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ISOBAR MODEL FIT TO THE REACTION N~~N~~: 

FITTING PROCEDURES AND FITS AT 1.7 BEV. 
~:~ 

Larry R. Miller 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, California 

November 23, 1971 

ABSTRACT 

The Isobar Model has been fit to 50,000 events of the reaction 

N~+N~~ in the energy region 1640 to 1800 Mev. Sixty combinations 

of partial waves and intermediate resonances were considered. The 

data were divided into six energy bins and independent fits were 

done to the model in each bin. The method of maximum likelihood 

was used, and at each energy no further binning or projecting was 

necessary. 

A solution has been found that represents the data well by several 

criteria and is continuous among the six energy bins. This solution 

is stable and perhaps unique but it is surprising; instead of finding 

resonance-like phase changes in the production amplitudes of waves 

that pass through resonance in the elastic channel, we find that 

virtually none of the production amplitudes change in phase (with 

respect to each other at least) over the whole energy region. 

~:~ 

This work was supported by a Hughes Aircraft Company Doctoral 
Fellowship and by the U.S. Atomic Energy Commission. 
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I. INTRODUCTION 

The Isobar Model was proposed by Lindenbaum and Sternheimer1 

in 1957 after it was found that the reaction N~_.N~~ favors final 

states in ~which the mass of a N~ subsystem is near 1236 Mev.,, the 

mass of the P33 N~ resonance. Their Isobar Model postulated that 

this resonance and a separate ~ were first formed and that the resonance 

then decayed into aN and the other~. This decay was assumed to take 

place outside the spatial region of the formation. 

Our Isobar Model is generalized to include several resonances. 

The amplitude for a-reaction such as N~~N~~ is written as the sum 

of several individual amplitudes, each of which is the product of 

two parts: the first part is an amplitude to form from a particular 

incoming partial wave an intermediate state consisting of a stable 

particle and a resonance, and the second part is the amplitude for 

the resonance to decay into the other two final particles. 

This paper describes a fit of the Isobar Model to the reaction 

N~~N~~ in the center-of-mass-energy region between 1640 and 1800 

MeV. Three final-state resonances are considered: theLl(l236) N~ 

(L=l,I=~J=t) resonance, the f(760)(L=l,I=l,J=l) ~~resonance, 

and the ~(8oo)(L=O,I=O,J=O) ~~enhancement. The decay amplitudes 

of these resonances are taken as fixed quantities. The production 

amplitudes for the intermediate state are the variable quantities 

to be determined by the fitting procedure (see Fig. 1 below). 

\ 
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Our data consist of 50,000 events of the types 

I 

The sources of the data are discussed in section IV. 

- - + p:n:..,.n:n: :n:· 
- - 0 p:n: ......,p:n: :n: 
+ + 0 p:n: _. p:n: :n: • 

The energy 

region 1640 to 1800 MeV is divided into six bins. Separate fits 

are done to events in each of these bins. With about 10,000 events 

in each energy bin we find reasonable fits. Continuity of solutions 

from one energy to the next is looked for after the fits for each 

bin are done. Fitting separately at each energy avoids the necessity 

of making ~ priori assumptions about the energy dependence of the 

fitted production amplitudes. The maximum~likelihood fitting method 

is used with no binning or projecting in the other kinematic 

variables. The event population of each bin is given in Fig. ~. 

The bins are labeled by their central energy values. 

,; 

.,· 
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II. THE ISOBAR MODEL 

The following quantum numbers, along with the quantum numbers of 

the five individual particles f?rm a complete set for the description 

of the reaction Nrr -Nrrrr. 

P Momentum of the incoming nucleon in the center-of -mass. 

I Total isospin. 

J Total spin. 

>--. z-component. of total spin. 

Q. Momentum of particle 3 in the center-of-mass. 

L' Orbital angular moment~ between particle 3 and pair 12. 

q Momentum of particle l in the center-of-mass of the 
1,2 system. 

~ Orbital angular momentum of the 1,2 system. 

j Total spin of the 1,2 system. If the nucleon is in the 
1,2 system, j is i combined with the nucleon spin. If 
the nucleon is particle 3, then j = Q. 

A. 
J 

s 

Helicity of the 1,2 system in the overall center-of-mass. 
This is the projection of j along the direction of the 
momentum of the 1,2 system in the overall center-of-mass. 

'Total spin of the final state'. S(S+ll is the eigenvalue 
of the operator ~ = '3' + ~. lj' measures the total spin of 
the l, 2 system, and ~ measures the spin of particle 3. 
J is S COmbined With 1 I c1t = 'S' + 1>•) • 

Helicity of the incoming nucleon. 

~B Helicity of the outgoing nucleon . 

These quantum numbers may be displayed symbolically: 
particle i 

2 

particle 3 
Fig. l. Quantum Numbers. \ 
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For a given J and 1', 1 may take on two values since the nucleon 

spin is combined with 1 to form J, e.g. SS~ and PS£ 

always allows just one of these two combinations. 

Parity conservation 

Let the variable~ index the set (I,J,L',j,i). Then the most 

general matrix element for the reaction N~~N~~ may be written: 

(l) 

The T are arbitrary complex numbers. (The quantum numbers of the waves 

we consider are given in Fig. 2. For these, cK takes on ten values, the 

length of the longest column.) 

The most important resonance bands covered by a N~~ Dalitz plot, 

e.g. Fig.~ , with total mass less than 1800 MeV are two different ~~ 

resonances, c:J ( j ==1==0) and f(j ==l==l) ·, and two different charge states 

of the ~(j==~,l==l) N~ resonance. 
2.. 

For a particular resonance in a particular diparticle, the Isobar 

Model restricts T~ (P,Q,q) to have the form 

A¥.. (P) B( q) Q
1

' if j and R._ (in 4<) are the 
quantum numbers of the 

T~ (_P,Q,q) resonance. 

0 otherwise 

AK(P) is an arbitrary complex function of the center-of-mass 

1' 
energy, and B(q) is the decay amplitude of the resonance, and Q is 

(2) 

the centrifUgal barrier penetration factor for the production amplitude. 
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Our total matrix element Mtotal . 
lS 

llilB 
the sum of four matrix elements, 

one for the cr' one for the p, and one for each of the two Nl'! diparticles 

that may form a A resonance; 

+ MA, + M A,. Mtotal = Mp + Mo- (3) 
ll~B 1-LKB 1-LKB 1-LKB 1-LKB 

Each of the four elements oi:i the right is given by Eqs. l and 2 

using the indicated resonance and decomposition. The index k will 

inclex over the three resonances and also over the set indexed by 4< (so 

for Table 1, k=l, •.. ,6o). An arbitrary complex fUnction ~(P) exists 

for each k. These are the production amplitudes to be determined by 

the fits. Within each of the six energy bins, the ~(P) are assumed 

constant. These constant ~ are the free parameters of the likelihood 

maximizing procedure. 

We have no polarization information on our events. Our predicted 

differential~ section (or likelihood) for an event is proportional 

to the sum over helicities of the absolute square of the total matrix 

element, i.!--. J"(prd.-)j J.,t :;. p ' 

pA_(w~) "pc(w~) = t It~ ~f'(w~) 12 
f-L=l k=l 

Several new symbols have been defined: 

c 

c 
~' w. l 

The charge channel. There are five charge channels for 
the reaction Nl'!~Nl'!~. We use data from three, but the 
model will predict differential cross sections for all 
five channels. 

c w stands for the kinematic variables of au event. w. 
indicates the kinematic variables of the i-th event 1 

in channel c. 

( 4) 

The values 1 thru 4 of ll correspond to the four combinations of 
helicities 1-LA= ± l/2, 1-LB = : l/2 . 

p · .The differential cross section predicted by the model. 
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The number of 'waves'. The number of combinations of 
discrete quantum numbers and resonances. 

A vector of dimension 2nk corresponding to the set of 
complex numbers ~: ~ = (Re~,ImA1 ,ReA2 ,ImA2 , · .. ) · 

Complex fUnctions of the kinematic variables of an event. 
These numbers are obtained by combining Eqs.l ,2, and 3, 
and equating the result to Eq. 4. These are constants 
supplied to the fitting procedure. 

A 'wave' (or value of k) is specified by giving the resonance 

and by the quantum numbers L', I, J, and L (Lis redundant but useful). 

The latter numbers will be displayed using the convention (L)(L')(2I)(2J), 

with Land L' given in spectroscopic notation, i. e. S, P, D, F, •... 

With the f resonance, the qua.."ltum number S is also required since in this 

case, it may take on two values. 28 will be subscripted to the 

symbol p. 

We consider sixty different possible 'waves' . The combinations 

of quantum numbers and resonances making up these waves are as follows. 

LL' (2J +l) 

l l I 
pp 1 
SD 1 
DS 3 

~ pp 3 
DD 3 I 
PF 3 1/2, 3/2 
FP 5 
DD 5 
FF 5 
FF 7 

10 waves x 
2 isospins= 
20 

+ 

PP 1 
SD 1 
DS 3 
PP 3 p3 
DD 3 I 
PF 3 1/2, 3/2 
FP 5 (S = 3/2) DD 5 
FF 5 
FF 7 

10 waves x 
2 isospins= 
20 

+ 

ss 1 
pp 1 
pp 3 ~ 
DD 3 I 
DD 5 1/2; 3/2 
FF 5 (S = 1/2) FF 7 

7 waves x 
2 isospins= 
14 

Fig. 2. The Sixty-Wave Set. 

