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ISOBAR MODEL FIT TO THE REACTIOl\f Noe 4 Nrese;
FITTING PROCEDURES AND FITS AT 1.7 BEV.
Larry R. Miller
Lawrence Berkeley Laboratory
University of California

Berkeley, California
November 23, 1971
ABSTRACT

The Isobar Mcdel has been fit to 50,000 events of the reaction
Nﬁ-»ﬁhn in the energy region 1640 to 1800 Mev. Sixty combinations
of partial waves and intermediate resonances were considered. The °
data were divided into six energy bins and independenﬁ fits were
done td the model in each bin. The method of maximum likelihood
was used, and at each energy no further binning or projecting was

necessary.

A solution has been found that represents the data well by several
criteria and is continuous among the six energy bins. This solution
is stable and perhaps unique but it is surprising; instead of finding
resonance-like phase changes in the production amplitudes of waves
that pass through resonance in the elastic channel, we find that
virtually none of the production amplitudes change in phase (with

respect to each other at least) over the whole energy region.

This work was supported by a Hughes Aircraft Company Doctoral
Fellowship and by the U.S. Atomic Energy Commission.
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I. INTRCDUCTION

The Isobar Model was proposed by Lindenbaum and Sternheimerl
in 1957 after it was found that the reaction Nx-#Nnw favors final
states in-which the mass of a Nn_subsystem is near 1236 Mev., the
mass of the P33 Nnt resonance. Their Isobar Model postulated that
this resonance and a separate'n were first formed and that the resonance
then decayed into a N and the other n. This decay was assumed to take

place outside the spatial region of the formation.

-Our Isobar Model is generalized to include several resonances.
The amplitude for a reaction such as Ne-#Nnw is written as the sum
of several individual amplitudes, each of which is the product;of
two parts: the first part is an amplitude to form from a particular
incoming partial wave an intermediate state consisting of a stable
particle and a resonance, and the second part is the amplitude for

the resonance to decay into the other two final particles.

This paper describes a fit of the Isobar Model to the reaction
Nr-pNrt in the center-of-mass-energy region between 1640 and 1800
MeV. Three final=-state resonances are considered: thell(1236) Nit
(L=l,I=§}J=%) resonance, the p(760)(L=l,I=l,J=l) % resonance,
and the 0 (800)(1L=0,I=0,J=0) nxt enhancement., The decay amplitudes
of these resonances are taken ag fixed quantities. The production
amplitudes for the intermediate state are the variable quantities

to be determined by the fitting procedure (see Fig; 1 below).‘
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Our data consist of 50,000 events of the types pﬁt4>nﬂ-ﬂ+
| prt " —pprt 10
pnﬁq»pn+ﬂo.
The sources of thé data are discussed in ;ection IV. The energy
region 1640 to 1800 MeV is divided into six bins. Separate fits
are done to events in each of these bins. .With about 10,000 events
in each energy bin we find reasonablé fits. Continuity of solutions
from one enefgy to the next is looked for after fhe fits for each
bin are done. Fitting separately at each energy avoids the necessity
of making a priori assumptions about the energy dependence of the
fitted production amplitudes. The maximum-=likelihood fitting method
is used with no binning or projecting in the other kinematic

variables. The event population of each bin is given in Fig. 5.

The bins are labeled by their central energy values.



II. THE ISOBAR MODEL

The following quantum numbers, along with the quantum numbers of

L4

the five individual particles form a complete set for the description

of the reaction Nx+Nnux.

Momentum of the incoming nucleon in the center-of -mass.
Total isospin.

Total spin.

z-component of total spin.

Momentum of particle 3 in fhe center-of-mass.

Orbital angular momentum between particle 3 and pair 12.

Momentum of particle 1 in the center-of-mass of the
1,2 system.

Orbital angular momentum of the 1,2 system.

Total spin of the 1,2 system. If the nucleon is in the
1,2 system, J is ﬂ combined with the nucleon spin. If
the nuclecn is particle 3, then j = f.

Helicity of the 1,2 system in the overall center-of-mass.
This is the projection of Jj along the direction of the
momentum of the 1,2 system in the overall center-of-mass.

'"Total spin of the final state'. S(S+1) is the eigenvalue
of the operator = 3‘+~§\ J measures the total spin of
the 1,2 system, and % measures the spin of particle 3.

J is S combined with L' (T =" + 1),

Helicity of the incoming nucleon.

Helicity of the outgoing nucleon.

These quantum numbers may be displayed symbolically:

 particle 1

particle 2

particle 3
Fig. 1. Quantum Numbers.
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For a given J and L', L may take on two values since the nucleon
spin is combined with L to form J, e.g. SS: and PSé . Parity conservation
. L

always allows Jjust one of these two combinations.

Let the variable & index the set (I,J,L',3j,%). Then the most

general matrix element for the reaction Nrt-»Nmx may be written:

M
T\ y

The T are arbitrary complex numbers. (The quantum numbers of the waves
we consider are given in ¥ig. 2. . For these, § takes on ten values, the

)

length of the longest column.)
The most important resonance bands covered by a Nxw Dalitz plot,
e.g. Fig.q , with total mass less than 1800 MeV are two different mx

resonances, I (j=1=0) and P(j=l=1)3 and two different charge states

of the [§(j=g,l=l) Nt resonance.

For a particular resonance in a particular diparticle, the Isobar

Model restricts qk (P,Q,q) to have the form

Ay (P) B(q) Q~ if j and L (in&K) are the
guantum numbers of the
TKi(P’Q’q) = resonance. (2)
0 ' ctherwise

}XK(P) is an arbitrary complex function of the center-of-mass

1
energy, and B(q) is the decay amplitude of the resonance, and QP is

the centrifugal barrier penetration factor for the production amplitude.
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Our total matrix element Mtotal is the sum of four matrix elements,
A'B ’

one for the U, one for the ‘D, and one for each of the two Ny diparticles

that may form a A resonance:

Mto:;,al = MP + Mo- +MA":l +MA1' . ‘ (3)
Ha™R HaHtp s [\ i\

FEach of the four elements od the right is given by Egs. 1 and 2
using the indicated resonance Aand decomposition. The index k will
index over the three resonances and also over the set indexed by & (so
for.Tabie i, k=1,...,60). An arbitrary complex function Ak(P) exists
for each k. These are the production amplitudes to be determined by
the fits. Within each of the six energy bins, the Ak(P) are assumed
constant. These constant Ak are the free pérameters of the likelihood

maximizing procedure.

