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Abstract The purpose of this study was to investigate the

methods of estimating the reliability of school-level scores

using generalizability theory and multilevel models. Two

approaches, ‘student within schools’ and ‘students within

schools and subject areas,’ were conceptualized and

implemented in this study. Four methods resulting from the

combination of these two approaches with generalizability

theory and multilevel models were compared for both

balanced and unbalanced data. The generalizability theory

and multilevel models for the ‘students within schools’

approach produced the same variance components and

reliability estimates for the balanced data, while failing to

do so for the unbalanced data. The different results from

the two models can be explained by the fact that they

administer different procedures in estimating the variance

components used, in turn, to estimate reliability. Among

the estimation methods investigated in this study, the

generalizability theory model with the ‘students nested

within schools crossed with subject areas’ design produced

the lowest reliability estimates. Fully nested designs such

as (students:schools) or (subject areas:students:schools)

would not have any significant impact on reliability esti-

mates of school-level scores. Both methods provide very

similar reliability estimates of school-level scores.

Keywords Reliability � Generalizability theory �
Multilevel model

Introduction

School performance assessment programs have been

implemented for the purpose of evaluating and monitoring

the quality of school systems in many countries. Various

achievement tests have been commonly used as a primary

indicator in assessing school performance. In general,

achievement test scores of students are aggregated into

school-level scores such as school mean scores or PAACs:

percentages of students at or above cutscores. Aggregated

school-level scores obtained from student scores have been

examined in many previous studies of various fields to

investigate topics related to school quality and educational

policies (Hill and Hurley 1984; Ingelhart 1977, 1985a,

1985b; Rohrschneider 1988; Dalton 1984; Sabatier et al.

1987; Wright et al. 1985; Brennan 2001a, b; Kane a Staiger

2002).

Before school-level scores are used, it is necessary to

examine their fitness from the perspectives of reliability and

validity. This confirmation is critical to making accurate,

substantial inferences based on those scores (Dunbar et al.

1991; Gao et al. 1994; Linn et al. 1991). It is required for

researchers who use school-level scores to gather and pro-

vide information regarding the quality of those measures.

Unfortunately, many previous studies have reported

individual-level reliability estimates such as Cronbach’s

alpha, even though aggregated school-level scores were

used (Jones and Norrander 1996). These studies failed to

recognize the fact that the reliability estimates for indi-

vidual-level scores differed from those for school-level

scores. This might lead to the misinterpretation or misuse

of scores, resulting from the application of inappropriate

levels of score consistency. In addition, many researchers

believe that school-level scores are more reliable than

individual-level scores. However, this kind of conventional
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opinion on the reliability of school-level scores does not

necessarily hold true. For example, if the number of per-

sons within groups goes to infinite, it is reasonable to

assume that error variance for persons is likely to be larger

than error variance for groups. However, for small number

of persons within groups, this is not necessarily true

(Brennan 1995, 2001a, b). More precise investigation of

the reliability of school-level scores should be conducted

before those scores are used as primary measures.

In this study, several methods of estimating the reli-

ability of school-level scores were conceptualized using

multilevel and generalizability theory models. Generaliz-

ability theory has been commonly used for this purpose

(Brennan 1995; Gao et al. 1994; Jones and Norrander 1996;

O’Brien 1991), as it enables investigators to explore reli-

abilities for various circumstances by fixing or randomiz-

ing measurement conditions (Brennan 2001a, b). Though

multilevel models have not been frequently used for this

purpose, they do offer many advantages in examining the

relationships among individual-level and school-level

measures (Raudenbush and Bryk 1986; Teddlie and Rey-

nolds 2000). Snijders and Bosker (1999) provided several

multilevel model procedures for estimating the reliability

of school-level scores, utilizing data involving individuals

nested within schools. However, there are relatively few

multilevel model studies that address this issue.