+ 

PS 1 
SP 1 
DP 3 

() 

PD 3 I=l/2 
FD 5 
DF 5 

6 waves x 
1 isospin= 
6 

\""' 

.. 
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III. FITTING PROCEDURES 

/ 

A. The Maximum Likelihood Formulation 

In our experiment, we must 'normalize' the data to three different 

known channel cross sections. This is done as follows using the 

Poisson probability density • 

For a given set of production amplitudes ~' the likelihood 

that the Nc events fw~, w~, ••• ,w~c ( will occur in charge channel c 

is denoted by 

/(c = ). 

Defining the normalization of f" in Eq. 4 1 

' J 
phase-space 

c 4 
p (w) d w , 

(at fixed energy) 

the likelihood is the Poisson probability 

ReNe Nc 

rr 
i=l 

This equation is obtained from Eq. 36 of Ref. 2 by observing that 

if the number of events per microbarn for the experiment is{~, 

then the actual number of events in the experiment is N; i c6c. and 

the predicted number is 

( 5) 

(6) 

pc and Rc may be scaled simultaneously by changing the magnitudes of 

all ~ by the same scale factor. fc may be immediately maximized in 

this degree of freedom. We now show that the maximum occurs when Rc=~c. 
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We wrl.te the derivative of ~c with respect to the scale To see this, (/\._ 

factor s. s2 R~ Nc 
2Nc e-/.Ysf}= ()(. 

s 

?JI..c{sA) = Nc Rc Nc 
2 s ( sa.. - ~-) - O"e 

dS 

Setting this to zero gives 
2 

s 

Nc 

1f c 
PA 

i=l 

-t- (A). 

' so 

(w~). 
l 

= 2 Be 
s A 

for more than one channel is the product of 
The likelihood 

the likelihoods for each channel. 

n 
c 

The logarithm of~ is 
Nc 

log I ~ logtc ~ [- ReNe +~ = o-c. 
c c i=l 

+ terms constant in A. 

logpc(W~~+ 

In general, it is not possible to adjust the complex numbers 

~ so that Rc will equal ~c for all c. The likelihood increases, 

however, when this is nearly true. The likelihood favors cases 

where the cross section for each channel is predicted accurately. 

The numbers of events used in each channel need not be proportional 

to the cross section in the channel. 

. .. 
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For use in the fitting procedure, a f'unction ~is defined. 

~ is an 'average log likelihood': 

;}(A) 1 
- N log (m~x ""-(sA) ) • 

~ is obtained from an ;/._which has been pre-maximized with 

respect to the scale factor. ~ is then invarient to change in scale 

of the A. 

max This maximization is done by finding an s such that 

~ ~~i i (sA) -=- C>. 
"PS 

This smax is then substituted back to get 1 (A) = ~ log ;j__( s max A). 

Explicitly, p~A(w) 

1 
N 

-;) 1 

d.:5 N 

log'/.... (sA) 

log 'f_(sA) = 

l 
N 

2s 
N 

2 
pz(w) and Rc (sA) = s 

' 

~[ s2RcNc 

(je 

+ 

Equating this derivative to zero gives 

max 
s = N 

2_ 
c 

Substituting smax back, 

s 2Rc(A) so 
Nc 

s2J ' £;log pc (w~) +log 
+ l 

i=l 
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](A) 
l 
N 

In these equations, N:. L Nc 
c 
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+ terms constant in A. (7) 

Use of this 'average' log likelihood aids·in comparing likelihoods 

between runs with different numbers of events. 

B. Numerical Techniques 

l. Introduction 

The fitting proc~dure consists of finding sets A that correspond to 

maxima of "f(A). Starting values for A are chosen at random and varied 

in steps. The value of A at each step is an estimate of the position 

of the maximum. This estimate is based on information obtained at 

previous steps. At each step, the values of ~' its first derivatives, 

and possibly its second derivatives are calculated. If the first 

derivatives are not zero, the next estimate of the local maximum is 

based on this and previous information.. The next step will be at this 

new estimate. 

Maximizing procedures fall generally into three categories: those 

that evaluate only the function at each step, those that evaluate at 

each step the function and its first-derivative vector, and those 

that evaluate at each step the function, its first-derivative vector, 

and its second-derivative matrix. We have found that the most efficient 

technique is a combination of the latter two types. We use the Davidon3 

method, which is of the second type, and a modified form of the Newton-

... 
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Raphson method4, which is of the third type. 

In both the Davidon and Newton-Raphson methods, the change made 

in A to obtain the new estimate,~A, is the negative of the product _...., 

of a matrix called the variance matrix and the first-derivative 

vector at the last step: A~= -V J (d.~ j )-1 . The variance matrix 
L1 

approximates the curvature of the space. If a) the function J-W is 

quadratic in the components of A, and b) the variance matrix is truly -
the inverse of the second-derivative matrix, then the maximum will 

I 

be reached on the second step. 

2. The Davidon Method 

In the Davidon method, a diagonal guess is used as the variance' 

matrix for the first step. At each subsequent step, this matrix is 

adjusted by adding a rank-one matrix. A rank-one matrix is a matrix 

having just one eigenvector with non-zero eigenvalue. A typical 

example is ~he outer product of a vector )L with itself: M .• = v.v. 
lJ l J 

or equivalently M = v v~. The superscript T means 'transpose'. ""' ...... 

A matrix of the form of Miscalled a 'projector'. The Davidon 

variance matrix V. at step i is adjusted by adding a projector multiplied 
l 

by a number: 

T 
v. + "'(v.v::~.)(v.v~.). 

l 1\ l \) (. l J .. 

The number A is calculated from the current variance matrix V. 
l 

.and from the derivative vectors at the current and previous step, 

V d-\· and ~J .. ;_,. The adjustment to the variance matrix reflects the 

-
additional knowledge about the curvature of the space gained from 

knowing the new first-derivative vector. To insure that the process 

will tend to a maximum rather than to a minimum or saddle-point, A 
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is modified if necessary to keep the new variance matrix negative-

definite. If the 2~-dimensional f> space is quadratic, then after 2nk 

steps the variance matrix will exactly correspond to the curvature 

of the space. The next step will then be at the maximum. 

3. The Modified Newton-Raphson Method 

The Newton-Raphson method recalculates the variance matrix afresh 

at each step. The modified version which we use calculates a negative-

definite approximation to the local second-derivative matrix. This 

approximation is inverted to obtain the variance matrix. The approximatim 

is such that if the events are distributed nearly as the model predicts 

for a vector ~' then the approximate matrix is nearly equal to the 

local second-derivative matrix at A. The following paragraphs discuss -
the form of this matrix. 

The 2~-dimensional real first-derivative vector of :f (of Eq. 7) 

is 

Nc 

L L c c) 
V J(A) 

1 \7p (w. 
l 

N c i=l pc(w~) 

(8) 

The 2nk by 2nk real second-derivative matrix of 3 is 

.. 

L 
L 

c 

+ 

(L 
c 

c 

+ + + (9) 



. .•. 

.. 

-13-
r> 

If the function p-(w) closely approximates the distribution of 

events then RcX~cand the sum over events of any function may be 

to good approximation replaced by the phase-space integral of the 

function multiplied by pc(w). Thus 

c i=l 

~~ J T 

I: vvpc(w) 
c ) 4 

IV p (w d w = ,... 
pc(w) c phase-

space 

IvvJPc(w) 4 Nc.. 2: NCVVT c 
dw = N R • = N 

c phase-space c 

Then to the above two approximations, Ml and M
3 

cancel: Ml+M
3
=o. 

From Eq. 4 the first-derivative vector of pc(w) may be found. 

This leads to the interesting result 

and consequently 

These two relations may be used t'o show that A is a null vector ,....., 

(approximately) ofVV"f':/ 

(10) 
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Nc L·NcVRc 

L:l: Vpc(w~) 
2 crC . l 

+ 2 
c 

N 
i=l c( c ReNe c p wi I L: 

c 

(- 2 2 ) L:vif :::::: + :::::, 0. N 
LRCNC 

c 
crC c 

As before the assumption Rc~ ere is made.) 

\ATe can verify the above observation with the general observation 

that at a' local maximum, A, is an exact null vector of'VV~ because of 

the scale-invariance of jF . :T. 
Scale invariance implies that (V df)~=O, 

a-C 

since A, itself is the generator for s.cale changes of !:.:- Differentiating 

again, (VV TJ )}::;, + ('VT"J )I = 0, where I is the identity matrix. 

Thus (VVJ)A = -V5: = o. 
I'V 

~(~) is also invariant to a simultaneous change in phase of 

all ~. The vector ~ = (I~, -R~, ... ,ImA , -ReA ) , 
~ nk ,-

which generates phase changes in A is also a null vector of VV ~ 

at a local maximmn for the same reason. These singularities, which 

are due to redundant parameterization, are commonly eliminated in 

fitting problems similar to ours by permanently freezing one phase 

and one amplitude in the ~ and reducing the dimension of the second­

derivative matrix by two. 

