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Immunomonitoring in glioma immunotherapy: Current status
and future perspectives

Jonathan B. Lamanol, Leonel Ampiel, Winward Choy?, Kartik Kesavabhotlal, Joseph
David DiDomenico?l, Daniel E. Oyonl, Andrew T. Parsal, and Orin Blochl"

1Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University,
Chicago, IL 60611

Abstract

Given the continued poor clinical outcomes and refractory nature of glioblastoma multiforme to
traditional interventions, immunotherapy is gaining traction due to its potential for specific tumor-
targeting and long-term antitumor protective surveillance. Currently, development of glioma
immunotherapy relies on overall survival as an endpoint in clinical trials. However, the
identification of surrogate immunologic biomarkers can accelerate the development of successful
immunotherapeutic strategies. Immunomonitoring techniques possess the potential to elucidate
immunological mechanisms of antitumor responses, monitor disease progression, evaluate
therapeutic effect, identify candidates for immunotherapy, and serve as prognostic markers of
clinical outcome. Current immunomonitoring assays assess delayed-type hypersensitivity, T-cell
proliferation, cytotoxic T-lymphocyte function, cytokine secretion profiles, antibody titers, and
lymphocyte phenotypes. Yet, no single immunomonitoring technique can reliably predict
outcomes, relegating immunological markers to exploratory endpoints. In response, the most
recent immunomonitoring assays are incorporating emerging technologies and novel analysis
techniques to approach the goal of identifying a competent immunological biomarker which
predicts therapy responsiveness and clinical outcome. This review addresses the current status of
immunomonitoring in glioma vaccine clinical trials with emphasis on correlations with clinical
response.
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Introduction

Glioblastoma multiforme (GBM) is the most commonly diagnosed malignant brain tumor in
adults. Despite advances in microsurgery and adjuvant chemoradiation, the prognosis
remains poor with median overall survival of 14.6 months.! Immunotherapy is a promising
therapeutic approach aimed at stimulating a specific and sustained antitumor response.
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Overall survival (OS) currently serves as the primary endpoint in clinical immunotherapy
trials for GBM. However, immunomonitoring assays, aimed at tracking the effects of
immunotherapy upon the patient's immune system, can ideally help identify additional
clinical biomarkers that efficiently reflect treatment efficacy. Additionally, these assays can
accelerate the development of immunotherapeutic agents by providing insight into the
complex interactions between the tumor microenvironment, the immune system, and
immunologic interventions.

The primary goals of immunomonitoring in glioma immunotherapy trials include (1)
verifying intended immunologic effects of therapeutic interventions, (2) characterizing the
effects of immunotherapy on immune cell populations known to be involved in effector
and/or regulatory antitumor immune responses, (3) determining functional antitumor
responses evoked by immunotherapy, and (4) investigating potential biomarkers of clinical
benefit due to immunotherapy. Currently, however, no immunomonitoring technique has
been shown to reliably predict clinical outcome, relegating immunological markers to
exploratory endpoints. This is likely a consequence of limitations in current techniques and
knowledge that prevent a comprehensive understanding of the interactions between tumor,
tumor microenvironment, and immune system. Despite this complexity, immunomonitoring
techniques provides the opportunity to understand the complex effects of immunotherapy on
the immune system and moves the field closer to the goal of a prognostic biomarker.

Paralleling the development of immunotherapies for GBM, several generations of assays
have successively approached the goal of a surrogate clinical endpoint that allows
monitoring of vaccination responses. Initial immunomonitoring techniques focused on ex
vivo lymphocyte proliferation and /n vitro function of cytotoxic T-lymphocytes, effectively
characterizing bulk immune responses. However, these assays could not distinguish among
the specific immune populations involved. Subsequent generations of assays evaluated
antigen-specific T-cell frequency and ex vivo cytokine production. While this narrowed
investigation to the single-cell level, these techniques still failed to link immunological
phenotypes with function. The most recent immunomonitoring techniques have coupled
characterization of immune cell phenotype with functional properties, increasing
understanding of the functional roles of various cellular phenotypes in cancer
immunotherapy.?

