lei (2009) uses composition, thus depends on
poly(M), while using AboveThreshold (or our approach with general DP selection) incurs only log(M).
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test T satisfies (ϵ̂, δ̂)-DP.

When ⊥∈ S,

Pr
[
M(X) ∈ S ∩ EC

]
= Pr [T (X) = 0]

≤ eϵ̂Pr [T (X ′) = 0] + δ̂

= eϵ̂Pr
[
M(X ′) ∈ S ∩ EC

]
+ δ̂.

This inequality also holds true when ⊥/∈ S, in which event Pr
[
M(X) ∈ S ∩ EC

]
=

Pr
[
M(X ′) ∈ S ∩ EC

]
= 0.

From the assumption of Theorem 3.5.3 on the test T , Pr [E] = Pr [T (X) = 1] ≤ δ′. So

Pr [M(X) ∈ S ∩ E] ≤ Pr [E] ≤ δ′.

Putting these together, we have

Pr [M(X) ∈ S] = Pr
[
M(X) ∈ S ∩ EC

]
+ Pr [M(X) ∈ S ∩ E]

≤ eϵ̂Pr
[
M(X ′) ∈ S ∩ EC

]
+ δ̂ + δ′

≤ eϵ̂Pr [M(X ′) ∈ S] + δ̂ + δ′.

Case II: ϵϕ(X) ≤ ϵ

ConsiderM : ˜̃X → R∪{⊥}, with the input space restricted to ˜̃X = {X ∈ X | ϵϕ(X) ≤ ϵ}.

Since Mϕ satisfies (ϵϕ(X), δ) data-dependent DP for dataset X, for any neighboring

dataset X ′ and output set Θ ⊆ R we have

Pr [Mϕ(X) ∈ Θ] ≤ eϵϕ(X)Pr [Mϕ(X
′) ∈ Θ] + δ,

Pr [Mϕ(X
′) ∈ Θ] ≤ eϵϕ(X)Pr [Mϕ(X) ∈ Θ] + δ.
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By the assumption ϵϕ(X) ≤ ϵ,

Pr [Mϕ(X) ∈ Θ] ≤ eϵPr [Mϕ(X
′) ∈ Θ] + δ,

Pr [Mϕ(X
′) ∈ Θ] ≤ eϵPr [Mϕ(X) ∈ Θ] + δ.

Therefore the mechanismMϕ : ˜̃X → R satisfies (ϵ, δ)-DP.

Now consider an “expanded” mechanismM∗(X) = (T (X),Mϕ(X)) that differs fromM

by releasing both the test output and the parameterized mechanism output. Instead

of post-processing the test output to determine whether to run Mϕ, the mechanism

M∗ runsMϕ(X) regardless of the outcome of T (X). Define a post-processing function

P : {0, 1} ×R → R∪ {⊥} as follows:

P(T, θ) =


⊥ if T = 0,

θ if T = 1.

By composition (Theorem B.2.1), the expanded mechanismM∗ satisfies (ϵ̂+ ϵ, δ̂ + δ)-DP.

WritingM = P ◦M∗, by closure to post-processing (Theorem B.2.2) we see thatM also

satisfies (ϵ̂+ ϵ, δ̂ + δ)-DP. △

To complete the proof, we recall that X = X̃ ∪ ˜̃X. So combining the two cases (and

restoring the input space), the mechanism M : X → R ∪ {⊥} satisfies (ϵ∗, δ∗)-DP for

ϵ∗ = max(ϵ̂, ϵ+ ϵ̂) = ϵ+ ϵ̂ and δ∗ = max(δ̂ + δ′, δ + δ̂) = δ̂ +max(δ′, δ) ≤ δ + δ̂ + δ′.

B.2.2 Utility guarantee of Algorithm 5

The utility of Algorithm 5 depends on how many rounds that Algorithm 4 is invoked.

We next provide the utility guarantee of Algorithm 5, which follows a simplification of

the result in the Section A.2 of Papernot and Steinke (2021).
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Theorem B.2.3. Suppose applying Algorithm 4 with each ϕi has an equal probability to

achieve the highest validation score. Let T̂ denotes the number of invocation of Algorithm 4,

where T̂ follows a truncated geometric distribution. Then the expected quantile of the

highest score candidate is given by ET̂

[
1− 1

T̂+1

]
.

In practice, we can roughly set τ = 1
10k

so that the algorithm is likely to test all k

parameters.

Proof. Suppose each oracle access to Q(X) has a probability 1/k of achiving the best

validation accuracy. Let β denote the probability that A (shorthand for Algorithm 5)

outputs the best choice of ϕi.

β = 1− [A(X)is not best]

= 1− ET̂

[
[Q(X)is not best]T̂

]
= 1− ET̂

[
(1− 1

k
)T̂
]
.

Let f(x) = E[xT̂ ]. Applying a first-order approximation on f(1− 1
k
), we have f(1− 1

k
) ≈

f(1)− f ′(1) · 1
k
= 1−E[T̂ ]/k. Then, if k is large and we choose τ = 0.1/k, A can roughly

return the best ϕi.

B.2.3 Avoid hyperparameter selection with a uniform bound

The sufficient statistics of ϵϕ(X) are sometimes independent to ϕ. In this case,

the resulting ϵPϕ (X) from Approach 1 above is a valid upper bound of ϵϕ(X) for all ϕ

simultaneously with high probability. In this case, we can directly choose a valid ϕ using

the uniform upper bound, rather than proposing one as Algorithm 4, while avoiding

hyperparameter selection all together as in Algorithm 5. The procedure is summarized
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in Algorithm 12. This subsumes the classical procedure for privately releasing an upper

bound of the local sensitivity (Vadhan, 2017, Section 3.4).

There are also cases where the bound is only partially uniform over some coordinates

of ϕ. In these cases, Algorithm 12 can be used to reduce the dimension of the search

space in Algorithm 5 (e.g., Example 3.6.2).

Algorithm 12 Generalized PTR with Uniform bound

1: Input: Dataset X; mechanism Mϕ : X → R and its privacy budget ϵ, δ; (ϵ̂, δ̂)-DP

algorithm A that outputs ϵ̄(·) such that ϵ̄(ϕ) ≥ ϵϕ(X)∀ϕ with probability 1−δ′, where

ϵϕ(X) is the data-dependent DP w.r.t. δ.

2: Release ϵ̄(·) = A(X).

3: Choose ϕ such that ϵ̄(ϕ) ≤ ϵ

4: Release θ =Mϕ(X).

Theorem B.2.4. Algorithm 12 satisfies (ϵ+ ϵ̂, δ + δ̂ + δ′)-DP.

Proof. LetM : X → R denote the mechanism described in Algorithm 12.

We viewM as a composition of two parts: an (ϵ̂, δ̂)-DP algorithm A and the release

of θ =Mϕ(X). First of all, note that A outputs ϵ̄(·) such that for all ϕ, ϵ̄ ≥ ϵϕ(X) with

probability at least 1 − δ′. Let E denote the event that ϵϕ(X) ≤ ϵ̄, and observe that

[EC ] ≤ δ′.
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Then we have

[Mϕ(X) ∈ S] = [Mϕ(X) ∈ S | E] + [Mϕ(X) ∈ S | Ec] (B.2.1)

≤ [Mϕ(X) ∈ S | E] + δ′ (B.2.2)

≤ eϵ̄(ϕ)[Mϕ(X
′) ∈ S | E] + δ′ + δ (B.2.3)

≤ eϵ̄(ϕ)[Mϕ(X
′) ∈ S] + δ′ + δ (B.2.4)

≤ eϵ[Mϕ(X
′) ∈ S] + δ′ + δ. (B.2.5)

The inequality holds for both directions (i.e., we can swap X and X ′).

The second inequality comes from the definition of ϵ̄(ϕ) and the last inequality is

because we have conditioned on event E which ensures that ϵ̄(ϕ) ≤ ϵ.

Finally, by the composition theorem over algorithm A and Mϕ, we have that M

satisfies (ϵ+ ϵ̂, δ̂ + δ + δ′)-DP.

B.2.4 RDP analysis of generalized PTR

Algorithm 13 Generalized Propose-Test-Release with RDP
1: Input: Dataset X; the RDP parameter α, mechanism Mϕ : X → R that satisfies

(α, ϵ̃(α))-RDP and its RDP budget ϵ(α); An (α, ϵ̂(α))-RDP test T ; false positive rate

≤ δ′; data-dependent RDP function ϵϕ(α,X) w.r.t. α.

2: if not T (X) then output ⊥,

3: else release θ =Mϕ(X).

Theorem B.2.5 (Privacy guarantee of generalized PTR with RDP). Consider a proposal

ϕ and a data-dependent RDP function ϵϕ(α,X) w.r.t. α. Suppose that Mϕ satisfies
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(α, ϵ̃(α))-RDP for every dataset and we have an (α, ϵ̂(α))-RDP test T : X → {0, 1} such

that when ϵϕ(α,X) > ϵ(α),

T (X) =


0 with probability 1− δ′,

1 with probability δ′.

Then Algorithm 4 satisfies (α, ϵ̂(α) + 1
α−1

log

(
δ′e(α−1)ϵ̃(α) + (1− δ′)e(α−1)ϵ(α)

)
)-RDP.

Proof. We can view Algorithm 4 as a composition of two part: an (α, ϵ̂)-RDP test and

a decision of whether or not running θ =Mϕ(X) based on the output of the test. Let

M : X → {R,⊥} denote the randomized algorithm of the second part, where we use

P,Q to denote the distribution ofM(X) andM(X ′) respectively. Let E denote the false

positive event of the test T : the test passes but ϵ(α,X) > ϵ(α).

We have

EQ[(dP/dQ)α] = EQ[(dP/dQ)α|E]PQ[E] + EQ[(dP/dQ)α|Ec]PQ(E
c)

≤ δ′e(α−1)ϵ̃(α) + (1− δ′)e(α−1)ϵ(α)

The inequality uses the fact thatMϕ(·) satisfies (α, ϵ̃(α))-RDP for all datasets and includes

the event of E. Therefore,M satisfies (α, 1
α−1

log

(
δ′e(α−1)ϵ̃(α) + (1− δ′)e(α−1)ϵ(α)

)
-RDP.

Finally, we conclude the proof using the composition rule of RDP over two parts.

B.3 Omitted examples in the main body

In this section, we provide more examples to demonstrate the merits of generalized

PTR. We focus on a simple example of post-processed Laplace mechanism in Section B.3.1

and then an example on differentially private learning of generalized linear models in
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Section 3.5. In both cases, we observe that generalized PTR provides data-adaptive

algorithms with formal DP guarantees that are simple, effective and not previously

proposed in the literature (to the best of our knowledge).

B.3.1 Limits of the classic PTR in private binary voting

The following example demonstrates that classic PTR does not capture sufficient

data-dependent quantities even when the local sensitivity exists and can be efficiently

tested.

Example B.3.1. Consider a binary class voting problem: n users vote for a binary class

{0, 1} and the goal is to output the class that is supported by the majority. Let ni denote the

number of people who vote for the class i. We consider the report-noisy-max mechanism:

M(X) : argmaxi∈[0,1]ni(X) + Lap(b),

where b = 1/ϵ denotes the scale of Laplace noise.

In the example, we will (1) demonstrate the merit of data-dependent DP; and (2)

empirically compare classic PTR with generalized PTR.

We first explicitly state the data-dependent DP.

Theorem B.3.2. The data-dependent DP of the above example is

ϵ(X) := max
X′
{| log p

p′
|, | log 1− p

1− p′
|},

where p := Pr[n0(X) + Lap(1/ϵ) > n1(X) + Lap(1/ϵ)] and p′ := Pr[n0(X
′) + Lap(1/ϵ) >

n1(X
′)+Lap(1/ϵ)]. There are four possible neighboring datasets X ′ : n0(X

′) = max(n0(X)±

1, 0), n1(X
′) = n1(X) or n0(X

′) = n0(X), n1(X
′) = max(n1(X)± 1, 0).
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In Figure B.1 (a), we empirically compare the above data-dependent DP with the

Laplace mechanism by varying the gap between the two vote counts |n0(X) − n1(X)|.

The noise scale is fixed to ϵ = 10. The data-dependent DP substantially improves over

the standard DP if the gap is large. However, the data-dependent DP is a function

of the dataset. We next demonstrate how to apply generalized PTR to exploit the

data-dependent DP.

Notice that the probability n0(X) + Lap(1/ϵ) > n1(X) + Lap(1/ϵ) is equal to the

probability that a random variable Z := X − Y exceeds ϵ(n1(X)− n0(X)), where X, Y

are two independent Lap(1) distributions. We can compute the pdf of Z through the

convolution of two Laplace distributions, which implies fX−Y (z) =
1 + |z|
4e|z|

. Let t denote

the difference between n1(X) and n0(X), i.e., t = n1(X)− n0(X). Then we have

p = [Z > ϵ · t] = 2 + ϵ · t
4 exp(ϵ · t)

Similarly, p′ =
2 + ϵ · (t+ ℓ)

4 exp(ϵ · (t+ ℓ))
, where ℓ ∈ [−1, 1] denotes adding or removing one data

point to construct the neighboring dataset X ′. Therefore, we can upper bound log(p/p′)

by

log
p

p′
=

2 + ϵ · t
4 exp(ϵ · t) ·

4 exp(ϵ(t+ ℓ))

2 + ϵ · (t+ ℓ)

≤ ϵ · log
(

2 + ϵt

2 + ϵ(t+ 1)

)
= ϵ log

(
1− ϵ

2 + ϵ(t+ 1)

)

Then we can apply generalized PTR by privately lower-bounding t.

On the other hand, the local sensitivity ∆LS(X) of this noise-adding mechanism is

0 if t > 1. Specifically, if the gap is larger than one, adding or removing one user will
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not change the result. To apply classic PTR, we let γ(X) denote the distance to the

nearest dataset X
′′ such that ∆LS > 0 and test if γ(X) + Lap(1/ϵ) > log(1/δ)

ϵ
. Notice in

this example that γ(X) = max(t − 1, 0) can be computed efficiently. We provide the

detailed implementation of these approaches.