The main purposes of this study were to conceptualize

possible methods for estimating the reliability of school-

level scores, using generalizability theory and multilevel

models, and to investigate the relative fitness of the estimates

derived from both models. Similarities and differences

among those estimates were examined and discussed in

relation to the model specifications and estimation proce-

dures. The following were the specific research objectives:

1. To estimate the reliability of school-level scores

incorporating a ‘students within schools’ approach

using generalizability theory and multilevel models.

2. To estimate the reliability of school-level scores

incorporating a ‘students within schools and subject

areas’ approach using generalizability theory and

multilevel models.

3. To evaluate and contemplate the similarities and

differences in reliability estimates of school-level

scores from the four estimation methods.

School-level score estimation methods

Two different approaches in estimating the reliability of

school-level scores were differentiated in this study. In the

first approach, students are nested within schools and the

students’ test scores are averaged into a school-level score

(the ‘students within schools’ approach). In the second

approach, students are nested within schools and the stu-

dents take several tests in various subject areas (the ‘stu-

dents within schools and subject areas’ approach). These

two different approaches are combined with both general-

izability theory and multilevel models, respectively, and

constitute several reliability estimation methods as shown

in Table 1. In general, the lower reliability estimates of

school-level scores could be expected for the ‘‘students

within schools and subject areas’’ approach than for the

‘‘students within schools’’ approach in both models,

because the former addresses one more source of errors, the

‘subject areas’ in addition to the ‘students’, in the gener-

alization of test scores.

Estimation methods using generalizability theory

models

A generalizability theory design (p:s) can be used to esti-

mate the reliability of school-level scores, in which stu-

dents (p) are nested within schools (s),

Table 1 Methods of estimating reliability of school-level scores used in this study

Approach Generalizability theory Multilevel model

Students within schools Model

Xps ¼ lþ ls� þ lp:s�
Model

Two-level

Yij ¼ lþ Uj þ Rij

Reliability

Eq2 ¼ r2ðsÞ
r2ðsÞþr2ðp:sÞ=n0p

Reliability

kj¼ r2ðsÞ
r2ðsÞþr2ðp:sÞ=nj

Students within schools

and subject areas

Model

X
pst
¼ lþ ls� þ lp:s� þ lst� þ lt� þ lpt:s

Model

Three-Level

Yijk ¼ lþ Uk þ Rjk þ eijk

Reliability

Eq2 ¼ r2ðsÞ
r2ðsÞþ r2ðstÞ=n0tþr2ðp:sÞ=n0pþr2ðpt:sÞ=n0pn0t½ �

Reliability

kk ¼ r2ðsÞ
r2ðsÞþr2ðp:sÞ=nkþr2ðt:p:sÞ=nknjk
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Xpst ¼ l grand mean½ � þ ls � lð Þ school effect½ �
þ lps � ls

� �
student within school effect½ �

ð1Þ

where the last term of students within schools effects is

compounded by unexplained sources of error (O’Brien

1991). Suppose that schools are the objects of

measurement, in this case, the universe of generalization

consist of a random p facet. For this design, the reliability

of school-level scores (called the generalizability

coefficient) is

Eq2 ¼ r2ðsÞ
r2 sð Þ þ r2 p:sð Þ=n0p

ð2Þ

where r2 sð Þ is the variance of schools, r2 p:sð Þ is the var-

iance of students within schools, and n0p is the number of

students within a school.

The linear model for data including one additional

subject areas facet (t), in which students within schools are

crossed with subject areas, is expressed as

Xpst ¼ l
�
grand mean

�

þ
�
ls � l

� �
school effect

�

þ
�
lt � l

� �
subject area effect

�

þ
�
lps � ls

� �
student within school effect

�

þ
�
lst � ls � lt þ l

� �
school by subject area

interactioneffect
�

þ
�
Xpst � lst � lps þ ls

� �
student by subject

areawithinschooleffect
�

ð3Þ

where the last term of students by subject areas within

schools effects is compounded by unexplained sources of

error (Brennan 1995).