At present, the ability to reliably correlate clinical outcomes with phenotypic and functional
shifts at the immune-tumor interface remains elusive. However, future techniques aim to
advance single-cell and multiparameter analyses to define patient-specific immune profiles
that may better represent the complex and dynamic nature of the immune system. Here we
review and evaluate the current status and limitations of immunomonitoring techniques in
glioma immunotherapy, including delayed type hypersensitivity, lymphocyte proliferation,
functional cytotoxic T lymphocyte assays, cytokine profiling, antibody titer monitoring, and
lymphocyte phenotyping. Moreover, we discuss techniques that may be utilized by the field
in the near future, alongside novel biomarkers gaining favor in checkpoint inhibition studies
and from outside the field of neuro-oncology.

J Neurooncol. Author manuscript; available in PMC 2016 May 15.
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Delayed Type Hypersensitivity (DTH)

The primary goal of vaccination involves induction of adaptive immune responses against
tumor-specific antigens. As the sole /7 vivo immunomonitoring assay, DTH has found
widespread application as an attempt to measure successful immunological activation3-19
(Table 1). In response to intradermal challenge of tumor antigen, local antigen-presenting
cells (APCs) release chemokines that recruit CD4" effector memory T-cells which, in turn,
activate macrophages and CD8* cytotoxic T lymphocytes (CTLs). At intradermal challenge
sites, positive responses are characterized by induration measured 42—72 hours following
injection. In addition to induration, the presence of antigen-specific T-cells in DTH skin
biopsies can also be utilized to distinguish responders from non-responders.# 20 While the
primary advantage of DTH is accessibility, it lacks a standardized challenge dosage and
thresholds for response discrimination which contribute to its variability. Glioma vaccination
trials employing DTH have reported correlations between DTH responses and 0S,36
progression-free survival (PFS),”: 8 increased number of tumor infiltrating CD8* T-cells at
recurrence,® or decreased computed tomography contrast enhanced lesion area.1? Others,
however, have described poor clinical correlations with both PFS and 0S.11: 13-15. 17 Thege
contradictory reports likely stem from divergent immune stimulatory and regulatory signals
encountered within tumor microenvironment and peripheral tissue. Ultimately, the low
specificity engendered by DTH limits its role to a preliminary screen which may support
additional immunological findings. As an assay relying on an immune response by memory
T-cells, DTH techniques are most likely to be effective in demonstrating successful
vaccination efforts relying on T-cell mediated responses and less effective for therapeutic
strategies relying on humoral responses.

T-Cell Proliferation

A successful vaccination response encompasses antigen presentation to naive T-cells,
resulting in the evolution of memory T-cells that possess the potential to undergo rapid
clonal expansion following antigen re-exposure. Consequently, early assays focused on /n
vitro bulk T-cell proliferation as an estimate of /n7 vivo antigen-specific T-cell induction.?!
Typically, T-cells or peripheral blood mononuclear cells (PBMCs) are exposed to antigen to
induce clonal expansion. Methods of determining the resulting proliferation have included
[3H] thymidine incorporation?? and dye dilution proliferation assays (DDPAs)Z3 (Table 2).

[3H] thymidine assays rely on incorporation of radiolabeled nucleotides into DNA of
dividing cells following /n vitro stimulation. Subsequently, the increased amounts of [H]
thymidine present in antigen stimulated samples reflect the magnitude of lymphocyte clonal
expansion. However, thresholds describing response discrimination remain unstandardized?!
and failed to predict time to progression (TTP), PFS, or OS in a phase I trial of a DC vaccine
targeting brain tumor initiating cells.12 Moreover, the assay is limited by its bulk nature,
preventing analysis of single cell participation in the proliferative response.

