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ABSTRACT 
 

Tumbling Stacks of Purine Crystals Create Sparkling Iridocytes 

in the Nudibranch, Flabellina iodinea 

 

by 

 

Savannah Jane Dearden 

 

Although pigments contribute much of the brilliant purple and orange coloration of the 

aeolid nudibranch, Flabellina iodinea, the brightness of both colors was found to be 

enhanced by unusually sparkling iridocytes that exhibit rapid temporal variation in the 

brightness of their reflectivity. Electron micrographic examination revealed these epidermal 

cells to contain numerous multilayer stacks of crystals, both within vesicles and apparently 

free in the cells. High-resolution light microscopy showed that these structures tumble freely 

to produce the observed sparkling reflectivity.  Most abundant near the epithelial basal 

lamina, the perceived color of these sparking iridocytes appears dependent on the size and 

thickness of the crystal platelets that comprise the stacks, with those that exhibit silver 

reflectance in the orange cerata being larger and thicker than those that reflect blue in the 

epithelium of the purple body. Thin layer chromatography and UV spectrometry show that 

the crystals isolated from all epithelial regions are identical in composition, with guanine as 

the major component and its derivative, hypoxanthine, a minor component. Electron 

diffraction of the crystals isolated from the orange and purple tissue exhibit nearly identical 

lattice parameters of a = 6.57 ± 0.05 Å, b = 13.65 ± 0.07 Å and c = 18.76 ± 0.06 Å - unit cell 



 

 vi 

dimensions that closely match those measured for the non-tumbling guanine crystals widely 

distributed in other biophotonic systems ranging from marine invertebrates to terrestrial 

vertebrates. The epidermal iridocytes of F. iodinea are thus capable of manipulating crystal 

growth to produce multilayer stacks of purine crystals with optical properties specific to 

different locations in the body. This specificity parallels and apparently augments the 

animal’s striking pattern of pigmentation. 
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I. INTRODUCTION 

Lacking shells, the marine nudibranch molluscs (Opisthobranchia: Gastropoda) 

have evolved a diversity of alternate defense mechanisms, including chemical secretions and 

sequestration of stinging nematocysts from their prey, with concomitant patterns of bright 

coloration recognized as warning by potential predators  (Thompson, 1960b; Edmunds, 

1966; McBeth, 1972; Martin, 2003; Aguado and Marin, 2007). Flabellina iodinea (Cooper, 

1863), an aeolid nudibranch native to the west coast of North and Central America, exhibits 

a color pattern that is striking, even amongst other marine opistobranchs (Figure 1). The 

body is purple-blue while its dorsal cerata  (facilitating digestion and gas exchange) are 

brilliant orange. This beautiful morphology, coupled with its rhythmic flexions propelling it 

through the water (Goodheart, 2013), have earned this species the nickname “the “Spanish 

shawl.” Feeding preferentially on the cnidarian hydroid Eudendrium ramosum (McBeth, 

1972), F. iodinea sequesters the prey’s stinging nematocysts, storing them in the tips of the 

cerata in specialized structures known as cnidosacs (Martin, 2003; Greenwood, 2009; 

Martin, 2009). It has been proposed that this color pattern, in which the brightly colored 

cerata contrast sharply with the body, may additionally function to attract predators to the 

location of the stinging nematocysts and away from the visceral organs. The ability of the 

aeolids to autotomize and regenerate their cerata supports this hypothesis (Thompson, 

1960a; Edmunds, 1966; Miller, 2000; Fleming, 2007), as does the observation that when 

attacked, aeolids typically contract the body and the rhinophores, while holding the cerata 

more erect and oriented towards the attacking predator (Edmunds, 1966; Aguado and Marin, 

2007).  
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Figure 1. Live F. iodinea, illustrating contrast between bright orange cerata and purple body. 
 

The bright orange, purple and red seen in Figure 1 are produced by the carotenoid 

pigment, astaxanthin, and its esters, that are concentrated in granules in the epidermal cells 

(McBeth, 1972). We have found that these pigments alone, however, do not account for the 

brilliant colors of the tissues of F. iodinea in their entirety. Intermingled with the pigmented 

colors, we discovered highly reflective regions of the tissue as shown in Figure 2.  

 Similar reflective regions have been observed in the epidermal tissues of other 

nudibranchs. Burgin described vacuoles filled with small particles of a “striking metallic 

luster” seen  “only in reflected light” in the aeolid Hermissinda crassicornis (Eschscholtz, 

1831), and noted similar structures in a number of other aeolid species (Burgin, 1964). 

Similarly, in Flabellina affinis (Gmelin, 1791), a congener of the species studied here, 
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Martin et al. described “pigment inclusions” filled with “iridescent platelets” near the nuclei 

of certain epidermal cells (Martin and Walther, 2002; Martin et al., 2007). 

Reflective structures have arisen many times through the course of evolution in very 

distantly related species, but are particularly prevalent in the tissues of marine animals, 

where they are tailored to the limited light environment in which these organisms live 

(Denton, 1970).  High reflectivity in biological tissues - a result of “structural color” 

fundamentally different from the differential absorption and reflectance by pigments - is 

most often the result of thin-film interference. The structures responsible, described as 

multilayer reflectors, are composed of stacks of materials of alternating high and low 

refractive index, with reflection occurring from each of the successive interfaces (Vukusic 

and Sambles, 2003).  Total reflectance increases proportionally with the difference in 

refractive indices of the alternating layers and with the number of layers in a stack (Land, 

1972). The reflected light may be either silvery or white (i.e., broadband, comprised of 

multiple wavelengths) or a specific color, depending on the relative constancy or variability 

of spacing, and the dimensions and refractive indices of the layers (Land, 1972). In both 

marine and terrestrial animals, the high refractive index layers have been found to be 

comprised of a wide range of materials including collagen (Denton, 1970) and other 

condensed proteins (Crookes et al., 2004; DeMartini et al., 2013), chitin (Denton, 1970; 

Seago et al., 2009) and crystals of guanine  (Levy-Lior et al., 2010a; Dougherty et al., 2014; 

Hirsch et al., 2015; Gur et al., 2015; Teyssier et al., 2015). The low refractive index layer is 

most often cytoplasm (Jordan et al., 2014).  

