
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
A Benchmark for Modeling Violation-of-Expectation in Physical Reasoning Across Event 
Categories

Permalink
https://escholarship.org/uc/item/37f0j4c9

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 45(45)

Authors
Dasgupta, Arijit
Duan, Jiafei
Lin, Yi
et al.

Publication Date
2023
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/37f0j4c9
https://escholarship.org/uc/item/37f0j4c9#author
https://escholarship.org
http://www.cdlib.org/


A Benchmark for Modeling Violation-of-Expectation in Physical Reasoning
Across Event Categories

Arijit Dasgupta
Massachusetts Institute of Technology

Jiafei Duan
University of Washington

Yi Lin
New York University

Su-Hua Wang
University of California Santa Cruz

Renée Baillargeon
University of Illinois Urbana-Champaign

Cheston Tan
A*STAR, Singapore

Abstract

Recent work in computer vision and cognitive reasoning
has given rise to an increasing adoption of the Violation-of-
Expectation (VoE) paradigm in synthetic datasets. Inspired by
infant psychology, researchers are now evaluating a model’s
ability to label scenes as either expected or surprising with
knowledge of only expected scenes. However, existing VoE-
based 3D datasets in physical reasoning provide mainly vision
data with little to no heuristics or inductive biases. Cognitive
models of physical reasoning reveal infants create high-level
abstract representations of objects and interactions. Capitaliz-
ing on this knowledge, we established a benchmark to study
physical reasoning by curating a novel large-scale synthetic
3D VoE dataset armed with ground-truth heuristic labels of
causally relevant features and rules. To validate our dataset in
five event categories of physical reasoning, we benchmarked
and analyzed human performance. We also proposed the Ob-
ject File Physical Reasoning Network (OFPR-Net) which ex-
ploits the dataset’s novel heuristics to outperform our baseline
and ablation models. The OFPR-Net is also flexible in learn-
ing an alternate physical reality, showcasing its ability to learn
universal causal relationships in physical reasoning to create
systems with better interpretability.
Keywords: Cognitive AI, Violation-of-Expectation, Com-
puter Vision

Introduction
Physical-reasoning systems built on the foundations of intu-
itive physics and psychology are pivotal to creating machines
that learn and think like humans (Lake, Ullman, Tenenbaum,
& Gershman, 2017; Adams et al., 2012). The ability to rea-
son about physical events like humans opens a crucial gate-
way to multiple real-world applications from robotic assis-
tants, autonomous vehicles, and safe AI tools. These systems
are guided by facets of core knowledge (Spelke & Kinzler,
2007). Infant psychologists theorized that human newborns
have an in-built physical-reasoning (Baillargeon, Li, Gertner,
& Wu, 2011; Hespos & Baillargeon, 2008) and object rep-
resentation (Kahneman, Treisman, & Gibbs, 1992; Gordon
& Irwin, 1996; Stavans, Lin, Wu, & Baillargeon, 2019) sys-
tem. This has inspired researchers to approach the creation
of physical-reasoning systems as a start-up software embed-
ded with core knowledge principles (Ullman & Tenenbaum,
2020).

Predicting the future of a physical interaction given a scene
prior has been the most common task in designing computa-
tional physical-reasoning systems. One such task is the tower
of falling objects, which has been as a test-bed for evaluat-
ing intuitive physics engines (Battaglia, Hamrick, & Tenen-

baum, 2013; Zhang, Wu, Zhang, Freeman, & Tenenbaum,
2016; Lerer, Gross, & Fergus, 2016). There have also been
recent advancements in creating benchmarked datasets and
models that combine multiple physical prediction tasks in a
3D environment (Duan, Yu, & Tan, 2021; Bear et al., 2021;
Duan, Yu, Poria, Wen, & Tan, 2022). Physical reasoning has
also been explored in Embodied AI (Duan, Yu, Tan, Zhu, &
Tan, 2022) and Visual Question Answering (VQA) (Wu et al.,
2017) with public datasets like CLEVRER (Yi et al., 2019),
CRAFT (Ates et al., n.d.) and TIWIQ (Wagner et al., 2018)
providing scenes of general and random interactions between
objects and multiple questions concerning the physical out-
come.