DDPAs address limitations of [3H] thymidine incorporation as the technique is non-
radioactive and facilitates single cell phenotyping. In the assay, carboxyfluorescein diacetate
succinimidyl ester (CFSE) acts as a fluorophore that binds to cytoplasmic proteins. Through
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flow cytometry analysis, serial halving of cytoplasmic proteins during lymphoproliferation
can be monitored as a serial halving of fluorescent intensity. Results from a phase I/11
vaccination trial employing autologous tumor derived peptide bound to 96 kD chaperone
protein indicate that DDPA monitoring could discriminate between immune responders and
the sole non-responder in the cohort, displaying correlation with 0S.24 Contrastingly, in a
post-radiation and temozolomide therapy autologous tumor lysate-loaded DC vaccination
trial, pre- and post-vaccination comparison of the percentage of proliferating CD4* and
CD8™ cells assayed via DDPA failed to act as single predictors of PFS or OS. However, as
components of hierarchical clustering with other immune parameters (CD4+/CD8+ cellular
frequency, IFN-y production, etc.), the proliferative immune response noted in the DDPA
contributed to a significant correlation with 0S.1°

For both [3H] thymidine incorporation and DDPA, the major limitation in interpretation
across studies involves /n vitro stimulation and expansion protocols, which remain
unstandardized and may not accurately simulate the actual environment in which clonal
expansion occurs. Still, T-cell proliferation remains a promising immune marker and
techniques such as flow cytometry based Ki67 nuclear antigen detection2 or telomere
shortening analysis through flow cytometry based, fluorescence /n situ hybridization
(FISH)Z® may overcome these obstacles and provide greater relevance to /in vivo T-cell
proliferation by avoiding /n vitro stimulation protocols. Similar to DTH, T-cell proliferation
assays are most viable for therapeutic strategies relying on T-cell mediated responses, as
opposed to humoral responses, to demonstrate the induction of a memory immune cell
population with the capability for clonal expansion.

Cytotoxic T-Lymphocytes

As a reflection of /in vivo vaccine antitumor efficacy, cytotoxicity assays determine /n vitro
CD8* CTL-mediated lysis of target cells or the generation of cytotoxic mediators (Table 3).
Cell-mediated cytotoxicity relies on activation of CD8* CTLs following MHC class |
antigen presentation, leading to expression and release of perforin and granzyme proteins for
pore formation or caspase cascade induced apoptosis, respectively. The traditional
cytotoxicity measures have been the chromium (°1Cr) release assay?’ and just another
method (JAM) release assays.28

In the (°1Cr) and JAM release assays, target cells are either loaded with 1Cr or labeled with
[3H] thymidine, respectively. Release of these intracellular molecules upon lysis of target
cells by CTLs is measured to estimate lytic activity. Clinically, the chromium (°1Cr) release
assay demonstrated only weak associations with radiographic partial responses in a study of
dendritic and glioma cell fusion vaccines2® and did not correlate with survival in a phase |
personalized peptide vaccination trial.16 In phase I trials of peptide-pulsed3® and tumor
lysate-pulsed DC vaccination,3! JAM assays demonstrated induction of a lasting antigen-
specific lytic response compared to pre-vaccination controls but failed to correlate with OS.
Limitations of these assays include requirements of /in vitro stimulation, radioactive
reagents, and non-quantitative, bulk results.