We describe here the uniquely sparkling (temporally varying) reflective structures 

discovered in epidermal iridocytes of the nudibranch, Flabellina iodinea.  Sparkling 

reflectivity originates from freely tumbling, multilayer stacks of platelets composed of 
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purine crystals both contained in intracellular vesicles and apparently free in the cytoplasm. 

Identified in situ by light microscopy and TEM, the platelets were isolated from the tissue, 

characterized by electron diffraction, and their composition analyzed by thin-layer 

chromatography and UV spectroscopy. The reflective structures are composed primarily of 

guanine and traces of the related hypoxanthine, arranged in stacks of thin, flat crystals, each 

approximately 200-800 nm across the widest face and 50-200 nm thick.  
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II. MATERIALS AND METHODS 

A. Specimens 

Flabellina iodinea nudibranchs were collected at a depth of ca. 4 m from Goleta 

Bay, CA (34 24.854'N 119 49.711'W). The animals were kept in fresh flowing seawater with 

their hydroid food, E. ramosum, for 1-60 days before study. 

 

B. Light Microscopy of Live Tissues 

Light microscopy was used to analyze the epidermis of whole live specimens (in 

glass petri dishes) and small pieces of cerata and main body tissue (on glass slides under 

cover slips), all in artificial seawater (ASW = (70 mM NaCl, 10 mM KCl, 27 mM MgCl2, 29 

mM MgSO4, 11 mM CaCl2, 10 mM HEPES, pH 7.8) (Kester et al., 1967). Observations 

were performed on a Zeiss AxioObserver D1M inverted microscope (Carl Zeiss AG, 

Oberkochen, Germany). The samples were imaged in both transmission and reflection 

mode, with illumination from a broadband halogen lamp (with detectible light in the range 

of 200-800 nm) and Zeiss EC EpiPlan-NEO-FLUAR objectives. Intensity analysis and 

particle tracking were performed with series of images in ImageJ software (Schneider et al., 

2012). 

 

C. Fixation, Light Microscopy and TEM 

Specimens were euthanized by decapitation. Entire cerata and segments of main 

body tissue were excised and chemically fixed in utrafilter-sterilized ASW containing 2% 

formaldehyde plus 2% glutaraldehyde for 2 h at room temperature. The tissue was then 
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washed in ASW twice for 30 min each and post fixed in 2% osmium tetroxide for 1 h at 

room temperature. The fixed tissue was then dehydrated in a series of graded ethanol 

solutions: 25, 50, 75, 90, 100, 100 and 100 (% ethanol in degassed, deionized water); this 

was followed by solvent exchange into propylene oxide/ethanol solutions: 33, 66, 100 and 

100 (% propylene oxide). The tissue was then transferred to EMbed 812 embedding media 

(EMS, catalog # 14120) through a gradient series of resin/propylene oxide solutions: 33, 66, 

100 and 100 (% EMbed 812 resin), then transferred to silicone molds, overlaid with fresh 

resin and cured overnight at 55 °C. The hardened blocks were trimmed and sectioned to 500 

nm (light microscopy) or 100nm (electron microscopy) slices on a Leica EM UC6 

ultramicrotome (Leica Microsystems, Wetzlar, Germany). 500 nm sections were transferred 

to glass slides (Fisher Scientific, catalog # 413051) and stained with 25% methylene blue, 

25% azure B, 25% toluidine blue, 10% sodium borate for 45- 60 s. Excess moisture was 

wicked away and the samples were mounted beneath a glass coverslip (Fisher Scientific, 

catalog # 413521) with Permount™ (Fisher Scientific, catalog # 17986). 100 nm sections 

were transferred to copper/Formvar grids (Ted Pella, Substratek™, 75 Square Mesh, #1802-

F). Post-stain procedures for 100 nm sections observed with electron microscopy varied, 

with the sample being treated either with (A) 2% aqueous uranyl acetate (15 min) and 0.5% 

aqueous lead citrate (1 min) with 3X20 s DI H2O washes in between; (B) only 2% aqueous 

uranyl acetate (15 min); or (C) only 0.5% aqueous lead citrate (1 min); each of these 

procedures was followed by 3 washes of 20 s with distilled H2O. All grids were air dried 

after post-staining. 

 All light microscopy observations of 500 nm sections were performed with a Zeiss 

AxioObserver D1M inverted microscope (Carl Zeiss AG, Oberkochen, Germany) as used 
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for the live tissues. 100 nm sections were viewed with a JEOL 1230 Transmission Electron 

Microscope (TEM) operating at 80 kV. 

 

D. Purification and TEM of Platelets 

Purification of the electron dense platelets observed in the tissue sections was 

achieved through adaptation of the protocol of Levy-Lior et al. for purification of guanine 

crystals from spider integument (Levy-Lior et al., 2010a). Live F. iodinea were rinsed gently 

in ASW, then euthanized by decapitation. The orange cerata and bright regions of the purple 

main body were removed and separately digested with Proteinase K (Roche, catalog # 

311587001) in DI water at a concentration of ~3.46 U/mL for 3 d at room temperature with 

shaking. The samples were vortexed for 30s every 24 h.  Samples were centrifuged at 

11,934 xG (10600 rpm, Eppendorf 5810 R) for 20 min at room temperature. The pellets 

were washed with DI water by centrifugation and tissue and cell debris were removed with 

the supernatants. The pellets were resuspended in DI water and the same centrifugation 

process was repeated multiple times until the supernatants were clear and the pellets a solid 

white. The pellets were stored in DI water at 4o C.  

For examination by TEM, 2-5 µL of the suspensions of the pellets were deposited on 

copper/Formvar grids (Ted Pella, Substratek™, 75 Square Mesh, catalog # 1802). Crystals 

in the micro-droplet were allowed to settle for 1 min before excess moisture was wicked off. 

The grids were air dried and examined by TEM as described for above. 
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E. Electron Diffraction 

Samples of the purified crystals prepared for examination by TEM as described 

immediately above also were analyzed by electron diffraction using a FEI Technai G2 

Sphera transmission electron microscope operating at 200 kV after calibration with a gold 

standard. All diffraction patterns were acquired at a working distance of 520 mm without 

tilting the stage.  