We find, however, that the maximizing procedure takes less than 

one-third the number of steps to reach a maximum if all the ~ are 

permitted to vary. A proper variance matrix is obtained from our 

T 
nearly-singular second-derivative matrix ~Jas follows. 

. .. 
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The second-derivative matrix may be decomposed spectrally as 

"nk 
'VV l""l = \ An V1 v.T where vTv = ~ t• v L Jl.. ,.,,.-~ "'!"'t' tt 
. t--t 

x, 1 are the eigenvectors and 

:Ai are their eigenvalues. Writing the two near-zero eigenvalues 

separately, 

"t)"' 
VV'T"J-= L Ai:!tY{ +. + 

~ .... 3 

1.,12.~0. 
(11) 

T. 
The desired variance matrix is the inverse ofVV lrestricted to 

the space of vectors orthogonal to both A and (iA): - ,-......., ( 

v 

To obtain this V, a matrix M is first calculated: 

CiAJ.(iA) 
If:. I~ - M4. 

M4 (see Eq. 6) is the projector for the vector 

~ Nc. VRc. 
c: c::r c.. 

2. 1\1 c. ~c. 

(12) 

(13) 

T: c c c: <)C. 
Since A ~R = 2R , this vector has a large component along A. 

Subtraction of this projector changes the eigenvalue of A from nearly 

zero to the substantial negative number 

the projector (i.AkliAj 

1a1~ 
changes to 

-4 +A ~ -4. 
2.. 

Subtraction of 

-1 + ~~ ~ -1. The sum 

+ M
3

) is approximately zero and is subtracted to simplify the 

expression to be evaluated by the computer (and also as will be seen 

to ensure that the variance matrix is negative-definite). Eqs. 9, 11, 

and 13 give 

1 
N 

For this M, 

c i=l 
(iA) ( iA)T 
C"'""\....e ('""..:::= 

I~ Ia. (14) 
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This M is the negative of a sum of projectors so its eigenvalues must 

all be non-positive. If the model does not have special degeneracies 

and if there are more than 2~-2 events, as in our case, then M 

has no zero eigenvalues and is therefore negative-definite. 

M is inverted and 

obtain V: 

+ ~(Jd 
I~ I" 

-1 ' Since M A.~ 4-A -1 
and M ~~ YJD , ,k._ and ~are nearly null 

vectors of Vas desired (see Eq. 12). This Vis the variance matrix 

for the Newton-Raphson procedure. 

The inverse of M is computed using the 'square root method' for 

inverting symmetric positive-definite (or negative-definite) 

matrices5 . The computer time for inversion varies as the cube of 

~ and is 0.3 seconds for ~=30. 

4. The Error Matrix 

The error matrix is closely related to V 

maximum, the error matrix E =- ( S A ~A"~) 

of Eq. ll. 

1 is -- V 
N 

At a local 

(see Eq. 14 

of Ref. 2). The factor 
N 

arises from our use of J , the 'average' 

log likelihood. 

--/max 
In the neighborhood of a local maximum ~ , in the quadratic 

approximation, the hypersurface on which the likelihood is 
;:;max 

is a hyper-ellipse called the error ellipse. It is centered itethe 

. ,, 
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maximum. The maximum extent of the error ellipse along any coordinate 

axis i is the square root of the error-matrix element E ..• Fig. 3a 
ll 

gives a two-dimensional projection of the error ellipse on the~ - ~ 
~ ~'f ..,P ...,.. .. 

-plane about a local maximum A.. ~ A(A ). A. and A are any two of 
,.... -""']_ ""j 

the 2~ coordinates. ~is two-dimensional ellipse outlines the maximum 

extent of the error ellipse projected on the A. - A. -plane as all 
""1 ""J 

other components of A are varied. It is the set of points ( Y.. , 1) 
for which 

Fig. 3a. Two-Dimensional Projection of the Error Ellipse 

If, in particular, i and j are taken to correspond to the real 

and imaginary parts respectively of a single ~' then this two-dimensional 

ellipse encloses the probable region of the complex number ~ in the 

following sense. If A is constrained to occupy another (complex) 
k 

point within the two-dimensional ellipse and all other~' are varied 

to re-maximize the likelihood, then the likelihood will be lower than 

cfv 'MIJ-f by a factor between ~ and one. 

The results presented in the next section will include 'error bars' 
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which represent these two-dimensional real-imaginary error ellipses 

for each~· The error bars for an~ are the major and minor axes 

of an ellipse twice the size of the two;..dimensional error ellipse 

for ~· 

5 •. Our Combination of the Newton-Raphson and Davidon Methods 

Using thirty waves, the calculation of the second-derivative 

matrix takes roughly four times as long as the calculation of both 

the function ;t and its first-derivative vector. If a few hundred 

or more events are used, then the matrix inversion time is much 

smaller than either of these times. The NeWton-Raphson step therefore 

takes five times as long as the Davidon step (in this paper, a 

Newton-Raphson step indicates the set of ~ for which a new Newton-

Raphson variance matrix is calculated; the step following a Newton-

Raphson step is the first to make use of the new Newton-Raphson 

variance matrix). If the curvature changes much from point to point 

in the stepping procedure, then the variance matrix will always be 

somewhat out of date. We find it best to renew the accuracy of the 

variance matrix periodically by taking Newton-Raphson steps. The 

matrix obtained from a Newton-Raphson step is retained and updated 

by subsequent Davidon steps. The efficiency of steps (change in 

per step) is high for several steps after a Newton-Raphson step. 

Fig. 5 plots the increase in 1 per step against the step number for 

a typical fit. The dots indicate Davidon steps and the circles indicate 

Newton-Raphson steps (calculations). The first dot after the circle 

is the change in ~ for the first step that makes use of the new 

Newton-Raphson variance matrix! 

·All the fits we have done have the same general behavior as that in 

l 

... 
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Fig. 5. The step size diminishes rapidly from the first to about the 

tenth step. The step size for the next forty to eighty steps decreases 

very slowly. During these steps the likelihood increases roughly 

linearly and the A change radically. The ~ weave among each other 

singly or in small groups (such as DS13 and DD13 together) in a 

complicated pattern. By the end of these forty to eighty steps, the 

rough nature of the eventual solution is established. 

Finally forty to eighty additional steps are taken. The step 

size diminishes rapidly during these steps and the solution shifts 

by three or four standard deviations. The convergence during these 

last steps is quadratic: the change in 'J-at each step is roughly a 

constant multiplied by the square of the change at the previous step. 

The dashed line in Fig. 5 indicated quadratic behavior for a constant 

of fifty, i.e. where J..- 7. :;:;;: 50 (":t, - -:!'. J 2 . Quadratic convergence ":r,_, J(-1 .;Jc.- .. 

is expected for smooth functions such as ours when using a fitting 

method that explicitly calculates the variance matrix. 

We terminate the fitting when the magnitude of the change in A 

per step is less than lo-4 IAI for four successive steps. This occurred 
"' 

at step 122 for the fit of Fig. 5. The change of A per step is so ....., 

small at this point that Jc, could change by only a fraction of a 

standard deviation in hundreds of additional steps. In fact, the 

change in~ will go to lo-14 1Aiif the fit is allowed to continue for ,.., 
twenty or thirty more steps. 

Fig. 5 indicates that adopting even a mucn less strict criterion 

for stopping cannot save many steps. The ~ are roughly one standard 

deviation away from their final values at step 100 on this figure. 
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Fig. 6 plots the difference between the current value of 1 and 

its value at the maximum against execution time on the CDC 6600 

computer. Several combinations of Davidon and Newton-Raphson methods 

are shown. A combination of the two methods is superior to either 

method alone. 

Fig. 7 indicates the shape of the log-likelihood space in the 

neighborhood of a maximum as two of the 2~ variables are varied. 

We have made about thirty such two-dimensional slices with various 

pairs of variables and the results in all cases were qualitatively 

similar to this. 

C. ~Test Of The Fitting Procedure 

From preliminary fits to our data, we have found a set of thirty-

four waves that approximate the event distribution fairly well. This 

set of waves ·and amplitudes was used to test the maximum-likelihood 

fitting procedure. An artificial set of 6300 fake events was created 

by generating events with a frequency proportional to p1(w) x d(phase 

space). The fitting procedure was then applied to these events as 

follows. 

I 

Ten thousand random '·starting vectors' A were generated, and we 

then kept the five of these sets having the highest likelihood for the 

6300 fake events. A separate sixty-wave fit_was done to maximize the 

likelihood starting with each of these five sets. Four of the five 

fits reached the same maximum. This maximum was within errors of the 

generating set A (both for the 34 non-zero Akand also for the 26 zero 

waves). The fifth fit resulted in a totally different maximum. 

Finally, a 34-wave fit was done using those 34 waves with which 
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the artificial events were generated. The resulting amplitudes agreed 

well with the generating amplitudes. The value of(t at the maximum 

was 0.275. 