J Neurooncol. Author manuscript; available in PMC 2016 May 15.
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More recent cytotoxicity measures include alamar blue CTL32 and flow cytometry based
assays of apoptotic events.33-38 Alamar blue serves as fluorescent marker that is an indicator
of viable cells. Thus, through measurements of fluorescence, it is possible to determine the
fraction of target cells that have been lysed following exposure to CTLs.32 In a tumor
peptide DC vaccination trial, post-vaccination alamar blue CTL assays did not predict
objective clinical response or OS, despite negative correlation with disease burden.3” An
additional flow cytometry technique involves assay of CD107a/b CTL cell surface
mobilization upon CTL-target cell interaction as a result of cytolysis-associated
degranulation.36 CD107a staining correlated with intracellular lymphocyte IFN-y responses,
predicting a non-significant trend towards increased PFS and OS in a phase | multi-epitope-
pulsed DC vaccination trial.38 Overall, however, there still remain significant questions
regarding the mechanistic relevance of /n vitro, systemic CTL functional activity compared
to /n vivo, CTL responses in the tumor microenvironment. When used, these assays are most
amenable for monitoring therapeutic interventions relying on CTL-mediated antitumor
activity.

Cytokine Profiles and Antibody Titers

The glioma microenvironment establishes an immunosuppressive niche which promotes
Th2, Treg, and M2 anti-inflammatory cellular phenotypes via direct cell-cell interaction and
cytokine secretion. Vaccination goals therefore include a therapy-driven shift towards a
proinflammatory response conducive of Th1l and M1 polarization. Evaluation of
characteristic Th1 and Th2 cytokine release profiles is afforded by methods including
enzyme-linked immunosorbent assay (ELISA),39 enzyme linked immunospot (ELISPOT),40
intracellular cytokine staining (1CS),#! and quantitative polymerase chain reaction (qQPCR)
assays*? (Table 4).

In vitro ELISAs can quantify bulk immune cell cytokine production in response to antigen
challenge. The process involves incubating PBMCs or isolated immune cells with a
hypothesized antigen. After incubation, the supernatant is collected and cytokines of interest
can be quantified via detection antibodies. Similar techniques can be utilized on peripheral
blood serum samples to estimate /77 vivo cytokine production. Employed to monitor pre- and
post-vaccination serum proteins in an autologous tumor DC trial, ELISA elucidated a
significant inverse correlation between levels of both TGF-$2 and VEGF with PFS and
0S.43 Moreover, quantification of elevated GM-CSF and TNF-a production in a DC vaccine
study demonstrated the ability to distinguish stable from non-stable disease.** Used in
several phase I clinical trials involving personalized peptide,8 dendritic-glioma fusion
cell,> and autologous tumor DC vaccines,*8 ELISA monitored a combination of IFN-y,
IL-2, and IL-12 production as a correlate of Th1 induction that demonstrated dose-
dependent escalation. Yet, none of the studies demonstrated predictive capability regarding
clinical outcomes.

ELISPOT assays possess the ability to determine both the frequency of individual antigen-
specific T-cells and their cytokine production. While similar to the ELISA, the ELISPOT
instead utilizes a precipitating fluorophore that results in spots representing single cells
secreting the cytokine of interest. Spot size and intensity can be quantified and correlated
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with cytokine production. Several glioma immunotherapy studies have utilized IFN-y
ELISPOT assays as markers of antitumor immune response.4”: 48 Employed in this manner,
the ELISPOT has displayed ability to track long-term vaccine-induced antigen-specific IFN-
v production up to 3.5 years following final vaccination.? 13 Positive IFN-y ELISPOT results
have been correlated with minor clinical responses and stable MRI results in a phase 1/11 trial
of tumor lysate DC vaccination.1? Similarly, during a phase | a-type-1 polarized DC
inoculation trial, increased frequency of IFN-y producing cells correlated with clinically
stable disease.1® In addition, several DC vaccination trials have demonstrated positive IFN-y
ELISPOT as a prognostic marker of increased survival either as a single assay? or as a
constituent of hierarchical clustering analysis.1® However, the ELISPOT remains
controversial as several studies describe significant clinical responses in patients with
negative IFN-y ELISPOT results.13