 

F. UV-Vis Spectroscopy 

Standards of pure guanine (Sigma Aldrich, catalog # G11950) and hypoxanthine 

(Sigma Aldrich, catalog # H9377) (between 0.01 mM to 0.10 mM) were dissolved in the 

TLC solvent (see below) and samples of the purified biogenic crystals dissolved in the same 

solvent and clarified by centrifugation at 20,817 xG (14,000 rpm, Eppendorf 5810 R) for 5 

min at room temperature were analyzed for absorbance in the range of 200-400 nm using a 

Jasco V-600 Ultra Violet-Visible (UV-Vis) spectrophotometer and a 10 mm path-length 

quartz cuvette (Hellma®, Sigma Aldrich, catalog # Z803669) with the TLC solvent used as 

a blank reference. Molar extinction coefficients for the guanine and hypoxanthine standards 

were determined at their respective wavelengths of maximal absorbance, enabling 

estimation of the approximate concentrations in the biogenic samples. 

 

G. Thin Layer Chromatography 

Analysis by thin layer chromatography (TLC) was conducted using the method of 

Rohrlich and Rubin (1975). The purified and washed platelets from F. iodinea cerata and 
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body tissue were pelleted by centrifugation, dissolved in a small volume of 1.0 N HCl and 

analyzed on glass-backed microgranular cellulose chromatograms in parallel with authentic 

guanine (Sigma Aldrich, catalog # G11950) and hypoxanthine (Sigma Aldrich, catalog # 

H9377) applied in the same solvent. All samples were clarified by centrifugation at 20.817 

xG (14,000 rpm, Eppendorf 5810 R) for 5 min at room temperature prior to 

chromatography. Chromatograms were developed with a methanol-HCl-water (70:20:10 

v/v/v) solvent for ~45 min and visualized with short wave UV light.  
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III. RESULTS 

A. Light Microscopy of Living Tissue 

 

Figure 2. Magnified view of the epidermis of a live F. iodinea, revealing regions of bright reflectivity 
in the orange cerata and purple body; note the higher density of the reflective regions in the cerata 

relative to the body. 
 

The dermis of the aeolid nudibranch, Flabellina iodinea, is speckled with spherical 

regions 5 to 10 µm in diameter filled with dynamically reflecting structures. Figure 2 

illustrates the brilliance of these reflective regions in a live, whole specimen under 
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illumination. These regions, while present across all areas of the main body and cerata 

examined, are most abundant in the orange cerata (Figure 2). The appearances of these 

regions in the cerata and the main body are compared in the series of light micrographs 

shown in Figure 3. These micrographs of small samples of excised live tissues under cover 

slips in ASW demonstrate the differences in relative abundance and color of the reflective 

regions in the cerata and main body. While these regions appear dark brown in the cerata 

and lighter brown in the main body when observed in bright field transmission mode, these 

same regions viewed in reflectance mode appear bright silver and blue in the cerata and 

main body respectively. 

 

Figure 3. Light micrographs of live F. iodinea tissues from orange cerata (O) and purple foot (P) 
viewed in ASW with bright field transmission (“b”) or dark field reflection mode (“r”) at 

progressively increasing magnification (1-3). 
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Higher magnification reveals that these regions are composed of punctate reflecting 

structures less than a micron in size (visible in Figure 3- O3-r and P3-r). While the majority 

of the punctate reflectors are contained in the regions described, many also were observed 

free in the surrounding tissue and medium.  

The punctate reflective structures are not stationary, but, instead, move rapidly and 

without any determined pattern, as might be expected for small particles in Brownian 

motion. This motion is readily evidenced in the intermittent reflectance of light from these 

structures, giving rise to their pronounced, temporally sparkling appearance – the tracking of 

which is shown in Figure 4. This effect was not distinctly related to the reflectors’ 

compartmentalization to the described regions. While free reflectors did exhibit a greater 

range of intensity values, this is attributable to decreased background intensity from 

surrounding reflectors compared to those concentrated in compartments (Figure 4- B and C). 

Some membrane bound compartments appear more densely packed with reflective particles 

than others; the movement of the particles within these more crowded compartments was 

observed to be reduced relative to that of the free reflectors. These dynamic movements, 

illustrated in the epidermal tissue from the ceras in Figure 4, are found ubiquitously across 

all areas of reflective tissue.  
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Figure 4. Temporal tracking of reflectivity suggesting Brownian motion. (A) Light micrograph 
of live F. iodinea tissue observed in dark field reflection mode. Examples of compartmentalized 

reflective sources are marked by arrows 1, 2, and 3; un-compartmentalized sources by arrows 4, 5 
and 6. Intensities of reflectivity from these single sources were tracked over time using ImageJ as 

described in Methods. Graphical representations of the temporal variation of intensity of reflectance 
from the selected compartmentalized (B) and un-compartmentalized (C) sources are shown at right. 

 

B. Examination of Fixed Tissues by Light Microscopy and TEM 

Light microscopy of the 500 nm thick sections of the fixed and embedded tissue stained 

with methylene blue, azure B and toluidine blue verified that the epidermal ultrastructure of 

F. iodinea is similar to that of other aeolids (Martin and Walther, 2002; Martin et al., 2007), 

with only a single cellular layer of polarized epidermal cells between the well defined basal 

lamina and the protective external layer of mucus. Cross sections of a single ceras (Figure 5) 

show the endothelial monolayer (EM) delineated from the more interior muscular tissues 

and core digestive diverticulum (DD) by the basal lamina (BL). Many darkly staining 

secretory glands (SG) in the endothelial monolayer are also visible. The reflective structures 

were not visible in this preparation. 
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Figure 5. F. iodinea tissues viewed by light microscopy after fixation and staining with 
methylene blue-azure B- toluidine blue as described in Methods. (A) Isolated ceras showing 

epithelial monolayer (EM) delineated from the inner muscle and digestive diverticulum (DD).  (B) 
Cells of the epithelial monolayer, with darkly stained secretory glands (SG) and basal lamina (BL) 

at the base of the epithelial cells clearly visible. 

