
UCLA
UCLA Electronic Theses and Dissertations

Title
Towards Cloud-Scale Debugging

Permalink
https://escholarship.org/uc/item/3783653w

Author
Dogga, Pradeep

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3783653w
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Towards Cloud-Scale Debugging

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Pradeep Dogga

2024

© Copyright by

Pradeep Dogga

2024

ABSTRACT OF THE DISSERTATION

Towards Cloud-Scale Debugging

by

Pradeep Dogga

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Ravi Arun Netravali, Co-Chair

Professor George Varghese, Co-Chair

Cloud computing is an integral part of today’s world: it primarily enables individuals and

enterprises to provision and manage resources such as compute, storage, etc., for their needs

with the click of a button. Modular approach to software development enabled cloud providers

to rapidly evolve and deliver increasing number of services to users rendering clouds mission-

critical. To insure prompt serviceability of this Achilles’ Heel from facing incidents, cloud

providers employ significant human resources. However, with the ever increasing number of

services offered by clouds and growing types of workloads such as the proliferation of Machine

Learning workloads in recent times, it is no longer viable for cloud providers to scale their

human resources at this pace to insure prompt serviceability of their clouds.

In this dissertation, I present my work towards improving the serviceability of clouds by

leveraging insights from my experience with real debugging workflows employed at the three

largest clouds today. I present techniques from Machine Learning and Natural Language

Processing to leverage the vast amount of historical debugging data in clouds to develop tools

that provide assistance to their engineers. I present a ‘Coarsening’ framework that enables

ii

transition towards a centralized debugging plane and discuss practical evaluations of tools

built using this framework.

I present Revelio, a tool that can generate debugging queries for engineers to execute over

system-wide logged data, whose results can likely hint them of the root cause of an incident.

To enable benchmarking many techniques, I also built a distributed systems debugging testbed

that can inject faults into services, interface with human users and collect execution logs across

the system. I present AutoARTS, a tool that can tag a lengthy postmortem report of an

incident in the cloud with all root causes from an extensive taxonomy and can also highlight

key pieces of information from a postmortem for ease of analysis. I present PerfRCA, a

tool that can scale causal discovery to production-scale telemetry to reason performance

degradations. I conclude with my vision for a centralized approach to automatically extract

generalizable debugging assistance to engineers across a cloud.

iii

The dissertation of Pradeep Dogga is approved.

Omid Salehi-Abari

Harry Guoqing Xu

Suman Nath

Ravi Arun Netravali, Committee Co-Chair

George Varghese, Committee Co-Chair

University of California, Los Angeles

2024

iv

To my grandfather, B. Simhachalam

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Thesis: Enabling Cloud-Scale Centralized Debugging via Coarsening 5

1.2 Debugging Lifecycle . 6

1.3 Limitations of Team Level Debugging . 9

1.4 Thesis Contributions . 10

2 Towards Cloud-Scale Debugging via Coarsening 13

2.1 Coarsening . 14

2.1.1 Coarsening Formulation - Incident → Alarms 20

2.1.2 Coarsening Formulation - Alarms → Team 21

2.1.3 Coarsening Formulation - Team → Query 22

2.1.4 Coarsening Formulation - Query → Events 23

2.1.5 Coarsening Formulation - Document → Label(s) 24

2.2 Retrospective Analysis . 25

2.2.1 Quick Fixes . 26

2.2.2 Consistent Root-Cause Labelling . 27

2.3 Diagnosability . 28

2.3.1 Coarse Dependency Graphs . 30

2.3.2 Incident Routing . 30

2.3.3 Root-Cause Analysis . 31

2.3.4 Preliminary Evaluation - Incident Routing 32

2.3.5 Preliminary Evaluation - Root Cause Analysis 32

vi

2.3.6 Coarse Log Summarization using Chains 33

2.3.7 Preliminary Evaluation - Log Summarization 35

2.4 Observability . 36

2.4.1 Monitoring . 36

2.4.2 Data Retention . 36

2.5 Centralized Debugging Plane . 37

2.5.1 Global data lake . 38

2.5.2 Incident data store . 38

2.5.3 AIOps engine . 39

2.5.4 Incremental deployment of CDP . 39

3 NLP-Powered Debugging Assistance . 40

3.1 Auxiliary Data . 40

3.2 NLP Powered System-Wide Debugging Assistant 41

3.2.1 Opportunities for Automation . 43

3.3 Preliminary Experiments . 44

3.3.1 Label Prediction for GitHub Issues 45

3.3.2 Source Code Folder Prediction for GitHub Fixes 46

3.3.3 Debugging Query Generation . 47

3.3.4 Results . 48

3.4 Related Work . 49

3.4.1 Program analysis and synthesis . 50

3.4.2 Program debugging . 50

3.4.3 Big Code . 51

vii

4 Generating Debugging Queries . 52

4.1 Debugging Queries . 53

4.2 Overview - Revelio . 54

4.2.1 Challenges . 54

4.2.2 Solutions . 55

4.3 Revelio’s ML Model . 58

4.3.1 Predicting Probabilities for Query Templates 59

4.3.2 Predicting Values to Fill Query Templates 61

4.3.3 Choosing the Final Queries . 62

4.3.4 Diagrams Illustrating Model Operation/Insights 63

4.4 Study of Production Incident Debugging at Anon1 65

4.4.1 Insights from Debugging Workflows 65

4.4.2 Insights from Production Incidents 66

4.4.3 Literature Survey of Incidents . 66

4.5 Distributed Systems Debugging Testbed . 69

4.5.1 Single-machine Emulation of Distibuted Applications 70

4.5.2 Overview of Applications . 72

4.5.3 Overview of Debugging Tools . 73

4.5.4 Fault Injection Service . 76

4.5.5 Dataset Collection using AWS MTurk 76

4.6 Evaluation of Revelio . 80

4.6.1 Revelio’s Performance on Repeat Faults 80

4.6.2 Revelio’s Performance on New Faults 80

viii

4.6.3 Understanding Revelio’s Performance 81

4.6.4 Developer Study . 85

4.7 Related Work . 87

4.7.1 Debugging Tools for Distributed Systems 87

4.7.2 Leveraging Natural Language Data Sources 87

5 Automated Root-Cause Labelling . 89

5.1 Incident Postmortem Reports . 90

5.2 Overview - Root Cause Labelling . 91

5.2.1 Challenges . 92

5.2.2 Solutions . 94

5.3 Analysis of Production Incidents at Microsoft Azure 95

5.3.1 Manual Analysis of High-Impact Incidents 96

5.3.2 Findings from Empirical Analysis of Incidents 97

5.4 ARTS Root Cause Taxonomy . 102

5.5 AutoARTS’s ML Models . 104

5.5.1 Identifying Root Cause Labels from the ARTS Taxonomy 105

5.5.2 Extracting Root Cause Context from Postmortems 107

5.6 Evaluation of AutoARTS . 109

5.6.1 Methodology . 109

5.6.2 Featurization . 110

5.6.3 AutoARTS’s Performance on Root Cause Labelling 111

5.6.4 AutoARTS’s Performance on Context Extraction 112

5.6.5 User Study . 113

ix

5.7 Related Work . 115

5.7.1 Root-cause analysis of past incidents 115

5.7.2 Text summarization & root-cause classification 115

6 Coarse Causal Reasoning in Telemetry . 117

6.1 Causal Discovery for Root Cause Analysis 117

6.2 Overview - Reasoning Slow Queries in Anon2 118

6.2.1 Challenges . 118

6.3 Limitations of Causal Discovery . 120

6.4 PerfRCA . 121

6.4.1 Feature Computation . 122

6.4.2 Anomaly Extraction . 125

6.4.3 Causal Discovery . 125

6.5 Preliminary Results . 126

6.5.1 Case Studies . 126

7 Conclusion . 128

7.1 Future Work and Open Problems . 129

7.1.1 Evaluation on Production Systems 130

7.1.2 Impact of LLMs on Debugging . 131

References . 132

x

LIST OF FIGURES

1.1 The debugging lifecycle of incidents in production distributed systems. 7

2.1 Learned coarsening function that maps a concrete element (root cause of an

incident) to an abstract element (e.g., root cause label) 16

2.2 Implicit concretization of concrete element through assistance from abstract

element (debugging tool’s output) forming a galois connection 17

2.3 Coarsening in stages to iteratively scale down manual work and assist engineers

in debugging tasks. Dashed arrows indicate hard manual labor that engineers

would need to do without any assistance and solid arrows indicate automated

completion of or assistance for one debugging task, progressing engineers to the

next task. The size of each oval blob indicates the amount of work to be done

and it’s operational scale is indicated below. 18

2.4 CDF of mitigation times of over 2000 incidents from our manual study at Anon

(TTM over 24 hrs depicted as 24 hrs). 26

2.5 Health checks for reachability in a cloud network. Arrows indicate reachability

probes within clusters, fabrics, and across WANs. 30

2.6 Coarse dependency graph for Reddit in our distributed systems testbed. 31

2.7 Overview of our approach to detect anomalous execution during runtime for root

cause analysis. 34

xi

3.1 Overview of how our proposed debugging assistant improves different steps in

a developer’s end-to-end debugging workflow. Developers begin by submitting

system-wide bugs or performance concerns to the NL debugging assistant. The

assistant generates hints (e.g., files to investigate) or actions (e.g., debugging

queries to issue) based on analyzing past bug report data, design documents,

tracing information collected throughout the system, and developer input. The

process is iteratively followed until a bug is resolved. 42

3.2 Examples of label & folder predictions for two repos: hashicorp/terraform and

angular/material2. 49

3.3 Example query predictions for debugging a given issue. 49

4.1 Example of a debugging query in it’s syntax tree representation issued over

Marple’s switch queue depth counters from two switches ‘b1’ and ‘b2’. 53

4.2 Revelio as an implementation of Coarsening through Debugging Queries. . . . 55

4.3 Overview of Revelio’s factorized, 2-phase approach to generating debugging

queries for root cause diagnosis. 56

4.4 Example showing how rank-ordering helps to generalize to faults of the same

type at different locations. After ordering (right), despite the fault location being