Schools are the objects of measurement, and the uni-

verse of generalization consists of p and t facets. The

reliability of school-level scores, then, is

Eq2 ¼ r2ðsÞ
r2ðsÞ þ r2ðstÞ=n0t þ r2ðp:sÞ=n0p þ r2ðpt:s)=n0pn0t

;

ð4Þ

where r2ðsÞ is the variance of schools, r2ðstÞ is the vari-

ance of schools by subject areas interaction, r2ðp:sÞ is the

variance of students within schools, r2ðpt:sÞ is the variance

of students by subject areas within schools, n0p is the

number of students within a school, and n0t is the number of

subject areas.

If subject areas were treated as fixed, a different con-

ceptualization of the universe of generalization and a dif-

ferent formula to estimate the reliability of school-level

scores should be considered. That is, in this case, only

limited subject areas (e.g., language, mathematics, and

English) are used in computing school-level scores, and the

researcher is not interested in generalization over other

subject areas in assessing school-level performances. The

reliability of school-level scores, where subject areas are

treated as fixed, is

Eq2 ¼ r2ðsÞ þ r2ðstÞ
r2ðsÞ þ r2ðstÞ þ r2ðp:sÞ=n0p þ r2ðpt:sÞ=n0p

; ð5Þ

where the definition of each term is the same as in Eq. (4).

Estimation methods using multilevel models

For the data structure for students (p) nested within schools

(s), a two-level multilevel model is appropriate and is

expressed as

Yij ¼ lþ Uj þ Rij; ð6Þ

where l is the population grand mean, Uj is the specific

effect of school j, which is to say the deviation of school j’s

mean from the grand mean, andRij is the residual effect for

student i within school j.

The two-level model partitions the total variability of an

observed score into between-school variance and within-

school variance. Applying the general definition of reli-

ability, the two-level model provides the reliability of the

aggregate scores

kj ¼
r2ðsÞ

r2ðsÞ þ r2ðp:sÞ=nj

; ð7Þ

where r2ðsÞ is the variance between schools, r2ðp:sÞ is the

variance of students within schools, and nj is the student

sample size of school j (Snijders and Bosker 1999).

In the second approach, students within schools take

several tests in certain subject areas. Unlike generaliz-

ability theory, multilevel models view subject areas nested

within students within schools treating different subject

areas as multiple data points where students’ test scores are

observed. In this case, the linear model of observed scores

with the three-level multilevel model is appropriate, and is

expressed as

Yijk ¼ lþ Uk þ Rjk þ eijk; ð8Þ

where l is the grand mean of the population, Uk is the

school effects, which is to say the deviation of school k’s

mean from the grand mean, Rjk is the student effects, or the

deviation of student jk’s mean from the school mean, and

eijk is the residual effect for subject area i within student j

within school k.

The reliability of the school-level scores in this model

can be expressed as

kk ¼
r2ðsÞ

r2ðsÞ þ r2ðp:sÞ=nk þ r2ðt:p:sÞ=nknjk

; ð9Þ
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where r2ðsÞ is the variance of schools, r2ðp:sÞ is the var-

iance of students within schools, r2ðt:p:sÞ is the variance of

subject areas among students, nk is the number of students

in school k, and njk is the number of subject areas for

student j in school k.

Methods

Data sources

The data used in this study were taken from the Korean

Education and Employment Panel (KEEP) administered to

grade three high school students in 2002. The data was

obtained from a representative sample by applying

nationwide survey procedures. In this study, the data of

1,477 students in 90 high schools were used for the final

analyses. In addition, three subject areas, Korean Lan-

guage, Mathematics, and English, were used to measure the

students’ achievement on the Korean College Scholastic

Ability Tests (similar to the SAT or ACT tests in the

United States). Since the data structure was unbalanced,

with varying numbers of students across schools, for the

purpose of comparing results from both balanced and

unbalanced data sets, balanced data were created in which

the number of students within schools was set to 10. The

same estimation procedures were applied to both the bal-

anced and the unbalanced data. Summary statistics

describing the balanced and unbalanced data used in this

study are presented in Table 2.