 

 TEM of 100 nm thin sections stained after fixation with uranyl acetate and lead 

citrate (Figure 6) revealed numerous membrane-bounded envelopes, some of which 

appeared as empty voids, approximately 500 nm across and 100-200 nm in height, near the 

basal lamina, where reflective pigment granules have been described in other nudibranch 

species (Burgin, 1964; Martin and Walther, 2002;Martin et al., 2007). Electron dense, stacks 

of two to eight plate-like deposits of material are present both within and in close proximity 

to these envelopes.  The individual platelets in these fully stained sections vary in size 

between 300 and 600 nm across the flat face and 100-200 nm in thickness parallel to the 

stacking direction. Each platelet within a stack is separated from the next by a thin layer of 

lightly stained material (Figure 6-1). The apparently empty voids are of the corresponding 

size, shape and spacing to have been left by dissolution of the material in the dense platelets.  
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Figure 6. TEM reveals numerous stacks of electron dense platelets near the epithelial basal lamina 
of F. iodinea cerata. Tissue from the epithelial monolayer stained with lead citrate and uranyl acetate; 
arrows 1 and 2 indicate regions of interest magnified in panels 1 and 2. Note conspicuous white voids 
remaining after apparent dissolution of electron-dense platelets visible “free” within the cells (1) and 

compartmentalized within membrane bound structures (2). 
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To determine whether the post-fixation staining with lead citrate was responsible for 

dissolution of the electron dense platelets, as had previously been reported for purine-based 

crystals (Land, 1966; Schmitter, 1971; Levy-Lior et al., 2010b; Mueller and Labhart, 2010), 

fixed sections were treated with only lead citrate, only uranyl acetate, both compounds or 

neither. Samples treated with lead citrate (alone or in combination) exhibited the apparently 

empty voids while those that were either not stained or treated only with uranyl acetate did 

not exhibit any voids and, in their place had more platelet-containing envelopes (Figure 7). 

This indicates that the platelets are composed of materials, very likely purines, soluble in 

lead citrate. 

 

Figure 7. Stacks of electron dense platelets are present in all regions of the epithelium that are 
visibly reflective. Cross sections (100 nm) of cells in the epithelial monolayer from either the cerata 
(O) or the body (P), stained with uranyl acetate, illustrating the presence of stacks of electron dense 

platelets in both parts of the body, but with varied dimensions. 

 

While visible in the cells of the epithelial monolayer near the basal lamina in both 

the cerata and the main body, the platelets were much more common in the cerata. In both 

areas of tissue sectioned, platelet-containing envelopes or voids were found concentrated in 
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intracellular membrane-bound compartments (Figure 6-2) as well as dispersed within the 

tissues (Figure 6-1), as also observed in light microscopy (Figure 3 and Figure 4). In 

samples stained with only uranyl acetate, the platelets in sectioned cerata ranged in width 

from 150-500 nm and 80-150 nm in height with 50-150 nm of space separating each platelet 

(Figure 7-A). In comparable sections of the main body stained with uranyl acetate, the 

platelets ranged in width from 200-500 nm and 80-100 nm in height with 100-130 nm of 

space in between them (Figure 7-B). Generally, space between each platelet is more readily 

visible in sections from which the lead citrate stain was omitted (Figure 7) compared to 

sections stained with lead citrate and uranyl acetate (Figure 6).   

 

C. Purification and TEM of Crystals 

The end product of the purification procedure [adapted from Levy-Lior et al.’s (2010) 

process for purifying crystals from spider integument] was a pellet of white material. 

Suspension of this material in DI water produced a cloudy white suspension that clarified 

over time. Tissue from the cerata and the main body of the nudibranch were processed 

separately; notably less material was recovered from the main body than from the cerata, 

when starting with the same tissue mass. The contents of the pellets were examined by 

depositing 3-5 µL of the initial suspension onto carbon coated TEM grids that were then air 

dried before imaging. The preparations consistently covered the TEM grids with electron 

dense, angular platelets and little to no cell debris visible (Figure 8). The platelets are 

apparently crystalline and heterogeneous in size or shape. The smallest have a face of 180 

nm across and the largest at 800 nm across with some exhibiting a prismatic habit and others 

a hexagonal one. Figure 8 shows a typical overview electron micrograph of one of these 
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preparations. The size, shape and yield of the crystals strongly suggest that they are the same 

platelets that were identified in the in situ micrographs.  

 

 
Figure 8. An array of purified crystals from cerata and body. TEM of the angular, electron dense 

platelets constituting the major component of the pellet obtained from the purification procedure. 
Note that the platelets correspond in size to those viewed in situ (cf. Figures 6 and 7). 

 

 

 The mean values of crystal dimensions ± the standard deviation were determined. 

The platelets isolated from the cerata are larger (590 ± 50 nm; n = 50) measured through 

their longest dimension than those isolated from the body (320 ± 35 nm; n = 50) measured 
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through their longest dimension and appear denser or thicker (darker) in the electron 

micrographs (Figure 9). 

 

Figure 9. TEM micrographs of platelets purified from the orange cerata (O) and the purple body 
(P). Note larger size and greater electron density of crystals from the cerata. 

 

 The purified individual platelets typically deposited flat, with their largest face 

exposed to the electron beam. Stacks of platelets were also isolated and these deposited with 

the face of the platelets, which is also the stacking direction, perpendicular to the electron 

beam, as shown in Figure 10. Images in this orientation facilitated precise measurement of 

the thickness of the crystals in the platelet stacking dimension: platelets measured from the 

cerata are roughly 120 ± 30 nm (n = 18) thick and those measured from the body are roughly 

60 ± 15 nm (n= 12) thick (Figure 10; Figure 11- O2, P2). These dimensions are considered 

to be more accurate than those taken from in situ sections of tissues that were subject to 

dehydration and heavy metal staining; however, the spacing between the platelets seen in 

situ (Figures 6 and 7) is no longer visible in the purified stacks (Figure 10; Figure 11- O2, 

P2). Consequently, a measurement of equal quality for the inter-platelet spacing within the 

stacks could not be determined from the purified platelets. 
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Figure 10. High magnification of a stack of crystals purified from the cerata illustrating how each 
dark, electron dense platelet, approximately 100 nm thick (denoted by the black bracket), is 

delineated from the next in the stack by a thin space (indicated by arrow 1) and composed of two 
tightly adherent layers (boundary between layers indicated by arrow 2). 

 

 The micrographs of purified platelets suggest that each individual platelet is 

composed of two layers. These layers are visible along the edges of crystals deposited flat, 

on their largest face (Figure 9; Figure 11, O1, P1), and in the edge-on view of the deposited 

the stacks of platelets (Figure 10, Figure 11, O2 and P2). Each sub-platelet layer is 
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approximately half the thickness of the platelet in which it is found. These sub-platelet 

layers appear to be composed of the same material with no evident space in between them. 