different, the queue depth order statistics in testing are correlated with those in

training. In contrast, without ordering (left), the unseen fault location results in

queue depth values that are dissimilar from training data. 57

4.5 Example illustrating the generation of system log vector L; for simplicity, the

example considers only network logs. Values for each feature (across switches) are

first rank ordered, and then the resulting lists are concatenated to form L. . . . 63

xii

4.6 Example inputs for each input variable in Revelio’s model. This example is for

a network (Marple) query. For the query template (T), the entire tree represents

the template, while the parameters to be filled in are shaded in grey. 64

4.7 A slice (2/14 microservices) of our testbed for Sock Shop [Wea17]. Debugging

tools and fault injection are omitted. 69

4.8 The topology of our distributed systems testbed for Reddit [red22]. Each P4 switch

has a congestion traffic sender/receiver to emulate different network conditions,

and the testbed incorporates four recent debugging tools and a fault injection

service. We illustrate the Sock Shop [Wea17] topology in Figure 4.7, and note

that Online Boutique [Goo19] follows the same architectural patterns. 71

4.9 User Interface of our MTurk experiment presented to users for data collection. . 78

4.10 Cumulative distribution (per app) of the rank of the correct query over our test

set of repeat faults. 81

4.11 Cumulative distribution (per app) of the rank of the correct query over our test

set of previously unseen faults. 81

4.12 Comparing the average rank for single-tool and multi-tool versions of Revelio.

Results are for Reddit. 83

4.13 Top-5 query accuracy when training Revelio on random subsets of the data.

Results are for Reddit. 84

4.14 Summary of time saved in debugging each fault in our developer study. Bars

represent average time spent across all developers who correctly identified the

root cause. 86

5.1 Redacted example of an inident postmortem report from a service in Microsoft

Azure. 90

xiii

5.2 Labelling incident postmortem reports documented by several engineers in a cloud

enables owners to extract insights with meaningful analyses. 91

5.3 AutoARTS as an implementation of Coarsening through root cause labels from

ARTS taxonomy. 92

5.4 Overview of our Context Extraction and Hierarchical Root-cause Classification

using Post-Incident reports. 95

5.5 Distribution of incidents across number of distinct contributing factors (shown

until 10 factors). 98

5.6 Average number of incidents successfully tagged until a new root cause tag is

introduced across quarters. 99

5.7 ARTS taxonomy visualized with partially expanded root cause categories. Left

end of an edge indicates the parent root cause category and the right end indicates

finer subcategory within the parent. 103

5.8 Context extraction from a redacted PIR. Green sentences are extracted by both

our model and human expert, red are extracted by model only and blue are

extracted by human only. 108

6.1 Overview of PerfRCA as dynamic causal discovery over anomalous features from a

large set of telemetry of slow queries. 122

6.2 Output of PerfRCA for a WLM misclassification. 127

6.3 Output of PerfRCA for a overload in system due to high number of prefetches from S3.127

xiv

LIST OF TABLES

2.1 Top-5 contributing factors across 450+ cloud services at Microsoft Azure and the

corresponding quick fixes. 25

2.2 Comparing SDN and CDP architectures . 38

3.1 Results for label and folder prediction, as well as template-based query generation

tasks. 48

4.1 Variables in Revelio’s ML model. Figure 4.6 lists example input values for each. 58

4.2 Summary of closed debugging tickets at Anon1 over a 4-month period. Exam-

ples have been partially Anon1ymized and summarize the root causes listed in

representative tickets. Debugging times are in minutes. 67

4.3 Overview of faults injected into our distributed systems testbed. Numbers listed

are for Sock Shop[Wea17]. 77

4.4 Summary of debugging queries and user reports collected through AWS MTurk

experiment. 77

4.5 Metrics in system logs. Marple, Jaeger, and cAdvisor metrics are recorded per-

switch, per-function, and per-container; tcpdump is omitted for space. 79

4.6 Examples of text in user reports collected from Mechanical Turk participants. . 79

4.7 Impact of different input sources on Revelio’s performance. Results list avg

rank (% in top-5) and are for Reddit. 82

4.8 Comparison with simpler ML approaches. Results list avg rank (% in top-5) for

Reddit. 82

xv

4.9 Revelio’s performance when metrics from system logs are selectively removed.

Removed Marple, Jaeger, and cAdvisor features are shown in blue, red, and grey,

respectively. Results list avg rank (% in top-5) and are for Reddit. 83

5.1 High-level root cause categories from ARTS taxonomy with their descriptions,

frequency of occurrence in our analysis and mean Time-To-Mitigate (TTM) for

incidents caused by their sub-categories. 97

5.2 Distribution of top 10 most frequent contributing factors in our analysis from the

ARTS taxonomy. 101

5.3 Study on the utility of different PIR sections in top-level root cause classification

using Random Forests. 110

5.4 Performance of HiAGM compared to using flattened root cause taxonomy (Hi-

AGM_Flat) and a finetuned-BERT based multilabel classifier (BERT_MLC). . 111

5.5 Performance of Pegasus and T5 models. (P) indicates Pre-trained versions and

(F) indicates fine-tuned versions. We also present performance of unsupervised

clustering based approach for extractive summarization using BERT. 112

5.6 Quantitative user feedback from an expert over the effectiveness of AutoARTS

across context generation and root cause classification tasks over a randomly

chosen set of 10 incidents. 113

6.1 Time-To-Finish for Causal Discovery on a controlled synthetic dataset using the

PC algorithm on a 32 core machine with a 24hr timeout. 121

xvi

ACKNOWLEDGMENTS

As a Ph.D. student, I was very fortunate to work with two outstanding advisors, Prof. George

Varghese and Prof. Ravi Netravali. I joined UCLA solely because of an offer from George to

be my advisor and I only met Ravi, who had just started his tenure at UCLA, at a water

filling station near our offices for the first time. Based on our mutual research interests, Ravi

offered to co-advise me with George, who graciously agreed to it. Looking back, this decision

was super critical for shaping my perspectives as both George and Ravi had their own unique

shares in them.

No words can do justice to express my gratitude towards George. George is a master of

conducting inter-disciplinary research with unique insights that enriches both disciplines, a

rare feat I have seen researchers achieve. He taught me to see the big picture while handling

the minute details and greatly helped me shape ideas. George is a true ‘enabler’ by all means

and he showed me the power of deep meaningful collaborations that have greatly benefited

me. Through his lectures at UCLA, George showed me the positive impact a teacher can have

on students and as a result contributed to my passion towards teaching. He taught me to be

brave in questioning the obvious, to be patient in meticulous work and most importantly, to

be empathetic. He encouraged me to work with cloud providers to gain practical experience

at a time when I didn’t know it’s value and it significantly benefited my thesis. Despite

circumstances, George truly stood by me in times of need and for everything he has done for

my growth, I am forever indebted to him.

Ravi and I spent countless hours together at UCLA working on research papers. Ravi

showed me the impact of time management by being a true example (not sure if can ever

match it), he was in his office before anyone everyday. He was always available to discuss

anything I wanted to with the same enthusiasm. Ravi is master of asking the right questions

with an impeccable critical analysis and suggesting the necessary details which specially

helped me with my naive optimism and with concretizing system-building ideas. He taught me

xvii

all the work it takes to deliver a system which has shaped all of my work. Most importantly,

Ravi taught me how to present my work to an audience with great patience and solely shaped

my perspective towards presentations and communication in general. I am immensely grateful

to Ravi for always being there and everything he contributed for my growth.

I am deeply grateful for my thesis committee members Harry Xu and Omid Abari for

their feedback and support. This thesis is a result of joint work with many collaborators:

George Varghese, Ravi Netravali, Suman Nath, Anirudh Sivaraman, Karthik Narasimhan,

Chetan Bansal, Xuchao Zhang, Shiv Saini, Jens Palsberg, Subrata Mitra, Zhengchun Liu,

Ayush Chauhan, Mayur Patel, Nathaniel Flath. Suman was my manager at Microsoft during

my internship. Despite his workload, Suman quickly understood my thesis focus and always

made sure the work I do is both impactful and beneficial for my Ph.D. thesis study. Suman

taught me a great deal in understanding the practical challenges faced in industry which was

priceless. Anirudh helped a great deal in shaping my initial vision for my thesis work and

taught me how to conduct experiments and evaluate the practicality of approaches to be

deployed in the real world. He also gave me much needed guidance on navigating through

career decisions and supported me when I needed it. Karthik offered great support in learning

advanced techniques in the Machine Learning, Natural Language Processing domains and

was a very important part in shaping my vision for debugging powered by Machine Learning.

Shiv was my first mentor who taught me how to search for and read research papers,

how to brainstorm systematically, how to present my work and conduct experiments which

fundamentally helped me develop a passion for research. I am greatly indebted to Shiv

for being my first mentor. Subrata was instrumental in forming my perspectives towards

impactful research work in systems through his mentorship prior to my graduate study.