/ 
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IV. RESULTS 

A. The Data 

We use ~-p data from two experiments: an exposure at Berkeley 
~-· 

~n the 72-inch hydrogen bubble chamber, and one at Argonne National 

Laboratory in the 30-inch MURA hydrogen bubble chamber. The 

Berkeley exposure consists of 200,000 pictures taken at 9 momenta 

between 900 and 1200 Mev./c. This data was taken for an earlier 

experiment and is described in Ref. 6 . 

The Argonne exposure was made in 1967 and consists of 500,000 

pictures taken at 26 momenta between 550 Mev./c and 1600 Mev./c. 

Ref. 7 describes this data. 

The p~+ data comes from Saclay where film from several laboratories 

was analyzed. This data includes 10,000 events in the 1600 to 1800 

Mev. region. The data is described in Ref. 8. 

B. The Solution 

At each of the six energies, fits were first done using the 

full set of sixty combinations of waves and isobars. At each 

energy the following procedure was carried out. First, 10,000 

vectors A were generated at random. T9e likelihood for each was 

calculated with a subset of 6 00 events. The twelve sets A having 

the greatest likelihood were kept for use as starting vectors for 

the likelihood-maximizing procedure. The twelve initial vectors 

converged to typically four solutions (local maxima in likelihood.) 

These local maxima clustered into typically two groups; within a 

group the maxima were very near each other, but between groups 
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they were quite distinct. The statistical significance of the 

difference in the yalues of ~ for two solutions, (f
1 

and Jl2 , may 

be estimated by comparing this difference with the standard deviation 

of the difference (t1 - ~' as defined by 
Nc 

C(~l- ~2 ) _ 1 \ \ ( c( c c c 2 0 Vl 0~ N ~ ~ log pl wi) - log p2(wi) -X ) 
c i=l 

where X 1 
- N 

c i=l 

This b((f1 -Jr2 ) is the standard deviation of the difference 

(15) 

J
1

- J'
2 

for different sets of events generated from the same distribution as 

ours, i.e. events from other experiments equivalent to ours. If 

1
1
-1'

2 
>> 2)( J

1
- '3;) then solution one may be assumed to have a 

statistically higher likelihood. (For this reasoning to be strictly 

true, the uncertainty in the amount that .J" changes when the solution 

is refitted to a different set of events must be much smaller than 

2) ( .1
1

- J 2). Since N ~ is a generalized chi square, it changes 

by the amount ~ ;: ~. Thus b ( J 
1

- :f 2) must be much greater than 

-Vn;: 
N 

This is true in our case where':- = 0.001 and ~(11- 1;)~0.01). 
The likelihoods for our solutions were usually all statistically 

equivalent by this 7j(.1
1
-r

2
) test. 

The next step was to remove waves from each solution that were 
( 

not statistically significant. The waves in each solution having 

magnitudes no larger than their errors (calculated from the error 

matrix) were removed first. The maximizations were done again with 

the reduced set of waves. The process was repeated until no waves 

were statistically unimportant. This method of eliminating unimportant 
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waves runs into trouble if there are large correlations among the waves. 

To guard against this, the reduction of a set of waves was only considered. 

valid if the function N j- :;: log -/._ did not drop by much more than one 

for each wave removed. Judging from our error matrix, our largest 

correlations are roughly thirty percent and most waves have less than 

fifteen percent correlation with all other waves. 

The effect on the wave-removing procedure of correlations among 

the waves may be visualized with the aid of error ellipses. The 

dependence of the likelihood on the magnitude of the i-th complex component 

of A, IAil, and the magnitude of the j-th complex component, /Aj\, 

is indicated by the two-dimensional error ellipses in Fig. 3b. The 

centers of the ellipses correspond to a local maximum. 

a) Uncorrelated b) Positive Correlation c)Negative Correlation 

Fig. 3b. The Effect of Correlations ~the Drop of Likelihood 

The two waves in a) are uncorrelated. \Ai\ and !Aj j each differ 

from zero by their errors, 

/._ drops by ..!_ and when A. re J 

~and E. When A. is set 
ll ~~jj l 

is then removed,~ again drops 

to ze:ro, 
I ...../> 1'>\o....,.. 

by~to ~ 
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The waves in b) are positively correlated. Although each is 

one standard deviation from zero as in a), c/!... only drops by just over 

~ when they are both removed. 

In c) the waves are negatively correlated. Here the likelihood ~ 
I 

drops by e'l.... 

and J"E::. 
JJ 

' more than would be expected from looking only at ~-. ~~il 

These considerations indicate that in general there may be several 

different subsets of the sixty-wave set that satisfy the criterion that 
~u..'ose-t -jJ bo 

log~ is not lower than log~ by more than the number of waves 

removed. The intersection of these subsets will not necessarily 

satisfy the same criterion. 

At each energy, our reduction process usually resulted in several 

sets of waves, each set containing about twenty-five waves. 

Chains of solutions that were reasonably continuous from one 

energy to the next were then looked for. The longest chains found 

spanned three energies. As an attempt to produce a longer chain, 

a subset of 24 waves was put together that included waves which 
9 

appeared to be important to solutions in most of the six energy bins. 

All solutions at each of the six energies were restricted to 

(or expanded to) this 24-wave set and the likelihoods re-maximized. 

Just one chain was found that connected more than two energies. This 

one chain connects all six energies and does so in a remarkably continuous 

manner. The remainder of this paper presents this solution, called the 

24-wave solution. 



-26-

C. Kinematic Distributions 

Four variables in addition to energy are required to specify 

completely the kinematics of an event. We use two diparticle masses 

and two angles. The diparticle masses are 

M Mass of the ~~ diparticle 
~~ 

\For~- incident: 
L For ~ + incident: 

mass of N~+ diparticle 
mass of N~ diparticle. 

The angles are 8 and <}, the polar coordinates of the incoming 

pion in the special coordinate system given in Fig. 4. The X-Z plane 

contains the three outgoing particle momenta; the outgoing nucleon 

momentum is in the Z-direction; the Y-axis is in the direction of 

-x~ ~ ~ Nf ~lf where Nf is the final nucleon momentum and ~lf is the momentum 

of the pion with the same charge as the incident pion. The phase-space 

distribution of cos e is flat from -1 to l and the phase-space distribution 

of cr is flat from 0 to 2~. The phase-space distributions of ~ and 
~~ 

~~ are flat within the physically allowed region. Parity conservation 

introduces a restriction, namely the distribution of events is symmetric 

about ~ = ~. 

In this section, kinematic distributions are presented for the 

data and the 2.1+-wave solution in the 1730 MeV energy bin. This bin 

is typical; the results in the other five energy bins are similar. 

Figs 9a, 9b, and 9c plot the events in the 1730 MeV energy bin 

in each of the three charge channels (given for example in Fig. 1). 

Inside the large square are Dalitz scatter plots. The events in each 

Dali tz plot come from a different bin in cP and cos 9 . The bin in 

~ and cos~ is indicated by the position of the small Dalitz plot 

in the large square. The large square is marked in (p and cos G ; it 

.. 

;, 
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Outgoing Nucleon 

Nf 
Incoming Pion 

OVERALL CENTER­

OF-MASS SYSTEM 

1t t. 

.,. 
-·-----

' \Z. 
---x---'-41l~ 

I y~'-, 
I 
I 

I Outgoing Pion 
I 

I 
' I 

I 

Outgoing Pion -111~ 
1l1f has the same charge as the incoming pion,fr~. 

if,'.f ,~, and~ the final particle momenta, all 
lie in the X-7. plane . ..,...... 
Nf is along the 'Z -axis. 

TheY -axis is in the .direction of N; X ~of . 

~f' 

Fig. 4. Definition of the Kinematic Variables and the Coordinate System 
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is divided into 16 bins and the lower left corner of each bin coincides 

with the lower left corner of its Dalitz plot. The Dalitz plots on the 

top row contain the events of all four Dalitz plots directly below and 

those in the right column contain the events of all plots to the left. 

The Dalitz plot at the top right contains all the events. 

The kinematic distributions predicted by the 24-wave solution are 

compared with the data in Figs. lOa, lOb, and lOc. The scatter plots 

of the previous figures are binned into 4x4= sixteen bins. The dashed 

tombstones indicate the data in each bin. The population is proportional 

to the height (or width) of the tombstone. (The dashed histograms on the 

top and right side of each small plot are again projections of what is 

immediately below and to the left.) The solid tombstones and histograms 

represent the distribution predicted by the model. 

Figs. lla, llb, and llc present the same data and solution but 

with the order of binning reversed. 

Figs. 10 and 11 permit us to check graphically that the 24-wave 

solution predicts the distribution of events well in all areas of the 

four-dimensional kinematic space in all three channels. For a quantitative 

check, Table 1 presents chi-squares corresponding to the four-dimensional 

histograms. Chi-squares are calculated for different combinations of 

the four kinematic variables. All fifteen possible combinations are 

taken; each chi-square is labeled by a list of the variables simultaneously 

binned. The column labeled '#bins' indicates the number of non-empty 

bins. The last line of Table 1 presents chi-squares for the case where 

each of the four variables is divided into four bins. The number of 

bins for these chi-squares is slightly less than the possible 256 

because of empty bins. The sum of the three chi-squares on this last 
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line is called the 'total chi-square', l('r 

The chi-squares approach their expected values when the number of 

bins increases. The model is best at following the large variations 

in the event distribution over the four-dimensional space; it lacks the 

higher degree of precision necessary to obtain good chi-squares in the 

cases of few bins with many events in each bin. 

