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Abstract

Scalar and Spinor Excitations in a Ferromagnetic

Bose-Einstein Condensate

by

George Edward Marti

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dan M. Stamper-Kurn, Chair

At low temperatures, the thermodynamic properties of a many-body system are determined
by the low energy excursions from the ground state. In quantum degenerate rubidium, the
low energy excitations are phonons—phase and density modes—and magnons—spin modes.
This thesis reports on the construction of an ultracold rubidium apparatus and techniques to
create and image phonons and magnons. We propose and study matter wave interferometry
of phonons in a ring trap as a potential compact rotation sensor. Precision measurements
of magnons allow us to determine the magnon dispersion relation, including a gap induced
by magnetic dipole-dipole interactions.
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an experiment1, Enrico Vogt, Andrew MacRae, Gabe Dunn, Sean Lourette, Holger Kadau,
Fang Fang, and Eric Copenhaver. I have spent more hours working with Ryan Olf than
with anyone else, and his constant good humor and optimism helped us get through the
difficult years of experimental frustration. I am proud that we finally got to do science with
our machine.

1The secret is brass, epoxy, elbow grease, and good coffee.



ACKNOWLEDGEMENTS viii

Of course, I owe Dan Stamper-Kurn singularly special recognition for making an
indelible mark on my development as a scientist. While I may never achieve his deep insight
or keep pace with his expectations, he has taught me to question my claims and keep true
to the spirit that science is curiosity mixed with skepticism.

Most of all, I would like to thank Misa Sugino, my constant companion for all the
years in Berkeley. Through the frustration of graduate school, the late nights in lab, the
unreasonable time spent writing this thesis, and the countless times I was late to everything,
she supported and encouraged me.



1

Chapter 1

Introduction

My doctoral project’s initial purpose was to explore trapped atom interferome-
try by improving on the magnetic ring trap developed in Gupta, et al. [1]. In an ideal
realization, the ring would serve as an unterminated waveguide in which atoms could coher-
ently propagate “forever.” However, the ring trap demonstrated in Gupta, et al. had large
angular perturbations that would have compromised its application in atom interferometry.

Our experiment was intended as a ‘second generation’ machine that would use
ultracold lithium and a microfabricated magnetic ring trap. We expected that the micro-
fabricated trap would produce smoother potentials and that lithium, because of its relatively
low mass and high recoil energy, would be less sensitive to remaining imperfections of the
potential. However, even after a monumental effort by Tom Purdy and Ryan Olf, we were
unable to produce a sufficient number of samples of the new trap (Fig. 1.1).

Compounding our problems, a critical issue arose with the magnetic transport
system that conveyed atoms to the ring trap. The transport had to guide atoms through a 9
mm gap in a holding arm designed to support the microfabricated ring trap. Unfortunately,
the transport was misaligned with, and crashed atoms into, the holding arm.

With too few microfabricated samples and a transport system that needed to be
redesigned, we decided to abandon the original plan. Without the trap, we had no clear way
to create a quantum degenerate gas. For a backup plan, I purchased a far too cheap 1.5 W,
532 nm laser that we hoped could produce an optically plugged Bose-Einstein condensate
(BEC) [2]. The poor spatial mode and low power of the laser jeopardized that attempt.
Ultimately, we implemented a hybrid trap that combined a magnetic trap and an attractive
light potential and finally allowed us to create a BEC [3]. While most of our experimental
setup is similar to many others, I focus on new or interesting aspects of our apparatus in
Ch. 2.

In search of an alternative idea, we built a bichromatic optical ring trap as a
substitute for the magnetic ring trap for which we had long hoped. It was far easier to
implement this bichromatic optical trap, with an attractive light potential to pull atoms into
a disk and a repulsive light potential to push atoms away from the core, than to implement
the aforementioned microfabricated trap. Experiments with phonon interferometry are
described in Ch. 3.

One side project with the optical ring trap involved rotating atoms by dynamically
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1 mm

Gen. I

Gen. II

Gen. III

Figure 1.1: Three generations of ring traps. Gen. I refers to the original circular waveguide
used in [1] with a 1 mm radius. Our plan was to develop a second generation experiment
with much smoother current carrying wires and reduce the radius to 100 µm. Photos on
the right show an edge of the current carrying structures. The ring trap implemented in
this thesis was all-optical and tiny, with a 16 µm radius.

deforming the magnetic field (Sec. 3.6). In the process of testing this idea, we created a
spin vortex as demonstrated in Ref. 4 and began to think about spinor physics. Spinors
are a topic with which the Stamper-Kurn group has a great of deal experience; we were
able to get this spinor setup up and running quickly, largely by doing exactly what Jennie
Guzman told us to do [5]. Our main innovation with this spinor machine was to develop
a new imaging technique that allowed us to take high signal-to-noise images of the spin
density. Experimental details for our spinor setup are discussed in Ch. 4.

I find clean and simple experiments compelling, and spinor condensates afford
many such possibilities. While looking for new physics with spinor condensates, we realized
that magnons, the simplest magnetic excitations, had never been measured in a spinor
condensate. 1 We decided to measure the dispersion relation and other properties of
magnons. The experiment was simple and immediately yielded excellent agreement with
theory. As happens in these situations, we found ourselves measuring more and more
carefully until we reached a precision that finally disagreed with theory. It remains to be
seen whether the fault is with theory or with a subtle experimental error. This adventure
is discussed in Ch. 5.

1This point was brought up by Hitoshi Murayama who was then thinking about the number and type of
gapless excitations that can be found in systems with multiply broken symmetry, like a spinor condensate
[6].
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Chapter 2

Experimental Apparatus

2.1 Overview

The bulk of the experimental apparatus (Fig. 2.1) is devoted to bringing rubidium
atoms to quantum degeneracy along the circuitous path shown in Fig. 2.2. Each experi-
mental cycle requires 20-40 seconds to cool atoms from above room temperature to below
a microkelvin through a combination of laser cooling and forced evaporative cooling. These
details are well described in a number of previous publications, most notably Ref. 7 for
laser cooling, magnetic trapping, and evaporative cooling, and Ref. 3 for optical trapping,
evaporative cooling in an optical trap, and oven design. In addition, the optical lattice
experiment at Berkeley was built in parallel with ours and shares many details [5].

All alkali atom BEC experiments use a magneto-optical trap (MOT) to rapidly
collect and cool atoms from a slow source1. We use a Zeeman slower designed to slow rubid-

1Exceptions in other systems include atomic hydrogen [8], metastable helium [9], and solid-state BECs

G
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Figure 2.1: Schematic of the vacuum chamber. Simultaneous atomic beams of rubidium
and lithium are generated from the diffusive oven through a common nozzle (left). The
beam passes through a differential pumping section and enters the Zeeman slower, where
it is slowed by scattering photons from lasers that oppose the atomic beam. Slow atomic
beams exit the Zeeman slower and are captured by the MOT. The atoms are evaporatively
cooled in a magnetic and then optical trap to reach quantum degeneracy. The schematic is
to scale, including each individual winding of the Zeeman slower.
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Figure 2.2: Atoms are cooled to quantum degeneracy by a circuitous path through phase
space. Calculated phase space densities assume an ideal gas; they are incorrect for the
rubidium metal (open black circle) and BEC (open green diamond). Beam refers to the
atomic beam immediately in front of the nozzle. The phase space values in the optical trap
were for marginal conditions in our original setup.

ium and lithium simultaneously [10] as a source of slow atoms for the MOT. Once we have
collected atoms in the MOT and compressed it, we trap the atoms in a magnetic spherical
quadrupole trap and begin forced evaporation [7]. Microwaves tuned near the 6.8 GHz hy-
perfine frequency of rubidium remove the hottest atoms and cool the magnetically trapped
sample through forced evaporation. At a phase space density of 10−3, atoms are captured by
an optical dipole trap [3, 5] and continue to evaporate to create a Bose-Einstein condensate
(BEC).

2.2 Diffusive Oven

Before we can laser cool the atoms, we must introduce them to the UHV chamber.
Some care must be taken when combining a bright source of high vapor pressure atoms, like
rubidium, with the stringent low-pressure requirements of an ultracold atom experiment.
Like many other experiments, our solution is to use a relatively high pressure diffusive
oven to emit a beam of alkali atoms, slow them with a Zeeman slower, and capture them
in a magneto-optical trap (MOT). This solution allows us to physically separate the high
pressure region, with 10−3 torr of rubidium, from the <10−11 torr science chamber.

The two-element diffusive oven is based on a design on the MIT sodium-lithium
oven [11, 12]. In general, we want a density of around 1013 cm−3 (3–5 × 10−4 torr) in
the oven to generate a bright atomic beam. The chief design challenge is that rubidium
and lithium reach this vapor pressure at very different temperatures, 115◦C and 450◦C
respectively. Our design separates the oven into a lower temperature rubidium chamber
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that feeds into a higher temperature lithium chamber, where the two elements mix and exit
through the same nozzle. Details can be found in Ryan Olf’s thesis.

2.2.1 Nozzle

We generate bright, collimated beams of rubidium—and occasionally lithium—
with a diffusive oven and nozzle. A reservoir is heated to create a substantial pressure of
the alkali atoms. A small fraction of the atoms leave as an atomic beam when they reach
the nozzle, a series of small tubes at the end of the oven. While most of these details are well
documented in the literature [11, 13, 3, 14], the geometry and flux is an important design
parameter and our use of a bundle of nozzles is slightly different from previous groups.

The dynamics of gas flowing through a chamber depends on whether a particle is
more likely to encounter another particle or a wall of the vessel. The two limiting cases are
the molecular flow regime, where the mean free path is greater than the size of the chamber,
and viscous flow, where the mean free path is smaller than the size of the chamber. The
flow in the UHV chamber is well within the molecular flow regime. In the diffusive oven,
the mean free path is about a centimeter and therefore in the viscous regime, but the nozzle
itself is small enough that molecular flow estimates are valid.

The conductance and flux of an atomic beam through a bundle of small tubes,
like we use, is the same as for a single tube with the same open area and aspect ratio.
The exception is that the smaller tubes can be operated at a higher pressure before flux
diminishes: the flux is proportional to density until the mean free path is on the same order
as the length of the tube, which occurs at a higher density for shorter tubes.

To estimate the beam flux, we need to know the phase-space density of a classical,
ideal gas with number density n0, mass m, and temperature T (kB is the Boltzmann
constant).

n(~x, ~p) = n0

(
1

2πmkBT

)3/2

e−|~p|2/2mkBT

The number of atoms exiting through a tube (length L, radius r, area A = πr2,
and half-angle θnozzle = r/L) in a time t for a momentum class ~p is proportional to the
number of atoms in the volume a distance |p|t/m of the aperture. A little geometry shows
this volume is (A|p|t/m) cos θ, where θ is the angle between the tube axis and ~p.

N =

∫
d~p d~x H(|~p t/m− ~x|)n(~x, ~p)

=

∫ ∞

0
p2 dp

∫ θnozzle

0
dθ

∫ 2π

0
dφn0

(
A cos θ

pt

m

)(
1

2πmkBT

)3/2

e−p2/2mkBT

= n0A

√
kBT

2πm
(1− cos θnozzle)

≈ 1

8
n0Atv̄ θ

2
nozzle v̄ =

√
8kBT

πm

H is the step function. It is common to define the conductance as C = Ṅ/n0, with units
of volume per time, which does not depend on the particle density in the molecular flow
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Figure 2.3: Schematic of flow through the diffusive oven nozzle. Atoms that pass through
the nozzle without touching the walls form a tightly collimated beam with flux Cbeamn0.
Most atoms that leave the nozzle do so after multiple bounces on the wall. The flux Ctotal

is higher, but the flux is less directed. These two conductances are limiting case of the true
angular distribution function of the beam.

regime [15].

Cbeam =
1

8
Av̄ θ2nozzle (2.1)

The conductance towards the MOT, CMOT = Av̄θ2MOT/8, depends on the half-angle θMOT.
For many tubes in parallel, the conductances add and we can treat A as the total area of
the nozzle, summed over the individual tubes.

The total flux through the nozzle must include trajectories where atoms make
multiple bounces (see Fig. 2.3). Fortunately, a calculation of the flux in this regime has
been conducted for several geometries, including long cylindrical tubes [15]. For Ntubes

tubes with total area A = Ntubesπr
2,

Ctotal = Ntubes
2πr3

3L
v̄ ≈ 2

3
Av̄ θnozzle (2.2)

This type of flow scales rather differently than the flux in the beam we calculated above:
the conductance scales with A3/2 (for fixed length) or θnozzle (for fixed area).

Armed with these formulae, we can make a few statements about the desired
design of the nozzle. We might expect that, for fixed nozzle area, we want to have a highly
collimated beam by keeping θnozzle small. In fact, the fraction of the flux in the beam
decreases as we more tightly collimate the beam as Cbeam/Ctotal ∼ θnozzle. However, the
fraction of atoms headed towards the MOT, CMOT/Ctotal ∼ θ2MOT/θnozzle, increases with a
tighter collimation as long as θnozzle > θMOT. As common sense suggests, we want to keep
θnozzle small but still larger than θMOT. If θnozzle < θMOT, the fraction of atoms headed
towards the MOT decreases and the oven becomes less efficient.

Initially, we loaded the oven with rubidium and lithium and used a nozzle consist-
ing of hundreds of tubes with an inner diameter of 160 µm. With this setup, we operated
simultaneous 87Rb and 7Li MOTs [10]. For the experiments described in Ch. 3–5, we instead
used an oven loaded with only rubidium and a nozzle of 14 tubes with r = 0.5 mm, L = 1 cm,
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Figure 2.4: Depletion of the lithium atomic beam by rubidium. (top) The rubidium
beam flux greatly increases with reservoir temperature, as measured by fluorescence of the
atomic beam in the MOT chamber. At high rubidium density, collisions in the nozzle reduce
the forward flux once the mean free path approaches the nozzle length. The solid line is
proportional to the vapor pressure of rubidium. (bottom) The lithium flux, as measured by
the relative MOT loading rate, decreases for increasing rubidium pressure above 180◦C. The
line is a guide to the eye. The lithium density and reservoir temperature are held constant.

and A = 10 mm2 at a temperature of 200◦C. This geometry should have a collimation of
θMOT = 1/100 and θnozzle = 1/20. We expect Cbeam = 10−3 L/s, CMOT = 4 × 10−5 L/s,
and Ctotal = 10−1 L/s. We operate the rubidium reservoir at 115◦C at an expected density
of 1013 cm−3 [16]. The flux should be 4× 1011 s−1 towards the MOT and 1015 s−1 in total,
with a lifetime of 1 year of continuous operation for a 5 g ampoule of rubidium. These
calculations are consistent with our experience.

At higher pressures, the nozzle is no longer in the molecular flow regime. Assuming
a rubidium-rubidium cross section of σ = 14 × 10−14 cm2 at room temperature [17, 18],
the mean free path is λmfp = (nσ)−1 ≈ 1 cm is on the order of the length of the tube.
For higher pressures, when r < λmfp < L, we enter the Knudsen regime where flow is
between the usual molecular and viscous flow limits. A rough estimate is that the effective
length of the nozzle is reduced to λmfp and collimation to θnozzle = r/λmfp. Thus we expect
diminishing returns when increasing the reservoir temperature. The effect is particularly
problematic in the rubidium and lithium oven, where we observe a decrease in lithium flux
for increasing rubidium density (Fig. 2.4).

2.2.2 Differential Pumping

The two-element oven suffered from high pressures of hydrogen, most likely due
to hydrogen dissolved in the lithium [19]. In our original design, the high load of hydrogen
from the oven increased the main chamber pressure. We added a differential pumping stage
(shown in Fig. 2.5) to decrease the pressure of hydrogen.

Differential pumping works by restricting the flow between two chamber and ag-
gressively pumping the lower pressure side. For a restriction with conductance Ctube and
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of the cold surfaces for rubidium (orange). For more details, see the complete diagram in
Fig. 2.1. (Right) The two-element oven and differential pumping stage with a glimpse of
the Zeeman slower to the left.

pumping speed Cpump, the ratio of pressures between the two chambers is Ctube/Cpump,
where we assume the entire gas load originates in the first chamber and Ctube � Cpump.
For instance, between the oven and the Zeeman slower, we added a tube with a 5 mm
radius and 130 mm length, which has an estimated conductance of 3 L/s for hydrogen, and
an ion pump with approximately 100 L/s pumping speed for hydrogen. We would expect
that the pressures of the two chambers has a ratio of 30. By repeating this scheme with
three constrictions with three pumps, we can maintain a very low pressure for the science
chamber even with a rough vacuum in the oven.

2.2.3 Cold catcher

Nearly all (1 − Cbeam/Ctotal ≈ 99%) of the rubidium emitted by the nozzle exits
at large angles. Over the course of several years, several grams of rubidium flow into the
oven chamber. We pump the rubidium with a cold surface, a contraption of aluminum and
copper that we cool to below −10◦C. The low temperatures reduces the rubidium partial
pressure from 3×10−7 torr at room temperature to below 10−8 torr [16]. The lower pressure
allows the ion pump to last longer. Regardless, we find that the ion pump is damaged by
rubidium over a couple years of operation.

Once the oven inevitably runs out of rubidium, one must take care opening the
chamber to atmosphere with a large quantity of rubidium present. Humidity causes the
rubidium to melt and potentially catch on fire. After several designs, we settled on a cold
catcher assembly with a removable cup (Fig. 2.6), inspired by the cavity QED experiment
[20]. The cup surrounds the nozzle and captures nearly all of the rubidium. Four grooves
on the front of the cup allow us to unscrew the cup and immediately place it in mineral oil
before a fire can start. The rest of the chamber is coated in a thin layer of rubidium that
can be removed by spraying it with methanol.
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(a) (b)

(c) (d)

Figure 2.6: Cold catcher cup, (a) empty and (b-c) very full. Most of the rubidium atoms
(>99%) that leave the oven sticks to this cup. It can be removed by unscrewing it with a
tool that slips into the four grooves around the cup. When exposed to air, the rubidium
changes color, heats up, and flows, which makes the cold catcher cup runneth over. (d) The
shutter assembly seen from the top. The cold catcher cup is visible to the right.

2.3 Two-element Zeeman slower

The MOT is incredibly efficient at capturing a dilute source of ∼1 K temperature
atoms and producing a dense, sub-millikelvin ensemble. The purpose of the Zeeman slower
is to reduce the speed of the hot atomic beam, with a mean speed of around 300 m/s, to
below the 30 m/s capture velocity of the MOT. A good discussion of Zeeman slowers can
be found in Ref. 21, 22, 23. The design parameters for our slower can be found in Ryan
Olf’s thesis and Ref. 10. The following discussion will briefly introduce the main concepts
and present data characterizing our slower.

Atoms are slowed by spontaneously scattering light from an opposing laser. For
each scattering event, an atom changes its momentum by h̄k (k = ω/c is the laser wavenum-
ber) when it absorbs a photon from the laser, and has no net momentum change when it
spontaneously emits the photon in a random direction. However, an atom’s random re-
emission of light causes transverse heating and the atomic beam to bloom.
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Figure 2.7: Simulated and measured atomic beam velocity. (a) Simulations of the classical
trajectory of the forward beam velocity with position (black lines). Fainter lines represent
lower relative flux. The red dashed line marks the resonant velocity in Eq. 2.4. Without
heating, the atomic trajectories are compressed to a few linewidths below the resonant
velocity (Eq. 2.4). (b) Measured beam velocities and MOT loading rate as a function of
slower current. The peak magnetic field Bpeak increases with current, which decreases the
final velocity. When the beam velocity falls below 60 m/s, the MOT loading rate abrurptly
increases. The slower laser detuning is fixed at −900 MHz.

The maximum deceleration occurs when an atom reduces its velocity by h̄k/m
per scattering event at the maximum scatterings rate Γ/2 (Γ = 2π × 6 MHz is the atomic
linewidth for rubidium and lithium).

amax =
h̄kΓ

2m
≈
{

105 m/s2 87Rb

106 m/s2 7Li
(2.3)

To maintain the maximum scattering rate at modest laser powers, an atom must remain
close to atomic resonance. A deceleration of only Γ/k ≈ 5 m/s will Doppler shift an
atom by a linewidth, far less than the ∼300 m/s needed to decelerate a large fraction of
the rubidium beam. The Zeeman slower solves this problem by countering the decreasing
Doppler frequency with an increasing Zeeman shift through a position-dependent magnetic
field. An atom is resonant with the laser (detuning ∆ from atomic resonance, with ∆ < 0)
when it satisfies ∆ = µB(x)+kv, where µ = µB is the magnetic moment difference between
the ground and optically excited states. Rewriting this, at each position in the slower, there
is a resonant velocity.

vres =
∆− µB(x)

k
(2.4)

In our slower, the magnetic field ramps from approximately 400 G to 600 G over 60 cm to
reduce the rubidium velocity by 200 m/s.

From the above description, it may appear that a slower needs precise tuning,
since the changing Doppler shift needs to match the magnetic field profile. In reality, the
slower is self-correcting and robust. If the magnetic field gradient is a little larger or smaller
than expected, then the local velocity will follow Eq. 2.4. If an atom is faster than average
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(for its position), it will be closer to resonance and experience a stronger opposing force.
Simulated trajectories and final beam velocities are shown in Fig. 2.7.

Even with small errors, the final velocity is approximately vfinal = (∆+µBpeak)/k,
as long as the deviations are not too sudden. If we assume that the atoms have a velocity
offset from Eq. 2.4, then the acceleration (µ/k) dB/dxmust remain below amax from Eq. 2.3.
Ryan Olf designed the slower to be wound with 16 layers of thin wire to prevent jumps
in dB/dx and maintain a acceleration of approximately 0.7amax. A higher acceleration
is desirable because of the higher capture velocity and less transverse blooming. Further
details of the slower, and its performance with simultaneously slowing rubidium and lithium,
can be found in Ref. 10.

2.4 MOT/Science chamber

A slow atomic beam from the Zeeman slower is captured in the MOT, transferred
to a conservative trap, and cooled through forced evaporation. All of these steps occur
in overlapping traps in the middle of the MOT/Science chamber (Fig. 2.8). Much of the
infrastructure serves to diagnose or assist in the production of the BEC as well as for
manipulation and “science” stage of the experiment. For instance, the same bias and
gradient coils are used for the whole experiment, though we switch from high-current current
sources during evaporation to low-noise laser current sources for experiments with spinors.
The microwave antenna used for forced evaporation is also used for microwave dressing and
coherent manipulation of the condensate, and the low magnification side imaging system
for diagnosing the evaporation profile also counts the condensate number.

2.4.1 Magnetic trap

The spherical quadrupole magnetic field is generated with a pair of coils (Fig. 2.8).
These coils are used to power the MOT, magnetic trap, and gradient cancellation for spinor
condensates (Sec. 4.4.2).

The compressed MOT stage and transfer to the magnetic trap are very similar to
Ref. 7. After compression, the magnetic field gradient ramps down while the lasers optically
pump the atoms to the F = 1 states. We then block all the lasers and jump the magnetic
field gradient to 40 G/cm in 1 ms, slightly greater than the 30 G/cm needed to confine
atoms against gravity. The gradient is ramped to its maximum value of 175 G/cm over 2
seconds to adiabatically compress the gas and increase the collision rate. At a steady state
gradient of 175 G/cm, the water-cooled coils reach a temperature of 50◦C, well within safe
operating conditions.

2.4.2 Microwaves and evaporation

Many of the tricks we play with rubidium involve shuffling the internal state be-
tween the ground state F = 1 and F = 2 hyperfine manifolds. For instance, atoms in a
particular F = 1 spin state can be removed or imaged by transferring them to F = 2 with
a brief pulse of microwaves (Sec. 4.2.3). During magnetic trapping, we evaporatively cool
the sample with microwaves to remove the hottest atoms.
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Figure 2.8: MOT/Science chamber layout. (a) Top view shows the four MOT lasers and
optical dipole traps (ODT). The mirror flippers reflect the MOT lasers during the beginning
of the sequence and move out of the way once the atoms are magnetically trapped. (b) Side
view shows the microwave antenna and vertical optics. Not shown are the vertical MOT
lasers.

Forced evaporation works by removing those atoms with several times the average
energy. Since each lost atom carries a disproportionate amount of energy, their loss cools
the remaining atoms. Typically our evaporation process works by removing atoms with an
energy ηkBT , where η = 6− 10.

In the magnetic trap, atoms are magnetically trapped in the |F = 1,mF = −1〉
hyperfine state. Detuned microwaves on the |F = 1,mF = −1〉 → |F = 2,mF = −2〉
transition selectively eject atoms on the edge of the trap. For a detuning ∆ < 0, atoms
with a potential energy E = h̄|∆|/3 are removed2. Over 11 seconds, microwaves are swept
from a detuning of 115 MHz to 20 MHz from the zero-field splitting (6.835 GHz), which
removes atoms with a potential energy of h̄∆/(3kB) = 1.8 mK to 320 µK. During this
ramp the gas is cooled from its initial temperature of 300 µK to 40 µK, with a final η of 8.

The microwaves for this ramp are generated by mixing a frequency-swept RF
source with a 7.000 GHz dielectric resonantor (DRO). The resulting frequency is amplified
by a 40 dB microwave amplifier capable of an output power of 3 W. As discussed in Sec. 4.3.1,
the microwaves are too noisy for coherent manipulation but sufficient for evaporative cooling.
For coherent manipulation, a switch connects a low noise signal generator to the amplifier.

2The final state |F = 2,mF = −2〉 has twice the magnetic moment and a potential energy −2E, hence
the factor of 3
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The microwave antenna is a helical antenna with six turns. We wind the antenna
with a circumference of λ and a spacing of λ/4 between the turns, where λ = c/(6.8 GHz) =
4.4 cm. There is a large copper backplate placed λ/8 from the first winding, which acts like
a mirror and doubles the effective length. The antenna was constructed by our machinist,
Michael Solarz, who tightly wound the coil around a bar of the appropriate radius. We
extended the length of the by coil by hand while monitoring the transmitted power with a
half-wave dipole antenna.

The antenna is placed 40 cm from the atoms because of space constraints. The
power at the atoms is acceptable but not huge, reaching a peak Rabi frequency of 4.7 kHz
on the |F = 1,mF = 0〉 → |F = 2,mF = 0〉 transition (Fig. 4.13).

2.4.3 Optical Dipole Trap

Our first BEC was trapped with an 830 nm optical dipole trap (ODT) with a
marginal amount of optical power. When we upgraded to a much more powerful 1064 nm
fiber laser, we decided to use two optical traps. First, we loaded a “cooling” trap (50 µm
waist, up to 9 W of power) from the magnetic trap. This trap evaporatively cooled the
gas to just above the critical condensation temperature. Then, atoms are transferred to a
“science” trap, with an adjustable trap geometry (Fig. 2.8). For most experiments in this
thesis, the science trap was a surfboard potential with a focus of 10 µm against gravity and
400 µm transverse to gravity.