1. Gen PTR: lower bound t with tp = t− log(1/δ)
ϵ̃

+Lap(1/ϵ̃). Calculate an upper bound

of data-dependent DP ϵp using Theorem B.3.2 with tp. The algorithm then tests if

ϵp is within an predefined privacy budget ϵ′. If the test passes, the algorithm returns

argmaxi∈[0,1]ni(X) + Lap(1/ϵ) satisfies (ϵ̃+ ϵ′, δ)-DP.

2. classic PTR: lower bound t with tp = t− log(1/δ)
ϵ̃

+ Lap(1/ϵ̃). If tp > 1, classic PTR

outputs the ground-truth result else returns a random class. This algorithm satisfies

(ϵ̃, δ)-DP.

3. Laplace mechanism. M(X) : argmaxi∈[0,1]ni(X) + Lap(1/ϵ). M is (ϵ, δ)-DP.

We argue that though the Gen-PTR and the classic PTR are similar in privately

lower-bounding the data-dependent quantity t, the latter does not capture sufficient

information for data-adaptive analysis. That is to say, only testing the local sensitivity

restricts us from learning helpful information to amplify the privacy guarantee if the test

fails. In contrast, our generalized PTR, where privacy parameters and the local sensitivity

parameterize the data-dependent DP, can handle those failure cases nicely.

To confirm this conjecture, Figure B.1 (b) plots a privacy-utility trade-off curve

between these three approaches. We consider a voting example with n0(X) = n1(X)+100

and t = 100, chosen such that the data-adaptive analysis is favorable.

In Figure B.1 (b), we vary the noise scale b = 1/ϵ between [0, 0.5]. For each choice of

b, we plot the privacy guarantee of three algorithms when the error rate is aligned. For

Gen-PTR, we set ϵ̃ = 1
2b

and empirically calculate ϵp over 100000 trials.
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(b) Privacy-utility tradeoff between three approaches.

Figure B.1: Left: We compare the privacy guarantee by varying the gap. Right: We fix
t = n0(X) − n1(X) = 100 and compare the privacy cost when the accuracy is aligned.
Gen-PTR with any choice of privacy budget (ϵ̃+ ϵ′) chosen from the purple region would
achieve the same utility as Laplace mechanism but with a smaller privacy cost. The curve
of Gen-PTR is always below than that of the classic PTR, which implies that Gen-PTR
can result a tighter privacy analysis when the utility is aligned.

In the plot, when ϵ ≪ log(1/δ)
t

, the classic PTR is even worse than the Laplace

mechanism. This is because the classic PTR is likely to return ⊥ while the Laplace

mechanism returns argmaxi∈[0,1]ni(X)+Lap(1/ϵ), which contains more useful information.

Compared to the Laplace mechanism, Gen-PTR requires an extra privacy allocation ϵ̃ to

release the gap t. However, it still achieves an overall smaller privacy cost when the error

rate ≤ 10−5 (the purple region). Meanwhile, Gen-PTR dominates the classic PTR (i.e.,

the dashed black curve is always below the blue curve). Note that the classic PTR and

the Gen-PTR utilize the gap information differently: the classic PTR outputs ⊥ if the

gap is not sufficiently large, while the Gen-PTR encodes the gap into the data-dependent

DP function and tests the data-dependent DP in the end. This empirical result suggests

that testing the local sensitivity can be loosely compared to testing the data-dependent

DP. Thus, Gen-PTR could provide a better privacy-utility trade-off.
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B.3.2 Self-concordant generalized linear model (GLM)

In this section, we demonstrate the effectiveness and flexibility of generalized PTR in

handling a family of GLMs where the link function satisfies a self-concordance assumption.

This section is organized as follows:

• Introduce a family of GLMs with the self-concordance property.

• Introduce a general output perturbation algorithm for private GLMs.

• Analyze the data-dependent DP of GLMs with the self-concordance property.

• Provide an example of applying our generalized PTR framework to logistic regression.

Consider the empirical risk minimization problem of the generalized linear model

θ∗ = argmin
θ

∑
i=1n

li(θ) + r(θ),

where l : R × R → R belongs to a family of convex GLMs: li(θ) = l(y, xT
i θ). Let

r : Rd → R be a regularization function.

We now define the self-concordance property.

Definition B.3.3 (Generalized self-concordance (Bach, 2010)). A convex and three-times

differentiable function f : Θ→ R is R-generalized-self-concordant on an open nonempty

convex set Θ∗ ⊂ Θ with respect to norm ∥ · ∥ if for all u ∈ Θ∗ and all v ∈ Rd,

∇3f(u)[v, v, v] ≤ 2R∥v∥(∇2f(u)[v, v]).

The closer R is to 0, the “nicer” — more self-concordant — the function is. A

consequence of (generalized) self-concordance is the spectral (multiplicative) stability of

Hessian to small perturbations of parameters.
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Lemma B.3.4 (Stability of Hessian(Nesterov and Nemirovskii, 1994, Theorem 2.1.1),

(Bach, 2010, Proposition 1)). Let Hθ := ∇2Fs(θ). If Fs is R-self-concordant at θ, then

for any v such that R∥v∥Hθ
< 1, we have that

(1−R∥v∥Hθ
)2∇2Fs(θ) ≺ ∇2Fs(θ + v)

≺ 1

(1−R∥v∥Hθ
)2
∇2Fs(θ).

If instead we assume Fs is R-generalized-self-concordant at θ with respect to norm ∥ · ∥,

then

e−R∥v∥∇2Fs(θ) ≺ ∇2Fs(θ + v) ≺ eR∥v∥∇2Fs(θ)

The two bounds are almost identical when R∥v∥ and R∥v∥θ are close to 0. In particular,

for x ≤ 1/2, we have that e−2x ≤ 1− x ≤ e−x.

In particular, the loss function of binary logistic regression is 1-generalized self-

concordant.

Example B.3.5 (Binary logistic regression). Assume ∥x∥2 ≤ 1 for all x ∈ X and y ∈

{−1, 1}. Then binary logistic regression with datasets in X × Y has a log-likelihood of

F (θ) =
∑n

i=1 log(1 + e−yix
T
i θ). The univariate function l := log(1 + exp(·)) satisfies

|l′′′| =
∣∣∣∣exp (·)(1− exp (·))

(1 + exp (·))3
∣∣∣∣ ≤ exp (·)

(1 + exp (·))2 := l′′.

We next apply the modified output perturbation algorithm to privately release θ∗.

The algorithm is simply:

1. Solve

θ∗ = argmin
θ

n∑
i=1

li(θ) + r(θ).
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2. Release

θ̂ = θ∗ + Z,

where γ > 0 is a tuning parameter and Z ∼ N (0, γ−1(
∑n

i=1∇2li(θ) +∇2r(θ))−1).

The data-dependent DP of the above procedure is stated as follows.

Theorem B.3.6 (Data-dependent DP of GLM). Denote the smooth part of the loss function

Fs =
∑n

i=1 l(yi, < xi, · >) + rs(·). Assume the following:

1. The GLM loss function l is convex, three-times continuously differentiable and

R-generalized-self-concordant w.r.t. ∥ · ∥2,

2. Fs is locally α-strongly convex w.r.t. ∥ · ∥2,

3. and in addition, denote L := supθ∈[θ∗,θ̃∗] |l′(y, xT θ)|, β := supθ∈[θ∗,θ̃∗] |l′′(y, xT θ)|.

That is, ℓ(·) is L-Lipschitz and β-smooth.

We then have the data-dependent DP

ϵ(Z) ≤ R(L+ β)

α
(1 + log(2/δ)) +

γL2

α
+

√
γL2

α
log(2/δ).

The proof follows by taking an upper bound of the per-instance DP loss (Theorem B.3.6)

ϵ(Z, z) over z = (x, y) ∈ (X ,Y).

Notice that the Hessians can be arbitrarily singular and α could be 0, which leads to an

infinite privacy loss without additional assumptions. Thus, we will impose an additional

regularization of form λ
2
||θ||2, which ensures that for any dataset FS is λ-strongly convex.

This is not yet DP because it is still about a fixed dataset. We also need a pre-specified

privacy budget (ϵ, δ). We next demonstrate how to apply the generalized PTR to provide

a general solution to the above GLM, using logistic regression as an example.
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Remark B.3.7 (Logistic regression). For logistic regression, we know L ≤ 1, β ≤ 1/4

and if ∥x∥2 ≤ 1, it is 1-generalized self-concordant. For any dataset Z = (X, y), the

data-dependent DP ϵ(X) w.r.t. δ can be simplified to:

1.25

α
(1 + log(2/δ)) +

γ

α
+

√
γ

α
log(2/δ)

Now, the data-dependent DP is a function of α and γ, where α denotes the local

strong convexity at θ∗λ and γ controls the noise scale. We next show how to select these

two parameters adapted to the dataset.

Example B.3.8. We demonstrate here how we apply generalized PTR to output perturbation

of the logistic regression problem.

1. Take an exponential grid of parameters {λ} and propose each λ.

2. Solve for θ∗λ = argminθ F (θ) + λ∥θ∥2/2

3. Calculate the smallest eigenvalue λmin(∇2F (θ∗λ)) (e.g., using power method).

4. Differentially privately release λmin with λp
min := max{λmin +

√
log(4/δ)

ϵ/2
·∆GS · Z −√

2 log(4/δ)·log(1/δ)∆GS

ϵ/2
, 0}, where ∆GS denote the global sensitivity of λmin using Theo-

rem B.3.11.

5. Let ϵp(·) be instantiated with ϵ(X) w.r.t. δ from Remark B.3.7, where α = λp
min + λ.

Then, conditioned on a high probability event, ϵp(·) (a function of γ) is a valid DP

bound that holds for all datasets and all parameters γ.

6. Calculate the maximum γ such that ϵpδ/2(γ) ≤ ϵ/2.

7. Release θ̂ ∼ N (θ∗λ, γ
−1∇2Fs(θ

∗
λ)

−1).
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8. Evaluate the utility on the validation set and return the (λ, γ) pair that leads to the

highest utility.

Theorem B.3.9. For each proposed λ, the algorithm that releases θ̂ ∼ N (θ∗λ, γ
−1∇2Fs(θ

∗
λ)

−1)

is (ϵ, 2δ)-DP.

Proof. The proof follows the recipe of generalized PTR with private upper bound (Exam-

ple 3.5.7). First, the release of λmin(∇2F (θ∗λ)) is (ϵ/2, δ/2)-DP. Then, with probability at

least 1− δ, ϵpδ(·) > ϵδ(X) holds for all X and γ. Finally, γ is chosen such that the valid

upper bound is (ϵ/2, δ/2)-DP.

For the hyperparameter tuning on λ (Steps 1 and 8), we can use Algorithm 5 to

evaluate each λ.

Unlike Example 3.6.2, the λmin(∇2F (θ∗λ)) is a complicated data-dependent function of

λ. Thus, we cannot privately release the data-dependent quantity λmin(∇2F (θ∗λ)) without

an input λ. The PTR approach allows us to test a number of different λ and hence get a

more favorable privacy-utility trade-off.

An interesting perspective of this algorithm for logistic regression is that increasing

the regularization α is effectively increasing the number of data points within the soft

“margin”2 of separation, hence a larger contribution to the Hessian from the loss function.

Remark B.3.10. The PTR solution for GLMs follows a similar recipe: propose a regu-

larization strength λ; construct a lower bound of the strong convexity α at the optimal

solution θ∗λ; and test the validity of data-dependent DP using Theorem B.3.6.

Before moving on to other applications of generalized PTR, we will show how to

differentially privately release λmin according to the requirements of the logistic regression

example.
2If we think of logistic regression as a smoothed version of SVM, then increasing α leads to more

support vectors. The “margin” is “softer” in logistic regression, but qualitatively the same.
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B.3.3 Differentially privately release λmin

(
∇2F (θ)

)
To privately release λmin∇2F (θ), we first need to compute its global sensitivity. Once

we have that then we can release it differentially privately using either the Laplace

mechanism or the Gaussian mechanism.

Theorem B.3.11 (Global sensitivity of the minimum eigenvalue at the optimal solution).

Let F (θ) =
∑n

i=1 fi(θ) + r(θ) and F̃ (θ) = F (θ) + f(θ) where f1, ..., fn are loss functions

corresponding to a particular datapoint x. Let θ∗ = argminθ F (θ) and θ̃∗ = argminθ F̃ (θ).

Assume f is L-Lipschitz and β-smooth, r(θ) is λ-strongly convex, and F and F̃ are

R-self-concordant. If in addition, λ ≥ RL, then we have

sup
X,x

(λmin(∇2F (θ∗λ))− λmin(∇2F̃ (θ̃∗λ))) ≤ 2RL+ β.

Proof.

λmin(∇2F (θ∗λ))− λmin(∇2F̃ (θ̃∗λ))

= (λmin(∇2F (θ∗λ))− λmin(∇2F̃ (θ∗λ)))

+ (λmin(∇2F̃ (θ∗λ))− λmin(∇2F̃ (θ̃∗λ))).

(B.3.1)

We first bound the part on the left. By applying Weyl’s lemma λ(X + E)− λ(X) ≤

||E||2, we have

sup
x
||∇2F (θ∗λ)−∇2 ˜F (θ∗λ)||2 = ||∇2f(θ∗λ)||2 ≤ β (B.3.2)

In order to bound the part on the right, we apply the semidefinite ordering using self-

concordance, which gives

e−R∥θ̃∗λ−θ∗λ∥∇2F̃ (θ̃∗λ) ≺ ∇2F̃ (θ∗λ) ≺ eR∥θ̃∗λ−θ∗λ∥∇2F̃ (θ̃∗λ).
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By the Courant-Fischer Theorem and the monotonicity theorem, we also have that for

the smallest eigenvalue

e−R∥θ̃∗λ−θ∗λ∥λmin

(
∇2F̃ (θ̃∗λ)

)
≤ λmin

(
∇2F̃ (θ∗λ)

)
≤ eR∥θ̃∗λ−θ∗λ∥λmin

(
∇2F̃ (θ̃∗λ)

)
.