~ 
Table 2 lists the values of the total chi-square ATfor all six 

energy bins. The 1~ for the highest energy bin is significantly 

greater than the others. This probably reflects the fact that more 

partial waves contribute to the reaction as the energy increases. 

The values of j( are also listed. These agree with 

the value of 1 found for the artificial experiment described 

earlier (in section IIIC). This indicates that our 24-wave solution 

is a reasonable result of the maximum-likelihood analysis and that -

we are using roughly the proper number of waves for the quantity of 

data that we have. 

D. Partial-Wave Cross Sections 

An incoming partial wave is defined by the quantum numbers 

1, I, and J. Twelve incoming partial waves are included in the 

twenty-four waves of our solution. The model predicts a cross 

section for each of these partial waves. The cross section for 

the partial wave (L,I,J) in channel c is 

c 
l:LIJ 

4 I dw4 L 
phase-space ~=1 

L 1\X~(w) 
kE5 

Lr;r 

2. 

where the sum over k includes just those waves with incoming 

quantum numbers 1, I, and ,J. 
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We define l:LIJ to be the sum of )E~IJ over all five possible 

- 0 0 c-:. ( N!! ..... N!!!! charge channels, p!! _,. n!! 1! 

- + - C"-2.. p!! -..n!! 1! 

- - 0 c ~ 3 p!! ~p1! 1! (lhtL) 
+ + 0 c"'t p!! ~p1! 1! 

+ + + C...=S. p!! --. n!! 1! . 
This sum is somewhat unconventional since two initial states are summed 

over (it will be seen later that this sum simplifies the mathematics by 

permitting cross terms to cancel). 

!LIJ 
5 

I 
c=l 

' is defined as the sum over L and J of ~ ~I ' ~LIJ: 

I 
LJ 

Relations among the vector-addj.tion coefficients for isospin are such 

that ri may equivalently be written 

5 J J~w 4 2. 
li = I: I I f\~(w) (17) 

c=l phase-space IJ.=l kES.r.. 

where the sum over k includes those waves with isospin I. The cross 

terms in this equation between waves with different L or J add to zero 

when summed over c (compare with Eq. 16). 

Finally, ~TOTAL is defined as ~TOTAL - II= i. + :ri= ~ . 
2-

The same vector-addition relations imply that 

5 
I TOTAL I (18) -. 

c=l 

The overall scale for our model is adjusted so that TOTAL E. equals 
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our experimentally known value for the sum o:f the inelastic cross 

sections over the five charge channels. 

. 'C'TOTAL I 

Fig. 12 gives our experlmentally known ~ over a large 

energy range including the range of this experiment. The experimentally 

known values of ~I are also given for completeness. The effect of 

the D
15 

and F
15 

~N resonances in our energy region is clear. 

Estimates of the ~LIJ may be obtained from elastic experiments 

by assuming that each partial wave of ~N feeds either ~N or ~~N. The 

.I LIJ is then 
:;}'~ 1.. 

~/\. (J+~) (1-1( ) where 1[_ is obtained from elastic 

partial-wave analysis. The above assumption is reasonable since the 

cross section for the states p~ + and p~ to proceed to other than 

N~ and N~~ is less than two millibarns (out of ~30 millibarns). 

Fig. 13 compares the ~LIJ partial-wave cross sections predicted by 

our model with those predicted by elastic partial-wave analysis. It 

should be remembered that these cross sections are the sums of those 

for both the ~ + and p~ initial states. 

The elastic partial-wave analysis results in Fig. 13 are an average 

of the results of several groups7. The thick error bars in the figure 

indicate the root-mean-square fluctuations of the individual partial-

wave analyses. 

The dots in Fig. 13 are the values predicted by our model. The 

thin error bars are errors estimated from the error matrix. 

In most cases our results agree qualitatively with the elastic 

partial-wave analyses. The greatest disagreement is for the F
35 

-wave. Here, there is also the largest disagreement among the results 

of the different partial-wave analyses. 
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E. T - Matrix Elements 

In Eq. 2 we introduced T-matrix elements Tk but ~mmediately factored 

out the kinematic part ~ (see Eq. 4). We did our fitting and continuity 
\ 

checking with the ~because these are expected to vary more slowly with 

energY (since they do not contain such things as the production 
-, 

centrifugal-barrier factor). The T-matrix elements are useful for 

display purposes since they are more simply related to the cross section. 

The T~natrix elements tk are complex numbers having the same phases 

as the corresponding ~· The amplitudes, however, are re-scaled as 

follows. 
- c 

If the amplitude ~ contributes the amount 5k to the cross 

section in channel c, then 

(19) 

With this definition of the t~, the unitary circle corresponds to \-l~( == ±G~. 

J is the total spin and I is the isospin of the k-th wave. 

G~ is the absolute value of the vector-addition coefficient for isospin 

I in charge channel c : I= 
Gc c= l 2 3 4 5 I 

Jfif.W l/2 
0 0 

3/2 If Jf IT 
(20) 

c indexes the charge channels as in Eq. l6a. 

The exact relation between ~ and tc 
k is 

4 2._ 

CJTOTAL I: J J X~ (w) I d4w 

tc = ~ 
!-!=l Ehase-s}2ace 

k 
tTOT~ 

1.. 

4:rr0-.(J+ D 
(21) 

5 

where (f TOTAL - krrc is the sum of the experimentally 

-. 
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known cross sections (given for example in Fig. 12). 

To avoid the necessity of listing the t~ separately for each of 

the incoming and outgoing channels, a 'total' T-matrix element tk 

(without the superscript c) is defined having the same phase as each 

t~ and having magnitude such that L It~ 1
2 

c=2,3,4 

(21) 

Here the sum extends over the three channels c in which we have events: 

- + -
p1l _,.n1l 1l 

- - 0 
p1l -.p1L 1l 

(22) 

+ + 0 
p1l -+p1l 1l • 

Combining Eqs. 20 and 21, the unitary circle for tk is 

~ 
{11- I -= o.sa if wave k has isospin 2.. 

l tk \ (23) 

{~ -=- 0.'-5" if wave k has isospin ~ :z... 

The reader is cautioned that this definition differs slightly. from the 

usual definition that the unitary circle is at ~ 

Figs. 14a through 14f present the tk for the 24-wave solution 

at each of the six energies. The overall phase at each energy is 

not determined by the fits. Anticipating continuity, we adjust the overall 

-
phase of the solution at each energy in the following way before plotting 

in Figs. 14 (and 15). The phase at each successive energy j was adjusted 

to minimize the sum 2 

2: j=2' •.. ,6. 
k 

However, two incoming waves, D
15 

and F
15

, are known from elastic partial­

wave analysis to resonate within our energy region. The waves having 

these incoming quantum nlimbers were therefore excluded from the sum 

over k. 
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After this adjustment is done, there is still one arbitrary overall 

phase; this phase iS fixed for the purposes of display by changing the 

phase of all solutions at once so that wave one of the solution in the 

1650 MeV bin is real (see Fig. 14a, wave 6PP11). 

As discussed on pages 17 and 18, the error bars·of Fig. 14 indicate 

the major and minor axes of the two-standard-deviation error ellipse. 

A larger uncertainty in phase than in amplitude appears generally to 

be the case. 

In Fig. 15 each tk is plotted individually against energy. Those 

waves k contributing to the incoming F
15 

and D
15 

partial waves are 

specially indicated. 

The most striking feature of this solution is its continuity. 

Virtually all of the waves appear to be stationary in phase over the 

entire.l60 MeV range of the analysis. This is surprising because one 

would expect that waves k fed by the F
15 

and D
15 

partial waves should 

move in a counter-clockwise direction with increase in energy. As 

indicated on Fig. 15, there are three waves k fed by F
15 

and two fed 

by D
15

• The F
15 

N~ resonance is centered at 1690 MeV in the elastic 

channel with width r = 125 MeV. The D
15 

N~ resonance is at 1675 MeV 

in the elastic channel with width r = 145. The contributions of these 

resonances to our inelastic channels is appreciable as may be seen in 

Fig. 13. 

.. 
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V. CONCLUSION. 

We have looked at considerable length for maximum-likelihood 

solutions to our Isobar Model that are continuous over our 1640 to 

1800 MeV energy region. Despite the generality of the model, only 

one candidate has appeared, the 24-wave solution. This solution is 

stable in that waves may be added to it· or removed from' it a few at 

a time without greatly altering the position of the likelihood maximum. 

Our 24-wave solution matches the kinematic distribution of events 

well and makes reasonable predictions for the partial-wave cross 

sections. But our solution is more continuous than would be desired. 

Where rapid phase changes are expected because of resonances in the 

elastic channel, there is almost no phase change at all (at least 

relative to the other waves fed by non-resonant partial waves). 