We have no polarization information on our events. Our predicted

differential cross section (or likelihood) for an event is proportional

to the sum over helicities of the absolute square of the total matrix

element, (¢ 0("’—(?""'&‘)/&‘ =p

9
I

ZLI: z}j 2

C/ €\ _ _Csr Cy _ c c .
p=1 ' K=1

Several new symbols have been defined:

c The charge channel. There are five charge channels for
the reaction Nn-#Nrx. We use data from three, but the
model will predict differential cross sections for all
five channels,

W, wg w stands for the kinematic variables of an event. w.
indicates the kinematic variables of the i-th event
in channel c.
Vs The values 1 thru 4 of p correspond to the four combinations of

helicities p,= +1/2, py = 1/2.

P ~ The differential cross section predicted by the model.
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The number of 'waves'. The number of combinations of
discrete quantum numbers and resonances.

A vector of dimension 2nk corresponding to the set.of
complex numbers A, : A= (ReAl,ImAl,ReAg,ImAE,...\.

Complex functions of the kinematic variables of an event.
These numbers are obtained by combining Egs.l ,2 , and 3,
and equating the result to Eq. 4. These are constants
supplied to the fitting procedure.

A ‘'wave' (or value of k) is specified by gi&ing the resonance

and by the quantum numbers L', I, J, and L (I is redundanf but useful).

The latter numbers will be displayed using the convention (L)(L')(2I)(27),

with L and L' given in spectroscopic notation, i. e. S8, P, D, F,....

With the f’resonahce, the quantum number S is also required since in this

case, 1t may take on two values. 2S5 will be subscripted to the

symbol p.

We consider sixty different possible 'waves'. The combinations

of guantum numbers and resonances making up these waves are as follows.

LII'(2J+1)

PP 1 PP 1 '

SD 1 Sh 1 SS 1 PS 1

DS 3 A DS 3 PP 1 . [sP 1 -
PP 3 , PP 3 f3 PP 3 A DP 3

DD 3 I = ¢ /DD 3 I = +DD3 I = +PD3 I=1/2
PF 3 1/2, 3/2 PF 3 1/2, 3/2 DD 5 1/2, 3/2 FD 5

FP 5 FP 5 _ FF 5 _ DF 5

D 5 D 5 (s = 3/2) FE 7 (s = 1/2)

FF 5 FF 5

FE 7 FF 7

10 waves X 10 waves X 7 waves X 6 waves x
2 isospins= 2 isospins= 2 isospins= 1 isospin=
20 20 14 6

Fig. 2. The Sixty-Wave Set.

o,

e
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ITI. FITTING PROCEDURES

A. Tﬁe Maximum Likelihood Formulation

In our experiment, we must 'normalize' the data to three different
known channel cross sections. This is done as follows using the

Poisson probability density.

‘For a given set of production amplitudes Ak’ the likelihood

that the N® events {w{, wg,...,wﬁcz will occur in charge channel ¢

is denoted by
c c _c c
Se = &( ?Wl’ w2,...,ch’§ ‘(Alg AZ""’Ank) ). (5)
Defining the normalization of rf in Eq. b,

\ c L
i = p (w) dw,

phase-space
(at fixed energy)

the likelihood is the Poisson probability

;ifc

R°N© n°
O‘C

Im ). (6)

i=1

e-

This equation is obtained from Eq. 36 of Ref. 2 by observing that
if the nunber of events per microbarn for the experiment is (F,

. . . € ¢ c
then the actual number of events in the experiment is h’:Q.CY and

the predicted number is =.(°ﬁ1°-

pc and R® may be scaled simultaneously by changing the magnitudes of
all Ak by the same scale factor. Bec may be immediately maximized in

this degree of freedom. We now show that the maximum occurs when R®=d°.
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To see this, we write the derivative of 0( with respect to the scale

factor s. 2 7S 1° o _
¢ - A .
g s T o).
C/ N o :
LR n :
Cr oA c’ c C .fc
R’ N A
KED . oo I - B Lo
ds
¢ 2 .C c
il 2 g c = = g
‘Setting this to zero glves & = ;E s SO RsA s RA
| A

The likelihood for more than one channel is the product of

the likelihoods for each channel,

c - RO—CI:\] NS (w§) N°
=1L -0 e
The logarithm of X is
| N°
ST R°® Z e
Lo ‘7\0 _ Z log ic _ 2 [_ S — log- P (Wi;]+
. - p . e v =

+ terms consbant in A.

In general, it is not possible to adjust ‘the complex numbers

Ak so that R® will equal o¢ for all c. The likelihood increases,

however, when this is nearly true. The likelihood favors cases

where the cross section for each channel is predicted accurately.

The numbers of events used in each channel need not be proportional

to the cross section in the channel,

LY

Y
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For use in the fitting procedure, a f‘unctiong is defined.

} is an 'average log likelihood':

12\_T- log (mgx K(SA) ).

Fw

’5 is obtained from an iwhich has been pre-maximized with

1

respect to the scale factor. ? is then invarient to change in scale
of the A,
This maximization is done by finding an s such that

2s e

max
This s™% is then substituted back to get E?(A. % log ;<~ .

Explicitly, p:A(w) = s pX(w) and R(sA) = SQRC(A) SO

1ogx(sA) ) Z [ s°R°N c Z(log p (W, ®yi10g 5°) .

=

% %'T- log ;{(SA) = —

Equating this derivative to zero gives

max N
S
[~
= O

Substituting s o back,
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: _ : : e .
1 max 1 ' c, cC 3 RCNC
g(A) = = log ((S A) = = ilog p (w,)| - log _;_ +
N N < i gc<
[@ i=1 [¢
+ ﬁerms constant in A. ' (7) #

In these equations, NEZ n¢ .- i : ' “
c

Use of this 'average' log likelihood aids in comparing likelihoods

between runs with different numbers of events.

B. Numerical Technigues

1. Introduction

- The fitting procedure consists of finding sets A that correspond to
maxima of E;XA). Starting values for A are chosen at random and varied
in stéps. The value of A at each step is an esfimate of the position
of the maximum.ifThis estimate is based on information obtained at
previous steps. At each step, the vélues of 5;2 its first derivatives,
and possibly its second derivatives are calculated. If the first
derivatives are not zero, the next estimate of the local maximum is |
based on this and previocus information., The next step will be at this

new estimate.

Maximizing procedures fall generally into three categories: thgse
that evaluate only the function at eaéh step, those that evaluate at
each step the function and its first-derivative vector, and thoée e
that evaluate at each step the function, its first-derivative vector,
and its second-derivative matrix. We have found that the most efficient

technique is a combination of the latter two types. We use the Davidon

method, which is of the second type, and a modified form of the Newton-
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Raphson methodu, which is of the third type.

