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Increasing Electric Vehicle (EV) integration to power grid has created additional technical 

challenges by requiring additional power/energy for charging EVs. With the introduction of 

Vehicle-to-Grid (V2G), EVs can strategically feed power stored in the batteries back to the 

power grid for grid supports, shifting their roles from traditional loads to distributed generations. 

Different than other types of storages in power grids, the availabilities and energy demands of 

EVs are subject to change. Traditional deterministic modeling and control methods for Demand 

Side Management (DSM) of stationary storages failed to capture the stochastic nature in EVs, 

thus making suboptimal control decisions. This dissertation proposes a stochastic optimization 

based DSM for energy management of V2G EVs a microgrid setting. In order to make the 

stochastic problem tractable, a model-free probability density estimation method is utilized 
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together with sample average approximation. Real-life EV data is applied for demonstrating the 

correctness and merits of the proposed DSM. 

As EV penetration continues to grow, the energy management problem becomes oversized to be 

efficiently solved in a centralized manner. Towards this concern, a distributed DSM for V2G 

integration into distribution grids is proposed to dispatch the centralized computational burden to 

distributed nodes. The proposed DSM accounts for both nodal and networked operational cost. 

To accelerate the computational speed and guarantee convergence, the proposed DSM is tightly 

relaxed to a convex form using second-order cone programming. Real-life EV data is used to test 

the proposed DSM in an IEEE benchmark test system.  

Most of other existing researches on V2G integration has focused on numerical simulations. As 

an important area of research, this dissertation shows the design and implementation of two V2G 

prototypes which could be used as testbed for verification of various V2G applications. One 

platform is capable of both supplying DC loads and V2G, the other one is capable of 

bidirectional charging. The prototypes utilize a commercialized EV model with widely used 

CHAdeMO communication interface. Hardware and software design considerations are shown 

with test results showing the performances of the prototypes. 
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1  Introduction 

In this chapter, we briefly introduce the backgrounds of this dissertation. This introduction gives 

a picture of the motivations behind this research, shows the state-of-art of the studied areas, 

summarizes the key contributions and finally presents the organization of this dissertation. There 

are introductions in greater details at the beginning of each chapter for specific studied area.  

1.1 Motivations 

Electric Vehicles (EVs), as alternatives to traditional fuel vehicles, are gaining popularities over 

the last decades [1]. Such motivations include the major drawbacks of fuel vehicles: energy 

security [2], air pollution [3], and greenhouse emission concerns [4]. Bearing all these benefits of 

EVs in mind, the integration of EV to power grid has brought new technical challenges as well as 

opportunities. 

Table 1-1 summarizes popular EV models [5] [6] [7] in the market. The capacity of EV batteries 

ranges from 16-80 kWh. When comparing these numbers with U.S average household load size 

of 30 kWh per day [8], the extra load EV introduces will be phenomenon. On the other hand, 

Table 1-2 summarizes the common charging levels of Electric Vehicle Supply Equipment 

(EVSE) [9]. In DC fast charging mode, the load power could be as much as 50 kW, creating 

large impacts on distribution grid. No matter from total energy or instant power point of view, 

the introduction of EVs create considerable impacts to the power grid. Therefore, EV integration 

to power grid has caught tremendous attentions and become a heated on-going research. 

Table 1-1Popular EV models 

Maker Nissan Chevrolet Tesla Motor 
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Model Leaf Volt Model S 

Battery Size (kWh) 24 16 53/80  

 

Table 1-2 Existing charging levels 

Charging Levels Circuit Rating Peak Power 

AC Level 1 120V/15A 3 kW 

AC Level 2 208V/30A 6 kW 

DC Level 3 480V/100A 48 kW 

 

1.2 Backgrounds and State-of-Art 

1.2.1 Smart Grid 

With technology advancement on sensing [10], control [11] and communication [12], the power 

grid is going through a major shift from less intelligent, unidirectional control and bulk 

generation to smarter, bidirectional and distributed counterpart [13]. Though there is not a single 

definition of smart grid, however, the increasing penetration of renewable generations [14], 

deployment of advanced metering infrastructures [15] and installation of distributed energy 

resources [16] represent some of the examples of smart grid technology. All these afore 

mentioned technologies either tried to better balance the generations and loads, or attempted to 

make the power grid more observable.  
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Figure 1-1 Hierarchical control of power grid 

As shown in Figure 1-1, the power grid is a hierarchical control system [17]. According to the 

time that a disturbance is introduced to the system, the control can be generally categorized into 

primary control, secondary control and tertiary control. The primary control stands for the 

control that taken action in 0-30s range. The control is automatic which activates in response to 

the deviation of system set points. Secondary control is activated in the time scale of 30s-15min. 

It helps the primary controller to restore to new system set points. Accordingly, tertiary control 

has a longer time step. The hierarchical control of power grid takes into account the different 

response time of devices, as well as the highly nonlinear nature of power systems. As the 

primary focus of this dissertation is not the dynamics of devices in short time range, the time step 

studied in this dissertation is in general greater than 15min.  

1.2.2 Vehicle-to-Grid 

Interaction of EV with power grid is consist of two separated parts: Grid-to-Vehicle (G2V) and 

Vehicle-to-Grid (V2G). For G2V, research topics such as smart charging, charging safety and 

multiplexing of EV Supply Equipment (EVSE) have been extensively studied [18] [19]. The idea 

of these studies is to understand how EV charging can be better managed to either lower the 

charging cost [20] or creating less impact to the power grid [21]. 

On the other hand, by enabling bidirectional power flow with V2G, EV does not merely serve as 

a load to the grid, but also as distributed storage and generation. The concept of V2G is first 
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proposed by Willet Kempton and Steven Letendre in 1997 [22]. The idea is to use battery in EV 

as a new source for storing electric energy and send it back to grid at peak loading, which is 

known as peak shaving. This pioneer research did not acquire much attention at the time it was 

proposed, as there were not many EVs available on market. 

Researchers later found out that the value of ancillary services, i.e. spinning reserves and Voltage 

Regulation (VR), to be far higher than that of peak power shaving [23]. Spinning reserve refers 

to additional generation capacity that can provide power quickly, for example within 10 min, 

upon request from the grid operator [17]. And Automatic Generation Control, is used to fine tune 

the voltage of the grid by matching generation to load demand [24].  According to [23], the time 

needed for peak shaving is only a few hundred hours per year. Unlike peak shaving, spinning 

reserve is paid for the amount of time they are available and ready, not necessarily the amount of 

energy they produced. And VR is called more often than spinning reserve; say 400 times per day. 

The combination of spinning reserve and VR has an estimated market value of 12 billion per 

year in US [24].  

1.2.3 Demand Side Management 

Conventionally, loads are balanced from the generation side: when load increase/decreases the 

generation changes accordingly.  Demand Side Management (DSM) represents a modern smart 

grid technology that manages and balance the supply-demand balance from the load side [25] 

[26]. With the integration of storage devices, the grid operator could shift the peak in load to off-

peak time [27]. Battery Energy Storage Systems (BESS) and EVs are examples of such storage 

devices serving as buffers for shifting the energy usage time.  
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Previous research on DSM has primarily focused on deterministic controls. Two studies of DSM 

on a household with one EV and solar generation reported peak shifting with price incentives [28] 

[29]. Mixed integer linear programming optimization is used in both the papers to achieve 

minimum operation cost. Chabaud et al. [30] modeled a grid-connected residential building with 

renewables and battery storage, which confirmed the importance of energy storage device and 

diversity of renewable generation in cost saving. These researchers assumed perfect knowledge 

of uncertainty and used deterministic optimization methods for DSM, without considering the 

loads, EVs and renewable generation’s stochastic nature.  

Early works have primarily assessed managing the EVs as stationary storages. Extensive studies 

have been performed assuming the perfect knowledge of EVs’ availabilities [31] [32]. However, 

unlike stationary storages, one of the key features of EVs relies on the uncertainty in their 

mobility: the EV owners are not committed to pre-defined schedules. The randomness in EV 

arrival time, leave time and energy demands makes the deterministic DSM less capable of 

managing stochastically behaved EVs. Though a conceptual incentive program has been 

designed in [33] for locking down the uncertainty, the urgent need for addressing the uncertainty 

under established tariff model still widely exists. As an alternative, stochastic behaviors of EVs 

have been studied using robust optimization [34] and two-stage stochastic programming in [35]. 

See also [36] for event-based V2G scheduling formulation. These works focused on storage 

management using a lumped model: the power balance was maintained in one single node, 

assuming the node to be an isolated from the other nodes on the power system. 
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1.3 Contributions 

Together with many works not cited, the research of EV integration for DSM has been over 

simplified to isolated deterministic case. The contributions of this dissertation can be 

summarized as follows: 

First of all, EV distinguish itself from other storage device is its stochastic availability and 

energy demands. This dissertation proposes the first research in which stochastic nature of 

individual EV is modeled and studied together with other uncertainty elements in a microgrid. A 

model-free numerical method is applied to make the studied problem tractable. To validate the 

proposed method, we use real solar generation, building load, EV availabilities and energy 

demands data to evaluate the performance of the proposed methods.  

Secondly, we propose an energy management method that is fully scalable and protects user 

privacy. The proposed method account for both nodal operational cost and networked optimal 

over distribution networks. Through tight relaxation, the studied problem is further formulated 

into convex optimization. A distributed method is applied to solve for the energy management 

problem. It enables the dispatch of traditional centralized computational burden to distributed 

nodes. By exchanging Lagrangian variable instead of power/energy information, it protects the 

privacy of the end users, taking one step closer to practical industrial application. The proposed 

method is verified numerically on an IEEE benchmark test system using EV data collected on 

UCLA campus as its inputs. 

Thirdly, load sharing, as an important supplementary area of energy management, has a much 

smaller time step. This dissertation systematically studies load sharing for V2Gs under a 

microgrid setting. The proposed load sharing takes into account the fact that not only load profile 
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is continuously changing in a microgrid, but also the randomness of the connecting and 

disconnecting of EVs. The proposed controller takes into account driver preference in which 

drivers are able to adjust maximum V2G power by setting an upper limit. 

Fourthly, most of the researches that studied energy management assumed the perfect knowledge 

of generation and load profile, which in fact does not exist. This dissertation bridges this gap by 

proposing a two-tier prediction method. The global-tier utilizes two machine learning algorithms 

and achieves a comparably high accuracy. In local-tier, unlike most of real-time models, the 

proposed local-tier prediction is not heuristic. The analytical form local-tier has a clear physical 

meaning. It can be combined with the global-tier to improve prediction accuracies. The proposed 

two-tier prediction method is verified using solar generation on UCLA campus. 

Lastly, most of existing literatures studies V2G integration through simulations. To the best of 

the author’s knowledge, we prototyped the first V2G system that utilizes commercialized EV and 

standard communication protocol, which shed light on large scale V2G integration. The 

implemented platforms have been designed to either drive critical DC load or bidirectional 

charging. The system is also remotely controllable, allowing it to receive and respond to remote 

control signals. As a result, the proposed system can be used to test out a lot of ideas mentioned 

in the literatures. 

1.4 Dissertation Organizations 

The remainder of this dissertation is organized as follows: 

Chapter 2 introduces V2G integration to microgrid. This is a critical area of study, as microgrid 

owners, such as commercial buildings and university campus, are interested in cutting down the 

operational cost of the microgrid. Unlike most of the storages, EV distinguish itself from its 
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mobility. The arrival time, departure time and energy demands of EVs are subject to EV owners’ 

behavior, thus are not deterministic. In this chapter, we primarily focus on developing models to 

capture the uncertainties in EVs. We first describe and model the studied microgrid in a 

deterministic manner. Then we further develop the modeling of stochastic components in 

aforementioned deterministic modeling. A model-free method is utilized to capture the stochastic 

variables in the model. A numerical method is then applied for making the stochastic problem 

tractable. The proposed methods are verified using real-life building data. This chapter is 

primarily adapted from [31]. 

Chapter 3 develops the stochastic model in the previous chapter to account for networked 

connectivity. Instead of a lumped microgrid, this chapter studies the V2G integration to a 

distribution network. Unlike the lumped model, the change of a single node in the network more 

or less impacts the performance of the full network. Therefore, V2G integration needs to be re-

evaluated. Furthermore, to account for the increasing EV integration to distribution grid, this 

chapter studies a distributed method to distribute the once centralized computational burden to 

distributed nodes. The distributed method could also protect the privacy of the end users. The 

proposed methods are verified using IEEE benchmark test system. 

After studying the energy management in larger time granularity, Chapter 5 studies the control of 

V2G in a microgrid at much smaller time granularity. The studied problem is crucial in 

microgrid where loads are shared by generations. We use an EV-connected microgrid to 

demonstrate the problem and show the challenges and proposed solutions. A physical model is 

first developed to show the dynamics in the microgrid. Then, a controller with the consideration 

of driver preference is proposed and analyzed. The difficulty in performing accurate reactive 
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power control is studied. Numerical experiments are performed to demonstrate the merits of the 

proposed method. This chapter is primarily adapted from [37]. 

In the previous chapters, when control and optimizations were run for energy management, we 

assume the perfect knowledge of solar generation and loads in the system. However, in fact they 

are not known. Chapter 5 studies the uncertainty prediction problem using a solar generation on 

UCLA campus. A two-tier prediction method is proposed and studied. In the global-tier, two 

popular machine learning methods are utilized to get offline estimations. In the local-tier, a 

method to combine the global-tier prediction and real-time measurement is proposed. The 

studied two-tier prediction method is extensively analyzed and compared. This chapter is 

primarily adapted from [38]. 

In Chapter 6, we show the design consideration and implementations of V2G systems. In this 

chapter, the reasons behind the software and hardware designs are articulated. The prototype 

systems are documented with implementation details. This chapter is partially adapted from [39]. 

Finally, conclusions are drawn with projected future research in Chapter 7.  
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2 V2G Integration to Microgrids 

In this chapter, we describe a problem formulation of EV and BESS integration with commercial 

building, forming a grid connected microgrid. This is a critical area of study, as microgrid 

owners, such as commercial buildings and university campus, are interested in cutting down the 

operational cost of the microgrid.  

2.1 Introduction 

Future smart buildings will incorporate an increasing renewable generation, dispatch units and 

storage devices, switching from traditional consumptions to distributed and regulated 

counterparts. With continuous increase EVs and solar penetrations for more than a decade 

unregulated EV charging together with intermittent solar generation are posing additional 

challenges on supply-demand balancing in smart buildings [40].  

Microgrids represent a vision for distributed generations and consumptions, enhancing the 

robustness of power grid and creating new ways of utilizing sustainable energy resources [41] 

[42]. Facilitated by recent advances in DSM, renewable generation and loads are managed in 

response to variations in the price signal [43] [44]. Coupled with the target of cutting down 

overall operational cost, DSM collaboratively addresses peak shaving and load shedding with 

physical and human comfort constrains [45] [46] [47]. 

The integration of EVs to households and commercial buildings is creating new challenges as 

well as opportunities [48] [39]. Combined with fluctuations in renewable generation, EVs’ 

randomness in arrival and departure time, State-of-Charge (SoC) and energy demands, all add up 

to introduce larger uncertainties to the system. The emergence of EVs with V2G capability has 

also restructured EVs’ role from heavy loads to small-sized distributed virtual generators [49] 
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[37] [50]. Traditional DSM of commercial buildings focuses deterministic modeling methods [51] 

[52]. It cannot extract the stochastic availabilities and energy demands of EVs. Hence, the DSM 

design in households and commercial buildings has been a subject of significant ongoing 

research. 

Much of the research in DSM has examined uncertainties caused by renewable generation and 

EVs with robust optimization. Malysz et al. [53] considered uncertainties in loads and solar 

generation of a microgrid, and formulated the optimal control of a microgrid as a robust mixed 

integer linear programming problem. Bai et al. [34] evaluated a robust mixed integer quadratic 

programming optimization method for large scale V2G for EV aggregator taking into account 

EV instant power demand uncertainties. Zhang et al. [54] proposed distributed robust 

optimization algorithms for DSM with intermittent renewable generation in a microgrid. These 

methods addressed the uncertainties in the systems by estimating the worst case of the 

uncertainty sets, which might be conservative and resulted in high operational cost.  

In [55] [56], the wind generation uncertainties were modeled in a microgrid with probabilistic 

constrained stochastic programming. The operation cost minimizations were achieved with 

constraints of utilizing certain percentage of wind generation to meet minimum renewable 

utilization regulations. These papers considered the load and renewable uncertainties in the 

power grid, and addressed the stochastic behavior with uncertainty-aware stochastic optimization. 

However, these researchers did not consider how the randomness of EV’s energy demands, 

arrival/departure time would interact with the intermittent renewable generation, which if 

managed improperly, will increase the burden of a microgrid.  

Apart from the mixed integer linear programming, mixed integer quadratic programming and 

convex optimization used in deterministic optimization, robust optimization and stochastic 
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optimization mentioned above, heuristic-based DSM has captured researcher’s attention. 

Adaptive neuro-fuzzy inference system [57], fuzzy logic [58], and θ-krill herd [59] are some of 

the examples of heuristic based DSM. Although heuristic based DSM allows operators to 

achieve multiple optimization goals at the same time, compared to traditional mixed integer 

linear programming, mixed integer quadratic programming and convex optimization, the 

heuristic methods cannot be solved with standard solvers and hence may result in longer 

computational time.  

Together with many paper not cited, existing papers have made sound contributions to DSM in 

households, commercial buildings. However, existing research either failed to consider the effect 

of EVs’ integration in DSM or did not capture uncertainties in renewable generation, loads and 

EV modeling. Furthermore, though DSM in households and commercial buildings shares some 

of the similarities, a commercial building typically has more EVs introducing larger uncertainties 

on demand side. Hence, DSM of a grid-connected commercial building with renewable 

generation and EVs needs to be reexamined in details. 

This chapter jointly studies DSM in a commercial building microgrid with solar generation, 

building loads, BESS and EVs. A comprehensive pricing model is proposed which targets at 

maintaining a low operation cost while utilizing solar generation, stationary BESS and mobile 

EV storage as much as possible. A deterministic DSM is proposed and then formulated it into a 

mixed integer linear programming problem. Taking into consideration the stochastic behaviors of 

solar generation, building loads and EVs, we further develop DSM with two-stage stochastic 

programming. Sample Average Approximation (SAA) Monte Carlo simulation is used to get 

numerical results of the proposed DSMs. 
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The major contributions of this chapter are threefold. Firstly, this chapter describes the first 

research in which stochastic nature of individual EV is modeled and studied together with other 

uncertainty elements in a commercial building microgrid setting. Secondly, to validate the 

proposed DSMs, this chapter uses real solar generation, building load, EV availabilities and EV 

energy demands data to evaluate the performance of the proposed methods. Finally, this chapter 

shares detailed comparisons between deterministic DSM and its stochastic counterpart, in terms 

of price variation, BESS sizing and EV numbers. 

The remainder of this chapter is organized as follows: Section 2.2 describes and models the 

studied system in a deterministic manner. Section 2.3 further develops the stochastic components 

in deterministic modeling. It is followed by presenting and analyzing numerical results in Section 

2.4. Section 2.5 draws conclusions. 

2.2 Deterministic Modeling 

In this section, we first introduce the system we are studying and show the challenges of DSM 

under uncertainties. Then, we develop a deterministic model with the estimations on 

uncertainties. It is followed by modeling the uncertainties in the deterministic model and 

formulating the DSM into a stochastic model.  

2.2.1 System descriptions 

This chapter studies a grid-connected commercial building microgrid that a BESS, several EVs 

and large volume solar generation are integrated to the building. The system architecture of the 

grid-connected commercial building microgrid is shown in Figure 2-1. As the primary target of 

this chapter is to analyze how stationary and mobile storage can help in DSM in the context of 

uncertainties on both supply and demand sides, we intentionally separate EVs and BESS from 
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building load.  Other forms of stationary storage exist in commercial buildings such as ice 

storage unit and heat storage unit [60]. However, BESS allows bidirectional power flow, which 

adds more flexibility to the DSM design. We evaluate the BESS’s impact on DSM, but same 

modeling technique can be applied for analysis of other stationary storages. 

 

Figure 2-1 Architecture of a grid-connected commercial building microgrid 

We take building load data from [61] and 35 kW capacity solar generation data from [62].  The 

typical weekdays and weekends building loads are shown in Figure 2-2(a) and sunny day solar 

generation is shown in Figure 2-2(b). Looking at the data we notice that, for the building load, 

weekday and weekend patterns are distinct. Even though building load in weekdays/weekends 

follow similar patterns, it is affected by random user behavior, outside temperature, etc., 

resulting in some fluctuation in load data. Similarly, in Figure 2-2(b), it is shown that in a typical 

sunny days, solar generations will also have small fluctuations, resulting from cloud shedding 

and temperature change.  
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Figure 2-2 Power variations (a) building load on weekdays and weekends (b) solar generation in 
sunny days 

Three anonymous real EV users from UCLA charging networks [63] are studied. They drive a 

Mistubishi MiEV, a Nissan Leaf and a Nissan Leaf respectively, all with CHAdeMO port for 

V2G [64]. They come on campus on a daily basis during weekdays and park their car in the 

parking structure attached to the campus building. The distributions of arrival time, departure 

time and energy demands shown in Figure 2-3 are extracted from over a year’s charging records. 

And Figure 2-3 is further discussed later on scenario generations. Note that although the data is 

collected from the UCLA charging networks, these users typically finish their charging long 

before departure, thus the data is available for the V2G study in the proposed method. 
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Figure 2-3 Three EV users’ distinct behavior 

2.2.2 Pricing Model and Cost Function 

In this section, we present the detailed modeling of each component shown in Figure 2-1with 

deterministic models. The inputs to the model are price signals, solar generations, building loads, 

BESS sizing, EV energy demands and availabilities.  

In this chapter, we consider a comprehensive pricing model with day-ahead transactions cost and 

real-time penalty cost. The commercial building microgrid, needs to provide day-ahead energy 

purchase/sell decisions before the start of the next day. Furthermore, as the day-ahead buy and 

sell transactions are based on the estimations of the energy consumption for the next day. A 

mismatch always exists between the day-ahead predicted energy demands and the real-time 

consumption, which is compensated with a penalty. The compensated power can be either 

positive or negative as long as it satisfies the power balance which is discussed later. 
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The model we use in this chapter is the slotted model, assuming variables stay constant between 

decision intervals τ. We assume that the price is perfectly known, and the size of the generation 

and consumption of the commercial building microgrid does not change the price. The 

economical compensations to EV users for V2G is a very complicated problem including proper 

business model [65] and battery degrading cost [66], which are not in the scope of this chapter 

and will be covered in future research. We assume there are H timeslots in a single day. The 

optimal DSM cost function is formulated as follows: 

𝑚𝑖𝑛  𝒄𝐷𝐴𝒑𝐷𝐴𝜏 + 𝒄𝑃|𝒑𝑃(𝝃, 𝝂, 𝜹, 𝜻)|𝜏                                                        (2.1) 

where 𝒄𝐷𝐴 ∈ ℝ1×𝐻  is the day-ahead energy sell and buy price, 𝒄𝑃 ∈ ℝ1×𝐻  is the real-time 

penalty price, 𝜏 is the duration of the timeslot, 𝒑𝐷𝐴 ∈ ℝ𝐻 is the day-ahead buy and sell power 

and 𝒑𝑃 ∈ ℝ𝐻  is real-time penalty power. The operation cost includes day-ahead buying and 

selling cost and real-time penalty cost. Given that uncertainties exist in renewable generation, 

loads, EV availabilities and energy demands, we use estimation of each uncertainty in the 

deterministic model. The estimation method is discussed in Section 2.3.                    