A parallel track complementary to future prediction is the
design of artificial agents that can measure the plausibility
of physical scenes. An agent capable of physical reason-
ing should not only be able to predict the future but also
use it to recognize if a scene is possible or impossible. The
Violation-of-Expectation (VoE) paradigm is an empirical di-
agnostic tool first implemented in infant psychology stud-
ies (Baillargeon, Spelke, & Wasserman, 1985; Baillargeon,
1987) to measure the surprise of infants when shown possi-
ble or impossible scenes. The studies found that infants as
young as 2.5 months could express surprise at a constructed
scene that violated the principle of object permanence. This
was akin to a magic show. VoE has since been used in an
array of infant psychology experiments on a range of event
categories in physical reasoning (Baillargeon, Graber, Devos,
& Black, 1990; Spelke, Kestenbaum, Simons, & Wein, 1995;
Dan, Omori, & Tomiyasu, 2000; Wang, Baillargeon, & Pater-
son, 2005; Kotovsky & Baillargeon, 1994).

The work in VoE has encouraged recent computational de-
velopment of models and datasets (Piloto et al., 2018; Riochet
et al., 2018; Smith et al., 2019; Shu et al., 2021; Gandhi, Sto-
jnic, Lake, & Dillon, 2021) that challenge artificial agents to
independently label possible and impossible scenes in phys-
ical events, goal preferences (Woodward, 1998) and more.
While these datasets mimic real-world VoE experiments, they
provide mainly vision data with little to no heuristics that
aid learning. We believe that computational benchmarks in
VoE require the embedding of more inductive biases from
the body of psychology work that inspired them. A com-
mon finding among developmental psychologists on physical
reasoning is that infants create abstract representations of ob-
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jects (Kahneman et al., 1992; Gordon & Irwin, 1996) from
which they extract spatial and identity features. These high-
level features are coupled with rules of reasoning that infants
develop over time via process known as explanation-based
learning (Baillargeon & DeJong, 2017) to form their expec-
tation on how a physical scene should play out (Lin, Stavans,
& Baillargeon, 2020). Existing VoE datasets in physical rea-
soning lack such metadata in their scenarios. These metadata
can be embedded into datasets to train models with greater
interpretability and effectiveness in physical-reasoning tasks.

Our contributions are three-fold. First, we present a new
benchmark for physical reasoning, consisting of the first
large-scale synthetic 3D VoE dataset with novel scene-wise
ground-truth metadata of abstract features and rules. This
dataset is inspired by findings in psychology literature and
validated on human trials. Second, we propose a novel
heuristic-based and oracle-based model framework to tackle
the tasks of our VoE dataset. The model framework outper-
formed baseline and ablation computer-vision models. Third,
we showed that our proposed model framework can learn an
alternate reality of physical reasoning by leveraging on the
feature and rule heuristics of the VoE dataset. This empha-
sises that the model is capable of learning universal causal
relations in physical reasoning.

Related Works
The intersection of computer vision and physical reasoning is
heavily grounded in the literature of VoE-based psychology.
For example, the barrier event is an event category illustrat-
ing (or violating) the constraint of solidity. In studies that
implemented the barrier event to infants (Baillargeon et al.,
1990; Spelke, Breinlinger, Macomber, & Jacobson, 1992),
psychologists placed a solid barrier with an object on one side
and the surprising event occurred when infants were made to
believe that the object could pass through the barrier. Like
the barrier event, there are other events like containment
(Hespos & Baillargeon, 2001; Wang et al., 2005; Mou & Luo,
2017), occlusion (Baillargeon & DeVos, 1991; Spelke et al.,
1995), collision (Kotovsky & Baillargeon, 1994, 1998) and
support (Baillargeon, Needham, & DeVos, 1992; Dan et al.,
2000; Hespos & Baillargeon, 2008). On the computational
side of VoE-based physical reasoning, we find that Piloto et
al. (Piloto et al., 2018), IntPhys (Riochet et al., 2018) and
ADEPT (Smith et al., 2019) to be the most relevant to our
work, as they all employ the VoE paradigm in their datasets
and evaluation. They all present 3D datasets of very similar
event categories of physical reasoning.

Piloto et al. (Piloto et al., 2018) presents a 3D VoE dataset
of 100,000 training videos and 10,000 pair probes of surpris-
ing and expected videos for evaluation. The dataset catego-
rized their videos into ‘object persistence’, ‘unchangeable-
ness’, ‘continuity’, ‘solidity’ and ‘containment’.