Analyses

To estimate the reliabilities of school-level scores, (p:s)

and (p:s) 9 t univariate generalizability theory designs (p,

students; s, schools; t, subject areas) and the two- and

three-level multilevel models were employed. The com-

puter application program HLM 6.0 (Raudenbush et al.

2005) was used with the multilevel models; GENOVA

(Brennan 2001a) for balanced data and urGENOVA

(Brennan 2001b) for unbalanced data were used with the

generalizability theory models. The variance components

of the score effects were estimated, and reliability esti-

mates were obtained and compared for each method.

Methods based on mean-squares are applied to the GE-

NOVA and urGENOVA programs in estimating variance

components for the generalizability theory models (Lee

2002; Lee and Frisbie 1999). We used default estimation

methods of HLM 6.0 in this study: restricted maximum

likelihood method (REML) for two-level models and full

information maximum likelihood method (FIML) for

three-level models.

Results

‘Students within schools’ approach

Estimation of variance components

Table 3 presents the variance component estimates using

the generalizability theory models (G-Model) and multi-

level models (M-Model) for the ‘students within schools’

approach, with balanced and unbalanced data. In both

models, students’ average scores for subject areas were

used as inputs. The school effects (s) and the students

within schools effects (p:s) were considered to constitute

the total variability of the observed scores.

The result shows that the G-Model and the M-model

produced exactly the same variance component estimates

for the school effects (s) as for the students within schools

effects (p:s) for the balanced data. The percentages of

variance component estimates for schools and students

within schools were 22.7% and 77.3%, respectively.

For the unbalanced data where the numbers of students per

school varied across schools, and ranged from 10 to 20, the

variance component estimates for students within schools

effects (p:s) in both models were similar, although not

Table 2 Descriptive statistics for balanced and unbalanced data

Balanced data Unbalanced data

Mean SD Range Mean SD Range

Korean language 101.50 8.81 65.00–123.00 100.80 8.43 65.00–121.80

Mathematics 97.20 8.21 78.80–119.40 97.76 7.50 78.80–121.33

English 100.03 9.70 71.40–123.30 99.54 9.34 71.40–122.73

Average score 99.58 8.30 73.30–121.90 99.37 7.89 73.30–121.96

Number of students per school 10 – – 16.41 2.72 10–20

Note: SD standard deviation
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identical. The school variance component in the M-Model

was somewhat greater than that in the G-Model.

Estimation of reliability

Table 4 shows the reliability estimates of school-level

scores for the four methods under the G-Model and the M-

Model, where the student sample sizes in a school varied

from 10 to 100 in increments of 10.

The reliability of school-level scores increased as the

student sample size per school increased, though the

degree of increase gradually diminished. For the balanced

data, the reliability estimates for Method (A) and Method

(B) were the same. For the unbalanced data, the reliability

estimates of Method (D) were somewhat higher than

those of Method (C). The difference ranged from 0.003 to

0.02. The reliability estimates for the unbalanced data

were somewhat lower than those for the balanced data.

Using the four methods, at least 20 students within a

school were required in order to obtain a reliability level

of 0.8, whereas at least 40 students were required for a

reliability level of 0.9.

‘Students within schools and subject areas’ approach

Estimation of variance components

Table 5 provides the variance component estimates for the

G-Model and the M-Model, incorporating students within

schools and subject areas for balanced and unbalanced

data. In this case, the two models applied different designs

and decomposed the total score variance into different

sources of score effects. That is, the G-Model considered

five variance components including school effects (s),

students within schools effects (p:s), subject area effects

(t), schools by subject area interaction effects (st), and

students by subject area interaction effects within schools

(pt:s), whereas the M-Model considered three variance

components including school effects (s), students within

schools effects (p:s), and subject areas among students

within schools effects (t:p:s).