2.2.3  Power balancing and grid constraints                      

At any time instance of the slotted model, the power flowing into the commercial building 

microgrid should be always equal to the power flowing out, which is modeled as follows: 

∑ 𝒑𝑑
𝐸𝑉,𝑖𝑀

𝑖=1 (𝜹𝒊, 𝜻𝒊) + 𝒑
𝑠𝑜𝑙𝑎𝑟(𝝃) + 𝒑𝑑

𝐵 + 𝒑𝐷𝐴 = ∑ 𝒑𝑐
𝐸𝑉,𝑖𝑀

𝑖=1 (𝜹𝒊, 𝜻𝒊) + 𝒑
𝑙𝑜𝑎𝑑(𝝂) + 𝒑𝑐

𝐵 + 𝒑𝑃(𝝃, 𝝂, 𝜹, 𝜻)   (2.2) 

where M is the number of EV, 𝒑𝑠𝑜𝑙𝑎𝑟 ∈ ℝ𝐻  is the solar generation power, 𝒑𝑙𝑜𝑎𝑑 ∈ ℝ𝐻  is the 

building load power, 𝒑𝑐
𝐵/𝒑𝑑

𝐵 ∈ ℝ𝐻  denotes BESS charging/discharging power, 𝒑𝑐
𝐸,𝑖/𝒑𝑑

𝐸,𝑖 ∈ ℝ𝐻  

denotes charging/discharging power of EV i. Note that uncertainties of load and solar generation 

are represented by 𝒑𝑠𝑜𝑙𝑎𝑟(𝝃)  and 𝒑𝑙𝑜𝑎𝑑(𝝂) . The uncertainties in EV energy demands and 
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availabilities are represented by 𝜹𝒊, 𝜻𝒊. 𝒑
𝐷𝐴, 𝒑𝑑

𝐵, 𝒑𝑐
𝐵 are all decision variables that are needed to 

be determined day-ahead, while solar generation, building loads and EV availabilities and energy 

demands will not be exactly known until the next day. In this model, we address the uncertainties 

in a deterministic perspective, i.e., using estimations for each uncertainty in DSM.  

We need further constraints to control the behavior of power injected to the power grid. 

𝑃𝑔𝑟𝑖𝑑 ≤ 𝒑𝐷𝐴 + 𝒑𝑃 ≤ 𝑃𝑔𝑟𝑖𝑑                                                            (2.3) 

𝑃𝑠𝑡𝑒𝑝
𝐷𝐴 ≤ (𝒑𝐷𝐴)𝑗 + (𝒑

𝐷𝐴)𝑗+1 ≤ 𝑃𝑠𝑡𝑒𝑝
𝐷𝐴 ,    𝑗 = 1,2, … ,𝐻 − 1                                  (2.4) 

where (𝒑𝐷𝐴)𝑗 denotes row j of 𝒑𝐷𝐴. 𝑃𝑔𝑟𝑖𝑑/𝑃𝑔𝑟𝑖𝑑 ∈  ℝ denotes the Minimum/maximum allowed 

𝒑𝐷𝐴 , 𝑃𝑠𝑡𝑒𝑝
𝐷𝐴 /𝑃𝑠𝑡𝑒𝑝

𝐷𝐴 ∈  ℝ  denotes minimum/maximum allowed 𝒑𝐷𝐴  step variation between 

consecutive timeslots.  Eq.2.3 limits the maximum power that the commercial building microgrid 

can buy from and sell to the grid due to line capacity. Eq.2.4 regulates the variation of power in 

day-ahead market, so that the shaping of day-ahead power is smoother and more predictable to 

the utilities. 

2.2.4 BESS modeling 

The modeling of BESS includes power, energy and state constraints as follows: 

𝟎 ≤ 𝒑𝑐
𝐵 ≤ 𝑃𝑐

𝐵𝝈𝐵                                                                           (2.5) 

𝟎 ≤ 𝒑𝑑
𝐵 ≤ 𝑃𝑑

𝐵(𝟏 − 𝝈𝐵)                                                                     (2.6) 

𝑃𝑐,𝑙𝑖𝑚
𝐵 𝝈𝑐

𝐵 ≤ 𝒑𝑐
𝐵 ≤ 𝑃𝑐,𝑙𝑖𝑚

𝐵 (𝟏 − 𝝈𝑐
𝐵) + 𝑃𝑐

𝐵𝝈𝑐
𝐵                                                    (2.7) 

𝑃𝑑,𝑙𝑖𝑚
𝐵 𝝈𝑑

𝐵 ≤ 𝒑𝑑
𝐵 ≤ 𝑃𝑑,𝑙𝑖𝑚

𝐵 (𝟏 − 𝝈𝑑
𝐵) + 𝑃𝑑

𝐵𝝈𝑑
𝐵                                                    (2.8) 
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(𝝈𝑐
𝐵)𝑗 + (𝝈𝑐

𝐵)𝑗+1 ≤ 1,    𝑗 = 1,2, … ,𝐻 − 1                                                    (2.9) 

(𝝈𝑑
𝐵)𝑗 + (𝝈𝑑

𝐵)𝑗+1 ≤ 1,    𝑗 = 1,2, … , 𝐻 − 1                                                    (2.10) 

𝑆𝑜𝐶𝐵𝟏 ≤ 𝑆𝑜𝐶𝐼
𝐵𝟏 + 𝒉𝐵(𝒑𝑐

𝐵𝜂𝑐
𝐵 − 𝒑𝑑

𝐵 𝜂𝑑
𝐵⁄ ) ≤ 𝑆𝑜𝐶𝐵𝟏                                            (2.11) 

𝑆𝑜𝐶𝐹
𝐵 = 𝑆𝑜𝐶𝐼

𝐵 + (𝒉𝐵)𝑒𝑛𝑑(𝒑𝑐
𝐵𝜂𝑐

𝐵 − 𝒑𝑑
𝐵 𝜂𝑑

𝐵⁄ )                                               (2.12) 

where 𝑃𝑐𝐵/𝑃𝑑
𝐵 ∈  ℝ is the maximum allowed BESS charging/discharging power. 𝑃𝑐,𝑙𝑖𝑚

𝐵 /𝑃𝑑,𝑙𝑖𝑚
𝐵 ∈

 ℝ   is the BESS charging/discharging high power region limitation, 𝜂𝑐
𝐵/𝜂𝑑

𝐵 ∈  ℝ  is the 

charging/discharging efficiency of BESS, 𝑆𝑜𝐶𝐵/𝑆𝑜𝐶𝐵 ∈  ℝ  denotes the BESS 

minimum/maximum SoC, 𝑆𝑜𝐶𝐼
𝐵/𝑆𝑜𝐶𝐹

𝐵 ∈  ℝ denotes BESS initial/final SoC, 𝝈𝐵 ∈ ℤ𝐻 is binary 

BESS status indicating charging or discharging, and 𝝈𝑐
𝐵/𝝈𝑑

𝐵 ∈ ℤ𝐻  is binary status indicating 

BESS operating in high power charging/discharging region. We use 𝟏 ∈ ℤ𝐻  to denote all 1 

column vector. 𝒉𝐵 is an ancillary matrix that is used for calculating the SoC at each decision 

interval 𝜏; (𝒉𝐵)𝑒𝑛𝑑 denotes the last row of the 𝒉𝐵 matrix. Eq.2.5 and Eq.2.6 limit the maximum 

charging and discharging power for BESS so that it does not exceed physical limitations. It is 

reported in [53] that BESS can operate in high power charging/discharging region for peak 

demand, however for only a limited time. Eq.2.7 -Eq.2.10 ensure that the BESS will not 

consecutively operate in high power charging/discharging region consecutively for more than 

one time slot. Integer decision variables 𝝈𝐵, 𝝈𝑐
𝐵, 𝝈𝑑

𝐵  are introduced in Eq.2.5-Eq.2.10 for 

regulating the BESS operation status. Taking into consideration that deep discharge will affect 

the Lithium-ion battery’s lifecycle [67], Eq.2.11 constrains the SoC of BESS so that it does not 

violate physical constraints and operate in deep discharge region. See a detailed study in [68]. In 

the end, Eq.2.12 defines the final SoC for BESS after a day’s operation.  
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2.2.5 EV modeling 

The modeling of EV has to consider the uncertainties in demand, arrival time, and departure time. 

We develop the model with uncertainties bore in mind using estimation for each uncertainty 

variable as follows: 

𝑃𝑐
𝐸,𝑖𝝈𝑐

𝐸,𝑖 ≤ 𝒑𝑐
𝐸,𝑖 ≤ 𝑃𝑐

𝐸,𝑖𝝈𝑐
𝐸,𝑖 ,   ∀𝑖                                       (2.13) 

𝑃𝑑
𝐸,𝑖(𝟏 − 𝝈𝑐

𝐸,𝑖) ≤ 𝒑𝑑
𝐸,𝑖 ≤ 𝑃𝑑

𝐸,𝑖(𝟏 − 𝝈𝑐
𝐸,𝑖),   ∀𝑖    (2.14) 

𝟎 ≤ 𝝈𝑐
𝐸,𝑖 ≤ 𝝈𝐸,𝑖(𝜹𝒊),   ∀𝑖     (2.15) 

𝑆𝑜𝐶𝐸,𝑖𝟏 ≤ 𝑆𝑜𝐶𝐼
𝐸,𝑖(𝜻𝒊)𝟏 + 𝒉

𝐸,𝑖(𝒑𝑐
𝐸,𝑖𝜂𝑐

𝐸,𝑖 − 𝒑𝑑
𝐸,𝑖 𝜂𝑑

𝐸,𝑖⁄ ) ≤ 𝑆𝑜𝐶𝐸,𝑖𝟏,   ∀𝑖  (2.16) 

𝑆𝑜𝐶𝐹
𝐸,𝑖 = 𝑆𝑜𝐶𝐼

𝐸,𝑖(𝜻𝒊) + (𝒉
𝐸,𝑖)𝑒𝑛𝑑(𝒑𝑐

𝐸,𝑖𝜂𝑐
𝐸,𝑖 − 𝒑𝑑

𝐸,𝑖 𝜂𝑑
𝐸,𝑖⁄ ),   ∀𝑖                                 (2.17) 

where 𝑃𝑐
𝐸,𝑖/𝑃𝑐

𝐸,𝑖 ∈  ℝ  is the minimum/maximum charging power of EV i, 𝑃𝑑
𝐸,𝑖/𝑃𝑑

𝐸,𝑖 ∈  ℝ  is 

minimum/maximum discharging power of EV i, and 𝝈𝐸,𝑖 ∈ ℤ𝐻 denotes the availability matrix of 

EV i. We use  𝑆𝑜𝐶𝐸,𝑖/𝑆𝑜𝐶𝐸,𝑖 ∈  ℝ to denote minimum/maximum allowed SoC of EV i, 𝜂𝑐
𝐸,𝑖/

𝜂𝑑
𝐸,𝑖 ∈  ℝ  denotes charging/discharging efficiency of EV i, 𝑆𝑜𝐶𝐼

𝐸,𝑖/𝑆𝑜𝐶𝐹
𝐸,𝑖 ∈  ℝ  represents 

initial/final SoC of EV i and 𝝈𝑐
𝐸,𝑖 ∈ ℤ𝐻  indicates binary status indicating EV i charging or 

discharging. Similar to 𝒉𝐵, 𝒉𝐸,𝑖 is ancillary matrix that for calculating the SoC of EV i at each 

decision interval 𝜏 (𝒉𝐸,𝑖)𝑒𝑛𝑑 denotes the last row of the 𝒉𝐸𝑉,𝑖 matrix. Eq.2.13 and Eq.2.14 model 

the limits of charging and discharging power for each EV. Without loss of generality, integer 

decision variables are introduced in Eq.2.13 and Eq.2.14 are for modeling the charging and 

discharging losses in Eq.2.16 and Eq.2.17. Also, integer variables are introduced due to the fact 

that both charging and discharging need to reach minimum power, making the power output of 
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EVs discontinuous. The uncertainty of EV availabilities is reflected in 𝝈𝐸,𝑖(𝜹𝒊) in Eq.2.15, which 

actually models the stochastic arrival and departure time of each EV. The uncertainty of energy 

demand for each EV is captured with 𝑆𝑜𝐶𝐼
𝐸,𝑖(𝜻𝒊)  in both Eq.2.16 and Eq.2.17. As these 

uncertainties exist in each EV, the corresponding decision variables 𝒑𝑐
𝐸,𝑖

 and 𝒑𝑑
𝐸,𝑖

are naturally 

subject to uncertainties, which are linked to Eq.2.2. It is noted that in deterministic model we 

recognize the existence of EV behavioral uncertainties.  We use estimations for each uncertainty, 

which is discussed in Section 2.3. 

2.3 Stochastic DSM 

The deterministic model is a favorable solution to DSM in commercial building microgrid 

however not without problems. Looking at Figure 2-2 and Figure 2-3, building load and solar 

generation follow some trends, however still present fluctuations due to unpredictable factors 

such as random user behavior and cloud shedding. On the other hand, EV arrival and departure 

time and energy demands are subject to the EV owner behaviors, which are hard to predict. In 

addition, as the EV number increases, the charging/discharging of EVs will become a major 

load/generation to commercial buildings in the future. How to make decisions on day-ahead 

energy transactions and BESS operation under the context of larger uncertainties becomes 

challenging, which gives rise to stochastic DSM. 

2.3.1 Stochastic Reformulation 

Instead of optimizing cost function under uncertainties with estimation in Eq.2.1, we now 

optimize the expectation of the cost function. The problem is then formulated into a two-stage 

stochastic programming problem as follows: 

𝑚𝑖𝑛 𝒄𝐷𝐴𝒑𝐷𝐴𝜏 + 𝒄𝑃𝔼{|𝒑𝑃(𝝃, 𝝂, 𝜹, 𝜻)|𝜏}                                            (2.18) 
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𝒑𝐷𝐴  are first-stage decision variables while 𝒑𝑃  are second-stage decision variables. We are 

optimizing first-stage day-ahead transactions in the context of second-stage expectation. 

Here we briefly introduce two-stage stochastic linear programming. A typical two-stage 

stochastic linear programming can be formulated as minimization over expectation [69]: 

𝑚𝑖𝑛 𝑐𝑇𝑥 + 𝔼[𝑄(𝑥, 𝛿)]
𝑠. 𝑡. 𝐴𝑥 ≤ 𝐵
𝐶𝑥 = 𝐷

 

where x are the first-stage decision variables, 𝛿 denotes the uncertainty sets, 𝔼[𝑄(𝑥, 𝛿)] is the 

optimum of the second-stage problem: 

𝑚𝑖𝑛 𝑞𝑇𝑦
𝑠. 𝑡. 𝑇𝑥 +𝑊𝑦 ≤ ℎ

 

where y are the second-stage variables, and uncertainty sets 𝛿 = {𝑞, 𝑇,𝑊, 𝑦}. The two-stage 

problem can be interpreted as optimizing first-stage plus the expectation of the second-stage 

problem when uncertainties are not known. Second-stage problem on the other hand describes 

the optimization problem when the uncertainties are revealed.  

Given the stochastic nature of renewable generation, loads, and EV availabilities and demands, 

we may want to extract the distribution of each uncertainty and formulate the expectation in 

Eq.2.18 analytically. However, even if we may be able to extract the distribution of each random 

variable, the requirement to know joint distribution of a number of uncertainties in the 

optimization problem such as Eq.2.1-Eq.2.17 make the problem hard to solve. Instead we seek to 

use SAA and solve the optimization problem numerically. 

2.3.2 Sample Average Approximation 

SAA is a Monte Carlo simulation technique that serves as a statistical inference of the original 

problem (in this case Eq.2.18).  The idea behind it is to generate a large pool of samples of 
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uncertainties based on their empirical distributions where each sample is called a scenario. Then 

solve the second-stage problems with each scenario before averaging them out to approximate 

the original problem. For a detailed discussion, see [69].  

Without loss of generality, it is assumed that we generate N independent scenarios. The method 

of scenario generation is detailed in Section 2.3.3. Each scenario is one possible realization of the 

uncertainties, which includes solar generation, building loads, EV availabilities and energy 

demands. Hence, the power balance and EV constraints, which involve uncertainties, are updated 

as follows: 

∑ 𝒑𝑑,𝑠
𝐸𝑉,𝑖𝑀

𝑖=1 + 𝒑𝑠
𝑠𝑜𝑙𝑎𝑟 + 𝒑𝑑

𝐵 + 𝒑𝐷𝐴 = ∑ 𝒑𝑐,𝑠
𝐸𝑉,𝑖𝑀

𝑖=1 + 𝒑𝑠
𝑙𝑜𝑎𝑑 + 𝒑𝑐

𝐵 + 𝒑𝑠
𝑃 ,   ∀𝑠                    (2.19) 

𝑃𝑐
𝐸,𝑖𝝈𝑐,𝑠

𝐸,𝑖 ≤ 𝒑𝑐,𝑠
𝐸,𝑖 ≤ 𝑃𝑐

𝐸,𝑖𝝈𝑐,𝑠
𝐸,𝑖 ,   ∀𝑖, ∀𝑠                                         (2.20) 

𝑃𝑑
𝐸,𝑖(𝟏 − 𝝈𝑐,𝑠

𝐸,𝑖) ≤ 𝒑𝑑,𝑠
𝐸,𝑖 ≤ 𝑃𝑑

𝐸,𝑖(𝟏 − 𝝈𝑐,𝑠
𝐸,𝑖),   ∀𝑖, ∀𝑠   (2.21) 

𝟎 ≤ 𝝈𝑐,𝑠
𝐸,𝑖 ≤ 𝝈𝑠

𝐸,𝑖,   ∀𝑖, ∀𝑠                                                            (2.22) 

𝑆𝑜𝐶𝐸,𝑖𝟏 ≤ 𝑆𝑜𝐶𝐼,𝑠
𝐸,𝑖𝟏 + 𝒉𝑠

𝐸,𝑖(𝒑𝑐,𝑠
𝐸,𝑖𝜂𝑐

𝐸,𝑖 − 𝒑𝑑,𝑠
𝐸,𝑖 𝜂𝑑

𝐸,𝑖⁄ ) ≤ 𝑆𝑜𝐶𝐸,𝑖𝟏,   ∀𝑖, ∀𝑠         (2.23) 

𝑆𝑜𝐶𝐹,𝑠
𝐸,𝑖 = 𝑆𝑜𝐶𝐼,𝑠

𝐸,𝑖 + (𝒉𝑠
𝐸,𝑖)

𝑒𝑛𝑑
(𝒑𝑐,𝑠

𝐸,𝑖𝜂𝑐
𝐸,𝑖 − 𝒑𝑑,𝑠

𝐸,𝑖 𝜂𝑑
𝐸,𝑖⁄ ),   ∀𝑖, ∀𝑠                            (2.24) 

Eq.2.19 shows the power balance within each scenario. The subscript s denotes scenario number 

s among N generated scenarios. Eq.2.22 presents the realization the EV availabilities uncertainty 

by generating 𝝈𝑠
𝐸,𝑖

 in each scenario. Similarly, Eq.2.23 and Eq.2.24 address EV energy demands 

uncertainty by 𝑆𝑜𝐶𝐼,𝑠
𝐸,𝑖

 and 𝑆𝑜𝐶𝐹,𝑠
𝐸,𝑖

. It is noted that Eq.2.19-Eq.2.24 should hold within each 

generated scenario and for all N scenarios. Consequently, the stochastic DSM is formulated as 

follows: 
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𝑚𝑖𝑛 𝒄𝐷𝐴𝒑𝐷𝐴𝜏 +
1

𝑁
∑ 𝒄𝑃|𝒑𝑠

𝑃|𝜏𝑁
𝑠=1                                                     (2.25) 

s.t. (3.3)-(3.12), (3.19)-(3.24) 

Using Eq.2.25, we approximate the original problem (Eq.2.18) with SAA. It has been reported in 

[70] that a two-stage stochastic programming with integer first-stage and second-stage variables 

can be approximated by SAA. Furthermore, SAA exponentially approximates the true problem 

as scenario size N increases. 

On feasibility side, the problem is always feasible as long as the EV constraints can be met. The 

worst case is when an EV user submits an energy demand that needs charging from arrival to 

departure. However, it is rarely seen for the EV owners we studied. On grid side, there is no 

upper and lower bounds for 𝒑𝑠
𝑃  so that the power balance constraints can always be met in 

Eq.2.19. 

2.3.3 Model-free Probability Density Estimation 

In the previous section, we model the EV with stochastic variables, showing the sources of 

uncertainties in EVs. This section presents the method to model the distribution of stochastic 

variables, which will be used in numerical approximations in the following section. The method 

studied in this section can be applied to EVs with different arrival time, departure time and 

energy demands. 

Given an empirical realization of certain stochastic variable, here we present Kernel Density 

Estimation (KDE) to capture the empirical probability density. The mathematical representation 

of KDE is described as follows: 

 
𝜌(𝑥) =

1

𝑁
∑𝐾(

𝑥 − 𝑥𝑖
𝑏

)

𝑁

𝑖=1

 
(2.25) 
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where 𝑁 is the number of kernels used, 𝑥𝑖 is the center of one kernel, 𝑏 denotes the bandwidth of 

the kernel, 𝐾(∙) is the kernel function, and 𝜌(∙) is the probability density function. 

Empirical probability density is usually given in histogram. The center of the each kernel 

naturally falls into the center of each bin. The number of kernels is equal to the number of bins in 

the histogram. The bandwidth then becomes the only free parameter to be determined. A 

common way to determine the bandwidth is to use the rule-of-thumb principle described in [71]. 

After determining each parameters, the discrete histogram can be modeled by continuous KDE. 

This KDE is then utilize for scenario generation in the following section. 

2.3.4 Sample Average Approximation Bounds Estimation 

SAA is a statistical inference of the original problem. We generate scenarios before solving the 

SAA problem. As the scenario is generated based on empirical distribution, naturally, we will 

have slightly different SAA results if we solve the SAA problem for multiple times. This gives 

rise to evaluation of the SAA, in which we need to examine how closely the SAA optimum 

approximates that of the original problem. We follow the methods in [70] to find out the upper 

and lower bounds for the SAA problem. The algorithm is tabulated in Algorithm 2.1. Before start 

of iteration, we set k=1. Then we generate N i.i.d. scenarios based on the scenario generation 

method described above. We solve the stochastic DSM (Eq.2.25) using the generated N samples. 

Then, we store the first-stage variables 𝒑𝐷𝐴, 𝒑𝑐
𝐵, 𝒑𝑑

𝐵 , 𝝈𝐵, 𝝈𝑐
𝐵, 𝝈𝑑

𝐵 as 𝒙 and optimum as 𝑜𝑝𝑡(𝑘). It is 

followed by generating N’ i.i.d. scenarios, typically, 𝑁′ ≫ 𝑁. We solve Eq.2.25 with the fixed 

stored first-stage variables 𝒙  minimizing over only second-stage decision variables which 

includes 𝒑𝑠
𝑝, 𝒑𝑐,𝑠

𝐸,𝑖
 and 𝒑𝑑,𝑠

𝐸,𝑖
. The optimum for the scenario N’ is denoted as 𝑜𝑝𝑡(𝑘). We iterate the 
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procedure for K times where K is a predefined number. The optimization gap can be estimated 

using  𝑜𝑝𝑡 and 𝑜𝑝𝑡. 

Algorithm 2.1: SAA upper and lower bound estimation 

for k=1 to K do 

Generate N scenarios, solve (2.25) 

       𝒙 ← first-stage variables 𝒑𝐷𝐴, 𝒑𝑐
𝐵, 𝒑𝑑

𝐵, 𝝈𝐵, 𝝈𝑐
𝐵, 𝝈𝑑

𝐵 

       𝑜𝑝𝑡(𝑘) ← optimum 

Generate N’ scenarios, solve (2.25) with fixed 𝒙 

       𝑜𝑝𝑡(𝑘) ← optimum 

end  

upper bound 𝑜𝑝𝑡∗ ←minimum of  𝑜𝑝𝑡 
lower bound 𝑜𝑝𝑡∗ ←average of 𝑜𝑝𝑡 

optimality gap 𝑔 ← (𝑜𝑝𝑡∗ − 𝑜𝑝𝑡∗)/𝑜𝑝𝑡∗ × 100% 

 

2.4 Results and Analysis 

In this section, we validate the proposed DSMs. We first describe how we generate the scenarios 

based on the collected data. It is followed by a case study of the system and analysis on 

computational results. 

2.4.1 Scenarios generation 

We first classify the historical load data into weekdays and weekend, and solar generation data 

into sunny, cloudy and rainy groups. Solar generation and load behave differently between 

groups while showing similarity within each group. Before running DSM, we pick corresponding 

solar generation and load data from historical data based on the forecast/knowledge of the next 

day. In this chapter, we investigate the performance of the DSM on sunny weekdays. However, 

the methodology used in this chapter can be also applied to weekdays/weekends with other 

weather conditions. We capture the distribution of the real data shown in Figure 2-2 and Figure 

2-3 with KDE. We use the KDE modeled distribution to generate scenarios and compare them 
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with real distribution of EV user behavior shown in Figure 2-3. The comparison demonstrates a 

close match between the KDE simulated data and the real distribution.  