The two paths for the cigar and side laser go through tandem AOMs. The cigar
trap is derived from the +1 order of an AOM. The 0 order travels through a second AOM,
that diffracts the −1 order towards a fiber coupler for the science trap. As we decrease the
power to the cigar trap during optical evaporation, we increase the power in the science
trap. The two traps must be aligned within approximately 30 µm. Typically this alignment
remains stable for many months.

The optical trapping lasers have up to several watts of power and need to be
sent into a beam dump. A small fraction of the light is measured with a photodiode
either immediately before or after the atoms. The photodiode current is stabilized with a
home-built PI loop to control the intensity during evaporation ramps and reduce noise in
the trapping light. For the science trap, we reached lifetimes greater than 40 seconds with
a Hamamatsu S11499 photodiode and an SR570 current preamplifier. The Hamamatsu
photodiode has comparatively good responsivity at 1064 nm with low capacitance.

2.5 Laser cooling optics

To cool and image the atoms, we need five frequencies as shown in Fig. 2.9. All ru-
bidium cooling light is referenced to a single master laser, originally an external cavity diode
laser (Newfocus Vortex) but more recently replaced with a much more stable distributed
feedback laser (Eagleyard). That laser is electronically locked to a rubidium vapor cell with
FM saturation absorption spectroscopy, similar to a Pound-Drever-Hall lock. For conve-
nience, the laser is locked to a crossover peak exactly halfway between the F = 2 → F ′ = 1
and F = 2 → F ′ = 3 transitions. Two additional lasers, for the slower and repump, are
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Figure 2.9: Laser scheme for cooling and imaging rubidium. (left) Blue boxes are lasers,
the number indicates the detuning from the D2, |F = 2〉 → |F ′ = 3〉 transition. The master
laser is a distributed Bragg reflector (formerly an external cavity diode laser), locked to
an atomic resonance with electronic feedback to saturation absorption spectroscopy. The
repump and slower lasers injection-locked free-running diodes lasers with no external cav-
ity. Acousto-optic modulators (AOMs) show the frequency shift they apply; double-passed
AOMs are denoted with a ×2. The tapered amplifier (TA) increases the power for the
MOT light. The Fabry-Pérot interferometer monitors the frequencies of the repump and
slower lasers to check the injection locks. All light is coupled into single mode, polarization
maintaining fibers. (right) Laser frequencies with respect to the rubidium level structure.

injection locked3 A rough layout of the optics is shown in Fig. 2.10.
We employ an unusual trick to generate the repump light, which is detuned

6.5 GHz from the probe [24]. We directly modulate the repump laser with 6 GHz mi-
crowaves from a 1W amplifier. Nearly all of the power is reflected, but enough enters to
give ∼10% power into the sidebands. When light from the master laser is injected, a side-
band can be phase locked to the master rather than the carrier. Once locked, the carrier
is now 6 GHz offset from the master. The correct sideband can be selected by tuning the
current of the repump laser.

3An injection locked laser is a free running ‘slave’ diode, without an external cavity, injected with a few
hundred microwatts from a master laser. When tuned correctly, the slave laser will phase lock to the master
laser.



CHAPTER 2. EXPERIMENTAL APPARATUS 15

Figure 2.10: Schematic by Andrew MacRae.
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Chapter 3

Phonons in an Optical Ring Trap

3.1 Background and motivation

A main motivation of our lab was to perform precision measurements of rotation
by circulating atoms through an extended yet smooth magnetic ring-shaped potential. One
pressing question was how to manage losses and phase shifts caused from atom-atom colli-
sions might deteriorate the signal or bias the interferometer. When we abandoned the plan
for a magnetic ring trap, an all-optical ring trap seemed like an appropriate substitute. The
new trap was necessarily tiny, with a radius of 16 µm, but easily filled with a BEC.

Rotation sensing in the optical ring trap operates in a regime where the sensitivity
to rotation is low, because of the small enclosed area of the ring and low atom number, but
the collisional shift is huge. At low density, an experiment can detect rotation by placing
atoms in a coherent superposition of rotating and counter-rotating wavepackets. This would
not work in our system because the atoms would experience deleteriously large collisional
shifts and scattering into other modes. For instance, an atom traveling faster than the
speed of sound will scatter in a distance d = (nσ)−1 = 30 µm, where n = 1014 cm−3 is the
condensate density and σ = 4× 10−12 cm2 is the s-wave scattering cross section.

Many-body physics provides a hint on an alternative approach to rotation sens-
ing. In a dense system, an atom moving through the condensate is not a solution to the
many-body problem, and so we should not be surprised if it scatters and decays quickly.
Instead, we should have longer lived oscillations by using a small population of elementary
excitations, the low-energy solutions with well-defined energy and momentum. We chose to
use phonons that propagate around the ring as the basis for our rotation sensor. It is the
trapped BEC itself that guides phonons around the ring. Unfortunately, the experimental
realization presented here was far too noisy to measure rotation, so we instead characterized
the system by analyzing a large number of experimental repetitions for rotation noise.

Phonons can also be used to measure rotation in ordinary matter. The effect was
first noticed by twisting a wine glass about its stem. Without rotation, ringing the rim of
the glass creates a clean and long-lived tone1 The standing waves can be decomposed into
degenerate counter-propagating waves. When the glass is twirled, that degeneracy is broken
and a clear beat note can be heard [25]. A slight complication is that the beat note occurs

1You must use a higher quality wine glass than I own to witness this effect.
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Figure 3.1: Ring trap laser scheme. (a) The trap potential is formed by crossing three laser
beams. A horizontal red-detuned light sheet confines atoms against gravity (the “surfboard”
trap). The annular potential is created by two lasers that propagate parallel to gravity, a
red-detuned round laser beam that confines atoms into a disk and a blue-detuned tightly
focused laser beam that repels atoms from the center. (b) Adjusting the annular potential.
In the final iteration of the ring trap, the two beams that form the annular potential are
delivered by the same large area mode fiber. At the fiber tip, the two wavelengths have
nearly identical mode areas. To increase the width of the attractive potential, an iris clips
in the beam in the Fourier plane. Lateral and longitudinal chromatic aberrations can be
controlled by displacing two lenses.

at a frequency lower than the rotation rate because the sound is partially dragged by the
rotating material—an effect absent in superfluids, which are stationary in the inertial frame.
Devices with much higher quality resonators, known as hemispherical resonator gyros, are
frequently used in spacecraft rotation sensing [26].

In this chapter, we will proceed by describing how we create and image an all-
optical ring trap, study schemes to create and detect sound waves, and analyze our data
for noise in extracting a rotation signal.

3.2 Dichromatic ring trap

The ring trap light is focused onto the atoms by the same objective used to image
the atoms (Thorlabs AC508-200-B). Imaging and ring trap light is separated with a large,
non-polarizing 50:50 beamsplitter.

Initially the ring trap light was reflected with a pellicle beamsplitter, a fragile
stretched membrane made of nitrocellulose. The pellicle is so thin that there is no ghosting
or beam deflection, but unfortunately it acts like an enormous sail that bends and deforms
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Figure 3.2: Final version of the ring trap optical setup. One objective collimates the imag-
ing light and focuses the two annular potential lasers and azimuthal lasers. The alignment is
very stable because most of the optical drift is common mode. We can diagnose and quickly
align the potential by deflecting the light onto a CCD camera with a mirror between the
objective and atoms. We use frame transfer mode on the camera by imaging the atoms onto
the same plane as a razor blade, which is imaged onto the camera.

with changing air currents. This motion can distort the trap and heat the atoms. We
eventually replaced it with a large, broadband polarizing cube. Regardless, we trudged
forward for a month or two with this setup and observed the ring trap shortly after midnight
on March 3, 2011, 42 days after creating a BEC. As can be seen in Fig. 3.3a, there is a hole
in the atomic density but the ring is unacceptably lumpy.

The first ring trap setup used independent PM (polarization-maintaining single
mode) fibers delivering the attractive (830nm) and repulsive (532nm) light. In order to
create a sufficiently round potential, both paths needed cylindrical optics to match the
relative astigmatisms, to which the ring trap is particularly sensitive. Long term drift
between the paths limited stability. Regardless, we could create a smooth potential and
start measuring the phonon modes.

At the suggestion of Gyu-Boong Jo, we installed a large area mode photonic crystal
fiber (Thorlabs ESM-12B) to improve stability. These ‘endlessly single mode’ fibers are
single mode for wavelengths from 532 nm to beyond 2000 nm! The mode waist is nearly
constant for the wavelengths of interest, which implies that the shorter wavelengths has a
larger divergence angle.
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Figure 3.3: In situ images of the ring trap. (a) Our first ring trap. The potential is
nonuniform but there is a clear hole in the atomic density. (b) Improving the dichromatic
setup greatly helped reduce the inhomogeneity. The red and blue lasers were launched
from separate fibers and passed through an independent set of cylindrical optics before
combining. The alignment was finicky and had a tendency to drift. (c) Long-term stability
was improved by using a single fiber launcher for the two traps. However, we had to defocus
the red (attractive) laser to increase the size of the disk, which unfortunately increased the
corrugations on the trap (see Fig. 3.1b). All images are 80× 80 µm

3.3 Imaging phonons

The phonons used in this chapter have long wavelengths, on the order of 15–50
µm and well within the resolution of a typical imaging system. We employ high-sensitivity
in situ imaging of the ring trap to observe the evolution of phonon modes. In principle,
the phonons could by imaged after a time of flight expansion, but our momentum space
resolution is insufficient to image such low momentum modes.

In situ imaging of a condensate is difficult because the high optical density of a
BEC makes it too opaque to gather quantitative information [27]. We reduce the optical
density with a two step scheme. First, we excite a small fraction (20–25%, typically 104

atoms) of the condensate from the |F = 1,mF = −1〉 state to the F = 2 state by applying
a weak, off-resonant repump pulse on the F = 1 → F ′ = 2 transition of the D2 line. The
repump laser propagates along the thin axis of the trap. For the repump to uniformly
excite the condensate, it must pass through the condensate with minimal absorption. This
is achieved by detuning the repump by 4–6 linewidths. Then, an imaging pulse at saturation
intensity, resonant on the cycling (F = 2 → F ′ = 3) D2 transition, illuminates the atoms
and is imaged onto a CCD camera. At saturation intensity we have the best signal-to-noise
in absorption imaging (Sec. A.3). In Sec. 4.2.3 we employ a more advanced version of this
scheme to image spin as well as density. Fig. 3.4 shows a benchmarking of the imaging on
the classic Thomas-Fermi of atoms in an anisotropic harmonic trap (our “surfboard” trap).

Phonon dynamics can be monitored with an azimuthal Fourier transform of the
condensate density. The Fourier transform measures the coefficient An of cosnφ and sinnφ
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ñ
0)

2
/
3

(c)

Figure 3.4: Imaging atoms in the surfboard trap. (a) Image (left) and least-squares
fit (right) to a Thomas-Fermi profile ñ = ñ0 (1 − x2/R2

x − y2/R2
y)

3/2 of 2 × 104 atoms,
approximately 5% of the sample. The scalebar is the number of atoms per 1.6 µm× 1.6 µm
pixel. (b) Residuals may be due to the imaging resolution, anharmonicity of the trap,
or nonlinearity in the fit. (c) Density vs chemical potential for a BEC. We integrate the
in-plane density n ∝ ñ2/3 along elliptical rings of constant local chemical potential µlocal =
µ− 1

2m(ω2
xx

2 +ωyy
2). When plotted in this way, we observe a linear behavior is because of

the nonlinear equation of state p = gn2/2 (in general, ñ ∝ µ
(α+1)/(2α−2)
local for a system with

p ∝ nα). The wings are most likely due to 2-5% thermal atoms, which exhibit a different
equation of state, though imaging aberrations distorting the edge of the condensate might
contribute.
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Figure 3.5: Azimuthal Fourier transform of the in situ column density. (a) An image of
the ring is fit to determine the center. The azimuthal phase φ represents the angle around
this point. (b) Real (blue) and imaginary (red) components of An as a function of mode
number.

density modulations (Fig. 3.5).

An =

∑
r<rc

ñ(x, y)einφ(x,y)∑
r<rc

ñ(x, y)
(3.1)
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A sudden change in the optical potential excites phonons. For each evolution time, we
create, image, and destroy one condensate. A series of images from these independent
realization lets us assemble the dynamical evolution of the density in time and space, from
which we calculate the time varying quantity An(t). In general, the behavior looks like a
damped harmonic oscillator, An(t) = An,0 + Ane

−Γt cosωt. The static component An,0 is
due to corrugations in the ring potential, while the oscillating part is the amplitude of a
standing wave of phonons with eigenfrequency ω.

3.4 Radial and azimuthal mode spectroscopy

3.4.1 Sound in a quantum degenerate gas

In the mean-field approximation, the energy functional of a scalar Bose-Einstein
condensate is

E[ψ] =

∫
dV ψ∗

(
− h̄2

2m
∇2 + V + gψ∗ψ

)
ψ.

Our condensates are well approximated by the Thomas-Fermi approximation, which as-
sumes that the kinetic energy contribution to the ground-state energy is negligible compared
to the potential and interaction terms. It can be useful to derive thermodynamic quantities
for a fixed density n = ψ∗ψ with a uniform potential.

E =
1

2
gn2V

Since the energy varies nonlinearly with particle density, most thermodynamic properties
have different scalings than a classical ideal gas. In particular, we are interested in the
change of energy with particle number (chemical potential µ) and with volume (pressure
p).

µ =
dE

dN
=

d

dN

(
gN2

2V

)
= gn p =

dE

dV
=

1

2
gn2

From these simple formulae, we can predict the speed of sound c.

1

mc2
=
dp

dn
= µ ⇒ c =

√
µ

m
(3.2)

For a typical rubidium condensate, g = h× 7.72 Hzµm3, n = 1014 cm−3 = 100 µm−3, and
c = 2 mm/s. Unlike in an ideal gas, the speed of sound is independent of the temperature
and mean thermal velocity. In the limit of long-wavelength and low-amplitude excitations,
that sound propagates according to a wave equation of a density perturbation δn through
an inhomogeneous sample with density n [28, 29, 30].

∂2

∂t2
δn = ~∇ ·

(
c2~∇δn

)
(3.3)

In a ring trap, we expect separation between radial, azimuthal, and out-of-plane
modes. Of particular interest are the lowest azimuthal modes, which are ‘guided’ around
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Figure 3.6: Radial mode spectroscopy. (a) As the atom number and chemical potential
increase, the condensate explores the anharmonic regions of the trap. (b-c) Radial excita-
tion frequencies are substantially suppressed at the highest atom numbers. Note that the
equilibrium radius increases along with decreasing trap frequency for larger atom numbers.

the ring. We can summarize the role of the radial structure for these modes by introducing
an effective channel chemical potential µch = µ/a and channel speed of sound cch = c/

√
a,

which we assume to be constant for the lowest frequency modes. For harmonic confinement,
a = 2, but in our trap we find a ≈ 1.8. The new wave equation is one-dimensional and a
function of the azimuthal coordinate φ.

∂2

∂t2
δn =

µ

amr2
∂2

∂φ2
δn

The solutions are doubly degenerate modes labelled by an azimuthal mode number n.

ω =
ncch
r

cch =

√
µ

am

Later, we will see the impact of frequency splitting due to trap perturbations and
trap rotations, which will introduce couplings between otherwise degenerate modes.

3.4.2 Radial excitations

The trap frequencies of a harmonically trapped sample are independent of the
sample density or amplitude of the oscillation. Anharmonicity of the trapping potential
will cause the frequency to depend on the amplitude of oscillation. Even the low amplitude



CHAPTER 3. PHONONS IN AN OPTICAL RING TRAP 23

(a)

0 20 40 60

0

0.05

0.1

0.15

0.2

n = 2

n = 3

n = 4

n = 5

Time (ms)

C
o
n
tr

a
s
t

(b)

Figure 3.7: First measurement of sound in the ring. (a) A focused blue-detuned ‘poke’
laser beam (532 nm wavelength) can completely exclude atoms from one portion of the ring.
The angular size of the perturbation is 1/7 of the ring, which allows us to drive the first
seven azimuthal modes. In general, the laser intensity is reduced to ∼10% of the chemical
potential and only slightly perturbs the trap intensity. (b) The laser is suddenly turned
off, exciting a superposition of azimuthal sound waves. The contrast of each mode Re[An]
oscillates with a frequency that increases with n.

.

oscillations of a BEC can also experience a shift when the extent of the condensate explores
the anharmonic region. We study the anharmonicity of the trap by measuring the radial
trap frequency as a function of atom number, where larger atom numbers correspond to a
larger condensate (Fig. 3.6). In the dichromatic trap, we excite radial modes by suddenly
increasing the intensity of the red-detuned laser, which reduces the equilibrium radius of
the trap.

3.4.3 Azimuthal excitations

Elongated condensates act as waveguides for phonons. When the wavelength of
the phonon is longer than the transverse size of the condensates, the transverse modes are
effectively frozen out. For a perfectly smooth ring, azimuthal modes are doubly degenerate
with an eigenfrequency proportional to the mode number n. Even though the ring has
substantial perturbations, we find that the mode spectrum follows this expected linear
scaling.

Suddenly changing the azimuthal potential excites phonons. Our first and simplest
approach was to focus a blue-detuned (repulsive) laser onto the edge of the condensate. In
a typical sequence, we condense atoms in the ring trap with the perturbing laser reducing
the local chemical potential by 10–20%. Suddenly extinguishing the laser light excites
sound waves in the now nearly uniform trap (Fig. 3.7). In the initial data, we observed that
the frequency qualitatively increased with mode number n, but the data lacked quantitative
confirmation of the mode structure. We tried to drive a single mode by resonantly oscillating
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the perturbing laser light at an eigenfrequency, but the short lifetime of the modes limited
the usefulness of that approach.

Figure 3.8: Propeller patterns to excite specific sound modes. (Top) Photo of ring trap
setup. The zoomed in photo shows the mask illuminated by a 532nm laser. These masks
allow us to excite specific phonon modes. (Bottom) The six patterns to excite modes
n = 2–7.

What we needed was a method to excite individual modes with high specificity.
We accomplished this by focusing ‘propeller’ patterns onto the atoms (Fig. 3.8). The pat-
terns are chrome masks, each with a diameter of 400 µm, manufactured by the Berkeley
Microfabrication Laboratory. A laser illuminates one pattern and is is optically imaged onto
the condensate with a magnification of 1/10. To control the mode angle, the patterns are
mounted on a 2D translation stage, which is mounted on a rotation stage and a second 2D
translation stage. The first translation stage centers the chosen pattern onto the rotation
stage’s axis. The second translation stage aligns the pattern to the ring trap. It is necessary
to center the pattern carefully, as slight misalignments can drive phonon modes n± 1.

With the new setup we were able to drive primarily one azimuthal mode. Fig. 3.9a
shows the response of modes n = 2–6 when the ring is modulated with the n = 3 pattern.
We observe a slight excitation in the n = 2 and 4 modes, most likely because the propeller
pattern is slightly off-center. These data also show that the imaging scheme is highly
selective when reading excitations: we do not detect oscillations at the eigenfrequency of
the n = 3 mode in other An channels. We find similar results for all modes (Fig. 3.9b).

We can measure the phonon dispersion relation in the ring trap. In general, mea-
suring the phonon dispersion relation with ultracold atoms requires a detailed knowledge of
the density of the sample to properly establish the boundary conditions. The unterminated
waveguide created by the ring trap makes this understanding more straightforward because
the boundary condition is periodic. We investigate the phonon dispersion relation by driv-
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Figure 3.9: Oscillations of the n = 3 mode. (a) The n = 3 mode is driven with a laser
beam masked by a propeller of the same order. Each experimental run consists of creating a
condensate and imaging the sample after a specific evolution time, after which the sample is
destroyed. Each time step involves a new condensate and evolution time. From each image
we calculate the population for each column of data, denoted by the gray bar. (b) For each
azimuthal mode, we measure the relative response for all modes as normalized to the peak
response. The response is chiefly in the same mode as the drive, though we do measure
non-negligble excitation for neighboring modes, most likely due to centering errors of the
mask. The n = 1 dipole mode is excited by suddenly applying a gradient.

ing and imaging the first seven azimuthal modes. For modes 2 through 6, we observe the
linear dispersion relation (Fig. 3.10).

The frequency of the n = 7 is far below the linear extrapolation. This is because
the wavelength of the mode is on the order of the radial extent of the sample. Equivalently,
the eigenfrequency is close to the first radial mode. The simple phonon waveguide model
is altered because the n = 7 mode can propagate through the lower density outer edge of
the trap, where the speed of sound is lower and effective circumference longer. Even higher
mode numbers should be confined to the outer edge of the trap, similar to whispering gallery
modes.

The phonons damp fairly quickly, with a quality factor Q = πf/Γ of about 6
and roughly independent of mode number. It is likely that Landau damping is limiting
the phonon lifetime, whereby phonons damp by scattering off of thermal atoms. In the
limit h̄ω � µ� kBT , a spatially homogeneous condensate also has a quality factor that is
independent of mode number [31].

Q =
4

3π

h̄c

kBTa
≈ 35

This prediction is six times higher than the measured value. Our system is in a different
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Figure 3.10: Phonon dispersion relation. (a) Oscillations for phonons modes driven by
each propeller mask. (b) We see the expected linear dispersion relation of sound. The error
indicated in the channel speed of sound of 1.29(2) mm/s is only statistical; the systematic
error from the uncertain magnification of the imaging system and ring radius of the system
is much larger (around 10%).

regime, with a nearly identical temperature and chemical potential of 30 nK, and the
unusual geometry may contribute to the damping. We later observed vortices in the annular
region created during condensation, which is likely to increase the damping rate.

The images used to extract the oscillating An components can also show the eigen-
modes (Fig. 3.11). Our sequence of images establishes a record of atom column density as a
function of two spatial coordinates and time, ñ(x, y, t). We determine the overall oscillation
frequency ω, phase φ, and damping rate Γ from fits to An, extracted using the entire image.
We fit the model ñ(x, y, t) = a(x, y)e−Γt cos(ωt+ φ) + b(x, y) to find the amplitude a(x, y)
on each pixel. The value of a(x, y) can be positive or negative, depending on whether it
is in-phase or out-of-phase with the arbitrary choice of phase of Re[An]. Once we have
determined the form of the eigenmode, we could in principle extract the amplitude of the
phonon mode with higher signal-to-noise than An.

An important element of control is the orientation of the standing wave. By
rotating the propeller mask used to excite phonons, we can change the orientation of phonons
in the ring trap. In Fig. 3.12, we rotate the n = 3 pattern and find that the orientation of the
measured phonons rotates three times faster than the change in angle of the pattern. The
importance of varying the excitation angle is that it allows us to look for small frequency
splittings between nominally degenerate modes and look for a rotation signal in the data.
Fig. 3.12 is a small selection of our dataset of 2800 images taken of modes n = 1–6 at a total
of 93 orientations of the masks. The next two sections are based on this studying dataset.
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Figure 3.11: Phonon eigenmodes. Each pixel is fit to an oscillating sinusoid based on the
frequency, phase, and damping rate extracted from An. Red and blue regions correspond
to in-phase and out-of-phase amplitude with respect to our choice of phase of Re[An].
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Figure 3.12: Phonon standing waves excited at many angles. (a) We rotate the axis of
the phonon by rotating the optical mask used to excite them. Fitting oscillations to the
real and imaginary components of An indicate the change in angle. We use a large set of
phonon data at many angles and for modes n = 1–6 to extract the frequency splitting and
noise in rotation rates. (b) The phonon axis, as measured by argA3, rotates 3 times faster
than the mask angle.
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3.4.4 Frequency splitting from imperfections

In a perfectly smooth ring trap, there are two degenerate modes for each azimuthal
mode n. An inhomogeneous potential can introduce a frequency splitting between the two
modes. In particular, the degeneracy between the two modes is lifted by a perturbing
potential of the form V (θ) = cos(2nθ + θ0). For example, to change the dipole frequencies
of a trapped particle (an n = 1 oscillation), one must change the relative trap curvature,
an n = 2 perturbation (V ∝ x2 − y2 ∼ cos 2θ). Without loss of generality, we assume that
the ring is perfectly smooth except for a small V2n cos 2nθ perturbation, where small means
V2n � µ. We start with the sound equation in an inhomogeneous medium [29].

−ω2δn =
1

r2
∂

∂φ

(
c2ch

∂

∂φ
δn

)
c2ch =

µ− V2n cosnφ

am

Inserting the eigenstates cosnφ and sinnφ does not exactly solve the above equation. In-
stead, we will calculate the frequency shifts with first order degenerate perturbation theory
and reduce the differential equation to a matrix equation. For weak perturbations, the
solution should involve only superpositions of the doubly degenerate states with azimuthal
number n. Our ansatz then involves the sine and cosine standing wave modes with ampli-
tudes labelled by x and y.

δn = xf1 + yf2 f1 = cosnφ f2 = sinnφ

The eigenvalue problem is

−ω2

(
x
y

)
=

(
Dij

)(
x
y

)
where

Dij =

∫
dφ fj

1

r2
∂

∂φ

(
c2ch

∂

∂φ
fi

)
.

Our choice of basis makes D diagonal.(
Dij

)
=

 −ω2
0

(
1 + V2n

2µ

)
0

0 −ω2
0

(
1− V2n

2µ

)  ω2
0 =

µn2

amr2

ω± = ω0

√
1± V2n

2µ
≈ ω0 +

V2nn

4r
√
aµm

Interactions suppress the frequency splitting because µ shows up in the denominator.
To compare to experiment, we measure V2n/h from images of the condensate

column density, V2n = µA2n, and directly probe ∆fn = ∆ωm/π by exciting standing sound
waves at many angles (Fig. 3.13). Since these two quantities have the same units, the
suppression must depend on a dimensionless parameter of the condensate, which in this
case is the ratio of the healing length ξ = h̄/

√
2mµ to the radius r.

∆fn
n

=
V2n
h

ξ

r
√
2a
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Figure 3.13: Phonon frequency splitting. (a) The frequency splitting ∆fn between the
two otherwise degenerate azimuthal modes is greatly suppressed by interactions. The trap
perturbations are estimated from V2n = A2nµ, where the constant offset of A2n is from im-
ages without oscillating phonons. The gray line is the prediction ∆fn/n = (V2n/h)(ξ/1.9r)
(b) A large frequency splitting can suppress the phonons from being sensitive to rotations.
As we will see, the frequency splitting (in units of rad/s per mode number) is less than the
noise and does not decrease sensitivity.