IntPhys (Riochet et al., 2018) is a 3D VoE dataset with
15,000 videos of possible events and 3,960 videos of possi-
ble and impossible events in the test and dev sets. Only three

Figure 1: Examples of the different event categories in the
VoE dataset with their expected and surprising outcomes.
Support: Type A1 (originally unbalanced), Type A2 (orig-
inally balanced). Occlusion: Type B1 (object shorter than
occluder), Type B2 (object taller than occluder). Contain-
ment: Type C1 (Object fully contained in container), Type
C2 (object protruding out of container). Collision: Type
D1 (same speed, different size), Type D2 (same speed, same
size), Type D3 (different speed, same size). Barrier: Type E1
(soft barrier), Type E2 (solid barrier), Type E3 (barrier with
opening).

events on ‘object permanence’, ‘shape constancy’ and ‘conti-
nuity’ were present.

ADEPT (Smith et al., 2019) is a model that uses extended
probabilistic simulation and particle filtering to predict ob-
ject expectation. They use ADEPT on a 3D VoE dataset of
1,000 training videos of random objects colliding and 1,512
test videos of surprising or control stimuli.

While these datasets provide vision data to replicate exper-
iments in VoE for physical reasoning, they do not explicitly
provide any heuristic-based metadata that models can exploit
for higher-level interpretable predictions of physical reason-
ing. Researchers in cognitive AI have been calling for the use
rule-based causal reasoning by adopting heuristics (Mottaghi,
Rastegari, Gupta, & Farhadi, 2016; Yi et al., 2019; Chang,
Ullman, Torralba, & Tenenbaum, 2016) in their approaches.
We believe that inductive biases and heuristics that guide
learning are important for computational physical reasoning.
This is especially the case in VoE tasks that only train on ex-
pected tasks and are made to predict which scenes are sur-
prising (Piloto et al., 2018; Riochet et al., 2018; Smith et al.,
2019). This motivated the construction of our VoE dataset.

VoE Dataset
Overview
Figure 1 comprehensively illustrates the composition of the
VoE dataset, which comprises synthetic video sub-datasets
in five event categories: support (A), occlusion (B), con-
tainment (C), collision (D) and barrier (E). Each one of
these event categories are split into further sub-categories
that showcase physical variations based on the differing scene
stimuli. They are described as follows.
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Support (Type A): An object is dropped above the edge of
a support. The object’s centre of mass is situated either over
the edge (Type A1) or within the edge (Type A2). Occlusion
(Type B): An inert object has initial momentum behind an oc-
cluder. The object can be shorter than the occluder’s middle
portion (Type B1) or taller (Type B2). Containment (Type
C): An inert object falls from a short height above a container,
with the interaction hidden behind an occluder. The object is
short enough to be fully contained inside the container (Type
C1) or tall enough to protude out of the container top (Type
C2). Collision (Type D): Two inert objects with initial mo-
mentum collide head-on. In the first case (Type D1), two ob-
jects have the same initial speed with different sizes. In two
other cases, both objects have similar size, with either the dif-
ferent (Type D2) or same (Type D3) initial speeds. Barrier
(Type E): An inert object has an initial momentum to pass
through a barrier, with their interaction hidden behind an oc-
cluder. To explore different barriers, the dataset comprises
events with either a soft barrier (Type E1), a solid barrier
(Type E2) or a barrier with opening (Type E3).

Features and Rules

Every event category ψ ∈ {A,B,C,D,E} comes with sets of
abstract features f ψ, prior rules rψ

prior & posterior rules rψ

post

where | f ψ| = 20, |rψ

prior| = 13 & |rψ

post | = 9. Prior rules are
physical conditions about the event which can be answered
with the features (e.g. height, width). These prior rules, cou-
pled with the features, suffice to answer posterior rules repre-
senting the outcome of the physical interaction. For instance,
the features of a containment event could refer to the heights
of the object and container. We present prior rules as a ques-
tion: “is the object taller than the container?” to which the
answer ‘yes’ (based on feature comparison) would aid in an-
swering a posterior rule as a question: “did the object pro-
trude out of the container?”.