Tn both the Davidon and Newton-Raphson methods, the change made
inlftto obtain the new estimate, BA, is the negative of the product
of a matrix called the variance matrix and the first-defivative
vector at the last step: A/{‘: = -Vg (9: 3 )—l. The variance matrix
approximates the curvature of the space. }If a) the function E}QQ) is
guadratic in the componentsrof‘ép and b) the variance matrix is truly
the inverse of the second-derivative matrix, then the maximum will

be reached on the second step.

_ 2. The Davidon Method

In the Davidon method, a diagonal guess is used as the variance
matrix for the first step. At each subsequent step, this matrix is
adjusted by adding a rank-one matrix. A rank-one matrix is a matrix

having just one eigenvector with non-zero eigenvalue. A typical

example is the outer product of a vector y with itself: Mij = vivj
or equivalently M =¥ XT: The superscript T means 'transpose'.

A matrix of the form of M is called a 'projector'. The Davidon

variance matrix Vi»at step 1 is adjusted by adding a projector multiplied

by a number:

A ’)\(Vivii)(viv:h)-r

The number 7\:13 calculated from the current variance matrix Vi

.and from the derivative vectors at the current and previous step,

‘75?( and‘l}e‘. The adjustment to the variance matrix refliects the
additional knowledge about the curvature of the épace'gained from
knowing the new first-derivative vector. To insure that the process

will tend to a maximum rather than to a minimum or saddle-point, 7L
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is modified 1f necessary to keep the new variance matrix negative-
definite, TIf the 2nk—dimensional A space is quadratic, then after 2nk
steps the variance matrix will exactly correspond to the curvature

of the‘space. The next step will then be at the maximum.

3. The Modified Newton-Raphson Method

The Newton-Raphson method recalculates the variance matrix afresh
at each step. The modified version which we use calculates a negative-
definite approximation to the local second-derivative matrix. This
approximation is inverted to obtain the variance matrix. The approximatial
is such that if the events are distributed nearly as the model predicts
for a vector A, then the approximate matrix is nearly equal to the
local second-derivative matrix at ﬁ, The following paragraphs discuss

the form of this matrix.

The 2nk-dimensional real first-derivative vector of E} (of Eq. 7

is
c c ..C
i ¢, o » VBS I (8)
: Vo (w.) oC
v - = Z Z Jry . = T
) / N ’C =1 pc(wcﬁ 2 : RCNC .
’ = . O-C
The 2nk by 2nk real second-derivative matrix ofi?:is
c
N T
c
| N v v () (v 2°(e)) (v 2°(r5)
Vvvﬁzf(A> =N ZE: c, C - c. c\2
c i=1 o (w.) p (w))
i ‘ i
T
c
E N o v (E NCVRC> E NVRC)
C oC + c aC C o€
RCNC (Z RCNC>2 .
2;: o€ - oC
= + M + M + M
" 2 3 T (9)
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If the function pc(w) closely approximates the distribution of
events then chfcpand the sum over events of any function may be
to good approximation replaced by the phase-space integral of the

function multiplied by p°(w). Thus

r, vv
p Wi
by oy T,
V
f Vp W' p° (w) dw =
c phase- p° (w)
space
Ne c
Wl A T Fwe
phase-space c

Then to the above two approximations, Mi and M3 cancel: M1+M3=O.

From Eq. 4 the first-derivative vector of pc(w) may be found.

° ) Re x C ) |
g{ie}qk 2 (v —{ }Z Xku kZ=1 e Xk'uj.w‘ . (10)

This leads to the interesting result

AT vplw) = 2p%(w)

and consequently

¢ ¢

AT VR = 2R

These two relations may be used to show that’é,is a null vector

, T
(approximately) ofVV ?
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o ,
N ‘c( c) NCVRC
| Vo (w., ¢
(VV?)& %M2é+Mu£_=-—%ZZ - l_'_2 c o
. ¢ i=1 »p (wg) Rey©
C
2 o , -
= (- = o+ - X 0.
( N RCNC ) [ Z VRC ) '
o c -
c 07 )

As before the assumption R°~ ¢ ig made. )

We can verify the above observation with the general observation
i ) - T
that at a local maximum, Als an exact null vector ofvv} because of
. . N /- 3 . . T
the scale-invariance of ? Scale invariance implies that (V E)AAI:O,
since 4 itself is the generator for scale changes of A. Differentiating

_ - _
again, (vv'?r),é + (V 3)I = 0, where I is the identity matrix.

mus (VY34 = -VF = o.

TEF(ﬁj is also invariant to a simultaneous change in phase of

all A . The vector ‘ﬁié) E‘(ImAl, -ReA , ... ,ImAnk, -ReA ),

k T
which generates phase changes in A is also a null vector of vV

at a local maximum for the same reason. These singularities, which
are due to redundant parameterization, are cémmonly eliminated in
fitting problems similar to ours by permanently freezing one phase
and one amplitude in the Ak and reducing the dimension of the second-

derivative matrix by two.

We find, however, that the maximizing procedure takes less than
one-third the number of steps to reach a maximum if all the Ak are
permitted to vary. A proper variance matrix is obtained from our

T
nearly-singular second-derivative matrix VQfas follows.
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The second-derivative matrix may be decomposed spectrally as

ANk
T .

A'AY 3 =Z ]2 % y,:r where ,\LIX!,= S)..L" Yy 8re the eigenvectors and

L=
)9' are their eigenvalues. Writing the two near-zero eigenvalues
separately,

T o ' A éT (JA) (A )_.T—

T . .
VV 3*—' Z ’AQXQXQ + 1| |A‘1, + XL ,ML )
£=3 ~
' 11
A, R, %0 (11)

i T.
The desired variance matrix is the inverse ofVV }restricted to

the space of vectors orthogonal to both A and (iA):
Ve o~
AN

v =2: igﬂ; (12)
=3

To obtain this V, a matrix M is first calculated:

/

wEVVF - o) - daus M, . (13)

A%
~ ch. RE
[
M, (see Eq. 6) is the projector for the vector ci-n-q:’—*‘ e .
«G
c <

T
Since A VR® = 2R , this vector has a large component along A.
Subtraction of this projector changes the elgenvalue of A from nearly

zero to the substantial negative number -~h +A1x -4, Subtraction of

the projector & iA changes to -1 +1‘ 2 ~1. The sum
|Al \ |
(M2 + M3) is approximately zero and is subtracted to simplify the

expression to be evaluated by the computer (and also as will be seen

to ensure that the variance matrix is negative-definite). ZEgs. 9, 11, .

and 13 give .
(Voo (%)) (Wt ()Y
M = -Nl- Z Z E— 2W1 T (3A)(1A)T
e i=]1 p (w,)™ 2
L BRI (1)

For this M,
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MA X LA and M(1A) = (iA).