 

D. Electron Diffraction 

 

Figure 11. Transmission electron micrographs of purified platelets from the orange cerata (O1, 
O2) and the purple body (P1, P2) of F. iodinea and their corresponding electron diffraction patterns 

confirming crystallinity. O1 and P1 patterns were obtained with the beam perpendicular to the 
largest crystal face, providing two principal spacings (b and c). These patterns indicate the presence 
of two superimposed crystals, the edges of which are visible in the electron micrographs. O2 and P2 

patterns were obtained with the beam perpendicular to the edge of a set of stacked crystals, providing 
an additional spacing (a). The lattice spacings determined from the ED patterns of crystals from the 

cerata and the body are nearly identical. 
 

Electron diffraction (ED) patterns (Figure 11) confirm the crystalline nature of the 

purified platelets, and strongly suggest that they are composed of one or more purines, as 

determined for other electron-diffracting crystalline biophotonic structures from other 

species (Rohrlich and Rubin, 1975; Levy-Lior et al., 2010b; Gur et al., 2013;  Hirsch et al., 

2015). The deposition of F. iodinea crystals onto TEM grids along the flat face and stacked 

on their side permitted collection of diffraction patterns representing all three dimensions of 
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the crystal lattice, presented here as mean values ± standard deviation for n = 8 diffraction 

patterns. Two principal spacings were determined from patterns of individual crystal 

platelets laid flat on the grid (Figure 11- O1 and P1): 13.64 ± 0.02 Å and 18.77 ± 0.04 Å 

(purified from cerata) and 13.66 ± 0.05 Å and 18.76 ± 0.02 Å (purified from the body).  

Diffraction patterns taken from crystals stacked on their sides (Figure 11- O2 and P2) 

provided a single principle spacing of 6.60 ± 0.03 Å and 6.54 ± 0.02 Å (purified from the 

cerata and body, respectively). 

 The ED patterns obtained with the electron beam perpendicular to the largest face of 

a single platelet (Figure 11- O1, P1) generally indicate the presence of two superimposed 

crystals, slightly offset from one another. This crystallographic superposition is consistent 

with the TEM observation that each crystal platelet is a doublet of crystalline layers. The 

angle between these two layers, as measured from the diffraction patterns, is highly variable. 

 

E. UV-Vis Spectroscopy 

The purified crystals were dissolved in methanol-HCl-water (70:20:10 v/v/v) and 

analyzed for absorbance in the range of 200-400 nm. The dissolved species absorbed 

strongly in the UV, exhibiting an absorption spectrum characteristic of purine nucleobases 

with maximal absorbance, λmax, at 249 ± 1 nm (Figure 12). Pure standards of guanine (λmax = 

249 ± 1 nm) and hypoxanthine (λmax = 247 ± 1 nm) were analyzed in parallel. A near perfect 

fit of the F. iodinea absorbance spectrum was obtained with a spectrum simulated for a 

mixture of 81% guanine and 19% hypoxanthine (Figure 12-B). 
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Figure 12. UV-Vis spectroscopy reveals that the purified crystals are comprised of purine. (A) 
Absorbance spectra of purified and dissolved crystals from F. iodinea cerata (orange) and pure 

guanine (teal) and hypoxanthine (red) standards at various concentrations. (B) Absorbance spectrum 
of purified and dissolved crystals from F. iodinea cerata (orange) diluted to produce a spectrum 

comparable to that of a mixture of 0.09 mM guanine and hypoxanthine standards. Using the curves 
from 0.09 mM guanine and hypoxanthine in a ratio of 81:19, a simulated spectrum was generated 

(dark blue) that closely matches that of the purified crystals. All samples were dissolved in methanol-
HCl-water, 70:20:10 (v/v/v). 

 

F. Confirmation by Thin Layer Chromatography 

The purified F. iodinea crystals were analyzed by thin-layer chromatography as 

described in Methods, in parallel with pure guanine and hypoxanthine (Figure 13). The 

guanine and hypoxanthine standards were easily visualized with short wave UV light as 

spots of slightly different blue color with hypoxanthine appearing darker and traveling 

further than guanine, as previously reported (Rohrlich and Rubin, 1975). Two compounds 
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matching these mobilities and colors were most clearly visible for the crystals purified from 

the F. iodinea cerata and main body, thus identifying the major component of the crystals as 

guanine, and a minor component as hypoxanthine.  These proportions are consistent with the 

spectroscopic analyses described above. The quantities of these compounds evident on the 

chromatogram were correspondingly lower for the sample from the main body, as the yield 

and final concentration of crystals from that tissue were considerably lower than from the 

cerata.  

 

Figure 13.  Thin layer chromatography confirms purine compositions of the reflective crystals.  
(A) TLC of purified and dissolved crystals from the orange cerata, O, and purple body, P, 

compared to pure guanine, G, and hypoxanthine, H, standards. Samples all were dissolved in 1 N 
HCl and developed with a methanol-HCl-water (70:20:10 v/v/v) solvent and visualized with short 
wave UV-light. (B). Same chromatogram as shown in (A), but with visible spots of UV absorption 

outlined for clarity. 

 

These results suggest that the major component of the platelets is guanine, but that a 

significant amount hypoxanthine is also present in the structures. No other components were 

visible, indicating that no other nucleobases are significant components of the platelets. 
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IV. DISCUSSION AND CONCLUSIONS 

The brilliant coloration of the nudibranch, F. iodinea, was found to be enhanced by 

multilayer reflectors composed of stacks of purine crystal platelets, each a doublet of tightly 

adhered crystalline layers. These reflective crystal stacks are similar in composition to those 

found in iridescent fish scales (Jordan et al., 2012; Gur et al., 2013), silver spiders (Mueller 

and Labhart, 2010; Levy-Lior et al., 2010), panther chameleons (Rohrlich and Rubin, 1975; 

Teyssier et al., 2015) and sapphirinid copepods (Gur et al., 2015), but unique in physical 

organization and optical effect. In contrast to the fixed positions or limited switching of 

orientation of the crystal stacks in these previously characterized systems, the reflectors of 

F. iodinea individually exhibit rotational and translational freedom. Consequently, as the 

reflectors tumble, they intermittently align with the incident light at the appropriate angle for 

maximum reflectance. This uniquely results in a dynamic, temporally varying, “sparkling” 

in the tissues. 