(B.3.3)

Moreover by Proposition B.3.12, we have that

∥θ̃∗λ − θ∗λ∥2 ≤
∥∇f(θ̃∗λ)∥

λmin

(
∇2F̃ (θ̃∗λ)

) ≤ L

λmin

(
∇2F̃ (θ̃∗λ)

) .
If λmin

(
∇2F̃ (θ̃∗λ)

)
≥ RL, then use that ex− 1 ≤ 2x for x ≤ 1. Substituting the above

bound to (B.3.3) then to (B.3.1) together with (B.3.2), we get a data-independent global

sensitivity bound of

λmin(∇2F (θ∗λ))− λmin(∇2F̃ (θ̃∗λ)) ≤ 2RL+ β

as stated.

Proposition B.3.12. Let ∥ · ∥ be a norm and ∥ · ∥∗ be its dual norm. Let F (θ), f(θ) and

F̃ (θ) = F (θ) + f(θ) be proper convex functions and θ∗ and ˜theta
∗

be their minimizers,

i.e., 0 ∈ ∂F (θ∗) and 0 ∈ ∂F̃ ( ˜theta
∗
). If in addition, F, F̃ is α, α̃-strongly convex with

respect to ∥ · ∥ within the restricted domain θ ∈ {tθ∗ + (1− t)θ̃∗ | t ∈ [0, 1]}. Then there

exists g ∈ ∂f(θ∗) and g̃ ∈ ∂f(θ̃∗) such that

∥θ∗ − θ̃∗∥ ≤ min

{
1

α
∥g̃∥∗,

1

α̃
∥g∥∗

}
.

Proof. Apply the first order condition to F restricted to the line segment between θ̃∗ and
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θ∗, we get

F (θ̃∗) ≥ F (θ∗) + ⟨∂F (θ∗), θ̃∗ − θ∗⟩+ α

2
∥θ̃∗ − θ∗∥2 (B.3.4)

F (θ∗) ≥ F (θ̃∗) + ⟨∂F (θ̃∗), θ∗ − θ̃∗⟩+ α

2
∥θ̃∗ − θ∗∥2 (B.3.5)

Note by the convexity of F and f , ∂F̃ = ∂F + ∂f , where + is the Minkowski Sum.

Therefore, 0 ∈ ∂F̃ (θ̃∗) implies that there exists g̃ such that g̃ ∈ ∂f(θ̃∗) and −g̃ ∈ ∂F (θ̃∗).

Take −g̃ ∈ ∂F (θ̃∗) in Equation B.3.5 and 0 ∈ ∂F (θ∗) in Equation B.3.4 and add the two

inequalities, we obtain

0 ≥ ⟨−g̃, θ∗ − θ̃∗⟩+ α∥θ̃∗ − θ∗∥2

≥ −∥g̃∥∗∥θ∗ − θ̃∗∥+ α∥θ̃∗ − θ∗∥2.

For ∥θ̃∗ − θ∗∥ = 0 the claim is trivially true; otherwise, we can divide both sides of the

above inequality by ∥θ̃∗ − θ∗∥ and get ∥θ∗ − θ̃∗∥ ≤ 1
α
∥g̃∥∗.

It remains to show that ∥θ∗− θ̃∗∥ ≤ 1
α̃
∥g∥∗. This can be obtained by exactly the same

arguments above but applying strong convexity to F̃ instead. Note that we can actually

get something slightly stronger than the statement because the inequality holds for all

g ∈ ∂f(θ∗).

B.3.4 Other applications of generalized PTR

Besides one-posterior sampling for GLMs, there are plenty of examples that our

generalized-PTR could be applied, e.g., DP-PCA (Dwork et al., 2014b) and Sparse-DP-

ERM (Kifer et al., 2012) (when the designed matrix is well-behaved).

(Dwork et al., 2014b) provides a PTR style privacy-preserving principle component

analysis (PCA). The key observation of (Dwork et al., 2014b) is that the local sensitivity
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is quite “small” if there is a large eigengap between the k-th and the k + 1-th eigenvalues.

Therefore, their approach (Algorithm 2) chooses to privately release a lower bound of the

k-th eigengap (k is fixed as an input) and use that to construct a high-confidence upper

bound of the local sensitivity.

For noise-adding mechanisms, the local sensitivity is proportional to the data-dependent

loss and generalized PTR is applicable. We can formulate the data-dependent DP of

DP-PCA as follows:

Theorem B.3.13. For a given matrix A ∈ Rm×n, assume each row of A has a bounded

ℓ2 norm being 1. Let Vk denotes the top k eigenvectors of ATA and dk denotes the gap

between the k-th and the k + 1-th eigenvalue. Then releasing VkV
T
k +E, where E ∈ Rn×n

is a symmetric matrix with the upper triangle is i.i.d samples from N (0, σ2) satisfies

(ϵ(A), δ) data-dependent DP and ϵ(A) =
2
√

log(1.25/δ)

σ(dk−2)
.

The proof is based on the local sensitivity result from (Dwork et al., 2014b) and the

noise calibration of Gaussian mechanism.

We can combine Theorem B.3.13 with our Algorithm 5 to instantiate the generalized

PTR framework. The improvement over Dwork et al. (2014b) will be to allow joint tuning

of the parameter k and the noise variance (added to the spectral gap dk).
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B.4 Experimental details

B.4.1 Experimental details in private linear regression

Algorithm 14 OPS-PTR for linear regression (an extended version of Example 3.6.2)
1: Input: Data Z = (X, Y ); proposed regularization strength λ; failure probabilities

δ′, δ′1, δ
′
2 such that δ′1 + δ′2 = δ′; privacy budgets (ϵ̂, δ̂) and (ϵ, δ); quality score q(·).

2: Calculate the minimum eigenvalue λmin(X) and the non-private solution θ∗λ = (XTX+

λI)−1XTY .

3: Release λmin and ∆ := log(||Y||+ ||X || ||θ∗λ|| with privacy budget (ϵ̂, δ̂) such that

• λP
min ≥ λmin with probability 1− δ′1; and

• ∆P ≤ ∆ with probability 1− δ′2.

4: Construct the private upper bound of the local Lipschitz constant:

L̃ := ||X || e(∆P ).

5: Construct the private upper bound of the data-dependent DP as a function of γ:

ϵ(γ) :=

√
γL̃2 log(2/δ)

λ+ λP
min

+
γL̃2

2(λ+ λP
min + ||X ||2)

+
1 + log(2/δ)||X ||2

2(λ+ λP
min)

.

6: Calibrate γ∗ = supq(γ){γ | ϵ(γ) ≤ ϵ}.

7: if γ∗ ≥ 0 then

8: Output θ ∼ e−
γ∗

2 (||Y−Xθ||22+λ||θ||22),

9: else

10: Output ⊥.

11: end if
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Algorithm 15 OPS-PTR: One-Posterior Sample with propose-test-release (no-“perp”

version)
1: Input: Data X,y. Private budget : ϵ, δ, proposed regularizer λ.

2: Calculate the minimum eigenvalue λmin(X
TX).

3: Sample Z ∼ N (0, 1) and privately release λ̃min = max
{
λmin +

√
log(6/δ)

ϵ/4
Z −

√
2 log(6/δ)·log(2/δ)

ϵ/4
, 0

}
4: Calculate θ̂ = (XTX + λI)−1XTy.

5: Sample Z ∼ N (0, 1) and privately release ∆ = log(||Y|| + ||X ||||θ̂||) +

log(1+||X ||2/(λ+λ̃min))

ϵ/(4
√

6/δ)
Z + log(1+||X ||2/(λ+λ̃min))

ϵ/(4
√

2 log(6/δ) log(2/δ))
.

6: Set the local Lipschitz L̃ := ||X||e∆.

7: Calibrate γ with Theorem 3.6.1(δ/3, ϵ/2.)

8: Output θ̃ ∼ p(θ|X,y) ∝ e−
γ
2
||y−Xθ||2+λ||θ||2

Algorithm 15 provides the detailed privacy calibration of the private linear regression

problem.

Theorem B.4.1. Algorithm 15 is (ϵ+ ϵ̂, δ + δ̂ + δ′)-DP.

Proof. There are two data-dependent quantities in Theorem 3.6.1: λmin and L, which is a

function of ||θ∗λ||.

First, we privately release λmin and log(||Y|| + ||X ||||θ̂||) using a combined privacy

budget (ϵ̂, δ̂).

We apply Lemma B.4.2 from Wang (2018) to privately release log(||Y||+ ||X ||||θ̂||),

and then construct its private upper bound by post-processing of ∆. Specifically, the trick

that we use is that log(||Y||+ ||X ||||θ̂||) has a bounded local sensitivity for which we have

an expression. Though Algorithm 15 leaves open-ended the question of how to release

λmin and L, the idea is that we could easily use the Gaussian mechanism to construct a

high-probability upper bound of log(||Y||+ ||X ||||θ̂||).
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Notice that with probability at least 1− δ′1, λmin is a lower bound of λP
min. And with

probability at least 1− δ′2, ∆ is an upper bound of ∆P . A union bound over these events

then ensures that with probability 1− δ′, ϵ(γ) ≤ ϵϕ(X). That is, the expression given in

Line 5 provides a valid upper bound of the data-dependent DP.

We then tune the parameter γ to satisfy the remaining privacy budget (ϵ, δ).

Lemma B.4.2 (Lemma 12 (Wang, 2018)). Let θ∗λ be the ridge regression estimate with

parameter λ and the smallest eigenvalue of XTX be λmin, then the function log(||Y +

||X ||||θ∗λ||) has a local sensitivity of log(1 + ||X ||2
λmin+λ

).

An idea on releasing λmin

We will state Weyl’s lemma, which we could use to calculate the global sensitivity of

λmin. Notice that λmin has a global sensitivity of ||X ||2 by Weyl’s lemma. This along with

an assumption of ||X ||2 ≤ 1 could allow us to release λmin via the Gaussian mechanism.

Lemma B.4.3 (Weyl’s theorem; Theorem 4.11, p. 204 in Stewart (1990)). . Let A,E be

given m× n matrices with m ≥ n, then

max
i∈[n]
|σi(A)− σi(A+ E)| ≤ ||E||2 (B.4.1)
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C.1 Notation

Denote the following:

• L(θ) =
n∑

i=1

ℓi(θ),

• Lλ(θ) = L(θ) + λ
2
||θ||22,

• LP (θ) = L(θ) + λ
2
||θ||22 + bT θ, b ∼ N (0, σ2Id),

• θ∗ = argmin
θ∈Rd

L(θ),

• θ∗λ = argmin
θ∈Rd

Lλ(θ),

• θP = argmin
θ∈Rd

LP (θ),

• θ̃ satisfies ||∇LP (θ̃)||2 ≤ τ ,

• θ̃P = θ̃ + b2 , b2 ∼ N (0, σ2
outId).
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We take ||X || to be the size of the data domain X , i.e. ||X || = supx∈X ||x||. For

conciseness of presentation we sometimes drop the dataset Z from the notation, e.g. we

abbreviate L(θ;Z) as L(θ).

Sometimes (especially in the proofs that follow) we will abuse notation by overloading

a function with its output, e.g. θP is the output of objective perturbation and θP (Z) is

the objective perturbation mechanism.

C.2 Warm-up: Gaussian Mechanism

We will get started by reviewing the RDP and privacy profile bounds for the Gaussian

mechanism. Once warmed up, we then present the RDP and privacy profile bounds for

objective perturbation in Sections C.3 and C.4.

Consider the Gaussian mechanism defined by M(Z) = f(Z) + N (0, σ2Id), for a

function f : Z → Rd with global sensitivity ∆f = maxZ≃Z′ ||f(Z)− f(Z ′)||2.

C.2.1 Privacy profile of the Gaussian Mechanism

Analytic Gaussian mechanism (Balle and Wang, 2018).

Let P and Q be the density functions of N (∆f , σ
2) and N (0, σ2), respectively. Then

(P,Q) is a dominating pair of distributions forM, andM is tightly (ϵ, δ(ϵ))-DP for

δ(ϵ) = Heϵ
(
P ||Q

)
= Φ

(
− ϵσ

∆f

+
∆f

2σ

)
− eϵΦ

(
− ϵσ

∆f

− ∆f

2σ

)
, (C.2.1)

where Φ denotes the CDF of the standard univariate Gaussian distribution.

We can analytically express a tight upper bound for the Gaussian mechanism above,

but in general numerical methods are needed to evaluate the hockey-stick divergence for

dominating pairs of distributions. This is discussed with more detail in Section C.4.

133



Supplementary Material for Chapter 4 Chapter C

C.2.2 RDP Analysis of the Gaussian Mechanism

Theorem C.2.1 (RDP guarantees of the Gaussian mechanism). The Gaussian mechanism

M satisfies (α, ϵ)-RDP for α > 1 and ϵ =
∆2

fα

2σ2 .

C.3 RDP analysis of objective perturbation

In this section we present the proof of Theorem 4.3.2, one of our main privacy results:

an RDP bound on the objective perturbation mechanism. Along the way we will also

highlight the importance of the GLM assumption to the correctness of the proof.

Proof of Theorem 4.3.2. Recall from Definition 4.2.7 that the objective perturbation

mechanism θ̂P : Z∗ → Rd satisfies ϵ(α)-Rényi differential privacy if for all neighboring

datasets Z and Z ′,

Dα

(
θ̂P (Z) || θ̂P (Z ′)

)
≤ ϵ(α).

Assume that Z ∈ Zn and construct Z ′ ∈ Zn+ by adding a datapoint z to Z. Note that

this convention (while convenient for writing down the PLRV of objective perturbation)

comes with loss of generality. As a consequence of asymmetry1, the upper bound on the

RDP must satisfy

max

(
Dα

(
θ̂P (Z) || θ̂P (Z ′)

)
, Dα

(
θ̂P (Z ′) || θ̂P (Z)

))
≤ ϵ(α).

We will calculate the Rényi divergence Dα

(
θ̂P (Z) || θ̂P (Z ′)

)
of objective perturbation

1This is in contrast to the symmetry of the Gaussian mechanism M(Z) = f(Z) + N (0, σ2Id),

in which case ϵ(α) can be calculated exactly as Dα

(
N (0, σ2Id) || N (∆f , σ

2Id)
)

=
α∆2

f

2σ2
=

Dα

(
N (∆f , σ

2Id) || N (0, σ2Id)
)
.
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under a change of measure:

Dα(P ||Q) =
1

α− 1
logEx∼Q

[(
P (x)

Q(x)

)α ]
=

1

α− 1
logEx∼P

[(
P (x)

Q(x)

)α−1
]
.