For the balanced data, the variance component estimates

for school effects (s) and students within schools effects

(p:s) were similar in the two models. The percentages of

schools and students within schools variance components

Table 3 Variance component estimates of students within schools approach

Data Effect G-Model M-Model

Variance component df Variance component df

Balanced data School (s) 51.396 (22.7%) 89 51.396 (22.7%) 89

Student:school (p:s) 174.972 (77.3%) 810 174.973 (77.3%) 810

Total 226.368 (100.0%) 226.368 (100.0%)

Unbalanced data School (s) 43.897 (20.1%) 89 47.967 (21.6%) 89

Student:school (p:s) 174.214 (79.9%) 1387 174.517 (78.4%) 1387

Total 218.111 (100.0%) 222.484 (100.0%)

Notes: The numbers in parentheses represent the percentage of each score effects relative to the total variance

G-model generalizability theory model, M-model multilevel model

Table 4 Reliability estimates

of school-level scores using four

estimation methods of ‘students

within schools’ approach

Notes: G-Model generalizability

theory model, M-Model
multilevel model

Number of students

per school

Balanced data Unbalanced data

Method (A)

(G-Model)

Method (B)

(M-Model)

Method (C)

(G-Model)

Method (D)

(M-Model)

10 0.746 0.746 0.716 0.733

20 0.855 0.855 0.834 0.846

30 0.898 0.898 0.883 0.892

40 0.922 0.922 0.910 0.917

50 0.936 0.936 0.926 0.932

60 0.946 0.946 0.938 0.943

70 0.954 0.954 0.946 0.951

80 0.959 0.959 0.953 0.957

90 0.964 0.964 0.958 0.961

100 0.967 0.967 0.962 0.965
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were about 16% and 44%, respectively. In addition, in the

G-Model, the sum of the variance components of subject

area effects (t), schools by subject area interaction effects

(st) and subject area by students within schools effects

(pt:s) was 120.690 which was exactly the same value as the

variance component estimate in the M-Model for subjects

within students within schools effects (t:p:s).

For the unbalanced data, the variance component esti-

mates for school effects (s) and students within schools

effects (p:s) were somewhat different between the G-Model

and M-Model. However, the sum of the variance compo-

nents of subject area effects (t), schools by subject area

interaction effects (st) and subject area by students within

schools effects (pt:s) was 124.263 in the G-Model, which

was the same as the variance estimate of subjects within

students within schools effects (t:p:s) in the M-Model.

Estimation of reliability

Table 6 presents the reliability estimates of school-level

scores based on school sample sizes ranging from 10 to 100

in increments of 10.

The reliability of school-level scores in the four methods

gradually increased as the student sample size per school

increased. For the balanced data, the reliability estimates of

the school scores of Method (A) were consistently lower than

those of Method (B). The difference between the two

methods was about 0.03. For the unbalanced data, the reli-

ability estimates of Method (C) were also consistently lower

than those of Method (D). The difference between the two

methods was about 0.05 which was greater than that for the

balanced data. In the case of the ‘students within schools’

approach, the reliability estimates for the unbalanced data

were lower than those for the balanced data. The reliability

estimates of Method (C) for the unbalanced data were the

lowest, whereas those of Method (B) for the balanced data

were the highest among the methods.

Comparison among specified methods

One of the research objectives of this study was to investigate

the similarities and differences between several G- and M-

Model methods in estimating the reliabilities of school-level

scores. To that end, the variance component estimates of

several methods, according to different specifications, are

presented in Tables 7 and 8. The reliability estimates of the

school-level scores are also presented. To enhance the utility

of the comparison of the methods, one additional method,

that of the G-Model (t:p:s) design, was analyzed. The vari-

ance component estimates of this method were obtained by

analyzing the balanced and unbalanced data that were used

for the three-level multilevel model of (t:p:s) design.