We expect a suppression by ξ/(1.9r) ≈ 10−2. The measured suppression is around 1/50, not
quite as strong as estimated but still quite substantial. It is likely that there are systematic
errors in the estimates of V2n.

What does this suppression represent? If we sent a dilute wavepacket of atoms
around the ring, they would experience ≈ h × 10 Hz = kB × 0.5 nK perturbations as they
propagate. Yet phonons propagating around the ring have frequency shifts of only 0.2 Hz!
In addition, dilute wavepackets have mean-field shifts that cause an increased shift with
density, an error that is absent with phonons. We see that using phonons rather than dilute
atomic wavepackets can be a good strategy for minimizing errors from imperfect ring traps.
In chapter 5, we will see that magnons traveling through a condensate provide greater
suppression.

The uncertainty of the frequency splitting is determined by a statistical resampling
technique known as jackknifing. Of the N sets of phonons and different orientations for
each azimuthal mode, we fit all but one orientation to a model for the frequency splitting
to determine ∆f i, the frequency splitting with the ith run excluded. The key assumption
of resampling is that the distribution of ∆f i is related to the true distribution of the ∆f .
The estimate of the standard error of ∆f looks similar to a variance.

SE∆f =

√√√√N − 1

N

N∑
i=1

(
∆f i −∆f

)2
In the next section, we are particularly interested in using the standing wave of

phonons to measure rotation. A large frequency splitting can pin the modes and limit rota-
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tional sensitivity. In our setup, we find that the frequency splitting for higher order modes
is sufficiently small compared to the large noise in the rotation signal (Fig. 3.13b). Improve-
ments to the rotational sensitivity would require improved smoothness of the potential to
decrease the splitting.

3.5 Phonon rotation sensor

A traditional atom interferometer measures the phase shift accrued by an atom
along distinct paths [32]. For large densities (roughly, > 1010 cm−3) atoms will forward
scatter and add a density-dependent phase shift. At even higher densities, atoms can scatter
into other modes and deplete the population of the wavepackets. With our parameters,
the scattering distance l = (nσ)−1 = 30 µm is only one third the distance around the
ring circumference. In other words, we cannot employ a “traditional” atom interferometry
approach of propagating a wavepacket of atoms through a high density ring trap.

Why is this a problem? Other experiments effectively integrate over a volume of
many cubic centimeters in order to have a sufficiently high atom flux without the harmful
effects of atom interactions [33, 34]. However, interesting physics can occur on far shorter
scales, and a device that averages over less than a cubic millimeter could search for short-
range gravity or help with material characterization. A dilute sample confined to a small
volume will have too few atoms to make a competitive measurement. Instead, we must take
a fundamentally different approach to atom interferometry. Many-body physics provides a
solution.

Elementary excitations are the solutions to the many-body problem with well-
defined momentum and energy. At high densities, elementary excitations may appear quite
distinct from single-particle states. In this section, we propose and test an interferome-
ter with phonons, the lowest-energy excitations of a scalar superfluid, in a regime where a
conventional atom interferometer does not work.

3.5.1 Why a phonon rotation sensor is like a Foucault pendulum

The condensate is a superfluid, so the ground state must be stationary in the
inertial (non-rotating) frame. Sound waves then must also be stationary in this frame.
Thus, in a lab frame rotating at a rate Ω, the cosnφ mode appears as a sinnφ mode after a
time t such that Ωt = 1/n. In other words, the phonons create a mark of angular size 1/n,
and we can detect rotation by observing the mark precess in the lab frame. Higher order
modes should, in principle, lead to a more sensitive sensor.

In the inertial frame, the wave equation for δn includes the time-dependent changes
of the speed of sound [35].

∂2δn

∂t2
− 1

c2
∂(c2)

∂t

∂δn

∂t
=

1

r2
∂(c2)

∂φ

∂δn

∂φ
+
c2

r2
∂2δn

∂φ2
(3.4)

The inhomogeneous speed of sound c2 = (µ − V2n cos(2nθ − 2nΩt))/m rotates with the
optical trap. It is simpler to work in the rotating frame, where we replace θ → θ + Ωt and
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Im[An]

Re[An]

t

Figure 3.14

∂t → ∂t +Ω∂φ. In this frame c is stationary (∂tc
2 = 0).

∂2δn

∂t2
+Ω

(
2
∂δn

∂φ
− 1

c2
∂(c2)

∂φ

)
∂δn

∂t
=

(
1

r2
+

Ω2

c2

)
∂(c2)

∂φ

∂δn

∂φ
+

(
c2

r2
− Ω2

)
∂2δn

∂φ2
(3.5)

As before, we use our ansatz δn = x cosnφ + y sinnφ, where x and y are slowly varying
functions of time. This is accomplished with perturbation theory by multiplying the above
equation by

∫
dφ fjD[fi]. The new terms in ∂δn/∂t contribute off-diagonal components

that couple x and y.
Neglecting terms on the order of Ω2, the equation of motion of x and y are identical

to an anharmonic, rotating harmonic oscillator.

ẍ = 2nΩẏ + (ω0 + δ)2x

ÿ = − 2nΩẋ+ (ω0 − δ)2y.

We can solve this by reducing it to a 4× 4 first-order equation.
ẍ
ÿ
ẋ
ẏ

 =


0 2Ω (ω + δ)2 0

−2Ω 0 0 (ω − δ)2

1 0 0 0
0 1 0 0




ẋ
ẏ
x
y


In the limit, Ω, δ � ω, we solve for the eigenvectors to zeroth order and the eigenvalues
to first order. What we want to know is the response of the system when kicked along an
eigenaxis. Linearity will let us combine those solutions for an arbitrary kick. Solving the
above equation to the appropriate orders, define Aσν as the response along the ν axis to a
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system kicked along the σ axis.

Axx = cos(ωt) cos(Ω′t)− δ

Ω′ sin(ωt) sin(Ω
′t) Ω′ =

√
Ω2 + δ2

Axy =
Ω

Ω′ cos(ωt) sin(Ω
′t)

Ayx = − Ω

Ω′ cos(ωt) sin(Ω
′t)

Ayy = cos(ωt) cos(Ω′t) +
δ

Ω′ sin(ωt) sin(Ω
′t) (3.6)

An alternative and instructive derivation is to use Hamiltonians and solve it “quan-
tum mechanically”. We start with the classical Lagrangian of a two-dimensional rotating
anisotropic harmonic oscillator.

L =
m

2

∣∣∣~̇r + ~Ω× ~r
∣∣∣2 − U(r)

=
m

2

[
(ẋ− Ωy)2 + (ẏ +Ωx)2 − (ω + δ)2x2 − (ω − δ)2y2

]
As we know, to convert to a Hamiltonian, we define the canonical momenta pi =

dL/dẋi and use H =
∑

i ẋipi − L.

H =
p2x
2m

+
p2y
2m

+Ω(pxy − pyx) +
m

2
(ω + δ)2x2 +

m

2
(ω − δ)2y2

Let’s switch to quantum mechanics by replacing xi and pi with operators and
define annihilation and creation operators for each.

x =
√

h̄
2m(ω+δ)(a

†
x + ax) px = i

√
h̄m(ω+δ)

2 (a†x − ax)

y =
√

h̄
2m(ω−δ)(a

†
y + ay) py = i

√
h̄m(ω−δ)

2 (a†x − ax)

If we substitue these into the Hamiltonian and expand to first order (neglect Ω2,
δ2, and Ωδ) and drop the zero-point term, we find the following simple form.

H = h̄ω(a†xax + a†yay) + h̄δ(a†xax − a†yay) + ih̄Ω(a†xay − a†yax) (3.7)

It is tempting to create a two-level system between, for instance, |0, 1〉 and |1, 0〉
states in the |nx, ny〉 basis, but in this basis 〈x〉 and 〈y〉 are exactly zero. Instead, we need
to see an oscillation by beating the two-level system |1, 0〉, |0, 1〉 with the ground state |0, 0〉,
simulating a coherent state. To recover the classic equations, we work in the three-state
basis.  a

b
c

⇔ a|1, 0〉+ b|0, 1〉+ c|0, 0〉
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H ⇔

 ω + δ −ih̄Ω 0
ih̄Ω ω − δ 0
0 0 0

 x ∝

 0 0 1
0 0 0
1 0 0

 y ∝

 0 0 0
0 0 1
0 1 0


An initial ‘kick’ in the x direction is equivalent to the initial state |1, 0〉+ |0, 0〉.

ψ(t = 0) ⇔ 1√
2

 1
0
1

 ψ(t) ⇔ 1√
2

 eiωt
(
cos(Ω′t)− i δ

Ω′ sinΩ′t
)

eiωt Ω
Ω′ sinΩ′t
1


We can then recover Eq. 3.6 by identifying Axx = 〈ψ(t)|x|ψ(t)〉 and Axy =

〈ψ(t)|y|ψ(t)〉.

3.5.2 Experimental measurement of rotation noise

We use the previously mentioned large dataset of phonon excitations for the n =
1–6 modes at many angles (reproduced in Fig. 3.15a). Ideally we would apply a rotation
and measure it with the phonon sensor, such as the Earth’s rotation rate of 7× 10−5 rad/s.
Unfortunately, as we will see, the fundamental noise limit of our device is only several
rad/s, and all measured rotation signals are consistent with zero. Instead, we characterize
the noise in extracting the rotation signal and find that the noise of the higher order modes
(n ≥ 4) is consistent with atom shot noise.

We extract the rotation noise by fitting a small subsample of the data, oscillations
at one angle (e.g., gray region of Fig. 3.15a), to a model where the only free parameters
are the rotation rate and oscillation amplitude. The phonon frequency, frequency splitting,
eigenaxes, etc., are fixed to parameters determined by the rest of the dataset from all
orientations except for the one being fit for rotations (i.e., all other rows of Fig. 3.15a). In
effect, we are treating the rest of the dataset as a calibration of the sensor (all orientation
but one), and use the selected subsample (one orientation angle) to measure rotation. This
process is repeated for each orientation, which provides a distribution of rotation rates while
sampling all of the data. From the distribution of measured rotation rates, we estimate our
error in measuring the rotation rate by assuming a Gaussian distribution (Fig. 3.15b, top).
The rotation noise has a standard deviation of a few rad/s.

The fundamental noise limit in our scheme is set by the atomic shot noise. As
we have a finite number of atoms, there is a fundamental noise in measuring Am and in
turn extracting the rotation rate Ω. In a smooth ring without phonons, half of the atoms
in the sample contribute to each of the real and imaginary components of Am, and so we
expect the atom shot noise to be of order N−1/2, where N is the total atom number. Our
assumption of atom shot noise is that the variance of the column density on pixel i is equal
to the column density (var ñi = ñi). (The “rule” for propagating variances is that, if c is a
constant, var (cx) = c2 var x)
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Figure 3.15: Noise of the rotation signal. (a) For each angle of the propeller pattern, we
fit our model for a rotation and amplitude. The properties of the oscillator (eigenfrequency,
frequency splitting, splitting axes, etc.) are fixed from a fit to all data excluding the angle
being tested. (b, top) A histogram of the extracted rotation is centered around zero and
has a deviation of a few rad/s. (b, bottom) For higher order modes, both the noise in the
amplitude and rotation match atom shot noise for our setup.

Re[An] =

∑
i ñi cosnφi∑

i ñi

var Re[An] ≈
∑

i var ñi cos
2 nφi

(
∑

i ñi)
2

=

∑
i
1
2 ñi

(
∑

i ñi)
2

=
1

2N

The real and imaginary components of An have the same noise. Let us assume
that the phonon is excited such that the initial amplitude falls entirely along Re[An]. For
short times and small rotations, the signature of rotation is contained in the imaginary
component. Without perturbations in the ring, the imaginary component has a simple
form, proportional to the normalized fraction An(0) of atoms participating.

Im[An(t)] = An(0)e
−Γt cosωt sinnΩt

For each iteration of the experiment, we can calculate the atom shot noise limited uncer-



CHAPTER 3. PHONONS IN AN OPTICAL RING TRAP 35

tainty in Ω for data taken at a particular time.

∆Ω(t) =
std Im[An]

|∂ Im[An]/∂Ω|Ω=0

=
(2N)−1/2

An(0)nte−Γt |cosωt|

In our data, we sample M times uniformly between t = 0 and t = 2/Γ to 3/Γ.
Remember, if we have data with uncertainties ∆x1,∆x2, . . . , the averaged uncertainty is

∆x =
(∑

i∆x
−2
i

)−1/2
. We assume that ω � Γ.

∆ΩASN =

[
Γ

a

∫ a/Γ

0

M

∆Ω(t)2

]−1/2

=

[
MΓ

a

∫ a/Γ

0
dt 2NAn(0)

2n2t2e−2Γt cos2 ωt

]−1/2

≈ Γ

An(0)n
√
NM

√
8a∫ 2a

0 duu2e−u

=
Γ

An(0)n
√
NM

×


3.5 a = 1
3.2 a = 2
3.6 a = 3

This compact formula for ∆ΩASN allows us to benchmark our sensor without the
messy and occasionally biased business of propagating errors through the many stages of
analysis. In Fig. 3.15b, we plot the measured noise in An and Ω divided by the atom shot
noise estimates from the above analysis. For modes 4–6, we are right at the atom shot noise
limit. The lowest order modes have an excess of noise, which we believe is due to stability
errors in the trap potential that cause artifacts or drifts in the mechanical properties. It is
also possible that thermal noise can contribute to An for the lowest modes.

Comparing to atom shot noise gives us clear directions to improve the experiment.
In particular, since we are already at the atom shot noise limit, improving imaging and ring
smoothness would not immediately help. At first glance, it appears as if a larger ring will
not help either. In reality, a larger ring would allow us to increase the atom number at
constant chemical potential and increase n at a fixed wavelength. For example, in a ring
trap with a millimeter radius and several 3×105 atom number, as demonstrated in Ref. [1],
a phonon with a 6 µm wavelength would correspond to a n = 1000 azimuthal mode. If the
phonon lifetime were increased to 1 second, with An(0) = 0.1, the single-shot sensitivity
would reach the Earth’s rotation rate.

3.6 Future: Spin-orbit coupling

Ideally, we would measure a nonzero rotation with the interferometer. We con-
sidered rotating the optical table during the experiment, but an optical table rotating at a
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θ

Figure 3.16: Spin-orbit coupling scheme in the ring trap. An inhomogeneous magnetic
field can couple spin and rotation, creating an effective Hamiltonian analogous to a charged
particle in a magnetic field.

rad/s would be dangerous. Instead, spin-orbit coupling could create an effective rotating
frame in which the condensate ground state had circulation. One approach is Fig. 3.16,
where the atoms move in the presence of an inhomogeneous magnetic field.

As a magnetic neutral particle moves through an inhomogeneous field, it must
constantly readjust the orientation of its spin to reflect its surroundings. This constant
readjustment can make the trajectory bend, as if it were a neutral particle in a rotating
frame or a charged particle in a magnetic field. We start with a wavefunction with a scalar
component ψ(x) and spatially-dependent spin rotation R(x)|mz〉 oriented along the local
magnetic field.

|Ψ〉 = ψ(~x)R(~x)|mz〉

We want to derive an adiabatic Hamiltonian that acts only on the scalar component and
allow the spin component to separate.

H|Ψ〉 → R (Hadiabatic|ψ〉) |mz〉 Hadiabatic = 〈mz|R†HR|mz〉

The kinetic energy of the Hamiltonian is −h2∇2

2m .

− h̄2

2m
∇2(ψR|mz〉) = − h̄2

2m

[
(∇2ψ)R+ 2~∇ψ · ~∇R+ ψ∇2R

]
|mz〉

=
1

2m
R
[
(−ih̄~∇− ih̄R†~∇R)2ψ

]
|mz〉

= R


(
~p− ~A

)2
2m

+Φ

ψ|mz〉
~A = ih̄R†~∇R
Φ = 0

This derivation most likely contains an error in Φ, as previous papers find a nonzero
value [36, 37]. The terms ~A and Φ are tensors in spin space. The critical assumptions is
that there are no spin-flips because the spin energy ~µ · ~B is large compared to the kinetic
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energy. In this assumptions, only the diagonal components of ~A and Φ matter.

Hadiabatic =

(
~p− ~A

)2
2m

+Φ+ gFmFµB| ~B| (3.8)

~A = ih̄〈mz|R†~∇R|mz〉 (3.9)

It is easiest to calculate ~A in terms of the local Euler angles such that

R(α, β, γ) = e−iSzγ/h̄e−iSyβ/h̄e−iSzα/h̄.

Let us assume the particle has a pure spin projection mF along the local field.

~A = mF

(
~∇α+ cosβ ~∇γ

)
As with classical electromagnetism, physical observables depend not on ~A but on its curl.
The Hamiltonian is the same as for a charged particle in an effective magnetic field (with
units of momentum)

~Beff = 2mF (~∇β × ~∇γ) sinβ.

Note that the angle α has dropped out. This due to the gauge invariance of ~A.
For the particular setup shown in Fig. 3.16, we assume that the atoms are confined

tightly in the radial and axial directions and only the azimuthal dynamics are possible, so
~p = 1

r φ̂Lz = (−ih̄/r)∂/∂φ. In this geometry, α = γ = φ is the azimuthal angle (we are free
to chose α). Ignoring Φ, the kinetic energy is particularly simple.

H =
(Lz −mF (1 + cosβ))2

2mr2

The trap deformation is cylindrically symmetric, so the angular momentum projection Jz =
Lz +Fz is conserved, where Fz = mF (1+ cosβ) is the projection of the internal spin of the
atom. In a superfluid, this defines the ground state flow of the condensate.

Ω =
h̄

mr2
mF (1 + cosβ)2.

A ring with a 16 µm radius and mF = −1 would rotate at 3 rad/s. Note that the magnetic
moment of the state is irrelevant. This could be experimentally tested by comparing the
motion of atoms in the |F = 1,mF = −1〉 and |F = 2,mF = +1〉 states, which have the
same magnetic moment but should rotate in opposite directions.

We tried was to bring the magnetic field zero through the ring to adiabatically
bring β from 0 to π, which would introduce 2h̄ of rotation. This process transfers angular
momentum to the atoms and leaves them in a uniform bias field. However, the large
magnetic field gradients required for careful positioning of the field excessively heated the
sample. A similar procedure successfully wrote vortices by inverting a DC magnetic trap
[38] and by resonantly oscillating the inhomogeneous magnetic field [39].

In the process, we began to be interested in spin physics, starting with spin vortices
as described in Ryan Olf’s thesis. While we abandoned spin-orbit coupling, the following
chapters discuss our foray in spinor condensates and magnetic excitations.
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Chapter 4

Spinors: Imaging and Control

4.1 Introduction to the physics of spinors

4.1.1 Why spinors: magnetism and emergence

In the Landau theory of phase transitions, broken symmetries dictate the low
temperature properties of a material. We start by looking for symmetries of the Hamiltonian
that a low temperature state might break. For instance, a superfluid breaks phase symmetry
while a ferromagnet breaks rotational symmetry, though examples may become endlessly
more complicated. The broken symmetry is characterized by an order parameter (phase for
a superfluid, magnetization for a ferromagnet). Once identified, we see whether a mean-field
wavefunction can lower the free energy by breaking the symmetry. If so, we may be in luck!
If we indeed have identified the correct broken symmetry, we immediately know about two
important classes of excitations: Nambu-Goldstone bosons and topological excitations.

Nambu-Goldstone bosons are (usually) gapless modes that consist of fluctuations
of the order parameter along the broken symmetry. At very low temperature, these may be
the only excitations that can be thermally excited. Thus, by understanding the spectrum
of Nambu-Goldstone bosons, we can predict the low temperature thermodynamics and
transport properties of a material. Experimentally, these properties may be more important
in “understanding” a material than the details of the ground state.

Topological excitations, on the other hand, are energetically costly excitations that
involve the ‘warping’ of the order parameter. These excitations are important because they
are long-lived, since by definition they cannot be removed by local changes. Examples
include vortices in a superfluid and skyrmions in a ferromagnet1.

Ultracold spinor gases are a successful example of this approach. The physics
governing the system is so simple it may be calculated from first principles. For instance,
the ground state phases and locations of the phase boundaries can be calculated. Several
basic phases have been experimentally observed, including ferromagnetic and polar in the
F = 1 condensate studied here, while more subtle phases involving dipolar interactions are
yet to be discovered.

1It is an interesting side note that these can wreak havok in some systems; we did not realize that some of
our measurements were plagued by vortices created during condensation until we developed tools to measure
them. While this would have been an important observation in 1999, by 2013 is was an annoyance!
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It is through the phenomenon of emergence that ultracold gases can teach us
about magnetic materials. I should emphasize that understanding why an ultracold gas
of bosons is a ferromagnet does not inform us why a piece of iron is a ferromagnet. The
microscopic physics the lead to magnetism is distinct in these two cases. Similarities emerge
on a larger scale. Because both ultracold rubidium and a room temperature chunk of iron
are ferromagnets, we can immediately predict that both contain magnons with a quadratic
dispersion relation. Therefore, the density of states must scale in the same way and the two
systems should have the same power law scaling of specific heat and other thermodynamic
properties, though the actual values will differ by many orders of magnitude. This is the
success of emergence and universality: we discover that two system may share macroscopic
properties even when those systems may appear unrelated at the microscopic level.

A good introduction to this approach can be found in Ref. 40.

4.1.2 The Hamiltonian

Before we develop a qualitative understanding of the physics, it can be helpful to
start off with the Hamiltonian. It is helpful to split the Hamiltonian into single particle
terms and spin-independent and -dependent interactions.

H = Hsingle particle +Hspin-indepedent interactions +Hspin-dependent interactions (4.1)

Hsingle particle =

∫
d~r
∑
α

[
−ψ†

α

h̄2

2m
∇2ψα + ψ†

αVα(~r)ψα + gψ†
α
~Fαβψβ · ~B

]
Hspin-indepedent interactions =

∫
d~r
∑
αβ

c0
2
ψ†
αψ

†
βψβψα c0 =

4πh̄2(a0 + 2a2)

3m

Hspin-depedent interactions =

∫
d~r

∑
αβα′β′

c2
2
ψ†
αψ

†
β
~Fαβ · Fα′β′ψβ′ψα′ c2 =

4πh̄2(a2 − a0)

3m

4.1.3 Ground states and separation of scales

For the F = 1 states of 87Rb, the spin-independent terms are much larger than the
spin-dependent terms with c0 ≈ 200 c2: c0 = h× 7.80 Hzµm3 and c2 = −h× 0.036 Hzµm3.

It is conceptually helpful to understand the ground state in terms of a separation
of scales, much like a Born-Oppenheimer approximation. We will solve the problem of
ground-state behavior as well as dynamics by (1) solving the ground-state density profile
ntot for c2 = 0 and then (2) solve for the spin dynamics or ground state given a fixed density
profile.

The spin-independent Hamiltonian has three terms: a kinetic energy, a potential
energy, and an interaction energy. The potential energy is minimized when the extent of
the wavefunction is minimized, while the interaction and kinetic energies are minimized
by increasing the extent of the wavefunction. Unless all three are of the same energy, we
expect the density distribution to be set by competition between potential and kinetic energy
(Gaussian ground state) or between potential and interaction energy (Thomas-Fermi ground
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state). Our system exists in the latter regime and we can safely ignore kinetic energy when
calculating the ground state distribution. This makes the Hamiltonian especially simple as
every remaining term is diagonal in the position-space basis.

ETF = V (~r)n(~r) +
1

2
c0n(~r)

2 +
1

2
c2n(~r)

2〈~F 2〉+ q〈Fz〉2n(~r)

We can directly solve for n(~r). By convention, we solve for µ = ∂ETF /∂n(~r). For
c2 = 0 and q = 0

n(x) =
µ− V (x)

c0

The next step is to fix this density distribution and calculate the ground state spin
density. This can be done by minimizing the mean-field functional

EMF [n] = n

(
1

2
c2n〈F 〉2 + q〈Fz〉

)
.

In the F = 1 states of 87Rb, c2 < 0. Neglecting the linear Zeeman shift, it is
straightforward to solve for the ground state magnetization.

ψ[n] =


(0, 1, 0) q > 2|c2|n

1
2(e

−iφ,
√
2, eiφ) 2|c2|n > q > 0

(1, 0, 0) or (0, 0, 1) 0 > q

We can see how symmetry plays a key role in these cases. The Hamiltonian
satisfies cylindrically symmetry, and so the ground states must as well. For q > 2c2n, the
ground state (0, 1, 0) is singly degenerate and cylindrically symmetric. For 2c2n > q, there
are multiply degenerate ground states. Rotation about the z axis might not preserve the
state, but it will connect it to degenerate states. This is an example of a broken symmetry,
where the ground state breaks a symmetry of the Hamiltonian and therefore must be part a
degenerate subspace. It is worth emphasizing that the magnetization is typically constrained
in a real experiment, and the above wavefunctions may be inaccessible to the system.

4.1.4 Dynamics

For the spin-dependent term, we start with

HS =
c2
2

∑
α α′ β β′

(ψ†
α
~Fαβψβ) · (ψ†

α′ ~Fα′β′ψβ′).

It is easiest to calculate in the spherical basis, where ψ = (ψ+, ψ0, ψ−).

F+ =
√
2

 0 1 0
0 0 1
0 0 0

 F− =
√
2

 0 0 0
1 0 0
0 1 0

 Fz =

 1 0 0
0 0 0
0 0 −1


ψ†F+ψ =

√
2
(
ψ†
+ψ0 + ψ†

0ψ−

)
ψ†F−ψ =

√
2
(
ψ†
0ψ+ + ψ†

−ψ0

)
ψ†Fzψ = ψ†

+ψ+−ψ†
−ψ−
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Figure 4.1: Mean-field phase diagram of a spinor condensate in the presence of a magnetic
field. The symmetry classification is labelled for each phase. The experiments in this thesis
are performed in the longitudinal ferromagnetic phase. The figure is from Ref. 41.

In there spherical basis, ~F · ~F = FzFz +
1
2 (F+F− + F−F+).

HS =
c2
2

(
ψ†
+ψ

†
+ψ+ψ+ + ψ†

−ψ
†
−ψ−ψ− − 2ψ†

+ψ
†
−ψ+ψ− + 2ψ†

+ψ
†
0ψ+ψ0 + 2ψ†

0ψ
†
−ψ0ψ−

+ 2ψ†
+ψ

†
−ψ0ψ0 + 2ψ†

0ψ
†
0ψ+ψ−

)
(4.2)

The first line of Eq. 4.2 contains the spin-conserving terms, which encompass
the various ways that components of the wave function can acquire phase shifts from the
presence of other components. The second line includes the spin-changing terms that allow
for two mF = 0 atoms to coherently scatter into an mF = +1 and mF = −1 atom. During
a quench experiment, this term allows the system to evolve from the polar state to the
ferromagnetic state [42].