In contrast to ELISPOT and ELISA, ICS and multiparameter flow cytometry techniques
support assessment of multiple cytokines concurrently with traditional cell surface markers
for phenotypic analysis of cytokine-secreting cells. Thus, these techniques allow for the
detection of cytokines at the single cell level. Using ICS to determine antigen-specific IFN-y
and TNF-a secretion in CTLs as markers of a Th1 response and therapy-induced
cytotoxicity, a phase I trial of a multi-epitope DC vaccine demonstrated a non-significant
trend towards increased PFS and OS in patients with increased 1CS.38 This correlation was
further elucidated in a phase | trial of autologous tumor derived peptide vaccine where IFN-y
production distinguished immune responders with increased OS from non-responders.24

An additional technique to assess cytokine production involves quantification of lymphocyte
gene expression through gPCR. IFN-y gPCR was utilized as a preliminary screen for vaccine
response in a phase I/11 trial of autologous tumor peptides bound to 96kD chaperone protein
and correlated with ICS and DDPA.24 Utilized in distinguishing vaccine responders from
non-responders in a phase Il tumor lysate-pulsed DC trial, IFN-y gPCR served as a
significant prognostic marker of increased PFS and OS. Impressively, IFN-y qPCR
demonstrated a logarithmic correlation with both PFS and OS across periods of concurrent
vaccine and chemotherapy administration.1® However, its main limitations involve a lack of
phenotyping capabilities and the fact that mMRNA expression is not necessarily equivalent to
functional protein.

Similar to quantifying cytokines via ELISA, it is also possible to measure antibody titers
against specific targets. This technique has shown positive results in a recently concluded
phase I clinical trial studying a vaccine (rindopepimut) which primes the immune system
against EGFRvIII-mutated GBM. After vaccine administration, anti-EGFRvIII antibody
titers increased =4 fold in the majority of patients. Anti-EGFRVIII titers also increased along
with the duration of treatment.#® However, such assays are only beneficial in strategies in
which a significant humoral antitumor immune response is expected, whereas cytokine
profiling can be utilized in variety of settings depending on the cytokines selected for
analysis.

J Neurooncol. Author manuscript; available in PMC 2016 May 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Lamano et al. Page 7

Lymphocyte Phenotyping

Determination of frequency and function of vaccine-induced, antigen-specific T-cells at the
single-cell level may reflect efficacy of the antitumor response (Table 5). The simplest
evaluation of lymphocyte phenotypes is afforded by complete differential blood counts.
Incorporated into a phase 11 heat-shock protein peptide complex-96 vaccination trial, pre-
vaccination absolute lymphocyte count (ALC) served as a significant predictor of OS,
suggesting lymphopenia as a possible negative prognostic marker in selection of
immunotherapy candidates.>° Phenotypic analysis of lymphocyte subsets, in addition to
antigen-specific T-cells, elaborates on the competing immune suppressive and stimulatory
factors involved in the antitumor response. PBMC flow cytometry allows for evaluation of
these various lymphocyte subsets through cell-surface staining of characteristic clusters of
differentiation (CD). Clinical trials tracking pre- and post-vaccination shifts in CD3* T-cell,
CD3*CD4* helper T-cell, CD4*CD8* double positive T-cell, and CD56* NK cell
populations either did not attempt clinical correlationl0: 29.45. 46 or demonstrated no
relationship with PFS or 0S.%1 However, a phase I/11 autologous DC trial used the technique
to demonstrate induction of a desired antitumor memory CD8" T-cell population.13