Let

R(θP ) :=
Pr
[
θ̂P (Z) = θP

]
Pr
[
θ̂P (Z ′) = θP

]
be shorthand for the probability density ratio at output θP , given a fixed pair of neighboring

datasets Z and Z ′. Then

Dα(θ̂
P (Z) || θ̂P (Z ′)) =

1

α− 1
logEθP∼θ̂P (Z)

[
R(θP )(α−1)

]
=

1

α− 1
logEθP∼θ̂P (Z)

[
elog[R(θP )(α−1)]

]
=

1

α− 1
logEθP∼θ̂P (Z)

[
e(α−1) logR(θP )

]
≤ 1

α− 1
logEθP∼θ̂P (Z)

[
e(α−1)|logR(θP )|] .

Denote J(θ;Z) =
∑

z∈Z ℓ(θ; z) + λ
2
||θ||22 and µ(θ, Z, z) = xT

(
∇2J(θ;Z)

)−1
x.

From Lemma C.10.9 and the λ-strong convexity of J(θ;Z), we can bound µ(θ, Z, z)

by ||x||22
λ
≤ 1

λ
.

We also know from the L-Lipschitzness of ℓ(θ; z) and the β-smoothness of f(xT θ; y)

that ||∇ℓ(θ; z)||2 ≤ L and f ′′(xT θ; y) ≤ β for all θ ∈ Rd and z = (x, y) ∈ Z.

Abbreviate f ′′(xT θP ; y)µ(θP , Z, z) as f ′′(·)µ(·). Then using the GLM assumption,

from Redberg and Wang (2021) we can bound the absolute value of the log-probability
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ratio for any θP as

∣∣logR(θP )
∣∣ ≤ ∣∣∣∣− log

(
1− f ′′(·)µ(·)

)
− 1

2σ2
||∇ℓ(θP ; z)||22 −

1

σ2
∇J(θP ;Z)T∇ℓ(θP ; z)

∣∣∣∣
≤
∣∣− log

(
1− f ′′(·)µ(·)

)∣∣+ 1

2σ2
||∇ℓ(θP ; z)||22 +

1

σ2

∣∣∇J(θP ;Z)T∇ℓ(θP ; z)∣∣
≤ − log

(
1− β

λ

)
+

L2

2σ2
+

1

σ2

∣∣∇J(θP ;Z)T∇ℓ(θP ; z)∣∣ .
It is more challenging to find a data-independent bound for the third term due to the

shared dependence on θP .

Recall that b ∼ N (0, σ2Id) is the noise vector in the perturbed objective. By first-order

conditions at the minimizer θP ,

b = −∇J(θP ;Z).

If θP were fixed (or if θP were independent to b), the quantity ∇J(θP ;Z)T∇ℓ(θP ; z) =

−bT∇ℓ(θP ; z) would have been distributed as a univariate Gaussian N (0, σ2||∇ℓ(θP ; z)||22).

Unfortunately in our case θP is a random variable, and consequently we don’t have the

tools to understand the distribution of ∇J(θP ;Z)T∇ℓ(θP ; z) for an arbitrary loss function.

But using the GLM assumption on the loss function, we can write

∇J(θ;Z)T∇ℓ(θ; z) = −bTxf ′(xT θ, y).

Observe that x is fixed w.r.t. b so that −bTx ∼ N (0, σ2∥x∥22), and f ′(xT θ, y) is a scalar.

So while this scalar is a random variable that still depends on b in a complicated way,

the worst possible dependence can be more easily quantified without incurring additional

dimension dependence.
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By the L-Lipschitz assumption and |ab| ≤ |a||b|, we obtain the following bound:

∣∣∇J(θP ;Z)T∇ℓ(θP ; z)∣∣ = ∣∣f ′(xT θP ; y)∇J(θP ;Z)Tx
∣∣

≤ L
∣∣∇J(θP ;Z)Tx∣∣ .

This is much better! By first-order conditions we can then see

L
∣∣∇J(θP ;Z)Tx∣∣ = L

∣∣bTx∣∣ = |N (0, σ2∥x∥2L2)| ∼ Half-Normal(σL∥x∥).

Now we can bound

∣∣logR(θP )
∣∣ ≤ ∣∣∣∣− log

(
1− β

λ

)∣∣∣∣+ L2

2σ2
+

1

σ2

∣∣∇J(θP ;Z)T∇ℓ(θP ; z)∣∣
≤
∣∣∣∣− log

(
1− β

λ

)∣∣∣∣+ L2

2σ2
+

L

σ2

∣∣∇J(θP ;Z)Tx∣∣ .
Plugging in this bound on

∣∣logR(θP )
∣∣,

Dα(θ̂
P (Z) || θ̂P (Z ′)) ≤ 1

α− 1
logEθP∼θ̂P (Z)

[
e(α−1)|logR(θP )|]

≤ 1

α− 1
logEθP∼θ̂P (Z)

[
e
(α−1)

[
|− log(1−β

λ
)|+ L2

2σ2

]
e(α−1)· L

σ2 |∇J(θP ;Z)T x|
]

=

∣∣∣∣− log

(
1− β

λ

)∣∣∣∣+ L

2σ2
+

1

α− 1
logEθP∼θ̂P (Z)

[
e(α−1)· L

σ2 |∇J(θP ;Z)T x|] .
Let pσ be the probability density function of b ∼ N (0, σ2Id), and pΘ the probability density

function of θP ∼ θ̂P (Z). We know from Lemmas C.10.6 and C.10.7 that ∂θ =

∣∣∣∣det ∂θ∂b
∣∣∣∣ ∂b,

and pΘ(θ) =

∣∣∣∣det ∂b∂θ
∣∣∣∣ pσ(b).

We also know from Lemma C.10.8 that
∣∣∣∣det ∂θ∂b

∣∣∣∣ · ∣∣∣∣det ∂b∂θ
∣∣∣∣ = 1.
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Using the change of variables b = −∇J(θP ;Z) and bTx = u ∼ N (0, σ2||x||22), we have

EθP∼θ̂P (Z)

[
e(α−1)· L

σ2 |∇J(θP ;Z)T x|] = ∫
Rd

e(α−1)· L
σ2 |∇J(θP ;Z)T x|pΘ

(
θP
)
∂θ

=

∫
Rd

e(α−1)· L
σ2 |bT x|

∣∣∣∣det ∂b∂θ
∣∣∣∣ pσ(b) ∣∣∣∣det ∂θ∂b

∣∣∣∣ ∂b
=

∫
Rd

e(α−1)· L
σ2 |bT x|pσ(b)∂b

= Eb∼N (0,σ2Id)

[
e(α−1)· L

σ2 |bT x|]
= Eu∼N (0,σ2||x||22

[
e(α−1)| L

σ2 u
2|]

≤ E
ζ∼N

(
0,L

2

σ2

) [e(α−1)|ζ|] .
In the last line, we applied our assumption that ∥x∥ ≤ 1 and the fact that the MGF

of a half-normal R.V. increases monotonically when its scale parameter gets larger.

The above bound holds for the reverse Rényi divergence Dα(θ̂
P (Z ′) || θ̂P (Z)). Observe

that

Dα(θ̂
P (Z ′) || θ̂P (Z)) ≤ 1

α− 1
logEθP∼θ̂P (Z′)

[
e(α−1)|logR(θP )|] .

This is because log
Pr[θ̂P (Z′)=θP ]
Pr[θ̂P (Z)=θP ]

= − logR(θP ) ≤ | logR(θP )|. If we use the change of

variables b = −∇J(θP ;Z ′) for the reverse direction, the above calculation works out

identically (the difference is that pΘ and the bijection between b and θP are different

under Z and Z ′ — but the determinant of the mapping cancels out with its inverse just

the same).

We’ve shown max

(
Dα

(
θ̂P (Z) || θ̂P (Z ′)

)
, Dα

(
θ̂P (Z ′) || θ̂P (Z)

))
≤ ϵ(α) for any

neighboring datasets Z and Z ′, where

ϵ(α) = − log

(
1− β

λ

)
+

L

2σ2
+ E

[
e
(α−1)

∣∣∣N(
0,L

2

σ2

)∣∣∣]
.
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C.3.1 Linearized RDP Bound for Objective Perturbation

In our calculation of the RDP for objective perturbation, we needed to take an absolute

value of the privacy loss random variable in order to handle negative values. But in doing

so we end up with a quantity that depends on the moments of the half-normal distribution

rather than those of the normal distribution, which gives us a looser bound. Can we avoid

having to make this compromise? In this section we demonstrate that a linearization of

the first-order conditions on the perturbed and unperturbed objective functions provides

a more precise analysis of the PLRV of objective perturbation, translating to a tighter

RDP bound in some regimes.

Recall that the objective perturbation mechanism is given by

θ̂P (Z) =
n∑

i=1

ℓ(θ; zi) +
λ

2
||θ||22 + bT θ, (C.3.1)

where b ∼ N (0, σ2Id).

From the non-linearized RDP calculation, we know that for any neighboring datasets

Z and Z ′,

Dα

(
θ̂P (Z) || θ̂P (Z ′)

)
≤
∣∣∣∣− log

(
1− β

λ

)∣∣∣∣+ L2

2σ2
+

1

α− 1
logEb∼N (0,σ2Id)

[
e(α−1)bT∇ℓ(θP )

]
,

where θP is the output of the objective perturbation mechanism given the noise vector b.

We can write

bT∇ℓ(θP ) = bT∇ℓ(θ∗λ) + bT
[
∇ℓ(θP )−∇ℓ(θ∗λ)

]
.
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The first term t1 = bT∇ℓ(θ∗λ) is a univariate Gaussian t1 ∼ N (0, σ2||∇ℓ(θ∗λ)||22) because

θ∗λ is fixed w.r.t. b. We can bound the second term t2 = bT
[
∇ℓ(θP )−∇ℓ(θ∗λ)

]
using our

assumptions on the loss function ℓ(θ).

By assumption, the loss function has GLM structure ℓ(θ; z) = f(xT θ; y). We can

therefore write

bT
[
∇ℓ(θP )−∇ℓ(θ∗λ)

]
= bT

[
f ′(xT θP ; y)x− f ′(xT θ∗λ; y)x

]
= bTx

(
f ′(xT θP ; y)− f ′(xT θ∗λ; y)

)
We have furthermore assumed that the function f is β-smooth, so that for any

z = (x, y) and θP , θ∗λ ∈ Rd we have

∣∣f ′(xT θP ; y)− f ′(xT θ∗λ; y)
∣∣ ≤ β

∣∣xT θP − xT θ∗λ
∣∣

= β
∣∣xT

[
θP − θ∗λ

]∣∣ .
We will next apply Taylor’s Theorem to rewrite θP − θ∗λ.

Recall that θP is the minimizer of the perturbed objective:

θP = argmin

(
n∑

i=1

ℓ(θ; zi) +
λ

2
||θ||22 + bT θ

)
; (C.3.2)

and θ∗λ is the minimizer of the (non-private) regularized objective:

θ∗λ = argmin

(
n∑

i=1

ℓ(θ; zi) +
λ

2
||θ||22

)
. (C.3.3)

Parameterize the line segment between θP and θ∗λ by t ∈ [0, 1], i.e. the line segment

is t(θP − θ∗λ) + θP . By Taylor’s Theorem, there exists θ′ = t′(θP − θ∗λ) + θP for some
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t′ ∈ [0, 1] such that

∇ℓ(θP )−∇ℓ(θ∗λ) = ∇2ℓ(θ′)(θP − θ∗λ).

By first-order conditions on Equations C.3.2 and C.3.3,

∇L(θP ) + λθP + b = 0; (C.3.4)

∇L(θ∗λ) + λθ∗λ = 0. (C.3.5)

Then subtracting Equation C.3.5 from Equation C.3.4, we have that

∇L(θP )−∇L(θ∗λ) + λ(θP − θ∗λ) + b = 0. (C.3.6)

Again applying Taylor’s theorem, there exists θ′′ = t′′(θP −θ∗λ)+θP for some t′′ ∈ [0, 1])

such that

∇L(θP )−∇L(θ∗λ) = ∇2L(θ′′)(θP − θ∗λ). (C.3.7)

Putting together Equations C.3.6 and C.3.7 we then have

θP − θ∗λ = −
(
∇2L(θ′′

) + λId

)−1

b. (C.3.8)

So we now have

bT
[
∇ℓ(θP )−∇ℓ(θ∗λ)

]
≤ β

∣∣bTx∣∣ ∣∣xT
(
θP − θ∗λ

)∣∣
≤ β

∣∣bTx∣∣ ∣∣∣xT
(
∇2L(θ∗λ) + λId

)−1
b
∣∣∣ . (C.3.9)
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Note that since ex > 0 for all x ∈ R, we have that E [|ex|] = E [ex].

Let a := 1
σ2 b

T∇ℓ(θ∗) and c := 1
σ2 b

T
[
∇ℓ(θP )−∇ℓ(θ∗)

]
. Then by Holder’s inequality,

E
[
e(α−1)ae(α−1)c

]
= E

[∣∣e(α−1)ae(α−1)c
∣∣]

≤ E
[∣∣e(α−1)a

∣∣p] 1
p E
[∣∣e(α−1)c

∣∣q] 1
q

= E
[
e(pα−p)a

] 1
p E
[
e(qα−q)c

] 1
q .

By the GLM assumption, bT∇ℓ(θ∗λ; z) = f ′(xT θ∗λ; y)b
Tx. Then

Eb∼N (0,σ2Id)

[
e(pα−p) 1

σ2 b
T∇ℓ(θP )

]
= Eb∼N (0,σ2Id)

[
e(pα−p) 1

σ2 f
′(xT θ∗λ;y)b

T x
]

= Eu1∼N(0,f ′(xT θ∗λ;y)
2||x||22

1
σ2 )
[
e(pα−p)u1

]
≤ E

u2∼N
(
0,L

2

σ2

) [e(pα−p)u2
]
.

Above, we’ve applied the assumption that ||x||2 ≤ 1 and the fact that the MGF of a

normal R.V. increases monotonically when its scale parameter gets larger (Lemma C.10.12).