Dataset Structure

Each event category ψ has 5,000 different configured trials,
amounting to 25,000 trials in the VoE dataset. Every trial
showcases an expected or surprising scene pair of the same
stimuli. The training-validation-test dataset split is 75%-
15%-10%. This sums to 50,000 videos. At 50 frames per
video, the VoE dataset offers 2,500,000 frames, each with a
size of 960× 540 pixels. The VoE dataset also provides the
depth map and instance segmented frames. Along with the
automatically generated ground-truth labels of f ψ, rψ

prior &
rψ

post in every video, the frame-wise world position and orien-
tation of all entities are provided. f ψ, rψ

prior & rψ

post are only
used for training as they are not relevant to our VoE evalua-
tion. Nonetheless, they are still provided for the test and vali-
dation sets should researchers choose to evaluate performance
in predicting f ψ, rψ

prior & rψ

post . All frames were developed in
the open-source 3D graphics software Blender (Community,
2018), using a Python API.
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Figure 2: The OFPR-Net architecture. (A) Input: the origi-
nal data inputs for the VoE task comprise 50 stacked frames.
(B) Object File (Perception) Stage: The pre-processed in-
put is fed into a 3D ResNet which then copies its output to
N feature branches. Each branch predicts either a scalar or
classification feature. (C) Physical Reasoning Stage: The
concatenated feature vector is fed into a multi-target decision
tree to predict prior rules. The prior rules are concatenated
with the feature vector and fed into another multi-target deci-
sion tree to predict the posterior rules. The predicted posterior
rules are compared with the ground truth to determine if the
input scene is surprising.

OFPR-Net
To understand how abstract features and rules can be used
in physical reasoning, we examined a two-system cogni-
tive model developed by infant psychologists (Stavans et al.,
2019). They theorized that early stage physical reasoning is
supported by an object-file system (Kahneman et al., 1992)
and a physical-reasoning system (Baillargeon et al., 2011)
that serve different functions. The object-file system builds
temporary spatio-temporal and identity representations of ob-
jects. When objects become involved in a causal interaction,
the physical-reasoning system becomes activated to predict
the outcome of the interaction by first categorizing the event
and then combining the temporary representations from the
object-file with its physical knowledge. If the observed out-
come does not match the expected outcome, it is signaled
as a surprising event. To draw parallels between our VoE
dataset and the object-file physical-reasoning system, the fea-
tures ( f ψ) are analogous to the temporary identity represen-
tations of objects recognized by the object-file system. The
prior and posterior rules (rψ

prior & rψ

post ) are analogous to the
symbolic structure of the physical-reasoning system that pro-
vides its physical knowledge. We believe a simplified version
of this two-system cognitive model can be computationally
represented.

To showcase how a model can exploit the novel heuris-
tics on our dataset, we introduce the Object File Physical
Reasoning Network (OFPR-Net): a novel oracle-based model
framework for modeling VoE in physical reasoning across
event categories. A detailed architecture of the OFPR-Net
is shown in Figure 2. The essence of this model is to predict
the expected outcome based on the stimuli of a scene, which
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A B

C

Figure 3: (A) Human trial setup with the familiarization stage
and testing stage. (B) Cohen’s κ for common scene ratings
(Z-scored) between all pairs of human participants. (C) Dis-
tributions of the mean human ratings per trial for expected
and surprising scenes.

can then be compared with the oracle of the actual outcome to
decide if the scene is surprising. As the focus is primarily on
showing how the features and rules can be exploited to form
expectations of the physical outcome and not on classifying
the video’s actual outcome, we found it suitable to use an ora-
cle in this final step. This would pin the model’s performance
to the aforementioned focus.

Experiments

Human Trials

To benchmark human performance on the VoE dataset and
validate its trials, we conducted an experiment testing adult
humans on their judgement of the surprising level of the
videos. 61 participants (50 accepted responses) were re-
cruited to answer an online questionnaire and were compen-
sated with $7.50 each. Every participant was familiarized
with 12 trials, where each trial showcased an expected and
surprising version of the same stimuli. All participants were
shown the same familiarization trials, and each trial repre-
sented a subcategory of every event category (A1 - E3) and
was selectively chosen from the training and validation sets.
We randomly sampled 10% of the combined VoE test set (250
trials ↔ 500 scenes), drawn evenly from each event category.
Figure 3 (A) illustrates the implementation. Like the VoE hu-
man trials in Smith et al. (2019) and Shu et al. (2021), the re-
sponses for each participant are standardized in the Z-normal
distribution. This accounts for the participants’ different us-
age of the slider, making their responses directly comparable.

Baseline Model

We establish a simple baseline by training a 3D ResNet
(Hara, Kataoka, & Satoh, 2018) pretrained on the Kinetics-
700 dataset (Carreira, Noland, Hillier, & Zisserman, 2019).
Four additional fully connected feed-forward layers are aug-
mented to the 3D ResNet. These layers fine tune the model to
output a scalar output with a sigmoid activation representing
the surprise score from 0 (expected) to 1 (surprising).