If the F
15 

and D
15 

incoming partial waves were coupled to the 

Nrrrt final state only through their resonances (described in the last 

section), then the phases of all five waves in our model fed by F
15 

' 0 and D
15 

should increase by about lOO,as the elastic Nrr phases do,from 

the low to the high end of our 160 MeV energy region. The apparent 

lack of thi,s effect may be due in part to non-resonant components in 

the F
15 

and D
15 

intermediate-state formation amplitudes. From Fig. 13, 

a 30 or 4o percent non-resonant background appears to be present in 

D
15 

and in F
15

. This could reduce the expected phase change ~o about 

60°. It is also possible that the tk· for all waves slowly increase in 

phase with increasing energy by about 20° per 100 MeV. This would reduce 

0 
the observed phase change in our F

15 
and D

15 
waves by another 30 . 



These explanations are too qualitative and incomplete to be satisfying. 

The results of our fits appear to be meaningful but we do not completely 

understand them. Work on this project is continuing and we expect 

eventually to cover the energy region 1500 to 2000 MeV. Ref. ll gives 

the next proposed piece of literature from this experiment. 

-
' 
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APPENDIX 

COMPUTER UTILIZATION 

The complexity of the model and the large number of events 

necessitate the use of special computer methods. Computations 
\ 

are broken into series of procedures with the intermediate results 

stored on tape. This enables one to alter a portion of the formulae 

without re-doing the whole calculation. To ach±eve flexibility 

a group of two large and roughly eight smaller programs has been 

created. These programs pass data among each other and to later 

runs of themselves by writing and reading magnetic tape and by 

punching and reading cards. The tape formats and card formats are 

uniform within the group· 

A flow chart indicating the programs in this group (called the 

12.. 
Rumble Group) is given in Fig. 16. The program TRIA2 generates 

c the complex numbers Xk~ for each event. These are represented by 

8~ real numbers which are packed two per 60-bit computer word and 

stored on tape. The packing consists simply of retaining the most 

significant 30 bits of the CDC 6600 floating-point representation of 

each number and placing these alternately in the upper and lower ' 

30 bits of the 60 bit words to be written on tape. This packing 

reduces the number of tapes required and increases computing efficiency -

by reducin~ the number of memory fetches during subsequent computations 

c 
involving the X~. 

Normalization Integral 

c To obtain the normalization integral R , several intermediate steps 

are taken. The following relation makes it possible to obtain Rc by 
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contracting a matrix W~, (defined in Eq. 24 below) with the vector 

[~]· w~, does not depend on the numbers Ak so it is calcuXated 

only once. 

I 
phase-space 

k=l k'=l 

where 
4 

= 

L I (24) 

!J.=l phase-space 

The integral of Eq. 24 is done by the Monte-Carlo method of 

I generating events at random in phase space. Parameters Xk!l (as 

defined below Eq. 4 but before
1
charge projections are made) are 

calculated for each Monte-Carlo event by the program TRIA2. Here the 

superscript I indicates that the variable depends directly on total 

isospin and is independent of ~my particular charge channel. The 

___ c . r-c . _, _ .... t . d I I 
;'"l<;:J.( 8.cVl. i-lk}-_' Wl.U. oe Ol! alne later from xkj..l. and wkk I • The matrix 

I I I::lr 
Wkk' is obtained by averaging the product Xk!l Xk'!l over the Monte-

Carlo events. This is done in the program KREBS. 

Charge Channel 

c The ~ for a given p orCT wave, k, depend on the charge channel 

c only through multiplication by a real vector-addition coefficient 

corresponding to the decomposition of the incoming isotopic-spin state 

into the isotopic spins of the final resonance and third particle. 

This is also true for A waves if the addition of the third and fourth 
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terms on the right of Eq. 3 is deferred. To reduce computation, 

therefore, the special charge-channel-independent set ~ is generated 

for the Monte-Carlo events. The deferred sum is done and the vector­

addition coefficients are re-inserted after W~, is calculated to obtain 

c 
Wkk' for each charge channel c. The program STRETCH calculates these 

c I 
Wkk, from the Wkk,. The program MERGE makes it possible to improve 

statistical accuracy by averaging matrices W~, obtained from separate 

sets of Monte-Carlo events. 

Starting Values for the Fits 

The program SEEK generates starting sets of ~ at random: the real 

and imaginary parts of each ~ are selected at random between (typically) 

-1 and 1. For each set of ~ a quick estimate is made of our function 

~ using 600 of the events in the energy bin. Use of this small 

subset sac~ifices accuracy of~ for computational speed. The sets of 

~giving the highest value of~ are punched on cards. SEEK will also 

make one- and two-variable plots of 1, such as Fig. 8. 

Stepping Procedure 

The maximum-likelihood stepping procedure is done by the program 

RUMBLE. The majority of computer execution time is spent in this program. 

The user specifies the set of waves to be used before each RUMBLE run. 

This set must be a subset of the waves on the real-event tape and in 

the normalization matric~s W~,. (Our tapes and normalization matrices 

contain the sixty waves given in Fig; 2.) RUMBLE copies the~ for the 

user-specified waves k from the real-event tapes to a scratch file. 

The same packed format is retained. 

For each step in the fit, RUMBLE reads through the scratch file 

event by event performing the running sums for ::f(Eq. 7), ~jF(Eq. 8), 

-. 
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( and \7'V'
1Jif it is a Newton-Raphson step). Almost all of the execution 

time of RUMBLE is spent doing these running sums. Four machine-language 

subroutines in RUMBLE do the necessary calculations. These 

subroutines are constructed to take maximum advantage of parallel 

unit operation on the CDC 6600 computer. 

For each event, pc(w?) is calculated from Eq. 4. Non-normalized 
l 

addition is done within the sum over k. Evaluation of this equation 

requires roughly 12~ memory fetches, 16nk additions, and 16nk 
I 

multiplications. The execution time is 12~ microseconds. 

The derivative vector of pc(w?~ is calculated using Eq,. 7. 
l 

The portion within large parentheses is available from the calculation 

of pc(w~). Updating the 2nk components of the running sum for 

requires l2nk memory fetches, 16nk additions (again unnormalized), 

16nk multiplications, and 2nk memory stores. The execution time 

is l8nk microseconds. 

During Newton-Raphson steps, the upper triangle of the matrix 

M is calculated. For each event, updating 

2 
this upper triangle requires roughly 2nk 

2~ 2 
multiplications, 2nk

2 
(normalized) 

the running sum for 

memory fetches, 

2 
additions, and 2nk 

memory stores. The execution time for this is 3nk(~+20~ 

microseconds. 

Histograms 

The program HSCP~ makes histograms of event population as a 

function of single kine~matic variables. The curve representing the 

prediction of the model is superimposed and chi-squares are calculated. 
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The program RAWMEAT makes four-dimensional and two-dimensional scatter 

plots and histograms. Figs 9, 10, and ll were made with RAWMEAT. 
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Table l VARIOUS CHI-SQUARES FOR THE 24-WAVE SOLUTION AT 1730 MEV . - -- ---

+ - - - 0 + + 0 P1f+n1f 1f p1t .. p1t 1( p1r ... J21f 1( 

Variables Binned x2 #.Bins x2 # Bins x2 #Bins - ..,.-

~1( 29.2 10 28.1 10 34.6 10 

M 
1(1( 

21.8 12 23.6 12 31.6 12 

cos e 21.5 10 45.9 10 18.2 10 

¢ 16.4 12 19.0 12 27.0 ·12 

~1( M 52.5 15 4o.6 15 48.3 15 1(1( 

~1( cos e 75.4 4o 107.9 4o 63.5 39 

~1( <I> 56.8 48 53.8'. 48 87.4 48 

M cos e 72.8 4o 79-3 4o 61.8 4o 1(1( 

M <I> 69.3 48 67.1 48 71.3 48 
1(1( 

cos 9 <I> 7.5 16 36.4 16 27.9 16 

M cos a <I> 195.1 192 225.4 189 180.1 185 1(1( 

~1( cos e <I> 144.1 151 200.4 157 137.6 144 

~1( M tl> 206.8 179 184.8 178 188.5 171 1(1( 

~1( M1f1f cos e 201.2 146 189.5 148 173-9 142 

~1( M cos e <i> 236.8 228 260.2 229 210.8 213 1(1( 

Table 2. LOG-LIKELIHOODS AND 'TOTAL' CHI-SQUARES FOR EACH ENERGY BIN ------ ·-
Energy Bin Log£ -~ (=1/N L~~) xz # Bins • T 

1650 1492.7 .22982 699.1 633 
. 1670 2654.0 .26752 817.4 684 . , 

1690 1588.7 .23852 733.0 666 

1730 2590.2 . 33771 685.3 666-

1750 1305.1 .27281 663.0 649 

1780 2773.4 .32129 1029.2 689 



-46-

FIGURE CAPI'IONS 

1. Quantum Numbers 

2.. The Sixty-Wave Set 

3a. Two-Dimensional Projection of the Error Ellipse 

3b. The Effect of Correlations on the Drop in Likelihood 

4. Definition of the Kinematic Variables and the 

Coordinate System 

5. Data Used in This Analy~is 

6. Typical Sixty-Wave Fit - Newton-Raphson 

Every Fifteenth Step 

7. Comparison of Procedures for Typical Sixty-Wave Fit 

8. ~ Versus Two of the A-Parameters With The Other 

A-Parameters at a Fitted Peak 

9a, b, c. Four-Dimensional Scatter Plots at 1730 MeV 

lOa, b, c. Four-Dimensional Histograms at 1730 MeV 

lla, b, c. Four-Dimensionai Histograms With Axes Reversed 

12. Nrr Inelastic Cross Sections 

13. Comparison of Partial-Wave Cross Sections 

14a, b, c, d, e, f. T- Matrix Elements at Each Energy 

15. 