The variance component estimates and the related reli-

ability estimates of the six methods, for the balanced data,

are presented in Table 7. For the purpose of estimating the

reliability, a student sample size of 10 was used in all of the

methods.

Method (A), Method (B), and Method (E) produced the

same reliability estimate, 0.746, which was the highest

value among the proposed methods. They also produced

the same variance component estimate for school effects

(s). The reliability estimate of Method (D) was similar to

Table 5 Variance component estimates in ‘students within schools and subject areas’ approach

Data Effect G-Model M-Model

Variance component df Variance component df

Balanced data s 49.679 (16.1%) 89 50.631 (16.5%) 89

p:s 137.992 (44.8%) 810 134.743 (44.0%) 810

t:p:s – – 120.690 (39.4%) 1800

t 4.595 (1.5%) 2 – –

st 5.152 (1.7%) 178 – –

pt:s 110.943 (40.0%) 1620 – –

Total 308.362 (100.0%) 306.064 (100.0%)

Unbalanced data s 42.005 (13.9%) 89 47.280 (15.5%) 89

p:s 135.525 (44.9%) 1387 133.101 (43.7%) 1387

t:p:s – – 124.263 (40.8%) 2954

t 2.521 (0.8%) 2 – –

st 5.676 (1.9%) 178 – –

pt:s 116.066 (38.5%) 2774 – –

Total 301.792 (100.0%) 304.644 (100.0%)

Notes: The numbers in parentheses represent each score’s effects as a percentage relative to the total variance

G-Model generalizability theory model, M-Model multilevel model, s school, p students, t subjects
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Table 6 Reliability estimates of school-level scores using four estimation methods of ‘students within schools and subject areas’ approach

Number of students per school Balanced data Unbalanced data

Method (A)

(G-Model)

Method (B)

(M-Model)

Method (C)

(G-Model)

Method (D)

(M-Model)

10 0.721 0.743 0.685 0.730

20 0.826 0.853 0.799 0.844

30 0.868 0.897 0.845 0.890

40 0.891 0.920 0.871 0.916

50 0.905 0.935 0.887 0.931

60 0.915 0.946 0.898 0.942

70 0.922 0.953 0.906 0.950

80 0.927 0.959 0.912 0.956

90 0.931 0.963 0.917 0.961

100 0.935 0.967 0.920 0.964

Notes: G-Model generalizability theory model, M-Model multilevel model

Table 7 Variance components and related reliability estimates of five methods with balanced data

Effect Students within schools approach Students within schools and subject areas approach

Method (A) Method (B) Method (C) Method (D) Method (E)

G-Model M-Model G-Model (p:s) 9 t M-Model (t:p:s) G-Model (t:p:s)

s 51.396 (22.7%) 51.396 (22.7%) 49.679 (16.1%) 50.631 (16.5%) 51.396 (16.8%)

p:s 174.972 (77.3%) 174.972 (77.3%) 137.992 (44.8%) 134.743 (44.0%) 134.743 (43.9%)

t:p:s – – – 120.690 (39.4%) 120.690 (39.3%)

t – – 4.595 (1.5%) – –

st – – 5.152 (1.7%) – –

pt:s – – 110.943 (36.0%) – –

Total 226.368 (100.0%) 226.368 (100.0%) 308.362 (100.0%) 306.064 (100.0%) 306.830 (100.0%)

Reliability estimates (10) 0.746 0.746 0.721 0.743 0.746

Notes: The numbers in parentheses represent each score’s effects as a percentage relative to the total score variance. Reliability estimates (10) are

reliability estimates when the student sample size within a school is 10

G-Model generalizability theory model, M-Model multilevel model, s school, p students, t subjects

Table 8 Variance components and related reliability estimates of five methods with unbalanced data