This M 1s the negative of a sum of projectors so its eigenvalues must
all be non-positive. If the model does not have special degeneracies
and if there are more than '2nk-2 events, as in our case, then M

has no zero eigenvalues and 1s therefore negative-definite.

.. . N L T .
M is inverted and (iA)(iA) + FA A is added to the result to
. N\ A A

cbtain V: (A IA1*
v o= Mt o4 /ia(iA)T + & é_{&.'—.
A 181

Since M_lA'xiA, and M-l(/ié) % (iA), A and (iA) are nearly null
vectors of V as desired (see Eq. 12). This V is the variance matrix

for the Newton-Raphson procedure.

The inverse of M is computed using the 'square root method' for
inverting symmetric positive-definite (or negative-definite)
matricesB. The computer time for inversion varies as the cube of

ny and is 0.3 seconds for nk=30.

4, The Error Matrix

The error matrix is closely related to V of Eg. 11. At a local
T
maximum, the error matrix E = < 5A Sa > is '11V V (see Eg. 1k

of Ref. 2). The factor arises from our use of 13: , the 'average'

L
N
log likelihood.

max
In the neighborhood of a local maximum , in the quadratic

max
approximation, the hypersurface on which the likelihood is 23

c
is a hyper-ellipse called the error ellipse. It is centered at the
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maximum. The maximum extent of the error ellipse along any coordiné.te
axis i is the square root of the error-matrix element Eii' Fig. 3a
gives a two-dimensional projectjff of the error ellipse on the Al - /‘%:]
-plane about a local maximum ;< :ﬁ(ﬁm)‘ /~A’1 and ’j‘\’j are any two of
the 2nk coordinates. This two-dimensional ellipse outlines the maximum
extent of the error ellipse projected on the /@1 - 'A’j -plane as all

1

other components of A are varied. It is the set of points (X ,A")

for which Mox
max i§'(é3 = Ez .
varying all E

/ék where k#i,J
and Wil fy =X

awd By

& l >A:(:x)

Fig. 3a. Two-Dimensional Projection of the Error Ellipse

) -

If, in pa.rticular, li and j are taken to correspond to the real
and imaginary parts- respectively of a single Ak’ then this two—dimensionél
ellipse encloses the probable region of the complex number Ak in the
following sense. If Ak is constrained to occupy another (comple?c) c
point within the two-dimensional ellipse and all other Ak‘ are varied
to re-maximize the likelihood, then the likelihood will be lower than

. | :
?_&/IW% by a factor between ‘(—‘E and one.

The results presented in the next section will include 'error bars'
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which represent these two-dimensional real-imaginary error ellipses
for each Ak' The error bars for an Ak are the major and minor axes

of an ellipse twice the size of the two=-dimensicnal error ellipse

for Ak‘

5., Our Combination of the Newton-Raphson and Davidon Methods
Uéing thirty waves, the calculation of the second-derivative

matrix takes roughly four times as loné as the calculation of both
the function ﬁ; and its first-derivative vector. If a few hundred
or more events are used, then the matrix inversion_time is much
smaller than either of these times. The NeWton-Raphsonvstep therefore
takes five times as long as the Davidon step (in this paper, a
Newton-Raphson step indicates the set 6f Ak for which a new Newton-
Raphson variance ﬁatrix is calculated; the step following a Newton-
Raphson étep is the first to make use of the new Newton-Raphson
variance matrix). If the curvature changes much from point to point
in the stepping procedure, then the variance matrix will always be
somewhat out of date. We find it best to renew the accuracy of the
variance matrix periodically by taking Newton—Raphson steps. The
matrix‘obtained_from a Newton-Raphson step is retained and updated
. by subsequent Davidon steps.' Thg efficienéy of steps (change in
per step) is high for several steps after a Newton-Raphsoﬁ step.
Fig. 5 plots the increase in.ﬁr per step against the step number for
a typiéal fit. The dots indicate Davidon steps and the circles indicate
Newton-Raphson steps (calculations). The first dot after the circle
is the change in ?} for the first step that makés use of the new

Newton-Raphson variance matrix?

~

-All the fits we have done have the same general behavior as that in
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Fig. 5. The step size diminishes rapidly from the first to about the

tenth step. The step size for the next forty to eighty steps decreases
very slowly. During these steps the likelihood increases roughly
linearly and the A change radically. The Ak weave among each other
singly or in small groups (such as DS13 and DD13 together) in a
complicated pattern. By the end Qf these forty to eighty steps, the

rough nature of the eventual solution is established.

Finally forty to eighty additional steps are taken. The step
size diminishes rapidly during these steps and the solution shifts
by three or four standard deviations. The convergence during thesé
last steps is Quadratic: the change in.gﬁat each step is.roughly a
constant multiplied by the square of the change at the previous step.
The dashed line in Fig. 5 indicated quadratic behavior for a constant
of fifty, i.e. Wherei-‘?c_'% 50 (1._'- 3‘:_?_)2. Quadratic convergence
is expected for smooth fﬁnctions such as ours when using a fitting

method that explicitly calculates the variance matrix.

We terminate the fitting when the magnitude of the change in A
per step is less than 10'” Lél for four successive steps. This occurred
at step 122 for the fit of Fig; 5. The change of‘é per step is so
small at this point thatﬁgcould change by only a fraction of a
standard deviation in hundreds of additional steps. In fact, the
change in 4 will go to lO-lhlélif'the fit is allowed to continue for

I

twenty or thirty more steps.

Fig. 5 indicates that adopting even a much less strict criterion
for stopping cannot save many steps. The Ak are roughly one standard

deviation away from their final values at step 100 on this figure.
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fig. 6 plots the difference between the current value of ?f.and
its value at the maximum againsfrexecutipn time on the CDC 6606
computer. Several combinations of Davidon and Newton-Raphsoﬁ.méthods
are shown. A combination of the two methods 1s superiorito either

method alone.

Fig. 7 indicates the shape of the log-likelihood space in the
neighborhood of a maximum as two of the 2nk variableé are varied.
We have made_gbout thirty such two-dimensional slices with various
pairs of variables and the results in all cases were qualitatively

sim;lar to_this.

C. A Test Of The Fitting Procedure

From preliminary fits to our data, we have found a set of thirty-
four waves that approximate the event distribution fairly well. This
set of waves ‘and amplitudes was used to test the maximum-likelihood
fitting procedure. An artificial set of 6300 fake events was created
by generating events with a frequency proportional to pz(w) x d(phase
space). The fitting procedure was then applied to these events as

follows.