By Lemma C.10.9, we have that xT
(
∇2L(θ∗λ) + Id

)−2
x ≤ ||x||

2
2

λ2
. From C.3.9 we also have

Eb∼N (0,σ2Id)

[
e(qα−q) 1

σ2 b
T [∇ℓ(θP )−∇ℓ(θ∗λ)]

]
≤ Eb∼N (0,σ2Id)

[
e
(qα−q)β

∣∣bT x

∣∣ ∣∣∣xT (∇2L(θ∗)+λId)
−1

b
∣∣∣]
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Define z1 := bTx and z2 := xT (∇2L(θ∗λ) + λId)
−1

b, and observe

z1 ∼ N
(
0, σ2||x||22

)
,

z2 ∼ N
(
0, σ2xT

(
∇2L(θ∗λ) + Id

)−2
x
)
.

Note that our approach below is agnostic to the relationship between |z1| and |z2|;

in reality, they depend on each other through the noise vector b. Again applying the

assumption ||x||22 ≤ 1 and Lemma C.10.12 (while not forgetting that the random variables

z1 and z2 depend on each other through b), we get

Eb∼N (0,σ2Id)

[
e
(qα−q)β

∣∣bT x

∣∣ ∣∣∣xT (∇2L(θ∗λ)+λId)
−1

b
∣∣∣]

= Ez1,z2

[
e(qα−q)β|z1| |z2|

]
≤ E

z3∼N (0,σ2),z4∼N (0,σ
2

λ2
)

[
e(qα−q)β|z3| |z4|

]
= Ez3∼N (0,σ2),z5∼N (0,σ2)

[
e(qα−q)β

λ
|z3| |z5|

]
≤ Ez∼N (0,σ2)

[
e(qα−q)β

λ
z2
]
.

So altogether, for p, q such that 1
p
+ 1

q
= 1, we get

Dα

(
θ̂P (Z) || θ̂P (Z ′)

)
≤

− log

(
1− β

λ

)
+

L2

2σ2
+

1

α− 1
logE

u∼N (0,L
2

σ2 )

[
e(pα−p)u

] 1
p Ez∼N (0,σ2)

[
e(qα−q)β

λ
z2
] 1

q
.

C.3.2 Distance to Optimality

Consider the mechanismM(Z) = f(Z) +N (0, σ2Id), for a function f : Z → Rd with

sensitivity ∆f = L. From Balle and Wang (2018), we know that for any neighboring

datasets Z and Z ′, the privacy loss random variable of this mechanism is distributed
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as N
(

∆2
Z,Z′

2σ2 ,
∆2

Z,Z′

σ2

)
. Maximizing the Rényi divergence Dα (M(Z) || M(Z ′)) over all

neighboring datasets Z ≃ Z ′ shows that the RDP for the Gaussian mechanism can be

written as

ϵ(α) =
1

α− 1
logE

[
e(α−1)N

(
L2

2σ2
,
L2

σ2

)]
=

L2

2σ2
+

1

α− 1
logE

[
e(α−1)N

(
0,

L2

σ2

)]
.

Thus the main deviations between the RDP bound for objective perturbation and that of

the Gaussian mechanism are 1) the leading term (a function of β and λ that vanishes as

we increase the regularization) and 2) the moment-generating function of the half-normal

(instead of normal) distribution.
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Figure C.1: RDP curves ϵ(α) for the objective perturbation mechanism, the Gaussian

mechanism, and the half-normal mechanism.

Figure C.3.2 plots the Rényi divergence ϵ(α) := Dα(M(Z) ||M(Z ′)) for the Gaussian

mechanism ("normal"), the objective perturbation mechanism ("ObjPert"), and the

mechanism 2 obtained by adding noise from the half-normal distribution ("half-normal").

We consider several different regimes of interest by varying the noise scale σ and the

regularization strength λ. There are several takeaways to observe:

1. The difference between the RDP for the half-normal mechanism and the RDP for the

objective perturbation mechanism is due entirely to the leading term of the bound
2More formally, we say that the "half-normal" mechanism is M(Z) = f(Z) +

∣∣N (0, σ2)
∣∣, where

f : Z → R is the function we wish to release.
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given in Theorem 4.3.2, which vanishes as λ increases (Figures ?? and ??). For

smaller λ there is a constant "start-up" gap between the half-normal and Objpert

RDP curves (best displayed in Figure ??) which disappears for larger α, where the

moments of the half-normal distribution overwhelm the contribution of the leading

term of the objective perturbation RDP.

2. As σ increases (e.g. between Figures ?? and ??, and between Figures ?? and ??),

the half-normal curve – and therefore also the ObjPert curve – doesn’t converge

with the normal curve until larger α.

C.4 Hockey-stick Divergence Analysis of Objective Per-

turbation

C.4.1 Further Details on Hockey-stick Divergence Analysis

Using dominating pairs of distributions (Def. 4.2.5) for all the individual mechanisms in

an adaptive composition, we can obtain accurate (ϵ, δ)-bounds for the whole composition.

For this end we need the following result.

Theorem C.4.1 (Zhu et al. 2022). If (P,Q) dominates M and (P ′, Q′) dominates M′ for

all inputs of M′, then (P × P ′, Q×Q′) dominates the adaptive composition M◦M′.

To get the hockey-stick divergence from P ×P ′ to Q×Q′ into an efficiently computable

form, we express it using so called privacy loss random variables (recall Def. C.10.4). If P

and Q are probability density functions, the privacy loss function LP/Q is defined as

LP/Q(x) = log
P (x)

Q(x)
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and the privacy loss random variable (PLRV) ωP/Q as

ωP/Q = LP/Q(x), x ∼ P (x).

The δ(ϵ)-bounds can be represented using the following representation that involves

the PLRV.

Theorem C.4.2 (Gopi et al. 2021). We have:

He ϵ(P ||Q) = E
x∼P

[
1− eϵ−LP/Q(x)

]
+
= E

s∼ωP/Q

[
1− eϵ−s

]
+
. (C.4.1)

Moreover, if ωP/Q is the PLRV for the pair of distributions (P,Q) and ωP ′/Q′ the PLRV for

the pair of distributions (P ′, Q′), then the PLRV for the pair of distributions (P×P ′, Q×Q′)

is given by ωP/Q + ωP ′/Q′.

By Theorem C.4.2, to computing accurate (ϵ, δ)-bounds for compositions, it suffices

that we can evaluate integrals of the form Es∼ω1+...+ωk
[1− eϵ−s]+. For this we can use

the Fast Fourier Transform (FFT)-based method by Koskela et al. (2021), where the

distribution of each PLRV is truncated and placed on an equidistant numerical grid over

an interval [−L,L], where L > 0 is a pre-defined parameter. The distributions for the

sums of the PLRVs are given by convolutions of the individual distributions and can be

evaluated using the FFT algorithm. By a careful error analysis the error incurred by the

numerical method can be bounded and an upper δ(ϵ)-bound obtained. For accurately

carrying out this numerical computation one could also use, for example, the FFT-based

method proposed by Gopi et al. (2021).
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C.4.2 Proof of Theorem 4.3.1

Before giving a proof to Thm. 4.3.1, we first give the following bound which is a

hockey-stick equivalent of the moment-generating function bound given in Thm. 4.3.2.

Lemma C.4.3. Let ϵ ∈ R and let the objective perturbation mechanism θ̂P be defined as

in Section 4.2.2. Let ||∇ℓ(θ; z)||2 ≤ L and ∇2ℓ(θ; z) ≺ βId for all θ ∈ Θ and z ∈ X × Y.

Then, for any neighboring datasets Z and Z ′, we have:

Heϵ
(
θ̂P (Z)||θ̂P (Z ′)

)
≤ Es∼ω[1− eϵ−s]+, (C.4.2)

where ω ∼
∣∣log (1− β

λ

)∣∣+ L2

2σ2 +
∣∣∣N (∥x∥2L2

σ2

)∣∣∣.
Proof. The proof goes analogously to the proof of Thm. 4.3.2. Let Z and Z ′ be any

neighboring datasets. Following the proof of Thm. 4.3.2, denote the privacy loss

R(θ) :=
Pr
[
θ̂P (Z) = θ

]
Pr
[
θ̂P (Z ′) = θ

] .
By Thm. C.4.2 and by using the reasoning of the proof of Thm. 4.3.2 for the moment-

generating function, we have

Heϵ
(
θ̂P (Z)||θ̂P (Z ′)

)
= Eθ∼θ̂P (Z)[1− eϵ−logR(θ)]+

≤ Eθ∼θ̂P (Z)[1− eϵ−|logR(θ)|]+

≤ E
s∼

∣∣∣N (
∥x∥2L2

σ2 )
∣∣∣[1− eϵ−|log(1−β

λ)|− L2

2σ2−s]+,

(C.4.3)

where the inequalities follow from the fact that the function f(s) = [1 − eϵ−s]+ is

monotonically increasing function w.r.t. s for all ϵ ∈ R and from the bound for |R(θ)|

used in the proof of Thm. 4.3.2.
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Proof of Theorem 4.3.1. We use Lemma C.4.3 and simply upper bound the right-hand

side of the inequality (C.4.2).

We first show that if ∥x∥ ≤ 1, then for all ϵ ∈ R

E
s∼|log(1−β

λ)|+ L2

2σ2

∣∣∣N (0,
∥x∥2L2

σ2 )
∣∣∣[1− eϵ−s]+ ≤ E

s∼|log(1−β
λ)|+ L2

2σ2

∣∣∣N (0,L
2

σ2 )
∣∣∣[1− eϵ−s]+. (C.4.4)

Denote ϵ̂ = ϵ−
∣∣log (1− β

λ

)∣∣− L2

2σ2 . Consider first the case ϵ̂ ≥ 0. Then, we have:

E
s∼

∣∣∣N (0,
∥x∥2L2

σ2 )
∣∣∣[1− eϵ−|log(1−β

λ)|− L2

2σ2−s]+ = 2 · E
s∼N (0,

∥x∥2L2

σ2 )
[1− eϵ̂−s]+

≤ 2 · E
s∼N (0,L

2

σ2 )
[1− eϵ̂−s]+

= E
s∼

∣∣∣N (0,L
2

σ2 )
∣∣∣[1− eϵ−|log(1−β

λ)|− L2

2σ2−s]+,

(C.4.5)

where the first equality follows from the fact that for s ≥ ϵ̂, the density function of the

half-normal random variable is positive and 2 times the density of the corresponding

normal distribution. The inequality follows from Lemma C.4.8, as

E
s∼N (0,

∥x∥2L2

σ2 )
[1− eϵ̂−s]+ =

∫ ∞

ϵ̂

f
0,

∥x∥2L2

σ2

(x)(1− e ϵ̂−x) dx.

Next, consider the case ϵ̂ < 0. Then:

E
s∼

∣∣∣N (0,
∥x∥2L2

σ2 )
∣∣∣[1− eϵ−|log(1−β

λ)|− L2

2σ2−s]+ = 2 ·
∫ ∞

0

f
0,

∥x∥2L2

σ2

(x)(1− eϵ−|log(1−β
λ)|− L2

2σ2−x) dx

≤ 2 ·
∫ ∞

0

f
0,L

2

σ2
(x)(1− eϵ−|log(1−β

λ)|− L2

2σ2−x) dx

= E
s∼

∣∣∣N (0,L
2

σ2 )
∣∣∣[1− eϵ−|log(1−β

λ)|− L2

2σ2−s]+.

(C.4.6)

where the inequality follows from Lemma C.4.8. Inequalities (C.4.5) and (C.4.6) together

give (C.4.4).
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Then, we show that for all ϵ ∈ R,

E
s∼|log(1−β

λ)|+ L2

2σ2

∣∣∣N (0,L
2

σ2 )
∣∣∣[1− eϵ−s]+ =


2 ·Heϵ̃

(
P ||Q

)
, if ϵ̂ ≥ 0,

(1− e ϵ̂) + e ϵ̂ · 2 ·H
e
L2

σ2

(
P ||Q

)
, otherwise.

Continuing from (C.4.5), by change of variables, we see that for ϵ̂ ≥ 0,

2 · E
s∼N (0,L

2

σ2 )
[1− eϵ−|log(1−β

λ)|− L2

2σ2−s]+ = 2 · E
s∼N ( L2

2σ2 ,
L2

σ2 )
[1− eϵ−|log(1−β

λ)|−s]+

= 2 ·Heϵ̃
(
P ||Q

)
,

where ϵ̃ = ϵ −
∣∣log (1− β

λ

)∣∣, P is the density function of N (L, σ2) and Q the density

function of N (0, σ2). This follows from the fact that the PLRV determined by the pair

(P,Q) is distributed as N ( L2

2σ2 ,
L2

σ2 ).

Continuing from (C.4.6), by change of variables (used after the third equality sign),

we see that for ϵ̂z0,

2·
∫ ∞

0

f
0,L

2

σ2
(x)(1− eϵ−|log(1−β

λ)|− L2

2σ2−x) dx

= 2 ·
∫ ∞

0

f
0,L

2

σ2
(x) dx− 2 ·

∫ ∞

0

f
0,L

2

σ2
(x)(1− eϵ̂−x) dx

= (1− e ϵ̂) · 2 ·
∫ ∞

0

f
0,L

2

σ2
(x) dx+ e ϵ̂ · 2 ·

∫ ∞

0

f
0,L

2

σ2
(x)(1− e−x) dx

= (1− e ϵ̂) + e ϵ̂ · 2 ·
∫ ∞

L2

2σ2

f L2

2σ2 ,
L2

σ2
(x)(1− e

L2

2σ2−x) dx

= (1− e ϵ̂) + e ϵ̂ · 2 · E
s∼N ( L2

2σ2 ,
L2

σ2 )
[1− e

L2

2σ2−s]+

= (1− e ϵ̂) + e ϵ̂ · 2 ·H
e

L2

2σ2

(
P ||Q

)
,

where we again use the fact that the PLRV of the Gaussian mechanism with sensitivity L

and noise scale σ is distributed as N ( L2

2σ2 ,
L2

σ2 ).
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C.4.3 Dominating Pairs of Distributions for the Objective Per-

turbation Mechanism

From Lemma C.4.3 and the inequality (C.4.4) we have that for all ϵ ∈ R

Heϵ
(
θ̂P (Z)||θ̂P (Z ′)

)
≤ E

ω∼|log(1−β
λ)|+ L2

2σ2+
∣∣∣N (0,L

2

σ2 )
∣∣∣[1− eϵ−ω]+.