My UCLA colleagues past and present, Siva, Arjun, Aishwarya, Murali, Akshay, Zeina,

Shuyang, Ana, Micky, Proova, Neil, Shagha, Lana, Tianyi, Muhammad, Navjot, John Bender,

Christian, Arthi, John Thorpe, Jon, Yifan, Jean, Angelica, Alan gave me good reason to

come to work, to bounce off ideas, learn new concepts from different disciplines, get feedback

xviii

on papers and talks, chat about things going on in our lives, organize potlucks, get ramen

from Killer Noodles and play an afternoon game of foosball. Siva has been a great friend and

mentor since my days at IIT, his guidance was very helpful for navigating through graduate

school and beyond. Arjun has been a wonderful roommate and I am very grateful for his

advice, movie and game nights during the pandemic. Aishwarya and Murali were gracious

to offer me housing during the pandemic when moving was difficult. Siva, Arjun and Aish

cooked me many yummy meals over the years which I will cherish. Akshay was always there

for game nights every week to get through school. John organized many squash game nights

at UCLA which were fun. Arthi got all our group together by hosting friendsgiving and

potlucks. Ana, Poorva, Micky, Zeina, Shuyang and Akshay provided me with many fun

breaks. Poorva specially, helped me with my moves between apartments. Trips with my

friends Sohan and Ritam were much needed and are so memorable.

The students in my discussion section of CS 118 in Fall of 2020 were incredible and helped

me learn a lot about teaching that I will forever cherish. Joseph Brown was a phenomenal

student affairs officer who gave me every possible way out of deadlines, penalties and making

sure I get things done. Edna Todd was a great administrative assistant and was super patient

in handling every purchase, reimbursement and helped me greatly in following guidelines.

Curtis offered me a great deal of help with finding housing by going above and beyond his

duty.

I am grateful for my life in LA during graduate school. I never thought about the impact of

locale when I joined UCLA. Driving through the winding Pacific Coast Highway, mesmerized

by the magnificent giant sequoia groves, getting lost in the Sierra Nevadas, star gazing in

the deserts and rides on my motorcycle to the Hindu temple in the canyons of Malibu for

prayers, all left a profound appreciation in me for life, nature and freedom.

My parents Jayalakshmi and Lakshun Naidu, are my constant support. They check in on

me everyday and cheered on for my highs and put up with my lows. I am beyond grateful

for their care for my well-being without which I would be hopeless. My brother Sandeep is

xix

pivotal in managing things for me that I would not be able to do so otherwise. My cousins

Chaitu, Vinnu, Ramya and Sujith kept me going with much needed weekly group calls. My

grandmother who is so curious about my life kept me appreciative of the things I would be

doing and her child-like innocence is so refreshing and much needed. Swetha, the love of my

life, was the greatest finding during graduate school and she has been through everything

along with me. I am grateful for her for proofreading my paper drafts, organizing food for my

thesis defense, giving me useful feedback for my pitches, helping me take care of my health

during submission deadlines, believing in me for some reason and giving me strength. I am

also grateful for her family for accepting me as one of their own and giving me a sense of

purpose and belonging far away from my family.

My grandfather, B. Simhachalam, is the sole reason I strive to grow every day. He taught

me to brave, to stand up for the things I believe in and to be righteous. The examples

he set are inspiring and noble, be it his commitment to delivering quality education to

underprivileged students as a teacher, be it his relentless discipline, or the many things he

has done for me and our family. His persistence for my growth and well-being is infectious

and unbelievable. Hearing his life experiences gave me a rooted perspective that guides me

in various aspects of life. For being my inspiration, for directly and indirectly eliminating

obstacles and paving the way forward for me, I dedicate this thesis to him.

xx

VITA

2014 Inspire Fellowship, from Govt of India.

2016 Best Intern, Smartron, Hyderabad, India.

2017 Best Overall Project Award, Adobe Research, Bengaluru, India.

2018 B. Tech. in Computer Science and Engineering, IIT Kharagpur.

2018 - 2019 Graduate Division Fellowship, UCLA.

2019 Member of the System Demonstrations Program Committee, NAACL-HLT.

2020 Teaching Assistant (“Computer Network Fundamentals” course), Computer

Science Department, UCLA.

2021 Research Intern, Google, California.

2021 Student Researcher, Google, California.

2022 M. S. in Computer Science, UCLA.

2022 Research Intern, Microsoft Research, Redmond.

2023 Applied Scientist Intern, Amazon Web Services (AWS), California.

2024 Teaching Assistant (“Computer Network Fundamentals” course), Computer

Science Department, UCLA.

2024 Teaching Assistant (“Software Construction” course), Computer Science De-

partment, UCLA.

xxi

PUBLICATIONS

Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman and Ravi Netravali. “A System-

Wide Debugging Assistant Powered by Natural Language Processing.” In Proceedings of the

10th ACM Symposium on Cloud Computing (SoCC), pp. 171-177. 2019.

Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman, Shiv Saini, George Varghese,

and Ravi Netravali. “Revelio: ML-Generated Debugging Queries for Finding Root Causes

in Distributed Systems.” In Proceedings of the 4th Machine Learning and Systems Conference

(MLSys), pp. 601-622. 2022.

Pradeep Dogga, Chetan Bansal, Richard Costleigh, Gopinath Jayagopal, Suman Nath

and Xuchao Zhang. “AutoARTS: Taxonomy, Insights and Tools for Root Cause Labelling

of Incidents in Microsoft Azure.” In Proceedings of the 30th USENIX Annual Technical

Conference (USENIX ATC), pp. 359-372. 2023.

xxii

CHAPTER 1

Introduction

Dubbed as the modern day equivalent of Robin Hood [Far12], cloud computing has become

an integral part our lives by democratizing computing for users. With cloud computing,

users can provision resources (e.g., servers, storage, network) per their demand at the

click of a button. This eliminates the need to purchase resources, configure, maintain and

dispose off these resources. This empowers low-income individuals entering into global

markets with the necessary infrastructure, thereby playing an important role in bridging

socio-economic inequalities [CK12]. It also offers several other benefits such as significantly

reducing energy consumption, waste and greenhouse gas emissions [Wal21] as compared

to users using physical computers, and has helped accelerate vital vaccine research and

vaccination management [Dcr22, Bri21, Lan21] particularly during the Covid-19 pandemic,

among other grand societal challenges.

Despite being the enabler of myriad applications, clouds are also the Achilles’ Heel of

many services that rely on clouds delivering mission-critical performance, high availability and

reliability. This is because clouds suffer from several major incidents [Sec22, Goo23, LLM19b,

Mac22] that cause gaps in their availability and performance. Today cloud providers rely

on human resources to insure prompt serviceability of their services. Unfortunately, this

means that cloud providers have to continue scaling human resources to keep up with the

pace of increasing and every changing workloads, like the proliferation of Machine Learning

workloads in the recent times. It is no longer viable for cloud providers to rely on human

resources to insure clouds deliver mission-critical performance, availability and reliability.

1

In this thesis, I posit that high impact incidents still plague clouds today because

engineers lack a holistic understanding of all the components that comprise a large system,

which is a requirement for successfully debugging incidents. Engineers today use their

hard-won intuitions to debug production incidents manually: this is error-prone and time-

consuming [DNS22, LLM19c, GYM20]. Curiously, this is due to the classic modular approach

to developing services which enables cloud providers to rapidly and continuously offer new

product features. Such modular approaches allow thousands of engineers to work concurrently

on pieces of the system and speeds development; unfortunately, at the same time, as I will

argue later, this modular approach causes engineers to develop tunnel-vision.

But can classic reliability techniques – testing, formal verification, tracing, and learning

from past incidents – either avoid incidents in clouds or help debug them easily? I argue that

they cannot be used conventionally.

Testing: The competitive rat-race between cloud providers (e.g., Microsoft Azure, Google

Cloud) forces engineers to rapidly evolve software features; this creates a combinatorial

explosion in the number of scenarios to test before production deployment. Foolproof testing

of software services is impossible due to manifestation of multiple unique contributing factors

that can result in an incident. For example, a VM provisioning service can read a corrupt

configuration file, propagate incorrect data across other components and accidentally destroy

provisioned VMs, resulting in an incident.

Formal Verification: On the other hand, formal verification methods do not scale either

to entire clouds. The increasing diversity in the services offered by clouds such as storage, ML

pipelines, analytics, etc., makes formally specifying software behavior practically impossible.

The exponentially large domain spaces of inputs, effectively renders formal verification

techniques inapplicable to prevent incidents. Each service comprises hundreds of components

that interact with each other through loosely-coupled APIs, developed by hundreds of

engineers with varying degrees of expertise.

2

Distributed Tracing and Logging: As services evolve incrementally, different generations of

software interact with each other, some of which might not be actively maintained (legacy

code) by the original developers, instrumented with different tracing frameworks or completely

lacking tracing instrumentation. Re-designing these components to employ a uniform tracing

framework is expensive, time-consuming and hence distributed tracing simply doesn’t work

at cloud scale (e.g., missing correlation Global UIDs in legacy code), resulting in error-prone

debugging efforts from engineers during incidents. Unfortunately, there is no effective policy on

what information needs to be logged, where in the software to log from and when they should

be logged/used. Hence, engineers might log information that is not relevant for debugging

which causes performance overheads; worse, they may miss logging vital information that

delays debugging incidents.

Learning from the Past: To learn from past debugging experiences, engineers commonly

document debugging steps taken to resolve an incident in lengthy natural language postmortem

reports. While these are treasure troves of rich insights, they are often not exploited due

to time required to manually digest these insights; thus, engineers often resort to hard-won

intuitions which are undocumented. When such failure “postmortem” reports are documented,

analyzing these reports can inform robust system design principles that can reduce the impact

of incidents. Unfortunately, no existing tools leverage postmortems and manually analyzing

them doesn’t scale at cloud-level. It is important to note that postmortems are documented

by thousands of engineers across the cloud, all with varying degrees of expertise, approach to

debugging and usage of language. Further, many incidents can go undocumented due to lack

of strict policies creating a loss of rich debugging insights to improve cloud serviceability.