Effect Students within schools approach Students within schools and subject areas approach

Method (A) Method (B) Method (C) Method (D) Method (E)

G-Model M-Model G-Model (p:s) 9 t M-Model (t:p:s) G-Model (t:p:s)

s 43.897 (20.1%) 47.967 (21.6%) 42.005 (13.9%) 47.280 (15.5%) 43.904 (14.6%)

p:s 174.214 (79.9%) 174.517 (78.4%) 135.525 (44.9%) 133.101 (43.7%) 132.611 (44.1%)

t:p:s – – – 124.263 (40.8%) 124.451 (41.4%)

t – – 2.521 (0.8%) – –

st – – 5.676 (1.9%) – –

pt:s – – 116.066 (38.5%) – –

Total 218.111 (100.0%) 222.484 (100.0%) 301.792 (100.0%) 304.644 (100.0%) 300.966 (100.0%)

Reliability estimates (10) 0.716 0.733 0.685 0.730 0.716

Notes: The numbers in parentheses represent each score’s effects as a percentage relative to the total score variance. Reliability estimates (10) are

reliability estimates when the student sample size within a school is 10

G-Model generalizability theory model, M-Model multilevel model, s school, p students, t subjects
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that of Method (A), Method (B), and Method (E), while

that of Method (C) was the lowest at 0.721.

The total variance of the observed scores in the ‘students

within schools and subject areas’ approach was greater

than that in the ‘students within schools’ approach. It was

evident that additional consideration of subject area effects

could lead to a considerable increment of the total score

variance, since the subject area variance was not consid-

ered in the ‘students within schools’ approaches, in which

the students’ average scores were used as inputs instead of

the individual test scores for the several subject areas.

It is meaningful to note that the variance component esti-

mates in Method (D) and Method (E), under different esti-

mation procedures, were very similar. Given the fact that

Method (A) and Method (B) also produced the same variance

component estimates, it is reasonable to expect that for bal-

anced data, using either the G-Model or the M-Model with the

same design could lead to the same or very similar variance

component estimates and, consequently, to the same or very

similar reliability estimates of school-level scores.

The variance component estimate for the (t:p:s) effects in

the (t:p:s) designs was the same value as the sum of the t, (st),

and (pt:s) effects in the (p:s) 9 t design. That is, for the bal-

anced data, the variance component for the (t:p:s) effects

could be decomposed into the three variance components for

the t, (st), and (pt:s) effects. In addition, the methods of the

fully nested (p:s) and (t:p:s) designs produced very similar

reliability estimates, although the (p:s) 9 t mixed design

produced lower reliability estimates than the other methods.

Table 8 presents the variance component estimates and

related reliability estimates of the six methods for the

unbalanced data. Even though the actual number of stu-

dents per school varied across schools for the unbalanced

data, the number of students in a school was set to 10 in

order to estimate the reliability of school-level scores. The

number of students in a school was fixed at 10 in order to

yield results comparable to those from the analysis for the

balanced data.

Method (A) and Method (E) produced the same reli-

ability estimate of 0.716, and Method (B) and Method (D)

produced similar estimates. The reliability estimate of

Method (B) was the highest among the presented methods.

Method (A) and Method (B), as well as Method (D) and

Method (E), had the same designs under different models

but produced different variance component estimates and

reliability estimates, owing, as previously indicated, to the

different estimation procedures used in the G-Model and

M-Model for the unbalanced data. As was the case for the

balanced data, the total variance of observed scores was

larger in the ‘students within schools and subject areas’

approach than in the ‘students within schools’ approach.

As was the case for the balanced data, for the unbal-

anced data the variance component estimate for the (t:p:s)

effects in the (t:p:s) design M-Model was decomposed into

three variance components for the t, (st), and (pt:s) effects

in the (p:t) x s design. In addition, the fully nested (p:s) and

(t:p:s) designs produced the same or similar reliability

estimates, and the (p:s) 9 design produced the lowest

reliability estimate.