Thus, if we have distributions P and Q such that for all ϵ ∈ R

Heϵ
(
P ||Q

)
= E

ω∼|log(1−β
λ)|+ L2

2σ2+
∣∣∣N (0,L

2

σ2 )
∣∣∣[1− eϵ−ω]+,

then the pair (P,Q) is a dominating pair of distributions for the objective perturbation

mechanism. Then, by Theorem C.4.2, we can use this distribution ω also to compute

(ϵ, δ)-bounds for compositions involving the objective perturbation mechanism. We give

such a pair of distribution (P,Q) explicitly in Lemma C.4.6 below.

In the following, we denote the density of a discrete probability mass by a Dirac

delta function and use the indicator function for the continuous part of the density. The

following result is a straightforward calculation.

Lemma C.4.4. Let σ > 0. Let P be the density function of |N (0, σ2)|, i.e.,

P (x) =
2√
2πσ2

e
−x2

2σ2 1[0,∞)](x), (C.4.7)

where 1A(x) denotes the indicator function, i.e., 1[0,∞)](x) = 1 if x ≥ 0, else 1[0,∞)](x) = 0.

Let L > 0 and let Q be a density function, where part of the mass of P is shifted to −∞:

Q(x) = Q(−∞) · δ−∞(x) +
2√
2πσ2

e
−(t+L)2

2σ2 1[0,∞)](x), (C.4.8)
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where

Q(−∞) = 1−
∫ ∞

0

2√
2πσ2

e
−(t+L)2

2σ2 dx.

Then, we have that the PLRV ω,

ω = log
P (x)

Q(x)
, x ∼ P, (C.4.9)

is distributed as

ω ∼ L2

2σ2
+

∣∣∣∣N (0, L2

σ2

)∣∣∣∣ .
Proof. As P has its support on [0,∞), we need to consider the values of the privacy loss

function log P (x)
Q(x)

only on [0,∞). We have, for all x ≥ 0,

log
P (x)

Q(x)
=

L

σ2
· x+

L2

2σ2
.

Since x ∼ P , we see that L
σ2 · x ∼

∣∣∣N (0, L2

σ2

)∣∣∣ and the claim follows.

Remark C.4.5. In Lemma C.4.4, instead of shifting part of the mass of P to −∞ when

forming Q, we could place this mass anywhere on the negative real axis. This would not

affect the PLRV ω.

We can shift the PLRV ω given by Lemma C.4.4 by scaling the distribution Q. We

get the following.

Lemma C.4.6. Let σ > 0 and L > 0. Suppose P is the density function given in Eq. (C.4.7)

and Q the density function

Q(x) = Q(−∞) · δ−∞(x) + e−|log(1−β
λ)| · 2√

2πσ2
e

−(t−L)2

2σ2 1[0,∞)](x), (C.4.10)
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where

Q(−∞) =

(
1− e−|log(1−β

λ)| ·
∫ ∞

0

2√
2πσ2

e
−(t−L)2

2σ

2

dx

)
.

Then, the PLRV ω determined by P and Q is distributed as

ω ∼
∣∣∣∣log(1− β

λ

)∣∣∣∣+ L2

2σ2
+

∣∣∣∣N (0, L2

σ2

)∣∣∣∣ .
Proof. Showing this goes as the proof of Lemma C.4.4. We just now have that for all

x ≥ 0:

log
P (x)

Q(x)
=

∣∣∣∣log(1− β

λ

)∣∣∣∣+ L2

2σ2
+

L

σ2
· x.

As a corollary of Lemma C.4.6 and Thm. 4.2.4, we have:

Lemma C.4.7. Let k ∈ Z+ and let for each i ∈ [k]

ωi ∼
∣∣∣∣log(1− β

λ

)∣∣∣∣+ L2

2σ2
+

∣∣∣∣N (0,
L2

σ2
)

∣∣∣∣ ,
such that ωi’s are independent. Then, the k-wise adaptive composition of θ̂(Z) is (ϵ, δ(ϵ))-

DP for

δ(ϵ) = Es∼ω1+...+ωk
[1− eϵ−s]+. (C.4.11)

Numerical Evaluation of (ϵ, δ)-Bounds for Compositions

Figure C.2 shows the result of applying the FFT-based numerical method of Koskela

et al. (2021) for evaluating the expression (C.4.11). We compare the resulting approximate

DP bounds to those obtained from the RDP bounds combined with standard composition

results (Mironov, 2017).

Notice that we could also carry out tighter accounting of the approximative minima
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perturbation (Section 4.4) by adding the PLRVs of the Gaussian mechanism to the

total PLRV, similarly as RDP parameters of the Gaussian mechanism are added to the

RDP guarantees of the objective perturbation mechanism (Theorem 4.4.1). Adding the

Gaussian PLRV to the total PLRV using convolutions is straightforward using the method

of Koskela et al. (2021).

0.2 0.4 0.6 0.8 1.0 1.2 1.4
10 15

10 13
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10 7
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10 3

10 1

RDP k = 1
RDP k = 2
RDP k = 3
RDP k = 4
Hockey-stick k = 1
Hockey-stick k = 2
Hockey-stick k = 3
Hockey-stick k = 4

Figure C.2: Comparison of our RDP bound (implied (ϵ, δ)-DP bound) and our numerical

PLRV bound (C.4.11) for different numbers of compositions k, when σ = 8.0, β = 1.0

and λ = 10.0.

C.4.4 Auxiliary Lemma

For Theorem 4.3.1, we need the following auxiliary result.

Lemma C.4.8. Denote fµ,σ2(x) the density function of the normal distribution N (µ, σ2)

and let c ≥ µ. Let g(x) be a non-negative differentiable non-decreasing function on [c,∞).
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Then, if σ1 ≤ σ2,

∫ ∞

c

fµ,σ2
1
(x) · g(x) dx ≤

∫ ∞

c

fµ,σ2
2
(x) · g(x) dx.

Proof. By integration by parts, we have

∫ ∞

c

fµ,σ2(x) · g(x) dx = −Φµ,σ2(c) · g(c)−
∫ ∞

c

Φµ,σ2(x) · g′(x) dx, (C.4.12)

where Φµ,σ2(x) denotes the cdf of N (µ, σ2). A simple calculation shows that for all x ∈ R,

∂

∂σ
Φµ,σ2(x) = −x− µ

σ2
fµ,σ2(x).

Thus, Φµ,σ2(c) is a non-increasing function of σ for all c ≥ µ. Furthermore, the first term

in (C.4.12) is a non-decreasing function of σ since g(c) is non-negative and the second

term is a non-decreasing function of σ, since g′(x) is non-negative for all x ∈ [c,∞).

C.5 The GLM Bug

C.5.1 Discussion

Limiting our main results to generalized linear models might appear restrictive — but

we argue that the GLM assumption is not specific to our paper, but rather has been

lurking in the objective perturbation literature for some time now.

Let’s first take a look at Section 3.3.2 of Chaudhuri et al. (2011): Lemma 10 requires

that the matrix E have rank at most 2, but this is not necessarily true without assuming

GLM structure. This is used to bound the determinant of the Jacobian, and corresponds

to the first term of our bound in Theorem 4.3.2.
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It is a similar story for bounding the log ratio / difference between the noise vector

densities under neighboring datasets, corresponding to the second and third terms of

our bound in Theorem 4.3.2. Let’s also revisit this line from the proof of Lemma 17 of

the Kifer et al. (2012) paper: "Note that Γ is independent of the noise vector." This is

not true without assuming GLM structure! (In their proof, Γ is the difference between

the noise vectors under neighboring distributions. From first-order conditions at the

minimizer of the perturbed objective, we can see that Γ = ∇ℓ(θP ) , where θP is a function

of the noise vector b.

In fact, to our knowledge, Iyengar et al. (2019) was the first work to acknowledge

the GLM assumption on objective perturbation. But their privacy proof also fails to

handle the dependence on the noise vector! In Theorems 4.3.2 and 4.3.1, we have

included a careful analysis including a discussion on how the GLM assumption removes

this dependence.

C.5.2 RDP bound for non-GLMs

In this section we generalize the RDP bound for objective perturbation to a general

class of smooth convex losses.

Theorem C.5.1 (RDP bound for non-GLMS.). Consider a loss function ℓ(θ; z) such that

||∇ℓ(θ; z)||2 ≤ L and ∇2ℓ(θ; z) ≺ βId for all θ ∈ Θ and z ∈ X × Y, where X ⊆ Rd

and Y ⊆ R. The objective perturbation mechanism which releases θP ∼ θ̂P (Z) satisfies

(α, ϵ)-RDP for any α > 1 with

ϵ ≤ −d log
(
1− β

λ

)
+

L

2σ2
+

1

α− 1
logEZ∼χd

[
e(α−1)L

σ
Z
]
,

where Z ∼ χd if Z =
√∑d

i=1X
2
i and Xi ∼ N (0, 1) for all i ∈ [d].
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Proof. Following the proof of Theorem 4.3.2, let

R(θP ;Z,Z ′) :=
Pr
[
θ̂P (Z) = θP

]
Pr
[
θ̂P (Z ′) = θP

]
be shorthand for the probability density ratio at output θP , given a fixed pair of neighboring

datasets Z and Z ′. Then we can state the following as a corollary to Theorem 6 of Redberg

and Wang (2021).

Theorem C.5.2. Given a dataset Z ∈ Z and a datapoint z ∈ X ×Y, construct neighboring

dataset Z ′ = Z ∪ {z}. Recall that b(θP ;Z) is the bijection between the noise vector b and

the output θP , satisfying θP = argminL(θ;Z, b). Then for any dataset Z ∈ Z, datapoint

z ∈ X × Y, and output θP ∈ Θ,

logR(θP ;Z,Z ′) =

∣∣∣∣∣− log
d∏

j=1

(
1− µj

)
+

1

2σ2
||∇ℓ(θP ; z)||22 +

1

σ2
∇J(θP ;D)T∇ℓ(θP ; z)

∣∣∣∣∣ ,
where µj = λju

T
j

(
∇b(θP ;D) ∓∑j−1

k=1 λkuku
T
k

)−1

uj according to the eigendecomposition

∇2ℓ(θP ; z) =
∑d

k=1 λkuku
T
k .

To upper-bound logR(θP ;Z,Z ′), we first apply the triangle property so that we can

bound the absolute value of each term individually.

We have assumed that ∇2ℓ(θ; z) ≺ βId for all θ ∈ Θ and z ∈ Z. By Theorem 8 of

Redberg and Wang (2021) and by applying this assumption, we have that

∣∣∣∣∣− log
d∏

j=1

(1− µj)

∣∣∣∣∣ ≤ −
d∑

j=1

log

(
1− λj

λ

)
≤ −d log

(
1− β

λ

)
.
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We now need to bound

1

α− 1
logE

[
e(α−1) 1

σ2∇J(θP )T∇ℓ(θP )
]
.

By the Cauchy-Schwarz inequality, we have for any b ∈ Rd

−bT∇ℓ(θP ) ≤
∣∣−bT∇ℓ(θP )∣∣ ≤ L||b||2.

Recall that b ∼ N (0, σ2Id) and observe that by first-order conditions, ∇J(θP ;Z) = −b.

Using this change-of-variables we can show that

1

α− 1
logEθP∼θ̂P (Z)

[
e(α−1) 1

σ2∇J(θP ;Z)T∇ℓ(θP ;z)
]
≤ 1

α− 1
logEZ∼χd

[
e(α−1)L

σ
Z
]
.

C.6 RDP guarantee of Algorithm 7

In what follows, we will present a (corrected) privacy guarantee for Approximate Min-

ima Perturbation (i.e., Algorithm 7 without gradient clipping). We will then demonstrate

that the “clipped-gradient” function ℓC(θ) not only bounds the per-example gradient norm

by C, but also preserves other properties (i.e., β-smoothness and GLM structure) required

for the privacy guarantees stated in Theorem 4.3.2.

C.6.1 Privacy Guarantee for Approximate Minima Perturbation

The proof of the privacy guarantee for Approximate Minima Perturbation (Iyengar

et al., 2019), i.e. Algorithm 7 without gradient clipping, falls prey to the same trap as

previous work on objective perturbation. In particular, we see that there is a mistake
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in Lemma IV.1, with the assertion that “we get the statement of the lemma from the

guarantees of the Gaussian mechanism.” The Gaussian mechanism is inapplicable in

Lemma IV.1 for similar reasons as discussed in Section C.5.

The proof of Theorem C.6.1 corrects this issue. We state it in terms of RDP, but it

can also extend to approximate DP and other DP variants.

Algorithm 16 Approximate Minima Perturbation (Iyengar et al., 2019)
Input: dataset Z; noise levels σ, σout; β-smooth loss function ℓ(·) with Lipschitz

constant L; regularization strength λ; gradient norm threshold τ .

Sample b ∼ N (0, σ2Id).

Let LP (θ;Z) =
∑

z∈Z ℓ(θ; z) + λ
2
||θ||22 + bT θ.

Solve for θ̃ such that ||∇LP
C(θ̃;Z)||2 ≤ τ .

Output θ̃P = θ̃ +N (0, σ2
outId).

Theorem C.6.1 (RDP guarantees of Approximate Minima Perturbation). Consider the

Approximate Minima Perturbation algorithm which satisfies (α, ϵ)-RDP for any α > 1

with

ϵ ≤ − log

(
1− β

λ

)
+

L2

2σ2
+

1

α− 1
logE

X∼N
(
0,L

2

σ2

) [e(α−1)|X|]+ (2τλ )2 α
2σ2

out
.

Proof. Sample b ∼ N (0, σ2Id) and let LP (θ;Z, b) :=
∑

z∈Z ℓ(θ; z) + λ
2
∥θ∥22 + bT θ, i.e., the

perturbed and regularized objective function used by ObjPert.

Let θP = argminLP (θ;Z, b). From Chaudhuri et al. (2011); Kifer et al. (2012) we

know that there is a bijection b(θP ;Z) from the output θP to the noise vector b.