Manual Cloud Debugging Today: To overcome these issues, engineers operationalize

their undocumented hard-won intuitions in ad hoc ways by organizing conference calls with

engineers across different teams to investigate different logs during debugging an incident

together, manually defining rules on metrics to alert them of impending incidents, making

mental notes of log distributions to attribute to a specific root-cause, etc. The manual and

3

ad hoc nature of this approach is not viable to improve the serviceability of clouds as their

complexity only increases with time, as engineers move across different services with their

experience and restarting this painful process elsewhere.

Research in Debugging: Over the past several years, major cloud providers, startups

and researchers have investigated a plethora of techniques to improve cloud reliability

through formal verification methods [LNF12, PKL09, ADS91], tracing frameworks [MRF15,

SBB10, FLM20, FPK07, Sym14], testing strategies [CDE08, MSP18] and post-hoc log anal-

yses [New22, TL18, Twi15, SBN21]. These techniques are commonly inspired by taking a

distributed approach, which enables their functionality at small-scale but defeats them at

cloud-scale due to lack of effective coordination, making them inefficient and inaccurate.

While distribution can scale, centralization of debugging efforts – as I will argue for in this

thesis – does not necessarily mean merely replicating the debugging process at small-scale.

Rather, I argue for a shift in perspective which can also enable building effective tools.

Further, the classic distributed approach found in the literature also results in building tools

limited to specific types of bugs (e.g., performance, configurations, etc.). Unfortunately,

this causes significant overhead in deploying hundreds of specific tools to assist engineers

in debugging for rare wins (as we will see below from our data), making them impractical.

Finally, the distributed approach also results in newly emerging services not leveraging the

collective debugging wisdom accumulated by past services and different teams, resulting in

repeated incidents with similar causes and redundant effort.

4

1.1 Thesis: Enabling Cloud-Scale Centralized Debugging via Coars-

ening

To scale, debugging tools and practices today mimic the modular approach used in developing

services operating at team-level (where individual teams are responsible for debugging

incidents). Doing so results in time-consuming manual, inaccurate and inefficient debugging

of production incidents in clouds due to the complexity of interactions across teams and

limits reliability improvements due to learning across teams that are inherently diverse.

My central thesis is that these problems will not disappear until we transition from team

level debugging to cloud scale debugging. Further, this can be done in scalable fashion even

for very large clouds without dismantling the successful modular structure used for team

development by abstraction, changing perspective in terms of problems to solve, and defining

appropriate interfaces and structures to a centralized debugging plane (CDP in what follows).

I propose the following desirable properties for solutions that contribute to cloud-scale

debugging, which I call CASH:

Centralized: Operate across the system to avoid redundant efforts and store the results in

a Centralized Data Plane

Abstract: Pass abstract team level information across team level APIs to the CDP to help

scaling and to allow better generalization and uniform learning

Scalable: Operate across different services, incidents and data types at cloud sale

Hierarchical: Interface at varying granularity for ease of use from cloud level to team level

and possibly at finer granularity.

I propose Coarsening as a theoretical framework to achieve CASH properties in solutions.

Inspired by the theory of Abstract Interpretation, I define Coarsening as an abstraction of

concrete poset of raw logs that capture various information related to debugging tasks (root

5

causes, repairs, etc.) to an element in an abstract poset of data structures. The resulting

assistance to the engineer towards the debugging task serves as the concretization function

forming a galois connection measured by empirical and user studies. This is to accommodate

for the lack of well-defined semantics of logs and to improve learnability of the abstraction

function to develop tools.

The rest of this chapter is organized as follows. In § 1.2, I provide more context by

describing the debugging life cycle in clouds today. Next, in § 1.3, I present the limitations of

team-level distributed approaches to different stages in the debugging lifecycle. This sets the

stage to summarize my thesis contributions in § 1.4.

1.2 Debugging Lifecycle

Delivering high availability has become a predominant concern of nearly all global cloud

services. As a result, global cloud services today routinely target upwards of “five nines” (or

99.999%) availability. For context, this translates to tolerable downtimes of only 6 minutes per

year. Figure 1.1 presents the different tasks across which debugging an incident is distributed

to meet these targets.

Incident Detection: Meeting these stringent availability targets requires accurately

and quickly detecting incidents. To do this, engineers today deploy a slew of commercially

available monitoring tools – e.g., Cadvisor [Goo21], DataDog [Dat22b] – to log various metrics

that characterize system operation such as resource utilization (e.g., CPU, network, memory)

and application-level performance (e.g., response times, number of dropped requests). These

logs are then continuously analyzed in different ways to flag potential anomalies during

system operation [Twi15, TL18, New22, AWS23]. The corresponding alerts trigger a human

operator to further investigate the raised alert and captured logs to determine if it pertains to

an actual incident. These alerts are then triaged to compose an incident report with observed

symptoms, impact severity, etc. In the worst case scenario, an incident can go undetected by

6

Figure 1.1: The debugging lifecycle of incidents in production distributed systems.

alerts and will be reported by end-users (customers) to trigger a human operator to initiate

the debugging process.

Incident Routing: After an incident is detected, due to the complex interactions

between service components, the underlying root-cause of the incident might not lie in the

component managed by an operator. This requires them to manually analyze the captured

7

logs, determine that their component is behaving as expected, guess the plausible root-

cause, possibly document the evidence in the incident report (to avoid finger-pointing) and

route the incident to an appropriate operator for further investigation. In some instances,

representatives from several components investigate logs simultaneously on a conference call,

effectively rendering the incident routed to all of them.

Root-Cause Analysis: When an incident report reaches an operator, they investigate

the captured logs to diagnose the root-cause of the incident. They often rely on execution

traces to reason event triggers across different components and the corresponding outcomes.

Because of the complexity of interactions across components within a service, they first

hypothesize a root-cause from the observed symptoms, as there can be many such hypotheses.

To evaluate their hypothesis, they execute queries (which I call debugging queries) over the

datastores(s) collecting these logs. When their observation aligns this hypothesis, root-cause

analysis is concluded and if their observation does not align with the hypothesis, they repeat

this process with additional information they gathered from the debugging query and repeat

the process until a root-cause hypothesis is established with evidence. The incident report is

then tagged with this root-cause.

Mitigation: Engineers often attempt quick fixes to mitigate the incident symptoms

while root-cause analysis can still be in progress. For example, deleting temporary files in

a machine to free up disk space and restarting a crashed serviced component. While the

root-cause of the incident could be one of many reasons, this action lets the service function

normally while engineers continue to investigate logs to diagnose the root-cause. Engineers

also devise scripts that can check for certain symptoms and automatically deploy a mitigative

quick fix using their domain-expertise.

Resolution: A permanent fix that addresses the underlying root-cause of an incident

(after conclusion of root-cause analysis) is then deployed to prevent recurring incidents with

the same root-cause. This can take anywhere from days to weeks depending on the complexity

8

of the fix. For example, code can be changed to prevent a race condition and tested against

to deploy but a flaw in the design of components will require major changes.

Retrospective Analysis: After an incident is resolved, engineers document the debug-

ging process in a detailed postmortem report for management to review debugging practices

and for peers to learn from their debugging experience. These reports are treasure troves of

rich debugging insights that can be leveraged to inform resilient system design [GMK16] and

impact all the other stages of the debugging lifecycle.

1.3 Limitations of Team Level Debugging

We have witnessed a flurry of recent advances (both tooling and methodology) for each

of these tasks. Several core challenges still persist with the existing practice of team-

level debugging despite a flurry of recent advances (both tooling and methodology) [GYM20,

BRA20, LCL21, SBB10, MRF15, MBK20, DNS22, LLM19a, AWS23, GMK16, JLC20, SH22,

DNS19a, ZYJ21a, Tor22, CKL20].

First, a team-level view can hurt accuracy of incident detection, routing, and root-cause

analysis. It is common for an incident to be caused by multiple factors spread across (and

its symptoms visible to) multiple services/teams. An individual team may not identify the

incident (e.g., when the symptoms are insignificant within a team but significant globally),

may assign it to a wrong person who spends significant resources before passing it to another

team, and may fail to identify all factors across teams that contribute to the incident.

Team-level debugging can also be inefficient: for example, in the absence of distributed

tracing across teams or automated correlation of cross-team telemetry, teams often communi-

cate in ad hoc and time consuming fashion. Engineers often use diverse data sources (e.g.,

bug reports, source code, comments, documentation, and execution traces) to make sense of

system-wide semantics, bridging together outputs and features from existing debugging tools

for root-cause analysis, which is not addressed by existing research.

9

Finally, team-level debugging can limit reliability improvements because learning from

retrospective analysis cannot be shared across teams. Postmortems are labelled today with a

single root-cause based on an ad hoc taxonomy of root-cause tags. However, this manual

process is error-prone and a single root-cause is inadequate to capture all contributing factors

behind an incident, and ad hoc taxonomies fail to capture the diverse categories of root-causes,

wasting rich treasure troves of debugging insights.

1.4 Thesis Contributions

Figure 1.1 highlights my completed studies next to different stages in debugging lifecycle and

I present an overview of them below.

Chapter 2⟩ Towards Cloud-Scale Debugging via Coarsening

In this joint work with Suman Nath from Microsoft Research and professors

Ravi Netravali and George Varghese, we present that most debugging research and

practice focuses on specific hard problems, shifting focus to debugging systematically

at cloud-scale and across the entire life cycle suggests new research problems and a

potential architecture. We structure our discussion around three axes: observability,

diagnosability, and retrospective analysis. These axes suggest new problems which we

explore: a) Automatically generating quick fixes (e.g., mitigation) based on failure cues;

b) Consistently labelling failures across teams for retrospective analysis, c) Scalably

maintaining coarse dependency graphs among components; d) Scalably maintaining

telemetry and failure data for long periods. We suggest initial approaches to these

questions, provide early results highlighting the potential benefits of this vision, and

outline a future agenda to realize it.