OFPR-Net
Implementation: The OFPR-Net is implemented using Py-
Torch (Paszke et al., 2019) and the 3D ResNet (MIT License)
implementation by Hara et al. (2018) is used with their pre-
trained weights (r3d34 K 200ep) on the Kinetics-700 dataset
(Carreira et al., 2019). All regression blocks are trained with
mean squared error loss and classifications blocks are trained
with categorical cross-entropy loss. The model architecture
assumes 24 features (engineered from 20 features to avoid
negative scalar features), 13 prior rules and 9 posterior rules,
matching what the VoE dataset offers. The multi-target de-
cision trees are fully trained with f ψ, rψ

prior & rψ

post of the
training set.

Ablation study : We conducted an ablation study to eval-
uate the inclusion of the Physical Reasoning stage of the
OFPR-Net. Specifically, we removed the feature branches
and multi-target decision trees. The Object File stage is mod-
ified by replacing the output of the 3D ResNet with 9 clas-
sification block branches that attempt to predict the posterior
rules (expected outcome). The model pipeline and implemen-
tation from the input to preprocessing and the 3D ResNet re-
main identical to OFPR-Net. Like the OFPR-Net, the pre-
dicted posterior rules are compared with the oracle of the
ground truth posterior rules to determine if a scene is surpris-
ing or expected. As the Physical Reasoning stage is removed
and the Object File stage remains as a modified version, we
call this the OF-Net.

Evaluation Metric
To evaluate model performance on the VoE dataset, we define
the Hit Rate, Hr (= ∑

J
i=1 H i

r), similar to (Riochet et al., 2018).
Unlike human responses, all models provide independent

surprise ratings. Therefore, we feed both expected and sur-
prising scenes with the same stimuli on the same model to
compute Hr. The formulation of Hr for human responses is
adjusted to account for the fact that participants either rate
the expected or surprising version of a trial, to ensure inde-
pendent ratings. We consider all 625 (252) combinations of
expected scene ratings and surprising scene ratings for each
trial. The Hr is computed by taking the average H i

r (i now
referring to the ith combination) of the 625 combinations and
then taking the mean of these average scores across all trials.

Experimental Setup
The aim of the experiment in the present study is to compare
the performance of models with humans in their ability to
recognize if physical interactions within each event category
is surprising or expected. To fairly compare model perfor-
mances with human performance, we evaluated all models
with the exact 10% test set used in the human trials. To keep
consistent with the testing size, all models were also trained
and validated using 10% of the training and validation sets.
The experiments are split into 5 tasks: A, B, C, D, E. From A
to E, every model is trained on data stipulated purely for each
corresponding event category. Following the methodology of
existing computational VoE datasets (Shu et al., 2021; Smith
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et al., 2019; Piloto et al., 2018; Riochet et al., 2018; Gandhi
et al., 2021), all models are only trained on expected videos.
Each model is run on all tasks with 30 epochs for 10 seeded
runs each on a single NVIDIA Tesla V100-32GB GPU.

Results and Analysis
Human Performance
To check for inter-rater reliability, we measured the Cohen’s
κ (Cohen, 1960) of our human responses. To classify each re-
sponse, we assume that a Z score < 0 indicates the expected
class and a Z score ≥ 0 indicates the surprising class. We be-
lieve that this is a fair assumption, as participants were shown
an equal number of surprising and expected scenes and the
Z-normal standardization accounts for the different usage of
the rating slider. Given that the Cohen’s κ is measured be-
tween a pair of raters, we filtered out all common videos rated
by each of the 1225 (=