Table 2-1 summarizes some of the key parameters used in the following computational case 

study. We use τ=0.5 h. The BESS data is taken from a real BESS in the University of California, 

Los Angles, laboratory. EV maximum charging power is a typical number for charging in Level 

II circuits [72].  For EV discharging power, we refer to the industrial product in [73]. In the 

following case study, EV energy demands are recognized as the energy required to fully charge 

the corresponding EV from its initial SoC. Moreover, we set initial SoC of BESS equal to its 

final SoC after a day’s operation. Figure 2-4 shows the day-ahead price and real-time penalty 

price from CAISO. We increase the penalty price by twenty five percent to see the performance 

of the two DSMs. The penalty price sensitivity is studied in discussion section, showing that the 

DSMs proposed in this chapter work generally well in a wide range of prices. The proposed 

DSMs are solved with commercial solver Gurobi [74] on a PC with 3.1GHz CPU and 16 GB 

RAM. 

Table 2-1 Key parameters 

Item Value Item  Value 

BESS battery size 70 kWh Mitsubishi MiEV battery size 16 kWh 

BESS initial and final SoC  0.6 Nissan Leaf battery size 24 kWh 

BESS maximum charging power 40 kW EV maximum charging power 6.6 kW 

BESS maximum charging power 20 kW EV maximum discharging power 2.0 kW 

Min/max allowed 𝒑𝑫𝑨 150 kW Min/max allowed 𝒑𝐷𝐴 variation 15 kW 
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Figure 2-4 Price for a 24 hour period from CAISO 

2.4.2 Case study 

We apply the proposed stochastic DSM to a microgrid that is made up of a grid-connected 

commercial building with weekday building load. Figure 2-5 presents computation results of the 

building profile of a day. From the figure we can see that 𝒑𝐷𝐴  variation is limited by the 

maximum step 𝑃𝑠𝑡𝑒𝑝
𝐷𝐴  and 𝑃𝑠𝑡𝑒𝑝

𝐷𝐴 . Consequently day-ahead power is smoother and easier to follow 

on utility side. Looking at BESS power output, we see the high power region restrictions work 

correctly so that the BESS will not keep operating in excessive high power regions. Solar 

generation,  𝒑𝑃 and loads are plotted for one typically scenario among many of the generated 

scenarios in Figure 2-5. We observe that the real-time power mismatch between the day-ahead 

planning and real-time operation, which is compensated by 𝒑𝑃, is relatively small compared to 

day-ahead bidding power 𝒑𝐷𝐴. It allows utilities to better plan generations and reduces real-time 

uncertainties.  
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Figure 2-5 Building profile of a day 

Figure 2-6 shows the EV profile of the same scenario. We can see that three EVs arrive and 

depart at different times. They arrive with different SoCs and leave with fully charged batteries. 

Depending on the energy demand of each EV, they operate in V2G mode to support the building 

grid. Figure 2-5 together with Figure 2-6 demonstrates the correctness of the proposed stochastic 

DSM. 
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Figure 2-6 EV profile of a day 

Besides examining the building and EV profile, we want to find out how closely SAA 

approaches the original problem. We follow the steps in Algorithm 2.1 and choose K=10 to test 

the optimality gap. From the results summarized in Table 2-2, we can find out that in general the 

problem is tightly bounded. The computational time includes time consumed for both sample 

size N and N’, in which time for N’ is much larger than N. Looking at the results we may safely 

conclude that using the lower bound of N/N'=50/500, which is calculated by solving the 50 

scenario problem for 10 times, is good enough for producing accurate results. We use the lower 

bounds estimated with N=50 in the following simulations of stochastic DSM. It consumes much 

less time compared with the estimation using the upper bound. 

Table 2-2 Optimality gaps estimations of SAA 

N/N' Upper bound Lower bound Optimality Gap Computational Time (s) 

20/200 171.53 170.51 0.60% 1088.7 

30/300 171.52 170.38 0.67% 2297.1 

50/500 171.74 171.02 0.427% 5607.8 

 

2.4.3 Discussions 

1) Deterministic vs. stochastic. It is interesting to examine the difference between the proposed 

deterministic DSM and stochastic DSM. In the proposed deterministic DSM, we use average 

value of each uncertainty variables as their estimations. We verify the performance of both 

deterministic and stochastic DSMs with 50 generated scenarios for 10 times. We compare how 

different load can affect the performance of the two studied DSMs by using the weekdays and 

weekends building load previously plotted in Figure 2-2. The simulation settings are kept the 
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same as it is in Section 2.3 except for building load. The comparison results are tabulated in 

Table 2-3. It demonstrates that the proposed stochastic DSM outperforms its deterministic 

counterpart no matter under weekdays or weekend building load. In weekday cases, stochastic 

DSM shows (179.44-171.09)/171.09=4.88% outperformance, while (113.34-

107.25)/107.25=5.67% outperformance in weekends. The outperformance in operation cost 

saving is at the expense of higher computational time. For a DSM that handles day-ahead 

planning, a longer time is tolerable.  

Table 2-3 Comparisons of deterministic DSM and stochastic DSM 

 Deterministic 

DSM cost 

Stochastic 

DSM cost  

Deterministic DSM 

computational time 

Stochastic DSM 

computational time  

Weekdays $179.44 $171.09 4.23 s 248.83 s 

Weekends $113.34 $107.25 5.14 s 316.88 s 

 

In order to determine the solar capacity’s influence on the proposed DSMs, we study the 

performance of two DSMs under wide solar power generation variation. We run numerical 

experiment with exactly same setting as it is in Section 2.3, except for varying the solar capacity. 

The results are presented in Figure 2-7. The same solar generation data is used for the solar 

power generation, however, it is multiplied by a scaling factor ranging from 0.75 to 4 for each 

studied case. With the current setting, a scaling factor of 4 makes the peak solar generation 

slightly larger than the peak building load. Simulation results in Figure 2-7 demonstrate that the 

stochastic DSM outperforms deterministic DSM in a wide range of solar generation capacity. 

Relative performance in Figure 2-7 is defined as the operational cost reduction of the stochastic 

DSM compared to its deterministic counterpart, divided by the operational cost of stochastic 
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DSM. The relative performance curve shows a constantly increasing spread over the scaling 

factor. This is an expected result stemming from the larger uncertainty growing solar generation 

introduces to the system, which the deterministic DSM fails to capture. On the computational 

cost side, the time for the two DSMs is similar to the weekday results tabulated in Table 2-3. In 

terms of cost analysis, [75] reported the latest averaged solar installation costs of $4.40/W in 

California. Using this data, the 35 kW solar installation studied in this chapter requires an 

investment of more than $1.5 million. Without strong government subsidy, solar integration to 

the smart building is still very expensive.  

 

Figure 2-7 Comparisons of deterministic DSM and stochastic DSM with changing solar 
installation sizing 

2) Price sensitivity. We further analyze the DSMs sensitivities when price is changed. We fixed 

the day-ahead price and add variations to the real-time penalty price. Table 2-4 shows the 

comparisons of operational cost change of both deterministic and stochastic DSM given 

±25% 𝒄𝑃variations. There are several interesting observations: a) Compared to the 25% change 

in penalty price, the operational cost in either deterministic or stochastic DSM stays relatively 

stable. This is expected as the majority of the power supplied to the building microgrid is 
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from  𝒄𝐷𝐴 . b) Stochastic DSM generally outperforms its deterministic counterpart, especially 

when the penalty price is lower than current level. The better performance with lower penalty 

price results from the fact that the DSM tends to buy more power from real-time penalty market 

when 𝒄𝑃 is lower. And as DSMs buy more power from the real-time penalty market, stochastic 

DSM has a better estimation on power should be purchased from real-time penalty market 

compared to its deterministic counterpart. In general, it can be projected that in reality when 𝒄𝑃 

varies in a small range (less than 10%), the stochastic DSM will continue to outperform its 

deterministic counterpart with steady performance.  

Table 2-4 Comparisons of operational cost under price variations 

 75% 𝒄𝑷 100% 𝒄𝑷 125% 𝒄𝑷 

Deterministic DSM 170.98 179.44 185.99 

Stochastic DSM 161.17 171.09 178.65 

Improvements 9.81 8.35 7.33 

 

3) Impact of stationary storage. Stationary BESS is an investment that integrates to the 

commercial building microgrid for cost savings. We investigate how the change in capacity and 

power of BESS affect the overall performance of a stochastic DSM and the preliminary results 

are shown in Figure 2-8. The blue asterisks show the impacts of BESS capacity changes alone 

where the capacity is multiplied with a sizing coefficient. The blue line is a linear regression 

curve fitting of the blue asterisks which shows a close match. Similarly, red asterisks show the 

impacts when power and capacity of BESS are sized together, and red line is its corresponding 

curve fitting. The slight mismatch at sizing coefficient equals to one between the blue and red 

asterisk is a natural result from SAA computational error. Experimental results show that cost is 
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cut down with BESS capacity increase, and the cost is further reduced with the help of sizing up 

the BESS power. However, an increase in BESS power means investing larger power inverters 

which will add up to the cost. Study in [76] showed that though Li-ion battery price is decreasing 

rapidly, it still costs $0.55/Wh. And study in [77] reported $0.65/W averaged cost in power 

electronics. Looking at the results presenting in Figure 2-8, a 100% increase in BESS capacity 

and power results in a 171.27-167.57= $3.70 cost saving per day. At the current capacity and 

power of BESS, such an increase indicates $64,500 additional investment in hardware only, not 

to mention the neglected installation and software costs. Without subsidy and other incentives, 

such an investment seems not fruitful.  

 

Figure 2-8 Sizing of BESS and its impacts 

4) Impact of mobile storage. We further study the impact of change in the number of EVs on the 

operational cost. We duplicate the three EV profiles and create identically independent scenarios 

from 0 EV to 15 EVs. The computational results of the stochastic DSM are presented in Figure 

2-9. We simulate a case with the original settings and a case with discharging power increased 

by 200%. Surprisingly, the overall operational cost first goes down with increasing number of 
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EVs after which the operation cost increases again. It can be explained as follow: with small 

number of EVs, they first help the commercial building microgrid to shave peak demands. 

However, as EV number continues to increase, the peak shaving cost reduction cannot 

compensate for the additional EV energy demands and therefore the cost rebounds. On the other 

hand, the cost reduction of increasing the discharging power from 2 kW to 6 kW requires an 

increase in power of the bidirectional off-board EV chargers. According to the $0.65/W power 

electronics cost reported in [77], the incremental cost of power electronics to upgrade for a 2 kW 

to 6 kW capacity is roughly $2,600, a number much smaller compared to the cost of increasing 

the capacity and power rating of BESS. Compared to BESS, the batteries in EVs do not require 

additional investment from the building operator, the investment in increasing EV charger power 

capacity seems a smarter decision. The fast increase in computational time as a result of 

increased EV number stems from the additional EV related decision variables and constraints. 

Consequently, instead of the individual EV models currently used, we may need to develop 

lumped EV models, to reduce the computational time when EV number is large.  

 

Figure 2-9 EV number variation and its impacts 
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2.5 Summary 

Several interesting observations are made based on the case studies presented in this chapter. 

Firstly, the proposed stochastic DSM outperformances its deterministic counterpart for different 

load patterns, wide ranges of solar installation capacity and electricity prices. Although the 

computational time for the stochastic DSM is higher, it is still practical for the offline 

applications studied in this chapter. Secondly, even solar installation saves electricity bill and 

decrease the building’s dependence on traditional centralized generations, the cost is still very 

expensive. Thirdly, an increase in the capacity and power of BESS generally helps to cut down 

the operational cost of the commercial building microgrid. However, compared to the cost 

reduction, the additional hardware investments do not show a good return if there are no rebate 

incentives. Finally, an increase in the number of EVs in a commercial building microgrid 

surprisingly helps to cut down the operation cost at first after which the cost starts to increase. 

The additional cost reduction imposed by larger discharge power helps the building manager to 

decide the power rating of off-board bidirectional chargers.  

The numerical analysis in this chapter conforms that the moderate number of gridable EV 

integration is beneficial to cost reduction of commercial building microgrids. Stationary BESS as 

an optional energy storage system is economically expensive and part of its cost reduction 

functionality can be achieved by properly managed mobile storage (EVs). Furthermore, the 

deterministic DSM developed in this chapter is a powerful tool for building managers to further 

cutting down operational cost when the commercial building microgrid is integrated with solar 

generation and EVs. In general, the methodology used in stochastic DSM can be applied to other 

commercial building microgrids that integrate a variety of other storage systems and renewable 

generation for better management under the context of uncertainty. 
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A number of problems need to be studied in the future. Firstly, the lumped commercial building 

load used in this chapter can be decomposed into individual loads. It is projected to have a better 

performance at the expense of higher computational cost. Secondly, some uncertainties in the 

system may need to be re-examined. One example of such reevaluations is the variation in EV 

numbers when system continuous to scale up. Finally, when EV number continues to increase, a 

lumped EV model needs to be developed to avoid excessive computational time increase 

resulting from additionally introduced decision variables and constraints.   
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3 V2G Integration to Distribution Grids 

In this chapter, V2G integration to distribution grids is studied. Compared with the previous 

chapter, the modeling and control of V2G is under the context of a connected network, i.e. 

distribution grids. This is an important area of study of V2G as Distribution System Operator 

(DSO) is generally interested in knowing the impacts of V2G integration to distribution grids. 

3.1 Introduction 

Facilitated by recent advances in DSM, chemical [78], thermal [79] and mechanical [80] storage 

systems are optimally managed in response to electricity price incentives. Combined the with the 

target of cutting down the overall operation cost, DSM collaboratively addresses peak shaving 

and power quality improvements with cyber physical constraints [81] [82]. 

The increasing number of EVs integrated to distribution grids introduces new challenges as well 

as opportunities. On one hand, unregulated charging creates sharp peaks in addition to the 

original load profile [83] [84]. On the other hand, with the introduction of V2G, EV switches its 

role from heavy load to distributed virtual generator [85] [86]. Therefore, DSM in distribution 

grids that jointly considers the potentials of both traditional stationary storage and EVs has been 

a subject of significant ongoing research. 

Turning attention to the distribution grids, buses are connected by power line and interact with 

each other under power flow constraints. The isolated lumped model may turn out to either 

violate the bus voltage limits or result in excessive power losses in the power lines.  

Consequently, VR and Optimal Power Flow (OPF) are the two important topics capturing 

researchers’ interests in distribution grids. A number of centralized methods have been proposed 

including particle swarm optimization [87], genetic algorithm [88], mixed integer non-linear 
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programming [89], Neural Networks (NNs) [90] and fuzzy logic [91]. These methods require 

expensive computational power especially when the system grows large. Furthermore, when 

taking EV management into account, the DSM needs to know the availabilities of EVs in order 

to achieve the optimal performance of the system, raising privacy concerns from the EV owners 

[92].  

When dealing with fast growing controllable distributed generations and storages in distribution 

grids, it is natural to apply distributed algorithms. A number of recent studies have explored the 

applications of distributed algorithms in DSM. [93], [94] are formulated based on dual 

decomposition of a convex problem formulation. However, they either treated the DSM as a 

lumped model or linearized the non-convex OPF problem into DC power flow model. In order to 

guarantee the dual decomposition converges to its original optimum, the formulation of problem 

has to be convex [95]. Researchers in [96] [97] [98] have taken into account the OPF problem in 

a distributed way, however, did not capture the uncertainties lied in the system.  

In this context, this chapter presents the DSM in distribution grids under both deterministically 

and stochastically available resources. Battery Energy Management System (BESS) is chosen as 

the representative of the existing controllable load/resource that has full availability throughout 

the entire day. On the other hand, EVs as mobile storage devices, represent the widely existing 

power system uncertainties. The objective is to minimize the nodal operational cost and entire 

power losses in distribution grids while satisfying bus voltage and power flow constraints. 

Specifically, we formulate the OPF problem by convex relaxation for radial distribution grids. 

See [99] [100] for second-order cone programing based relaxation and [101] for semidefinite 

programing based relaxation. Sufficient condition for the tightness of the convex relaxation holds 

under three restrictions: the network has to be radial; the power injection to each bus cannot be 
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too large; and bus voltages are kept around nominal values. These restrictions hold for most of 

the real-life distribution grids. On the other hand, stochastic optimization is applied to model the 

uncertainties in EVs, which exists in arrival time, departure time and energy demands. A model-

free SAA method [69] is employed to make the stochastic modeling tractable. Furthermore, to 

manage the distribution grids in distributed fashion, Alternating Direction Method of Multipliers 

(ADMM) [95] is used to solve the problem. As the ADMM based DSM does not need to have 

the knowledge of end-user, their privacies are also preserved. 

The technical contribution of this chapter is three-fold: 1) the proposed DSM accounts for both 

the nodal operational cost and OPF over the distribution network. Through tight relaxation, the 

original problem is further formulated into convex optimization, which can be effectively solved 

with solvers for guaranteed convergence.2) The uncertainties rely in EV arrival time, departure 

time and energy demands are modeled with stochastic programming and model-free 

approximation, which are later verified by real-life data collected from 19 EV users on UCLA 

campus over one year period. 3) An ADMM based distributed method is applied to solve for the 

proposed DSM. It makes the DSM scalable and end-user privacy-preserving, taking one step 

closer to practical industrial application. The distributed DSM is verified numerically on an IEEE 

13-bus benchmark test system, followed by comprehensive discussions on the observations.  

The remaining of this chapter is organized as follows: Section 3.2 introduces the formulation of 

the DSM problem in distribution grids. Section 3.3 develops the stochastic modeling of EVs. 

Subsequently, Section 3.4 explains the convex relaxation of the original problem and distributed 

algorithm. Numerical verifications are performed in Section 3.5 and conclusions are drawn in 

Section 3.6. 
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3.2 System Modeling 

In this section, we describe the overall system architecture, and the modeling of the deterministic 

elements in the system, bearing the uncertainty elements in mind (in Section 3.3). The 

deterministic elements include DSM model, BESS model, and distribution grids model. 

3.2.1 System Architecture 

As shown in Figure 3-1, the studied system is in distribution grids connected to a substation at 

the root node. Without loss of generality, under each bus, it connects a set of BESSs, a number of 

EVs and uncontrollable loads.  There are two major players in the distribution grids, namely 

DSO and Sub-Distribution System Operator (SDSO). The DSO is in charge of managing the 

whole distribution grids and the SDSO is managing the BESSs, EVs and loads under each bus. 

There exists two-way communication links between DSO and SDSO. In this chapter, we 

consider a slotted model and slice the timeframe of a day into 𝐻 equal time slots. The time is 

represent as 𝑡, and 𝑡 ∈ {1,2, … ,𝐻}. The set of {𝑡|𝑡 ∈ {1,2, … ,𝐻}} is denoted as 𝑻. As the target 

of this chapter is to manage the distribution grids under steady-state, we assume the power flow 

stays the same between each time slot. 

 

Figure 3-1 Studied distribution grids architecture 
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3.2.2 DSM Model 

For notation: (∙) represents the upper limit of a scaler and similarly (∙) represents the lower limit. 

(∙)∗ stands for the conjugate of a scaler. For the same variable, capital letter is used to denote real 

variables, small letter is used to denote complex variables. The imaginary unit is denoted as 𝒋. 

Other bold symbols represent sets. Finally, the expectation is denoted by 𝔼[∙].   

The objective of the DSM proposed in this chapter is to minimize the overall nodal operation 

cost and power losses in distribution line while keeping the bus voltages regulated in the 

acceptable range. The distribution grids are represented as a connected graph 𝐺 = (𝑵, 𝝃). Let 𝑖 ∈

𝑵 = {1,2, … ,𝑁} denote the node (bus) of the distribution grids, and 𝝃 denote the lines. We use 

bus 1 to represent the root node shown in Figure 3-1. If there is a line (𝑖, 𝑗) ∈ 𝝃 connecting bus 𝑖 

and bus 𝑗, let 𝑧𝑖𝑗 = 𝑅𝑖𝑗 + 𝒋𝑋𝑖𝑗 be the line impedance, and 𝑖𝑖𝑗(𝑡) be the line current from 𝑖 to 𝑗 at 

time t, 𝑃𝑖(𝑡) and 𝑄𝑖(𝑡) are the active and reactive power drawn at bus i at time t, and the 

apparent power drawn at bus 𝑖 ∈ 𝑵 is represented as 𝑠𝑖(𝑡) = 𝑃𝑖(𝑡) + 𝒋𝑄𝑖(𝑡). The positive sign 

for 𝑠𝑖(𝑡) represents power drawn from bus 𝑖. For each bus 𝑖, there exists a set of BESSs, denoted 

𝑴𝑏
𝑖 , and a set of EVs, denoted 𝑴𝑒

𝑖 .  Let Π(𝑡) ∈ ℜ1+  be the energy price for a studied day, the 

DSM objective function is then presented as follows: 

 min ∑Π(t) ∑ 𝑃𝑖(𝑡)

𝑖∈𝑵\{1}𝑡

+ 𝛾∑ ∑ 𝑅𝑖𝑗|𝑖𝑖𝑗(𝑡)|
2

(𝑖,𝑗)∈𝝃𝑡=𝐻

 
(3.1) 

The DSM objective is the summation of two parts: the first part minimizes the nodal operational 

cost, and the second part minimizes the power losses over distribution line. The two parts are 

connected by a weighting factor 𝛾 . For simplicity, the time constant for each time slot is 

neglected, which does not affect the optimum of the system. 
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Figure 3-2 Overall architecture of the proposed DSM 

We present the overall architecture of the proposed DSM in Figure 3-2. We first model the BESS 

and power propagation in Section 3.2.3 and 3.2.4. EVs are modeled taking into consideration of 

their stochastic nature. The development of EV modeling, together with PDF estimation and 

numerical approximation is detailed in Section 3.3, known as stochastic optimization. The 

combination of BESS, network and EV model becomes the centralized DSM. Its distributed 

counterpart is developed in Section 3.4. To ensure the convergence of distributed DSM, a tight 

convex relaxation is made in Section 3.4.1. Then, a distributed method is developed in Section 

3.4.2 to dispatch the centralized computational burden to distributed computational nodes. The 

convergence and method to speed up the convergence is discussed in Section 3.4.3. 

3.2.3 BESS Model 

Let 𝑃𝑏
𝑖,𝑚(𝑡) and 𝑄𝑏

𝑖,𝑚(𝑡) denote the active power and the reactive power output of the BESS 𝑚 

under bus 𝑖 in time slot t. And 𝑆𝑏
𝑖,𝑚(𝑡) denote the apparent power limit of a physical inverter 

interfaced with the BESS. The power constraint of the BESS for  ∀𝑖 ∈ 𝑵\{1}, ∀𝑚 ∈ 𝑴𝑏
𝑖  can be 

represented as follows: 
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 𝑃𝑏
𝑖,𝑚2(𝑡) + 𝑄𝑏

𝑖,𝑚2(𝑡) ≤ 𝑆𝑏
𝑖,𝑚2(𝑡) (3.2.a) 

This constraint models the maximum power rating of an inverter. The energy constraint of the 

BESS for ∀𝑖 ∈ 𝑵\{1}, ∀𝑚 ∈ 𝑴𝑏
𝑖  is modeled as: 

 𝐸𝑏
𝑖,𝑚 ≤ 𝐸𝑆𝑏

𝑖,𝑚 +∑𝑃𝑏
𝑖,𝑚(𝑡)

𝑡∈𝑻

≤ 𝐸𝑏
𝑖,𝑚 

(3.2.b) 

where 𝐸𝑆𝑏
𝑖,𝑚

 represents the initial State-of-Energy (SoE) of the BESS 𝑚 under bus 𝑖 at time 𝑡 =

0. 𝐸𝑏
𝑖,𝑚

 and  𝐸𝑏
𝑖,𝑚

 represent the  upper and lower limit of the BESS, respectively. The lower 

bound for is a positive real scaler to prevent the BESS from deep discharge, which is known to 

exponentially decrease the lifespan of a battery [102]. After a full day’s operation, we would like 

the SoE of BESS for ∀𝑖 ∈ 𝑵\{1}, ∀𝑚 ∈ 𝑴𝑏
𝑖  to be some pre-defined final value: 

 𝐸𝑆𝑏
𝑖,𝑚 +∑𝑃𝑏

𝑖,𝑚(𝑡)

𝑡=𝐻

= 𝐸𝐹𝑏
𝑖,𝑚 (3.2.c) 

where 𝐸𝐹𝑏
𝑖,𝑚

 is the final SoE of the BESS after a full day’s operation. 