16. 

Argand Plots of tk For Each k 

The Rumble System 

page 

3 

6 

17 

24 

27 

47 

48 

49 

50 

51 

54 

57 

6o 

61 

62 

68 

70 

·-

. . 



-47-

10,000 

Ill 8000 ... 
~ Ea p1T+ ~p1T+11'0 
~ 0 prr-~p1T-1To ~ 

..... 6000 [) pn-~n1T-Tr+ 0 

... 
Cll 
.0 4000 
9 z 

2000 

1650 1670 1690 1730 1750 1780 

Energy Bin (Mev) 

Fig. 5 Data Used In This Analysis 



... 
I 

~ 
I 

~ 
•• a. 
Q) 
+­
(/) 

"-
Q) 
a. 
Q) 

0' 
c: 
0 
.c. 
0 

. ., 

• Typical 60-wave fit- Newton-Raphson 

••• • 

• 

Fig 6 

every 15th step 

-........... .. 
~.· • 0~ • ' a .. . . . . . . . . . ~· . "•a '• •', '"'•' ' ' • •• • • • 

• 0 • •• ~ 
• •• 

0 

• • 'o • • 
• 

• • 

o Newton- Raphson 

• Davidon 

""l ( . ~ 
-- J:- =So -~ ~-. ~-· Jc.,_) 

Step number 

• 

/ 

XB L 718-4180 

I 
..b 
(YJ 

I 



t 

1.0 
I 

tz. Comparison of procedures for typical 60-wave fit 

0.1 
I\-"' ~ ,...--

~ 0.11 
I 

)( 

0 

~E 0.001~ 

I 0.00011-

00 

Fig 7 

All steps 
Newton- Rap hson r 

~--. , Step number3 

. ~ 52 39 

76\~~62 

Every 15th step 1 ~ "-. 

1 Newton-Raphson 

~Every 5th step 
Newton- Raphson 

"100 

All steps 
David on 

l~ 

4000 5000 

Computer seconds 
X BL 718-4178 



~ 
vertica 1 -0.3 
axis -0.6 

-0.9 

Fig 8 

f 

Peak is 

:f versus 2 of the 
A -parameters with 
other A-parameters 
at a fitted peak 

very smooth~ 

X= 
Re A1 

Re A2 
Re A1 

Re A2 

From a typical 
60-wave fit 
with 6000 events 

Y= 
Im A1 
Im A2 _ 
Re A3 

Im A4 

etc 
• • • 

X BL 718-4179 

I 
l11 
0 
I 



... 

2rr 

~~. ~ ;;;,:--'. "!:: ':' ' -
\.;:::... · .. , .. ;",:-;'; .· 

4> 

~ ~~::~·~i·:··. ~!:-;·.:..~~·.·,·. 
~\l\.;:.··: .. :: . .··>~~>.-.:-;:> :-

0 ~~
.· [J ... 

·>n.:·:.·_.:·.. .?·:.-:··: . 
. . :.:_::· · .... -: .. . . .~~·~:~: .· ..... ·• ··.· . . . . , . . ~· . 

Cos 8 

Fig. 9a. Four-Dimensional Scatter Plot 

t . . 

pn-~nn-n+. 

1730 Mev 

XBL 7112-1801 

I 
U1 ..... 

'' 



27T 

<P 

0 
-1. 

~~. ~ :'·T·,..... ;J>_,~ 

~~
. ~------ ~---_; .. >,.. :'- /:_ -·~;..~ 

~v.sslV?:\l~ 
~ C2J L_] ·~ 

;--:--.. -~-::<~-. :.~:-::_'-<·_":"·": __ . :--:~ : .,: ·., ~ ~
--.:~-.~- '· -[£]·._:.-_-.; [],:. ·--' 

. ·:-. -.· <: _-_ . -~--~: ·_ .. '_- -:·.--_ -· . :"': ~~--
.40 

Cos 8 
Fig. 9b. Four-Dimensional Scatter Plot 

.. 

p1T-~p1T--rro 

1730 Mev 

XBL 7112-1802 

I 

Ul 
N 



... -; 

2rr 

~ [3].?:.· .. 

:~6: 

cp l[] ~
._.· .... 

~!· ;: ··\-:: ·: 

. <>···. ··_:_,:: 

~~
.·.··:·-~ . . ,. ·-· .. 

::..\ .. : ... :: _;_ 

:_-.:~· .-.~~ : :.·.-: : 

m ~:.\J:.:·. ~-; __ _.:=~: .. . ,. . ·: :· -."' . . . 

<~r.: -:·. --~- . -~~~~r:. ·_:;_:.< . 
' . . . 

0 
-1.00 -.80 -.60 -.40 -.20 0. .20 .40 .60 .80 1.00 

Cos 8 

Fig. 9c. Four-Dimensional Scatter Plot 

' 
.. 

p1T+~p1T+1TO 

1730 Mev 

XBL 7112-1800 

I 

\Jl 
VJ 



2.1f' 

<P· 

0 
LL.l.. 

-1.00 

Fig. 10<'-
.. ~_ 

-.20 0. .20 .40 .60 .80 1.00 

Cos 8 

Four-Dimensional Histogram 
, 

p1T-4n1f'-1T+ 

1730 Mev 

. -- .. 

I 
U1 
~ 

: ! Event Population 

n Predicted By 

Isobar Model 



·:. .... -, 

2n 

<P 

0 
.20 .40 .60 .80 1.00 

Fig. lOb Four-Dimensional Histogram 

• 

p7T-4p7T-11"0 

1730 Mev 

. -. ~ . . 
I I . . 

I 
Ul 
Ul 
I 

Event Population 

n Predicted By 

Isobar Model 



2n 

cP 

0 
-1.00 -.80 -.60 -.40 -.20 0. .40 .60 .80 1.00 

Fig. IOc 

.. 
7' 

Cos 8 

Four-Dimensional Histogram 

• 

p1T+~p1T+1TO 

. -- .. 
o I 
I I 
I I 

n 

1730 Mev 

I 
U1 
()) 

Event Population 

Predicted By 

Isobar Model 



~~ 

p..,__"'t":T 

n:n n n 
nnnn 
nhn nl 
nn n Fi1 

.aof 
c-

,., 
" n ,. 

.751-ln rn 
li1 ,. 

F1i n n n 

Nl n .. Ill f 
~-70~~ 

j'l:.,_ -- r--. 

11-l: 111 n 
{ nnn1-n 
L" nn F11n 

rn n: n 

,::C r-. 
~ 

n n~ " .. 
n rn Fi1 n: 
nnnn 
nfi~" .. , 

" 

r-o 

fil n 

m n 
n n 
n 1"1 

~ 

n " • • 
:Jin • n h1 

n • " rt 

Fi1 .. • 

~ 
'n 

rn 
(/\ 
('lj 
~ .65 

F.l n f\1 fil fi1 l \., n m _ oo. H1 n 1 ~r n n n " 111 M , 
I 

+ i ., 
" L 

J 

,t:: 
1nnn n 

1 
~J n Fil n1 m " p_

1 
.. r ln n il n fil f11 ni n n n n 

'1 b 
1:: 

n n J 
n n j filnl 

"' h1 .. 
n PC 

~ .... , 

nl F,l 

i~ I~ 
til 

n-: Rl li1 

.-, 
fi1 • nl n: I 

nl " .-, 
n: .. 