/
Ten thousand random "starting vectors' A were generated, and we

 then kept the five of these sets having the highest likelihood for the
6300 fake events. A separate sixty-wave fit was done to meximize thé
likelihood starting with each of these five sets. Four of the five

fits reached the. same maximum, This maximum was within errors of the
generating set A (bpth for the 34 non-zero Akand also for the 26 zéro

waves). The fifth fit resulted in a totally different maximum.

Finally, a 3bk-wave fit was done using those 34 waves with which
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the artificial events were generated. The resulting amplitudes agreed
well with the generating amplitudes. The value of'E} at the maximum

was 0.275.
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TV, RESULTS
A. The Data
We use n_p data from two experiments: an exposure at Berkeley
in the 72-inch hydrogen bubble chamber, and one at Argonne National
Laboratory én the 30-inch MURA hydrogen bubble chamber. The
Berkeley exposure consistgs of 200,000 pictures taken at 9 momenta

between 900 and 1200 Mev./c. This data was taken for an earlier

experiment and is described in Ref. 6.

The Argonne exposure was made in 1967 and consists of 500,000
pictures taken at 26 momenta between 550 Mev./c and 1600 Mev./c.

Ref. 7 describes this data.

The pﬂ+ data comes from Saclay where film from several laboratories
was analyzed. This data includes 10,000 events in the 1600 to 1800

Mev. region, The data is described in Ref. 8.

B. The Solution

At each of the six energies, fits were first done‘using the
full set of sixty combinations of waves and isobars. At each
energy the following procedure was carried out. First, 10,000
vectors A were generated at random. The likelihood for each was
calculated with a subset of §00 events. The twelve sets A having
the greatest likelihood were kept for use as starting vectors fpr
the likelihood-maximizing procedure. The twelve initial vectors.
converged to typically four solutions (local maxima in likelihood.)
These iocal maxima clustered into typically two groups; within a

group the maxima were very near each other, but between groups

e
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they were quite distinet. The statistical significance of the

difference in the values of ? for two solutions, 3-71 and ?2, may

it

- be estimated by comparing this difference with the standard deviation

of the difference fT(l- ?2, as defined by

NC
S(F-F) = L 2 ) (1ogsSG) - 10g 2500) - x )

c i=1

where X

i

NC
¥ Z Z ( log pi(wy) = log pg(w;) ). (15)
c i=1

This 6(361-3-’2) is the standard deviation of the difference
jl—j2 for different sets of events generated from the same distribution as
ours, i.e. events from other experiments equivalent to ours. If

-?]f >> > - ) then solution one may be assumed to have a
jl 2 1 2

statistically higher likelihood. (For this reasoning to be strictly

true, the uncertainty in the amount that g changes when the solution

is refitted to a different set of events must be much smaller than
8(301—3"2). Since NETr is a generalized chi square, it changes

by the amount mn, -l--Ier. Thus 6(?1-3;’2) must be much greater than

- . .
ﬁE_ . This is true in our case where ;—15 = 0.001 and g(?l-j‘;)xo.Ol).

The likelihoods for our solutions were usually all statistically

equivalent by this 6(3'{1-32) test.

The next step was to remove vzaves from each solution that were
not statistic;ally significant. The waves in each solution having
magnitudes no larger than their errors (calculated from the error
matrix) were removed first. The maximizations were done again ﬁth

the reduced set of waves. The process was repeated until no waves

were -statistically unimportant. This method of eliminating unimportant
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waves runs into trouble if there are large correlations among the waves.
To guard against this, the reduction of a set of waves was only considered
valid if the fUnctionlﬂﬂ-. = ngZi did not drop by much more than one
for each wave removed. Judging from our error matrix, our largest
correlations are roughly thirty percent and most waves have less than

fifteen percent correlation with all other waves.

The effect on the wave-removing procedure of cprrelations among
the waves may be visualized with the aid of error ellipses. The
dependence of the likelihﬁod on the magnitude of the i-th complex component
of A, |Ai|, and the magnitude of the j-th complex component, IAj‘,
is indicated by the two-dimensionsal error ellipsés in Fig. 3b. The

centers of the ellipses correspond to a local maximum.

'
v I v L0
e o

a) Uncorrelated b) Positive Correlation €) Negative Correlation

Fig. 3b. The Effect of Correlations on the Drop of Likelihood

The two waves in a) are uncorrelated. \Ai\ and lAjl each differ

-

from zero by their errors, JEii and!EJ.j . When Ai is set to zero,

af drops by L ana when A, is then removed,ézoagain drops by = to Ix_
(e J & e
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The waves in b) are positively correlated. Although each is

one standard deviation from zero as in a),Eé)only drops by just over

L when they are both removed. B

\[A

In c) the waves are negatively correlated. Here the likelihood i{
I : .
drops by'éﬁ_, more thag would be expected from looking only at ‘Eii _
and IEjj'

These considerations indicate that in géneral there may be several
different subsets of the sixty-wave set that satisfy the criterion that
subset o .
log;f is not lower than logA by more than the number of waves
removed. The intersection of these subsets will not necessarily

satisfy the same criterion.

- At each energy, our reduction process usually resulted in several

\

sets of waves, each set containing about twenty-five waves.

Chains of éolutions that were reasonably continuous from one
energy tovthe nexf were then looked for. The longest chains found
spanned tﬁree energies. As an attempt to produce a longer chain,
a subset of 24 waves was put together that included waves which

9

appeared to be important to solutions in most of the six energy bins.

All solutions at each of the six energies were restricted to
(or expanded to) this 24-wave set and the likelihoods re-maximized.
Just one chain was found that connected more than two energies. This
one chain connects all six energies and does so0 in é remarkably continuous
manner., The remainder of this paper presents this solution, called the

2h—wave solution.
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C. Kinematic Distributions

Four variables in addition to energy are required to specify
completely the kinematics of an event. We use two diparticle masses

and two angles. The diparticle masses are

Mﬂﬂ Mass of the nw diparticle

My iiFor 7~ incident: mass of Nﬁ; diparticle
For n dincident: mass of Nrn diparticle.

The angles are E)and @?, the polar coordinates of the incoming

pion in the special coordinate system given in Fig. 4. The X-Z plane
contains the three outgoing particle momenta; the outgoing nucleon
momentum is in the Z-direction; the Y-axis is in the direction of

—

Nf XTtZ £ where —ﬁ; is the final nuclecn momentum and

of the pion with the same charge as the incident pion. The phase-space

—
7

1f is the momentum

distribution of cos O is flat from -1 to 1 and the phase~-space distribution
of § is flat from O to 2. The phase-space distributions of Miﬁ and

Mﬁﬁ are flat within the physically allowed region. Parity conservation
introduces a restriction, namely the distribution of gvents is symmetric

about d§= .