3.2.4 Network Model 

Following the notation in Section 3.2.2 and 3.2.3, for ∀(𝑖, 𝑗) ∈ 𝝃, 𝑗 ≠ 1 we can derive the power 

flow of the distribution grids using the following equations: 

 𝑣𝑖(𝑡) − 𝑣𝑗(𝑡) = 𝑧𝑖𝑗𝑖𝑖𝑗(𝑡) (3.3.a) 

 𝑠𝑖𝑗(𝑡) = 𝑣𝑖(𝑡)𝑖𝑖𝑗
∗ (𝑡) (3.3.b) 

 𝑠𝑖𝑗(𝑡) − 𝑧𝑖𝑗|𝑖𝑖𝑗(𝑡)|
2
− ∑ 𝑠𝑗𝑘(𝑡) = 𝑠𝑗(𝑡)
(𝑗,𝑘)∈𝝃

 
(3.3.c) 

where the bus i voltage is denoted as 𝑣𝑖, and 𝑠𝑖𝑗(𝑡) = 𝑃𝑖𝑗(𝑡) + 𝒋𝑄𝑖𝑗(𝑡) denote the apparent power 

flowing from bus 𝑖 to bus 𝑗. The positive sign for 𝑠𝑖𝑗 is defined as power flowing from 𝑖 to 𝑗. 
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Eq.3.3.a is the Ohm’s law, Eq.3.3.b and Eq.3.3.c are the definitions for apparent power and 

power flow, respectively. Substituting Eq.3.3.a and Eq.3.3.b into Eq.3.3.c we will have for 

∀(𝑖, 𝑗) ∈ 𝝃, 𝑗 ≠ 1: 

 𝑃𝑗(𝑡) = 𝑃𝑖𝑗(𝑡) − 𝑅𝑖𝑗|𝑖𝑖𝑗(𝑡)|
2
− ∑ 𝑃𝑗𝑘
(𝑗,𝑘)∈𝝃

(𝑡) (3.4.a) 

 𝑄𝑗(𝑡) = 𝑄𝑖𝑗(𝑡) − 𝑋𝑖𝑗|𝑖𝑖𝑗(𝑡)|
2
− ∑ 𝑄𝑗𝑘(𝑡)
(𝑗,𝑘)∈𝝃

 
(3.4.b) 

 |𝑣𝑖(𝑡)|
2 − |𝑣𝑗(𝑡)|

2
= 2(𝑅𝑖𝑗𝑃𝑖𝑗(𝑡) + 𝑋𝑖𝑗𝑄𝑖𝑗(𝑡)) − (𝑅𝑖𝑗

2 + 𝑋𝑖𝑗
2 ) |𝑖𝑖𝑗(𝑡)|

2
 (3.4.c) 

 |𝑣𝑖(𝑡)|
2|𝑖𝑖𝑗(𝑡)|

2
= 𝑃𝑖𝑗

2(𝑡) + 𝑄𝑖𝑗
2 (𝑡) (3.4.d) 

Eq.3.4.a-Eq.3.4.d define the power flow of the distribution grids. In an attempt to model VR, we 

put the following constraints at each buses: 

 𝑉 ≤ |𝑣𝑖| ≤ 𝑉, ∀𝑖 ∈ 𝑵 \{1}; |𝑣1| = 𝑉𝑐 (3.5.a) 

𝑉 and 𝑉 are the lower and upper voltage magnitude limits. The bus voltage at root node 1 is 

assumed to be constant 𝑉𝑐, which results from the fact that it is connected to the transmission 

system and be modeled as an infinite bus. The active and reactive power drawn at the root node 

is defined as:  

 𝑃1(𝑡) = ∑ 𝑃1𝑗(𝑡)

𝑗:(1,𝑗)∈𝝃

 
(3.5.b) 

 𝑄1(𝑡) = ∑ 𝑄1𝑗(𝑡)

𝑗:(1,𝑗)∈𝝃

 
(3.5.c) 

Putting additional physical capacity constraints on the rating of the substation we have: 

 |𝑃1(𝑡) + 𝑗𝑄1(𝑡)| ≤ 𝑆1  (3.5.d) 

The power under each bus for ∀𝑖 ∈ 𝑵\{1} is defined as follows: 
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 𝑃𝑖(𝑡) = 𝑃𝑙
𝑖(𝑡) + ∑ 𝑃𝑏

𝑖,𝑚

𝑚∈𝑴𝑒
𝑖

(𝑡) + 𝔼[ ∑ 𝑃𝑒
𝑖,𝑚(𝛿𝑖,𝑚, 𝜈𝑖,𝑚, 𝜒𝑖,𝑚, 𝑡)

𝑚∈𝑴𝑒
𝒊

] (3.5.e) 

 𝑄𝑖(𝑡) = 𝑄𝑙
𝑖(𝑡) + ∑ 𝑄𝑏

𝑖,𝑚(𝑡)

𝑚∈𝑀𝑒
𝑖

+ 𝔼[ ∑ 𝑄𝑒
𝑖,𝑚(𝛿𝑖,𝑚, 𝜈𝑖,𝑚, 𝜒𝑖,𝑚, 𝑡)

𝑚∈𝑀𝑒
𝑖

] (3.5.f) 

where 𝑃𝑙
𝑖(𝑡) and 𝑄𝑙

𝑖(𝑡) are the active and reactive power uncontrollable load at time t. 𝑃𝑒
𝑖,𝑚(𝑡) 

and 𝑄𝑒
𝑖,𝑚(𝑡) are the active and reactive power EV 𝑚 under bus 𝑖 absorbs.  𝛿𝑖,𝑚, 𝜈𝑖,𝑚, 𝜒𝑖,𝑚 denote 

the uncertainties in the EV arrival time, departure time and energy demand, respectively. 𝔼[∙] 

denotes the expectation. The value of 𝑃𝑒
𝑖,𝑚

  and 𝑄𝑒
𝑖,𝑚

 are subject to the uncertainty in EV. We 

will develop the EV model in the following section, showing how the uncertainties are modeled 

in EVs. 

3.3 Stochastic EV Modeling 

In this section, we have a slightly different model of EVs. The charging and discharging current 

of EVs are no longer discrete. The reasoning behind it is to formulate the problem into convex 

optimization.   

3.3.1 EV model 

One major difference between EV and BESS is the uncertainties in EV’s availability and energy 

demand. An EV owner may arrive at parking facility at random time. Similarly, very likely the 

owner will not be committed to any schedule without additional incentives, therefore may leave 

at random time. In addition to the uncertain in availability, the energy demand of an EV highly 

depends on the travel distance of the owner. All these factors add up to the difficulty of DSM 

with EV integrations. Let 𝑃𝑒
𝑖,𝑚

 and 𝑃𝑒
𝑖,𝑚

 be the maximum discharge power and charging power of 
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EV 𝑖 under bus 𝑚, with 𝑃𝑒
𝑖,𝑚 ∈ ℜ1−  representing the effect of V2G. For each ∀𝑖 ∈ 𝑵\{1}, ∀𝑚 ∈

𝑴𝑒
𝑖 , we have power constrains: 

 
𝑃𝑒
𝑖,𝑚𝐴𝑒

𝑖,𝑚(𝛿𝑖,𝑚, 𝜈𝑖,𝑚, 𝑡) ≤  𝑃𝑒
𝑖,𝑚(𝑡) ≤ 𝑃𝑒

𝑖,𝑚𝐴𝑒
𝑖,𝑚(𝛿𝑖,𝑚, 𝜈𝑖,𝑚, 𝑡)  

(3.6.a) 

where   𝐴𝑒
𝑖,𝑚(𝛿𝑖,𝑚, 𝜈𝑖,𝑚, 𝑡) ∈ ℜ1 stands for the availability of EV 𝑖 under bus 𝑚 at time t. 𝛿𝑖,𝑚 

and 𝜈𝑖,𝑚 stand for the uncertainty in EV availability. The reactive power of EV bidirectional 

charging is not considered. The reasons behind this modeling is, in practice, EV bidirectional 

chargers usually has much smaller power ratings compared to BESS, making the converter more 

economic at the price of two-quadrant controllability [39]. So we modeled it as a constant power 

factor load. 𝐴𝑒
𝑖,𝑚(𝛿𝑖,𝑚, 𝜈𝑖,𝑚, 𝑡) is defined as  

 
𝐴𝑒
𝑖,𝑚(𝛿𝑖,𝑚, 𝜈𝑖,𝑚, 𝑡) = {

1, 𝐸𝑉 𝑖 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3.6.b) 

For each ∀𝑖 ∈ 𝑵\{1}, ∀𝑚 ∈ 𝑴𝑒
𝑖 , the energy constraints, we have: 

 

𝐸𝑒
𝑖,𝑚 ≤ 𝐸𝑆𝑒,𝑡𝑠

𝑖,𝑚(𝜒𝑖,𝑚) + ∑ 𝐴e
𝑖,𝑚(𝛿𝑖,𝑚, 𝜈𝑖,𝑚, 𝑡)𝑃𝑒

𝑖,𝑚(𝑡)

𝑡∈𝑻𝑖,𝑚

𝑡= 𝑡𝑎
𝑖,𝑚

≤ 𝐸𝑒
𝑖,𝑚

 

(3.6.c) 

𝐸𝑒
𝑖,𝑚

 and 𝐸𝑒
𝑖,𝑚

 are the battery capacity limits of the EVs.  𝑡𝑎
𝑖,𝑚

 denotes the arrival time of EV m 

and 𝑻𝑖,𝑚is the set of time slots that EV m is available. The initial SoE is represented as 𝐸𝑆𝑒
𝑖,𝑚

. 

𝜒𝑖,𝑚 is used to show the uncertainty in initial SoE of the EV. Similar to BESS modeling 𝐸𝑒
𝑖,𝑚

 is 

set to prevent deep discharge of the battery. 

Finally, we will have the energy constraints after the whole day’s operation valid for ∀𝑖 ∈

𝑵\{1}, ∀𝑚 ∈ 𝑴𝑒
𝑖  as: 
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 𝐸𝑆𝑒
𝑖,𝑚(𝜒𝑖,𝑚) + ∑ 𝐴e

𝑖,𝑚(𝛿𝑖,𝑚, 𝜈𝑖,𝑚, 𝑡)𝑃𝑒
𝑖,𝑚(𝑡)

𝑡=𝑡𝑙
𝑖,𝑚

= 𝐸𝐹𝑒
𝑖,𝑚(𝜒𝑖,𝑚)  (3.6.d) 

𝐸𝐹𝑒
𝑖,𝑚

 stands for the final SoE of the EV and 𝑡 = 𝑡𝑙
𝑖,𝑚

 stands for the leave time of EV m. It is 

clear that for an arbitrary distribution of random variables  𝛿𝑖,𝑚, 𝜈𝑖,𝑚, 𝜒𝑖,𝑚 , it is difficult to 

represent Eq.3.5.e-Eq.3.5.f, Eq.3.6.a-Eq.3.6.d analytically, making even more drag when solving 

the entire DSM. We need to use the SAA and KDE method described in the previous chapter, to 

make the problem formulation numerically tractable. 

3.3.2 Numerical Approximation 

Following the same methodology as the previous chapter, we present the modeling of EV using 

SAA and KDE in this section without deduction. An efficient approximation of Eq.3.5.e-Eq.3.5.f 

are offered by generating 𝑁𝑆 i.i.d. samples of 𝝍 = {𝛿𝑠
𝑖,𝑚, 𝜈𝑠

𝑖,𝑚, 𝜒𝑠
𝑖,𝑚}𝑠=1

𝑁𝑆 : 

 
𝑃𝑖(𝑡) = 𝑃𝑙

𝑖(𝑡) + ∑ 𝑃𝑏
𝑖,𝑚

𝑚∈𝑴𝑏
𝑖

(𝑡) +
1

𝑁𝑆
∑ ∑ 𝑃𝑒,𝑠

𝑖,𝑚

𝑚∈𝑴𝑒
𝑖𝑠∈𝝍

(𝑡) 
(3.7.a) 

 
𝑄𝑖(𝑡) = 𝑄𝑙

𝑖(𝑡) + ∑ 𝑄𝑏
𝑖,𝑚

𝑚∈𝑴𝑏
𝑖

(𝑡) +
1

𝑁𝑆
∑ ∑ 𝑄𝑒,𝑠

𝑖,𝑚

𝑚∈𝑴𝑒
𝑖𝑠∈𝝍

(𝑡) 
(3.7.b) 

where we use a subscript s for each random variable to denote the generated scenario. The 

assumption here is 𝛿𝑠
𝑖,𝑚, 𝜈𝑠

𝑖,𝑚, 𝜒𝑠
𝑖,𝑚

 are i.i.d, we will justify this assumption in the studied case 

Section 3.5. Accordingly, for each generated scenario 𝑠 ∈ 𝝍, the constraints for EV should still 

hold for each generated scenario. Therefore, Eq.3.6.a-Eq.3.6.d are updated as the following:  

 𝑃𝑒
𝑖,𝑚𝐴𝑒,𝑠

𝑖,𝑚(𝑡) ≤  𝑃𝑒,𝑠
𝑖,𝑚(𝑡) ≤ 𝑃𝑒

𝑖,𝑚𝐴𝑒,𝑠
𝑖,𝑚 (𝑡) (3.8.a) 

 
𝐴𝑒,𝑠
𝑖,𝑚(𝑡) = {

1, 𝐸𝑉 𝑖 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡 𝑖𝑛 𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3.8.b) 
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𝐸𝑒
𝑖,𝑚 ≤ 𝐸𝑆𝑒,𝑠

𝑖,𝑚 + ∑ Ae,s
𝑖,𝑚(𝑡)𝑃𝑒,𝑠

𝑖,𝑚(𝑡)

𝑡∈𝑻𝑖,𝑚
𝑠

𝑡=𝑡𝑎,𝑠
𝑖,𝑚

≤ 𝐸𝑒
𝑖,𝑚

 

(3.8.c) 

 𝐸𝑆𝑒,𝑠
𝑖,𝑚 + ∑ 𝐴e

𝑖,𝑚(𝑡)𝑃𝑒
𝑖,𝑚(𝑡)

𝑡=𝑡𝑙,𝑠
𝑖,𝑚

= 𝐸𝐹𝑒,𝑠
𝑖,𝑚  (3.8.d) 

where following the naming convention, 𝑡𝑎,𝑠
𝑖,𝑚

 and 𝑡𝑙,𝑠
𝑖,𝑚

 respectively stands for the arrival and 

leave time of EV m in scenario s. Similarly, 𝑻𝑖,𝑚
𝑠 is the set of time slots that EV m is available in 

scenario s. Note the above constraints hold for ∀𝑠 ∈ 𝝍, ∀𝑖 ∈ 𝑵\{1}, ∀𝑚 ∈ 𝑴𝑒
𝑖 . We also describe 

how to capture the distribution of the uncertainty variables, i.e. 𝛿𝑖,𝑚, 𝜈𝑖,𝑚, 𝜒𝑖,𝑚,  in Section 3.5. 

After the SAA numerical approximation, the optimization problem is tractable. We define the 

decision variable set to be 𝛀 = {𝑃𝑖(𝑡), 𝑄𝑖(𝑡), 𝑃𝑏
𝑖,𝑚(𝑡), 𝑄𝑏

𝑖,𝑚(𝑡), 𝑃𝑒,𝑠
𝑖,𝑚(𝑡), 𝑄𝑒,𝑠

𝑖,𝑚(𝑡)|𝑡 ∈ 𝑻}. The DSM 

problem now can be presented as: 

min
𝛀
∑Π(t) ∑ 𝑃𝑖(𝑡)

𝑖∈𝑵\{1}𝑡

+𝛾∑ ∑ 𝑅𝑖𝑗|𝑖𝑖𝑗(𝑡)|
2

(𝑖,𝑗)∈𝝃𝑡=𝐻

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜. (3.2), (3.4), (3.5. 𝑎) − (3.5. 𝑑), (3.7), (3.8) 

However, Eq.3.4.d is non-convex, making the problem impossible to solve with convex 

optimization solvers. Non-convex solvers require much stronger computational power and the 

solutions are not guaranteed to be global optimum. As a result, we seek to convexify the DSM 

problem and solve it in a distributed manner using ADMM in the following section. 

3.4 Distributed Optimization 

In this chapter, we target to develop a scalable and privacy-preserving DSM. To this end, we use 

a distributed algorithm ADMM to distribute centralized computational burden of DSO to each 

SDSO. The distributed algorithm also protects the end-user’s privacy by getting only the 
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“aggregated” information under a bus. To guarantee convergence, we relax the original non-

convex problem and show conditions for a tight relaxation.  

3.4.1 Convex Relaxation 

According to [100] and [99], the non-convexity constraint in Eq.3.4.d can be relaxed to a convex 

second-order cone as follows:  

 |𝑣𝑖(𝑡)|
2|𝑖𝑖𝑗(𝑡)|

2
≥ 𝑃𝑖𝑗

2(𝑡) + 𝑄𝑖𝑗
2 (𝑡), ∀(𝑖, 𝑗) ∈ 𝝃, 𝑗 ≠ 1 (3.9) 

For a tight relaxation, there are three sufficient conditions, namely (a) the network has to be 

radial; (b) the power injection to each bus cannot be too large; and (c) bus voltages are kept 

around nominal values. The method to check the exactness of a relaxation is to solve for Eq.3.9 

and compare the left-hand-side in the equality to the right-hand-side. We define the decision 

variable set to be 𝛀 = {𝑃𝑖(𝑡), 𝑄𝑖(𝑡), 𝑃𝑏
𝑖,𝑚(𝑡), 𝑄𝑏

𝑖,𝑚(𝑡), 𝑃𝑒,𝑠
𝑖,𝑚(𝑡), 𝑄𝑒,𝑠

𝑖,𝑚(𝑡)|𝑡 ∈ 𝑻}. With the convex 

relaxation, the relaxed DSM can be described as follows: 

min
𝛀
∑Π(t) ∑ 𝑃𝑖(𝑡)

𝑖∈𝑵\{1}𝑡

+𝛾∑ ∑ 𝑅𝑖𝑗|𝑖𝑖𝑗(𝑡)|
2

(𝑖,𝑗)∈𝝃𝑡=𝐻

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (3.2), (3.4. 𝑎) − (3.4. 𝑐), (3.5. 𝑎) − (3.5. 𝑑), (3.7) − (3.9) 

Given a tight convex relaxation, the DSM is in a centralized manner and therefore the DSO still 

has to collect the information on each buses, raising privacy concerns to EV owners. 

Furthermore, with a growing size of BESSs, EVs and perhaps other controllable devices not 

included in this chapter, the DSO has a heavy computational burden for the system to scale up. 

These motivates us to develop a distributed DSM that is scalable and privacy-preserving. 
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3.4.2 Distributed Algorithm 

We develop the distributed DSM using the ADMM method. We first give a brief introduction to 

ADMM.  The ADMM solves problems in the following form: 

𝑚𝑖𝑛  𝑓(𝑥) + 𝑔(𝑧)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 + 𝐵𝑧 = 𝑐

 

where 𝑥 ∈ ℜ𝑛 and 𝑧 ∈ ℜ𝑚 are decision variables. 𝐴 ∈ ℜ𝑝×𝑛, 𝐵 ∈ ℜ𝑝×𝑚 and 𝑐 ∈ ℜ𝑝. Assuming 

𝑓(⋅) and 𝑔(⋅) are convex and constraints form convex set. The augmented Lagrangian of this 

problem is presented as: 

𝐿𝜌(𝑥, 𝑧, 𝑦) = 𝑓(𝑥) + 𝑔(𝑧) + 𝑦(𝐴𝑥 + 𝐵𝑧 − 𝑐) +
𝜌

2
||𝐴𝑥 + 𝐵𝑧 − 𝑐||2 

Choosing a random initial value for 𝑥, 𝑧 and 𝑦, ADMM is then formulated as the following 

iterations: 

(𝑥)𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥  𝐿𝜌(𝑥, (𝑧)𝑘 , (𝑦)𝑘) 

(𝑧)𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦 𝐿𝜌((𝑥)𝑘+1, 𝑧, (𝑦)𝑘) 

(𝑦)𝑘+1 = (𝑦)𝑘 + 𝜌(𝐴(𝑥)𝑘+1 + 𝐵(𝑧)𝑘+1 − 𝑐) 

where 𝜌 is a positive number stands for step size. Through the sequential update of 𝑥 and 𝑧 the 

searching direction of the optimum is alternating. Substituting 𝑦 = 𝜌𝑢, we derive the scaler form 

for the ADMM as following iterations: 

(𝑥)𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥  (𝑓(𝑥) +
𝜌

2
||𝐴𝑥 + 𝐵(𝑧)𝑘+1 − 𝑐 + (𝑢)𝑘||

2
) 

(𝑧)𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑧  (𝑔(𝑧) +
𝜌

2
||𝐴(𝑥)𝑘+1 + 𝐵𝑧 − 𝑐 + (𝑢)𝑘||

2
) 

(𝑢)𝑘+1 = (𝑢)𝑘 + 𝐴(𝑥)𝑘+1 + 𝐵(𝑧)𝑘+1 − 𝑐 
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The iteration stops until it converges. If the 𝑓(⋅)  and 𝑔(⋅)  are convex and constraints form 

convex set, the distributed solution is guaranteed to converge to the centralized counterpart.  

The key for ADMM is for a convex problem can be decomposed into global and local sub-

problems. The ADMM method actually turns out to be natural fit to DSM problem in this 

chapter. We decompose the original DSM problem into a global problem that solves for the OPF 

and VR at DSO, and local problems that solve for energy cost minimization at SDSOs.  

Before start of the ADMM iterations, we first initialize the problem with random numbers: for 

the first iteration, DSO sets random values to 𝑃𝑖  and 𝑄𝑖 , for ∀𝑖 ∈ 𝑵\{1}. For simplicity of 

notation, we neglect time t in each variable. We introduce two sets of dual variables for each bus 

𝑖 ∈ 𝑵\{1},  namely 𝛼𝑖(𝑡) ∈ ℜ
1 and 𝛽𝑖(𝑡) ∈ ℜ

1.And SDSO randomly choose 𝑃𝑏
𝑚,𝑖, 𝑄𝑏

𝑚,𝑖
 for ∀𝑖 ∈

𝑵\{1}, ∀𝑚 ∈ 𝑴𝑏
𝑖 , and 𝑃𝑒,𝑠

𝑚,𝑖
 and 𝑄𝑒,𝑠

𝑚,𝑖
 for ∀𝑠 ∈ 𝝍, ∀𝑖 ∈ 𝑵\{1}, ∀𝑚 ∈ 𝑴𝑒

𝑖 . 

Define 𝛀1 = {𝑃𝑏
𝑖,𝑚(𝑡), 𝑄𝑏

𝑖,𝑚(𝑡), 𝑃𝑒,𝑠
𝑖,𝑚(𝑡), 𝑄𝑒,𝑠

𝑖,𝑚(𝑡)|𝑡 ∈ 𝑻}For each iteration 𝑘 + 1, the SDSO at bus 

𝑖 ∈ 𝑵\{1},  get the iteration k update (𝑃𝑖)𝑘, (𝑄𝑖)𝑘, (𝛼𝑖)𝑘  and (𝛽𝑖)𝑘  from SDO and first solve a 

local DSM problem based on iteration k as follows: 

 min
𝛀1

∑Π(t) ∑ 𝑃𝑖(𝑡)

𝑖∈𝑵\{1}𝑡

 
 

 
+
𝜌1
2
∑(−(𝑃𝑖(𝑡))

𝑘
+ 𝑃𝑙

𝑖(𝑡) + ∑ 𝑃𝑏
𝑖,𝑚(𝑡)

𝑚∈𝑴𝑏
𝑖

+
1

𝑁𝑆
∑ ∑ 𝑃𝑒,𝑠

𝑖,𝑚(𝑡)

𝑚∈𝑴𝑒
𝑖𝑠∈𝝍

+ (𝛼𝑖(𝑡))𝑘  )
2

𝑡=𝐻

 
 

 
+
𝜌2
2
∑(−(𝑄𝑖(𝑡))

𝑘
+ 𝑄𝑙

𝑖(𝑡) + ∑ 𝑄𝑏
𝑖,𝑚(𝑡)

𝑚∈𝑴𝑏
𝑖

+
1

𝑁𝑆
∑ ∑ 𝑄𝑒,𝑠

𝑖,𝑚

𝑚∈𝑴𝑒
𝑖𝑠∈𝝍

(𝑡) + (𝛽𝑖(𝑡))𝑘  )
2

𝑡=𝐻

 
 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (3.2), (3.8)  

(3.10) 
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where 𝜌1, 𝜌2  are the step size. The local DSM at each bus solve for the optimal schedule for 

BESS and EV in iteration 𝑘 + 1, denoted as (𝑃𝑏
𝑖,𝑚)𝑘+1 , (𝑃𝑒,𝑠

𝑖,𝑚)𝑘+1, (𝑄𝑏
𝑖,𝑚)𝑘+1  and (𝑄𝑒,𝑠

𝑖,𝑚)𝑘+1. 