These purine crystal reflectors, present in the cerata and body, are localized to a 

region of the endothelial monolayer near the basal lamina, as previously observed for 

reflective pigment granules in other aeolid species (Burgin, 1964; Martin and Walther, 2002; 

Martin et al., 2007), where they are concentrated in membrane bound compartments as well 

as free within the endothelial iridocytes. It is not yet determined, however, whether the free 

crystals are a characteristic of live cells or a result of tissue handling and processing. It is 

possible that the crystals are formed from amorphous guanine in these compartments in a 

process similar to that identified in silver spiders (Levy-Lior et al., 2010a; Weiner and 

Addadi, 2011) before their release. The reflectors tumble rapidly and stochastically in a 

manner independent of their confinement in the membrane bound compartments (Figure 4) 

and continued this movement when released into the surrounding medium, suggesting that 
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this phenomenon is not driven by cytoskeletal or other cellular mechanisms, but is governed 

by Brownian motion.  

Table 1: Lattice parameters calculated from electron diffraction of F. iodinea crystals, simulated 
biogenic polymorphs and anhydrous guanine. 

Source Crystals 
Purified from 

Cerata, 
Experimental, Å 

 

Crystals 
Purified from 

Body, 
Experimental Å 

λ-
Polymorph, 

Simulated1, Å 

Guanine 
Anhydrous2, 

Experimental, Å 

β-
Polymorph, 

Simulated1, Å 

Lattice 
Dimension 

(a) 
 

6.60 ± 0.03 6.54 ± 0.02) 6.38 3.55 3.59 

Lattice 
Dimension 

(b) 
 

13.64 ± 0.02  13.66 ± 0.05 9.73 9.69 9.72 

Lattice 
Dimension 

(c) 
 

18.77 ± 0.04 18.76 ± 0.02 18.39 16.35 18.34 

Crystal 
Symmetry 

Undetermined Undetermined Orthorhombic Monoclinic Monoclinic 

1Parameters determined from in silico generated guanine polymorphs by Hirsch et al., 2015     
2Parameters determined from experimental synchrotron data by Guille and Clegg, 2006. 
Symmetry of the F. iodinea crystals cannot be decisively concluded from the ED data collected. 

 

Electron diffraction of crystals isolated from the orange and purple tissue exhibit 

nearly identical lattice parameters of a = 6.57 ± 0.05 Å, b = 13.65 ± 0.07 Å and c = 18.76 ± 

0.06 Å. While UV-Vis spectroscopy and thin-layer chromatography strongly indicate that 

these crystals are composed primarily of guanine, with hypoxanthine as a minor component, 

these lattice parameters do not match those expected for chemically pure anhydrous guanine 

(Table 1). The crystal structure of anhydrous guanine is monoclinic, with space group P21/c 

and cell dimensions a = 3.55, b = 9.69, c = 16.35 Å (Guille and Clegg, 2006). In this 

structure, the guanine molecules are linked together by N-H - - -N and N-H - - - O hydrogen 

bonds to form sheets, between which there are π-π stacking interactions. In the proposed 

structure, the lattice parameters a and b define the dimensions of the hydrogen bonding 

plane and, c, the dimension perpendicular to these planes (Guille and Clegg, 2006). The 
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predicted morphology of the anhydrous guanine crystals is prismatic, with elongation along 

the shortest crystallographic axis and perpendicular to the planar guanine molecules (Levy-

Lior et al., 2008; Levy-Lior et al., 2010).   

Biogenic guanine crystals from iridescent fish, silver spiders and sapphirinid 

copepods, however, do not exhibit this morphology (Levy-Lior et al., 2010; Gur et al., 2015; 

Hirsch et al., 2015). Instead, these crystals, like those discovered in F. iodinea, grow as thin 

plates with the shortest dimension in the direction that is expected to exhibit the highest 

growth rate. This results in crystal plates with the largest face parallel to the planar H-

bonded network of guanine molecules (Levy-Lior et al., 2010a). In laboratory-grown, pure 

guanine crystals, the refractive index of this crystal face (determined to be the [102] face) is 

significantly higher (1.83) than that of one of the perpendicular faces (1.48) (Hinrichs et al., 

2005; Levy-Lior et al., 2010). This pronounced birefringence has led to the proposition that 

organisms utilizing the photonic properties of guanine crystals have evolved a mechanism to 

inhibit the expected growth in the molecular stacking direction to optimize light reflectivity 

(Levy-Lior et al., 2008; Levy-Lior et al., 2010). Our data suggest that F. iodinea employs a 

similar mechanism to manipulate crystal morphology and lattice orientation.  

Electron diffraction by the F. iodinea purine crystals in which the electron beam was 

oriented perpendicular to the largest crystal face display the same mm Laue symmetry as the 

0kl diffraction patterns obtained from guanine crystals of a bright white Japanese koi 

(Cyprinius carpio) (Hirsch et al., 2015). This fish crystal ED pattern was shown to most 

closely match that simulated for an in silico- generated orthorhombic γ-polymorph of 

guanine (Hirsch et al., 2015). The lattice parameters calculated for this polymorph of a = 

6.38 Å, b = 9.73 Å and c = 18.39 Å, where a and b define the dimensions of the hydrogen 

bonding plane and, c, the dimension perpendicular to these planes, are nearly identical to 
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those determined from the F. iodinea crystal diffraction patterns (see Table 1), with only the 

b parameter varying significantly. Considering that this alternative polymorph was generated 

assuming the crystals to be composed purely of guanine molecules, the variance in this 

dimension could be attributed to the incorporation of hypoxanthine into the crystal lattice, 

which would very likely strain and distort the lattice structure in the hydrogen bonding plane 

(Brice, 1975). It must further be noted that, while the ED patterns of purine crystals isolated 

from the white koi, and now F. iodinea, suggest an orthorhombic crystal habit, these data 

from the fish conflict with X-ray powder diffraction data from the same crystals, which 

suggest a monoclinic β-polymorph- a discrepancy discussed by Hirsch et al. (2015). This 

ambiguity renders the definitive assignment of a crystallographic space group to the F. 

iodinea crystals from only ED data impossible; it thus is not attempted here. For future 

work, X-ray powder diffraction patterns would provide the best additional structural 

information for further resolution of structure. Nevertheless, the ED data presented provide 

strong evidence that the reflective purine crystals of F. iodinea exhibit a morphology similar 

to the guanine crystals in the white koi. 