In this section, kinematic distributions are presented for the
data and the.Zhdwave solution in the 1730 MeV energy bin. This bin

is typical; the results in the other five energy bins are similar.

" Figs 9a, 9b, and 9c plot the events in the 1730 MeV energy bin
in each of the three charge channels (given for example in Fig. 1).
Inside the large square are Dalitz scatter plots. The events in each
Dalitz plot come from a different bin in.‘@ and cos© . The bin in
<5 and cos® is indicated by the position of the small Dalitz plot

in the large square. The large square is marked in @and cos@; it



Outgoing Nuclecn

W

OVERALL CENTER-
OF -MASS SYSTEM

Incoming Pion

Outgoing Pion

Neta

Outgoing Pion °
—~

s

Tf”: has the same charge as the incoming pion,"’; .

-—’
’m{ ,—‘ﬁ;} , and N.;, the final particle momenta, all
lie in the X-%Z plane.

—
Ngis along the Z -axis.
—
The Y -axis is in the direction of Ny X The .

Fig. L, Definition of the Kinematic Variables and the Coordinate System
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is divided into 16 bins and the lower left corner of each bin coincides
with the lower left corner of its Dalitz plot. The Dalitz plots on the
top row contain the events of all four Dalitz plots directly below and
those in the right column contain the events of all plots to the left.

The Dalitz plot at the top right contains all the events.

The kinematic distributions predicted by the 2Lh-wave solution are
compared with the data in Figs. 1oa, 10b, and 10c. The scatter plots
of the previous figures are binned into Uxh= sixteen bins. The dashed
tombstones indicate the data in e?ch bin. The population is prbpqrtional
to the height (or width) of the tombstoﬁe. (The dashed histograms on the
top and right side of each small plot are again projections of what 1s
immediately below and to the left.) The solid tombstones and histograms

represent the distribution predicted by the model.

Figs. 1la, 11b, and 1llc present the same data and solution but

with the order of binning reversed.

Figs. 10 and 11 permit us to check graphically that the 2k-wave
solution predicts the distribution of events well in all areas of the
four-dimensional kinematic space in all three channels. For a quantitative
check, Table 1 presents chi-sguares corresponding to the four-dimensional
histograms. Chi-squares are calculated for different combinations of
the four kinematic vériables. All fifteen possible combinations are
taken; each chi-square is labeled by a list of the variables simﬁltaneously
binned. The column labeled '#bins' indicates the number of non-empty
bins. The last line of Table 1 presents chi-squares for the case where
each of the four variables is divided into four bins. The number of

bins for these chiésquares ig slightly 1ess‘than the possible 256

because of empty bins. The sum of the three chi-squares on this last
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line is called the 'total chi-square', 7(,‘_
The chi-squares approach their expected values when the number of
bins increases. The model is best at following the large variations
in the event distribution over the four-dimensional space; it lacks the

higher degree of precision necessary to obtain good chi-squares in the

cases of few bins with many events in each bin.

Table 2 lists the values of the total chi;-square X:for all six
energy bins. The ’X: for the highest energy bin is significantly
greater than t_he others. This probably reflects the fact that more
-partial waves contribute to the reaction as the energy increases.
The values of ? are also listed. These agree with
the value of? found for the artificial experiment described
earlier (in section TIIC). This indicates that our 24-wave solution
is a reasonable result of the maximum-likelihood analysis and that
we are using roughly the proper number of waves for ,the quantity of

data that we have.

D. Partisl-Wave Cross Sections

An incoming partial wave is defined by the quantum numbers
L, I, and J. Twelve incoming partial waves are included in the
twenty~-four waves of our solution_. The model predicts a ci‘oss
section for each of these partial waves. The cross section for

the partial wave (L,I,J) in channel c is

™
n

I3 /’d’W‘LL Z Z A, (W) (16)

L 2-
h - =
phase-space u=1 kéerJ

where the sum over k includes just those waves with incoming

- quantum numbers L, I, and J,
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We define ::LIJ to be the sum of };EIJ over all five possible

Nrt-w Nntt charge channels,

- 0.0
pr—-Pan 7

- + -
pt —»nit T
Pﬂ-—vpﬁ_ﬂo

+ + O
Pt DN T

+ + +
P —pni 1T .,

=

c=2

c=3
c=4

'

=5,

Oéa)

This sum is scmewhat unconventional since two initial states are summed

over (it will be seen later that this sum simplifies the mathematics by

permitting cross terms to cancel).

2
T T
c=1

E:LIJ =

Eiils defined as the sum over L and J of z&JJ:

3, -

;g; }ELIJ )

Relations among the vector-addition coefficients for isospin are such

that ZI may equivalently be written

g1 =

>

3

c=1

f L

phase~space

)

p=l

Y e,

KES,

2

(17)

where the sum over k includes those waves with isospin I. The cross

terms in this equation between waves with different L or J add to zero

when summed over ¢

Finally,

TOTAL,
)X

(compare with Eq. 16).

is defined as

TOTAL
z

The same vector-addition relations imply that

TOTAL
P

5

3

c=1

1]

The overall scale for our model is adjusted

}EI

Il
M-

so that

v 2

1

P

TOTAT

(18)

equals

s
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our experimentally known value for the sum of the inelastic cross

sections over the five charge channels.

Fig. 12 gives our experimentally known EETOTAL/over a large
enérgy range including the range of this experiment. The experimentally
known values of :EI are also given for completeness. The effect of

the Dl and F 1N resonances in our energy region is clear.

5 15

Estimates of the ::IIJ may be obtained from elastic experiments
by assuming that each partial wave of nN feeds either =N or nxlN. The
> 7y s then n%L(JP;;)(l—’}ZL) where 7 is obtained frqn elastic
partial-wave analysis. The above assumption 1s reasonabie since the
cross section for the states pﬂ- and pﬁ+ to proceed to other than
Nt and Nrxt is less than two millibarns (out of ~30 millibarns).

Fig. lé compares the E:LIJ partial-wave cross sections predicted by
our model with those predicted by elastic partial-wave analysis. It
should be remembered that these cross sections are the sums of those

for both the pr~ and pr. initial states.

The elastic partial-wave analysis results in Fig. 13 are an averagé
of the results of several groups7. The thick error bars in the figure
indicate the root-mean-square fluctuations of the individual partial-

wave analyses.