Of particular relevance to monitoring immune suppression are Tregs, myeloid-derived
suppressor cells (MDSCs), and tumor-associated macrophages (TAMSs). Correlations with
survival have been demonstrated with pre- and post-vaccination alterations in the systemic
Treg population. Assessment of a phase I/11 tumor peptide-96kD complex inoculation cohort
across lymphocyte phenotypes distinguished between vaccine responders and non-
responders that correlated with OS. Whereas responders exhibited increased CD3* T-cells,
CD3*CD8* double positive T-cells, NK cells, and decreased Tregs correlated with increased
0S, non-responders had significantly elevated Tregs related to decreased survival.2# Several
phase | DC-based immunotherapy trials have supported these findings through report of a
hazard ratio for death of 3.62 — 7.19 for each unit increase in the ratio of post- to pre-
vaccination Treg percentage.>2: 53 However, other studies have failed to demonstrate
correlations with Treg populations and clinical outcome.>* In addition to Tregs, a phase | DC
vaccination study also demonstrated a significant relationship between decreased OS and
increased CTLA4 expression on helper T-cells and CTLs post-vaccination. In contrast,
increased proportions of activated CD8* T-cells served as a positive prognostic marker for
increased survival that approached significance.>® Moreover, expanded post-vaccination NK
cell frequency demonstrated correlations with prolonged PFS and OS in a study of an
autologous DC vaccine,*3 demonstrating the potential prognostic capabilities of several
lymphocytes subsets in glioma vaccination.

PBMC flow cytometry has the potential to elucidate immune response patterns both during
immune induction and longitudinally across therapeutic administration. Moreover, the
technique affords not only phenotypic analysis of PBMCs, but also functional determination
depending on the combination of ICS and flow cytometry protocols applied. Yet, the assay
remains technically limited in the number of accessible parameters that may slow future
studies that aim to assess increasingly complicated biomarker combinations.

J Neurooncol. Author manuscript; available in PMC 2016 May 15.
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Emerging Technology

Given limited prognostic power of current immunomonitoring assays, emerging
technologies such as phosphoflow®® and cytometry by time of flight (CyTOF)®® have been
investigated. Unlike traditional flow cytometry, phosphoflow also assesses phospho-
signatures characterized by activation and phosphorylation of intracellular signaling
pathways such as STAT and MAPK involved in T-cell receptor antigen recognition, cytokine
activation, and expression of costimulatory or inhibitory molecules. In a phase | DC
vaccination trial, the technique has distinguished patients with increased survival based on
increased pSTATS and decreased pSTAT1 ratios in CD3*CD8* T-cells after an ex vivo
stimulation protocol following vaccination.>” In contrast to flow cytometry, emerging
CyTOF techniques theoretically possesses the capability to assess 70-100 parameters per
cell, expanding the number of biomarkers that can be assessed for a single cell.>8

Due to increasing number of parameters assayed per cell by these emerging technologies,
immunomonitoring is progressing towards immune profiling and phenotyping,®® which has
demonstrated a strong correlation with OS in GBM.>? Serial monitoring of immune profiles
from pre-vaccination baseline allows for evaluation of immunotherapeutic effects on the
immune system at large. With increasingly high-dimensional data, unsupervised hierarchical
clustering techniques such as spanning tree progression analysis of density normalized
events (SPADE)%6 80 and visualized stochastic neighbor embedding (ViSNE)52 will likely be
necessary to avoid bias in manual interpretation and detection of rare cell populations.

Immunomonitoring in Checkpoint Inhibition and Non-Glioma

Immunotherapy

Due to the relative infancy of immunotherapy for glioblastoma, the majority of trials
utilizing immunomonitoring techniques have been early phase trials that cannot provide
conclusive evidence regarding clinical outcomes. In comparison, the field of melanoma
immunotherapy is relatively advanced and has successfully investigated several immune
biomarkers. One form of immune-based therapy which has demonstrated success in
malignancies such as melanoma is that of immune checkpoint inhibition. This therapy
consists of antibodies that do not target the tumor proper, but instead bind
immunosuppressive proteins, preventing and reversing immune cell exhaustion and anergy.
While the clinical data is not yet available for this type of intervention within the field of
neuro-oncology, there are ongoing planned clinical trials which will aim to fill this void
(NCT02311920 and NCT02017717).