Then the SDSO communicate the aggregated bus load (𝑃𝑎
𝑖)𝑘+1 and (𝑄𝑎

𝑖 )𝑘+1 defined as follows 

to DSO.: 

(𝑃𝑎
𝑖)𝑘+1 = 𝑃𝑙

𝑖(𝑡) + ∑ (𝑃𝑏
𝑖,𝑚(𝑡))𝑘+1 

𝑚∈𝑴𝑏
𝑖

+
1

𝑁𝑆
∑ ∑ (𝑃𝑒,𝑠

𝑖,𝑚(𝑡))𝑘+1
𝑚∈𝑴𝑒

𝑖𝑠∈𝝍

 

(𝑄𝑎
𝑖 )𝑘+1 = 𝑄𝑙

𝑖(𝑡) + ∑ (𝑄𝑏
𝑖,𝑚(𝑡))𝑘+1 

𝑚∈𝑴𝑏
𝑖

+
1

𝑁𝑆
∑ ∑ (𝑄𝑒,𝑠

𝑖,𝑚(𝑡))𝑘+1
𝑚∈𝑴𝑒

𝑖𝑠∈𝝍

 

After receiving all the information for iteration 𝑘 + 1 from SDSO, DSO solve a global DSM 

problem by every time step as follows: 

min
𝑃𝑖(𝑡),𝑄𝑖(𝑡)

𝛾 ∑ 𝑅𝑖𝑗|𝑖𝑖𝑗(𝑡)|
2

(𝑖,𝑗)∈𝝃

+
𝜌1
2

∑ (−𝑃𝑖(𝑡) + (𝑃𝑎
𝑖(𝑡))𝑘+1 + (𝛼𝑖(𝑡))𝑘  )

2

𝑖∈𝑵\{1}

 

+
𝜌2
2

∑ (−𝑄𝑖(𝑡) + (𝑄𝑎
𝑖 (𝑡))𝑘+1 + (𝛽𝑖(𝑡))𝑘  )

2

𝑖∈𝑵\{1}

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (3.4. 𝑎) − (3.4. 𝑐), (3.5. 𝑎) − (3.5. 𝑑), (3.9) 

  (3.11) 

In this dissertation, the decomposition of the problem is based on the aggregated active and 

reactive load. In ADMM, the centralized problem can be made distributed if the two sets of 

decision variables are constrained by an equality constraint Ax+Bz=c. This decomposition does 

not hold in general for all power system optimization problems, however, the proposed method 

could be applied in scenarios where the overall objective function is composed of a sum of local 

costs, and a global cost. After solving for each time step of a day, the global DSM, the DSO 

updates the two sets of dual variables for each bus 𝑖 ∈ 𝑁\{1} as follows: 
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 (𝛼𝑖(𝑡))𝑘+1 = (𝛼𝑖(𝑡))𝑘 − (𝑃
𝑖(𝑡))𝑘+1 + (𝑃𝑎

𝑖(𝑡))𝑘+1 (3.12.a) 

 (𝛽𝑖(𝑡))𝑘+1 = (𝛽𝑖(𝑡) )𝑘 − (𝑄
𝑖(𝑡))𝑘+1 + (𝑄𝑎

𝑖 (𝑡))𝑘+1 (3.12.b) 

The updates of the dual variables signals the end of iteration 𝑘 + 1 . The updated (𝑃𝑖)𝑘+1 , 

(𝑄𝑖)𝑘+1, (𝛼𝑖)𝑘+1 and (𝛽𝑖)𝑘+1 are broadcasted to each SDSO for the next iteration. The iteration 

ends when the problem converges (discussed in Section 3.4.3). The ADMM based algorithm can 

distribute the computational burden at the DSO to SDSO. At the same time, for each iteration, 

the DSO only has to know the aggregated load at each bus, preserving the privacy by hiding the 

individual information in the aggregated information.  

3.4.3 Convergence and Over Relaxation 

It has been proved in [95] that if the centralized problem is convex, the ADMM is to converge to 

the same optimum with tolerable errors. For the proposed ADMM based DSM, the stopping 

criteria is when the distributed algorithm converges. Define the primal residuals of the two dual 

variables at iteration 𝑘 for each bus 𝑖 to be:  

 𝑟𝑝
𝑖 = ∑(−(𝑃𝑖(𝑡))𝑘 + (𝑃𝑎

𝑖(𝑡))𝑘)
𝟐

𝑡=𝐻

 
(3.13.a) 

 𝑟𝑞
𝑖 = ∑(−(𝑄𝑖(𝑡))𝑘 + (𝑄𝑎

𝑖 (𝑡))𝑘)
𝟐

𝑡=𝐻

 
(3.13.b) 

The stopping criteria for the distributed DSM is to make sure the two primal residuals to be 

sufficiently small: 

 𝑟𝑝
𝑖 ≤ 𝜖, 𝑟𝑞

𝑖 ≤ 𝜖, ∀𝑖 ∈ 𝑵\{1} (3.13.c) 

where 𝜖  is a predefined error boundary. The summary of the ADMM based distributed DSM is 

tabulated in Algorithm 3.1. 

Algorithm 3.1. ADMM based distributed DSM 



 

55 

 

1: Initialize the problem. Set 𝑘 = 1. DSO randomly choose 𝑃𝑖, 𝑄𝑖, 𝛼𝑖 and 𝛽𝑖*. SDSO at bus 𝑖 randomly 

choose 𝑃𝑏
𝑚,𝑖, 𝑄𝑏

𝑚,𝑖
, and 𝑃𝑒,𝑠

𝑚,𝑖
 and 𝑄𝑒,𝑠

𝑚,𝑖
. 

2: Repeat for 𝑘 = 2,3, … 

3: Solve the local DSM in (3.10) at each SDSO using  (𝑃𝑖)𝑘 , (𝑄𝑖)𝑘 , (𝛼𝑖)𝑘  and (𝛽𝑖)𝑘  

broadcasted by DSO  

4: Solve the global DSM in (3.11) at DSO by collecting (𝑃𝑎
𝑖)𝑘+1 and (𝑄𝑎

𝑖 )𝑘+1from each SDSO 

5: Update dual variables in (3.12) and broadcast (𝑃𝑖)𝑘+1, (𝑄𝑖)𝑘+1, (𝛼𝑖)𝑘+1 and (𝛽𝑖)𝑘+1 

6: Until convergence in (3.13) 

* for simplicity of notation, time t  is neglected for each variable 

To accelerate the convergence speed, an over relaxation technique is proposed in [103]. 

Basically, it is to substitute the (𝑃𝑎
𝑖)𝑘+1and (𝑄𝑎

𝑖 )𝑘+1 in each iteration 𝑘 + 1 (line 5 in Algorithm 

3.1) as follows: 

 (𝑃𝑎
𝑖(𝑡))𝑘+1 = 𝜃(𝑃𝑎

𝑖(𝑡))𝑘+1 − (1 − 𝜃)(−(𝑃
𝑖(𝑡))𝑘) (3.14.a) 

 (𝑄𝑎
𝑖 (𝑡))𝑘+1 = 𝜃(𝑄𝑎

𝑖 (𝑡))𝑘+1 − (1 − 𝜃)(−(𝑄
𝑖(𝑡))𝑘) (3.14.b) 

where 𝜃  is a relaxation parameter. [103] suggested that 𝜃 ∈ [1.5,1.8]  can improve the 

convergence speed. We will provide numerical verifications and comparisons to the original 

ADMM based DSM in the following section. 

3.5 Results and Analysis 

This section demonstrates the correctness of the proposed DSM and its performance. We first 

introduce the simulation setup. It is followed by case studies to verify the correctness, and 

extensive discussions on understanding the numerical results.  
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3.5.1 Simulation Setup 

We use a modified IEEE 13-bus radial test feeders [104] for demonstration of the proposed DSM. 

As the primary focus of this chapter is not on dynamics or electromagnetic transient, we made 

some minor modification to the original IEEE 13-bus radial test feeders to study the steady-state 

DSM: the in-line transformer between bus 633 and 634 is removed; the breaker between bus 671 

and 692 is closed. Because of the extreme short line length between bus 633 and 634, the two 

buses are treated as one single bus, i.e. bus 5 in Figure 3-3. For similar reason, bus 692 and 675 

are treated as bus 9 in Figure 3-3. The root node is a 115 kV substation and it is connected with 

an 115 kV/4.16 kV transformer. We do not consider the three-phase imbalance in the distribution 

system, the three-phase diagram is therefore drawn as a one-line diagram. At each distribution 

bus, it is connected to several 4.16 kV/0.12 kV distribution transformers. The transformers are 

directly connected to the load, BESSs and EVs.  

 

Figure 3-3 Modified IEEE 13-bus radial test feeders 

The DSM studied in this chapter uses one hour as time step. We use the day-ahead price from 

[105], which is shown in Figure 3-4. Fixed load profile at each bus is obtained from [106] and 
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plotted in Figure 3-5. We place one BESS at each buses in Figure 3-3 except for the root bus. 

The key parameters of three studied types of batteries are documented in Table 3-1.   

 

Figure 3-4 Day-ahead price 

 

Figure 3-5 A typical day load pattern 

We collected 19 EV driver’s records for a whole year on UCLA campus in order to accomplish 

this study. The recorded EVs fall into three popular models in the market, i.e. Nissan Leaf, Tesla 

Model S and Mitsubishi MiEV. Their arrival time, leaving time, and energy demands are 
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recorded for generating a close to real-life study. Apart from filtering out data with 

communication failures, we made the following assumptions to the original data in order to 

verify the proposed DSM: 1) V2G capability. Very few charging stations supports V2G 

nowadays, partly resulting from different interfacing protocols, see two different protocols used 

in the three mentioned EV models in [107] and [64]. The records we have collected are EV 

charging data, however, it reveals the V2G potential: An EV is usually fully charged before it is 

unplugged and therefore can perform V2G in spare time. Following this reasoning, we assume 

EVs are V2G capable once connected to the grid, however they need to meet their energy 

demands before leave. 2) SoE acquisition. The SoE data is also hard to obtain and therefore it is 

impossible to tell the starting SoE after EV connects. As we have data in EV energy demands, 

we will assume EVs get fully charged every time. In this way, it will be tractable to calculate the 

starting SoE using the collected energy demands data.  Table 3-1 summarizes the key parameters 

used for three different EV models and BESS models in this chapter. Table 3-2 summarizes the 

key parameters used for distribution network simulation. All EV related parameters comes from 

real-life EV manufacturers. BESS related parameters are chosen as these are the typical size of 

the BESS in distribution systems. And finally, distribution network related parameters are from 

IEEE benchmark test system and real-life regulations in U.S power systems.  

Table 3-1 Key Parameters Used for BESS and EV 

Device Power Rating (Min, Max) Capacity 

Type A BESS [-20,20] kVA 25 kWh 

Type B BESS [-15,15] kVA 20 kWh 

Type C BESS [-10,10] kVA 15 kWh 

Tesla Model S [-3.3,6.6] kW 65 kWh 



 

59 

 

Nissan Leaf [-3.3,6.6] kW 24 kWh 

Mitsubishi MiEV [-3.3,6.6] kW 16 kWh 

 

Table 3-2 Key Parameters Used for Distribution Networks 

Parameters Rating 

Voltage Magnitude Limit [0.95 1.05] p.u. 

Substation Power Limit 5 MVA 

Substation Secondary Voltage 4.16 kV 

 

In observance of the large number of EV owners, we only show three EV owner profiles in 

Figure 3-6 as the representatives of the 19 EV owners. The three owners drive a Tesla Model S, 

Nissan Leaf and Mitsubishi MiEV respectively. We capture the distribution of the real-life data 

using KDE described in Section 2.3.3. Figure 3-6 compares the real-life data and distribution 

generated by KDE, showing a close match between the two. The KDE is then applied to generate 

the scenarios in SAA. We duplicate 1 out of the 19 EVs to make the total EV number 20, and we 

evenly distribute the two EVs at each distribution bus except for the root node. For the 

distributed DSM, We set weighting factor 𝛾 = 1, step size 𝜌1 = 1, 𝜌2 = 2 and predefined error 

boundary 𝜖 = 10−3. The over relaxation parameter is set to 𝜃 = 1.75. The proposed DSMs are 

solved with Gurobi on a PC with 2.67GHz CPU and 8 GB RAM. 
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Figure 3-6 Three typical patterns of EV users 

3.5.2 Case Study 

We generate 200 scenarios using the SAA and the convergence of the proposed DSM is 

presented in Figure 3-7. Figure 3-7(a) shows the convergence of objective function for both 

over-relaxed ADMM (o-ADMM) DSM and regular ADMM DSM. Both DSMs converges to the 

optimum solved in a centralized manner. After the DSMs converge, the performance of both 

DSMs are stable. Furthermore, we pick the slowest converging bus, bus 11, to take a closer look 

at the convergence defined by Eq.3.13 in Figure 3-7(b). It shows the primal dual residuals of the 

o-ADMM DSM and ADMM DSM at bus 11 for both active (P) and reactive power (Q) 

corresponding to Eq.3.13. It is observed that the over relaxation speeds up the convergence: the 

o-ADMM DSM converges in 36 iterations while the ADMM DSM takes 70.  After 80 iterations, 

the o-ADMM DSM hits its performance limitation: the residuals stop to decline and stay in an 
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acceptable range. Moreover, we keep tracking the convex relaxation in Eq.3.9 and found it to be 

tight for all iterations. In a word, the o-ADMM based DSM converges relatively fast. 

In the proposed DSM, SAA numerically approaches the stochastic optimization problem. To 

further validate the performance of SAA, we vary the size of the generated scenario size to 

examine the impact of scenario size on the DSM. As shown in Table 3-3, we vary the scenario 

size for 100, 200 and 300, and run the numerical experiment using the same setting for 10 times. 

We obtain the mean and standard deviation of the 10 experiments for each scenario size. 

Comparing the results of different scenario size, the mean of the three sets of experiments are 

close. As expected, the 300 set has a smaller standard deviation. The scenarios size is directly 

related to the size of the optimization problem, and a large scenario size requires a lot of 

computational resources. As a conclusion, using 200 scenarios is a safe approach to approximate 

the EV randomness in the studied setting. For cases requiring medium accuracy, 100 generated 

scenarios can satisfy the requirements.   

 

Figure 3-7 (a) Convergence of the Distributed DSMs and (b) primal residuals of bus 11 
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Table 3-3 Mean and Standard Deviation of Objective Value vs. Scenario Size 

Scenarios 100 200 300 

Mean 1695.33 1695.29 1696.32 

STD 0.1522 0.1199 0.0892 

 

To demonstrate the correctness of the numerical experiments, we also present load profile under 

bus 11. Bus 11 is picked for analysis as it is the bus most distanced from the root node. As 

voltage drop is most significant for the buses far away from the root node, we would like to 

make sure all the constraints are met at bus 11. Firstly, we examined the load profile under bus 

11, the battery’s active and reactive power together with two EV profiles are shown in Figure 

3-8(a). Note that the EV profile is one generated scenario out of 200 total scenarios. It is shown 

that the battery is most of the time supporting reactive power, which is expected for compensate 

for the voltage drop in distribution system. Furthermore, in Figure 3-8(b), we align the time axis 

and present the State-of-Charges (SoCs) for batteries and EVs in the same scenario. For easy 

representation, we normalized the SoE used in Section 3.3 to SoC in figures. By comparing 

Figure 3-8(a) and Figure 3-8(b), it is clearly shown that the EV1 arrives at 5am and leave at 1pm 

while EV2 arrives in 8am and leaves at 9pm. There are some V2G operations for both of the EVs. 

In Figure 3-8(b), we can also find out prevention of deep discharge of the battery when it hits the 

SoC lower limit. It needs to be point out that the info of battery, EV1 and EV2 in Figure 3-8 are 

only accessible by SDSO using the proposed o-ADMM DSM, therefore persevering individual 

privacy from DSO. 
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Figure 3-8 SDSO accessible: (a) Load profile under bus 11, (b) SoC of batteries and EVs 

Besides checking the load profiles and SoCs, we further presents the bus aggregated load and 

voltage profile from a DSO’s point of view. The aggregated active load, reactive load and 

voltage profile for the same bus (bus 11) is shown in Figure 3-9. We notice that VR is performed 

during 10am and 5pm, a time window when system has heavy active load and voltage profile 

decays accordingly. By comparing Figure 3-9 with Figure 3-8(a), we find out that battery is 

under reactive power compensation mode in the same time period. Figure 3-8 and Figure 3-9 

mutually verify the correctness of the proposed DSM.  
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Figure 3-9 DSO accessible: Bus 11 aggregated load profile and bus voltage 

3.5.3 Discussions 

1) Scalability. Figure 3-10 shows the scalability of the proposed DSM under different size of the 

EV number. We change the number of EVs in the distribution network, from 20 EVs in the 

original setting to 40 EVs and 60 EVs. Given the limitation of actual EV user profile we have 

collected, we duplicate the number of EVs under each bus to increase the EV number. We run 

the numerical experiment by keeping all the other settings the same. In Figure 3-10, it can be 

clearly seen that as the EV number increases, the problem size scale up linearly with the EV 

number. However, as the stochastic optimization needs to generate a large number of scenarios 

for each EV (in this case 200), the problem size actually grows very fast. By integrating 60 EVs, 

it is already extremely slow to solve the DSM in a centralized way. On the other hand, if we 

solve it in a distributed manner, the computational burdens are distributed to SDSO. In Figure 

3-10, we show three cases of numerical results, namely unstable termination, stable termination 

and termination with reduced line length. a) the unstable termination refers to the case whose 
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termination criteria is met according to Eq.3.13 in certain iterations. However, if the algorithm 

continues to run for one more iteration, the termination criteria is violated. A good example of 

this case is shown in Figure 3-7(b): at iteration 5, the oscillation introduced by the relaxed term 

in Eq.3.14 has reduced the error below the pre-set error bound. However, such oscillation has 

enlarged the error above the error bound in the next iteration. b) the stable termination stands for 

termination where error continues to stay below error bound. An illustrative example is Figure 

3-7(b) at iteration 36. After this iteration, the error continuously stays below error bound. c) we 

also show the scalability of the same problem with a reduced distribution line length. The line 

length in this case is reduced to one fifth of the original length.  

There are three observations for this numerical experiment: a) by comparing the unstable 

termination under different size of EV integration, we see a good chance that the o-ADMM 

based DSM terminates in 10s of iterations. The number of iterations does not grow much as the 

problem size grows. b) by comparing the stable terminations, we find it scales as the problem 

scales up. By fitting a first order polynomial between the number of stable iterations and the 

problem size, it is found out that the distributed method needs to increase one iteration with 

every increment of 2000 decision variables. There is a chance where the introduced oscillation 

terminates the algorithm in early stage, however, such termination is not guaranteed. However, 

in order to obtain guaranteed (stable) termination, the iteration scales up with the problem size. 

In other words, the distributed DSM reduce the computational burden for the central controller at 

the expense of longer computational time. c) by comparing the termination with reduced line 

length case, we further find out that the increase in stable termination actually results from a 

harder problem: the increase in EV numbers (and hence in energy demand) in the system has 

made the VR constraints hard to be met. However, if we reduce the line length of the distribution 
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system, the constraints are more easily met and hence iterations do not increase with the problem 

size. 

In general, the large size of scenario that SAA has created combines well with the distributed 

method. Iterations for convergence increase linearly with the problem size. Although there will 

be communication delays between SDSO and DSOs, the dispatch of computational burden to 

distributed controllers parallels processing and therefore potentially decreases the overall 

computational time. More importantly, by solving the problem in a distributed manner, it makes 

the problem solvable when it is oversized. It can be also projected that the distributed method 

proposed in this dissertation works well with deterministic modeling in which the problem size is 

usually much smaller than its stochastic counterparts.   

If the EV size continuous to grow, it can be projected that the problem is harder to solve. With 

the introduction of more EVs, it not only increases the number of decision variables, at the same 

time,  the EV charging demands also make the voltage and power flow constraints harder to be 

met. If the EV size is over several hundred, the model used in this chapter may need further 

adjustments: instead of modeling the stochastic behavior of each individual EV, stochastic 
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modeling should be performed for aggregated EV load under each bus. 

 

Figure 3-10 DSM scalability and convergence vs. the size of the problem 

2) Stochastic vs. Deterministic. We use stochastic optimization in the proposed DSM to address 

the stochastic behavior of the EVs. We show the advantage of using stochastic DSM over 

deterministic DSM in Figure 3-11. To evaluate the performance of the stochastic DSM and its 

deterministic counterpart, we have created two test cases using each DSM. The stochastic DSM 

is created as using the proposed method in this chapter. The deterministic DSM is constructed 

with the best estimation of EV user behavior, i.e. using the average value of arrival time, 

departure time and energy demand for each EV user. Then 200 scenarios are generated out of the 

60 studied EVs. Averaged EV load mismatch are calculated, which is defined as average 

mismatch between the estimated EV load at each bus and the generated scenarios, to study the 

performance of the two DSMs. As the stochastic DSM in this chapter is an unbiased estimation 

of the averaged EV load at each bus, the mismatch is zero. The averaged mismatch at each bus 

for deterministic DSM is shown in Figure 3-11. The mismatches are in the day time when EVs 
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are available to SDSO.  One phenomenon mismatch by using deterministic method is at 9am on 

bus 9. The averaged active power mismatch is 24.4 kW while at the same time the bus 9 base 

active load is 77.3 kW, which is roughly 31.6% of the overall uncontrollable load. Together with 

other mismatches in other time under various buses, traditional deterministic method creates 

problems for DSO to operate the distribution grid. 

Two remarks on the numerical results: a) the deterministic DSM using the averaged value for 

each EV uncertainties still creates considerable power mismatch. There is no guarantee, for the 

stochastic DSM to outperform its deterministic counterpart in every scenario. However, in a long 

run (corresponding to larger scenarios), the stochastic DSM will outperform.  b) The mismatch 

may continue to grow when EV number continues to scale up. Therefore, the stochastic DSM is 

critical for the DSO to estimate the average load under each bus with uncertainty.  

 

Figure 3-11 Average EV load mismatch for each bus using deterministic method 

3) Lumped Model vs. Networked Model. We further study the traditional DSM which only 

accounts for the local effects (LDSM), i.e. minimizing the operational cost under each bus. We 
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compare the traditional LDSM with the DSM developed in this chapter in Figure 3-12. The two 

cases are created under same simulation setup with only difference in LDSM not accounting for 

the network and power flow constraint. As shown in Figure 3-12, we plot the aggregated power 

losses for the whole network at each time step for both DSMs. Moreover, the maximum and 

minimum voltage in the whole network at each time step for the two DSMs are also potted for 

comparisons.  It is observed that the LDSM creates a much larger power loss over the 

distribution line. The total distribution loss is 353.9 kWh for the studied distribution grid by 

using the proposed DSM for operation. On the other hand, if the traditional lumped model based 

DSM is applied, the total distribution losses for the load profile will be 719.8 kWh, a loss twice 

the size of the proposed method. Furthermore, it is also observed that the minimum voltage in the 

system drops to 0.92 p.u by using lumped model based DSM, while the minimum voltage in the 

proposed networked based model is regulated at 0.95 p.u.. The numerical results demonstrate the 

importance of switching from traditional LDSM to the proposed DSM which accounts for the 

network topology.   
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Figure 3-12 Comparisons of power losses and voltage regulation for DSM and LDSM 

3.6 Summary 

In this chapter, we have proposed a DSM that targets at minimizing the operational cost and 

distribution losses over distribution networks. It accounts for the stochastic resources in the 

system, the scalability of increasing controllable devices, and power network physical constraints. 