Electron micrographs and ED patterns indicate that each individual crystal platelet 

from F. iodinea is actually composed of a doublet of closely adherent crystal layers (Figure 

10; Figure 11). The random angle between ED patterns of the doublets within each platelet 

examined indicates that the two crystals are formed by independent nucleation rather than by 

twinning (Levy-Lior et al., 2010a). The close coupling and identical morphology of these 

crystal pairs suggest that they are grown within a single membrane-bound crystal chamber 

(Schmitter, 1971; Denton, 1970; Levy-Lior et al., 2010). The persistence of the doublets in 

nearly all of the F. iodinea crystal platelets isolated (following a procedure involving 

enzymatic digestion, vigorous mechanical mixing and centrifugation), suggests that these 
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doublets are not separated by a water-based or proteinaceous material. The doublets could, 

therefore, be joined by amorphous guanine, as proposed to be the case in analogous purine 

crystal doublets described from silver spiders (Levy-Lior et al., 2010a).  

In the in situ sections (Figure 6; Figure 7), each platelet (composed of a crystal 

doublet) in a stack is separated from the next by unstained cellular material that, in other, 

systems, has simply been assumed to be cytoplasm (Levy-Lior et al., 2010a; Jordan et al., 

2012; Jordan et al., 2014). The isolation of intact stacks from the tissue, following a 

physically rigorous purification procedure (Figure 10; Figure 11), suggests that this 

simplification does not hold in this system. Furthermore, the tumbling of full crystal stacks 

as a unit – a requirement for the proposed model of intermittent reflectance – would not be 

possible without the binding of the individual platelets to one another. This binding must be 

accomplished by a yet unidentified material, which cannot be assumed continuous with the 

surrounding cytoplasm.  

The distribution and dimensions of the crystal stacks were found to be specific to 

different regions of the nudibranch. The stacks are much more abundant in the epidermal 

iridocytes of the cerata than in the body, as was evident both in the examination of tissues by 

light microscopy (Figure 3) and in the amount of crystalline material obtained from the 

tissues (Figure 12). Additionally, the crystals isolated from the cerata were larger and 

thicker, on average, than those isolated from the body (Figure 9; Figure 11). This difference 

in dimensions of crystals from these regions suggests a physical basis for the observed 

variation in the color of light they reflect. Basic optical theory posits that the optical path 

length of a layer in a quarter wave stack governs the peak wavelength of reflectance of the 

stack. In other words, a quarter wave stack of thinner layers will reflect shorter wavelengths 

compared to a quarter wave stack of thicker layers, which will reflect a longer wavelength 
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(e.g., Joannopoulus et al., 2011). Consequently, assuming the F. iodinea crystal stacks 

function as quarter wave stacks, the thicker crystals of the cerata are expected to reflect light 

of longer wavelengths than the thinner crystals of the body. Moreover, a reflector with little 

variation in the layer thickness throughout the structure produces a narrowband “colored” 

reflectivity; and, conversely, a structure composed of layers with a distribution of 

thicknesses produces a broadband “silver” reflectivity (Jordan et al., 2014). The significant 

variation in the thickness of the crystals from the cerata, therefore, agrees with the observed 

silver reflectance, while the more uniform thickness of the crystals from the body agrees 

with their observed blue reflectance. Thus, F. iodinea provides an example of how, within a 

single animal, the control over the distribution of layer thicknesses in the reflector enables 

production of narrowband “colored” reflectivity and broadband “silver” reflectivity (Figure 

14) (Jordan et al., 2014). 
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Figure 14. Comparison of the broadband silver reflectance produced by the thicker, more 
disordered platelets in the orange cerata (O) and the narrowband blue reflectance produced by the 

thinner, more regular platelets in the purple body (P). 
 
 

 The epidermal iridocytes of F. iodinea are capable of manipulating crystal growth in 

a tissue-specific manner, producing purine crystal stacks apparently comparable in 

composition but differing in dimension and abundance in different regions of the body. The 

resulting differences in reflective crystals with unique optical properties in different regions 

of the animal parallels the differences in astaxanthin pigmentation, such that the brilliant 

orange cerata are highly reflective, while the purple body is significantly less so. This color 
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pattern has been proposed both to advertise toxicity as a means of reducing predation, and to 

attract predators to the stinging nematocysts concentrated in the peripheral cerata and away 

from the viscera of the body (Thompson, 1960a; Edmunds, 1966; Mappes, 2005). One 

conjecture is that these reflective regions contribute to this contrast, effectively turning the 

cerata into reflective optical lures (Doucet, 2009; Su, 2015). 

 



 

 33 

IV. LITERATURE CITED 

Aguado, F. and Marin, A. 2007. Warning coloration associated with nematocyst-based 
defences in aeolidiodean nudibranchs. J. Mollus. Stud.73, 23–28. 

 
Brice, J. C. 1975. Some thermodynamic aspects of the growth of strained crystals. 

Journal of Crystal Growth28, 249–253. 
 
Burgin, U. 1964. The Color Pattern of Hermissinda crassicornis (Eschscholtz 1831). 

The Veliger7, 205–215. 
 
Crookes, W. J. et al. 2004. Reflectins: the unusual proteins of squid reflective tissues. 

Science303, 235–238. 
 
Doucet, S. M. and Meadows, M. G. 2009. Iridescence: a functional perspective. 

Journal of The Royal Society Interface6, S115–S132. 
 
Dougherty, L. F., Johnsen S., Caldwell, R. L. and Marshall, N. J. 2014. A dynamic 

broadband reflector built from microscopic silica spheres in the ‘disco’ clam Ctenoides ales. 
Journal of The Royal Society Interface11, 20140407. 

 
Denton, E. J. 1970. Review Lecture: On the Organization of Reflecting Surfaces in 

Some Marine Animals. Philosophical Transactions of the Royal Society of London B: 
Biological Sciences258, 285–313. 

 
Edmunds, M. 1966. Protective mechanisms in the Eolidacea (Mollusca Nudibranchia). 

Journal of the Linnean Society of London, Zoology46, 27–71. 
 

Fox, D. L. 1976. Animal Biochromes and Structural Colours: Physical, Chemical, 
Distributional & Physiological Features of Coloured Bodies in the Animal World. 
University of California Press.  