Biomarkers that have been investigated in CTLA-4 checkpoint inhibition (ipilimumab) trials
include patient ALC measurements with stratification based on a numerical cutoff and rate
of rise.52 The underlying hypothesis postulates that a higher ALC portends an improved
prognosis and is a sign of an activated immune system. Overall, the data remains somewhat
inconclusive with some reports noting survival benefit, while others note lack of association
between ALC and survival.53-66 Another potential biomarker for monitoring the immune
system involves measuring the population of lymphocytes expressing ICOS (/ducible T-cell
COStimulator). ICOS is a protein expressed on the surface of activated T-cells which plays a
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role in proliferation and survival of activated T-cells. When expressivity of ICOS positive T-
cells was assessed in melanoma patients receiving ipilimumab, patients with a higher
population of CD4*ICOSN cells demonstrated an increased 0S.87 For PD-1/PD-L1 trials,
the degree of expressivity of PD-L1 within the tumor has also been hypothesized to predict
response to the therapy. This is highly applicable to the realm of neuro-oncology since GBM
is known to express PD-L1 (which binds and signals via the immune checkpoint protein
PD-1) and the degree of expressivity has been correlated with worse outcomes.%8 While a
study which investigated PD-1 inhibition (nivolumab) in melanoma demonstrated an
improved OS regardless of a tumor's PD-L1 status,5? the correlate of this finding in GBM
remains unknown.

Interestingly, checkpoint inhibition studies in melanoma have also demonstrated a potential
role for immunogenetics in predicting patients likely to benefit from checkpoint inhibition.”?
Utilizing whole-exome sequencing of tumor DNA, a unique collection of mutation-derived
neopepitopes that could drive T-cell anti-tumor activity were discovered to occur
overwhelmingly in patients benefitting from anti-CTLA4 checkpoint inhibition. Moreover,
in studies of anti-PD-1 checkpoint inhibition including a phase 1l trial in mismatch-repair
deficient colorectal cancer’! and an investigation of non-small cell lung cancer,’? increased
tumor mutational burden was correlated with clinical benefit. With increasing mutational
burden, greater antitumor neoantigens are produced which stimulate an endogeneous
immune response, shackled only by a subsequent increase in immunologic checkpoints.
These findings have resulted in the hypothesis that checkpoint inhibition is most effective in
the setting of an immunogenic tumor and suggest the possibility of screening endogenous
patient tumor immunogenicity as a predictor of response to checkpoint inhibition therapy.
Within the realm of glioma immunotherapy, basic immunogenetic monitoring has already
been employed in a phase | dendritic cell vaccine trial demonstrating a potential increased
benefit of vaccination in the mesenchymal subtype of GBM compared to other subtypes.>*
Within tumors of this subtype, greater expression of pro-inflammatory genes and increased
CD3*CD8* lymphocytic infiltration are observed, along with increased survival following
vaccination compared to historical controls. Together, these studies indicate the potential
importance of tumor immunogenetics in the selection of patients likely to benefit from
immunotherapy and support increased investigations into this form of immunomonitoring.

Of note, immunomonitoring in vaccination efforts and checkpoint inhibition may differ in
some regards and overlap in others. Whereas checkpoint inhibition may perform optimally
in the setting of an endogenously immunoreactive tumor, vaccination efforts may show the
most promise in the setting of a relatively less immunogenic tumor, whose immunogenicity
must be enhanced. In these situations, immunomonitoring efforts may assist in the selection
of appropriate therapeutic options for patients. As the field of immunomonitoring evolves
along with immunotherapy, the similarities and differences between immunomonitoring in
vaccination and checkpoint inhibition therapies will require increased investigation.