(50
2

)
) pairs of participants and mea-

sured the κ based on them. Figure 3(B) shows the uni-variate
distribution of the κ scores for all participant-pairs with a
mean of 0.558. The distribution and the mean value reveal
that the participants have ‘moderate’ (close to ‘substantial‘)
agreement as defined by Landis and Koch (1977). Table 4
shows that the Hr of the human responses are high in all event
categories except for support (Type A). This is expected, as
the support task was especially challenging for humans to
tackle. As the view of the support was not perpendicular in
the scene view, it is difficult to judge the position of the ob-
ject mass center over the support edge precisely in the many
corner cases where the object’s mass center is very near to
the support edge. The slight dip in performance for collision
(Type D) can be explained in Mitko and Fischer (2021) and
Kotovsky and Baillargeon (1994), showing that humans often
mis-approximate the mass and the violation of object speed in
collisions respectively. The mean human rating spread based
on the original rating values are shown in Figure 3(C) to visu-
alize the rating spread of expected and surprising scenes. The
plot shows the participants can generally rate expected and
surprising scenes accurately, regardless of the stimuli. This
is further substantiated with an AUC-ROC (Fawcett, 2006)
score of 0.938 for the mean human ratings. The plot also
illustrates only 6% of expected videos were rated ≥ 50 on av-
erage, while 22.4% of surprising videos were rated < 50 on
average. This trend can be explained by considering the inter-
pretation of a ‘surprise rating’ to a human. Feedback gathered
from the human trials revealed some participants would often
set a low value for a scene they find surprising to distinguish
from other scenes they find more surprising. This reinforces
the idea that we cannot take 50 as a universal threshold and
further justifies our decision to standardize the ratings.

Model Performance
Table 4 reveals the average Hr performance of all models for
10 seeded runs for all event categories. The results show that
OFPR-Net surpasses the performances of all models across
all event categories. In particular, the OFPR-Net outper-

Hit Rate (Hr for normal reality)
Methods Support (A) Occlusion (B) Containment (C) Collision (D) Barrier (E) Average
Human 0.686 0.844 0.946 0.788 0.883 0.829
Random 0.502 0.502 0.502 0.502 0.502 0.502
Baseline 0.500 0.500 0.500 0.500 0.500 0.500
OF-Net (Ablation) 0.629 0.818 0.811 0.491 0.745 0.699
OFPR-Net (Ours) 0.676 0.907 0.855 0.532 0.768 0.748

Table 4: Hit Rate for Human Trials and all Models across all
event categories. Best performing model is bolded.

formed the OF-Net ablation model by an average of 7.01%.
This signals that the Physical Reasoning stage of the OFPR-
Net boosts the performance in VoE tasks, showing the impor-
tance of learning features and their associations with the out-
come via rules. However, the gap in performance is not very
significant. This is not surprising, as the OF-Net still uses
the posterior rule heuristics of our dataset to develop greater
understanding of the expected outcome. For the sake of com-
parison, a random model that randomly selected a surprise
rating in the uniform range E i,Si ∈ [0,1] is shown in Table 4
to illustrate that the baseline is as good as random, perform-
ing significantly worse than models exploiting the heuristics
in our dataset. By training on only expected scenes, the base-
line predicts all scenes as expected (i.e. E i = Si = 0), hence
receiving a consistent Hr of 0.5. This baseline illustrates why
a purely end-to-end model with no consideration of heuristics
or inductive biases will not work on such tasks. Comparing
across the event categories, the OFPR-Net performed poorly
in the collision (Type D) trials. Closer inspection of the N
feature branches losses of the Object File stage revealed that
the model was poor in predicting the object velocities, which
significantly altered the expected outcome in the Physical
Reasoning stage of the OFPR-Net. As features like velocities
require multiple frames to determine, it is more challenging
to predict accurately with the limited data used for training.
The human performance was higher than the OFPR-Net by an
average of 10.83% and performed better in all tasks except
occlusion (Type B). Given the high standards of adult hu-
man physical reasoning, we find this acceptable. Therefore,
surpassing human performance across all event categories re-
mains an open challenge. Interestingly, our model’s perfor-
mance dipped in the same tasks where human performance
dipped (Types A & D). An explanation for this is that intrin-
sic features like mass and centre-of-mass are difficult to infer
just with vision as the main input modality, like with humans
(Mitko & Fischer, 2021).

Novel Insights
The results confirm that the inherent structure of the OFPR-
Net model can tackle the one class classification problem of
the VoE dataset. By learning to predict features and their
structures and relations with the rules, the OFPR-Net has
added interpretability about the physical interaction. Not only
can the OFPR-Net predict the expected outcome, but it can
store knowledge the features and its basic causal relations
to the outcome of the interaction. This added interpretabil-
ity is crucial to creating safe AI applications. We believe
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Figure 4: Box plots of Hit Rate for OFPR-Net when trained
on only surprising videos (flipped reality) or only expected
videos (normal reality) with the outliers shown.