 
Fleming, P. A., Muller D. and Bateman, P. W. 2007. Leave it all behind: a taxonomic 

perspective of autotomy in invertebrates. Biol. Rev.82, 481–510. 
 
Goodheart, J. A., Bazinet, A. L., Collins, A. G. and Cummings, M. P. 2015. 

Relationships within Cladobranchia (Gastropoda: Nudibranchia) based on RNA-Seq data: an 
initial investigation. Open Science2, 150-196. 

 
Greenwood, P. and Mariscal, R. 1984. Immature Nematocyst Incorporation by the 

Aeolid Nudibranch Spurilla-Neapolitana. Mar. Biol.80, 35–38. 
 
Guille, K. and Clegg, W. 2006. Anhydrous guanine: a synchrotron study. Acta Cryst. 

C.62, 515–517. 
 
Gur, D. et al. 2015. Structural Basis for the Brilliant Colors of the Sapphirinid 

Copepods. J. Am. Chem. Soc.137, 8408–8411. 



 

 34 

 
Herring, P. J. 1994. Reflective systems in aquatic animals. Comparative Biochemistry 

and Physiology Part A: Physiology109, 513–546. 
 
Joannopoulus, J., Meade, R., Johnson, S. and ,Winn J. 2011. Photonic Crystals. 

Princeton University Press. 
 
Hinrichs, K., Silaghi, S. D., Cobet, C., Esser, N. and Zahn, D. R. T. 2005. 

Ellipsometry from infrared to vacuum ultraviolet: Structural properties of thin anisotropic 
guanine films on silicon. Phys. Stat. Sol.(b)242, 2681–2687. 

 
Hirsch, A. et al. 2015. ‘Guanigma’: The Revised Structure of Biogenic Anhydrous 

Guanine. Chemistry of Materials27, 8289–8297. 
 
Jordan, T. M., Partridge, J. C. and Roberts, N. W. 2012. Non-polarizing broadband 

multilayer reflectors in fish. Nat. Photonics6, 759–763. 
 

Jordan, T. M., Partridge, J. C. and Roberts, N. W. 2014. Disordered animal 
multilayer reflectors and the localization of light. J. R. Soc. Interface11. 

 
Kester, D. R., Duedall, I. W., Connors, D. N. and Pytkowicz, R. M. 1967. Preparation 

of artificial seawater. Limnology and oceanography12, 176–179. 
 

Land, M. F. 1972. The physics and biology of animal reflectors. Progress in Biophysics 
and Molecular Biology24, 75–106. 

 
Levy-Lior, A. et al. 2008. Biogenic guanine crystals from the skin of fish may be 

designed to enhance light reflectance. Cryst. Growth Des.8, 507–511. 
 
Levy-Lior, A. et al. 2010. Guanine-Based Biogenic Photonic-Crystal Arrays in Fish and 

Spiders. Adv. Funct. Mater.20, 320–329. 
 
Mappes, J., Marples, N. and Endler, J. A. 2005. The complex business of survival by 

aposematism. Trends in Ecology & Evolution20, 598–603. 
 
Martin, R. et al. 2007. Granular chitin in the epidermis of nudibranch molluscs. Biol. 

Bull.213, 307–315. 
 
Martin, R. 2003. Management of nematocysts in the alimentary tract and in cnidosacs 

of the aeolid nudibranch gastropod Cratena peregrina. Mar. Biol. 143, 533–541. 
 

Martin, R. and Walther, P. 2003. Protective mechanisms against the action of 
nematocysts in the epidermis of Cratena peregrina and Flabellina affinis (Gastropoda, 
Nudibranchia). Zoomorphology122, 25–32. 

 
McBeth, J. W. 1972. Carotenoids from nudibranchs. Comparative Biochemistry and 

Physiology Part B: Comparative Biochemistry41, 55–68. 
 



 

 35 

Miller, J. A. and Byrne, M. 2000. Ceratal Autotomy and Regeneration in the Aeolid 
Nudibranch Phidiana crassicornis and the Role of Predators. Invertebrate Biology119, 167–
176. 

 
Mueller K. P. and Labhart T. 2010. Polarizing optics in a spider eye. J. Comp. 

Physiol. A -Neuroethol. Sens. Neural Behav. Physiol.196, 335–348. 
 

Schmitter, R. E. 1971. The Fine Structure of Gonyaulax Polyedra, a Bioluminescent 
Marine Dinoflagellate. Journal of Cell Science9, 147–173. 
 

Schneider, C. A., Rasband, W. S., Eliceiri. K. W. et al. 2012. NIH Image to ImageJ: 
25 years of image analysis. Nat methods9, 671–675. 

 
Seago, A. E., Brady, P., Vigneron, J.-P. and Schultz, T. D. 2009. Gold bugs and 

beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). 
Journal of The Royal Society Interface 6, S165–S184. 

 
Striedter, G. F., Avise, J.C., Ayala, F.J. 2013. In the Light of Evolution: Volume VI: 

Brain and Behavior. National Academies Press. 
 
Su, S., Lim, M. and Kunte, K. 2015. Prey from the eyes of predators: Color 

discriminability of aposematic and mimetic butterflies from an avian visual perspective. 
Evolution69, 2985–2994. 

 
Teyssier, J., Saenko, S. V., van der Marel, D. and Milinkovitch, M. C. 2015. 

Photonic crystals cause active colour change in chameleons. Nat Commun6, 6368. 
 
Thompson, T. 1960a. Defensive Adaptations in Opisthobranchs. J. Mar. Biol. Assoc. 

U.K.39, 123–134. 
 
Thompson, T. 1960b. Defensive Acid-Secretion in Marine Gastropods. J. Mar. Biol. 

Assoc. U.K.39, 115–122. 
 
Vukusic, P. and Sambles, J. R. 2003. Photonic structures in biology. Nature424, 852–

855. 
 
Wägele, H. 2004. Potential key characters in Opisthobranchia (Gastropoda, Mollusca) 

enhancing adaptive radiation. Organisms Diversity & Evolution4, 175–188. 
 
Weiner S. and Addadi L. 2011. Crystallization Pathways in Biomineralization. Annual 
Review of Materials Research41, 21–40. 

 
Zhao, S. et al. 2015. Broadband and polarization reflectors in the lookdown, Selene 

vomer. Journal of The Royal Society Interface12, 20141390. 
 

 