Immunomonitoring Limitations

The interpretation of immunomonitoring results currently faces several limitations including
(1) our current incomplete understanding of the complex interactions between the tumor
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microenvironment and the immune system, (2) biomarkers that may simply be surrogate
measures of overall patient condition, and (3) lack of assay standardization and consistency
across immunotherapy trials. Based on evolving research, our interpretation of
immunological findings may continue to shift and explain why some of the past and present
immunomonitoring assays have failed to correlate with overall survival. For example, /n
vitro assays of immune cell function have largely failed to take into account the variety of
forms of immunosuppression encountered in GBM. Although isolated immune cell subsets
may demonstrate effective antitumor activity /n vitro, these functions are likely to be
inhibited /n vivo by factors including immunological checkpoints and immunosuppressive
lymphoid populations. In this regard, the inability to correlate an immune response with
survival may not be the failure of an assay, but a result of our incomplete understanding of
cancer immunology. Moreover, studies reporting increased ALC, among other biomarkers,
as a beneficial prognostic marker may simply be identifying patients who are capable of
mounting effective antitumor responses and surviving regardless of the therapy
administered. Patients failing to respond with an increase in ALC may simply be
nutritionally compromised or in a poorer overall condition, confounding interpretations of
treatment effect. Together, these limitations may help explain some of the results observed in
the literature and provide implications for the development of future immunomonitoring
efforts.

Increasing the reliability of immunomonitoring assays also remains a goal of all future trials
incorporating such techniques. Harmonization and standardization efforts are currently
underway to address the issue of interpretation of results across studies. Whereas
harmonization strives to determine crucial variables affecting assay performance while
permitting laboratories freedom over their protocols, standardization is stricter and
prescribes central facilities or specific protocols and reagents in order to ensure precision. As
some of the most commonly employed immunomonitoring assays, ELISPOT and ICS
techniques each possess standardization and harmonization guidelines,’3 along with
recommendations for minimal reporting metrics.”* Since patients inherently demonstrate
large variation in their immunological status, such measures to reduce assay variability are
vital to appropriate analysis and interpretation of data.

Conclusion

Immunomonitoring assays possess the potential to elucidate immunological mechanisms of
antitumor vaccination, monitor disease progression, and assess potential candidates for
immunotherapy. While some techniques have demonstrated promising correlations with
clinical outcome, the majority of immunomonitoring assays to date have failed to reliably
serve as prognostic markers in glioma immunotherapy. Moving forward, encouraging
immunomonitoring approaches are attempting to elucidate patient-specific immune profiles
encompassing multiple phenotypic and functional facets of the immune system that can
better correlate with clinical responses to immunotherapy. Yet, differences in systemic and
tumor microenvironments remain a significant obstacle in the interpretation of
immunomonitoring results. Continued improvement of immunomonitoring remains essential
to increased understanding and design of immunotherapeutic interventions. As each current
immunomonitoring technique possesses inherent limitations, the selection of an assay for
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future investigations must rely on the specific goals of the investigators. Depending on the
mechanism of action of the immunotherapeutic intervention, techniques monitoring a
humoral response (antibody titers) may be desired over techniques that assess antigen-
specific T-cell induction and function (T-cell proliferation, CTL assays, ELISPOT). On the
other hand, lymphocyte phenotyping serves as a highly flexible technique with the ability to
assess both effector and regulator immune cell populations that affect a patient's response to
immunotherapy and is highly amenable to a wide variety of interventions. Given the rapidly
emerging role of immunogenetics in studies outside of neuro-oncology, it is likely that these
techniques will soon be used in GBM to investigate which patients are most likely to benefit
from specific immunotherapeutic interventions. However, as the field currently stands, the
most holistic approach to monitoring a patient's response to immunotherapy likely involves
the combination and analysis of several independent biomarkers concurrently, which
together, may depict an immune phenotype that is greater than the sum of its individual
parts. While the role of prognostic immune biomarkers in future clinical endeavors for
glioma immunotherapy remains to be seen, they have proven to be important avenues in
need of additional attention, research, and development to investigate the mechanisms of
immunotherapy, responses to therapeutic interventions, and prediction of patients most
likely to benefit from therapy.
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