The dots in Fig. 13 are the values predicted by our model. The

thin error bars are errors estimated from the error matrix.

In most cases our results agree qualitatively with the elastic

partial-wave analyses. The gréatest disagreement is for the F

35

~wave, Here, there 1s also the largest disagreement among the results

of the different partial-wave analyses.
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E. T - Matrix Elements

In Eq. 2 we introduced T-matrix elements Tk but immediately factored
out the kinematic part xfm (see Eq. 4). We did our fitting and continuity
ch;cking with the Ak because these are expected to vary more slowly with
energy (since they do not contain such things as the production

centrifugal-barrier factor). The T-matrix elements are useful for

display purposes since they are more simply related to the cross section.

The T-matrix elements tk are complex numbers having the same phases
as the corresponding Ak' The amplitudes, however, are re-scaled as
follows. If the amplitude Ak contributes the amount' SE to the cross

section in channel c¢, then

wK (o+y) [ 2 =2 . (19)

c c
With ﬁhis definition of the t;, the unitary circle corresponds to\{Kl=3%(;I,

J is the total spin and I is the isospin of the k-th wave.

GS is the absolute value of the vector-addition coefficient for isospin

T
I in charge channel c : T Gg _e= 1 2 3 kL 5
1/2 513 J’%? ° 0
3/2 {3 5550 )
¢ indexes the charge channels as in Eq. 16a. (20)
The exact relation between Ak and t; is
L 2
OTOTAL Z } chm (w) ’ at
t; - Ak . — p=1 pfase-space
) My et K (T+1) (o1)

O’ TOTAL P

5
where = j{;(fc is the sum of the experimentally
c:
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known cross sections (given for example in Fig. 12).

To avoid the necessity of listing the t;'separately for each of
the incoming and outgoing channels, a 'total' T-matrix element tk

(without the superscript c¢) is defined having the same phase as each

to and having magnitude such that ‘t£|2 = }:

k
c=2,3,kh

Here the sum extends over the three channels ¢ in which we have events:

cl2
e . ()

- 4+ -
pt -wnn x

- -0 (22)
PR — DR X
+ + 0
P DR T .
Combining Eqgs. 20 and 21, the unitary circle for tk is
]
\ ;‘A% =0.68 1if wave k has isospin 2.
t | = ' (23)
} k 4 % = 0.65 if wave k has isospin 'g—_ .

The reader is cautioned that this definition differs slightly_from the

usual definition that the unitary circle is at éi .

Figs. 1l4a through 14f present the tk for the 2h-wave solution

at each of the six energies. The overall phase at each energy is
not determined by the fits. Anticipating continuity, we adjust the overall
phase of the solution at each energy in the following way before plotting

in Figs. 14 (and 15). The phase at each successive energy j was adjusted

to minimize ﬁhe sum 2
ST ) - G , 3=2,... 6.

However, two incoming waves, and Fl5’ are known from elastic partial-

D15
wave analysis to resonate within our energy region. The waves having
these incoming gquantum numbers were therefore excluded from the sum

over k.
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After this adjustment is done, there is still one érbitrary overall
phase; this phase i§ fixed for the purposes of display by changing the
phase of all solutions at once so that wave one of the solution in the

1650 MeV bin is real (see Fig. 1lba, wave /\PP11).

As discussed on pages 17 and 18, the error bars of Fig. 14 indicate
 the major and minor axes of the two-standard-deviation error ellipse.
A larger uncertainty in phase than in amplitude appezrs generally to

be the case.

In Fig. 15 each tk is plotted individually agalnst energy. Those

waves k contributing to the incoming F._. and D15 partial waves are

15

specially indicated.

The most striking feature of this solution is its continuity.
Virtually all of the waves appear to be stationary in phase over the
entire 160 MeV range of the analysis. This is surprising because one

would expéct that waves k fed by the F15 and D15 partial waves should

move in a counter-clockwise direction with increase in energy. As

indicated on Fig. 15, there are three waves k fed by FlS and two fed

15 The FlS Nt resonance is centered at 1690 MeV in the elastic

channel with width P = 125 MeV. The D

by D
15 Nnt resonance is at 1675 MeV
in the elastic channel with  width r1= 145, The contributions of these

resonances to our inelastic channels i1s appreciable as may be seen in

Fig. 13.
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V. CONCLUSION *

We have looked at considerable length for maximum-likelihood
solutions to our Isobar Model that are continuous over our 1640 to
1800 MeV energy region. Despite the generality of the model, only
one candidate has appeared, the 24-wave solution. This solution is
stable in that waves may be added to it or removed from it a few af
a time without greatly altering the position of the likelihood maximum.
Our 2Lk-wave solution matches the kinematic distribution of events
well and makes reasonable predictions for the partial-wave cross
sections. But our solution is more continuous than would be desired.
Where rapid phase changes are expected because of resonances in the

elastic channel, there is almost no phase change at all (at least

relative to the other waves fed by non-resonant partial waves).

If the F._ and D, _ incoming partial waves were coupled to the

15 15
Nt final state only through their resonances (described in the last

section), then the phases of all five waves in our model fed by Fl5

and D15 should increase by about>lOO?as the elastic Nr phases do, from

the low to the high end of our 160 MeV energy region. The apparent
lack of thig effect may be due in part to non-resonant components in
the F15 and D15

a 30 or 40 percent non-resonant background appears to be present in

intermediate-state formation amplitudes. From Fig. 13,

D15 and in Fl5' This. could reduce the expected phase change to about

60°. It is also possible that the tk,for all waves slowly increase in

phase with increasing energy by about 20o per 100 MeV. This would reduce

: o
the observed phase change in our Fl5 and D15 waves by another 30 .
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These explanations are too qualitative and incomplete to bé satisfying.
The results of our fits appear to be meaningful but we do not completely |
understand them. Work on this project is continuing and we expect

eventually to cover the energy region 1500 to 2000 MeV. Ref. 1l gives

the next proposed piece of literature from this experiment.
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APPENDIX
COMPUTER UTTLIZATION

The complexity of the model and the large number of events
necessitate the use of special computer methods. Computations
are brgken into series of procedures with the intermediate results
stored on tape. This gnables one to alter a portion of the formulae
without ré—doing the whole calculation. To achieve flexibility
a group of two large =md roughly eight smaller programs has been
created. 'These programs pass data among each other and to later
runs of themselves by writing and reading magnetic tape and by

punching and reading cards. The tape formats and card formats are

uniform within the group-

A flow chart indicating the programs in this group (called the
Rumble Group) is given in Fig. 16. The program TRIA?’Z' generates
the complex ﬁumbers XEM for each event. vThese‘are represented by
8nk real nuﬁbers which are packed two per'60-bit computer word and
stored on tape. The packing consists simply of retaining the most
significant 30 bits of the CDC 6600 floating-point representation of
each number and placing these alternately in the upper ana lower '
30 bits of the 60 bit words to be written on tape. This packing
reduces the number of tapes required and increéses computing efficiency -
by reducinﬁ the number of memory fetches during subsequent computations
involving the Xﬁu.