Chapter 3⟩ A System-Wide Debugging Assistant Powered by Natural Language Process-

ing [DNS19b]

In this joint work with professors Karthik Narasimhan, Anirudh Sivaraman and Ravi

10

Netravali, we present using statistical natural language processing (NLP) techniques

to help automatically analyze often ignored diverse data sources (e.g., bug reports,

source code, comments, documentation, and execution traces) that engineers collectively

use to make sense of system-wide semantics, bridging together outputs and features

from existing debugging tools to improve their debugging experience. We show this

by automatically identifying the location of root-cause in a code repository using issue

reports from popular large open-source code respositories on Github. We further identify

the many systems and learning challenges that must be overcome to realize this vision.

Chapter 4⟩ Revelio: ML-Generated Debugging Queries for Finding Root Causes in

Distributed Systems [DNS22]

In this joint work with Shiv Saini from Adobe Research and professors Karthik

Narasimhan, Anirudh Sivaraman, George Varghese and Ravi Netravali, we present

Revelio, a debugging assistant which takes user reports and system logs together as

input, and outputs debugging queries that developers can use to find a bug’s root cause.

It exploits observations from production systems to factorize query generation into

two computationally and statistically simpler learning tasks and exploits NLP and ML

models to uniformly represent diverse types of data. We built a testbed with multiple

distributed applications and debugging tools. By injecting faults and training on logs

and reports from 800 Mechanical Turkers, we show that Revelio generates the most

helpful query in it’s top-3 outputs 96% of the time and we conducted a developer study

which confirmed the utility of Revelio.

Chapter 5⟩ AutoARTS: Insights and Tools for Rootcausing Incidents in Microsoft

Azure [DBJ23]

In this joint work with Chetan Bansal, Gopinath Jayagopal, Richie Costleigh, Suman

Nath and Xuchao Zhang, we present that the existing manual root-cause labelling process

in clouds is error-prone and a single root-cause is inadequate to capture all contributing

factors behind an incident, and ad-hoc taxonomies fail to capture the diverse categories

11

of rootcauses. To address this, we present a three-pronged approach. First, we conduct

the largest and most comprehensive study of production incident postmortem reports to

understand all contributing factors behind incidents. Second, based on the empirical

study, we propose a novel hierarchical and comprehensive taxonomy of contributing

factors. Lastly, we develop an automated tool that can assist humans in the labelling

process. To evaluate the tool, we present empirical evaluation as well as a user study.

Chapter 6⟩ Scalable Causal Discovery for Root Cause Analysis of Performance Degra-

dation in Distibuted Systems

In this joint work with Vikramank Singh, Zhengchun Liu, Murali Narayanaswamy

and Tim Kraska, we present that performance degradation over request response times

are challenging and time-consuming for engineers to reason. Engineers’ domain exper-

tise over large-scale services is narrow due to modularity and existing causal discovery

techniques cannot scale to production-scale telemetry due to computational complexity

and to the large and dynamic execution state of distributed systems due to missing

confounders. To address this, we present domain-agnostic featurization technique that

enables leveraging wide range of telemetry. We then use scalable anomaly detection over

the telemetry as a proxy to the execution states of the distributed system to enable causal

discovery across the telemetry to assist engineers in root cause analysis. To evaluate the

tool, we present a user study and an empirical evaluation.

12

CHAPTER 2

Towards Cloud-Scale Debugging via Coarsening

This chapter provides an overview of a joint work with Suman Nath from Microsoft Research

and professors Ravi Netravali and George Varghese. While most debugging research focuses

on specific hard problems, shifting focus to debugging systematically at cloud-scale and across

the entire life cycle suggests new research problems and a potential architecture.

For scalability, debugging effort is usually distributed among loosely-coupled service

teams [CC20]: an outage in a service is debugged by the corresponding team primarily with

the help of its own domain knowledge, telemetry, and logs. Only if this is found inadequate, the

team may seek help from other teams, often in ad hoc ways [GYM20]. Based on our experience

at several large cloud platforms, we find this team-level debugging sub-optimal, often resulting

in delayed, insufficient, or even incorrect mitigation despite a flurry of recent advances for

different tasks in the debugging lifecycle [GYM20, BRA20, LCL21, SBB10, MRF15, MBK20,

DNS22, LLM19a, AWS23, GMK16, JLC20, SH22, DNS19a, ZYJ21a, Tor22, CKL20].

We argue that cloud-scale debugging — where debugging is done using centralized domain

knowledge and selected logs/telemetry from all service teams — can address many of these

limitations. Cloud-scale optimal debugging decisions are also team-level optimal. For example,

accurate cloud-scale incident routing means minimal involvement in other team incidents,

and shared learning allows teams to prioritize solutions to quickly mitigate incidents. While

the scale of clouds prompted team-level debugging, we argue that our vision for cloud-scale

debugging is indeed enabled by it.

13

We envision a centralized debugging plane (CDP) (details in § 2.5 with a large central

store of catalogued key information that allows teams to learn where, when and how to

instrument and monitor information to reduce alert false positives, coarse dependency graphs

that capture global dependencies to automate rapid incident routing to the right team,

automated learning of quick mitigation suggestions and key failure patterns from the many

incidents across teams to make process and investment changes that increase overall cloud

reliability. To provide a theoretical framework towards building components of CDP, we

propose Coarsening, explained in detail in § 2.1.

We present the unique advantages and challenges (beyond scale) that cloud-scale debugging

introduces. In particular, we focus on three related debugging tasks: retrospective analysis

of past incidents to identify and prevent common failure patterns to improve long term

reliability, diagnosability of an incident to find its root causes, and observability of deployed

systems to help diagnosis and retrospective analysis. While the tasks are not exhaustive, we

hope that they motivate our key thesis and inspire future work on effectively debugging large

cloud systems.

2.1 Coarsening

The theory of Abstract Interpretation [Cou05] is used to make a sound approximation of

the semantics of a computer program. The elements in a concrete poset (e.g., inputs to a

program) are mapped to elements in an abstract poset (e.g., sign of an arithmetic expression)

such that computations over the abstract poset are computationally simpler. The resulting

abstract computation can then be concretized forming a galois connection, which loses some

information (e.g., output of arithmetic expression) but preserves the property (e.g., potential

sign of the output of arithmetic expression).

Abstraction function and concretization function should be well-defined to form a galois

connection. This is achieved by exhaustive enumeration of semantics (e.g., addition of

14

two positive values results in a positive value). Unfortunately, data logged from service

components is largely heterogeneous and has little to no semantics due to the complexity of

services. Inspired by Abstraction Interpretation and humbled by the nuances of incidents in

production systems, I define Coarsening to be composed of:

• Two partially-ordered sets:

– C (concrete): A poset of real incidents from across the clouds stored across various

raw logs. Note that depending on the use case an incident can be a postmortem

report, it’s logs, combination of different subsets of data, etc.

– A (abstract): A poset of data structures that are relevant for a debugging task

and have well-defined syntax and semantics. For example, debugging queries are

relevant for root cause analysis and have well-defined syntax and semantics.

• A learned (ML-based) coarsening function α that maps C → A as shown in Figure 2.1.

The ground-truth for this mapping is ideally recorded by experts in historical debugging

data (e.g., the severity level of an incident). The goodness of α is evaluated through

empirical studies using metrics such as precision, recall, F1-scores, etc., over different

cuts of available incident data.

• The debugging assistance γ provided by the abstract data structure to an engineer to

perform the debugging task, as the implicit concretization function γ that maps A →

C. The goodness of γ is estimated through user studies.

• A galois connection between the learned Coarsening function α and the debugging

assistance offered γ:

– ∀a ∈ A, c ∈ C : α(c) ≤ a ⇐⇒ c ⊆ γ(a)

– ∀a ∈ A : α(γ(a)) ≤ a

– where ⊆,≤ are ordering of posets C, A respectively.

15

Figure 2.1: Learned coarsening function that maps a concrete element (root cause of an incident) to an

abstract element (e.g., root cause label)

– This galois connection indicates that an engineer can arrive at a ‘coarser’ completion

of the debugging task, ideally completing the task with little to no extra work.

The following characteristics of Coarsening, make it amenable for transitioning towards

cloud-scale centralized debugging:

• Enables centralized storage of incident debugging data through compact abstractions

and sequentially scaling down on relevant logs over space/time at each stage of debugging.

(e.g., a debugging query localizes spatially over a subset of log, a repair set localizes on

a component of service/infrastructure).

• Accommodates for the ill-defined semantics of root causes of incidents with task-specific

abstract representations (e.g., debugging queries, labels, repair sets, causal graphs) that

have well-defined semantics that can be consumed through APIs.

16

Figure 2.2: Implicit concretization of concrete element through assistance from abstract element

(debugging tool’s output) forming a galois connection

• Improves learnability of ML-based tools by increasing the density of abstract elements,

i.e., ML tools can better learn the semantics of a coarser abstract element through

increased number of training samples from concrete elements.

Figure 2.3 shows Coarsening in iterations across different stages of the debugging lifecycle

to assist engineers. The size of the oval blobs indicate the amount of work involved to resolve

an incident and extract insights from it. The dashed arrows indicate manual labor engineers

have to put in from the starting point (the task at the bottom of an oval blob) to resolution.

The solid arrows indicate automated completion of (or) assistance for one debugging task,

enabling engineers to progress to the next task. Each oval blob also is annotated by it’s

operational scale, for example, the left-most blob (the biggest) indicates that the operational

scale is the entire cloud, as there is no available information about whether or not there is

an incident and it’s symptoms. At cloud-scale, the desired end outcome of an incident are

insights to improve the reliability of cloud services against future incidents. Unfortunately,

17

Figure 2.3: Coarsening in stages to iteratively scale down manual work and assist engineers in debugging

tasks. Dashed arrows indicate hard manual labor that engineers would need to do without any assistance

and solid arrows indicate automated completion of or assistance for one debugging task, progressing

engineers to the next task. The size of each oval blob indicates the amount of work to be done and it’s

operational scale is indicated below.

today engineers have to manually learn insights from incidents by painstakingly working

through all the stages of the debugging lifecycle.