For modeling uncertainties of stochastic resources, EVs in this chapter, stochastic optimization is 

applied. The distribution of the arrival time, departure time and energy demands in EVs are 

captured using KDE. The stochastic optimization problem is numerically approximated with the 

help of SAA. Note that other sources of uncertainties in the system (such as solar, load and etc) 

can be modeled using the same approach proposed in this dissertation, as long as the distribution 

of the stochastic variables are known. Therefore, the proposed method can be also used for 

modeling power system integrated with distributed resources such as solar and wind following 

the same modeling framework. When EV usage pattern for the studied day is outside the scope 

of its historical records, it can be projected that the proposed DSM will not perform well. This is 

a problem that all data-driven methods encounter. The degradation of the performance depends 

on the sensitivity of the model. There is no guarantee that the proposed stochastic DSM performs 

well in one specific day, however, it outperforms its deterministic counterpart in a long run.  On 

the other hand, distributed DSM proposed in this chapter resolves the scalability issue. As SAA 

quickly scales up the problem size with the increase integrations of EVs, o-ADMM based DSM 

dispatches the computational burden originally at DSO to distributed SDSO. Moreover, as a 

‘side effect’, instead of directly communicating the power consumption to DSO, the proposed 

distributed DSM protects privacy of the end-users by only communicating their dual variables. In 

the end, we also shows the necessity of switching from a traditional lumped based LDSM to the 
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DSM that accounts for network topology: the proposed DSM helps to save power losses over the 

distribution line and regulate the bus voltages within an acceptable range. Apart from cost and 

power losses minimization studied in this chapter, it must be pointed out that there exists other 

services that BESS and EV could potentially provide and create greater values. It remains an 

open question and is to be addressed in future studies. In conclusion, the methods proposed and 

observations made shed light on future large scale load dispatch and EV/renewable integrations 

to distribution grids. 
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4 V2G Integration for Load Sharing 

This chapter studies a problem that has smaller time granularity. The studied problem is crucial 

in microgrid where loads are shared by generations. We use an EV-connected microgrid to 

demonstrate the problem and show the challenges and proposed solutions. 

4.1 Introduction 

V2G has received tremendous attention recently in power system stability by using V2G to 

supply load in power system. Wang et al. focused on peak shaving and valley filling with V2G. 

The authors proximate desired load curve by convex optimizations, taking into account practical 

constrains of available EVs and SoC of each EV [108]. Apart from peak shaving, Wu et al. 

showed frequency deviation and voltage drops caused by active and reactive power imbalance 

can be regulated by benefiting the relative fast response of V2G [109]. Han et al. estimated the 

available power capacity of V2G for frequency regulation with normal approximation. 

Aggregator has to acquire mean and covariance of all EVs with statistics data [110]. Yang et al. 

solved this problem by finding the optimal incentives using prior knowledge of statistical 

distribution of EVs’ preference [111].  

As discussed above, there exists literature discussing research work to enable V2G for load 

support from top level control and algorithms. However, all of the high level algorithms, 

including the ones that use stochastic modeling or convex optimizations, inevitably require 

centralized controls or global information about the EVs in the network. It is hard for aggregators 

to build realistic models to accommodate the highly distributed and randomized EV driving 

pattern. More importantly this easily gives rise to privacy concerns from the EV owners [112]. 
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Therefore, for V2G supporting the load, a decentralized approaches is more practical than 

centralized manners. 

This chapter proposes and studies an automatic load sharing approach for V2Gs to share the both 

active and reactive loads among EVs in a microgrid. The above mentioned V2G load support 

applications need the global information of the power network and EVs. This chapter accounts 

for the case when information of other EVs, such as voltage profile and power, in the same 

microgrid is not available or it is hard to access. Thus, it is necessary to have a localized 

distributed controller that reacts quickly and makes the global load sharing based merely on each 

EV’s information. The contribution of the chapter is three-fold: First of all, the load sharing is 

systematically studied for V2Gs. The proposed load sharing takes into account the fact that not 

only load profile is continuously changing in microgrids, but also the randomness of the 

connecting and disconnecting of EVs. Second, the proposed control scheme is analyzed and 

simulated in a microgrid for validation. It sheds light on how V2G for automatic load sharing can 

be done in large scale. It also analyzes the difficulty in controlling reactive power flow in the 

proposed control algorithm. Third, the proposed controller takes into account driver preference. 

Drivers are able to adjust maximum V2G power by setting an upper limit. 

The remainder of the chapter is organized as follows: Section 4.2 derives the mathematical 

model, and Section 4.3 presents the control strategies. To verify the performance of the control, 

simulation is carried out and results are analyzed in Section 4.4. Finally, conclusion is drawn and 

future work is discussed in Section 4.5. 
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4.2 Modeling Methodology 

In this section, the problem formulation of V2G automatic load sharing in microgrid is 

introduced. Then the distributed control algorithm is developed. It is followed by an analysis of 

system dynamics and active and reactive power sharing.  And finally, a load sharing mechanism 

taking into account driver preference is proposed. 

4.2.1 V2G Automatic Load Sharing without Control 

The study of automatic load sharing with V2G is carried out in a microgrid with limited 

communication between vehicles. V2G EVs have only local information and the voltage profiles 

of other nodes are not known. The target is to achieve load sharing among V2G EVs with limited 

knowledge of the microgrid. An analysis of load flow in a microgrid reveals many of the general 

principles useful in load sharing for more complicated cases. The studied system is shown in 

Figure 4-1. Three V2G EVs are connected to a constant load which has fixed active and reactive 

power consumption. The EV’s DC battery packs are converted to AC with a DC/AC inverter.  

According to [113], the interface impedance of EV 𝑧𝑖, 𝑖 = {1,2,3} is much larger than the line 

impedance 𝑧𝑖𝑗 , (𝑖, 𝑗) = {(1,2), (2,3), (3,4)} . Therefore, it is reasonable to neglect the line 

impedance. Each V2G EV is represented as a voltage source with an amplitude 𝑉𝑖, and phase 

angle θi while the load is modeled as a 𝑃 + 𝑗𝑄 constant PQ load. The amplitude and phase angle 

of a V2G EV can be independently adjusted. In this chapter we assume the V2G EVs response 

fast and there are no stator transients [114]. 
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Figure 4-1 Studied V2G automatic load sharing system 

Without any additional control, the load cannot be shared proportionally among V2G EVs. In 

this study, at first the load is -3-j1.6 pu, which is shared evenly among the three EVs. However in 

reality, the load is not constant. A change in load profile, for example the load is changed to -4-j2 

pu, the additional load will not be shared proportionally among three EVs if these EVs maintain 

the same voltage profile. Given the fact that each EV has its own maximum allowable V2G 

power, it is entirely possible that due to the additional load one of the EVs exceeds its maximum 

allowable V2G power and causing battery damage and safety hazard. Therefore, it needs a closed 

loop control algorithm to accommodate the load change as well as generation change in the 

network. 

4.2.2 V2G Automatic Load Sharing with Droop Controller 

A droop controller for V2G automatic sharing is presented for proportionally sharing the load 

within one microgrid. Several droop control algorithms for distributed generation are studied in 

[115] [116]. In this chapter, a conventional droop controller will be considered first and later a 

revised algorithm better suit to V2G applications will be presented.  The droop controller used in 

this chapter is presented as follows, for active power control: 
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 𝛿̇𝑖 = −𝑘𝑝𝑖(𝑃𝑖
𝑚 − 𝑃𝑖

0) (4.1) 

And the reactive power control  

 ∆𝑉𝑖 = −𝑘𝑞𝑖(𝑄𝑖
𝑚 − 𝑄𝑖

0) (4.2) 

for i = 1,2,3, where 𝛿𝑖  denotes the phase angle of ith V2G EV, ∆𝑉𝑖 is the voltage difference 

between the instant voltage and the initial voltage. Control parameters 𝑘𝑝𝑖 and 𝑘𝑞𝑖 are active and 

reactive power droop coefficients for the ith EV, respectively. 𝑃𝑖
0 and 𝑄𝑖

0 represent the reference 

active power and reactive power. 𝑃𝑖
𝑚 and 𝑄𝑖

𝑚 are the measured active and reactive power. The 

controller works like a droop, i.e., when the measured active power is larger than the reference 

value; it decreases its phase angle. 

The sensors for measuring the active and reactive power can be modelled as first order systems; 

the time-constant of the system models the sensing delay: 

 𝑃𝑖
𝑚(𝑠)

𝑃𝑖(𝑠)
= −

𝜔𝑓

𝑠 + 𝜔𝑓
 

(4.3) 

and  

 𝑄𝑖
𝑚(𝑠)

𝑄𝑖(𝑠)
= −

𝜔𝑓

𝑠 + 𝜔𝑓
 

(4.4) 

where 𝑃𝑖(𝑠) and Qi(s) represents the instant active and reactive power of ith V2G EV and ωf is 

the time constant. 

4.2.3 System Dynamics of the Microgrid 

The power flow of each bus shown in Figure 4-1 can be expressed as follows: 

 

𝑃𝑖 =∑𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos𝛿𝑖𝑗 + 𝐵𝑖𝑗 sin𝛿𝑖𝑗)

4

𝑗=1

 

(4.5) 
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𝑄𝑖 =∑𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin 𝛿𝑖𝑗 −𝐵𝑖𝑗 cos 𝛿𝑖𝑗)

4

𝑗=1

 

(4.6) 

for i=1,2,3,4, where 𝛿𝑖𝑗 = 𝛿𝑖 − 𝛿𝑗, and 𝐺𝑖𝑗 and 𝐵𝑖𝑗 can be extracted from admittance matrix. 

Following controller described in Eq.5.1 and Eq.5.2 and the sensor dynamics in Eq.5.3 and 

Eq.5.4, the dynamics of the system is described as follows: 

 𝛿𝑖̇ = −𝑘𝑝𝑖∆𝑃𝑖
𝑚 (4.7) 

 ∆𝑃𝑖
𝑚̇ = −𝜔𝑓(∆𝑃𝑖

𝑚 − ∆𝑃𝑖) (4.8) 

 ∆𝑄𝑖
𝑚̇ = −𝜔𝑓(∆𝑄𝑖

𝑚 − ∆𝑄𝑖) (4.9) 

i = 1,2,3, where 

 

∆𝑃𝑖 =∑∆𝑃𝑖𝛿𝑗
0 ∆𝛿𝑗

4

𝑗=1

 

(4.10) 

 

∆𝑄𝑖 =∑∆𝑄𝑖𝛿𝑗
0 ∆𝛿𝑗

4

𝑗=1

 

(4.11) 

and ∆𝑃𝑖
𝑚 = 𝑃𝑖

𝑚 − 𝑃𝑖
0 , ∆𝑄𝑖

𝑚 = 𝑄𝑖
𝑚 − 𝑄𝑖

0 , ∆𝑃𝑖𝛿𝑗
0  and ∆𝑄𝑖𝛿𝑗

0  can be obtained from Eq.5.5 and 

Eq.5.6 with partial differentials around equilibrium points: 

 
∆𝑃𝑖𝛿𝑗

0 =
𝜕𝑃𝑖
𝜕𝛿𝑗

|
𝑃𝑖
0

 
(4.12.a) 

 
∆𝑄𝑖𝛿𝑗

0 =
𝜕𝑄𝑖
𝜕𝛿𝑗

|
𝑄𝑖
0

 
(4.12.b) 

Expressions for Eq.5.12 can be obtained from Eq.5.5 and Eq.5.6. The dynamics of the system is 

linearized with Eq.5.12 and can be modeled with the above differential equations. 
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4.3 V2G Automatic Load Sharing 

With the physical model derived above, we are ready to present the V2G automatic sharing 

control strategy considering driver preference.  

4.3.1 Active and Reactive Power Sharing with V2G 

For active power, the system will reach a steady state, when the following equations hold: 

 𝛿1̇ = 𝛿2̇ = 𝛿3̇ (4.13) 

The system will falls into steady state when the changing rates of 𝛿𝑖 are the same. In steady state, 

𝑃𝑖
𝑚 = 𝑃𝑖. Therefore, the active power of the microgrid is shared proportionally as follows: 

 𝑘𝑝1(𝑃1 − 𝑃1
0) = 𝑘𝑝2(𝑃2 − 𝑃2

0) = 𝑘𝑝3(𝑃3 − 𝑃3
0) (4.14) 

On the other hand, reactive power sharing is a much complicated problem that requires further 

discussion. In the following analysis, it is assumed that the microgrid has a low R/X ration and 

we assume there is no sensor delay in Eq.5.4. Then Eq.5.6 can be rewrite as: 

 𝑄𝑖 = −𝑉𝑖𝑉4𝐵𝑖4 cos 𝛿𝑖4 − 𝑉𝑖
2𝐵𝑖𝑖 (4.15) 

for i=1,2,3, where 𝐵𝑖4 = −𝐵𝑖𝑖. Supposedly there is a change in node 4. For simplicity without 

losing generality, the relative angles δi4 stay exactly the same in active power steady state. Then 

Eq.5.15 can be reformulated as: 

 ∆𝑄𝑖 = 𝑘𝑞𝑖∆𝑄𝑖𝑉4𝐵𝑖4 cos 𝛿𝑖4 − 𝑉𝑖∆𝑉4𝐵𝑖4 cos 𝛿𝑖4 − 2𝑘𝑞𝑖∆𝑄𝑖𝑉𝑖𝐵𝑖4 (4.16) 

Following Eq.5.16, the reactive power is shared as follows 

 ∆𝑄𝑖
∆𝑄𝑗

=
𝑉𝑖𝑘𝑞𝑗 cos 𝛿𝑖4 (𝑉4𝐵𝑗4 cos 𝛿𝑗4 − 2𝑉𝑗)

𝑉𝑗𝑘𝑞𝑖 cos𝛿𝑗4 (𝑉4𝐵𝑖4 cos𝛿𝑖4 − 2𝑉𝑖)
 

(4.17) 

for i,j =1,2,3. It is clearly shown that the reactive power sharing is highly coupled. The 

proportion depends on a number of parameters besides the reactive power sharing coefficients. 
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4.3.2 V2G Automatic Load Sharing with Driver Preference 

From the previous derivation and analysis, it is shown though reactive power cannot be easily 

shared among V2G EVs, active power is shared proportionally. Inspired by this fact, this chapter 

proposes a droop based active power sharing with driver preference. The driver of each EV is 

able to choose an upper limit that prevents active power shared beyond the limit. It corresponds 

to different maximum V2G power allowed for different EV models in practice. The controller is 

described as follows: 

 
{

𝛿𝑖̇ = −𝑘𝑝𝑖(𝑃𝑖
𝑚 − 𝑃𝑖

0) 𝑃𝑖
𝑙 > 𝑃𝑖

𝑚

𝛿𝑖̇ = −𝑘𝑝𝑖(1 + 𝑃𝑖
𝑚 − 𝑃𝑖

𝑙)(𝑃𝑖
𝑚 − 𝑃𝑖

0) 𝑃𝑖
𝑙 ≤ 𝑃𝑖

𝑚
 

(4.17) 

where 𝑃𝑖
𝑙  is the maximum allowable active power sharing for ith EV. The active load sharing 

works as conventional droop controller when the measured power does not exceed the maximum 

allowable power.  However, when the measured power exceeds the limit, the local droop based 

controller dynamically adjusts its sharing coefficient based on the feedback of how much power 

it exceeds the limit. The more V2G power it exceeds its limit, the faster its active power sharing 

coefficient increases, consequently the lower active power the EV is sharing. It is noted that 

there is a possibility when the supply of the grid cannot meets its demand, which may result in 

oscillation of the microgrid. It will be discussed in the following section. 

4.4 Results and Analysis 

Based on the analysis of the previous section, this section simulates three practical scenarios of 

using V2G for automatic load sharing, including a case when an EV is connected to the network 

with constant load, a case when EVs are connected but load changes and a case when load stays 

the same while an EV is disconnected from the network. All other application scenarios of V2G 
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automatic load sharing in microgrid level is a combination of these three fundamental scenarios. 

Thus, it is important to understand these three fundamental application scenarios. 

4.4.1 V2G Load Sharing with Additional EV Be Connected 

In the first simulation, a fundamental V2G automatic load sharing scenario is studied. Following 

the topology described in Figure 4-1, originally EV1 and EV2 are connected to a constant PQ 

load and reach a steady state.  Then EV3 is connected to the original network while the load 

stays constant. The target of this simulation is to verify the controller as well as study its 

dynamic behavior and stability.  The system parameters of the microgrid are specified in Table 

4-1. The microgrid is modelled as a lossy network with a low R/X ration. 

Table 4-1 System Description of the microgrid 

Parameter Value 

kp [0.1 0.3 0.2] 

kq [0.001 0.003 0.002] 

𝑧1 (p.u.) 0.01+j0.05 

𝑧2 (p.u.) 0.01+j0.10 

𝑧3 (p.u.) 0.005+j0.15 

load (p.u.) -3-j1.6 

𝜔𝑓(rad/s) 10 

 

Figure 4-2 shows the automatic load sharing of the described scenario. EV3 is not connected to 

the microgrid at first with both active and reactive power at 0pu. The load is shared by EV1 and 

EV2. At t=1s, EV3 is connected to the original network and additional generation is introduced 

to the microgrid. Active and reactive power of the load is shared by EV3. Thus, P1 and P2 drops 

while P3 increase. It is noted that the reference active power used in this simulation for EV3 is 

2𝑝. 𝑢. As shown in the figure, 𝛥𝑃1 = 1.10𝑝. 𝑢., 𝛥𝑃2 = 0.37𝑝. 𝑢., 𝛥𝑃3 = 0.56𝑝. 𝑢. and 𝑘𝑝1𝛥𝑃1 =

 𝑘𝑝2𝛥𝑃2 = 𝑘𝑝3𝛥𝑃3 within acceptable errors. The errors result from two major reasons: first, the 
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sensing delay of sensors; and second, the microgrid studied in this simulation is not a non-lossy 

network. Some shared active power is compensated in the lossy network. 

 

Figure 4-2 Automatic load sharing with V2G when an EV is connected to the original microgrid 

On the other hand, reactive power sharing is much more complicated. It is observed that 𝛥𝑄1 =

0.13𝑝. 𝑢., 𝛥𝑄2 = 0.37𝑝. 𝑢., 𝛥𝑄3 = 0.02𝑝. 𝑢. As shown in Figure 4-2, reactive power sharing 

has oscillations at each EV. This is expected, as shown in Eq.5.16, 𝑐𝑜𝑠𝛿𝑖4 does not equal to a 

constant number before it reaches steady state.  As presented in Eq.5.17, the reactive power 

sharing is related to a number of factors besides the reactive sharing coefficients, not to mention 

Eq.5.17 is a simplification for non-lossy networks.  To the best of authors’ knowledge, compared 

to active power sharing, the problem of reactive power sharing has not yet reached a universal 

and decent solution [117]. More efforts are needed to understand the reactive power flow and 

resonance in power network. 

Figure 4-3 presents the phase angle and voltage amplitude change over time of the studied 

scenario. As indicated in the figure starting from 1𝑠, EV3 is connected to the network, which 
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introduces dynamic response to the system. The phase angle differences 𝛿𝑖 − 𝛿𝑗  (𝑖 ≠ 𝑗, 𝑖, 𝑗 =

1,2,3) stay the same after the changing rates 𝛿𝑖 (𝑖 = 1,2,3) are synchronized. It is shown in 

Figure 4-3 that after 3s, the three curves of phase angle are almost parallel. It matches Figure 4-2 

which shows a steady state of active power sharing has reached after 3s. It also verifies the 

stability analysis in Eq.5.13 and Eq.5.14. 

 

Figure 4-3 Phase angle (a) and voltage (b) amplitude change over time of automatic load 
sharing with V2G 

4.4.2 V2G Load Sharing with Load Change and Driver Preference 

Apart from studying how an EV connection introduces dynamics to the microgrid level V2G 

load sharing, it is essential to understand how power is shared when there are no EV connections 

and disconnections dynamics, but rather a load change in microgrid. A simulation is run with 

EV1, EV2 and EV3 connected to the microgrid supporting load through V2G. Load change both 

in active and reactive then happens and V2G EVs react to this change. This simulation shows 

how driver preference affects automatic load sharing in microgrid. 
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As for preference, it corresponds to the upper limit of V2G active power for each EV, i.e. Pi
l, 

mentioned in Eq.5.18. In this simulation, a case which one of the EVs has a lower allowable 

V2G power is simulated: 𝑃1
𝑙 = 1.5𝑝. 𝑢. , 𝑃2

𝑙 = 𝑃3
𝑙 = 2.5𝑝. 𝑢 . This is a reasonable assumption 

because in practice, different EV models allow different maximum V2G power. 

Figure 4-4 presents the simulation results of load change with driver preference in solid line and 

without driver preference with dash line for 3 V2G EVs. At first, EV1, EV2 and EV3 are sharing 

active and reactive power at steady state. At t=1s, the load changes from -3-j1.6p.u. to -5-j2p.u. 

The additional load will be shared among three V2G capable EVs. As shown in the figure, after 

the load increases, EV1’s active power sharing increases to 2p.u. which exceeds its maximum 

allowed V2G active power. The controller in Eq.5.18 detects the overflow, and then dynamically 

decreases EV1’s active power sharing according to the feedback of how much it exceeds the 

limit. As shown in Figure 4-4, the active power sharing of EV1 is constrained to 1.5p.u. versus if 

sharing 2.1p.u. if no driver preference is implemented. The observed delay time before 

𝑃1 decreases from 2p.u. is due to sensing delay. An overshoot is observed at t=1.3s, which is 

desired: in practice, power electronics can only sustain overcurrent for a short time. Thus, an 

under-damped system with overshoot decreases its time working in overcurrent operations. 
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Figure 4-4 Automatic load sharing with V2G when load changes 

It is noted that there is a possibility when the three EVs’ maximum allowed V2G active power 

combined cannot meet the demand of the load. In that case, the droop based driver preference 

controller can never reach a steady state. However, this is something not expected as automatic 

load sharing only make sense when generation meets the demand. Figure 4-4 also presents the 

reactive power sharing under driver preference. Though the driver preference controller is 

implemented for active power sharing, it slightly affects relative power sharing. This is expected, 

because Eq.5.17 shows reactive power sharing is related to 𝛿𝑖4 which is affected by active power 

sharing. 

4.4.3 V2G Load Sharing with EV Be Disconnected 

In the end, it is necessary to study how EV’s disconnection affects the power sharing of 

connected EVs while the load stays constant. Combined with the previous two simulations, it 

accounts for all fundamental V2G automatic load sharing dynamics in a microgrid. 
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During this simulation, the load is constant. As shown in Figure 4-5, at first, three EVs are 

sharing active and reactive power through V2G at steady state. At t=1s, EV3 is disconnected to 

the microgrid. It is observed that 𝛥𝑃1 = −0.79𝑝. 𝑢., 𝛥𝑃2 = −0.28𝑝. 𝑢., which correspond to the 

active power sharing control 𝑘𝑝1𝛥𝑃1 =  𝑘𝑝2𝛥𝑃2. It is also observed 𝛥𝑄1 = −0.17𝑝. 𝑢. , 𝛥𝑄2 =

−0.31𝑝. 𝑢. Similar to analysis in the previous section, the reactive power is not shared according 

to reactive power sharing coefficient. This simulation also shows that even for a simple case 

when only load is shared between two V2G EVs, reactive power sharing is hard to control. It 

needs more effort before researchers can proportionally share reactive power as its counterpart. 