Oftentimes we are most interested in dynamics where the |mF = +1〉 state is
negligbly populated. The scattering length between mF = −1 ↔ mF = −1 and mF =
−1 ↔ mF = 0 is identical but differs from mF = 0 ↔ mF = 0.

Hint =
c0 + c2

2

(
ψ†
+ψ

†
+ψ+ψ+ + 2ψ†

+ψ
†
0ψ+ψ0

)
+
c0
2
ψ†
0ψ

†
0ψ0ψ0

=
c0 + c2

2

(
ψ†
+ψ+ + ψ†

0ψ0

)2
− c2

2
ψ†
0ψ

†
0ψ0ψ0

From Eq. 4.2, we can calculate the Schrödinger equation ih̄ψ̇α = ∂H/∂ψ†
α.
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Figure 4.2: Rotating frame diagram for a spin-1/2 particle. They gyromagnetic ratio γ =
µ/h̄ is the ratio between magnetic fields and frequencies. The laboratory frame with a field
rotating at frequency ω (left) is equivalent to a rotating frame (right) where the z component

of the magnetic field is reduced by ω/γ. The Rabi frequency vector ~Ω = (Re[Ω0], Im[Ω0],∆)
can generally point in any direction, though it is common to let Ω0 point along the y axis.

ih̄ψ̇+1 = − h̄2

2m
∇2ψ+1 + c0

(
ψ†
+1ψ+1 + ψ†

0ψ0 + ψ†
−1ψ−1

)
ψ+1

+ c2

[(
ψ†
+1ψ+1 + ψ†

0ψ0 − ψ†
−1ψ−1

)
ψ+1 + ψ†

−1ψ0ψ0

]
(4.3a)

ih̄ψ̇0 = − h̄2

2m
∇2ψ0 + c0

(
ψ†
+1ψ+1 + ψ†

0ψ0 + ψ†
−1ψ−1

)
ψ0

+ c2

[(
ψ†
+1ψ+1 + ψ†

−1ψ−1

)
ψ0 + 2ψ†

0ψ+1ψ−1

]
(4.3b)

ih̄ψ̇−1 = − h̄2

2m
∇2ψ−1 + c0

(
ψ†
+1ψ+1 + ψ†

0ψ0 + ψ†
−1ψ−1

)
ψ−1

+ c2

[(
ψ†
−1ψ−1 + ψ†

0ψ0 − ψ†
+1ψ+1

)
ψ−1 + ψ†

+1ψ0ψ0

]
(4.3c)

In Sec. 5.1.1, we will linearize this set of equations for a ferromagnetic spinor
condensate and find two classes of excitations, phonons and magnons.

4.1.5 Two- and three-level Rabi spectroscopy

It is helpful to introduce basic Rabi spectroscopyhere. If we have an isolated
two-level atom, the Hamiltonian depends on the energy difference h̄ω0 between the two
states: Hisolated = 1

2 h̄ω0σz. An applied transverse field can change the eigenstates of the
atom, but in most cases the magnitude of the applied field we can experimentally realize is
much smaller than ω0. The experimental solution is to resonantly oscillate the transverse
field at a frequency ω near ω0.

H =
1

2
h̄ω0σz + h̄Ω0 (σx cosωt+ σy sinωt)
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The solutions to this time-dependent Hamiltonian are well known [43]. In sum-
mary, we can turn this into a time-independent problem by “boosting” into the rotating
frame as defined by the unitary operator R = eiσzωt/2. In this frame, we define |ψR〉 = R|ψ〉
and HR = RHR† + ih̄ṘR†. See Fig. 4.2 for a graphical depiction.

HR =
h̄

2

(
∆ Ω0

Ω∗
0 −∆

)
∆ = ω − ω0 R =

(
eiωt/2 0

0 e−iωt/2

)
In general, the parameter ω is a known precise frequency referenced to a laboratory

time source, whereas ω0 and Ω0 need to be determined experimentally.

S=1 representation

Rotations of a spin-1 object are slightly more complicated than the usual spin-1/2
case. In most situations we deal with rotations of a fully magnetized spin. In the |mF 〉
basis, rotations about the y axis are described by the Wigner d-matrix.

eiθFy/h̄ =


1
2(1 + cos θ) − 1√

2
sin θ 1

2(1− cos θ)
1√
2
sin θ cos θ − 1√

2
sin θ

1
2(1− cos θ) 1√

2
sin θ 1

2(1 + cos θ)



R(φ, θ, γ)

 1
0
0

 = e−iγ

 e−iφ 1
2(1 + cos θ)
1√
2
sin θ

eiφ 1
2(1− cos θ)

 R(φ, θ, γ)

 0
1
0

 =

 −e−iφ 1√
2
sin θ

cos θ
eiφ 1√

2
sin θ


When calibrating a Rabi frequency, it is most convenient to monitor the difference

between mF = +1 and mF = −1 populations. In Stern-Gerlach imaging (Sec. 4.2.1) and
ASSISI (Sec. 4.2.3), we measure NmF = N0|〈mF |ψ〉|2

〈Fz〉 =
N+1 −N−1

N+1 +N0 +N−1
= cos θ

The three populations NmF provided redundant information for a fully magnetized
sample. In ASSISI, this redundancy can calibrate that the microwave pulse power for the
mF = 0 populations with the relation N2

0 = 4N+1N−1.

4.2 Imaging

Nearly everything we learn from an ultracold atom experiment involves shining a
laser into one viewport of a vacuum chamber and examining the light that leaves through
another viewport. We learn about the evolution or distribution of atomic spins by coupling
the spin to the atoms’ position (Stern-Gerlach imaging), to a phase shift of light (dispersive
imaging), or to the absorption light (absorptive spin-sensitive imaging). In this section I will
describe these three main techniques we use to image atomic spin, momentum, and position.
The main result is absorptive spin-sensitive in situ imaging (ASSISI), a new technique we
developed to obtain multiple high signal-to-noise images of spin dynamics.
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4.2.1 Stern-Gerlach Time-of-Flight Imaging

The simplest and most common form of spin imaging is to separate spins with
a Stern-Gerlach experiment during free expansion (time-of-flight). Like the classic Stern-
Gerlach experiment [44], atoms in a magnetic field gradient will feel a force depending on
the projection of their spin states. For a distribution of particles n(x, p, ~F ) in position-
momentum-spin space, a time-of-flight expansion in a weak magnetic field gradient leads to
a convolution of those coordinates (〈PmF 〉 is the projection of the spin along the mF and
we will neglect coherences).

n(x) =
∑
mF

∫
dx′ dpn(x′, p, ~F ) δ

(
x− x′ − pt

m
− gµBmF 〈PmF 〉B′t2

h̄m

)
This technique is easy to implement and robust. It is a powerful diagnostic of the

overall dynamics because it probes all mF populations, not just the overall magnetization.
However, it can lack spatial resolution because it relies on a time-of-flight separation, during
which small features are blurred during the expansion due to dispersion or collisions. While
blurring due to dispersion can be remedied by applying a large gradient, a more fundamental
problem is that the measurement is destructive (with a few exceptions, e.g. Ref. 45).

Regardless, this is a favorite quick-and-dirty technique that is fairly robust against
many experimental mistakes. We used it to first observe microwave and RF resonances, as
an initial calibration of the magnetic field and gradients, and to debug the other imaging
techniques.

4.2.2 Polarization contrast imaging and its limitations

Ultracold gases typically have an optical density much greater than one. This is
both a blessing and a curse. Historically, experiments use time-of-flight expansion to reduce
the optical density to a level where absorption imaging works effectively. In situ absorption
imaging has difficulty because only a feeble amount of light can penetrate the optically thick
gas. This can be recovered by imaging at very high intensity [46] or reducing the optical
density with a microwave pulse (Sec. 4.2.3) or an off-resonant laser (Sec. 3.3).

Dispersive imaging techniques allow for in situ and repeated density measurements
of an optically thick ultracold sample. The operating principle is that an off-resonant laser
acquires a phase shift after passing through an atomic sample. In other words, the conden-
sate appears as a weak lens to an off-resonant laser. This phase shift is typically measured
against a reference laser in a homodyne setup. Much of the experimental cleverness arises
from constructing the interference in a robust manner. The classic approach is phase con-
trast imaging, in which the unscattered light is phase shifted relative to the forward scattered
light [5, 47, 48].

We use polarization contrast imaging, in which we measure a differential phase
shift between the two circular polarizations of light [5], essentially a position-dependent
Faraday-rotation measurement. The polarization axis of a linearly polarized laser is rotated
by the circular birefringence of the atoms, and that rotation is determined by passing it
through a polarization beamsplitter. This process requires that the ultracold gas break
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Figure 4.3: Our first attempt at creating a polar skyrmion, a topological vortex in an
mF = 0 condensate. (a) Stern-Gerlach separation shows the three populations, and clearly
the mF = ±1 density is smaller than the mF = 0 density. The images are unnecessarily
saturated. (b) With in situ imaging, we can see the sharp torus in the mF = ±1 density.
While these images were taken from separate realizations, we later were able to image
multiple spin projections of the same sample.
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Figure 4.4: Calibrating the magnetic field orientation with polarization contrast imaging.
(a) The sign of the polarization contrast signal reverses as the magnetic field is oriented
towards or away from the imaging axis z. For an in-plane field, the signal disappears. Each
image is taken at a different value of the z component of a magnetic field. (b) We characterize
the transverse field and zero the z component of the magnetization by integrating the
polarization contrast signal. Each scan corresponds to a different transverse field setting.
The light level is sufficient to destroy the sample, despite the meager signal-to-noise. These
images are taken detuned +80 MHz from the D2, F = 1 → F ′ = 2 transition.

time reversal symmetry, and so can only be used to measure a magnetized sample with a
detuning where the atoms are strongly circular birefringent. A good discussion on dispersive
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Figure 4.5: Polarization contrast signal versus pulse time. The fit assumes signal pro-
portional to t1/2 for reasons which are unclear to me. Detuning is +80 MHz from the D2,
F = 1 → F ′ = 2 transition.

imaging can be found in Ref. 5, 47, 48.
We originally used polarization contrast imaging to align the magnetic field in the

plane of the light sheet, transverse to the vertical imaging axis (Fig. 4.4). The BEC is
prepared in the |F = 1,mF = −1〉 state with a magnetization antiparallel to the local field.
If the magnet field has a small component along the imaging laser, the laser polarization
is Faraday rotated and we detect a signal. However, as can be seen from the images in
Fig. 4.4a, the images have a poor signal-to-noise ratio. These data were taken with a laser
tuned near the D2 line with an Eagleyard 780nm DFB frequency offset lock from the master
laser. For a reason we do not completely understand, the signal strength decreased with
the square root of the imaging pulse time (Fig. 4.5).

It was our original intention to use polarization contrast imaging to study spinors.
We started looking at spin vortices, which are topological structures whose center has a
magnetization of opposite direction as the edge. However, our optical density was much
lower than previous experiments in the group had a correspondingly worse signal-to-noise
ratio. As shown in the next section, we fixed this problem with a novel technique, absorptive
spin-sensitive in situ imaging.

Before burying polarization contrast imaging, we should praise it. One important
advantage of polarization contrast imaging is that it lends itself to AC measurements.
The polarization contrast signal can be reversed by reversing the atomic magnetization,
the magnetic field orientation, the imaging polarization, or changing the detuning. This
was used to great effect in earlier work by the Stamper-Kurn group, where an oscillating
polarization contrast was created by Larmor precession. The polarization contrast signal
vanishes when the atomic magnetization is transverse to the imaging beam, even if the
polarization or other parameters are not properly calibrated or set.

Fundamental Limits

Dispersive imaging is not non-destructive; it should instead be advertised as “min-
imally destructive”. The refraction and scattering of light by atoms in free space are linked
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and limit the amount of information that we can glean from linear optics. The typical
solution is to use a high optical density where the atom loss rate is tolerable. In the original
Berkeley spinor experiment, good signal-to-noise images required condensates of 2-3 million
atoms. Our setup was initially able to produce only several 105 atoms and achieved lower
optical density, and so our dispersive images have significantly lower signal-to-noise than
can be found in older spinor papers.

Moreover, dispersive techniques in alkali gases cannot easily access the polar de-
grees of freedom because the linear birefringence is associated with a high optical scattering
rate. For a polar condensate, a rotation of mF = 0 will create an equal superposition of
mF = ±1 states, for instance |mF = +1〉±|mF = −1〉. Polarization contrast imaging based
on circular birefringence cannot differentiate between these states.

We can understand the limitation of dispersive imaging with a simple model of
a two-level atom. In dispersive imaging, a weak, far-detuned laser is phase shifted by the
presence of atoms. The presence of atoms is measured from the phase shift between the
probe laser and a reference beam. Our key assumption is that an atom is lost after it
has scattered a single photon, since the recoil energy is typically much higher than the
condensation temperature. Each imaging pulse boils out a certain number of atoms, with
a tradeoff between losing atoms and acquiring information.

What is the signal-to-noise ratio of detecting a single atom before it has scattered
one photon? In the far-detuned limit, one atom (linewidth Γ, resonant cross section σ0)
will phase shift a laser (detuning ∆, cross sectional area A) by φ1 = σ0Γ/(2A∆). Since
the atom scatters a fraction σ0Γ

2/A∆2 of the photons, we can apply a pulse of up to
Nmax

photon = A∆2/σ0Γ
2 photons before the atom, on average, scatters one photon. Our

uncertainty in atom number after this pulse is

∆Natom =
∆φ

∂φ/∂Nphoton
=

1

φ1
√
Nmax

photon

= 2

√
A

σ0

Optical diffraction limits A > σ0 and we find that we cannot determine the presence of a
single atom before it has scattered a photon. This result holds for free-space linear optics
in general: a mutlilevel atom with complex polarizability α will have Nmax

photon = A/σ and

φ1 = k
Aε0

Re[α], where k = ω/c is the wavevector of the incident light. The uncertainty in
atom number is now

∆Natom =

√
Ak2

6π

|α|
|Re[α]|

.

We again find that ∆Natom > 1 because |α| ≥ |Re[α]| and the diffraction limit requires
Ak2 > 1. It is worth noting that it is possible to reach or surpass the atom-shot-noise limit
in dense samples when 1 < ∆Natom ≤

√
N .

If we want improved spin imaging, we must break an assumption of this derivation.
This can be done by (1) placing the atom in an optical cavity and changing the scattering
rate of the atom or (2) avoiding linear optics. We do the latter by ‘electron shelving’,
whereby a small fraction of the atoms scatter a large number of photons and the rest of the
atoms are unperturbed.
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When imaging magnetization, the signal depends on the differences in polariz-
ability between internal states (or, equivalently, the change of polarizability with optical
polarization). A stricter practical limitation is placed by superradiant scattering. Special
precautions must be taken to minimize the build up of superradiance, including (1) orienting
the linear polarization of the laser along the longest condensate axis to suppress Rayleigh
scattering, (2) detuning to the blue of resonance to suppress Rayleigh superradiance, and
(3) applying a simultaneous pulse resonant to the D2, F = 2 → F ′ = 3 transition to dephase
atoms Raman scattered to F = 2.

4.2.3 Absorptive spin-sensitive in situ imaging (ASSISI)

We circumvent the inherent limitations to dispersive imaging by employing a three-
level scheme to image the F = 1 spin density (Fig. 4.6). First, a brief microwave pulse
transfers a small number of atoms from one spin state in the F = 1 manifold to the F = 2
manifold. A weak magnetic field is sufficient to spectroscopically separate microwave transi-
tions (Sec. 4.3.1). Then, the atoms in the F = 2 states are imaged with a short, intense pulse
of resonant imaging light on the D2, F = 2 → F ′ = 3 transition, to which the F = 1 conden-
sate is dark. In our setup, each imaged atom typically scatters 300 photons, hence we can
extract much more information per atom than the limit of one scattered photon per atom in
dispersive imaging. We reach a high signal-to-noise ratio by destructively imaging a small
fraction of the sample. The theoretical uncertainty in atom counting ∆N =

√
16A/σ0Γt

(see Eq. A.5) can exceed unity for a large number of scattered photons Γτ � 1 even far
from the diffraction limit (A > σ0). For our system (τ = 30 µs), the column density noise
∆ñ = 0.4/

√
µm2 is far smaller than the peak column density ñ0 = 340/µm2.

This technique combines the best features of Stern-Gerlach imaging and polariza-
tion contrast. ASSISI can image all mF states with absorption imaging, like Stern-Gerlach,
but does so with a lower atom loss than even polarization contrast imaging. This allows us
to image the evolution of structures that arise in polar condensates (e.g., Fig. 4.3), which
would be completely dark in circular birefringence polarization contrast imaging. ASSISI
probes strictly along the quantization axis, while polarization contrast measures magneti-
zation along the propagation direction of the laser.

A clear example is shown in Fig. 4.7. The polarization contrast image (Fig. 4.7a)
is taken at our optimized “best” settings (detuned from the D1 line), but unfortunately at a
light level sufficient to destroy the sample. Using ASSISI (Fig. 4.7b), we image only a small
fraction (<10%) of the sample and yet have an enormous signal to noise – these images have
no digital smoothing, binning, or filtering. The three images correspond to three microwave
pulses on the |F = 1,mF 〉 → |F = 2,mF 〉 with small transferred fractions. Imaging a
larger fraction of the spins is detrimental as the signal-to-noise decreases with high optical
density. As emphasized earlier, the absorption imaging is done with an imaging pulse at
the saturation intensity, which gives optimal signal-to-noise when the optical density of the
transferred population is small.
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Figure 4.6: ASSISI scheme to read out the three projections of Fz with interleaved mi-
crowave and optical pulses. First, a calibrated pulse resonant with |F = 1,mF = −1〉 →
|F = 2,mF = −1〉 transfers a small fraction of atoms to F = 2. An imaging pulse destruc-
tively images the transferred atoms and pushes them out of the trap. Typically, the image
is stored on the CCD in frame transfer mode. The process is repeated for mF = 0 and
mF = +1 on the same condensate. Projections of the magnetization along other axes can
be measured by following this sequence with an RF pulse and repeating the procedure.

Multiaxis magnetization

The sequence of three images described above can be extended by rotating the
magnetization with an RF pulse. The first three pulses measure the longitudinal magneti-
zation mz = −1, 0, 1, where mz denotes the projections of Fz. After a π/2 pulse, the next
three images measure the projections mx = −1, 0, 1 (Fig. 4.8). For ferromagnetic struc-
tures, this is a redundant set of information, as we are most interested in the magnetization
Mz = Nmz=+1 −Nmz=−1 and Mx = Nmx=+1 −Nmx=−1. Fig. 4.8 demonstrates a sequence
of six images, each separated by 2 ms, and two magnetizations. From these images we can
calculate My up to a sign.

We extend these measurements to nine pulses, three triplets separated by two RF
pulses (Figs. 4.9, 4.10). Like above, we refer to the first two triplets as the z and x axis of
magnetization. If the final RF pulse occurs after an integer plus or minus a quarter number
of Larmor cycles, the magnetization will be rotated along y or −y. Spin echo pulses can help
ensure this, but we instead rely on chance. Insofar that our RF π/2 pulses are trustworthy,
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Figure 4.7: (a) Polarization contrast and (b) in situ spin images of a ferromagnetic
skyrmion. The magnetization imageMz is the difference between the mF = 1 and mF = −1
populations.
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Figure 4.8: Multiaxis magnetization imaging of a topological structure. The first three
images measure the longitudinal magnetization, i.e. the projection of the magnetization
along the quantization axis ẑ, as in Fig. 4.7b. We then apply an RF π/2 pulse to rotate
the magnetization by 90◦ and repeat the original procedure. These images constitute the
transverse magnetization, we we arbitrarily label the axis x̂. All images are from a single
experimental realization and probe the magnetization of the same structure.

the final magnetization ends up along the y−z plane, and we fit for both the RF pulse angle
and the free evolution angle from the images by either correlating the images or solving for
the angles that maximize |〈~F 〉|, since we assume the magnetization is maximal for these
ferromagnetic structures. Figs. 4.9 and 4.10 show close to the ideal angle because they are
post-selected from a set of repeated experiments on independent samples.

The large dataset of nine images allows us to extract topological parameters from
the data, in this case the solid angle swept out by the magnetization. Topological invariants
give us a means to solve yes or no questions. For a two-dimensional magnetic system, if
the system has fixed uniform magnetization along a boundary, can that magnetization be
continuously unwrapped to a uniform magnetization inside the region? The answer can be
determined by integrating the solid angle swept out by the local magnetization, where the
solid angle is positive for magnetization that rotates counter-clockwise.
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Ω =

∫
dx dy ~m ·

(
∂ ~m

∂x
× ∂ ~m

∂y

)
If Ω = 0, then the magnetization inside the region can be continuously unwrapped

to a constant vector. Otherwise, the region contains a topological defect. In this example of
a uniformly magnetized boundary, Ω must be a multiple of 4π, so continuous deformations
cannot let it ‘jump’ from one value to the next. The integrand is often called the topological
density, Pontryagin density [49, sec. 1.19], or Berry curvature. Ω is the number of times
the magnetization wraps a sphere times 4π, and is closely related to the second homotopy
group, the group of equivalent ways to wrap a sphere around the order parameter space.

The discretized version involves calculating the solid angles swept out by two
triangles for each 2×2 grid of points. The lower triangle has points 1 = (x, y), 2 = (x+1, y),
and 3 = (x, y+1), and the upper triangle 1 = (x+1, y+1), 2 = (x, y+1), and 3 = (x+1, y).
It is important to use the exact formula for solid angle to avoid building up numerical errors
[50].

tan
Ω

2
=

|~m1 ~m2 ~m3|
|~m1||~m2||~m3|+ ~m1 · ~m2 |~m3|+ ~m2 · ~m3 |~m1|+ ~m3 · ~m1 |~m2|

Fig. 4.9 shows the magnetization for a spin vortex with a topologically nontrivial
structure (spin vortex). The nine consecutive images are shown in black and white, along
with the three estimates of the spin projection Fi =Mi/N . Unfortunately, the core is quite
small and the finer structures are poorly resolved. In particular, the Fx and Fy images
have lower contrast than they should, and the mF = 0 images are quite smeared. This is
exacerbated by evolution of the magnetization during the 16 ms acquisition time, since our
microwave source requires 2 ms to switch frequencies. Regardless, the measured Ω = −12.5
is unusually close to the expected value of 4π.

By comparison, a spin helix has a small integrated solid angle and occupies a
small fraction of the magnetization sphere (Fig. 4.10). This analysis works despite the
non-uniform boundary of the chosen region.

4.3 Experimental manipulation and control

For an experimentalist, control covers both the aspects that must be managed for
the system to work and the aspects that can be dialed to see new science, with considerable
overlap between those categories.

4.3.1 Microwave Manipulation

The physics that we are interested in involves placing atoms in a superposition of
the three F = 1 states. As mentioned above, we use the microwaves to coherently transfer
atoms from the F = 1 states to the F = 2 states. We do this to image the atoms and to
measure the local magnetic field. We must calibrate the Rabi frequency of the microwave
transitions for this manipulation. Characterizing our microwave setup involves checking
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Figure 4.9: Full magnetization and topological imaging of a spin vortex. Nine images of
the mi = −1, 0, 1 projections for i = x, y, z are used to calculate the three estimates of the
spin project Fi. (Top right) The solid angle encompassed by each 2 × 2 square of pixels
is shown on the top right; most circle the magnetization clockwise (blue). (Bottom right)
The magnetization sphere. Each triplet (Fx, Fy, Fz) is projected onto a sphere (black dots).
Blue and red regions denote regions of the magnetization sphere covered by the images.

the detuning of the clock transition, of the magnetic-field sensitive transition, and the Rabi
frequency.

For microwave evaporation, we mix a Microwave Dynamics PLO-4000 at 7.000
GHz with National Instruments PXI-5650 RF signal generator. However, we found that
the PLO-4000 was far too noisy, most likely because the phase locked loop was poorly
calibrated and introduced large reference spurs. In particular, it failed two experiments.
(1) When a strong microwave tone (Ω0 ≈ 5 kHz) was applied to our atoms with a detuning
of 40 kHz for one second, we saw substantial excitation of the atoms, much more than
the expected fraction of (Ω0/∆)2 ≈ 1% (Fig. 4.11). (2) The measured frequency of the
clock transition (|F = 1,mF = 0〉 → |F = 2,mF = 0〉) disagreed with the literature by an
abnormally large 1 kHz. Substituting the source for an Agilent MXG 5183A immediately
solved both problems. All following calibrations and data was taken with the Agilent,
including all imaging pulses. Both systems are referenced to a commercial, free-running
rubidium clock (Stanford Research Systems FS725).

The frequency of the clock transition (|F = 1,mF = 0〉 → |F = 2,mF = 0〉) has
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Figure 4.10: Full magnetization and topological imaging of a spin helix. Nine images
of the mi = −1, 0, 1 projections for i = x, y, z are used to calculate the three estimates
of the spin project Fi. (Top right) The solid angle encompassed by each 2 × 2 square of
pixels is shown on the top right. The solid angles are noisy but average to zero. (Bottom
right) (Bottom right) The magnetization sphere. Each triplet (Fx, Fy, Fz) is projected onto
a sphere (black dots). Blue and red regions denote regions of the magnetization sphere
covered by the images. For a spin helix, all of the points occur on a band at fixed latitude.

been measured exceptionally well [16]. We can verify the literature value by reducing the
microwave power by 24 dBm and measuring the Rabi oscillation frequency Ω at several
detunings (Fig. 4.12). The expected model Ω =

√
Ω2
0 + (f − f0)2 fits the data very well

with a deviation of +21 Hz. This disagrees with my expectation from the quadratic Zeeman
effect (+26 Hz), the optical trap (-3 Hz), and atom-atom interactions (-13 Hz). However, it
is close enough for comfort. For coherent manipulation, we increase the Rabi frequency by
maximizing our microwave power (see Fig. 4.13). The Rabi oscillations are clean and allow
for good π pulses between these levels.