Our proposal is that this enables a central cloud-scale authority to conduct debugging

through a relatively much smaller storage overhead (for each incident, the owning service

name, the debugging query, the root cause labels, the repair set) and computational overheads

in building ML tools at each stage by scaling down necessary logs. From left to right in

Figure 2.3, ML-based debugging tools can be built that can automatically assist engineers in

achieving a ‘coarse’ completion of the overall debugging tasks and as a result narrow-down

the scope of available data:

18

• Coarsening begins with analyzing all the available logs and user reports cloud-wide to

evaluate whether an incident is present/absent, if present, the impacted regions and

duration based on SLAs. As a result, the operating set is now scaled down to a subset

of ‘alarms’ possibly across multiple services and regions.

• In the next stage, by leveraging probes, coarse dependencies and other KPIs (Key

Performance Indicators), an ‘owning’ team is identified to whom the incident is routed

to for further debugging. As a result, the operating set is now scaled down to one

service at a region.

• In the next stage, by leveraging the logs in the ‘owning’ team’s service, a debugging

query is generated which identifies the key culprit metrics within the service log and

the infrastructure components that validates a root cause hypothesis. As a result, the

operating set is now scale down to a handful of metrics and infrastructure.

• In the next stage, by leveraging the log lines captured in that service, a sequence of log

lines with an unexpected pattern is identified for more granular root cause diagnosis

and mitigation. As a result, the operating set is now a few log lines at a small number

of infrastructure components and service code.

• In the next stage, by leveraging the natural language postmortem report, root cause

labels are identified, which can ultimately be used to extract insights to improve the

overall reliability of the cloud.

In what follows, we explain the ‘Coarsening’ formulations that achieve iterative scaling

down of scope and assistance to debugging tasks in Figure 2.3 one stage at a time. Note that,

detailed explanations of the techniques used in building the debugging tools are available in

their respective chapters.

19

2.1.1 Coarsening Formulation - Incident → Alarms

Due to the lack of accurate and interpretable alerting tools, engineers today use their domain

knowledge to define rules on system metrics to raise alerts. This approach gives them the

benefit of defining post alert rulebooks to investigate the incident, but unfortunately the false

positive rate is still so high to cause “alert-fatigue" and obsolescence of rules added in the

past. Drawing from the importance of interpretable alert rules in detecting and handling

incidents, we present a coarsening formulation as follows:

• Incidents = {i1, i2, ...im|ix = Unique Incident IDs}

• Alarms = {a1, a2, ..., an|ai = unique alarm ID cloud− level}

• Fired(alarm) = 1 ⇐⇒ alarm is triggered & alarm ∈ Alarms

• Ground_Truth(incident) = alarms ⊆ Alarms

• Concrete Poset (C,⊆) : cx ⊆ cy ⇐⇒ gy ⊆ gx

Fired(alarm) = 1 ∀ alarm ∈ alarmsx ∪ alarmsy

gi = Ground_Truth(ci)

ci = incidents ⊆ Incidents | Ground_Truth(incident ∈ incidents) = alarmsi

{ci, cj} ∈ C

• Abstract Poset (A,≤) : ax ≤ ay ⇐⇒ alarmsy ⊆ alarmsx

Fired(alarm) = 1 ∀ alarm ∈ alarmsx ∪ alarmsy

ai = alarmsi ⊆ Alarms

{ai, aj} ∈ A

• Input for the debugging tool: Alarms, F ired

• Output of the debugging tool: alarms ⊆ Alarms, F ired(alarm) = 1 ∀alarm ∈ alarms

20

2.1.2 Coarsening Formulation - Alarms → Team

In this stage of debugging, we already have a list of alarms that are relevant for an incident.

The debugging task is to identify the culprit team from these alarms, by using dependency

graphs, probes, etc. The Coarsening formulation is as follows that ideally enables identifying

the right team and if not, a ‘coarser’(parent) team that can route the incident to the right

engineers within their team:

• Incidents = {i1, i2, ...im|ix = Unique Incident IDs}

• Dependency Graph, DG = (T,E)

T = {Developer Teams}, E = {(Ti, Tj)|Code(Ti) calls Code(Tj) ∀ Ti, Tj ∈ T}

• Code(team) = Code developed by team

• Ground_Truth(incident) = team ∈ T

• Concrete Poset (C,⊆) : cx ⊆ cy ⇐⇒ Code(gx) ⊆ Code(gy)

gi = Ground_Truth(ci)

ci = incidents ⊆ Incidents | Ground_Truth(incident) = teami

∀incident ∈ incidents

{ci, cj} ∈ C

• Abstract Poset (A,≤) : ax ≤ ay ⇐⇒ Code(ax) ∈ Code(ay)

ai = teami ∈ T

{ai, aj} ∈ A

• Input for the debugging tool: Logs, Probes collected from services with the relevant

alarms from previous stage.

• Output of the debugging tool: team ∈ T, F ired(alarm) = 1 ∃ alarm ∈ Code(team)

21

2.1.3 Coarsening Formulation - Team → Query

In this stage of debugging, we already have root cause analysis routed to the right team. The

debugging task is to identify the culprit component within the components managed by this

team, by using debugging queries, system logs, etc. The Coarsening formulation is as follows

that ideally enables identifying the right component and if not, a ‘coarser’ template that can

help engineers diagnose the root cause of the incident:

• Incidents = {i1, i2, ...im|ix = Unique Incident IDs}

• Debugging Queries : Q = {Q1, Q2, ..., Qn|Qi = valid query over logs}

• Result_Set(query) = Result− set from issuing query

• Ground_Truth(incident) = query ∈ Q

• Concrete Poset (C,⊆) : cx ⊆ cy ⇐⇒ Result_Set(gx) ⊆ Result_Set(gy)

gi = Ground_Truth(ci)

ci = incidents ⊆ Incidents | Ground_Truth(incident) = Qi ∀incident ∈ incidents

{ci, cj} ∈ C

• Abstract Poset (A,≤) : ax ≤ ay ⇐⇒ Result_Set(ax) ∈ Result_Set(ay)

ai = Qi ∈ Q

{ai, aj} ∈ A

• Input for the debugging tool: Logs, User Reports collected from components within the

service owned by the team identified from previous stage.

• Output of the debugging tool: query ∈ Q

22

2.1.4 Coarsening Formulation - Query → Events

In this stage of debugging, we already have identified a culprit sub-component/sub-system

within a service. The debugging task is to identify a summary of log that captures the

sequence of events that led to the incident by using system logs, events, etc. The Coarsening

formulation is as follows that ideally enables identifying the right sequence of events to help

engineers diagnose the root cause of the incident:

• Incidents = {i1, i2, ...im|ix = Unique Incident IDs}

• Events : E = {E1, E2, ..., En|Ei = events captured in logs}

• Follows(Ei, Ej) = True ⇐⇒ Ej should follow Ei per design

• Ground_Truth(incident) = [Ea, Eb | Follows(Ea, Eb) = 0] ⊆ E

• Concrete Poset (C,⊆) : cx ⊆ cy ⇐⇒ Follows(gx[1], gy[1]) = 1

gi = Ground_Truth(ci)

ci = incidents ⊆ Incidents | Ground_Truth(incident) = [Ea, Eb]

∀incident ∈ incidents

{ci, cj} ∈ C

• Abstract Poset (A,≤) : ax ≤ ay ⇐⇒ Follows(ay, ax) = 1

ai = Ei ∈ E

{ai, aj} ∈ A

• Input for the debugging tool: Logs collected from the culprit component identified from

previous stage.

• Output of the debugging tool: [Ex, Ey | Follows(Ex, Ey) = 0]

23

2.1.5 Coarsening Formulation - Document → Label(s)

In this stage of debugging, the incident has been resolved and a postmortem report has been

document. The debugging task is to label the postmortem report with all the contributing

factors to enable extracting meaningful insights to improve the overall reliability of the cloud

using a well-defined taxonomy and the content of the postmortem report. The Coarsening

formulation is as follows:

• Incidents = {i1, i2, ...im|ix = Unique Incident IDs}

• Taxonomy : (L) = {L1, L2, ..., Ln|Li = Root Cause Label}

• Parent_Of(L1, L2) = 1 ⇐⇒ L2 is a sub− category of L1

• Ground_Truth(incident) = [Lx, Ly, ..., Lz] ⊆ L

• Concrete Poset (C,⊆) :

cx ⊆ cy ⇐⇒ Parent_Of(gy, gx) = 1 & Parent_Of(gx, gy) = 0

gi = Ground_Truth(ci)

ci = incidents ⊆ Incidents | Ground_Truth(incident) = [Li, Lj, ...]

∀incident ∈ incidents

{ci, cj} ∈ C

• Abstract Poset (A,≤) : ax ≤ ay ⇐⇒ Parent_Of(ay, ax) = 1

ai = Li ∈ L

{ai, aj} ∈ A

• Input for the debugging tool: Postmortem Report of incident in natural language.