 

Figure 4-5 Automatic load sharing with V2G when an EV is disconnected to the network 

4.5 Summary 

This chapter presents a droop based automatic load sharing with driver preference using V2G 

capable EVs in a microgrid. Unlike conventional centralized control methods, this chapter 

studies a scenario when communication is limited, and V2G EVs have to adjust active and 

reactive power sharing based on their own information. A microgrid with connected EVs is 
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modeled as a lossy network with low R/X ration without loss of generality. The power flow and 

load sharing among EVs are carefully analyzed with reasonable simplifications. A droop based 

controller taking into account driver preference is proposed in this chapter. It limits the V2G 

active power sharing to the driver’s preset maximum value, which models the maximum 

allowable V2G power in practice. Stability of the controller is studied to understand the 

robustness of the studied system. The analysis of the active and reactive power sharing in a 

microgrid level sheds light on large scale V2G load sharing in distribution networks. Three 

practical application scenarios of V2G load sharing are simulated, which include a case when an 

EV is connected to the microgrid with constant load, a case when load changes while EVs are 

connected and a case when an EV disconnects to the microgrid with constant load. All other 

application scenarios of V2G automatic load sharing in microgrid level is a combination of these 

three fundamental scenarios. Simulation results show that the proposed controller constrained the 

active power sharing to the EV driver’s preference. Simulation results also demonstrate the 

stability of the system and proportional active power sharing among V2G EVs. However, 

reactive power cannot be shared proportionally as active power, due to the fact that it is highly 

coupled. More efforts on understanding and decoupling the reactive power sharing are needed in 

the future. 
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5 System Uncertainty Predictions 

In the previous chapters, when control and optimizations were run for energy management, we 

assume the perfect knowledge of solar generation and loads in the system. However, in fact they 

are not known. This chapter studies the uncertainty prediction problem using a solar generation 

on UCLA campus. Study shows the predictions of solar with the combination of global-tier and 

local-tier can be quite accurate. The same prediction framework can be used to predict load in 

the system. 

5.1 Introduction 

The prediction of solar power generation can be generally classified into two categories, i.e., 

model based predictions and model-free predictions. In model based predictions, disturbance 

source and factors that impact in the solar generations are taken into consider. These factors are 

finally plugged into the famous I-V curve for prediction of the solar power [118]. Huang et al. 

studied the short term solar irradiance change based on cloud motion image processing [119]. 

While Capizzi et al. looked at environmental parameters such as humidity and temperature to 

estimate their correlation with solar generation [120]. These methods give precise predictions of 

solar generation relying on excessive prior knowledge of the environmental conditions. It costs 

additional expense in installing sensing and communication facilities, which is applicable to 

utility solar farms with aggregated solar generation at MW level. However, in distributed solar 

generations of smaller sizes, it is common that the solar panels are operating without temperature, 

irradiation and humidity sensors. 

The majority of solar power prediction relies on high computation power. Solar power 

generations are sampled and stored for researchers to extract the time-domain or frequency-
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domain characteristic. Based on the correlation of historical data, the predictions are made with 

methods widely used in time sequence analysis and machine learning. Huang et al. made 

prediction of the solar irradiance based on Auto-Regressive Moving Average (ARMA) model 

[121]. Given the order of ARMA cannot be too high, they are perfect for real-time predictions 

but for day ahead prediction, its performance is limited. Negash et al. studied the same problem 

with NARX model [122]. Deng et al. solve the problem with support vector machine [123]. The 

performance of this method is highly dependent on long term data collection. The longer the data 

collection period lasts, the more likely future generation may fall into historical patterns. As 

these methods do not consider using additional sensor for detecting environmental variation, the 

prediction accuracy can be limited if the weather changes abruptly or absence of long term data 

collection 

This chapter studies a typical scenario of roof-top solar power generation at residential homes 

and commercial buildings, which real-time temperature, irradiation and humidity information is 

not available. We propose a two-tier adaptive method for solar power generation prediction using 

historical power data along and verifies with 35kW capacity solar generations in UCLA 

microgrid. To study how different global-tier predictions may affect the overall performance of 

the two-tier prediction, global-tier day-ahead predictions are performed with two heuristic 

methods, i.e., weighted k-Nearest Neighbors (k-NN) and NN. In local-tier, adaptive real-time 

corrections based on residual analysis is applied for further improvement of the day-ahead 

prediction results. We present extensive analysis and comparisons on the performance of the 

proposed method. The contribution of the chapter is three-fold: first, compared with traditional 

day-ahead predictions, the proposed method achieves higher accuracy. Second, unlike most of 

real-time models, the proposed local-tier prediction is not heuristic. The analytical form local-tier 
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has a clear physical meaning. It can be combined with other day-ahead prediction methods to 

improve prediction accuracies. Finally, reasons for why NN-based two-tier adaptive prediction 

method in general outperforms weighted k-NN based counterpart are discussed, which sheds 

light on principles to design global-tier method. 

The remainder of this chapter is organized as follows: Section 5.2 articulates global day-ahead 

prediction methods. Both weighted k-NN and NN model are used for prediction. It is followed 

by presenting the local real-time residual analysis based correction method in Section 5.3. 

Section 5.4 discussed the experimental setup and results analysis. Finally, conclusions are drawn 

in Section 5.5. 

5.2 Global-Tier Day-Ahead Predictions 

The proposed adaptive prediction method has two tiers, i.e., global-tier day-ahead prediction and 

local-tier real-time correction. Assume that solar power data are sampled with a sampling 

interval of 𝑇𝑠 for 𝑁 days, we have a sequence of measured solar power data 𝑃: 

 𝑃 =  {𝑃1(0), 𝑃1(𝑇𝑠), … , 𝑃𝑖(𝑚𝑇𝑠), … , 𝑃𝑁(𝑀𝑇𝑠)} (5.1) 

where 𝑚 ∈ {0,1, … ,𝑀}, 𝑖 ∈  {1,2, … , 𝑁}, 𝑃𝑖(𝑚𝑇𝑠) denotes the measured power of ith day at 

time instant 𝑚𝑇𝑠 , and 𝑀 is maximum samples per day. 

The goal is to provide day-ahead prediction of solar power generation as precise as possible. 

Two popular heuristic methods are investigated: weighted k-NN and NN. Both models need to 

be trained before prediction. For both models we assume that collected data is arranged in 

chronical order and first 𝑟𝑁 days of data is used for training purpose with 𝑟 ∈ (0,1). The (1 −

 𝑟)𝑁 days of the remaining data is used for evaluation of the performance of the models. We use 
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𝑥𝑡 and 𝑦𝑡 as the training input and output sets for the models, and 𝑥𝑣 and 𝑦𝑣 as the verification 

input and verification output sets. Then we will have: 

 𝑥𝑡 , 𝑦𝑡 ∈ {𝑃1(0), 𝑃1(𝑇𝑠), … , 𝑃1(𝑀𝑇𝑠), 𝑃2(0),… , 𝑃𝑟𝑁(𝑀𝑇𝑠)} (5.2) 

We assume that 𝑃𝑔̃(𝑚𝑇𝑠) ∈ 𝑦𝑣, 𝑔 > 𝑟𝑁 where 𝑃𝑔̃(𝑚𝑇𝑠) is the predicted solar generation power in 

day 𝑔 at time 𝑚𝑇𝑠,then we have: 

 𝑥𝑣 ∈  {𝑃𝑖(𝑚𝑇𝑠)|0 < 𝑖 <  𝑔, 0 ≤  𝑚 ≤ 𝑀} (5.3) 

Also assume that 

 𝑥𝑡
𝑝
∈ 𝑥𝑡 , 𝑦𝑡

𝑝
∈ 𝑦𝑡 , 𝑥𝑣

𝑞
∈ 𝑥𝑣 , 𝑦𝑣

𝑞
∈ 𝑦𝑣  (5.4) 

where 𝑥𝑡
𝑝
 and 𝑥𝑣

𝑞
, 𝑦𝑡

𝑝
 and 𝑦𝑣

𝑞
 are respectively pth and qth elements in their own sets. The day-

ahead prediction method problem is to predict the solar generation of the next day based on the 

historical data, and is formulized as follows: 

 𝑦̃𝑡
𝑝
= 𝑓(𝑥𝑡

𝑝
), 𝑦̃𝑣

𝑞
= 𝑓(𝑥𝑣

𝑞
) (5.5) 

where 𝑓denotes the mapping from historical values to predicted values and 𝑦̃𝑡
𝑝

, 𝑦̃𝑣
𝑞

 are the 

prediction of 𝑦𝑡
𝑝
 and 𝑦𝑣

𝑞
 . The problem is subsequently formulated as how to map historical data 

to day-ahead predictions. 

To evaluation the performance of the prediction, we use Root Mean Squared Error (RMSE) 

defined as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑀
∑ (𝑃𝑔̃(𝑚𝑇𝑠) − 𝑃𝑔(𝑚𝑇𝑠))

2
𝑀

𝑚=0

 

(5.6) 

To demonstrate that the proposed local-tier adaptive prediction method works with general 

global-tier prediction methods and study how different global-tier predictions affect the 
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performance of two-tier prediction, weighted k-NN and NN are studied in global-tier day-ahead 

prediction. 

5.2.1 Weighted k-NN Model 

Weighted k-NN is an evolution of the machine learning algorithm k-NN [124]. The idea of 

weighted k-NN is to search for the k-nearest most similar patterns and combined them with 

higher weight to more similar ones for prediction. 

The weighted k-NN algorithm is shown in Algorithm 5.1, the data for training the weighted k-

NN model is following: 

 𝑥𝑡
𝑖 = {𝑃𝑖−𝐷(0),… , 𝑃𝑖−𝐷(𝑀𝑇𝑠), 𝑃𝑖−𝐷+1(0),… , 𝑃𝑖−1(𝑀𝑇𝑠)} (5.7.a) 

 𝑦𝑡
𝑖 = {𝑃𝑖(0), 𝑃𝑖(𝑇𝑠), … , 𝑃𝑖(𝑀𝑇𝑠)} (5.7.b) 

Note that the initiative behind the algorithm is it relates the specific day’s prediction with the 

observed 𝐷 previous days. 

Algorithm 5.1. Day-ahead Prediction with Weighted k-NN 

1: Data: 𝑥𝑡 , 𝑦𝑡 

2: Input: 𝑥𝑣 

3: Output: 𝑦̃𝒗 

4 for each 𝑥𝑣
𝑗
∈ 𝑥𝑣 do 

5: for each 𝑥𝑡
𝑖 ∈ 𝑥𝑡 do 

6: 𝑑𝑠𝑡(𝑖, 𝑗) = ||𝑥𝑣
𝑗
− 𝑥𝑡

𝑖||  

7: end 

8: 𝑖𝑑𝑥(𝑙) = 𝑖, where 𝑑𝑠𝑡(𝑖, 𝑗) is the 𝑙𝑡ℎ smallest element 

9: for each 𝑙 ∈ {1,2,… , 𝑘} do 
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10: 𝑤(𝑙) =
𝑑𝑠𝑡(𝑖𝑑𝑥(𝑘+1),𝑗)−𝑑𝑠𝑡(𝑖𝑑𝑥(𝑙),𝑗)

𝑑𝑠𝑡(𝑖𝑑𝑥(𝑘+1),𝑗)−𝑑𝑠𝑡(𝑖𝑑𝑥(1),𝑗)
  

11: end 

12: 𝑦̃𝑣
𝑗
=

1

∑𝑤(𝑙)
∑ 𝑤(𝑙)𝑦𝑡

𝑖𝑑𝑥(𝑙)𝑘
𝑙=1   

13: end 

 

It also needs to point out that the distance we are using in the weighted k-NN is Euclidian 

distance. It reveals the similarity between data sets. Furthermore, the weighted k-NN algorithm 

differs from traditional k-NN in a way that it gives more weight to more similar patterns. 

Typically, weighted k-NN gives better prediction results compared to k-NN. 

5.2.2 NN Model 

NN is an effective model for predictions and pattern recognitions. The essential idea behind the 

model is to use multi-layer NNs in capturing the high dimensional nonlinear mapping between 

inputs and outputs. The structure of the NN used in this prediction is shown in Figure 5-1. 

 

Figure 5-1 Topological structure of the NNs 
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As shown in Figure 5-1, the output power at time instance 𝑘𝑇𝑠  of 𝑑𝑡ℎ  day is related to the 

previous two days. The NN model uses three layers with a hidden layer in between the input and 

output layer. For hidden layer neuron number, there are a lot of discussions, one of a data driven 

methods is documented in [125]. We will discuss the hidden layer neuron number in Section 5.4. 

5.3 Local-Tier Real-Time Correction 

The global-tier day-ahead solar power prediction is made with the two methods discussed in the 

previous section. However, the accuracy must be limited as we are making day-ahead prediction 

without the knowledge of solar generation in the predicted day. With the real-time solar 

generation of the predicted day, prediction results can get substantial improvements. Assume at 

time instance 𝑚𝑇𝑠  of 𝑖𝑡ℎ  day, we have measured data 𝑃𝑖(𝑚𝑇𝑠) and day-ahead predicted data 

𝑃̃𝑖(𝑚𝑇𝑠). The residual 𝑅(𝑚) is defined as: 

 𝑅(𝑚)  =  𝑃̃𝑖  (𝑚𝑇𝑠)  − 𝑃𝑖(𝑚𝑇𝑠) (5.8) 

The index for ith day is in 𝑅(𝑚) omitted as we are making real-time correction. 

The underlining idea of local real-time correction is to extract the low frequency components in 

residual sequence. See [126] for a detailed discussion on residual analysis. We define the 

sequence of residual to be 

 𝑆𝑛
𝑚 = {𝑅(𝑚 −  𝑛 +  1), 𝑅(𝑚 −  𝑛 +  2),… , 𝑅(𝑚)} (5.9) 

where 𝑚 ≥  𝑛 −  1 and 𝑆𝑛
𝑚 is the residual sequence at time instant 𝑚𝑇𝑠 with length 𝑛. We use 

Discrete Fourier Series (DFS) to extract the low frequency component of the residual sequence. 

The DFS of the 𝑆𝑛
𝑚 is represented as: 

 

𝑆𝑛
𝑚(𝑘) =∑(𝑎𝑖 cos (𝑘

2𝜋𝑖

𝑇𝑠
) + 𝑏𝑖  sin (𝑘

2𝜋𝑖

𝑇𝑠
))

𝐿

𝑖=0

 

(5.10) 
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where 𝑘 =  [1,2, … , 𝑛]. 𝑆𝑛
𝑚(𝑘) is the 𝑘𝑡ℎ component of 𝑆𝑛

𝑚. 𝑎𝑖 and 𝑏𝑖 are the DFS coefficients 

representing the ith frequency components. The sampling frequency 𝑇𝑠 determines the bandwidth 

of signal and sampling point 𝑛 determines the resolution of discrete frequency components [127]. 

𝐿 represents the maximum allowable frequency component. We construct matrices as follows: 

 𝑆 = [𝑆𝑛
𝑚(1) 𝑆𝑛

𝑚(2)… 𝑆𝑛
𝑚(𝑛)]𝑇 (5.11) 

 𝐶 = [𝑎0 𝑏0 𝑎1…𝑏𝐿]
𝑇 (5.12) 

 

𝐹𝑢𝑣 =

{
 
 

 
 
cos

2𝜋(
𝑢
2 − 1)

𝑇𝑠
𝑣 𝑚𝑜𝑑(𝑢, 2) = 0

sin
2𝜋(

𝑢
2 − 1)

𝑇𝑠
𝑣 𝑚𝑜𝑑(𝑢, 2) = 1

 

(5.13) 

where 𝑢 = [1,2, … ,2𝐿], 𝑣 = [1,2, … , 𝑛]. Then the coefficient can be estimated with least-square 

methods as follows: 

 𝐶 = (𝐹𝑇𝐹)−1𝐹𝑇𝑆 (5.14) 

Given an estimation of coefficient matrix, we can compute 𝑆𝑛
𝑚(𝑘) according to Eq.5.10 and use 

it for correction of the future day-ahead predictions. Using the computed low frequency 

components in Eq.5.10, we dynamically update the day-ahead prediction as follows: 

 𝑃̃𝑖
𝑐(𝑙𝑇𝑠) = 𝑃̃𝑖(𝑙𝑇𝑠) + 𝑆𝑛

𝑚(𝑚𝑜𝑑(𝑙 − 𝑘, 𝑘) + 1) (5.15) 

where 𝑙 [𝑚 +  1,𝑚 +  2, … ,𝑀] and 𝑃̃𝑖
𝑐(𝑙𝑇𝑠) is the corrected prediction of ith day at time 𝑙𝑇𝑠 

and 𝑃̃𝑖(𝑙𝑇𝑠) is the global-tier estimation result. The local-tier correction takes into account the 

real-time trend and adaptively updates the day-ahead estimated value. In the following sections 

we will see how lower frequency components of residual sequence contribute to better solar 

power predictions. 



 

95 

 

5.4 Results and Analysis 

In this section, UCLA microgrid is used as the testbed for evaluation of the proposed algorithms. 

Solar generation data is collected from 35kW capacity solar panels. For further information 

about solar generation at UCLA, online access can be found [62]. 50 days of solar data was 

collected from Feburary for training and verification of the algorithm. 60% of the data is used for 

training purposes, 20% for model tuning, and the remaining 20% is used for testing and analysis. 

Data are collected with 𝑇𝑠 = 15min. 

5.4.1 Model Tuning 

For weighted k-NN day-ahead prediction, parameters 𝐷 and k need to be tuned and determined. 

The comparisons of 𝐷 and k are carried out with 20% of collected data Table 5-1 shows how the 

average RMSE varies over 𝐷. 𝐷 is tested varying from 1 to 8 with each RMSE representing the 

daily average RMSE of the verification data. Noted that test on the parameter k has also been 

carried out and tested from 2 to 4 (if 𝑘 = 1 then weighted k-NN decays to k-NN) with 𝑘 = 2 the 

smallest. Comparison results show that the weighted k-NN day-ahead prediction works best with 

𝑘 = 2 and 𝐷 = 5. It means that combining only the two closest neighbors, the solar power 

generation falls into very different patterns. And 𝐷 = 5 shows that when predict solar generation 

data with five previous day generates best results. 

Table 5-1Comparisons of RMSE over D 

D 1 2 3 4 

RMSE* 0.669 0.572 0.649 0.420 

D 5 6 7 8 

RMSE 0.405 1 0.939 0.865 

*RMSE4943.6 is normalized to 1 
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For NN based day-ahead prediction, the number of hidden layer neurons needs to be determined. 

Same 20% of collected data is used for determination of the hidden layer neuron number. 

However, as is well known that training results of NN is determined by the random initial value, 

and sometimes bad initial values may drag the NN into local optimum. Taking the randomness 

into account, we trained the NN for 10 times with Levenberg-Marquardt method and get the 

average value of RMSE. From the results shown in Table 5-2, we found out NN with 6 hidden 

layer neurons gives the best prediction results. When the hidden layer neurons are greater than 6, 

there is no significant improvement on accuracy resulting from the problem of over-fitting. 

Table 5-2 Comparisons of RMSE over hidden layer neurons 

N 3 4 5 

RMSE* 1 0.959 0.943 

N 6 7 8 

RMSE 0.907 0.940 0.956 

*RMSE 2499.5 is normalized to 1 

Though we have determined the optimal parameters for the day-ahead predictions, the optimal 

parameters are not acquired with analytical methods. It implies that the optimal parameters are 

perhaps data-dependent. Therefore, with longer period of data collection, we may finally reach to 

a set of stable data driven optimal parameters for day-ahead predictions. On local real-time 

correction side, the sequence length n is chosen to be 8, i.e., a two-hour observation. The length 

n determines the resolution in its frequency spectrum. Parameter 𝐿 is selected as 2, which only 

accept the first two frequency component of the residual sequence. Increasing 𝐿 means adding 

additional higher frequency variation into the correction signal. Noted that 𝐿 cannot be larger 

than 𝑛/2 otherwise the problem of least-square becomes overdetermined. 
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5.4.2 Results Analysis 

Figure 5-2 shows the overall prediction accuracy for all test days. The four curves indicate the 

RMSE of predicting using weighted k-NN along, NN along, two-tier prediction with weighted k-

NN as the global-tier prediction and two-tier prediction with NN as the global-tier prediction 

respectively. The averaged RMSE over test days of each curve is also plotted. It is observed from 

the results that weighted k-NN and NN based day-ahead prediction gives similar prediction 

accuracy. However, when combined with the local-tier correction, weighted k-NN and NN based 

two-tier predictions shows improvements of 28.02% and 40.36% respectively comparing with 

using day-ahead prediction along. 

 

Figure 5-2 RMSE comparison between different forecast algorithms 

Besides the overall performance of the prediction, it is desirable to have a closer look on how the 

prediction methods work in one particular test day. Figure 5-3 shows the comparison results of 

different prediction methods in a sunny day. The results are separated into two figures, each of 

which makes the comparison of using day-ahead prediction only with its corresponding two-tier 
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prediction. It is observed that the day-ahead prediction of no matter weighted k-NN or NN aligns 

with the real power measurement pretty well. However, two-tier prediction further approaches 

the real measurement with some low frequency noise. Noted that as the sampling frequency is 

low and we are filtering out the high frequency component within the bandwidth of half of the 

sampling frequency, some observable overshoots are in the two-tier prediction method. 

Theoretically, the prediction results can be further improved with by increasing the sampling 

frequency. Improvements of 30.34% and 51.96% are made respectively with the two-tier 

prediction. 

 

Figure 5-3 RMSE comparisons in a sunny day. (a) comparisons with the day-ahead forecast 
using weighted k-NN, (b) comparisons with day-ahead forecast using NN 

Apart from the observation of prediction results on a sunny day, it is also interesting to see how 

different prediction methods work on a cloudy day. Figure 5-4 plotted the comparison in a 

cloudy day. The day-ahead prediction of weighted k-NN and NN are poor as cloudy days 

introduces more random behaviors. However, with the proposed two-tier prediction method, the 

predicted value actually approaches the real measurements well. It picks up the low frequency 

residual of the real measurements and day-ahead predictions. Noted that it still exists undershoot 
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in the prediction partly resulted in the limited bandwidth. The overshoot part below zero is set to 

zero in the two-tier prediction methods, so there is a sharp drop in two-tier prediction curve when 

it is close to zero. Figure 5-4 shows two-tier predictions achieves 37.87% and 39.37% relative 

improvements and 2679.2 and 2788.7 absolute improvements on RMSE over the day-ahead 

prediction along. 

 

Figure 5-4 RMSE comparisons in a cloudy day. (a) comparisons with the day-ahead forecast 
using weighted k-NN, (b) comparisons with day-ahead forecast using NN 

It is observed that the local-tier prediction works with both global-tier prediction methods. Using 

global-tier day-ahead prediction along, the weighted k-NN and NN generates similar prediction 

accuracy. However, NN based two-tier prediction generally outperforms its weighted k-NN 

counterpart no matter for test-day average or specific sunny/cloudy day. The difference between 

the two may result from the nature of the two algorithms: NN nonlinearly approximates solar 

generation curve while weighted k-NN is a linear combination of historical data. Tough they 

generates same level of error in global-tier, NN introduces less high frequency error compared 

with weighted k-NN. Given that the local-tier correction filters out high frequency error and is 
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essentially a low frequency compensator, then it explains NN based two-tier prediction’s better 

performance. 

5.5 Summary 

In this chapter, the problem of solar power prediction with limited sensing resource is described 

and analyzed. We propose a two-tier adaptive prediction that combines the global-tier day-ahead 

predictions with local real-time residual analysis. Two heuristic day-ahead prediction methods, 

weighted k-NN and NN, are investigated in global-tier. In local-tier prediction, it adaptively 

updates the global-tier prediction with low frequency residual components. The proposed method 

is evaluated with solar generations in UCLA microgrid testbed. Experimental results demonstrate 

the effectiveness of the proposed two-tier adaptive solar prediction. Furthermore, case studies in 

typical sunny and cloudy days are carried out, which shows that the proposed method is 

particularly effective in days when solar generation is unstable. Finally, it is observed that though 

weighted k-NN and NN achieve similar accuracy in global-tier, NN based two-tier prediction 

generally outperforms its weighted k-NN based counterpart. Comparisons and analysis of the 

differences shed light on global-tier algorithm design: select algorithms that have smaller high 

frequency errors.  
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6 Implementations and Demonstrations 

This chapter introduces the implementation of two V2G prototypes. The platform is of 

significance importance as it distinguished from most of V2G research and demonstrates the 

concept of V2G using commercial a commercial EV.  

6.1 Introduction 

Researchers have long found the value of V2G in supporting the power grid. Examples of such 

applications include reactive power compensation, integration with renewable energy and VRs. 