To make the same fraction of each spin state, the Rabi frequency of the three
microwave pulses must be equal. We use the ∆mF = 0 microwave transition (|F = 1,mF 〉 →
|F = 2,mF 〉) so that the Rabi frequencies depend on the same component of microwave
polarization and are related by Clebsch-Gordan coefficients. The Rabi frequency for mF =
−1 and mF = +1 are identical, even for a finite detuning. We increase the power of the
microwaves when we image the mF = 0 population to match the larger Clebsch-Gordan
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Figure 4.11: Atoms as a narrowband microwave spectrum analyzer. Fraction of atoms ex-
cited to F = 2 after a long microwave pulse. Except around zero detuning, the MXG 5183A
has uniformly low excitation, while the PLO-4000 has “bad” regions, especially around a
detuning of 50 kHz. The large background offset is most likely due to residual atoms that
were not removed during the preparation of the |F = 1,mF = 0〉 condensate.
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Figure 4.12: Calibrating the Rabi frequency and detuning of the clock transition. (a) Rabi
oscillations of |F = 1,mF = 0〉 → |F = 2,mF = 0〉 clock transition for a detuning of 0 Hz
(blue circles), 200 Hz (red squares), and 500 Hz (purple triangles). The power is reduced
by 10 dBm compared to normal operation. (b) From the detuned Rabi frequencies, we can
determine the resonant Rabi frequency and resonance frequency. The offset is primarily
from the quadratic Zeeman shift.

coefficient (4/3 = (〈1, 0; 1, 0|2, 0〉/〈1, 1; 1, 0|2, 1〉)2). At one point we found that an increase
of 1.04 dB seemed to match the Rabi frequencies better. Later analysis regularly showed
too large of a population of mF = 0, so this calibration is most likely incorrect.

These calibrations require an initial population of atoms in the |F = 1,mF = 0〉
state. Our sequence always begins with atoms in the |F = 1,mF = −1〉 state. For the
calibrations shown in Fig. 4.13, the atoms were transferred to the |F = 1,mF = 0〉 state
with two Landau-Zener sweeps, first from |F = 1,mF = −1〉 to |F = 2,mF = −1〉 and
a finally from |F = 2,mF = −1〉 to |F = 1,mF = 0〉. The sweeps are 15 ms and 20 ms,
respectively, and use a constant microwave frequency and swept magnetic field. Purification
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Figure 4.13: Rabi oscilations on the clock transition. Rabi oscillations of |F = 1,mF =
0〉 → |F = 2,mF = 0〉 clock transition.

follows with a large (several G/cm) magnetic field gradient and resonant imaging light to
expel F = 2 atoms. For later calibration, e.g. Fig. 4.12, we instead applied an intense,
resonant, and brief RF pulse that transfers only a small population of the atoms to the
|F = 1,mF = 0〉 state, and a negligible fraction to |F = 1,mF = +1〉. The small fraction
ensures that the final, imaged population will have a moderate optical density and will not
saturate the imaging.

4.4 Magnetic Field Control

Magnetic field noise is ever present in the lab and must be controlled to produce
a clean environment to study spinor physics. In the best of cases, magnetic fields can be
controlled by (1) mu-metal shielding that minimizes external field fluctuations, (2) feedback
from an external magnetic sensor to control the fields at the atoms, or (3) choosing an atom,
atomic transition, or measurement scheme whose level or signal fluctuates negligibly with the
ambient noise of the lab. In general we did not follow any of these approaches and simply
resorted to frequently measuring the magnetic fields with the atoms and correcting the
experiment manually: a graduate student feedback loop. Quite a lot of the data was taken
at night when ambient magnetic field fluctuations were smaller. For most of the experiments
reported here, reducing magnetic field gradients is critical even while the magnitude of the
field is not.

4.4.1 Magnetic Bias Field

We use microwave transitions to calibrate the magnetic bias field daily or several
times per day. Fig. 4.14 shows a typical scan of the magnetic-field sensitive microwave
transition |F = 1,mF = −1〉 → |F = 2,mF = −1〉 via Rabi spectroscopy. A microwave
pulse with fixed time and power but scanned frequency transfers a small fraction of the



CHAPTER 4. SPINORS: IMAGING AND CONTROL 56

150 155 160 165 170 175 180 185 190

0

0.5

1

1.5

2

2.5

Microwave detuning (kHz)

|F
=

2
, 
m

F
=

−
1
>

 p
o
p
u
la

ti
o
n
 (

×
1
0

5
)

50 us, 3 dBm

150 us, −3 dBm

250 us, −6 dBm

Figure 4.14: Calibrating the magnetic bias field with Rabi spectroscopy. Scans for the
magnetic field from July 5, 2013 (black and orange) and July 13, 2013 (red). The drift of
∼5-10 kHz is typical. This transition has a frequency shift of µBB/h, twice that of the
Larmor frequency. Data is fit to Eq. 4.4.

sample to |F = 2,mF = −1〉, which is subsequently imaged. This transition gives us
a value very nearly twice the Larmor frequency ωL = gFµBB/h̄, the splitting between
|F = 1,mF = −1〉 and |F = 1,mF = 0〉, where gF = 1

2 and µB is the Bohr magneton.
(Nearly all reported data is in units of Hz, for which fL = gFµB/h is the relevant form.)
The data for t = 150 µs shows the tell-tale sidelobes of Rabi spectroscopy (Eq. 4.4). In
general, we find that the magnetic field can jump by several kHz over the course of hours
and by ∼1 kHz over minutes. This large variations requires pulse times shorter than 200 µs.
Unlike typical Rabi spectroscopy, we keep the maximum angle pulse area Ω0t � 1 so as
to not saturate the images: a full transfer will saturate the imaging system and leads to a
systematic underestimate of the atom number. The data in Fig. 4.14 is fit to the following
Rabi oscillation formula.

NF=2 = N0
Ω2
0

Ω2
0 + (f − f0)2

sin2
(
πt
√
Ω2
0 + (f − f0)2

)
(4.4)

4.4.2 Magnetic Field Gradients

Measuring and controlling magnetic field gradients is one of the more annoying
aspects of spinor condensates. The magnetic fields, to order of gradients, can be expanded
as follows.

~B =

 B0,x

B0,y

B0,z

+

 Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz

 x
y
z

 Bij = x̂i ·
∂ ~B

∂xj
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Except for the fields generated by the ultracold atoms, which we will discuss in Sec. 5.4,
Maxwell’s equations require that the magnetic field has no curl or divergence within the
source-free vacuum chamber. This requires that Bij = Bji and Bxx +Byy +Bzz = 0.

The extent of the condensate is much smaller along the ẑ direction than along x̂ or
ŷ. For this reason, we safely ignore gradients along ẑ. As we will see, orienting the bias field
in-plane (B0,z = 0) lets us ignore terms of the form Biz. For simplicity, assume we orient
the field along x̂. The atoms feel a spin-dependent force that depends on the magnitude of
the magnetic field. Insofar that B0,x � Bijxj , we can expand the field as

| ~B| =
√
(B0,x +Bxxx+Bxyy)2 + (Bxyx+Bxyy)2

≈ B0,x +Bxxx+Bxyy +
1

2B0,x

(
B2

xyx
2 + 2BxyByyxy +B2

yyy
2
)
.

For large B0,x, curvatures are suppressed. In addition, the gradients do not depend
on Byy. At first glance it would appear that we need to cancel both Bxx and Bxy. This
would be true if we insisted on a bias field oriented along x̂. If we instead choose a special
axis to orient the bias field, we can suppress one more gradient. In particular, the special

axis is an eigenaxes of the 2×2 matrix
(
Bij

)
.

x
y

x

y

B xx
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B yy

B y y

B x x
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B grad

B y y − B grad
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θ

Figure 4.15: Gradient cancellation scheme. (Left) The cross-term Bxy can be mathe-
matically eliminated in a (center) rotated frame. A spherical quadrapole field (red arrows)

cancels the gradient along the x̂′ axis. (Right) A bias-field ~B0 (blue arrow) oriented precisely
along this axis creates a gradient-free environment.

In a rotated coordinate system (x′, y′) given by the eigenaxes of the matrix
(
Bij

)
,

the off-diagonal term Bx′y′ = 0 (Fig. 4.15, left and center). To this field we add a spherical
quadrupole field Bgrad (~x+ ~y). With this field we can cancel one gradient, e.g. by choosing
Bgrad = −Bx′x′ (Fig. 4.15, center). We then carefully orient the bias field along x̂′ (Fig. 4.15,
right). In the language of linear algebra, we set one eigenvalue to zero and orient the bias
field along the corresponding eigenvector. Experimentally, we monitor the gradients and
iteratively cancel the gradient along the bias field (with Bgrad) and transverse to the bias
field (with the bias field orientation θ). This can be seen by expanding the field for small
deviations from the gradient-free configuration.
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Figure 4.16: Measurement of the magnetic field gradients. (a) Magnetic field gradient
along x (blue circles) and y (red squares) as a function of bias field angle θ. Lines are fits
to the data for Bxx = 17.1(2) Hz/µm, Bxy = 2.5(2) Hz/µm, and Byy = 11.6(2) Hz/µm. (b)
Same data, but showing the magnitude of the gradient versus bias field angle. The deviation
from 180◦ symmetry is most likely due to small gradients created by the bias field coils used
to reverse the field direction. Ramsey pulses are 0.5–1.0 ms on the |F = 1,mF = −1〉 →
|F = 2,mF = −2〉 microwave transition. For reference, 1 Hz/µm = 14 mG/cm.

| ~B| ≈ B0 − xBgrad + y dθBy′y′

4.4.3 Optical Zeeman Effect

A weak magnetic field pertubs an atom by adding a term HB = −~µ · ~B =
−1

h̄gFµB
~F · ~B to the Hamiltonian. Light tuned to the right wavelength can create the same

Hamiltonian, except the magnetic field ~B is replaced by a function of the intensity, detun-
ing, and polarization of the light. Using light has a key advantage: the Hemlholtz equation
that governs optics allows for much more varied structures than Laplace’s equations allow
for magneto-statics. In particular, we use this method to create effective magnetic fields
with either Gaussian or sinusoidal profiles. We call a laser tuned to this wavelength the
optical Zeeman laser.

In rubidium, the spin-orbit coupling of the electronic excited state can be leveraged
to create coupling between the hyperfine spin and laser polarization. Fig. 4.17a shows the
calculated ac Stark shift of the three F = 1 states in the presence of a circularly polarized
laser. At the “magic-zero” or “tune-out” wavelength 790.03 nm, the Stark shift vanishes for
mF = 0 atoms [51]. A laser tuned to this wavelength cannot excite phonons in an mF = 0
condensate (Fig. 4.17a(b)), but can excite spin waves. This will be our primary technique
to study magnons in the next chapter.

We can detect the effective magnetic field from the optical Zeeman effects with a
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Figure 4.17: AC Stark shift and suppression of phonons at the magic-zero wavelength. (a)
Calculated ac Stark shift of the F = 1 states for a circularly polarized laser. More advanced
calculations indicate that the ac Stark shift of the mF = 0 state vanishes at 790.034(7) nm
[51]. (b) A standing wave excites phonons in an mF = 0 condensate. At the magic-zero
wavelength, the contrast of the phonons is minimized.

Ramsey interferometer similar to our measurement of magnetic field gradients [52]. The
atoms are illuminated by the optical Zeeman laser for 2 ms between two RF π/2 pulses
with the magnetic field oriented parallel to the laser propagation and to gravity. The laser
adds diagonal terms to the Hamiltonian proportional to Fz. In this case, we have a very
sensitive map of the optically induced field. The peak shows ∼ 4π phase shift at the highest
intensity, corresponding to a Rabi frequency of h× 1 kHz.

The optical Zeeman laser can also rotate the longitudinal magnetization by intro-
ducing an oscillating off-diagonal matrix terms, e.g. proportional to Fy cosωt. These terms
can create spin structures where the polar angle of magnetization varies inhomogeneously.
In this case, we orient the propagation direction of the laser transverse to the magnetic bias
field (Fig. 4.19a) to create an energy proportional to Fy. The resonance condition requires
oscillating the intensity of the laser at the Larmor frequency 1

2µBB0, where B0 is the local
real magnetic field. An example of is shown in Fig. 4.19b, where the optical Zeeman laser
is focused to a waist (1/e2 radius) of 12 µm inside a much larger condensate. This process
can also be described as a resonant two-photon Raman transfer.

More interesting examples are shown in Fig. 4.20. For instance, frequency chirping
the amplitude modulation, rather than a resonant amplitude modulation, can create a
Landau-Zener transfer with a substantial transverse spin structure (Fig. 4.20c).

4.5 Quadratic Zeeman Shift and spinor phase transitions

As described above in Sec. 4.1.3, the ground state phase depends on a competition
between the spin-dependent contact interactions 1

2c2n〈~F
2〉 that favors a ferromagnetic state

and the quadratic Zeeman Shift q〈Fz〉 that favors a polar state. Tuning q can cause the
polar ground state (0, 1, 0) to suddenly find itself far out of equilibrium in the ferromagnetic
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Figure 4.18: Optical Zeeman effect measured with a Ramsey interferometer. An effective
magnetic field is applied to the atoms for 2 ms between RF π/2 pulses. Images show the spin
density in themF = −1, 0,+1 states as well as the magnetizationMz = NmF=+1−NmF=−1.
The voltage is proportional to the intensity of the optical Zeeman laser.

portion of the phase diagram [42, 14]. We verify our preparation, control, and imaging by
reproducing this quench in Fig. 4.21.

The quench is performed by suddenly turning on a off-resonant microwave drive.
The drive is detuned +40 kHz from the |F = 1,mF = 0〉 → |F = 2,mF = 0〉 transition and
decreases the energy of the dressed |F = 1,mF = 0〉 state. The mF = ±1 states are initially
seeded with a brief RF pulse to speed up the process. A magnetic field gradient separates
the domains and lets them grow is size. Without a gradient, the domain size increases only
very slowly [14].

The evolution of a quench depends on the sample preparation. The spin-dependent
Hamiltonian allows for dynamics where two atoms in the mF = 0 scatter into the mF = +1
and mF = −1 states, conserving 〈Fz〉 and spherical symmetry. The conservation prohibits
the polar ground state (0, 1, 0) from evolving into a longitudinal ferromagnetic ground state,
such as (1, 0, 0). Instead, for a fixed magnetization, the system evolves towards two large
domains of (1, 0, 0) and (0, 0, 1). The evolution of the mF = 0 population can be seen in
Fig. 4.22. Dipolar interactions can allow for collisions that change 〈Fz〉, but we do not
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Figure 4.19: Optically writing of spin excitations. (a) A focused laser (red hyperbola)
introduces an effective transverse magnetic field proportional to the local intensity. As the
laser amplitude is modulated as the Larmor frequency, the magnetization of the atoms
(blue trap) is rotated longitudinally. (b) A rotation of the longitudinal magnetization can
be measured as a slight increase in the local mF = 0 population. This can be described as
∼ 103 magnons. The time evolution of this pattern is investigated in Sec. 5.2.

observe this process.

4.6 Future

This chapter set out the experimental requirements of working with spinors and
the capabilities offered by the apparatus. The next step is applying this knowledge to
explore new physics. Ch. 5 focuses on elucidating the basic properties of magnons, spin
wave excitations, of the ferromagnetic condensate.

There are several other promising directions for this setup. For instance, ASSISI
is unique in observing real-time dynamics of polar phases, which could be used to explore
quenches, instabilities, and topological structures in the polar phase. Another compelling
direction is studying domain walls, which are experimentally easy to create and common to
many broken symmetry systems [40].

4.6.1 Domain walls.

An immiscible mixture of two components has a ground of two large domains. If
the mixing energy is large, the two components will be separated by a sharp domain wall
of width ∼ h̄/

√
m×mixing energy. Fluctuations in the location of the domain wall may

have a much lower energy scale, since they depend not on the mixing energy but the kinetic
energy of a curved wavefunction. Excitations of a domain wall are known as ripplons and
are predicted to have fractional dispersion relations, e.g. ω ∝ k3/2 [53, 54, 55].

The mF = −1 and mF = +1 states form an immiscible mixture in the ferromag-
netic phase (Fig. 4.23). Mixing of these two states decreases 〈~F 2〉, which is energetically
costly. We create an equal mixture by performing an RF rotation (ωLτ = π/2) of a pure
mF = 0 condensate. The system starts in the highly energetic polar states, which quickly
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(d) Spin vortex from magnetic field plunge

Figure 4.20: Creating a compact spin structure. (a) The optical Zeeman laser is briefly
amplitude modulated to rotate the spin in the x − z plane. This produces a small mz=0
population and transverse magnetization Mx. (b) A longer pulse produces a π rotation at
the center of the laser with a smooth transverse magnetization, still confined to the x − z
plane. (c) An alternative strategy is to frequency chirp the amplitude modulation to create
a Landau-Zener sweep. The transverse magnetization now varies rapidly and circles about
the z axis. The longitudinal magnetization of (b), (c), and (d) the spin vortex (from Fig. 4.8)
are nearly identical, but the transverse magnetization is qualitatively different.
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Figure 4.21: Quench of a polar condensate. The mF = 0 condensate is seeded with an
initial population of mF = ±1 atoms. (Top)

phase separates with the help of a magnetic field gradient.
The domain wall remains jagged even after two seconds. This could because of

thermal fluctuations or undamped oscillation from the separation process. We later learned
that several vortices are often created during condensation; the fluctuations in the domain
wall could due to motion of the vortices. A better experimental sequence would involve
creating the mixture in the thermal gas and condensing in the presence of a gradient without
vortices. From a large number of independent realization we could extract the equal time
correlation function of the domain wall. Multiple imaging would allow for the complete
space-time correlation function. The unusual dispersion relation may lead to an unusual
correlation function.
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Figure 4.22: Spin populations during a quench. The initial imbalance between mF = 0
and mF = ±1 is set by a brief RF pulse that rotates a uniform (0, 1, 0) ground state. During
the quench to the ferromagnetic state, the mF = 0 slowly vanishes.
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Figure 4.23: Domain wall formation between the mF = +1 and mF = −1 states in the
ferromagnetic phase. A nearly pure 1√

2
(1, 0, 1) state separates into two domains after a

few hundred milliseconds in a magnetic field gradient. Even after two seconds, the domain
wall is clearly jagged. The excitation could by thermally activated or arise from undamped
oscillations created during the separation procedure.



65

Chapter 5

Magnons

5.1 Low-energy excitations: phonons and magnons

As discussed in the beginning of Ch. 4, the symmetry of a condensed matter
system is intimately tied to its low energy excitations and therefore its low temperature
thermodynamic properties. For instance, a scalar Bose gas breaks a global phase symmetry
when it becomes a condensate. A ferromagnetic BEC breaks a total of three symmetries1,
but has only two Nambu-Goldstone bosons: phonons, with a linear dispersion relation,
and magnons, with a quadratic dispersion relation [58, 59]. The difference between the
number of broken symmetries and the number Nambu-Goldstone bosons has been recently
understood [6].

In this chapter we apply tools from precision experiments in atomic physics to in-
vestigate the magnetic moment, dispersion relation, and gap of magnons in a ferromagnetic
condensate. We perform these experiments by creating and interfering coherent magnon
waves. There are two key results in this chapter. First, we directly observe a gap created
by magnetic dipole-dipole interactions that is consistent with mean-field theory. Second,
we measure a magnon recoil frequency that is close to, but systematically smaller than, the
expected result for mean-field theory with contact interactions. We claim this as evidence
of a heavy magnon, with an effective mass 3.3% heavier than the bare rubidium mass.

5.1.1 Linearized Schrödinger equation

We will derive phonons and magnons by adding fluctuations to the order parameter
ψ =

√
n (1, 0, 0) and linearize the resulting Schrödinger equation. Physically, fluctuations

1At high temperatures, an F = 1 Bose gas is symmetric under rotations and the addition of a quantum
mechanical phase, summarized by the symmetry group G = SO(3)×U(1). At low temperatures, a ferromag-
netic condensate minimizes its energy by choosing a global phase and spin direction. What is less obvious
is that the low temperature state is still invariant to a combined rotation about the axis of magnetization
by an angle α and the addition of a phase −α: eiαe−iFzα/h̄(1, 0, 0) = (1, 0, 0). The symmetry group of the
ferromagnetic state is then H = U(1). The broken symmetries are characterized by the order parameter
manifold M = G/H = SO(3) [56, 57].
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can be parameterized in terms of changes in the density and spin orientation.

ψ =
√
ne−iµt(1 + χ)R(θ, φ)

 1
0
0

 θ�1−−−→
√
ne−iµt(1 + χ)

 1− 1
4θ

2

1√
2
θe−iφ

1
4θ

2e−2iφ

 (5.1)

The small complex number χ characterizes changes in the scalar density and phase, while θ
and φ are Euler angles that characterize changes in the spin orientation. These fluctuations
are along the broken symmetry directions of the ferromagnetic ground state and are expected
to produce gapless excitations. Fluctuations of the mF = −1 component, neglected here,
create gapped excitations[58].

The contact interactions do not depend on θ or φ, so the interaction term in
the Schrödinger equation evaluates to µ|1 + χ|2ψ with µ = (c0 + c2)n (see Sec. 4.1.2 and
Eqs. 4.2, 4.3). It is easiest to characterize fluctuations of spin by the complex number
ζ = 1√

2
θe−iφ, which is the wavefunction for mF = 0 atoms. We can now linearize the

ansatz and Schödinger equation.

ψ ≈
√
ne−iµt

 1 + χ
ζ
0

 (5.2)

ih̄χ̇ =− h̄2

2m
∇2χ+ 2µ(χ+ χ∗) (5.3)

ih̄ζ̇ =− h̄2

2m
∇2ζ (5.4)

These two equations represent the two Nambu-Goldstone bosons of our system:
phonons (χ) and magnons (ζ). The eigenspectrum of Eq. 5.3 is the well-known Bogoliubov

phonon with Eχ =
√
(h̄2k2/2m)(h̄2k2/2m+ 2µ). Magnons, as described by Eq. 5.4, have

free-particle solutions Eζ = h̄2k2/2m with no gap and an effective mass identical to the bare
mass of rubidium. Our experiments nearly reproduce this simple analysis, but we will find
that dipolar interactions introduce a slight gap (energy offset). We also observe a heavier
effective mass.

In this section, we will exclusively study magnons by setting χ = 0. Eq. 5.4 is

solved by ζ = ζ0 e
i
(
~k·~x−ω(k)t

)
. To order O(θ), this solution represents a magnetization with

a fixed polar angle θ and a periodic azimuthal angle φ = ~k · ~x− ω(k)t.

ψmagnon =
√
ne−iµt

 1
1√
2
θei(

~k·~x−ω(k)t)

0

 =
√
ne−iµtR(θ,~k · ~x− ω(k)t)

 1
0
0

 (5.5)

Our data is inconsistent with the mean-field dispersion relation ω(k) = h̄k2/2m, but instead
matches ω(k) = ∆(n) + h̄k2/2m∗. Regardless, we will assume the form of Eq. 5.5 for small
values of θ.

The next order of Eq. 5.4 includes phonon-magnon interactions. Numerical sim-
ulations show that the eigenfrequency shifts depending on the amplitude of |ζ|2, i.e. at
non-negligible mF = 0 populations.
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Figure 5.1: Expansion of a magnon wavepacket. A Gaussian wavepacket of spin is created
with a brief pulse from the optical Zeeman laser. (a) Expansion of the mF = 0 atoms
(red) in the presence of a weak magnetic field gradient over 200 ms. The condensate profile
is shown in light gray. It is not clear whether the fringes are real or imaging aberration.
(b) An average of the width over time for three runs (black circles). The fit shows the
expected hyperbolic profile (red line). However, it expands more rapidly than is expected
for a Heisenberg-limited wavepacket (red dashed line). This is most likely because the laser
intensity is not Gaussian, as evidenced by the structure seen after 120 ms.

5.2 Magnons act like free-particles in a flat potential

For a nonuniform trapping potential, the effective potential for spin excitations
remain flat because of a precise cancellation of the trapping potential and mean-field repul-
sion of the condensate. For convenience we’ll present an alternative derivation of Eq. 5.4,
with an mF = 0 wavefunction ψ0 (equivalent to ζ in our ansatz). In the limit of a small
magnon population (neglecting terms of order |ψ0|2 and ψ−1ψ+1), the Schrödinger equation
is

ih̄ψ̇0 = − h̄2

2m
∇2ψ0 + V0ψ0 + (c0 + c2)ψ

∗
−1ψ−1ψ0 = − h̄2

2m
∇2ψ0 + Veffψ0.

In the Thomas-Fermi limit, the condensate density matches the trapping potential n−1 =
(µ− V−1)/(c0 + c2).

Veff = V0 + (c0 + c2)
µ− V−1

c0 + c2
= V0 − V−1 +

µ

c0 + c2
(5.6)

Hence, magnons propagate as if the potential were flat, as long as they remain
in a region of the condensate where the Thomas-Fermi approximation applies. Within the
condensate, the density shift precisely cancels the trap confinement. This satisfies the intu-
ition that magnetic excitations, like most quasiparticles, live ‘on top of’ the condensate and
are impervious to small defects in the trapping potential. For instance, an interferometer
based on magnons should be impervious to small corrugations in the trapping potential.

Our first and simplest experiment with magnons is to monitor the expansion of a
small wavepacket (Fig. 5.1). The optical Zeeman laser is tightly focused to a spot size of
12 µm (e−2 radius). A brief pulse from that laser locally rotates the magnetization, which
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Figure 5.2: Effective potential of a magnon in a gradient. (Left) Without a magnetic
field gradient, the magnons experience a potential from the optical trap and the mean-field
shift of the mF = −1 condensate. These contribute to an effectively flat trap where the
local chemical potential is nonzero. (Right) In the presence of a magnetic field gradient, the
density of the mF = −1 condensate is shifted (light blue) while the potential for mF = 0 is
unchanged. The effective potential for mF = 0 is the sum, which contains the gradient.

we image as a small population of mF = 0 atoms (Figs. 5.1a and 4.19). We expect that a
wavepacket with an initial e−1/2 radius σ0 will expand like a free particle in a flat potential.

σ(t) =

√
σ20 +

(
h̄t

2σ0m

)2

(5.7)

In Fig. 5.1b, we observe an expansion that qualitatively matches this theory. However, the
rate of expansion is 50% faster than expected for a Gaussian wavepacket. In addition, the
wavepacket shapes shows odd and distorted structures for expansion times beyond 100 ms.
Most likely both of these effects are due to aberrations in the optical Zeeman laser profile,
as any non-Gaussian profile with a uniform initial phase will expand more quickly than
predicted by Eq. 5.7. It is also possible that non-zero flow of the superfluid distorts the
images.

The expansion of a wavepacket also gives an estimate for the effective mass m∗ of a
magnon, though as we have seen this estimate is biased by initial errors in the preparation.
In the next several sections we will greatly improve our estimates of the effective mass.