• Output of the debugging tool: [Lx, Ly, ..., Lz] ⊆ L

24

2.2 Retrospective Analysis

A cloud-scale retrospective analysis of incidents and their fixes uncovers common problem

areas and patterns to mitigate future failures [GMK16]. These insights guide cloud providers

to prioritize their reliability investments. We demonstrate this with a multiple person-year

effort that analyzed 2000+ incidents from 450+ teams within Microsoft Azure. Table 2.1

shows the top 5 contributing factors of severe incidents and Figure 2.4 shows the distribution

of time taken to mitigate (TTM) these incidents with a median TTM of 4 hours. We also list

the steps taken to mitigate these incidents (besides root causing), that we refer to from now

on as Quick Fixes. Observe that quick fixes come in two categories. The first is immediate

actions like rolling back recently deployed changes (Row 2), and procedural changes (Rows

1, 3, 4, and 5) such as requiring better tracing. Procedural changes will not fix an ongoing

incident quickly but will likely prevent future problems or help diagnose them faster.

Contributing factor Corrective Steps
Missing alerts Monitor failures, exceptions, QoS, etc.

Buggy code change Roll-back recently deployed changes.
Insufficient telemetry Trace QoS related metrics, resources.

Latent bugs Improve test coverage & define alerts.
Poor test coverage Multi-dimensional test-cases (hardware, de-

pendency, stress.)

Table 2.1: Top-5 contributing factors across 450+ cloud services at Microsoft Azure and the corresponding

quick fixes.

This study shows that identifying and addressing common flaws can significantly decrease

incidents; simple logistical wins can be had by leveraging past debugging experience. These

insights were generated by manual cloud-scale analysis of a subset of incidents. Though

quick fixes are easily actionable (e.g., rebooting a server, scaling-up resources) once found,

identifying which of the many ad-hoc quick fixes are worth a team’s time to deploy is

non-trivial and is sub-optimal (e.g., a quick fix already identified by one of their many

25

Figure 2.4: CDF of mitigation times of over 2000 incidents from our manual study at Anon (TTM over

24 hrs depicted as 24 hrs).

counterparts) at team-level. The rat-race between different cloud competitors and the scale

of cloud services prevents engineers from identifying and deploying all useful quick fixes

team-locally. This motivates cloud-scale retrospective analysis wherein the increased scale of

information can generate global insights which can then be deployed team-locally.

2.2.1 Quick Fixes

Much existing research focuses on building tools to identify and fix specific failures (e.g.,

performance [GLD21], concurrency bugs [LLM19a], configuration changes [MBK20]). At

Anon, these failures only constituted a very small fraction of incidents. For example in our

study, configuration changes (broadly) contributed to only 4.51% and capacity/load issues

contributed to only 5.1% incidents. It is impractical to run each specific tool continuously

in each production service to achieve a rare win in diagnosing the root cause of an ongoing

incident.

A global, retrospective analysis can identify relatively simpler and more practical logistical

wins to quickly mitigate production incidents. Examples of simple logistical wins based on

incidents at Anon are:

26

(Q1) After finding that latent bugs frequently cause incidents, a policy can be enforced

to deploy code only if its test coverage exceeds say 80%, instead of zeroing-in on the buggy

code, which is time-consuming and challenging [LLM19b, DNS22].

(Q2) After seeing that authentication related failures cause many production incidents,

one can invest in building (fault injection) tools that can uncover authentication issues during

testing, automatically rotate certificates, and employ monitors to detect soon-to-be expired

certificates in production.

These efforts at Anon are proving useful by reducing incidents. These examples suggest

that cloud operators should shift the arc of debugging research from automation for finding

deep causes (whose coverage is necessarily small) to automation for finding quick fixes with

broader coverage.

The main challenge in identifying quick fixes is learning how to associate a quick fix

with features of a failure. While this could be done within teams, the same patterns can

recur across teams though the specific implementations differ. Aggregating across teams in

cloud-scale debugging allows larger datasets to better train ML models on unstructured failure

reports. Other research questions include: extracting meaningful information from lengthy

natural language documents to aid policy-makers in simple fix generation; identifying metrics

to monitor, determining which test-cases are needed to increase test coverage; estimating the

risks of new deployments based on past incidents; and automating insight generation from

postmortem reports.

2.2.2 Consistent Root-Cause Labelling

Table 2.1 hides hundreds more such rows in the real table due to space constraints. The

number of rows (and fixes) can significantly increase when analysis scales to hundreds of

thousands of past incidents. These past fixes are valuable for engineers to fix ongoing incidents.

For example, while fighting an ongoing incident caused by a specific root cause (e.g., a faulty

27

network driver), an engineer may find it useful to consult past fixes for incidents caused by

the same root cause.

At cloud-scale, large amounts of training data exist, but off-the-shelf techniques can

be inaccurate due to heterogeneity in domain-specific language use. A more practical

solution is to label each incident and postmortem report with tags describing their root

causes and fixes; then one can easily search over these tags without expensive NLP. A key

requirement, however, is that the labelling must be consistent— e.g., all network driver

related incidents/postmortems need to be labelled with the same tag. At Microsoft Azure,

we found that team-level labelling is unworkable —different teams label the same root cause

with different labels due to differing expertise and interpretation. We describe our attempt

at solving this in Chapter 5

While we made significant progress towards bootstrapping consistent root-cause labelling,

there are several problems that need addressing. Examples include (but are not limited

to): Unsupervised clustering of incidents where each cluster represents semantically singular

root-cause (Our tool was trained on small subset of labelled incidents); Highlighting key pieces

of information that can enable engineers in appending it to the taxonomy (Our taxonomy was

manually grown); Extracting patterns in logs/telemetry to label root-causes for incidents that

do not have or have partial postmortem analysis (Our tool only uses postmortem reports).

2.3 Diagnosability

We focus on incident routing to show the advantages of cloud-scale debugging. We have seen

at least three common practices today, all of which work at team-scale. First, all affected

teams meet and coordinate, which doesn’t scale. Second, manual rule-based routing is used,

which causes incidents to be routed back and forth across teams. Finally, automated tools

like Scouts [GYM20] are trained by individual teams, where each team can only debug based

28

on internal metrics. Once assigned, engineers bear the burden of gathering enough evidence

to route to another team.

Globally orchestrating incident routing by leveraging and correlating telemetry from all

teams can greatly increase its accuracy. For example, at Anon, an outage at service X was

caused because of a failure at another service Z that X depends on via service Y . By knowing

that X experienced the incident at the same time Z’s telemetry indicated failure, a global

incident routing algorithm can route the incident to Z who can investigate the root cause

behind Z’s failure. X’s team-level approach does not consider Z’s telemetry and will fail to

do so.

However, at cloud-scale, it is non-trivial to distinguish concurrent failures from common

failure symptoms across services. Earlier work has already shown methods to construct

and use dependency graphs. However, there are two key challenges at cloud-scale. First,

instrumentation-based techniques [SBB10] are hard to consistently deploy across teams for

logistical reasons (e.g., legacy code). At Anon, many teams do not implement distributed

tracing or ignore crucial correlation IDs, making stitching together traces across services

infeasible. Second, fine-grained dependency graphs are noisy and vary over request types and

over time as service implementations evolve.

We present our attempt with Coarse Dependency Graphs for centralized incident routing.

Key research questions include: (1) how to construct CDGs despite the absence of distributed

tracing in some teams, (2) how to efficiently maintain CDGs as services evolve, (3) how to

leverage CDGs to scale automated correlation of telemetry for diagnosing cross-team incidents

and distinguishing concurrent failures from symptoms of a single failure. We are investigating

(1) and (2) with automated instrumentation and offline analysis of auxiliary information e.g.,

configuration files and DNS requests for dependencies.

29

2.3.1 Coarse Dependency Graphs

A dependency graph contains edges x → y if component x depends on component y at

runtime. At the very least, a coarse-grained dependency graph shows dependencies of various

services and teams (Figure 2.5 and Figure 2.6). By contrast, a fine-grained dependency graph

shows dependencies between components within a service and can be useful for root causing.

To allow team sovereignty, the CDP may let individual teams maintain their own fine-grained

dependency graphs. Dependency graphs can be constructed manually with domain knowledge,

automatically by data-driven techniques [CMF14], or via automatic instrumentation.

Figure 2.5: Health checks for reachability in a cloud network. Arrows indicate reachability probes within

clusters, fabrics, and across WANs.

2.3.2 Incident Routing

Symptom Explainability: We define symptom explainability of team T as the fraction

of symptoms explained assuming team T is the only one to fail. Unfortunately, this does

not generalize when there is a vector of symptoms of different types (e.g., infrastructure

health metrics exceeding thresholds, network probes failing). Instead, we define the vector of

symptoms as an incident syndrome. We then define symptom explainability for team T as the

cosine similarity of the incident syndrome to the syndrome if only team T failed. This allows

30

for noise and normalizes each team’s explainability feature to lie between 0 and 1. Symptom

explainability assumes only a single failure. However in systems with many microservices,

multiple concurrent failures are common and we present a technique for root-cause analysis.

Figure 2.6: Coarse dependency graph for Reddit in our distributed systems testbed.

2.3.3 Root-Cause Analysis

Dependency Graph Traversal: Given an incident at a component S and a dependency

graph D for S, we aim to identify a small set X of nodes in D whose failures have likely

propagated to S to cause the incident. We initialize X = {S}, and traverse D breadth-first

starting from S. At each step, we select a node x ∈ X and find all its child nodes y /∈ S

such that (1) there is an edge x → y in D and (2) y have failed, i.e., reported bad health

telemetry, around the time of the incident. If any such child node is found, it is added to X

and x is removed from X. Intuitively, if x depends on y (i.e., x→ y) and both x and y has

failed, the traversal keeps y and discards x since y is the root-cause of x’s failure.

To reduce computational complexity, symptom explainability over the coarse dependency

graph can be used to rank culprits, and graph traversal can be done on the finer-grained

dependency graph for those culprits.