flln 

~~-"9:~~ ~ ~ 

. 55[ ~ ~ ~ ~ II ,I: ~~ ~ 

. so, r1 n n 11 '
111 .,!l n 

t r~ -:..·, ,._., ; r--, 
i L 1: r11 fl n: : t; 1 1 n , " -

4cl c f-"'1.. • ···• t .. r..., rL 

~~~~ j _'-i=- r--' -~ 
.40~-~n n n ,.. I P jr_]fi1 

In 1,1' •F•, 
,. n ,., 1;1 ·~ ~~ lo n 

In! R n .. ~~~-_.n n .. 
. 35 

"' 
n 

"' 

,. 
.. 
F.l 

.. 

m 

n 

n 

·~ 

.. 
n 

n~ 

,, 

.. 
I 
I 
~ 

n • " . 
n • . . 
M • . " 
f\1 n . . 

1M.. 

. . . 

. . 
.. 
" 

rh _\ 
n . . 
fi1 • .. • 

r1 • • " 

J:l • n n 

n 
n Iii n " 

n n " 

n n • 

- ' I' n n " Fo1 
L . J 'n, ·-L~ n " ~ I Y I : ni F-11 h i I 11 I 1-l ~ 

.30 

I 
! 

-- --
2'1T nn n n 
¢ Rnnn 

hnnl 
onn n n 
-1 1 

cos e 

n li1 n 
nn 

nni Fi n 

flin n F1l 
r---~ 

n:n ni Ft nn fli fi1 
f 1 . I ' --· . --'---'~~--J.---'---'-,-...I~'---..__-'--.......,_-':::-,,....._--1-___._......,_~ 

1.10 1.20 1.30 - M 1.40 1.so 1.so n1r ass (Bev) ' 

Fig_ I I a. Four-Dimensional Histogram 

~ 

, 
" 

... 
J 

t ~ • 

p7r-4ll7T-7T+ 

1730 Mev 

·-- .. I I 
I I 
I I 

n 

I 
Ul 
-J 
I 

Event Population 

Predicted By 

Isobar Mod•~l 



.-. 
> 
Q 

= -
Ill 
Ill 
~ 
~ 

0 
~ 

I 
~ 

p,_~ - ·~ ~---- ;:::; ~ 

~ fi1 n 
~~ Fihrn F-"1 rr. n~ n nl n .. 
~' n 

nn l't !' nfil n n I nn n n n 

nn L 

li1 M 
I nn n n nn fil I n 

n ,., n1 n f, fil n fl~ fi1 ~ nn,., n 
' 

.80 

.-=... ~ ~~ . 
~ t. 

n . . . nl fj1 n 1"1 1' m " n . 

~ " fi1 fil 1"1 n " " . . . • n 

n .. . . nl f;1 , n ~~ .. . .. .. 
.75 

.70 
fill • • • 

., n n " .. .. ~ Fil M " . ' 

rq __ / _r-., 
..., ~ 

. 65 

,55 

[~., ' ,. ...... ..., 
' 

n1 , 
" 101 fli rn n1 n 

~ 
nilil n II 

fi M ' n R fl1 n hi " " ~1 
.. n " 

~f] n: l't F.1 " I n n .. n P--P "' m 
(~ r-1 

'r:l nhn hi " "~ n hi n M t1 .. 

'=----~ 
' 

"~ 
~ ~ 

r--, 
n1 .. " .. " n n:n: n " 
Rl n .. ,. 

I nl " . n ~ Rl " " n 

.50 n .. " A1 n n . " n n . f;1 

. 45 
r "' A1 ~ m " n1 n li1 .. .., n r11 " .. 

' ' 

t~ ~ ..s=t. 

f ~ 

.40 

. 35 

.30 

r n 
h1 11 

I . . . " . .. .. .. . .. 
~ f 101 . . . " . . " fil n . . 

f m 
I ~>, . . 
It'- I'll 

. . . ' " . . . 
'"" I 

"' 
. p 

n n . . . " . . . . 
' 

1.10 1.20 1.30 1.40 

ptr- Mass CBev) 

r-H, .r-

i n n It . 
n n " . 
n M 

'P. 
.. . 

n t1 . " 

u 
r 
I 
~ 
L 

I~ 

~7 

.....,_, 

$. -

i . 
i 
~1'. 

' ~1 

~ ~ 
JJ n n . " 

J1 
n • . R 

L 

I n " . n 
~ 

n n . . 
~ .=F 

-
~ 

n " . n1 

n " . n 

n n • , 
1-- R1 n .. 

I 
1.50 

r-, 

) 
Z1t ,, ... , I I! 

~ 
i 

~ 

r 
Y. 

' ' 

~ 
1\ J 

'~!\ \ 

I 

)J 
,) 
~~ 

I 
1.60 

hn:n 
nF\lnn 
nnnn 

0 1nn n Iii 
-1 

cos (} 1 

f,:. "l 1 
F.1 " n " 
n "' 

, 
" 

r.1 n n A ,..., 

~ 

Hlrn I'T. n1 

n n n M 

p_,n n r.l 

nhnfil 

fi1 n 
nrn 

n n 

n n 

n n n n 
n n M: R 

I 
I 

I ~ 

Fig. II b Four-Dimensional Histogram 
...,_~ t\. 

p1T-4PTT-no 

1730 Mev 

I 
U1 
<» 

I 

f .. i Event Population 

n Predicted By 

Isobar Model 

' .. 



"l ""· ( • . 

n 2'11' n·· . + + o 
,n n Ji1 ri1 n " " n o • • 1 in n n p1T ~p1T 1T 

Rf11 n m 1'1 I n ., n n " • • I ¢ R--n n 

111n n " ~J n n " " m • • I H n n I t.J 1730 Mev n ni m m n n " " " .. . . o n Fil !1 
.801- . -1 il cos()' 

~ 

D o • n I I f~l I I In ~ ld n o • ~ Rl .75~1 L nn.. filnn.. n. "n' nnn,. 
Rl ii1 ,. • n n: n "' ; ,j n • • ' n1 fi1 n "' 

n n R n . 8 , • . . n n m ~ 
.70 

- I 
: Ul = - fi-~ n ~ VI In n n ril .. • • n n n I 

11'1.65 HR Hn ft1 ~ II n " n n 1'1 n • •• ; n n 
~ .. ,· . ., 

0 
n: n fll 1'1 II .J n n 10 l'fl o h n n1 

t:: n - hi " "' n n li1 " • n hi n n •••• 

+t:: ~ ___ p_, ! : Event Population 

.551-lf~ r·• ~, fi' ... , ft ~ 1 1 • . I I r:. " n I ~ I " • " I • Flo • • fll " • • -- n n Flo n . 
Fi-; fi~ .J r·i , r;~ F.' J Pred1cled By 

' 1 n n -, tl , fj, " • R1 " .. • m • • 1 I It I II A n 

. sor rfll fll n n 1 fi1 " • • n • . . ; • • i F11 il n • f Isobar Model 
M! F.1 - • n • • • n fi n A 

r. . 
" n • 

II ~1 n1 • 

n n1 • " 
1.60 1.30 + 1.40 

p7r Mass (Bev> 
1.10 1. 20 

Fig. II e Four-Dimensional Histogram 



40 

30 

~ 20 

z 
0 
f­u 
w 
U') 

U') 
U') 

0 
0:: 
u 

10 

Fiq. 12 

-GO-

L. 'Ta't,A.L = 

.____. .:::Opn-o+Nttrr +Ofn++Nrr<r :z: 

= (sof'4 OF Tijt:: Tt.-)0) 
coR ~(S 8E:L.ow 

I 
I~;:: c..onf'o~ E'trr oF 

<rpu--+ Ntttr 

LI~:! :::: 
3 2... 

I::. 3:, GOMPO~E~T OF 

(fprr--. N trn + ~rrr"' .... f'ltrtr 
l=Js- ANt> D,s­
Re~ONANCES 

+ + ~ • + .... 
/&5"o 1&7o l(.qo 1730 /7f"o •78o - O\JR El'le fl..c.-V BIN$ 

1600 1700 1800 

CENTER-OF-MASS ENERGY BeV 

Nrr lNELASTIC CROSS SECTIONS 

.. 



s:: 
0 

• .-I 
~ 
() 
Q) 

C/) 

Vl 
Vl 
0 
h 

{.) 

Fig. 13 

-·61-
- Predicted From :Elastic Partial Wave .Analysis 

• Predicted By Isobar Model 

~ t ~· t_--a..._....,:f:.____,_ _ _,.-_-;---T'iol s 11 

~ t 1 
t Pll 

~t .___,;.~-~-----.:..-_-_-~.....:. _-_-_ .... _-_-_-;...-_-_-----------t ... '_P-13 

~t ~~--~--~~r-~--------~~ D13 

6 

4 

2 

D15 

o~----------------------------------
6 

4 

2 

F15 

0~----------------------------------

~t. 
~-=-·-r-;----...._---:.._--..L). I S31 

P31 ~t ft =: 
~~~~~t---~. --~~--------~------P33 

r ---:i 
o~~--------~--~------------------
4 [ I ' ( __, D33 ~~( __________________________________ _ 

: __.-----. ---~· ~ D35 h----.-·-------+-
OL---------------~--------------,---

~of .. __ ~--~~-------·~======~·-· ----·~--F35 I __;_._I 
1650 1670 1690 1730 1750 1780 

Energy · (Mev) 

Comparison of Partial-Wave Cross Sections 



-62-

1650 Mev 

~DD15 

~35 
ADS~ APP11 

~FP15 

APP33 

.25 

0.0 

-.25 

t 
b.() 
d 

E -
-.25 0.0 .25 

Real~ 

Error Bars are Major and Minor Axes of Za Error Ellipse. 

Fig 14a. T- MATRIX ELEMENTS a.t 1650 MeV 



. / 

"' 

-63-
I I 

1670 Mev 

- .25 
~DD15 

0.0 

- -.25 

I f 

-.25 0.0 .25 
Real~ 

Error Bars are Major and Minor Axes of 2a Error Ellipse . 

Fig l4b T- MATRIX ELEMENTS a.t 1670 MeV 



-64-

1690 Mev 

.25 

0.0 

. -.25 

-.25 0.0 
Real4 

.25 

Error Bars are Major and Minor Axes of Za Error Ellipse. 

Fig 14c T- MATRIX ELEMENTS a.t 1690 MeV 
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r------------------LEGALNOTICE---------------------. 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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