5.2.1 Magnetic Moment

Above we described a magnon as an mF = 0 atom that lives in a sea of mF =
−1 atoms. In most experiments, it is sufficient to ignore the background condensate and
pretend that we have mF = 0 atoms in a flat potential. Yet a magnetic field gradient
accelerates magnons as if their magnetic moment were µ = −µBEC = 1

2µB. This is because
a displacement of the condensate creates a force on magnons due to the chemical potential
gradient.

Fig. 5.2 illustrates the effect. A magnetic field gradient shifts the equilibrium
position of the mF = −1 condensate. According to Eq. 5.6, V−1 = V0 − µ−1B

′x, so the
new effective potential Veff = −µ−1B

′x has a gradient. Hence, magnons have an effective
magnetic moment µ∗ = −µ−1 = −1

2µB.
The precise cancellation of the potential and mean-field energy is unique to spinor

condensates with contact interactions because the mF states are connected through rota-
tional symmetry. A condensate that is spin-polarized along mF = −1 is a superposition of
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mF states along another basis. Thus it is not a coincidence that the mF = −1 ↔ mF = 0
scattering length is exactly the same as the mF = −1 ↔ mF = −1 scattering length. In
pseudo-spin systems, such as F = 1 and F = 2 mixtures, this cancellation is not perfect and
adds a slightly curvature to the potential. This also implies that the Larmor frequency has
no density-dependent shift due to contact interactions, while there is a density dependent
shift on the clock transition between F = 1 and F = 2 states.

We can measure the magnetic moment by accelerating a magnon wavepacket in a
magnetic field gradient. First, we condense a pure mF = −1 condensate in the presence of
the small magnetic field gradient. Then, a magnon wavepacket is suddenly created with the
optical Zeeman laser. The wavepacket accelerates in the direction of the gradient, like a free
particle under constant force. The gradient can be independently measured by a Ramsey
pulse sequence to a third state, |F = 2,mF = −1〉, as described in Sec. 4.4.2. The sign of
the gradient is determined from the change in equilibrium position of the condensate.

a =
µ∗B′

m∗ λgradient =
h

µB′τ
aλgradientτ =

µ∗

µ

h

m∗

µ∗ = −1.04(2)stat(8)sys µ−1 (5.8)

This analysis assumes that the Ramsey pulse sequence depends on the true mag-
netic moment µ, whereas the kinematic acceleration depends on µ∗. This might not be true,
but, in any case, at our level of accuracy, the kinematic experiment lacks the fine resolution
needed to test mean-field physics. At our measurement resolution, it clearly agrees with our
expectation that a magnon in a ferromagnetic condensate has an effective magnetic moment
consistent with −µ−1 and inconsistent with the magnetic moment of a free mF = 0 atom.
In Eq. 5.8, we set m∗ = 1.033m, as measured in Sec. 5.3.

Uncertainty in the magnification of the imaging system adds a substantial system-
atic error. If our magnification is incorrect by a factor γ, then both the acceleration and
λgradient have an error proportional to γ. The overall uncertainty in µ∗ is then proportional
to γ2. When we later measured the magnon dispersion relation, we found an error of ≈ 4%
in the imaging magnification of a standing wave of magnons compared to an independently
calibrated CCD camera. Thus, we estimate the systematic error to be 8%, far outweighing
the systematic uncertainty.

The magnetic moment also serves as a measure of h/m∗, with a measured value
consistent with the mean-field theory prediction m = m∗. In the next section, we will
introduce a new method to measure m∗ with an order of magnitude reduction in statistical
and systematic uncertainties.

5.3 Dispersion Relation

5.3.1 Standing wave and the quasiparticle dispersion relation

Quite generally, a standing wave consists of stationary nodes and antinodes whose
amplitude oscillates sinusoidally in time. The functional form will typically look something
like this:

A(x, t) = e−Γt cos kx cosωt.
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Figure 5.3: Magnetic moment of a magnon. A Gaussian wavepacket is consistently created
in one location. (a) The wavepacket is accelerated in the direction of the magnetic field gra-
dient. As explored in the previous section, the wavepacket expands while it accelerates. The
region-of-interest (blue box) is 50 by 75 µm. (b) The magnetic field gradient is determined
by a Ramsey interferometer sequence between |F = 1,mF = −1〉 and |F = 2,mF = −1〉.
The image shows fringes in the F = 2 population. (c) The position versus time shows
the expected quadratic dependence. However, we observe many outliers. The sloshing of
the condensate creates an initial uncertainty in velocity, which turns into an uncertainty in
position which increases in time. The data is fit with a least-squares algorithm that self-
consistently determines the standard error as a function of time (vertical lines, 1 σ errors).
(d) Fits of the acceleration from the kinematic data versus gradient. The data is closer to
the fit (black line) and theory (red line) that it should be, given the large uncertainty in
position measurements.



CHAPTER 5. MAGNONS 71

In this context, we can identify the dispersion relation as a function that con-
nects the wavenumber to the frequency, ω(k). In a many-body system, a standing wave of
elementary excitations will have an oscillating amplitude A—magnetization for magnons,
density for sound—with a value of k and ω that correspond to the usual dispersion rela-
tion. In atomic physics, the dispersion relation frequency is known as a recoil frequency.
The experimental strategy is to create a standing wave of one wavelength and measure
the resulting oscillation frequency. This allows for an AC measurement in both space and
time, which will generally give good signal-to-noise. By changing the wavelength over many
experiments, the dispersion relation function can be mapped out. This section describes
our efforts to measure the magnon dispersion relation with this technique (Fig. 5.4).
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Figure 5.4: Our final data for the dispersion relation of a magnon. As expected, the
dispersion relation is very close to a quadratic result ω ∝ k2 (black dashed line). The
surprising result is that the frequencies are systematically shifted down, corresponding to a
magnon mass of 3.3% heavier than the bare rubidium mass (solid red line).

5.3.2 Description of experiment: spin wave and contrast interferometry

We create a standing wave of magnons with a spin-dependent optical potential,
as described in Sec. 4.4.3. The mathematics is most clear in position coordinates, but
the process is qualitatively easier to understand in momentum space. The spin-dependent
potential is created by two laser beams that intersect at an angle ϑ. Both laser beams are
intensity modulated at the Larmor frequency (typically 85 kHz, depending on the position
of the elevator) for a few cycles, typically 30 − 60 µs. Intensity modulation allows for
resonant Raman transitions that simultaneously excite the spin and apply momentum kicks
(Fig. 5.5).

What is less obvious in the momentum space picture is that certain processes are
forbidden. For example, diffraction to the same spin state (|mF = −1, q = ±k〉) only enters
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(b) Ramsey-Bordé interferometer

ω(k)− ω(0)

ωL + ω(0)

|m=0, q=0

|m=−1, q=0

|m=−0, q=+k|m=−0, q=−k

E/

k

(c) Contrast interferometer

Boptical cosωLt

B

ϑ

(d) Optical setup for contrast interferometer

Figure 5.5: Raman, Ramsey-Bordé, and contrast interferometer schemes. A measurement
of the dispersion relation by interfering matter waves at distinct momenta is typically termed
a recoil frequency experiment. (a) The dispersion relation could be probed with a single
magnon wavevector. Unfortunately, this scheme is sensitive to bias field fluctuations in the
lab. (b) We can eliminate sensitivity to the magnetic field fluctuations by comparing the

frequency of magnons created at two wavevectors, in particular at ~q = 0 and ~q = ~k. This is
similar to the Ramsey-Bordé interferometer. (c) With the contrast interferometer we also

excite atoms to ~q = −~k, which removes sensitivity to dipole oscillations of the condensate
and acceleration noise. (d) A contrast interferometer is generated by interfering two paths of
the optical Zeeman laser at a half-angle ϑ. The interference creates a periodically modulated
effective magnetic field. A brief amplitude modulation at the Larmor frequency periodically
rotates the magnetization, creating magnons at q = 0, q = +k, and q = −k, where k =
2kL sin(ϑ/2) and kL = 2π/(790.03 nm) is the optical Zeeman laser wavenumber.

at second order. This is directly related to the choice of wavelength, where the scalar Stark
shift vanishes. In position space, the laser induces a periodic Rabi frequency of the form
Ω = Ω0

2 (1 + cos~k · ~x). We apply the intensity modulated pulse for a time τ , which rotates

the wavefunction about its axis by an angle θ(x) = θavg(1 + cos~k · ~x), where θavg = Ω0τ/2.
The condensate wavefunction is initially fully polarized along mF = −1.

ψafter pulse = Ry(θ)
√
n

 0
0
1

 =
√
n

 1
2(1− cos θ)
− 1√

2
sin θ

1
2(1 + cos θ)

 (5.9)
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Figure 5.6: Sample images from the contrast interferometer. (Left) The system is ini-
tialized with a magnetization that is periodically tilted in the x− z plane (top), where the
corresponding density of mF = 0 atoms is a series of straight fringes. The contrast of the
fringes disappear and appear every half cycle. (Right) The contrast of the Fourier transform
oscillates at twice the eigenfrequency. The system damps towards a finite contrast, possibly
because of inhomogeneous broadening.

Up to O(θ2avg), we can expand the wavefunction as

√
n

 0

− 1√
2
θavg(1 + cos~k · ~x)

1


Comparison to Eq. 5.5 shows that we have created a superposition of magnons at

q = 0,±k, as advertised. In our experiment, we measure the local polar angle of the mag-
netization through the population of the mF = 0 component. This method is reminiscent
of dark-field imaging in optics [27] because we achieve a very low background (no atoms for
a fully magnetized vector) at the expense of quadratic, rather than linear, sensitivity to the
angle. The population of mF = 0 atoms is

PmF=0 = n(~x) θ2avg

(
3

4
+ cos~k · ~x cosωt+

1

4
cos 2~k · ~x

)
. (5.10)

For each image in our dataset, we calculated the power spectral density S(~q)—the
absolute value squared of the two-dimensional fast Fourier transform—and compare the
power in the peak at ~k to the peak at zero momentum.

C(~k) =

∑
box around ~q=+~k

S(~q) +
∑

box around ~q=−~k
S(~q)∑

box around ~q=~0 S(~q)
=

2
∑

box around ~q=+~k
S(~q)∑

box around ~q=~0 S(~q)

If our data were described by Eq. 5.10, we would expect C(~k) = 2
9 cos

2 ωt, close to

the experimentally measured contrast at low momenta. For larger values of |~k|, the imaging
resolution of our system further reduces contrast.

5.3.3 First data and systematic errors

Our first attempt immediately led to a clean oscillation and we managed to take
a dataset that matched the quadratic dispersion relation and the expected mass (Fig. 5.7).
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Figure 5.7: Initial magnon contrast interferometer data. (a) Contrast curves versus time
for the ferromagnetic magnon (normalized to 1). The rapid decay in contrast is due to
vortices created during condensation. (b) Dispersion relation for our first try (April 1,
2013). The values agree with mean-field theory (black line) better than the final data set
does. Also shown are three points taken for polar magnons when q > 2c2n, where the
uncertainty in the theory arises from an uncertainty in the density.

Unlike in a typical recoil frequency experiment, we optically image the spatial fringe pattern.
This allowed us to find several sources of error that led to loss of contrast and biased
frequencies. For example, we found that after a single oscillation, the fringe pattern was
garbled and uneven (Fig. 5.8). In the next several months, we identified and solved six
major problems with the experiment, listed from most important to least.

1. The calibration of the magnon wavelength must be better than 0.5% to measure an
effective mass with systematic error of better than 1%.

2. The eigenfrequency increases with magnon density due to nonlinear (interaction) shifts
as ∆f ∝ θ2avg ∝ nmagnon. We calibrated the shift versus population of mF = 0 atoms
at two wavevectors and interpolated the dataset. The shift is similar to a numerical
simulation of our system with spin-independent contact interactions.

3. While the contrast interferometer removes the effect of magnetic field gradients and
accelerations, magnetic field gradients cause a frequency chirp of the recoil frequency2.
The magnetic field gradient is independently calibrated in our system (see Sec. 5.4
and Fig. 5.17).

2We neglected this effect until it was pointed out by referee during peer review of our article.
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Figure 5.8: Loss of contrast due to vortices. Real space (top) and Fourier space (images)
of the 65/mm pattern in a sample full of vortices. The images are shown roughly every half
cycle. The inhomogeneous decay and fringe pattern is due to a large number of vortices
produced by condensing the sample too quickly. For instance, the 67 ms image contains
roughly a dozen vortices.

4. In the initial realization of the magnon interferometer, we cooled the condensate too
rapidly and produced a large number of vortices. These vortices caused a rapid decay
of the fringe contrast. This was solved by an extremely slow evaporation profile when
ramping through the BEC critical point. This also establishes the magnon contrast
interferometer as a method to investigate vortices (see Sec. 5.5.1).

5. Ambient noise somehow drives shape oscillations of the condensate, which adds phase
shifts to the interferometer. We run the contrast interferometer 20 times per oscillating
condensate, timed to sample several phases of the quadrupole oscillation, the main
shape oscillation we observe. Averaging the several contrast runs per condensate
efficiently removes the phase shift from the quadrupole oscillations.

6. Many collective excitations experience frequency shifts with temperature. We observe
an increasing frequency with temperature, but we do not see a convincing trend in
the region of temperatures that the data was taken. We do not apply a correction
based on temperature.

5.3.4 Calibrating the length scale

Our original goal for this experiment was to look for a shift of several 10−3 in the
effective mass of a magnon, as predicted in Ref. 60. In fact, what we are after is h/m∗,
which has units of length2/time. It is therefore necessary to calibrate the length scale at
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Figure 5.9: Calibration of the CCD pixel spacing. The CCD under test measures the
x and y position of a focused laser with an assumed pixel size of exactly 2.2 µm. The
shift in position is recorded against translating the camera with micrometer screws along
perpendicular x and y axes. Fitting to a model of a rectangular array of pixels and assuming
that the translation axes x and y are at right angles (red line), we find a pixel spacing of
2.19978(8) µm by 2.2006(1) µm and an angle of 1.017(8)◦, where only the statistical noise
is included. The root-mean-square residual is 1.2 µm and peak error is 2.8 µm over 320
measurements. We report this measurement as being consistent with square pixels spaced
by 2.20(1) µm, where the large error should more than account for misalignments. The
translation stage is aligned such that translation along z produces a minimal shift, with an
angular error of less than 1 mrad and contributes negligibly to the calibration error. The
NewFocus 562 translation stage specifies <100 µrad tolerances on the right angles. The
NewFocus SM-13 and HR-13 micrometers specify 1 µm and 0.5 µm sensitivities, respectively,
which suggests an accuracy at that level.

or below the part-per-thousand level. In a precision recoil experiment, the length scale is
calibrated against a retroreflected laser of known frequency and wavefront. This calibrated
ruler can have an accuracy of several parts in 10−10, which remains the largest systematic
error in measuring the recoil frequency in an atom [61]. However, in our experiment, we
intersect the two lasers at a small angle. This dramatically reduces the accuracy of the
measurements; here we work hard to reach 10−3!

We measure the wavelength of the interference pattern projected along the con-
densate axis, |(~k1 − ~k2) × n̂|, where n̂ is the unit vector along the tightest trap frequency.
If the condensate serves as a waveguide for magnons, this projection is more important
than |~k1 − ~k2|. The diffracted wavevector of magnons is ~q = ((~k1 − ~k2) × n̂) × n̂. In our
alignment procedure, we set n̂ is parallel to gravity. The following is our list of instructions
to complete this alignment procedure.

Level the BEC against gravity. We measure the displacement of the BEC in a weak
optical trap and in one that is recompressed. We first adjust the alignment of the
optical trap and perform fine adjustments with the level of the floating optical table.
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During this procedure, we verify that the magnetic field gradient is negligible. This
ensures that the long axis of the BEC, through which magnons propagate, is perpen-
dicular to gravity. We find an offset of less than ∆y = 30 µm along the direction with
trap frequency ωy = 2π × 4 Hz. This constrains the angle to ∆y ω2

y/g ≈ 2 mrad.

Align a perpendicular reference laser. We align a reference laser that (1) propagates
antiparallel to gravity and (2) passes through the center of the BEC. We align it to
gravity by retroreflecting the laser off of a mirror whose front surface is referenced to
an accurate bubble level. We verify that is passes through the atoms by imaging it
on the camera used for absorption imaging. The angular error is less than 1 mrad.

Align the spin grating to the reference laser. A downward propagating laser is aligned
to the reference laser at more than two points. This beam therefore is aligned to the
atoms and is parallel to gravity. In this case, we used one of the two arms of the
spin grating, which is focused on the atoms. The two lasers are well aligned over two
meters and contribute a negligble angular error.

Align the CCD surface to the spin grating. A mirror is placed between the objective
and atoms to divert the light onto a CCD camera with a small pixel size of 2.20 µm
(Allied Vision Technologies, Guppy PRO F-503). We match the distance between the
objective and atoms to the objective and camera by placing the camera at the focus of
laser beam that was previously focused on the condensate. The laser beam has a 12 µm
1/e2 radius, and the relative alignment is well within the Rayleigh range of 0.5 mm.
We also verify that the measured spin grating wavelength changes negligibly with
camera position over several mm. Then, we align the translation stage to match the
propagation of the reference laser, and align the CCD tilt to retroreflect the reference
laser. However, since the camera is at the focus of the 200mm objective lens, we can
only use the space between the camera and objective to align the retroreflection. This
limits the accuracy of the entire procedure to 5-10 mrad.

Calibrate the CCD pixel spacing. We calibrate tha the CCD pixel spacing is 2.20(1)sys
compared to fine micrometers (Fig. 5.9). We focus a laser onto the CCD and ensure
that the position of the laser does not change when the CCD is translated towards the
laser. Then, we tilt the CCD to ensure a retroflection, again at an accuracy of 5-10
mrad. Finally, we record the position of the laser on the CCD as a function of the two
perpendicular micrometers. This measurement was performed after the experiment
was completed.

Once aligned, the plane of the atoms matches the plane of the CCD camera through
the mirror. As the optical table angle drifts, the alignment should remain correct, insofar
that both the condensate and camera tilt together. For this reason, we correct tilts by
adjusting the tilt of the optical table, and not the optical trap, which would ruin the above
alignment procedure. A very conservative error estimate of 20 mrad leads to an error of
1−cos(20 mrad) ≈ 2×10−4 in determining the spin grating wavelength, or a 4×10−4 in the
estimated magnon frequency. To shift the data by 1%, we would need a huge misalignment
of 100 mrad (6◦).
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5.3.5 Magnon density shift

Ideally, we would measure the dispersion relation of a single magnon by exciting
one condensate atom into a superposition of spin and momentum states. Our experiment
cannot measure such a tiny signal. Instead, we create ∼104 magnons and measure the shift
with magnon density as a function of the average tilt angle (θavg). As shown in Fig. 5.10 and
Fig. 5.11b, the contrast signal oscillates more rapidly with increasing tilt angle. We correct
all of the measurements in the dispersion relation by extrapolating towards θavg → 0.

50 µm

m
F
=−1

m
F
=−1

m
F
=0

m
F
=0

m
F
=+1

m
F
=+1

0 20 40 60 80
0

0.05

0.1

Time (ms)
C

o
n
tr

a
s
t 14°

0 20 40 60 80
0

0.01

0.02

0.03

0.04

Time (ms)

C
o
n

tr
a
s
t 37°

Figure 5.10: Density shift of the magnon contrast interferometer. (Left) images of the
three mF states for two different angle (θavg = 14◦ and 37◦). At small angles only the
mF = 0 image shows fringes, whereas the mF = +1 images has a negligible population.
At larger angles, the mF = −1 and mF = +1 images show clear fringes. All images are
normalized to the same peak density. (Right) The frequency of the contrast in the mF = 0
increases dramatically with increasing angle (see Fig. 5.11b). The fringe frequency is 98/mm
(10 µm wavelength).

We measure the tilt angle through the average Rabi frequency (Ωavg) by count-
ing the number of atoms in each mF state for various pulse times (see Fig. 5.10 left and
Fig. 5.11a). The measurements match theory at this wavenumber, based on integrating the
populations from Eq. 5.9 over position.

〈PmF=+1〉 =
3

8
+

1

2
J0(θavg) cos θavg +

1

8
J0(2θavg) cos 2θavg

〈PmF=0〉 =
1

4
(1− J0(2θavg) cos 2θavg)

〈PmF=−1〉 =
3

8
− 1

2
J0(θavg) cos θavg +

1

8
J0(2θavg) cos 2θavg

J0 is the Bessel function of the first kind. We will frequently use the small angle expansion
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Figure 5.11: Density shift of the magnon contrast interferometer. Relative population as
a function of spin grating pulse time. Each image is normalized to remove atom number
fluctuations, we fit an undercounting of the mF = 0 population by 1.7. The fit average Rabi
frequency is 590 Hz. The data is taken for magnons with wavenumber 98.27/mm with an
extrapolated frequency of 21.39 Hz, 3.5% smaller than the mean-field prediction of 22.16
Hz. The empirical density-dependent shift is 4.3(2) Hz/rad2 or 4× 10−5 Hz/NmF=0.

and identify 〈PmF=0〉 as the magnon fraction.

nmagnon

n
=

3

4
θ2avg

Unfortunately, at a lower wavenumber, we have had significant (factor of 2) dis-
agreement between the angle determined by comparing the three ratios 〈PmF 〉 and by com-
paring the number of mF = 0 atoms against the total atom number. In the final dataset,
we correct the density shift by empirically measuring the frequency shift per number of
imaged mF = 0 atoms rather than frequency shift per θ2avg.

Numerical calculation of the density dependent shift

The frequency shift with magnon density can be calculated from first principles
by numerically integrating the Gross-Pitaevskii equation in one-dimension. I implemented
a split-step Fourier method of a magnon standing wave in a box with uniform density and
periodic boundary conditions [62, Sec. 3.3.1]. For simplicity, all numerics shown here were
performed with only spin-independent interactions (c2 = 0). A separate simulation with
spin-dependent contact interactions show nearly the same behavior over our experimental
range. The simulations disagree substantially for wavenumbers smaller than those accessed
in the experiment, when c2n > h̄ω.

The numerical simulation show a frequency shift proportional to θ2avg. For each
wavenumber, the simulation estimates a frequency f at 7 amplitudes up to θavg = 0.6 rad
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Figure 5.12: Numerical simulation of the magnon interferometer shows a pronounced
frequency shift with density. For each wavenumber k and chemical potential µ, we simulate
the interferometer for seven initial amplitudes and fit the resulting frequencies to a model
with ∆f ∝ θ2avg. (a) At a chemical potential of h×1 kHz (open orange circles), the frequency
shift increases dramatically with wavenumber. The simulation fits well to the high-density
model ∆f = f0θ

2
avg/4 (black line) and is reasonably close to the two experimentally measured

values (closed black circle at 47/mm and closed blue square at 98/mm). (b) The frequency
shift (calculated at three wavenumbers) shows two regimes as a function of the chemical
potential: a linear dependence on µ when hµ � f (dashed black line) and a saturated
behavior for hµ� f (solid lines). (c) The same data collapses onto a single curve when the
fractional frequency shift ∆f/f is plotted against the normalized chemical potential µ/hf .
All simulations assume a uniform potential with spin-independent interactions only (c2 = 0
and no dipolar interactions are included).

and fits the frequencies to a model with f = f0 +∆fθ2avg. The results are identical for sim-
ulations with small grid sizes (in both time and position) and for much smaller amplitudes.

The main result of these simulations is Fig. 5.12. The simulations confirm the
magnitude of the shift to within a factor of 2. The error is most likely due to inconsistencies
in calibrating θ in the experiment. Fig. 5.12c demonstrates that the fractional frequency
shift ∆f/(fθavg)

2 depends only on the dimensionless ratio µ/(hf). The simulated data
show two regimes, when µ� hf and µ� hf .

f = f0 +
µ

8h
θ2avg = f0 +

c0nmagnon

6h
µ� hf0

f = f0

(
1 +

1

4
θ2avg

)
= f0

(
1 +

nmagnon

3n

)
µ� hf0

We can analytically calculate the frequency shift in the regime µ � hf0 with
perturbation theory. The initial condition of the wavefuction up to O(θ4avg) is as follows.

ψ(t = 0) =

 1
2(1 + cos θ)
− 1√

2
sin θ

1
2 (1− cos θ)

 ≈

 1− 1
4θ

2

− 1√
2
θ

1
2θ

2

 ≈

 1− θ2avg
(
3
8 + 1

2 cos kx+ 1
8 cos 2kx

)
− 1√

2
θavg (1 + cos kx)

θ2avg
(
3
8 + 1

2 cos kx+ 1
8 cos 2kx

)

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In the limit of negligible interactions, we replace cosnkx with e−in2ω0t cosnkx, where ω0 =
h̄k2/2m = 2πf0.

ψgn→0(t) =

 1− θ2avg
(
3
8 + 1

2e
−iω0t cos kx+ 1

8e
−i4ω0t cos 2kx

)
− 1√

2
θavg

(
1 + e−iω0t cos kx

)
θ2avg

(
3
8 + 1

2e
−iω0t cos kx+ 1

8e
−i4ω0t cos 2kx

)


For weak interactions (µ � hf0), we can add spin-independent interactions as a perturba-
tion. We will assume that the perturbation is of the form V = c0

∑
i |ψc0n→0|2, as above.

In the three-level basis {1, cos kx, sin kx}, the perturbation is diagonal.

V ⇔ c0n

 1 0 0
0 1 + 1

8θ
2 0

0 0 1− 1
8θ

2


The asymmetry between cosine and sine oscillations occur because our ansatz assumes the
original oscillation is a cosine. This also suggests the the frequency shift depends on the
type of interferometer used. Indeed, an interferometer that excites only q = 0 and q = +k
has a different dependence on θ. For the contrast interferometer, the frequency shift is the
difference between the standing (1) and oscillating (cos kx) states and is proportional to θ2,
as expected.

f = f0 +
c0n

8h
θ2avg

For small angles, nmagnon/n = 3
4θ

2. Then the frequency shift has the form

∆f =
1

6

c0nmagnon

h

or 1/6 the shift of a uniform, scalar, dilute interferometer.

5.3.6 Magnetic field curvature

The contrast interferometer removes phase shifts due to gradients because it mea-
sures the phase difference φ+k + φ−k − 2φ0, where φq is the phase shift accrued by the arm
with momentum q. However, the contrast interferometer is susceptible to curvatures. In our
setup, the curvature is due to an inhomogeneous magnetic field that creates an anti-trapping
potential for magnons (see Eq. 5.6).