that another advantage of the feature and rule based architec-
ture of the OFPR-Net is that it is flexible to learn any reality
presented to it. To test our hypothesis, we ran the OFPR-
Net by only training on the surprising versions of all the
training trials. The model is made to believe that surprising
scenes depict reality and the expected videos violate them.
All other task-specific hyper-parameters and implementation
were identical to the experimental setup. In this flipped real-
ity scenario, the hit rate is redefined as 1−Hr as the model
should label expected scenes more surprising than surprising
scenes. While the OFPR-Net performs better in the normal
reality (except collision, Type D), the box plots in Figure 4
show that it still performs reasonably and better than chance
in the flipped reality. Hence, the OFPR-Net can treat sur-
prising videos as the new normal and is more likely to signal
expected videos as a violation in this new normal. The OFPR-
Net signals that it is capable of learning universal causal re-
lationships in physical reasoning. This is mainly possible be-
cause of the structural representation of f ψ, rψ

prior & rψ

post in
the Physical Reasoning stage. To build systems that are ca-
pable of physical reasoning, frameworks that allow universal
learning of causal relationships are crucial to “support expla-
nation and understanding, rather than merely solving pattern
recognition problems” (Lake et al., 2017).

Limitations and Future Work
When implementing the human trials, each participant only
rated either the expected or surprising version of a trial.
While this takes precedence from previous work in compu-
tational VoE (Shu et al., 2021; Smith et al., 2019), it meant
that the human trial results are not directly comparable to
the model output. Future computational VoE work with hu-
man trials may consider splitting the data collection into two
stages with a set time period between the stages. The first
stage can follow the method of our human trials, while the
second stage shows the remaining videos not shown in the
first stage. The time between the stages allows the partic-
ipants to forget any stimuli, making the surprising and ex-
pected ratings independent.

One constraint of the dataset is that it only considers a few
simple event categories and assumes each scene can only be

represented by one event. In reality, physical interactions
are much more complex, containing multiple event categories
and a wider range of features and rules guiding the interac-
tions. This scales up with more active objects in a rich envi-
ronment. The issue of scaling up rules and features is crucial,
for it may not be tenable to hand-craft them for varied and
complex scenarios. Instead, it may be possible for genera-
tive models to learn these features and rules as embeddings
in a latent space in relation to the processed perceptual in-
puts. Feature embeddings can then be sampled for use in
more complex scenarios. These complex interactions may
also include those of fluids, elastic objects and objects capa-
ble of breaking. Nevertheless, we believe that providing f ψ,
rψ

prior & rψ

post with scenes containing simple interactions is an
important step to unveiling the potential of these heuristics.
Future versions of the dataset will explore complex interac-
tions with a wider range of rules and features. Frameworks
built on our VoE dataset can also explore probabilistic and
generative approaches to make use of the heuristics. Finally,
researchers may consider developing a curriculum-learning
approach that attempts to closely replicate explanation-based
learning (Baillargeon & DeJong, 2017) on VoE tasks.

Conclusion

In this work, we showcase a novel approach to modeling VoE
across basic event categories of physical reasoning. By lever-
aging on findings in the psychology literature, we proposed
a novel synthetic 3D dataset augmented with ground-truth la-
bels of abstract features and rules in five event categories of
physical reasoning. The task of the dataset is to recognize
scenes as expected or surprising with the added challenge of
training on only expected scenes. Human trials were con-
ducted to benchmark human-level performance. The trials
revealed that there was general agreement among participant
responses. The participants were also proficient at rating sur-
prising videos with high surprise ratings and expected videos
with low surprise ratings. To showcase how using the abstract
rules and features can tackle the challenge of our dataset, we
proposed OFPR-Net, a novel oracle-based model framework
inspired by a two-system cognitive model (Stavans et al.,
2019) of an infant’s physical-reasoning system. The OFPR-
Net benchmark surpassed the performance of the baseline and
ablation models. However, average human-level performance
still exceeded that of the OFPR-Net. Therefore, it remains an
open challenge to beat the benchmarked human-level perfor-
mance on our dataset. Finally, we show that the structural
nature of the OFPR-Net guided by features and rules is flex-
ible in learning an alternative reality of physical reasoning.
This emphasises that a model that exploits heuristics of phys-
ical reasoning is capable of learning universal causal relations
that are necessary to create systems with better interpretabil-
ity. This validates the novelty of our dataset and encourages
future work in this paradigm to focus on such heuristics and
inductive biases for learning in physical reasoning.
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