Consider a blackbox algorithm θA(Z, b) which returns θ such that ||∇LP (θ;Z, b)|| ≤ τ .

Define query

q(Z, θP ) = θA(Z)− θP .
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where θA(Z) is an abbreviation for θA(Z, b(θP ;Z)).

We assume that q can recover b from the input θP via the bijection b(θP ;Z), and

hence has access to the perturbed objective function LP (θ;Z, b).

Notice that since LP is λ-strongly convex, by applying the Cauchy-Schwarz inequality

and by Definition C.10.3 we see that for any θ1, θ2,

∣∣∣∣∇LP (θ1)−∇LP (θ2)
∣∣∣∣

2
||θ1 − θ2||2 ≥

(
∇LP (θ1)−∇LP (θ2)

)T
(θ1 − θ2) ≥ λ||θ1 − θ2||22.

Algorithm θA(Z, b) guarantees that its output θ satisfies ||∇LP (θ)||2 ≤ τ and by

first-order conditions on the perturbed objective function, ∇LP (θP ;Z, b) = 0. It follows

that for any dataset Z and θP ,

∣∣∣∣θA(Z)− θP
∣∣∣∣
2
≤ τ

λ
,

Since the algorithm θA(Z, b) guarantees that ∥θA − θP∥2 ≤ γ/λ, then conditioning on

θP , q(Z, θP ) has a global sensitivity bounded by 2γ/λ since

∥q(Z, θP )− q(Z ′, θP )∥ ≤ ∥(θA(Z)− θP )− (θA(Z ′)− θP )∥2

≤ ∥θA(Z)− θP∥+ ∥θA(Z ′)− θP∥2

≤ 2γ

λ
.

Now, the algorithm that first draws b then outputs θA(Z, b) +N (0, σ2Id) is equivalent

to

• First run ObjPert that returns θP .

• Release ∆̂ = q(Z, θP ) +N (0, σ2Id).

• Return θP + ∆̂.
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This is adaptive composition of ObjPert with the Gaussian mechanism. The third

step is post processing.

The privacy guarantee stated in Theorem C.6.1 is thus achieved by combining the

results of Theorem 4.3.2 (RDP of ObjPert), Theorem C.2.1 (RDP of the Gaussian mecha-

nism) with ∆q =
2τ
λ

, and Lemma C.10.5 (adaptive composition for RDP mechanisms).

C.6.2 The “Clipped-Gradient” Function

The RDP guarantees of objective perturbation (stated in Theorem 4.3.2) require

several assumptions on the loss function ℓ(θ;Z). If we can demonstrate that these

properties are satisfied by the “clipped-gradient” loss function ℓC(θ;Z), then the rest of

the proof of Theorem 4.4.1 (the privacy guarantee of Algorithm 7) will follow directly

from that.

In particular, we need to show:

1. That ℓC(θ; z) retains the convex GLM structure of the original function ℓ(θ; z).

2. That ℓC(θ; z) satisfies ||∇ℓC(θ; z)||2 ≤ C for any θ, z.

3. That ℓC(θ; z) has the same β-smoothness parameter as the original function ℓ(θ; z).

4. That even though ℓC(θ; z) is not twice-differentiable everywhere, the privacy guar-

antees of objective perturbation (whose proof involves a Jacobian mapping) still

hold.

We will begin by stating a result from Song et al. (2020).
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Theorem C.6.2 (Song et al., 2020, Lemma 5.1). Let f : R → R be any convex function

and let C ∈ R+ be any positive value. For any non-zero x ∈ Rd, define

UL =

{
u : g < − C

||x||2
∀g ∈ ∂f(u)

}
,

UH =

{
u : g >

C

||x||2
∀g ∈ ∂f(u)

}
.

If UL is non-empty, let uL = supUL; otherwise uL = −∞. If UH is non-empty, let

uH = inf UH ; otherwise uH =∞. For any non-zero x ∈ Rd, let

fC(u) =



− C
||x||2 (u− uL) , for u ∈ (−∞, uL)

f(u; y), for u ∈ (uL, uH)

C
||x||2 (u− uH) , for u ∈ (uH ,∞)

Define ux(θ) = xT θ. Then the following holds.

1. fC is convex.

2. Let ℓ(θ; (x, y)) = f(ux(θ); y) for any θ, z = (x, y). Then we have

∂θℓC(θ; z) =

{
min

{
1,

C

||ux(θ)||2)

}
· u : u ∈ ∂θℓ(θ; z)

}
.

The first two desired properties of ℓC(θ; z), i.e. GLM structure and gradient norm

bound C, follow directly from the above theorem. Next, we will prove the third property

of β-smoothness.

Theorem C.6.3. For a data point z = (x, y), consider a function f such that ℓ(θ; z) =

f(xT θ; y). Suppose that f(xT θ; y) satisfies β-smoothness. Then the “clipped-gradient”

function fC(x
T θ; y) defined in Lemma 5.1 of Song et al. (2020) also satisfies β-smoothness.
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Proof. Because f is β-smooth by assumption, we know that f(u) satisfies β-smoothness

for all u ∈ (uL, uH). When u ∈ (−∞, uL) or when u ∈ (uH ,∞), the function fC(u) is

linear in u and thus is 0-smooth (hence satisfying β-smoothness).

Lastly, the proof of objective perturbation (see, e.g., Theorem 9 of Chaudhuri et al.

(2011)) requires that the loss function be twice-differentiable. Even though ℓC(θ; z) is

not twice-differentiable everywhere, the privacy guarantees of objective perturbation still

hold. To show this, we can invoke Corollary 13 of Chaudhuri et al. (2011). This corollary

assumes the Huber loss; for brevity, we will leave it as an exercise for the reader to verify

that the proof also carries through for the “clipped-gradient” loss.

C.7 Computational Guarantee of Algorithm 7

In this section, we provide a computational guarantee to Algorithm 7 in terms of the

number of gradient evaluations on individual loss functions to compute the approximate

minimizer for achieving (up to a constant) the information-theoretical limit.

Let f(θ) :=
∑

i ℓi(θ) +
λ
2
∥θ∥2 + bT θ, i.e., the perturbed and regularized objective

function used by ObjPert. Let θ∗∗ be the output returned by the blackbox algorithm

θA(·) described in Section C.6. Note the deviation from the notation used in the previous

section.

Iyengar et al. (2019) proposed a procedure that keeps checking the gradients in an

iterative optimization algorithm and stops when the gradient is smaller than τ . This

always ensures that ∥∇f(θ∗∗)∥ ≤ τ .

And using tools from the next section, it can be proven that it implies that ∥θ∗∗−θ∗∥2 ≤

τ/λ as was previously stated. But how many iterations it takes for this to happen for

specific algorithms was not explicitly considered.
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C.7.1 Tools from convex optimization

We will need a few tools from convex optimization.

Firstly, under our assumption that ℓi is β-smooth, f is nβ + λ-smooth and λ-strongly

convex. Let L := nβ + λ as a shorthand.

By L-smoothness (gradient Lipschitzness), and the optimality of θ∗, we have that for

any θ

∥∇f(θ)∥ = ∥∇f(θ)−∇f(θ∗)∥ ≤ L∥θ − θ∗∥2. (C.7.1)

By λ-strong convexity, we get

f(θ)− f ∗ ≥ λ

2
∥θ − θ∗∥2 ≥ λ

2L2
∥∇f(θ)∥2 (C.7.2)

By strong convexity also implies that

∥∇f(θ)∥ ≥ λ∥θ − θ∗∥ (C.7.3)

which is the quantity used to establish the global sensitivity of q(D, θ∗) as we talked about

earlier.

(C.7.2) and (C.7.3) sandwich ∥θ − θ∗∥ in between by

∥∇f(θ)∥
L

≤ ∥θ − θ∗∥ ≤ ∥∇f(θ)∥
λ

.
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C.7.2 Computational bounds for Stopping at small gradient

(C.7.1) and (C.7.2) together provides bounds for ∥∇f(θ)∥ using either objective

function or argument convergence (in square ℓ2.)

∥∇f(θ)∥2 ≤ min

{
2L2

λ
(f(θ)− f ∗), L2∥θ − θ∗∥2

}
.

Standard convergence results are often parameterized in terms of either suboptimality

f(θ) − f ∗ or argument ∥θ − θ∗∥2. In the following we instantiate specific convergence

bounds for deriving computation guarantees.

Gradient Descent. If we run gradient descent with learning rate 1/L for T iterations

from θ0, then

∥θT − θ∗∥2 ≤ (1− λ

L
)T∥θ0 − θ∗∥2

which implies that

∥∇f(θT )∥2 ≤ L2(1− λ

L
)T∥θ0 − θ∗∥2

This happens deterministically (with no randomness, or failure probability).

One may ask why are we not running a fixed number of iterations and directly applying

the bound to ∥θT − θ∗∥ in order to control the ℓ2 sensitivity. That works fine, except

that we have an unconstrained problem and θ∗ can be anywhere, thus there might not

be a fixed parameter T to provide a required bound for all input θ∗. We also do not

know where θ∗ is during the actual execution of the algorithm and thus cannot compute

∥θ0 − θ∗∥ directly.

The “gradient-norm check” as a stopping condition from Iyengar et al. (2019) is nice

because it always ensures DP for any θ∗ (at a price of sometimes running for a bit longer).
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To ensure ∥∇f(θ)∥ ≤ γ, the number of iterations

T =
log(L

2∥θ0−θ∗∥2
γ2 )

log(1 + λ
L−λ

)
≤ 2(L− λ)

λ
log(

L2∥θ0 − θ∗∥2
γ2

) =
2nβ

λ
log(

(nβ + λ)2∥θ0 − θ∗∥2
γ2

)

Since each gradient computation requires n incremental gradient evaluation, under the

regime that λ is independent of n, under the choice that λ = 1/ϵ independent to n

from the standard calibration, the total number of is therefore O(n2 log n) for achieving

γ ≤ n−v for any constant v > 0.

The quadratic runtime is not ideal, but it can be improved using accelerated gradient

descent which gives a convergence bound of

f(θT )− f ∗ ≤ (1−
√

λ

L
)T∥θ0 − θ∗∥2.

This would imply a computational guarantee of O(n1.5 log n). The overall computation

bound depends on ∥θ∗∥ which is random (due to objective perturbation). The dependence

on ∥θ∗∥ is only logarithmic though.

Finite Sum and SAG. The result can be further improved if we uses stochastic gradient

methods. However, the sublinear convergence of the standard SGD or its averaged version

makes the application of the above conversion rules somewhat challenging.

By taking advantage of the finite sum structure of f(θ) one can obtain faster conver-

gence.

First of all, the finite sum structure says that f(θ) =
∑n

i=1 fi(θ). In our case, we can

split the regularization and linear perturbation to the n data points, i.e.,

fi(θ) = ℓi(θ) +
λ

2n
∥θ∥2 + bT θ

n
.
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Check that it satisfies β + λ/n smoothness.

There is a long list of methods that satisfy the faster convergence for finite sum

problems, e.g., SAG, SVRG, SAGA, SARAH and so on (see, e.g., Nguyen et al., 2022,

for a recent survey). Specifically, Stochastic Averaged Gradient (Schmidt et al., 2017)

(and similarly others with slightly different parameters) satisfies

E
[
f(θT )− f ∗] ≤ (1−min{ λ

16L
,
1

8n
})T · (3n

2
(f(θ0)− f ∗) + 4L∥θ0 − θ∗∥2).

Therefore, by (C.7.2), we have

E
[
∥∇f(θT )∥2

]
≤ (1−min{ λ

16L
,
1

8n
})T · L

2

λ
(
3n

2
(f(θ0)− f ∗) + 4L∥θ0 − θ∗∥2).

Note that each iteration costs just one incremental gradient evaluation, so to ensure

E[∥∇f(θT )∥2] ≤ γ2, the computational complexity is on the order of

max{n, L
λ
} log

(
nLmax{f(θ0)− f ∗, ∥θ0 − θ∗∥2}

λγ

)

This is O(n log n) runtime to any γ = n−s for a constant s > 0.

On the other hand, the main difference from the gradient descent result is that we

only get convergence in expectation. By Markov’s inequality

P
[
∥∇f(θT )∥2 > γ2

]
≤ (1−min{ λ

16L
, 1
8n
})T · L2

λ
(3n

2
(f(θ0)− f ∗) + 4L∥θ0 − θ∗∥2)
γ2

:= δ,

which implies high probability convergence naturally.

Theorem C.7.1. Assume λ ≥ β. The algorithm that runs SAG and checks the stopping

condition ∥∇f(θT )∥ ≤ γ after every n iteration will terminate with probability at least
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1− δ in less than

Cmax{n, nβ
λ
} log

(
nβmax{∥θ0 − θ∗∥, (f(θ0)− f ∗)}

γδ

)

incremental gradient evaluations, where C is a universal constant.

How to set γ to achieve information-theoretic limit? The lower bounds for convex

and smooth losses in differentially private ERM are well-known (Bassily et al., 2014) and it

is known that among GLMs, θ∗ from ObjPert achieves the lower bound with appropriate

choices of λ, σ. Notably, λ ≍ d/ϵ for achieving an (ϵ, δ)-DP.

E[
∑
i

ℓi(θ
∗)]−min

θ

∑
i

ℓi(θ) ≤ MinimaxExcessEmpirialRisk

Let θ̂ = θT +N(0, γ2

2λ2ρ
I) be the final output.

By the nG Lipschitzness of
∑

i ℓi, with high probability over the Gaussian mechanism,

we have that

E[
∑
i

ℓi(θ̂)]−
∑
i

ℓi(θ
∗) ≤ nG(∥θT − θ∗∥+ ∥θ̂ − θT∥) ≤ nGγ(1 +

√
d log d

ρ

λ
)

where ρ is the zCDP parameter for the Gausssian mechanism chosen to match the large α

part of the ObjectivePerturbation’s RDP bound, which increases the overall RDP by αρ.

Thus, it suffices to take γ = MinimaxExcessEmpirialRisk/(nG(1 +

√
d log d/ρ

λ
)).