Veff(y) = µ [B(y)−B(0)] ≈ −1

2
µ
d2|B|
dy2

y2 = −1

2
mΓ2y2 Γ =

√
µ

m

d2|B|
dy2

Here, Γ takes the place of the usual harmonic oscillator angular frequency. The equation
of motion in a harmonic anti-trapping potential is ÿ = Γy. The measured magnetic field
curvature is (h/µ) × 0.74 mHz/µm2 along the y direction (see Fig. 5.17), so Γ = 1.8 Hz.
Most of the curvature is due to the inhomogeneous magnetic field of the lab and not dipolar
interactions: without dipolar interactions, Γ would be 20% smaller.
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We start the magnon interferometer by uniformly placing the atoms in a super-
position of momentum states q = 0,±k0. Over time, the atoms will accrue a phase due to
the local potential Veff(y). In addition, the momentum changes as they propagate, which
in turns gives an extra phase shift to the interferometer. The overall phase should be
proportional to the action of the classical trajectory. For the interference pattern at the
center of the condensate after an evolution time τ , the classical trajectory has the boundary
conditions that the initial velocity is ẏ(0) = v0 = h̄k0/m and the final position is y(τ) = 0.

y =
v0
Γ

sinhΓ(t− τ)

coshΓτ
v = v0

coshΓ(t− τ)

coshΓτ
.

The phase shift is proportional to the action acquired over the time τ .

φ =
m

2h̄

∫ τ

0
dt
[
ẏ2 + Γ2y2

]
=
m

2h̄

∫ τ

0
dt

[
v20 cosh

2 Γ(t− τ)

cosh2 Γτ
+
v20 sinh

2 Γ(t− τ)

cosh2 Γτ

]
=
mv20
2h̄

∫ τ

0
dt
cosh 2Γ(t− τ)

cosh2 Γτ

=
mv20
2h̄

tanhΓτ

Γ

=
h̄k20
2m

tanhΓτ

Γ

As Γ tends to zero, we recover the usual φ = ω0τ . All fits to the contrast oscillations
include the frequency chirp, with fixed Γ = 1.8 Hz, variable damping coefficients γ,A,B,D,
and a frequency 2πf = ωk − ω0.

C(t) = A+ e−γt

[
B +D cos

(
2(ωk − ω0)

tanhΓt

Γ

)]
(5.11)

5.3.7 Vortices and decay of contrast

We were initially puzzled by the images of the contrast decay with warped magnon
wavefronts but high contrast (Fig. 5.8, 67ms frame). We correctly guessed that these were
due to large phase fluctuations across the condensate, yet further evaporative cooling did
not appear to remedy the situation. Once we began to take multiple images of the same
condensate, it was clear that we had unwittingly created a vortex detector! We reduced the
number of vortices by cooling the condensate extremely slowly, with a 4–6 second ramp in
the immediate vicinity of the BEC critical temperature. In Sec. 5.5.1, we adjust to cooling
rate to create one vortex on average and demonstrate a real-time vortex tracker.

5.3.8 Shape oscillations

The trap frequencies of 2π × (4, 9, 300) Hz used in this experiment were quite
low, and unfortunately the floating optical table does little to damp vibrations in the room
around the lowest frequency. In fact, there is a possibility that the table is underdamped and
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amplifies noise at several Hertz. As we previously mentioned, the contrast interferometer
should remove errors due to residual dipole oscillations. However, quadrupole oscillations,
such as a breathing mode, can compress or expand the magnon wavevector and lead to
errors. If the phase of oscillation were random, we could hope that the experiment would
average out this effect. If, alternatively, the oscillation were started due to an error in the
experiment such as a glitch of the optical trap intensity, our data might be biased by it.
To remove this type of error, we perform 20 experiments of the magnon interferometer for
each BEC we form, and we create magnons at a rate incomensurate with the quadrupole
mode at 4.5 Hz. After we image the magnons, we remove all of the mF = 0 and mF = +1
atoms by simultaneously driving a microwave transition to the F=2 state and applying a
resonant optical pulse on the D2, F=2 to F ′=3 transition. This leaves a clean, mF = −1
BEC to start the next magnon interferometer.

Fig. 5.13a shows the first 12 magnon contrast interferometers, all with a propaga-
tion time 79 ms, derived from the same oscillating BEC. During the oscillation, it is clear
that both the wavevector and the contrast change. What contrast do we assign this run?
Since we are equally sampling many phases of the oscillation, one answer is to average the
contrast. An alternative approach is to measure the change in contrast versus wavevector,
as shown in Fig. 5.13b. We fit a sinusoidal model for dC/dk and correct each image based
on its wavevector change ∆k (i.e., calculate a new contrast C ′ where C ′ = C − dC

dk ∆k for
each image). The two approaches are shown in Fig. 5.13c and lead to the same measured
frequency; therefore we believe we are properly controlling for this error.

5.3.9 Thermal shift and damping

Collective excitations of a condensate typically show a shift of the frequency with
temperature. For instance, the frequencies of shape oscillations in a scalar condensate have
been observed to either increase or decrease with temperature, depending on the mode
[63, 64].

In Fig. 5.14a, we observe an increasing frequency of the magnon contrast oscilla-
tions with temperature. The final temperature is set by changing the intensity of the optical
dipole trap at the end of evaporative cooling. For a wide range of trap depths, the contrast
frequency falls below the expected mean-field estimate. This suggests that the unusually
low recoil frequency is not due to thermal effects. We do not correct the data for a thermal
shift.

In addition to a frequency shift, we observe a dramatic increase in the damping
rate with temperature (Fig. 5.14b). This trend is commonly observed for phonons and shape
oscillations in a scalar condensate [63, 64]. For phonons, the damping is often attributed
to Landau damping, whereby the excitation scatters off of thermally occupied phonons
[31, 30]. It is possible that magnons decay by a similar mechanism. Since the magnons are
fluctuations of a broken symmetry, they are expected to be highly damped at the phase
transition3.
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Figure 5.13: Quadrupole oscillations in the magnon contrast interferometer. (a) We
run 20 magnon contrast interferometers in a single oscillating BEC for each propagation
time. Quadrupole oscillations cause the standing wave to accordian (top), which shifts the
measured wavevector k (bottom). (b) The change in contrast versus wavevector oscillates
at the same frequency as the contrast signal. The blue circle at 79ms corresponds to the
dataset shown in (a). The offset may be due to the linear decrease of the modulation
transfer function with wavenumber. (c) The contrast oscillation is very similar for the
averaged contrast signal (red) and corrected signal (blue). All data correspond to 56.6/mm.
This dataset is a scan with 66 time steps of 20 images each, leading to a total of 1,320
contrast interferometer runs.
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Figure 5.14: Thermal shift of the magnon contrast interferometer. (a) Magnon inter-
ferometer frequency and (b) damping rate as a function of temperature. The inset shows
contrast oscillations at 0.12 V (red) and 0.19 V (blue). Unfortunately, the temperature was
not well-calibrated in this setup. We observe a large thermal fraction above 0.18 V and
a vanishing trap depth between 0.10 V and 0.11 V. The final data was taken at 0.12 V,
where we do not detect an appreciable shift in the magnon frequency. The data remain well
below the free particle result (solid green line) for a large range of trap depths, and so we
are confident that the unusually low magnon frequency is not a thermal effect. We do not
apply a thermal shift to the final data. The data are taken for magnons with wavenumber
98.27/mm and an expected mean-field result of 22.16 Hz, identical to Fig. 5.11.

5.3.10 Final data

Fig. 5.15a shows the final data run. The data were taken from 9pm–9am on the
three nights from Friday, Aug. 23 through Monday, Aug. 26. During these hours, both
elevators in the building were held on the ground floor, during which time the magnetic field
environment was unusually quiet. We measured ∼1 mG fluctuations over many hours, with
a correspondingly small magnetic field gradient fluctuations (Sec. 4.4.2). A scan of the fre-
quency shift versus amplitude was taken at the lowest measured momentum, complementing
the data previously taken in Fig. 5.11b. We subtracted a frequency shift proportional to the
number of measured magnons. Between the calibrated values, we interpolate the frequency
shift based on the measured magnon frequency.

5.4 Dipolar interactions and the many-body gap

The contrast interferometer naturally subtracts out an offset, or gap, in the dis-
persion relation. In this section we will complete our measurement of the dispersion relation
by directly measuring the density-dependent component of ω(0).

The measured dispersion relation clearly shows that the minimum energy to create

3Thanks to Manuel Endres for pointing this out.
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Figure 5.15: (a) Dispersion relation from the final dataset. Individual scans at a single
magnon population (filled black circles) follow a nearly quadratic dispersion relation (red
dashed line), but with an effective mass 3.3(2)stat(10)sys% heavier than the mean-field pre-
diction for s-wave interactions (solid red line) for. A power-law fit to the data ω ∝ kα

yields α = 2.01(1)stat (dot-dashed orange line). All data is corrected for shifts from a finite
magnon density, as calibrated by scans of the interferometer against magnon population
(inset). Extrapolations of these calibrations towards zeros magnon population are shown
as open blue squares. (b) Data taking schedule. Contrast interferometer sequences (bot-
tom, filled black circles) are interspersed with calibrations of the standing wave momentum
(bottom, open blue squares) and the magnetic field (top, filled red circles). Magnetic fields
were stable during the relevant ∼ 60 hour period. Not shown are checks and cancellation of
the magnetic field gradient, which are very sensitive to fluctuations in the bias field. 22,801
magnon contrast interferometers were harmed in the making of this plot.
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a magnon is h̄ω(0), the energy of a ~k = 0 magnon. A zero momentum magnon is equivalent
to a global rotation of spin, as seen in Eq. 5.5.

ψmagnon =
√
n e−iµt/h̄

 1

1√
2
θe

−i
(
~k·~x+ω(k)t

)
0


~k→0−−−→

√
n e−iµt/h̄

 1
1√
2
θe−iω(0)t

0


=

√
n e−iµt/h̄R (θ, φ = ω(0)t)

 1
0
0

 (5.12)

We measure ω(0) by measuring the time-dependent evolution of the azimuthal phase φ.
If the Hamiltonian is spherically symmetric, a global rotation of the magnetization

cannot change the energy and ω(0) = 0. In our system, symmetry is broken by a uniform
bias field and by dipole interactions coupled to the anisotropic trap geometry. The uniform
bias field introduces a preferred axis and an energy µB of magnetic excitations. The main
impact of the large field is that it requires the global conservation of the longitudinal spin and
Mz, though locally the spin is free to rotate (e.g., Fig. 5.6 shows the motion of longitudinal
spin). By moving to a rotating frame, the impact of this energy scale disappears. For a
more advanced discussion, see Ref. 65.

A more serious complication arises from dipolar interactions. In a spherical trap,
dipolar interactions still cannot add a gap because the system remains spherically symmet-
ric. However, our system is better approximated as a thin film because the ẑ axis has a
far tighter confinement, with a calculated Thomas-Fermi radius of 1.7 µm, than the in-
plane directions, with measured Thomas-Fermi radii of 68 µm and 142 µm along x̂ and
ŷ, respectively. Once the spatial symmetry of the trap is broken, dipolar interactions can
introduce an energy that changes with the magnetization direction. For instance, spins
oriented in-plane and out-of-plane should have different energies.

A calculation of the dipolar energy shift effect is derived in Sec. 5.4.2. In summary,
the rate of precession of the magnetization oriented an angle θ from the bias field, precessing
about an in-plane bias field, and averaged over the ẑ axis, depends on the local in-plane
density and magnetic field.

ωprec =
µ

h̄
B +∆(n) cos θ ∆(n) =

2

5

µ0µ
2n

h̄
(5.13)

I call ∆(n) the many-body gap because it is a gap whose energy depends on the local density,
as opposed to the single-particle gap created by the bias magnetic field.

As can be seen from the wavefunction in Eq. 5.12, an increased rate of precession
about an effective magnetic field is the same as an energy shift because the magnon has
a magnetic moment. In this case, the spin precession rate increases because of the real
magnetic field induced by dipoles of the gas. We measure the gap by using the condensate
as a local magnetometer, similar to Ref. 52 expect that we probe the magnetic dipole
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field generated by the condensate itself. We measure a 2.5(1)stat Hz dipole field, which in
magnetic field units is 3.6 µG (360 pT) with a statistical error of 0.15 µG (15 pT).

5.4.1 Experiment

We measure ∆(n) by performing Ramsey interferometry in our inhomogeneous
condensate. The density in the condensate changes only slowly with position, and we are
free to make a local density approximation (LDA). In particular, we measure for a time
short enough that the phase gradients do not move, and over a distance large compared to
the dipolar healing length h̄/

√
µ0µ2mn0 ≈ 4 µm.

Fig. 5.16 shows a schematic of the measurement and sample images, and is very
similar to the proposal in Ref. 67. The condensate is prepared with the magnetization
aligned precisely along the in-plane magnetic field. An RF pulse with variable pulse time
rotates the magnetization to a polar angle θ. The condensate precesses in a magnetic field
that is a combination of the local magnetic field and the induced dipolar magnetic field.
After an evolution time of τ , the transverse magnetization acquires an azimuthal phase shift
φ.

φ(~r) =
τ

h̄
[µB(~r) + ∆(n(~r)) cos θ] (5.14)

We extract ∆(n) by comparing the transverse phase to the local density. This com-
parison across the sample allows us to extract the several microgauss dipole field amidst
milligauss fluctuations of the local field without resorting to spin echo pulses. The experi-
mental difficulties lie in removing the inhomogeneities of the local magnetic field that can
mask the dipole signal. Gradients are minimized by taking the data past midnight and man-
ually nulling the magnetic field gradient between each 7 minute run. Fortunately, only 55
runs (six images each) were required for this measurement. Despite these efforts, gradients
still vary during each shot of the experiment and are eliminated in the data analysis.

The laboratory environment also contains a magnetic field curvature. Both a
magnetic field curvature and the dipolar field create a phase shift that scales quadratically
with position across the condensate. We separate the effects by comparing the azimuthal
phase shift with θ, which only changes the dipole contribution. Fortunately, the curvature
is stable over the entire dataset. For each image of Fx, we fit a model of a magnetic field
with a bias, gradient, and curvature. The form is intended to extract the phase shifts from
Eq. 5.14.

Fx(x, y) = Fx,0 + δF sinφ(x, y) (5.15)

φ = φ0 + πτ
(
fxx(x− x0)

2 + 2fxy(x− x0)(y − y0) + fyy(y − y0)
2
)

As seen in Fig. 5.17, fxx—the curvature of the Larmor frequency along x—varies
greatly with the magnetization angle. Our model of dipole interactions indicates that its
contribution disappears at θ = π/2. We can then subtract the magnetic field curvature by
fitting to a model with free parameters fii,0 and fii,π/2.

fii = fii,∆ cos θ + fii,B ∆(n0) = h× 1

2
R2

i fii,∆ (5.16)
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Figure 5.16: Spin precession in the presence of dipolar interactions. (a) Magnon imaging
sequence. An RF pulse of variable time rotates the initial magnetization, which is allowed to
evolve for 100–300 ms. (b) A calculation shows the azimuthal phase of the local magnetiza-
tion winding up after a time t = 0, πh̄/∆, and 4πh̄/∆. Arrows represent the magnetization
of a line cut through the system. (c,d) Magnetization imaging for two angles, (c) 26◦ and
(d) 87◦. Images of the three Fz projections of the longitudinal spin are followed by images
of the three Fx projections of the transverse spin. The reconstructed images are estimates of
〈Fz〉 =Mz/N , the magnetization normalized by the density. The curvature of the azimuthal
angle, the arcsine of Fx, is larger for small angles due to dipolar interactions. Nearly all
of the transverse structure in (d) is due to an inhomogeneous magnetic field. Note that
the longitudinal magnetization is smooth for small angles and acquires an inhomogeneous
profile for large angles, similar to [66].
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Figure 5.17: Curvature of Larmor precession due to dipolar interactions. (a) The second
derivative of the precession frequency fij are based on fits to Fx. As expected, fxx varies
more rapidly with θ because the condensate density changes more rapidly along x. The
cross-term fxy is nearly constant. (b) We assume that the dipole contribution vanishes at
θ = π/2 and subtract the contribution from our data. The frequency difference betweens
atoms at the center (at density n0) and at the edge (zero density) is simply fiiR

2
i collapses

on a line, strengthening our hypothesis that the curvature scales with local density. Each
points represents the average of 5 runs with τ between 100 and 300 ms, and error bars are
1 σ standard errors.

The curvatures along x and y give nearly identical estimates of ∆(n0), as expected for a
frequency proportional to the local density (Fig. 5.17b). Our largest systematic error comes
from uncertainty in the Thomas-Fermi radii, largely because of a slight anisotropy in the
trap.

∆(n0) = h× 2.5(1)stat(2)sys

Gap map

The curvatures fii give the correct general form of the dipolar field. Since the
system size is much larger than the dipolar healing length, very many regions of the gas can
be considered separate experiments. We use this abundance of data to form a gap map, a
map of the magnon gap across the sample. Eq. ?? indicates that the gap should vary with
the local in-plane density.

The first step is to construct the gap map is to measure the local phase shift in each
region of our image. Mathematical complications arise from phase unwrapping a 2D image.
We use the fits from Eq. 5.15 to inform phase unwrapping. The fit determines the phase
quadrant [nπ, (n + 1)π) and the arcsine of the normalized magnetization determines the
phase within the quadrant (Fig. 5.18). Artifacts in the phase occur at the phase boundary
nπ, which average down because each image has a random phase offset, fluctuating gradient,
and variable τ . Phase offsets and gradients are subtracted from the data. We average
independent runs to get a frequency map and fit for the local gap on a pixel-by-pixel basis
with the model f = ∆cos θ+ fB (Fig. 5.19). Frequencies are measured relative to the edge
of the condensate.
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Figure 5.18: Phase unwrapping for gap map. (a) Measured (left) and fit (right) images
of the Fx magnetization for an difficult-to-fit run (17◦, 300 ms evolution time). The short-
range structure is due to instability of the spin helix, which completely dissolves for longer
evolution times [68]. (b) Unwrapped phase of the Larmor precession angle. (c) A cross-
section of the center of these three plots along y. The magnetization (bottom, solid black
line) wraps several 2π. The fit (bottom, solid red line) determines the regions where we add
multiples of π to the unwrapped phase (vertical gray lines). The phase estimate (top, black
line) within each region is the arcsine of the normalized magnetization. We then remove a
gradient and offset phase (orange) to ensure that the relative phase is zero at the condensate
center. All data is binned by 2x2 pixels to reduce noise.

We compare the resulting phase map with the in-plane density of the condensate
from the longitudinal magnetizations in Fig. 5.19. The in-plane density n is related to the
column density ñ = 4

3nR, where R is the local Thomas-Fermi radius.

n(x, y, 0) = ñ(x, y)2/3
(

9mωz

32(c0 + c2)

)1/3

The measured column density is a small fraction of the total column density, lest we destroy
the sample before we measure the transverse magnetization. However, the scaling factor
was not well calibrated in this data. From the measured Thomas-Fermi radii and calibrated
trap frequencies, we determine that we measure 5% of the atoms during each imaging pulse.
The anharmonicity of the optical trap adds an error to this calculation. A pixel-by-pixel
comparison of the gap and in-plane density shows a nearly linear behavior.

5.4.2 Calculation of the dipolar shift

Calculating the dipolar interactions is a straightforward problem in classical elec-
tromagnetism.

1. Calculate the induced ~Bm and ~Hm fields for a specific a magnetization density ~M .

2. Calculate the torque on the rotating magnetization from this induced field.

3. Integrate the torque over the tightest condensate axis.
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ñ (µm− 2)

G
a
p
  
(H

z
)

(b)

Figure 5.19: Gap map. (a) A pixel-by-pixel analysis of the local phase shows a magnon
gap that varies in position. The map has ellipses of equal energy of nearly identical form to
the in-plane density of the condensate. (b) Each 4.08× 4.08 µm pixel yields an independent
experiment comparing the gap versus local density. The data has a nearly linear fit. Errors
may be due to high frequency imaging aberrations from scattering by dust that we discovered
afterwards. (Inset) A fit of the gap to the local column density (ñ ∝ n2/3) deviates from a
linear fit at low densities.
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Figure 5.20: Dipolar interaction schematic. (a) A series of spins with magnetization ~M
tilted an angle θ from the plane is equivalent to (b) an effective current density ~m, which

induces ~Bm and ~Hm fields.

Induced magnetic field

A block with magnetization density ~M will induce a magnetic field created by an
effective current distribution ~m = ~∇× ~M . Our condensate is very thin in the z direction, so
we assume the magnetization varies most strongly along z and weakly along the other two
dimensions, ∂ ~M/∂x = ∂ ~M/∂y = ~0. Without loss of generality, we’ll have the magnetization
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point an angle θ in the x− z plane.

~M = µn(x̂ cos θ + ẑ sin θ)

~m = ŷ µ cos
∂n

∂z

where µ = −1
2µB is the magnetic moment and n is the condensate density. We need to

solve the following equations [69, see Ch. 8].

~∇ · ~B = 0 ~∇× ~B = µ0~m

In this case, the solution depends only on the component of magnetization along the con-
densate.

~Bm = x̂ µ0µn cos θ

It is common and useful to define ~Hm = 1
µ0

~B − ~M , where ~∇× ~Hm = 0.

~Hm = −ẑ µn sin θ

Fig. 5.20 shows a schematic of this solution.

Torque of the induced field on the atomic spins

The Larmor precession is due to torque on the atomic magnetization.

d ~M

dt
= −µ

h̄
~M × ~B (5.17)

The solution we are looking for is one where the magnetization precesses about the
x̂ axis at a rate ω, which self-consistently depends on the induced dipolar magnetic field.

~M = µ (x̂ cos θ + ŷ sin θ cosωt+ ẑ sin θ sinωt) (5.18)

~B = x̂ (B0 + µ0µn cos θ) + ŷ µ0µn sin θ cosωt (5.19)

Plugging these two equations into Eq. 5.17 won’t work because they contain
counter-rotating terms. Instead we will make two changes to simplify the equations. First,
we can add a term to ~B that is proportional to ~M , since it will cancel out in the cross
product: ~M × ( ~B + a ~M) = ~M × ~B. For instance, the form of ~Hm is a more convenient.

~Beff = x̂ B0 − ẑ µ0µn sin θ sinωt

Second, if |B0| � |µ0µn|, we expect that the precession frequency will only change slightly.
In the spirit of the rotating-wave approximation, we can divide the field into components
that co-rotate and counter-rotate with ~M , and neglect the latter.

~Beff = x̂ B0 −
1

2
µ0µn sin θ(ŷ cosωt+ ẑ sinωt)

+
1

2
µ0µn sin θ(ŷ cosωt− ẑ sinωt)

⇒ x̂ B0 −
1

2
µ0µn sin θ(ŷ cosωt+ ẑ sinωt)
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We can use this new form to solve Eq. 5.17 with

−ω =
µ

h̄
B0 +

µ0µn

2h̄
cos θ

∆ω =
µ0µn

2h̄
cos θ (5.20)

where the minus sign of ω arises because Larmor precession is, by convention, clockwise.

Intuitive derivation of the torque The effective magnetic field applied to the atoms
can be split into three components: longitudinal, rotating, and counter-rotating terms:

~B = x̂Blong + (ŷ cosωt+ ẑ sinωt)Brot + (ŷ cosωt− ẑ sinωt)Bcrot.

Each shifts the frequency by an amount proportional to the applied field, where we’ve
switched the sign of ω to make it positive.

∆ωlong =
µ

h̄
Blong

∆ωrot = (something)
µ

h̄
Brot

∆ωcrot = 0

What remains is solving the prefactor of ∆ωrot. As mentioned above, a field parallel to ~M
does not affect the Larmor precession ( ~M × (α ~M) = 0). So, in the particular case where
Brot = Blong cot θ (where θ is the angle between ~M and the bias field), then it must be true
that ∆ωrot = −∆ωlong. Therefore, the prefactor must be −cot θ.

∆ω = ∆ωlong +∆ωrot =
µ

h̄
(Blong −Brot cot θ)

For the field in Eq. 5.19, Blong = (µ0µn/h̄) cos θ, Brot = Bcrot = 1
2(µ0µn/h̄) sin θ, so

∆ω = 1
2(µ0µn/h̄) cos θ.

Average over BEC profile

The local Larmor precession frequency ∆ω in Eq. 5.20 varies from maximum to
zero along the thinnest, z, axis of the condensate. We are specifically interested in a BEC
in a harmonic trap that obeys the Thomas Fermi profile, n(x, y, z) = n(x, y, 0)(1− z2/R′2

z ),
where R′

z =
√
2(c0 + c2)n(x, y, 0)/mω2

z is the local Thomas-Fermi radius. The Larmor
frequency then varies as ∆ω(z) = ∆ω0(1 − z/R′2

z ) with ∆ω0 = 1
2µ0µ

2n0 (we are dropping
the dependence on x and y for now). It is tempting to simply weight the Larmor frequency
by the density, but this does not give the right expression.

∆ωavg 6=
∫
∆ω(z)ndz∫

ndz

Instead we needsto be average the spin projections. For short times, ϑ = dt∆ω �
1. We can average the components My = n cosϑ and Mz = n sinϑ. Integrating through z,
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M̃z =

∫
µn(z) dz

(
1− 1

2
ϑ(z)2

)
= µñ

1− 1

2

(
ϑ0

√
24

35

)2


M̃y =

∫
µn(z) dz ϑ(z)2 = µñ

4

5
ϑ0

The angle measured in the experiment, which depends on M̃y, is θavg = (4/5) θ.

∆ωavg =
2

5
µ0µ

2n

Matching to experiment

In the experiment, we measure the averaged shift in Larmor precession frequency
and look for a shift that matches the in-plane condensate density along x and y, the two
weakest trap frequencies. In this analysis, we will use cyclical frequencies f = ω/2π. After
subtracting out background gradients, our model predicts a frequency shift that varies
quadratically with position.

f(x, y) = f0 +
1

2
fxxx

2 +
1

2
fyyy

2

As derived above, we expect the frequency shift to vary with the peak condensate
density n(x, y, 0) = n0(1− (x/Rx)

2 − (y/Ry)
2). From Eq. 5.13, we expect

f =
2

5
µ0µ

2n0

(
1− x2

R2
x

− y2

R2
y

)
.

Matching the two expressions gives a result independent of the atom number and density.

fii =
4

5
µ0µ

2 n0
R2

i

=
2µ0µ

2mω2
i

5(c0 + c2)h

From the measured trap frequency ωx = 2π × 9.1 Hz, we would predict f theoryxx =
1.5 µHzµm−2, rather larger than the measured value of fxx = 1.1 µHzµm−2. However,
the measured trap frequency also underestimates with the imaged Thomas-Fermi radius,
predicted to be 58 µm but measured 68 µm. It is likely that the calibration of the trap
frequencies was not valid during the gap experiment, or that the optical potential was
anharmonic.