Discussion

This study was designed to address issues related to the

estimation of the reliability of school-level scores. Two

approaches were conceptualized according to generaliz-

ability theory and multilevel models, a ‘students within

schools’ approach and a ‘students within schools and

subject areas’ approach. Several methods, being combina-

tions of the approaches and measurement models, were

applied to both the balanced and unbalanced data.

In the ‘students within schools’ approach for balanced

data, the G-Model and the M-model produced exactly the

same variance components and reliability estimates. The

linear equations of the score effects for the G- and M-

Models were mathematically the same, and the reliability

estimation procedures in both models seemed comparable.

These results suggest that the different estimation proce-

dures employed by the G-Model and M-Model (EMS in the

G-Model and REML in the M-Model, respectively) made

no difference in estimating the variance components for the

balanced data. Consequently, for the ‘students within

schools’ approach with balanced data, it does not matter to

use either the G-Model or the M-Model in estimating

reliability of school-level scores.

However, for the unbalanced data in the ‘students within

schools’ approach, the M-Model and the G-Model pro-

duced somewhat different variance component and reli-

ability estimates. As Brennan (2001a, b) and Searle et al.

(2006) indicated, using the G-Model while implementing

analogous-ANOVA procedures for unbalanced data could

lead to different estimates from those yielded by the REML

in the M-Model. In turn, different estimation procedures

implemented by the two models can lead to different var-

iance components and reliability estimates for school-level

scores. We found slightly larger variance component esti-

mates with the M-Model (from HLM) than with the G-

Model (from urGENOVA).

There could be several explanations about discrepancy

among variance component estimates from two models.

For example, the HLM uses EM approach where complete

sufficient statistics are estimated in each of the iteration of

estimation. The iteration of estimation procedures might

influence on the variance component estimates. In another

perspective, the estimation procedures of HLM and

urGENOVA are so complicated and the differences among
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123



variance component estimates might come from accumu-

lated rounding errors in the long computation processes. It

is not clear to the authors, however, what causes such

differences among variance component estimates at this

point. This question cannot be answered within the scope

of this study and can be more thoroughly investigated by

additional simulation studies.

The ‘students within schools and subject areas’ approach

led to different reliability estimates of school-level scores in

both the G-Model and the M-Model. Treating ‘subject

areas’ as a nested facet does not seem to have significant

impact on the reliability estimates of school-level scores.

That is, incorporating ‘subject areas’ as a nested facet under

a fully nested design such as (subject areas:stu-

dents:schools) would not have any significant influences on

reliability estimates of school-level scores.

However, treating ‘subject areas’ as a crossed facet

leads to lower reliability estimates due to the consideration

of additional sources of errors. If considering ‘subject

areas’ as an important source of variation of school-level

scores, it would be recommended to involve this facet in

the models of estimating reliability of school-level scores.

The G-Model would be appropriate for this purpose,

because it can incorporate any facets as crossed or nested

factors with great flexibility under fixed, random, and/or

mixed effects models (Brennan 2001a, b; Hox and Maas

2006). For example, the G-Model can easily specify a

[(students:schools) 9 subject areas] design that treats

subject areas as a crossed facet.

If subject areas are crossed with students within schools,

variance components for multilevel models cannot be esti-

mated by any current commercial software that can handle

just fully nested designs. However, there are several solu-

tions to this limitation of multilevel models. Hox and Maas

(2006) explained the method of implementing the lowest

level to estimate the residual variance by using fixed

‘‘dummy’’ levels. Variance components for the two-way and

n-way crossed designs can be also estimated under random

effects models (Kang 1992; Kang et al. 2004; Raudenbush

1993; Rasbash and Goldstein 1994). However, if data sets

with a large number of crossed facets, the current multilevel

software such as HLM 6.0 does not handle this well.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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