To conclude, the above results imply that the computationally efficient objective

perturbation achieves the optimal rate under the same RDP guarantee with an algorithm

that terminates in O(n log n) time with high probability.
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C.8 Excess Empirical Risk of Algorithm 7

Our goal in this section is to find a bound on the excess empirical risk:

E
[
L(θ̃P ;Z)

]
− L(θ∗;Z).

Theorem C.8.1. Let θ̃P be the output of Algorithm 7 and θ∗ = argminL(θ) the minimizer

of the loss function L(θ) =∑n
i=1 ℓ(θ; zi). Denote ||X || as the diameter of the set X . We

have

E
[
L(θ̃P ;Z)

]
− L(θ∗;Z) ≤ nL

(τ
λ
+ σout

√
d
)
+

dσ2

2λ
+

λ

2
||θ∗||22.

Proof. Following the proof of Theorem 2 from Iyengar et al. (2019) (itself adapted from

Kifer et al. (2012)), we write

L(θ̃P )− L(θ∗) =
(
L(θ̃P )− L(θP )

)
+
(
L(θP )− L(θ∗)

)
.

By the λ-strong convexity of LP , for any θ̃, θ∗ we have

(
∇LP (θ̃)−∇LP (θP )

)T (
θ̃ − θP

)
≥ λ||θ̃ − θP ||22.

By first-order conditions, ∇LP (θP ) = 0. Applying the Cauchy-Schwarz inequality along

with our stopping criteria on the gradient norm, we then have

||θ̃ − θP ||2 ≤
1

λ
||∇LP (θ̃)||2 ≤

τ

λ
.

169



Supplementary Material for Chapter 4 Chapter C

Let ξ ∼ N (0, σ2
outId). Because L is nL-Lipschitz continuous, we have

(
L(θ̃P )− L(θP )

)
≤ nL||θ̃P − θP ||2

= nL||θ̃ + ξ − θP ||2

≤ nL
(
||θ̃ − θP ||2 + ||ξ||2

)
≤ nL

(τ
λ
+ ||ξ||2

)
.

By Lemma C.10.11,

E
[
nL
(τ
λ
+ ||ξ||2

)]
≤ nL

(τ
λ
+ σout

√
d
)
.

To bound the expectation of L(θP )− L(θ∗), we can write

L(θP )− L(θ∗) =
(
L(θP )− Lλ(θ

P )
)
+
(
Lλ(θ

P )− Lλ(θ
∗
λ)
)
+ (Lλ(θ

∗
λ)− L(θ∗)) .

We can write Lλ(θ
∗
λ)−L(θ∗) = (Lλ(θ

∗
λ)− Lλ(θ

∗))+(Lλ(θ
∗)− L(θ∗)) and observe that

L(θP )− Lλ(θ
P ) = −λ

2
||θP ||22 ≤ 0,

Lλ(θ
∗)− L(θ∗) = λ

2
||θ∗||22, and

Lλ(θ
∗
λ)− Lλ(θ

∗) ≤ 0.

The last inequality follows from the optimality condition θ∗λ = argmin
θ∈Rd

Lλ(θ). We then

have

L(θP )− L(θ∗) ≤ Lλ(θ
P )− Lλ(θ

∗
λ) +

λ

2
||θ∗||22.
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By Taylor’s Theorem, for some θ′ ∈
[
θP , θ∗λ

]
we can write

Lλ(θ
∗
λ)− Lλ(θ

P ) = ∇Lλ

(
θP
)T (

θ∗λ − θP
)
+ 1

2
||θ∗λ − θP ||2∇2Lλ(θ′)

, (C.8.1)

with norm || · ||A =
√

(·)TA(·).

Then by the optimality condition ∇Lλ(θ
P ) + b = 0, we see that

Lλ(θ
∗
λ)− Lλ(θ

P ) + bT
(
θ∗λ − θP

)
=
(
∇Lλ(θ

P ) + b
)T (

θ∗λ − θP
)
+ 1

2
||θ∗λ − θP ||2∇2Lλ(θ′)

= 1
2
||θ∗λ − θP ||2∇2Lλ(θ′)

After rearranging terms, we can use Lemma C.10.10 and then complete the square to see

that

Lλ(θ
P )− Lλ(θ

∗
λ) = −1

2
||θ∗λ − θP ||2Lλ(θ′)

− bT
(
θP − θ∗λ

)
≤ −λ

2
||θ∗λ − θP ||22 − bT

(
θP − θ∗λ

)
= −

∣∣∣∣√λ
2

(
θ∗λ − θP

)
+
√

1
2λ
b
∣∣∣∣2
2
+
||b||22
2λ

≤ ||b||
2
2

2λ
.

By Lemma C.10.11,

E
[
Lλ(θ

P )
]
− Lλ(θ

∗
λ) ≤

dσ2

2λ

Putting together the pieces then completes the proof.
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C.8.1 Optimal rates

Choose σ ≍ L
√

d log(1/δ)

ϵ
and λ =

dL
√

log(1/δ)

ϵ||θ∗||2 . If τ ≈ 0 and σout ≈ 0, then

E
[
L(θ̃P ;Z)

]
− L(θ∗;Z) ≤ nL

(τ
λ
+ σout

√
d
)
+

dσ2

2λ
+

λ

2
||θ∗||22

≍ d2L2 log(1/δ)

ϵ2
· ϵ||θ∗||2
2dL log(1/δ)

+
dL
√

log(1/δ)||θ∗||22
2ϵ||θ∗||2

≍ dL||θ∗||2
ϵ

+
dL
√

log(1/δ)||θ∗||2
ϵ

≍ dL||θ∗||2
√

log(1/δ)

ϵ
.

The optimal choice of τ is discussed in Section C.7.

C.8.2 Generalized Linear Model

With some additional assumptions and restrictions, we can get a tighter bound on

E
[
Lλ(θ

P )
]
− Lλ(θ

∗
λ).

We will assume GLM structure on ℓ(·), i.e. ℓ(θ; z) = f(xT θ; y). We will further

assume boundedness: c ≤ f(xT θ; y) ≤ C for some universal constants c, C ∈ R. Applying

Taylor’s Theorem (in an argument similar to Equation C.3.8), we can show that for some

θ′′ ∈
[
θP , θ∗λ

]
θP − θ∗λ = ∇2Lλ(θ

′′)−1b.

Note that by the GLM assumption, the eigendecomposition of ∇2L∗
λ(θ) can be written as

XTΛ(θ)X. Then plugging in from Equation C.8.1 and using the boundedness assumption
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on the loss f ,

Lλ(θ
P )− Lλ(θ

∗
λ) =

1

2
||θP − θ∗λ||2∇2Lλ(θ′)

= bT
(
∇2Lλ(θ

′′)
)−1∇2Lλ(θ

′)
(
∇2Lλ(θ

′′)
)−1

b

= bT
(
XTΛ(θ′′)X + λId

)−1 (
XTΛ(θ′′)X + λId

) (
XTΛ(θ′)X + λId

)−1
b

≤ bT c−1
(
XTX + λId

)−1
C
(
XTX + λId

)
c−1
(
XTX + λId

)−1
b

≤ C

c2
||b||2

(XTX+λId)
−1

Then in expectation,

E
[
Lλ(θ

P
]
− Lλ(θ

∗
λ) ≤

Cσ2

c2
tr
((

XTX + λId
)−1
)
.

C.9 Bridging the Gap between Objective Perturbation

and DP-SGD

C.9.1 RDP of Objective Perturbation vs DP-SGD

DP-SGD (for example, n2 rounds of sampled Gaussian mechanism with Poisson

sampling probability 1/n) is known to experience a phase transition in its RDP curve: for

smaller α, amplification by sampling is effective, and the RDP of a DP-SGD mechanism

behaves like a Gaussian mechanism with ϵ(α) = O( α
2σ2 ), then it leaps up at a certain α and

begins converging to ϵ(α) = O(n
2α

2σ2 ) that does not benefit from sampling at all (Wang et al.,

2019; Bun et al., 2018). In contrast, the RDP curve for objective perturbation defined by

Theorem 4.3.2 converges to the RDP curve of the Gaussian mechanism ϵ(α) = O( α
2σ2 )

after a certain point. Whereas DP-SGD offers stronger privacy parameters for small α,

objective perturbation is stronger for large α, which offers stronger privacy protection for
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lower-probability events (see, e.g., Mironov, 2017, Proposition 10).
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(a) σObjPert = σGM = 100; p = 0.1, σDP-SGD = 10.
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(b) σObjPert = σGM = 40; p = 0.5, σDP-SGD = 20.

Figure C.3: RDP curves of objective perturbation and DP-SGD.

C.9.2 A Spectrum of DP Learning Algorithms

We can also connect Algorithm 7 to differentially private follow-the-regularized-leader

(DP-FTRL) (Kairouz et al., 2021), which uses a tree-based aggregation algorithm to

privately release the gradients of the loss function as a prefix sum. This approach provides

a competitive privacy/utility tradeoff without relying on privacy amplification or shuffling,

which is often not possible in distributed settings. DP-FTRL differs from DP-SGD by

adding correlated rather than independent noise at each iteration; Algorithm 7, in contrast,

differs from both by adding identical noise at each iteration.

C.10 Technical Lemmas & Definitions

C.10.1 Convex Optimization

We will give a short review of relevant concepts from convex optimization.
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Definition C.10.1 (ℓ2-Lipschitz continuity). A function f : Θ→ R is L-Lipschitz w.r.t. the

ℓ2-norm over Θ ⊆ Rd if for all θ1, θ2 ∈ Θ, the following holds: |f(θ1)−f(θ2)| ≤ L||θ1−θ2||2.

Definition C.10.2 (β-smoothness). A differentiable function f : Θ→ R is β-smooth over

Θ ⊆ Rd if its gradient ∇f is β-Lipschitz, i.e. |∇f(θ1) − ∇f(θ2)| ≤ β||θ1 − θ2||2 for all

θ1, θ2 ∈ Θ.

Definition C.10.3 (Strong convexity). A differentiable function f : Θ→ R is λ-strongly

convex over Θ ⊆ Rd if for all θ1, θ2 ∈ Θ: f(θ1) ≥ f(θ2) +∇f(θ2)T (θ1 − θ2) +
λ
2
||θ1 − θ2||22.

C.10.2 Differential Privacy

Definition C.10.4 (Privacy loss random variable). Let Pr [M(Z) = θ] denote the proba-

bility density of the random variableM(Z) at output θ. For a fixed pair of neighboring

datasets Z and Z ′, the privacy loss random variable (PLRV) of mechanismM : Z → Θ

is defined as

ϵZ,Z′(θ) = log
Pr [M(Z) = θ]

Pr [M(Z ′) = θ]
,

for the random variable θ ∼M(Z).

Lemma C.10.5 (Adaptive composition (RDP) (Mironov, 2017)). Let M1 : Z → R1 be

(α, ϵ1)-RDP andM2 : R1×Z → R2 be (α, ϵ2)-RDP. Then the mechanismM = (m1,m2),

where m1 ∼M1(Z) and m2 ∼M2(Z,m1), satisfies (α, ϵ1 + ϵ2)-RDP

Lemma C.10.6 (Change of coordinates). Consider the map g : X → Y between X ⊆ Rd

and Y ⊆ Rd that transforms y = g(x). Then

∂y =

∣∣∣∣det ∂y∂x
∣∣∣∣ ∂x,
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where
∣∣∣∣det ∂y∂x

∣∣∣∣ is the absolute value of the determinant of the Jacobian of the map g:

∂y

∂x
=


∂y1/∂x1 . . . ∂y1/∂xd

... . . . ...

∂yd/∂x1 . . . ∂yd/∂xd

 .

Lemma C.10.7 (Change of variables for probability density functions.). Let g be a strictly

monotonic function. Then for y = g(x),

pX(x) =

∣∣∣∣det ∂y∂x
∣∣∣∣ pY (y).

Lemma C.10.8. Let A be an invertible matrix. Then detA−1 = 1
detA

.

Lemma C.10.9 (Maximum Rayleigh quotient). For any symmetric matrix A ∈ Rd×d,

max
v∈Rd

vTAv

vTv
= λmax,

where λmax is the largest eigenvalue of A.

Lemma C.10.10 (Quadratic form inequalities). Let A ∈ Rd×d be a symmetric positive-

definite matrix with smallest eigenvalue λmin(A) and largest eigenvalue λmax(A). Then

for any vector x ∈ Rd,

λmin(A)||x||22 ≤ xTAx ≤ λmax(A)||x||22.

Lemma C.10.11 (Bound on the expected norm of multivariate Gaussian with mean 0.).
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Let x = N (0, σ2Id). Then

E [ ||x||2 ] ≤ σ
√
d.

Lemma C.10.12 (Gaussian MGF). Let X ∼ N (µ, σ2) for µ ∈ R, σ ∈ R>0. The moment

generating function of order t is then MGFX(t) = eµt+
1
2
σ2t2. So for any t ∈ R≥0 and

σ1 < σ2,

MGFX1(t) ≤ MGFX2(t),

where X1 ∼ N (µ, σ2
1) and X2 ∼ N (µ, σ2

2).

Definition C.10.13 (Holder’s Inequality). Let X, Y be random variables satisfying E [|X|p] <

∞, E [|X|q] <∞ for p > 1 and 1
p
+ 1

q
= 1. Then

E [|XY |] ≤ E [|X|p] 1p E [|X|q] 1q .

Definition C.10.14 (Rényi Divergence). Let P,Q be distributions with probability density

functions P (x), Q(x). The Rényi divergence of order α > 1 between P and Q is given by

Dα(P ||Q) =
1

α− 1
logEx∼Q

[(
P (x)

Q(x)

)α ]
=

1

α− 1
logEx∼P

[(
P (x)

Q(x)

)α−1
]
.

Lemma C.10.15 (MGF inequality for identical distributions). Let x, y, z ∼ N (0, σ2). Then

Ex,y

[
et|z1| |z2|

]
≤ Ez

[
etz

2
]
.

Proof. Observe that for any a, b ∈ R, it holds that 2ab ≤ a2 + b2. Applying this along

with the Cauchy-Schwarz inequality,
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Ex,y

[
et|x| |y|

]
≤ E

[
e

t
2
x2

e
t
2
y2
]

≤
√

Ex

[
e

t
2
x2
]
Ey

[
e

t
2
y2
]

= Ez

[
etz

2
]
.
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