Alternatively, we can directly compare the slope of the gap map (Fig. 5.19) to
theory. We determine the peak density of 145 µm−3 from an independent measurement of
the atom number (3×106) and the trap frequencies. The theoretical estimate (2/5)µ0µ

2n =
h× 2.4 Hz is quite close to the measured value of h× 2.5(1) Hz. The gap map may provide
a better estimate of the density profile than imaging or calculations of a harmonic trap.
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Figure 5.21: Dispersion relation with gap. (a) Fit (solid black line) to the dispersion
relation data plus the measured many-body gap (black dots), for the value at the peak
density of the trap. For reference, the blue line is the phonon dispersion relation at the trap
center. (b) The difference between the data (black dots) and low-energy estimate (solid
black line). The extrapolation crosses zero at a wavenumber of 175/mm and is most likely
not real. An arbitrary theory with a momentum scale of 150/mm may suggest a more likely
model.

5.4.3 Dipolar interactions: responsible for the heavy magnon mass?

When we combine the gap and dispersion relation data, we find a low-momentum
dispersion relation at the center of the condensate of

h̄ω(k) = ∆+
h̄2k2

2m∗ (5.21)

Fig. 5.21 shows the data for the peak condensate density compared to mean-field
theory with no dipolar interactions. At high momentum, Eq. 5.21 predicts that the magnon
frequency will drop below the mean-field value. This extrapolation seems unlikely for two
reasons. First, at very high momentum, the lower energy physics should only cause a
slight perturbation to the energy. Second, when the magnon wavelength is smaller than the
smallest Thomas-Fermi radius, the dipolar terms are likely to drop out. We expect that the
effective mass should approach the bare mass at high energy.

From this simple reasoning, it is not surprising that the magnon mass is heavy,
as the dispersion relation needs to approach the mean-field result at finite momentum. To
make a rough estimate of the magnon mass, we match Eq. 5.21 to the free (no-dipole) result
at k = π/RTF .

h̄2

2m

(
π

RTF

)2 (
1− m

m∗

)
= ∆

For RTF = 1.7 µm and ∆ = h×2.5 Hz, we estimate m∗/m = 1.01, not bad for such a rough
estimate, given that it is highly sensitive to the choice of k. A particular (and artificial)
model to the data is shown in Fig. 5.21b, which uses a longer cutoff wavelength of 7 µm. We
should be able to expand our understanding by pushing magnon contrast interferometry
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to higher momentum, a lower dimensionality (1D), or use the F = 2 states where dipolar
interactions are four times stronger.

5.5 Future

A key result of this chapter is that magnons have a slightly heavier mass than pre-
dicted by mean-field theory with s-wave interactions. Despite checking numerous potential
sources of error, we have been so far unable to dismiss the result. Regardless, I am not
completely convinced, as I always feel there remains a final crucial error to uncover. With
some straightforward experimental upgrades, it should be possible to more thoroughly test
this result.

If dipolar interactions are responsible for shifting the dispersion relation, the effec-
tive magnon mass may be anisotropic. In this work, we only measured the recoil frequency
for wavevectors in the direction of the magnetization. Rotating the spin grating direction or
magnetic bias field could help search for this effect. Moreover, performing the experiment
in a 1D geometry (ωx ≈ ωy � ωz) should also influence the form of the dispersion relation.
The proportionality constant between density and gap should be different in this geometry.

As mentioned above, the extrapolation of a quadratic dispersion relation appears to
be unphysical at high momentum. Improving the imaging resolution would allow for running
the magnon interferometry at higher momentum, since our scheme requires resolving the
oscillating spins (e.g., Ref. 70). This could also be achieved by alternative readout schemes,
such as a readout spin grating pulse to map the interferometer phase on the spin populations.

The magnon contrast interferometer should be a viable technique to study other
regions of the spinor phase diagram. For instance, in the polar phase, magnons are predicted
to have a linear dispersion relation. This could be studied in the F = 2 manifold of rubidium.
The technique can also be applied to probe dipolar interactions in high magnetic moment
atoms or to test SU(N) symmetry in alkaline earth atoms.

5.5.1 Real-time vortex tracking

While we were tracking down the rapid decay of contrast and strange patterns in
Fig. 5.8, we discovered that a magnon contrast interferometer serves as a real-time vortex
tracker. As discussed in Sec. 5.3.2, a short spin grating pulse initializes the interferometer by
diffracting atoms into three momentum states (q = 0,±k). These diffracted atoms are also
promoted to themF = 0 spin state. If the condensate phase is nonuniform, that nonuniform
phase is directly mapped onto each interferometer arm. As the three momentum states shear
past each other, they interfere to show the phase profile of the condensate from which they
were created (Fig. 5.22a).

The local condensate phase is effectively copied onto interferometer states. Once
we measure the density of mF = 0 atoms and remove them, the original phase profile of the
condensate appears to be negligibly perturbed4. We can then repeat the interferometer on
the same condensate at a later time to observe the condensate phase evolution. We have
repeated this process 20–50 times by using only a small percentage of the atoms in each

4Since we are imaging a topological structure, it may be robust to perturbations and heal.
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interferometer pulse. Fig. 5.22b-c show trajectories of two vortices through the condensate
over several seconds. The vortices are created when the condensate is cooled.

This technique shows both the handedness of the vortices and their direction of
motion. If we used a 2D gas, it may be possible to observe the rate of vortex-antivortex
pairs be spontaneously created and destroyed.

ψ(~r)

m = −1 m = 0

ψ(~r)ei
~k·~r ψ(~r)e−i~k·~r

ψ(~r)

m = 0
ψ(~r + d~r)e−i~k·~r

ψ(~r − d~r)ei
~k·~r

ψ(~r)

(a)

0.00 s 0.42 s 0.83 s 1.25 s 1.66 s 2.08 s 2.50 s 2.91 s 3.33 s 3.74 s

(b)

0.00 s 0.40 s 0.79 s 1.19 s 1.58 s 1.98 s 2.38 s 2.77 s 3.17 s 3.56 s

(c)

Figure 5.22: Real-time vortex tracking. (a) Scheme.The spin-polarized mF = −1 is de-
scribed by a scalar wavefunction ψ(~r), which may have a nonuniform and out-of-equilibrium
phase. The initial spin grating pulse maps the wavefunction onto three momentum states
with spin mF = 0. Over time, the three momentum states shear past each other and inter-
fere. We typically image after one oscillation of the magnon interferometer (time 1/(2ω)).
(b-c) Two realizations of a scalar condensate with a vortex in the (b) middle and (c) edge.
10 images of the contrast interferometer for each condensate show a clear counterclockwise
propagation of each vortex.
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Appendix A

Light-atom coupling and imaging

A.1 Lorentz model of an atom

The Lorentz model of an ‘electron-on-a-spring’ yields surprisingly good predictions
of how atoms interact with light. The model assumes that an electron is a simple-harmonic
oscillator with a phenomenological resonant frequency ω0 and damping rate Γ driven by
an electric field oscillating at ω. For large detunings |ω − ω0| � Γ, we often neglect the
damping—this is the dispersive regime where refraction is most important. For simplicities’
sake, let the electric field be polarized along x̂, so all of the motion is along x. We will write
the electric field as ~E(t) = Re[x̂ E0e

−iωt] and only consider the real part. This looks like the
rotating wave approximation in quantum mechanics, but is is not (we will get to that later).
This is a mathematical simplification, not an approximation, so long as it is understand
that Re[x] is the actual solution. We solve by Fourier analysis, guessing that x = x0e

−iωt

is the solution.

mẍ+mΓẋ+mω2
0x = eE0e

iωt ⇒ x0 =
e/m

ω2
0 − ω2 − iΓω

E0

The solution looks like an oscillating dipole ~d = e~r which is proportional to the
applied field.

ex0 =
e2/m

ω2
0 − ω2 − iΓω

E0 ⇒ ~d = α(ω) ~E α =
e2/m

ω2
0 − ω2 − iΓω

α(ω) is the complex polarizability. For the next few sections I will simply write α
and solve a few basic equations. The important thing to notice is that the solution ~d = α~E
is the same as a linearly polarizable medium in classical electromagnetism where the atom
is an induced dipole.

We will solve for the absorption and emission of this dipole by two methods and
equate them to solve for Γ and the cross section σ. Then we can explicity write out the
above expression for α to connect the solution to the quantum mechanical equations.
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A.2 Absorption and Fluorescence (Classical)

A.2.1 Scattered Power - Radiation Damping

The Larmor formula tells us that the average power radiated from an oscillating
dipole is

〈P 〉 =
[

1

4πε0

]
2

3

e2〈ẍ2〉
c3

=

[
1

4πε0

]
ω4|α|2| ~E|2

3c2
.

I’ve written brackets [] around the terms that should be included in the MKS units
for electromagnetism. If you leave out those terms, you get Gaussian or cgs units. The
intensity of a laser is I = [4πε0] | ~E|2c/8π. This includes a 1/2 from averaging over the
volume, but not the 1/2 that we will later need in the rotating-wave approximation for
quantum mechanics. We can replace the 〈P 〉 with Psc, the scattered power.

Psc =

[
1

(4πε0)2

]
8πIω4|α|2

3c4

The power scattered is proportional to the intensity by a constant with units of
area, the cross section σsc, Psc = Iσsc. Geometrically, if a laser is incident on an absorbing
disk of area σ, then Iσ is the power scattered.

σsc =

[
1

(4πε0)2

]
8πω4|α|2

3c4

The decay Γ is due to light scattering, an effect known as radiation damping. The
power loss of a simple harmonic oscillator is P = −〈~F ·~v〉 = mΓ〈ẋ2〉. For a simple harmonic
oscillator, we can equate this to the scattered power.

Γ =

[
1

4πε0

]
2e2ω2

3mc3
Γ0 =

(ω0

ω

)2
Γ

This defines Γ0 = Γ(0), the resonant linewidth. This is the term that is usually
quoted because it does not depend on the drive frequency.

As a brief aside, this is close to what you calculate in quantum mechanics. The
multi-level nature of atoms makes these terms slightly more complicated. In particular, for
each level j, the linewidth is

(ΓQM)j = fjΓ0

where fj is the oscillator strength. The sum rule in quantum mechanics requires that∑
j fj = number of electrons involved. The classical result is usually only a few percent off

for the alkali atoms because f ≈ 1 for the dipole transition.

A.2.2 Absorbed Power - Susceptibility

Above we calculate the power scattered by a dipole emitter. Now we will calculate
the power absorbed by a dipole emitter. This section uses MKS units. In this context, we
think of the atoms as a block of material and calculate the absorption through it. It is useful
to connect this solution to the mechanics of electromagnetism. In a linear medium, we found
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that the dipole moment ~d = e~r is induced by the electric field through the polarizability α
as ~d = α~E. This can be connected to the susceptibility χ = Nα/ε0, a dimensionless number
that includes the number density N and the complex index of refraction n =

√
1 + χ. In a

block of material, the dipole moment is replaced by the polarization density ~P = ~dN . The
above definitions imply that ~P is induced in a material as ~P = ε0χ~E. These definitions link
α, which describes an electron’s reaction to an applied field, to the continuous parameter χ
that defines the properties of a block of material.

To see how this effects light propagating through the medium, let’s go back to the
wave equation.

∇2 ~E = εµ
d ~E

dt

I have written the wave equation for a material with permittivity ε and permeability µ.
The induced polarization density ~P can be taken into account by letting ε = ε0(1 + χ) and
µ = µ0.

By convention, the solution ~E = x̂E0e
i(kz−ωt) propagates along ẑ with the electric

field oriented along x̂. The equation requires that k =
√
εµω. In general, k is complex. It

is easiest to understand this solution if we split k into real and imaginary components.

k =
ω

c
nindex + ia/2 where nindex = Re[

√
1 + χ] a =

2ω

c
Im[
√

1 + χ]

Here, c is the vacuum speed of light. The solution can be rewritten

E = ε̂ ei(k0nindexz−ωt)e−az/2.

We call nindex the index of refraction and a the absorption length. The factor of 2 is so that
the intensity falls off as I = I0e

−az for a homogeneous material or dI/dz = −aI in general.
Consider one atom in a region with volume V = Az, where A is an area and z is

the length along which the light travels. We’ll make the density homogeneous to simplify
the equations. Assume the absorption is small, so the numbers az, χ, and n are small. A
laser of intensity I0 and cross sectional area A is incident on this volume. The intensity
I1 = I(z) after it passes the atom is slightly lower, which corresponds to an absorbed power
of Pabs = (I0 − I1)A. The number density of one atom is N = 1/V . Since χ = α/(ε0V ), we
find

nindex ≈ 1 +
1

ε0V
Re[α] a =

2ω

c
Im

√
1 +

α

ε0V
≈ ω

c

Im[α]

2ε0V
(A.1)

The absorbed power is then

Pabs = (I0 − I1)A = I0(1− e−az)A ≈ I0
ω

c

Im[α]

ε0

Notice that the volume has dropped out. We can again define the absorption cross
section σabs as Pabs = I0σabs.

σabs =
ω

cε0
Im[α]
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This expression is not the same as the σsc. The interpretation is straightforward:
we simply put a damping rate Γ in the equation of motion but never mentioned where it
came from. The critical assumption is that all of the damping is radiative, so Pabs = Psc.
We could have instead written Γ as the radiative damping given by the Larmor formula.
Even though our model has two free parameters, ω and Γ, they are related through this
expression.

Im[α] =

[
1

4πε0

]
2

3

ω3

c3
|α2|

which, again, can be derived by setting Pabs = Psc. This expression is a special case of the
optical theorem.

The solutions to the Lorentz model are as follows.

α =
e2

m

1

ω2
0 − ω2 − iωΓ

|α|2 =
e4

m2

1

(ω2
0 − ω2)2 + ω2Γ2

Re[α] =
e2

m

ω2
0 − ω2

(ω2
0 − ω2)2 + ω2Γ2

Im[α] =
e2

m

Γω

(ω2
0 − ω2)2 + ω2Γ2

Plugging these into the above solution, we can solve for Γ and σ = σsc = σabs. It
is convenient to define the resonant cross section σ0 = σ(ω0).

Γ =

[
1

4πε0

]
2

3

e2

m

ω2

c3
σ =

6πc2

ω2

Γ2
0ω

2

(ω2
0 − ω2)2 + Γ2ω2

In particular, the resonant cross section σ0 = σ(ω0) is

σ0 = 6π
c2

ω2
0

=
3

2π
λ2

Note that the resonant cross section is approximately the wavelength squared and is much
larger than the typical electron orbit. While these formulas are identical to the ones derived
in quantum mechanics by solving the Einstein A and B coefficients, it is worthwhile the
emphasize that the current derivation is completely classical.

To connect these to quantum mechanics all we need to know is that a photon has
energy h̄ω. The spontaneous emission rate R(ω) = P/(h̄ω) gives the number of photons
scattered per unit time.

R =
6πc2I

h̄ω2

Γ2ω2

(ω2
0 − ω2)2 + Γ2ω2

=
Γ0

2

I

Isat

Γ2ω2
0

(ω2
0 − ω2)2 + Γ2ω2
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The classical treatment does not include saturation, but we can define the satura-
tion intensity Isat from this semiclassical argument.

Isat =
h̄ω0Γ0

2σ0

The saturation intensity does require h̄ and is not included in the classical theory.

A.2.3 Index of refraction and Stark Shift

From the atom’s point of view, the energy of our dipole is U = −~d · ~E. Here we
should be careful with our notation: ~d and ~E are phasors, so the proper way to combine them
is U = −1

2Re[d
∗E] = −1

2 |E|2Re[α]. This energy can be positive or negative depending on
the sign of Re[α]. In general, the energy is positive for ω > ω0 (blue-detuned) and negative
for ω < ω0 (red-detuned).

U = −
[

1

4πε0

]
4πI

c
Re[α]

There is an intuitive way to understand whether the energy is higher or lower in
the Lorentz model. When ω � ω0, the electron responds in-phase with the electric field,
so ~d points along ~E and the energy −~d · ~E is lowered. However, if ω � ω0, the electrons
responds 180◦ with the drive and ~d points opposite ~E, increasing the energy. Exactly on
resonance, the electron is out-of-phase with the drive and ~d · ~E is zero.

For the Lorentz model,

U = −
[

1

4πε0

]
4πIe2

mc

ω2
0 − ω2

(ω2
0 − ω2)2 + ω2Γ2

= −6πIc2Γ

ω2
0

ω2
0 − ω2

(ω2
0 − ω2)2 + ω2Γ2

In the far-detuned limit |ω − ω0| � Γ,

U = −3πIc2Γ0

ω3
0

[
1

ω0 − ω
+

1

ω0 + ω

]
The second term we drop in the rotating wave approximation, and thus call it the

counter-rotating term. In quantum mecanics, we often introduce the saturation intensity
and again write this as

U = − h̄Γ
2

8

I

Isat

(
1

ω0 − ω
+

1

ω0 + ω

)
This is an essential feature of optical trapping. To optically trap atoms, we use

lasers with an inhomogenous intensity, such as a focused laser or standing wave. If the laser
is tuned to the red of the atom (ω0 < ω), the potential is deepest at the points of highest
intensity and can trap atoms. However, the trap is not exactly conservative. Scattering of
photons from the laser will cause atoms to recoil and heat up. To minimize this, we usually
use a very large detuting, |ω0 − ω| � Γ0.
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In the far-detuned limit, the scattering rate is

R =

(
ω

ω0

)2 Γ3

8

I

Isat

(
1

ω0 − ω
+

1

ω0 + ω

)2

Γ

|U/h̄|
= Γ

(
ω

ω0

)3( 1

ω0 − ω
+

1

ω0 − ω

)
A.2.4 Lorentz Model and the Rotating Wave Approximation

The dependence of these functions on ω are called the Cauchy-Lorentz or Breit-
Wigner lineshape. In quantum mechanics we usually make the rotating wave approximation,
where we assume that |ω − ω0| � ω + ω0. To simplify the notation we define the detuning
δ = ω − ω0. In particular, the lineshape can be approximated as a Lorentzian.

Γ2ω2

(ω2
0 − ω2)2 + ω2Γ2

≈ 1

1 + [δ/(Γ0/2)]
2

ω2
0 − ω2

(ω2
0 − ω2)2 + ω2Γ2

≈ 1

ω0Γ

δ/(Γ0/2)

1 + [δ/(Γ/2)]2

We can rewrite the cross section and scattering rate as

σ = σ0
1

1 + [δ/(Γ/2)]2

R =
Γ

2

I

Isat

1

1 + [δ/(Γ/2)]2

U =
h̄Γ2

4

I

Isat

δ/(Γ/2)

1 + [δ/(Γ/2)]2

What is crucially missing the classical model is saturation. No matter how large
the drive strength (i.e., electric field amplitude) is, the dipole will follow linearly as ~d = α~E.
This is because we are dealing with a harmonic oscillator, and harmonic oscillators can
have unlimited amounts of energy. If we instead consider an atom as a two-level system, a
large drive strength saturates the atom, which can spend a maximum of half of the time in
the excited state and thereby a maximum scattering rate of Γ/2. In order to take this into
account, we add an extra term in the denominator.

Rtwo level =
Γ

2

I/Isat

1 + I/Isat + [δ/(Γ/2)]2
(A.2)

Another common approximation is the far-detuned or dispersive limit, where Γ �
|ω0 − ω|. In this limit, we can approximate

Γ2ω0ω

(ω2
0 − ω2)2 + ω2Γ2

≈ Γ2ω0ω

(ω2
0 − ω2)2

=
1

(ω0 − ω)2/(Γ/2)2
− 1

(ω0 + ω)2/(Γ/2)2

This limit is fairly uninteresting for the case of scattering but very important for
refraction. This is the limit typically encountered in optical traps because a large detuning
minimizes heating due to scattered light.
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A.3 Absorption imaging

In absorption imaging, atoms scatters photons out of a resonant laser pulse. The
wavefront is imaged onto a camera, and missing photons indicate the position of atoms.
For this discussion, we will consider a resonant laser ∆ = 0, but allow for saturation of the
atom. The decrease in intensity I(z) from a dilute sample of atoms with thickness dz and
cross sectional area A is attenuated by the ratio of the absorbing area to total area.

I(z)− I(z + dz) = I(z)Natoms
σ(I(z))

A
= I(z)σ(I(z))n(z)dz

where n(z) is the atom density and

σ(I) = σ0
1

1 + I/Isat
.

Rewritten in differential form, we have dI/dz = Iσ(I)n. For low intensities,
σ(I) = σ0 and we have the usual Beer-Lambert law I = I0e

−σ0nz. The correct form is
a polylog, but the inverse problem (n given I0 rather than I given n) is much simpler!

For thick samples, an absorption measurement probes the intensity of the light
before it enters the sample, I0, and the intensity after it passes through the sample, I1.
From this we can infer the column density ñ = N/A:

ñ =

∫
dz n(z) = −

∫ I1

I0

dI

I

1

σ(I)

An atom that interacts with resonant light can be modeled very accurately as a
two-level system with cross-section σ(I) = σ0/(1 + s), where s = I/Isat, the intensity over
the saturation intensity. Substituting I with sIsat,

ñ = −
∫ s1

s0

ds
1 + s

sσ0
=

1

σ0
[log(s0/s1) + (s1 − s0)]

The physical meaning of this formula is quite simple. At low intensities (s � 1),
each atom scatters a fraction of the incident photons, and we measure the number of
atoms by looking for what percentage of the photons are missing, N ∼ log(s0/s1). At
high intensities, each atom is completely saturated and scatters photons at a fixed rate
Γ/2, hence the atoms scatter a fixed number of photons. We count atoms by counting the
missing photons s0 − s1. Surprisingly, the crossover regime is simply the sum of the two
extremes.

Our camera reads out the counts per pixel na in an absorption image (with atoms)
and bright-field image nb (without atoms)1. To find the number of atoms, we need to know
the atomic cross-section σ0, including errors due to polarization, magnetic field alignment,
laser detuning and linewidth, etc., the area of each pixel seesA = (pixel size/magnification)2,
the fraction of photons turned into electrons q (which is the camera’s quantum efficiency
times the optical losses after the atoms), the number of counts per electron g (also known
as the camera gain), and the pulse length t.

1In addition, we need to subtract a dark-field image, which we ignore here.



APPENDIX A. LIGHT-ATOM COUPLING AND IMAGING 106

N =
A

σ0
log

nb
na

+
A

σ0

Ib − Ia
Isat

The light intensity at the atoms may by inferred as the number of photons na,b/qg
per area A times the intensity per photon h̄ω/t, where t is the pulse time. However, we do
not care about the true intensity, only the intensity as compared to the saturation intensity.

A

σ0

Ib − Ia
Isat

=
h̄ω

Isatσ0

nb − na
qgt

Note that σ0 = h̄ωΓ/2Isat.

N =
A

σ0
log

nb
na

+
2

Γtqg
(nb − na) (A.3)

These two terms provide a method of calibrating the imaging system. At low
intensity, magnification, probe polarization, and magnetic field alignment contribute to a
systematic error in the atom number. These do not effect the high-intensity term because, at
high intensities, each atom scatters the name number of photons, regardless of polarization
drifts, magnetic field alignment, laser linewidth, magnification, etc.. Instead, the chief error
is in q, the overall quantum efficiency of the imaging system (g can be measured from the
noise in the counts). By taking repeated images of similarly prepared samples, we can
measure (A/σ0)/(2/Γtqg). Since q can be independently measured by directly measuring
the optical losses, this provides an absolute number calibration of the imaging system.

Figure A.1: Calculated number of atoms versus intensity
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A.4 Noise limits in absorption imaging

For now we will summarize Eq. A.3 as:

N = A′ log
nb
nas

+B′(nb − na).

The optical pulses are accompanied by photon shot noise δNphoton ≥
√
Nphoton,

where the equality holds for photon shot noise. We will calculate the variance in atom
number and assume photon shot noise.

δN2 =

(
∂N

∂nb
δnb

)2

+

(
∂N

∂na
δna

)2

=

(
A′

nb
+B′

)2

δn2b +

(
A′

na
+B′

)2

δn2a

The camera provides counts per pixel n, which typically show a sub-Poissonian
distribution. The photons np arriving on the CCD are (typically) Poisson distributed,
and the conversion to electrons ne = qenp is binomial. Because the number of electrons
(and photons) is typically very large, the electron distribution is very close to Poissonian,
(δne)

2 = ne. The electron conversion to counts (again, large numbers of electrons) is
deterministic (plus some constant readout noise). The gain g is defined as the ratio of
counts per electron, with g < 1.

δn2 = δ(gne)
2 = g2δn2e = g2ne = gn

δN2 = gA′2
(

1

nb
+

1

na

)
+ gB′2 (nb + na) + 4gA′B′ (A.4)

Note the important cross-term 4gA′B′: the variance in atom number is greater
than the sum of the variance of the low and high intensity terms because these terms are
correlated. For fixed values of A and B, we can minimize the variance with respect to
n = nb ≈ na.

0 =
∂δN2

∂nb
=

(
A′

nb
+B′

)2

g − 2
A′

nb

(
A′

nb
+B′

)
g ⇒ nb =

A′

B′

δN2 ≥ 8gA′B′

Substituting in the original values of A′ and B′, we find

δN ≥

√
16A

qσ0Γτ
I = Isat (A.5)

In addition, there is a small amount of noise from the camera read-out that in-
creases the noise by δn2A/D = gnA/D+e2. For our purposes (high photon counts), this noise
source is negligible.
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A.5 Dispersive Imaging

If the probe laser is far detuned (|∆| � Γ), the presence of atoms will phase-shift
the probe (φ ∼ ∆−1) while only minimally attenuating the light (R ∼ ∆−2). A strategy
here is to interfere the laser that passes through the atoms with a reference laser. Typically,
these two lasers are derived from the same probe, either the unscattered component of the
laser (phase contrast imaging) or a different polarization (polarization contrast imaging).

Either way, the signal is typically an intensity shift linearly propotional to the
phase shift and column density. Typically, the signal appears as I = I0(1± 2φ). The phase
shift is φ = k(nindex − 1)z, where we solved for the index of refraction in Eq. A.1. We are
going to assume that the overall phase shift is small.

φ =

∫
dz

n(z)k

ε0
Re[α] =

Nk

Aε0
Re[α]

In the Lorentz model, this simplifies to

φ = N
σ0Γ0

2A∆

1

1 + Γ2/4∆2

or

N =
A

σ0

2∆

Γ

(
1 +

Γ2

4∆2

)
The last term can be neglected in the far off resonant limit.
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