Among these researchers, Kisacikoglu et al proposed bidirectional V2G charger architecture that 

utilizes the dc-link capacitor for reactive power compensation.  Simulation results showed that 

the proposed V2G charger has better performance in harmonics and less demand in dc-link 

capacitors [128]. Lam et al studied replacing traditional VR services with V2G. Simulation was 

carried out to estimate the appropriate V2G capacity for regulation services [129]. Soares et al 

simulated a 2000 V2G in IEEE 33 bus distribution network to study the resource scheduling with 

particle swarm optimization [130]. However, none of the above researchers built real V2G 

platform for test and verification. Taking into account some unexpected problems, for example 

long response time, limited output power and V2G dynamics, the proposed ideas may fail to 

work. Therefore, it is of primary importance to design and implement a V2G capable platform.  

Apart from V2G, Vehicle-to-Home (V2H) is another research area within the domain of 

bidirectional power flow that addresses the problem of AC load support. V2H describes a 

scenario that output electrical power of EV is not synchronized to the power grid, but instead it 

provides backup power for islanded AC load [131]. Tuttle et al simulated a household setup of 

photovoltaic (PV) generation and V2H, which is capable of creating an off-grid microgrid that 
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has sufficient energy support, safety disconnects and VR [132]. Turker et al proposed a strategy 

targeting at minimizing the energy cost for a household taking into account the V2H and driving 

pattern of the EV [133]. It would be more solid if the proposed high level control strategies be 

tested in a cost efficient V2H platform.  

Most of existing literatures on V2H and V2G verified proposed ideas with simulation, a few 

other literatures attempted to setup platforms which replace EVs with battery packs for 

verification.  Ota et al are among those a few researchers who implemented an off-board charger 

for V2G using battery packs [134]. The work is of great pioneer value but improvements could 

be made on remote smart control, V2H capability, DC load support, etc. Some of the pilot V2G 

projects carried out in the United States use highly customized EVs [135] [136].  But when 

implementing V2H/V2G, especially on large scale, commercialized EVs are the best candidates 

for such purpose. As most of the EVs on the road are commercialized models, using highly 

customized EVs or battery backs to verify V2H/V2G ideas cannot reveal the real difficulties sit 

on the road of future large scale V2H/V2G. 

This chapter is concerned with design and implementation of a hybrid V2H/V2G platform and a 

V2G/G2V bidirectional charging system, primarily for Demand Response (DR) in distribution 

network. The proposed platforms aim at utilizing commercialized EV model as testbeds. Widely 

accepted industrial standards, i.e. CHAdeMO and SunSpec are used to achieve remote smart 

control of V2G. The contribution of the chapter is three-fold: first, to the best of the author’s 

knowledge, we prototyped the first V2G systems that utilizes commercialized EV and standard 

communication protocol, which shed light on how V2G needs to be performed on a large scale. 

Second, the V2H/V2G platform has been designed to drive critical DC load, which increases the 

versatility of the testbed. Finally, the system is remotely controllable, allowing it to receive and 
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respond to remote control signals. As a result, the proposed system can be used to test out a lot of 

ideas mentioned in the above literatures. 

The remainder of this chapter is organized as follows: Section 6.2 articulate the system design, in 

which system architecture, CHAdeMO communication, and SunSpec communication are 

discussed. Section 6.3 presents the V2G/G2V bidirectional charging system design. It is 

followed by prototyping implementation in Section 6.4. The simulation and implementation 

results are presented and further analyzed in the same section. Finally, conclusions are drawn in 

Section 6.5. 

6.2 V2H/V2G System Architecture 

This section describes and analyzes the design of the proposed hybrid V2H/V2G system from 

both hardware and software aspects. It further introduced the communication protocols, i.e. 

CHAdeMO and SunSpec, used in the hybrid system. 

6.2.1 High Level Hardware Architecture 

The design of the V2H/V2G hardware system includes the following three objectives: 

• The hybrid system targets to use commercially available EV as testbed to perform 

V2H/V2G. 

• The designed system could support critical DC load such as DC motors. It not only 

increases the diversity of the system, but also takes into account the real application in household 

scenario where some appliances are on DC. 

• Remote control and can be performed and the system is able to respond to DR signals 

sent from an aggregator. 
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With these design considerations in mind, the hybrid system hardware architecture is shown in 

Figure 6-1. Mitsubishi MiEV is chosen as the EV testbed for this testbed, because it is a popular 

commercialized EV model which allows DC charging/discharging through CHAdeMO port, 

which will be explored in further detail later. The system is a combination of both power flow 

and signal flow. For power flow, the electrical energy stored inside the Mitsubishi MiEV is 

converted to AC through a DC/AC Converter. This is the V2H part of the system. This port can 

drive local islanded AC load. It is followed by an AC/DC converter in the second level. The 

output of this level is designed to drive critical DC load. Finally, the energy goes through a grid-

tie inverter and is synchronized to power grid, which is the V2G part of the hybrid system. 

 

Figure 6-1 Proposed V2H/V2G hybrid system hardware architecture 

Unlike power flow which is one-way, the signal flow of the system is all bidirectional. It is 

consists of two separated parts: information exchange between EV and the first level DC/AC 

inverter and control between control center and the third level DC/AC inverter. The 

corresponding communication protocols are CHAdeMO and SunSpec respectively. The details 

of the two mentioned protocols will be discussed in the following two sections. 
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6.2.2 High Level Software Architecture 

On software side, hierarchical structure is a preferred architecture. It provides more design 

freedom within each level. Figure 6-2 shows software architecture for the same system. The 

software has three-layer architecture with user/aggregator layer as the upper layer, power control 

layer as the lower layer and application layer sits in the middle. The upper two layers are located 

in the control center which may have a long physical distance from the V2H/V2G hardware field. 

The lower power control layer is to be implemented on the hardware. The hierarchical design 

will provide the upper layers with interfaces and each layer may be written in different 

programming languages or run under different environments. The benefits of this design also 

allow programmers to focus on each layer rather than handling the whole design flow. 

 

Figure 6-2 Proposed V2H/V2G hybrid system software architecture 

Three layers of the system handle entirely different functions. The highest user/aggregator layer 

receives commands from utility and decides if V2H/V2G needs to be activated. In case multiple 

EVs are available for V2H/V2G, this layer will decide which EV will perform V2H/V2G based 

on the information of SoC, user incentives, etc. After the system decides V2H/V2G needs to be 

performed, the user/aggregator layer will call the functions provided by application layer. Some 

important applications can be performed such as reactive power compensation, frequency 



 

106 

 

regulation and DR. According to the application the system chooses, it will need to adjust the 

output voltage profile of the last level inverter. Finally, functions in power controlled layer are 

called by its upper layer to change the control signals of each transistor in the circuit. On the 

other hand, when the system needs to read or monitor voltage or current profile of V2H/V2G, the 

process is still calling a function with needed return values from the highest layer. 

6.2.3 CHAdeMO Communication 

Communication between EVSE and EV has always been an obstacle in the implementation of 

V2H/V2G, which partly explains why little literature uses commercialized EV models for 

V2H/V2G. Before the start of discharging of battery packs on the EV, the EVSE has to 

communicate with EV’s Battery Management System (BMS) to inform the EV batteries to 

discharge. 

Several protocols are developed for communication between EV and EVSE, among which 

CHAdeMO is widely used for DC off-board fast charging [64]. The protocol standardized both 

hardware interfaces and data exchange format in fast charging. With the same data structure and 

hardware interface, CHAdeMO can be further developed and used in discharging as well. As 

CHAdeMO connector injects power directly to the battery packs on EV, the current bypasses the 

on-board single-directional inverter, making it possible of the bidirectional power flow. It is also 

the standard interface on the testbed setup in this chapter, i.e. Mitsubishi MiEV. 
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Figure 6-3 Layout of CHAdeMO port on Mitsubishi MiEV 

Figure 6-3 shows hardware layout of a CHAdeMO connector. It has nine active connections 

which can be categorized into three different groups.  The DC+ and DC- provide the DC link to 

charge and discharge the EV. CAN-H and CAN-L consist of communication channels for data 

exchange between EV and EVSE. On CAN bus, each data frame is transmitted every 100ms. 

The data frame starts with an ID indicating its functionality and followed by contents. The rest of 

the connections are for hand shaking and safety check before charging and discharging starts. 

6.2.4 SunSpec Communication 

Apart from the communication between EV and EVSE, control center and inverter need to 

exchange information for the purpose of remote monitor and control. The communication 

between the control center and inverter is implemented on an Ethernet to Modbus device with 

SunSpec standard.   

The SunSpec standard, initially designed for PV, provides an open protocol to allow PVs, 

inverters, meters and environmental measurement devices to communicate on a single standard 

[137]. The benefits of the SunSpec standard include reduced engineering time and the need for 
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customizations. It also results in faster deployment time and significant cost reductions, which 

makes SunSpec protocol optimal candidate for the proposed system. 

Figure 6-4 illustrates how the SunSpec standard addresses the standardization of interconnected 

devices. There are three components in the SunSpec system: SunSpec devices, Supervisory 

Control And Data Acquisition (SCADA) and control center respectively. As shown in the figure, 

the inverter, meter, and charge controller are the SunSpec compliant devices. They communicate 

with SCADA through multiple physical layer protocols including but not limited to Zigbee, 

RS485, TCP/IP and Modbus following SunSpec standard. The SCADA serves as monitor and 

data logger for all SunSpec compliant devices.  On the other side of the SCADA, the control 

center, which resides in the cloud, will perform the upper level algorithms mentioned in Figure 

6-2 based on the information acquired by SCADA. The control commands will be sent to 

SunSpec devices through SCADA following SunSpec protocol. 

 

Figure 6-4 SunSpec protocol architecture 
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6.3 V2G/G2V Bidirectional Charging System Architecture 

The previous section introduces the V2H/V2G platform. In this section, we are going to present 

the V2G/G2V bidirectional platform. The hardware settings of this V2H/V2G platform remains 

similar to  

6.3.1 High Level Hardware Architecture 

The physical setup is shown in Figure 6-5. It shows a conceptual design of the proposed V2G 

bidirectional charging system. It takes advantage of the Mitsubishi MiEV Power Box and utilizes 

the MiEV as a testbed. The proposed system synchronizes the power stored in the Mitsubishi 

MiEV with the grid and sends power back into the grid. 

 

Figure 6-5 Bidirectional charging architecture 

The Mitsubishi MiEV is equipped with two ports that supports J1772 and CHAdeMO separately. 

The CHAdeMO port is capable of feeding back power to the grid and therefore is used for V2G 

demonstration. The J-1772 port is used for G2V operation. The system has a web interface to 
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monitor and control the charging/discharging status of this platform. All measured data are 

posted to the web interface and stored in database for analysis. There are two reasons that 

another pair of AC/DC Converter and DC/AC inverter is added in the platform. First, the power 

fed back by Mitsubishi power box is not grid-tied and therefore if we directly connect it to the 

grid, there will be a system collapse. Also, the Mitsubishi Power Box use a proprietary standard 

and therefore control of current could not be realized. Without information of the car, we could 

not properly control the charging/discharging schedules and therefore another layer of 

controllable DC/AC inverter is included in the system. 

6.3.2 High Level Software Architecture 

A software is designed for the bidirectional charging system as shown in Figure 6-6. As shown 

in the figure, the system is composed of two parts and programmed in three languages/platforms. 

On server side, the control flow is managed by threads, it keeps waiting for user input while 

execute user command. The remote controllers are responsible for executing the commands from 

the server side. 

Additional attentions are given to ensure the communication robustness. It is very often that the 

wireless communication between sever and remote controller is so weak such that system will 

encounter communication failure. In this case, the system needs to identify the failure and reacts 

to the failure. In the case of failure, another command will be sent to remote controllers. 

The communication failures happen most frequently on G2V side. According to statistics, 5-30% 

of the commands sent to the box cannot be received. The system now has functions that detect 

the failure. However, if the test field is equipped with better communication infrastructures, the 

instances of communication failures can be significantly cut down. 
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Figure 6-6 V2G/G2V bidirectional charging software flow 

As shown in Figure 6-7, user can use automatic operation by entering estimated leave time and 

price input, and manual operation by just turning on/off the G2V and V2G. For V2G, user can 

change current to adjust V2G power. By pressing refresh bottom, user can get the up to date 

information of the charging status. The diagram in the bottom of the figure shows the most 

recent historical active power. On metering side, voltage, current, frequency, active power, 

apparent power, power factor and energy are measured on both V2G and G2V side. User can 

also submit show history command through the user interface. 
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Figure 6-7 V2G/G2V bidirectional charging user interface 

6.4 Implementation Results 

6.4.1 Hardware Setup 

Experimental V2H/V2G hybrid system is built based on the architecture proposed in Figure 6-1. 

Table 6-1 summarizes the key parameters for the proposed testbed. The maximum power output 

that can be achieved by the testbed is 1.3 kW. The overall efficiency and dynamic behavior will 

be discussed in the remainder of this section. 

Table 6-1 Specifications of testbed 

EV Model Mitsubishi MiEV 

Battery  330 Volt, 16 kWh 

Connector Protocol CHAdeMO 

Maximum Power 1.3 kW 
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Figure 6-8 demonstrates the setup of the proposed V2H/V2G hybrid system. A Mitsubishi MiEV 

is served as the testbed with a rated battery voltage of 330Vac and capacity of 16 kWh. As 

shown in the figure, it is connected with a CHAdeMO connector. The other end of the connector 

is connected to the DC/AC inverter. The output of the DC/AC inverter is not synchronized to the 

grid but is capable of supporting islanded AC load. The DC/AC inverter is cascaded with AC/DC 

converter with a rated output of 48Vdc. The output of the converter is able to support critical DC 

load. And finally, the power flow goes through a grid-tie inverter. A SunSpec compliant SCADA 

is connected with the inverter for remote control and monitor. The controller is further connected 

to the Ethernet and connects to the control center on the cloud. On grid side, for safety 

considerations, surge protectors are attached to the inverter before it is connected the grid. The 

rated overall power that can be extracted from the MiEV is no more than 1.5 kW, which is 

limited by the DC/AC inverter. As shown in the figure, the proposed platform is able to perform 

V2H on the output of DC/AC inverter while V2G on the grid-tie inverter. The system can also 

support critical DC load at the output of AC/DC converter.  

Figure 6-9 demonstrates the experiment setup of the proposed V2G/G2V bidirectional charging 

system. As shown in the figure, it is connected with a CHAdeMO connector. The other end of 

the connector is connected to the DC/AC inverter. The output of the DC/AC inverter is 

synchronized to the grid. On grid side, for safety considerations, surge protectors are attached to 

the inverter before it is connected the grid. The rated overall power that can be extracted from the 

MiEV is no more than 1.5 kW, which is limited by the DC/AC inverter. On the G2V end, J-1772 

plug is plugged into the AC charging port of the EV. The design follows the previously designed 

schematics provided in Figure 6-5. 
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Figure 6-8 Experimental setup of V2H/V2G hybrid system 

 

Figure 6-9 Experimental setup of V2G/G2V bidirectional charging system 

Two tests are run in order to validate the designed V2H/V2G and V2G/G2V system. The first 

test is a measurement on AC current sent to the grid under different operations. It shows the 

dynamics of the system or how quickly the system can respond to the remote control signal. 

RMS value is used to evaluate AC current. The Hall Effect sensor measures and averages out the 
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sampled measurements over a second. Due to the limitation of the AC current sensor and the 

circuit noise, the accuracy is within ±0.1A. The second test is on DC. The DC test measures the 

DC current on the output of the AC/DC converter when the system is driving a critical DC load 

while performing V2G.  The DC test intends to show the robustness of the designed system as 

the system is under different operations.  The measurement on DC test is sampled at 2.5GHz. It 

inevitably introduces environmental noise into the system. Therefore, a first order filter will be 

used to filter out the measurement noise. 

6.4.2 System Performance 

Figure 6-10 presents the transient state of AC current in RMS value when the system is under 

different operations. The measurement is performed at the output of grid-tie inverter. The grid-tie 

inverter is remotely monitored and controlled. The remote control current is initially set to 5A 

and later increased to 8A. As shown in the figure, under initial stable operation, the output 

current of the grid-tie inverter is at 4A though the intended V2G current is set to 5A. The 1A 

difference results from two facts: first of all, V2G can be only performed within local 

distribution network. The power sent back to the power grid cannot transmit back to the 

transmission network. The power cannot go through circuit panel, not to mention most of 

transformers prevent bidirectional power flow. Secondly, distribution network has impedance 

and resistance at comparable level.  The inverter changes it voltage amplitude and phase angle to 

inject current into the power grid. When there is not enough consumption in the local distribution 

grid, the voltage in the distribution grid stays at the nominal voltage. The V2G grid-tie inverter 

has to elevate its output voltage in order to inject the desired current, which reaches the upper 

limit of the output voltage for the V2G grid-tie inverter. Therefore, at the initial stable operation, 

there is a 1A difference between the desired value and measured value. 
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Figure 6-10 Transient state of AC load changes and V2G current increases 

After operating in stable stage, the authors increase the AC load in the local distribution grid by 

turning on heavy duty heater for more than 2 kW. The grid voltage drops because of insufficient 

power supply and consequently the difference between V2G grid-tie inverter and grid voltage 

become larger. As expected, the output current of the V2G grid-tie inverter reaches the desired 

value of the current. It operates in stable state for around 75s. The zigzag current is due to sensor 

inaccuracy as well as slight load change from the distribution network. As load changes, the 

closed-loop inverter always maintains it output at 5A. The error between desired and measured 

current is within a reasonable tolerance range. 

In the last part of this experiment, a DR signal to increase the current from 5A to 8A is sent to 

the inverter through SCADA. As shown in Figure 6-10, hybrid system responds to the command 

and increases its current to 8A. There is about 3s between the time a command is sent from the 

server and the time the current signal starts to ramp up. This delay primarily results from the 

communication. It is followed by a 15s ramp up which is caused by the characteristic of the 
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battery and power electronic devices. The delays are characterized so that the studied V2G 

application could be considered for bidding into primary control markets. 

After the experiment on AC transient state, experiment on DC side is also carried out to 

demonstrate the flexibility and versatility of the designed V2H/V2G system. At the output of 

AC/DC converter a critical DC load is connected to the system. In this chapter, a brush 

permanent magnetic DC motor with a rated voltage of 12-72Vdc is used as the critical load. The 

instant DC current is measured at the output of the DC/AC inverter where the nominal voltage is 

48Vdc.  

 

Figure 6-11 Transient state of DC load change with constant V2G power 

Figure 6-11 shows the DC transient state under different operations of the DC motor when V2G 

is performed for 5A on the grid-tie inverter side. The initial current is around 11A when motor is 

first in idle state. Then the motor is accelerated, the current reaches a maximum of 25A. After 

reaching its maximum speed, it falls into the constant speed state where the current measurement 

is around 22A. For the whole process, the V2G is working on 5A on grid-tie inverter side. And 

finally the motor falls back to idle stage where the 11A current reflects the constant V2G on grid 
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side. This experiment demonstrates the robustness and versatility of the designed system. It is 

able to support critical DC load while maintaining constant power of V2G.  

The above two experiments demonstrate the preciseness of the designed system. If V2H and 

V2G combined are performed in 1.3 kW range continuously, with a battery capacity of 16 kWh, 

i.e. the capacity of Mitsubishi MiEV battery, it can achieve continuous V2H/V2G for more than 

10 hours. However, it should be noted that the flexibility and versatility is at the expense of 

system level efficiency. According to the measurement, 1.3 kW power deliveries at V2H stage is 

only measured at 1.06 kW at the output of V2G stage, having an efficiency of 81.5%. 

6.5 Summary 

This chapter has proposed a V2H/V2G hybrid system and a V2G/G2V bidirectional charging 

system that can be remotely controlled and monitored. The commercialized EV model, 

Mitsubishi MiEV, is utilized as testbed. Widely used CHAdeMO protocol is chosen for 

communication between EV and EVSE. For communication between SCADA and inverter, 

SunSpec is implemented as the communication protocol. Experimental results show that the 

proposed systems support both islanded DC/AC load as well as the power grid. The two systems 

system can respond to remote DR signal and respond to it within 1.5 kW range. AC and DC test 

are performed to study the dynamics and robustness of the proposed systems. Experiments also 

indicate that V2G can only be performed in local distribution network and the performance of 

V2G depends heavily upon the load profile of the distribution network. 
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7 Conclusions and Future Work 

V2G integration to power grid extents the traditional role of EVs as pure loads to distributed 

generations. By strategically control the power back feed to the grid at the same time meeting the 

demands of EV owners, V2G enables a variety of grid applications thus could potentially support 

the power grids. On the other hand, large scale integration of V2G introduces new challenges, 

two fundamental questions awaits to be answered for better utilizing the energy stored in the EVs. 

Firstly, there is no contract signed in real-life that constraints the starting and leaving time of an 

EV parked at a charging station, nor the total energy that an EV acquires during a bidirectional 

charging section. The problem of modeling the stochastic nature of EV availabilities and energy 

demands becomes a crucial research topic in V2G integration. Secondly, as the EV penetration 

continuous to grow, the control problem scales up quickly, traditional centralized control method 

may not be effective anymore. The problem of scalability becomes another critical area of 

research in V2G integration. This dissertation proposes a stochastic modeling method to account 

for the stochastic nature of the EVs in Chapter 2. KDE is applied to model the uncertainties of 

EVs, and SAA is utilized to numerically approximate the studied problem. Numerical results 

using the real-life building, solar and EV data shows the merits of the proposed method 

compared to its traditional deterministic counterpart. Note that the same proposed method could 

model system with uncertainties not limited to EVs, but also renewable generations, load, and etc. 

In Chapter 3, we give an answer to the scalability problem, by developing an ADMM based 

DSM. The proposed DSM takes into account the network and nodal cost in distribution networks. 

It dispatches the centralized computational burden to distributed nodes. By communicating 

Lagrangian multipliers instead of power/energy information, the ADMM based DSM protects 

the end user privacies. A modified IEEE 13-bus system and real-life collected EV data is utilized 
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to demonstrate the correctness and properties of the proposed DSM. Numerical results shows 

that the ADMM based DSM can iteratively approximates the control solved in a centralized 

manner. And it can address large scale V2G integration problems which traditional centralized 

manner fails to handle. The proposed distributed method can be potentially applied in other 

applications in power grid as long as the problem is convex and continuous.  

Chapter 4 and 5 serve as complements to Chapter 2 and 3. In Chapter 4, an important problem is 

studied, in which the control time-step is much smaller than the previous two chapter and system 

dynamics becomes phenomenon. We show the dynamics of V2G load sharing in the context of a 

microgrid. A load sharing control strategy that takes into the EV drivers’ preferences is proposed 

and verified. The active power can be shared proportionally between the V2G EVs. The 

difficulty in reactive power control is also analyzed and discussed. Chapter 5 bridges an 

important gap between reality and problems studied in Chapter 2 and 3. In most of the energy 

management problems, load and generation are always assumed to be known, while in reality 

they needs to be predicted. This dissertation proposes a two-tier prediction method for predicting 

uncertainties in systems. In global-tier, the two machine learning methods are used, which is 

refined by the computational economic local-tier real-time corrections. The proposed prediction 

method is verified using a solar generation installed on UCLA campus. Numerical results shows 

that by combining day-ahead predictions with real-time measurement using the proposed two-

tier prediction method, the prediction can be larges cut off. It is therefore “safe” to make the 

assumptions in Chapter 2 and 3 that some the uncertainties in the system (such as loads) is 

known. The proposed perdition method can be applied for other types of uncertainty predictions 

in power grids.  
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Different than most of the existing literatures that studied the problem V2G integration to power 

grids, this dissertation presents the design and implementation of two V2G platforms, i.e. 

V2H/V2G hybrid system and V2G/G2V bidirectional charging system, utilizing a 

commercialized vehicle. We present the hardware design considerations and software 

architectures. Two tests are run to evaluate the performance of the prototype. 

In terms of future research, there is a lot to explore. One of the key related area is how to handle 

V2G uncertainty in a robust and effective manner? This dissertation addresses the system 

uncertainties without considering the worst-case scenario. However, in military or hospital 

islanded microgrids, worst cast scenarios become critically important. On the other hands, as the 

EV penetration continuous to grow, much more data is generated and stored. In this dissertation, 

EV owners’ behaviors are analyzed individually. Therefore, the other key related area of 

research is effective ways of learning the EV owners aggregated behavior, which will facilitate 

large scale V2G integration to power grids.   
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