Normalization Integral

To obtain the normalization integral Rc, gseveral intermediate steps

are taken., The following relation makes it possible to obtain R® by
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contrecting a matrix Wo. , (defined in Eq. 24 below) with the vector
[Ak]' W;k' does not depend on the numbers Ak so it is calculated

only once.

where

i

k4
¥ oy
Wy o Z / Xﬁu(w\ X;.u(vﬂ dw (2k)

u=1 phase-space

The integral of Eq. 24 is done by the Monte-Carlo method of

ki

defined below Eg. 4 but before/charge projections are made) are

generating events at random in phase space. Parameters XI (as

calculated for each Monte-cer}o event by the program TRTIA2. Here. the
superscript I indicates that the variable depends directly on total

igospin and is independent of any particular charge chennel. The

*C. and‘ch will be obtained later from.Xi“ and ng,. The natrix
I . i - . I IX
W. is obtained by averaging the product Xku Xk'u over the Monte-

[S]

kk'

Carlo events. This is done in the program KREBS.

Charge Channel

The X;u for a given P or(" wave,'k, depend on the charge channel
¢ only through multiplication by a real vector-addition coefficient
corresponding to the decomposition .of the'ineoming isotopic-spin state
into the isotopic spins of the final resonance and third particle.

This is alsc true forllxwaves if the addition of the third and fourth
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terms on the right of Eg. 3 is deferred. To reduce computation,

therefore, the special charge~channel-independent set Xiu is generated

for the Monte-Carlo events. The deferred sum is done and the vector-

addition coefficients are re-inserted after Wik‘ ig calculated to obtain

Wﬁk‘ for each charge channel c. The program STRETCH calculates these

c T
Wkk' from the wkk"

statistical accuracy by averaging matrices we , obtained from separate

The program MERGE makes it possible to improve

sets of Monte-Carlo events.

Starting Values for the Fits

The program SEEK generates starting sets of Ak at random: the real
end imaginary parts of each A_ are selected at random between (typically)
-1 and 1. For each set of Ak a quick estimate is made of our function
f; using 600 of the events in the energy bin. Use of this small
subset sacrifices accuracy of‘%¥ for computational speed. The sets of
Ak giving the highest value of‘f}‘are punched on cards. SEEK will also

make one- and two-variable plots of 37’, such as Fig. 8.

Stepping:Procedure

The meximum~likelihood stepping procedure is done by the program
RUMBLE. The majority of computer execution time 1s spent in this program.
The usér specifies the set of waves to be used before each RUMBLE run.
This set must be a subset of thevwaves on the real-event tape and in
the normalization matricgs Wik,. (Our tapes and normalization matrices

contain the sixty waves given in Fig. 2.) RUMBLE copies the X;u for the

. user-specified waves k from the real-event tapes to a scrateh file.

The same packed format is retained.

For each stép in the fit, RUMBLE reads through the scratch file

event by event performing the running sums for if}(Eq. 7),‘75F(Eq. 8),
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( and VV' jlif--it is a Newton-Raphson step). Almost all of the execution

time of RUMBLE is spent doing these running sums. Four machine-language

subroutines in RUMBLE do the necessary calculations. These
subroutines are constructed to take maximum.advantage of parallel

unit operation on the CDC 6600 computer.

For each event, pc(w§) is calculated from Eq. 4. Non-normalized
addition is done within the sum over k. Evaluation of this equation
requires roughly 12n memory fetches, 16nk additions, and 16nk

multiplications. The execution time is 12nk microseconds.

The derivative vector of pc(wg\ is calculated using Eg. 7.
The portion within large parentheses is available from the calculation
of pc(wg). Updating the 2nk components of the running sum for

requires 12n_ memory fetches, 16n_ additions (agéin unnormalized),

k

16nk multiplications, and 2n

k

X memory stores. The execution time

ig 18nk microseconds.

During Newton-Raphson steps, the upper triangle of the matrix
M is calculated. TFor each event, updating the running sum for
. . . 2
this upper triangle requires roughly 2nk memory fetches,

(normalized) additions, and 2n-

2nk2 multiplications, 2n 2 .

k
memory stores. The execution time for this is 3nk(nk+20\

microseconds.

Histograms
The progrem HSCRAB makes histograms of event population as a
- function of single kinematic variables. The curve representing the

prediction of the model is superimposed and chi-squares are calculated.
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The program RAWMEAT mekes four-dimensional and two-dimensional scatter

plots and histograms. Figs 9, 10, and 11 were made with RAWMEAT.
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Table 1. VARIOUS CHI-SQUARES FOR THE 24-WAVE SOLUTION AT 1730 MEV

pepnn " DR DT 0 pnf;grr 70
Varisbles Binned _ x° #Bins  x° #Bins X2 # Bins
M 29.2 10 28.1 10 34.6 10
M 21.8 12 23.6 12 31.6 12
cos @ 21.5 10 45.9 10 18.2 10
¢ 16,4 12 19.0 12 27.0 "12
My M 52.5 15 4.6 15 W8.3 15
M cos © 5.4 ko 107.9 ko 63.5 39
Mo b 6.8 18 53.8° 18 87.L 48
M. cos @ 72.8 ko 79.3 ko 61.8 Lo
M ¢ 69.3 L8 67.1 48 71.3 48
cos 8 & 7.5 16 36.4 16 | 27.9 16
M cos @ b 195.1 192 205 L4 189 180.1 185
My coé 8 o 14,1 151 200.4 157 ©137.6 1kk
My M0 206.8 179 184.8 178v 188.5 171
My M cos 6 201.2 146 ‘ 189.5 148 173.9 1hke
My M cos 6 ¢ 236.8 228 260.2 229 210.8 213 -

Table 2, LOG-LIKELTHOODS AND 'TOTAL' CHI-SQUARES FOR EACH ENERGY BIN

Energy Bin Log & F (c1/n gy X2 # Bins
1650 1h92.7 .22982 © 699.1 633
1670 | 2654.0 .26752 - 817.h 684
1690 1588.7 .23852 733.0 666
1730 2590.2 .33771 | 685.3  666.
1750 1305.1 27281 663.0 6Lg

1780 2773.4 .32129 1029.2 689
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any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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