31

2.3.4 Preliminary Evaluation - Incident Routing

We construct a coarse dependency graph (shown in Figure 2.6) for our testbed (details in

Chapter 4). We identify 8 “teams”: Network, Application and Infrastructure (per-microservice

in the topology — 6 teams) to route incidents to. On 560 incidents collected in the Revelio

incident dataset [DNS22] with the open-source Reddit [red22] application, CDP’s incident

routing achieves an accuracy of 78.57% indicating the benefit of symptom explainability

as compared to using only internal metrics (45.24%). We also conduct an experiment to

evaluate a distributed Scouts-like approach to incident routing (using only 3 teams to allow

for sufficient training data for each team’s scout) achieving an accuracy of 21.43%. Observe

the reduced performance caused by lack of visibility into the global structure.

2.3.5 Preliminary Evaluation - Root Cause Analysis

In our second experiment, we use an Azure Stack[Mic22] private cloud deployment to evaluate

the dependency graph traversal technique. To construct a fine-grained dependency graph,

we instrument Azure Stack binaries to track interactions between various micro-services and

their API calls. We then deploy the instrumented version of Azure Stack on a 4-machine

cluster and run a workload including a VM creation operation. Our instrumentation produces

fine-grained dependency graphs for the VM creation operation. The graph consists of 29

nodes and 38 edges.

For each of the 10 incidents, dependency traversal narrowed down the set of root-causes

to fewer than 3 nodes (out of 29 nodes), which included the true root-cause identified

by engineers. This shows that the traversal algorithm can significantly reduce the set of

micro-services and their API calls that engineers need to investigate.

32

2.3.6 Coarse Log Summarization using Chains

We analyzed a private cloud system at Anon and found that only 0.87% of logged events from

its 343 services carried a correlation ID required for distributed tracing. To enable accurate

and complete distributed tracing, engineers across all services (including legacy components)

need to instrument the code with a standard distributed tracing framework which is expensive

and time-consuming. Further, distributed tracing alone does not help localizing faults. We

solve both problems by a form of coarsening that we call chain summarization.

Each log entry (event) is timestamped, and identified by the service name that emits the

entry and an opaque event ID which corresponds to the line number in the source code of the

service that emits this entry. Each entry also contains a parametric description (in natural

language as written by the developer) and a list of parameters that are instantiated in the

description. Our experience is that such a stylized format is also common to other cloud

providers and lends itself to a simple templating strategy (without sophisticated NLP) to

extract parameters by aligning several occurrences of log entries for the same event ID, and

extracting parameters as the variable portions.

We adopt a 3-phased approach (see Figure 2.7) to generate execution traces: (1) we

extract start and end points of an execution trace by tracking the occurrence of an event

B after the occurrence of an event A within a sliding window of duration 10minutes. We

then add a directed edge from event A to event B if and only if event B appears within the

10 minute window after all occurrences of event A at least 90% of the number of times. We

use this heuristic (B often follows A within a short time window) to surmise that A causes

B. (2) We then construct a directed graph of events whose edges are drawn from step-1 and

prune the edges of this graph by only preserving edges between events which share common

parameters in their respective properties and direct edges such as A → C if A → B and

B → C. (3) With the resulting graph, we search for all events between the occurrences of

events A and B of an edge (A→ B) which share common parameters with A or B, which

33

A

B

C D
A

B

C

A

C

E,
…, L

M,
…, T

Graph
Building

Edge
Pruning

Pattern
Extraction

Runtime
Detection

A

M

C

A

E

C

Time Service ID Description Params

00:00:00 S1 A Live migration initiated for VM1 on node N1 [VM1, N1]

00:00:01 S2 C NIC adapter successfully started on VM1 [VM1]

… … … … …

00:00:05 S1 B Completed live migration of VM1 to node N2 [VM1, N2]

Figure 2.7: Overview of our approach to detect anomalous execution during runtime for root cause

analysis.

are not captured in the graph (due to parallelism and branching). We then pick the patterns

(third frame in Figure 2.7) that cover the 90th percentile of executions that start with event A

and end in event B. Note that the events between A and B in a given pattern are unordered

to build robust patterns and are only ordered by timestamp during runtime. We refer to such

sequence of events as chains.

During runtime, we can efficiently find all occurrences of A that are not followed by a

subsequent expected B event by initializing a queue of all chains that start with A and simply

removing the expected events in the chain as they occur. If after a period, expected events

remain in the queue (e.g., M & E in Frame 4 of Figure 2.7 due to missing C), we output the

failed chain. and highlight which events are expected to occur after A based on step-3 to

localize to specific components/services: this is helpful for engineers in root cause analysis.

Note that we choose a large enough window to not miss true A→ B relationships and we

choose a high threshold to prevent false positive edges. We further refine the graph based on

34

common shared parameters in the event properties to get rid of cycles in the graph due to

the large window size (e.g., background worker events making it past threshold).

Engineers can investigate these incomplete chains and provide feedback as to which of

failures are expected by design (e.g., failed live migration of a VM to a node because it

doesn’t have sufficient resources). This can then be incorporated to our runtime checks to

avoid future false positives.

2.3.7 Preliminary Evaluation - Log Summarization

As an early experiment, we consider millions of events from live clusters in the cloud with 3089

distinct event IDs from 289 services. Steps 1 and 2 resulted in a directed acyclic chain graph

with 375 nodes and 389 edges. We then focused on one edge A → B in the graph (which

was validated by engineers to be correct) where A is the‘initiation of a VM {param1} live

migration from source node {param2}’ and B is ‘successfully completed the live migration of

VM {param1} to destination node {param2}’. Using this edge, we were able to identify 2500

live migrations that successfully completed and 163 live migrations which failed (resulting in

a 94% reduction in events to investigate). Further, from step-3 of our approach, we identified

5 execution patterns (reduction of 99.8% data for investigation) that cover 100 failed live

migrations through which engineers easily identified 2 of the patterns as expected behavior

and the remaining 3 patterns to be investigated for root cause analysis.

While these results are very preliminary, they suggest that the coarsening provided by

chain summarization of service logs can be succinct (500X data reduction, which enables

storage at a central repository), extremely fast to process using the queue algorithm, and yet

provides strong localization (94% less events to examine compared to sifting the entire log

as engineers do today). Note that even in a world with perfect tracing where Step 1 can be

provided by traces, Steps 2 and 3 are still useful for localization.

35

2.4 Observability

2.4.1 Monitoring

Developers log information needed to analyze performance, incidents, etc. Each team

(responsible for a component in the cloud) exercises its sovereignty to determine what,

where, and when to log leveraging their expertise and overhead measurements. Existing

logging frameworks like AWS’s CloudWatch, Google’s Lighthouse and Datadog [AWS23,

Lig22, Dat22b] operate at the scale of an individual service. The following challenges remain:

(1) No policies exist to say where, when, what and how to log and monitor information —

communication across teams can inform strategic logging and alerting, (2) It is non-trivial to

catalog and analyze the data — clouds need standards and mechanisms to handle schema

changes (3) There is no uniform framework to capture other data such as debugging queries

issued on logs, mitigation commands, etc., issued via CLI or other interfaces in ad hoc ways.

Cloud-scale observability can also enable spatio-temporal log and alert refinement (which

metrics at components to log and when to increase logging granularity) by leveraging CDGs.

2.4.2 Data Retention

It is impossible to retain logs permanently due to their volume. Often, retention policies

retain incoming stream of logs within a buffer duration and discard older data. ML based

approaches exist to debug production incidents [GYM20, BRA20, DNS22, GLD21, SBN21].

However, they require past historical incident data. Postmortem reports and incident tickets

are permanently retained at large clouds today, but many tools rely on logs and telemetry

data for root-cause diagnosis.

We instead propose retention policies over logs and telemetry that are collected from

production services during incidents to enable supervised learning strategies. The rarity of

incidents enables retaining logs from the components involved to be feasible with minimal

36

overhead. Besides debugging, clouds can benefit from such retention policies in multiple

ways. For example, clouds engage significant resources to ensure impacted customers are

compensated according to the SLAs; third-party (e.g., judiciary, customers) audits can also be

uniformly performed to investigate potential privacy/security threats resulting from certain

incidents as cloud usage increases.

Several challenging research questions can be answered with intelligent retention policies

over logs such as tuning alert thresholds to improve incident detection accuracy, these include

extracting root-cause signatures from logs; generating mitigation scripts for past incidents;

quantitatively measuring the effectiveness of policies in reducing mitigation times; and

developing standards for storing, querying and instrumenting logs.

2.5 Centralized Debugging Plane

The earlier questions and concepts suggest that the current distributed approach to debugging

is time-consuming and inefficient, and should be augmented by a centralized, cloud-scale

component that we call a Centralized Debugging Plane (CDP). Importantly, we are not

proposing dismantling the highly successful modular, team-oriented approach to developing

clouds. Rather, we advocate augmenting this approach with a narrow API to a CDP to

enable a cloud-scale view of incidents. Our vision is inspired by the Software Defined Network

(SDN) movement where a centralized controller orchestrates individual switches; in our case,

the CDP can be implemented using software deployed on a set of servers.

The CDP collects coarse-grained, minimal information from individual teams, and uses

this information to adjudicate when there is contention between teams (e.g., to orchestrate

incident routing). The CDP also provides a long-term store for debugging data (for long

term insights or hints to guide per-team debugging) and training examples for data-driven

debugging. Like SDN, CDP is more than mere centralization (Table 2.2). We envision the

following components to CDP.

37

Dimension SDN CDP
Functionality Maximize resource utilization,

Flexible access control
Speed up mitigation, Consumable
root-cause analysis

Scale Network-wide centralized observa-
tion, route computation

Cloud-wide centralized observa-
tion, labelling and recommenda-
tions

APIs OpenFlow Open Telemetry
Structure Controller, Network, Virtualiza-

tion
CDGs, Extensive root-cause tax-
onomy, Quick fixes

Enabling Tech-
nologies

NoSQL databases, Compilers, Op-
timization algorithms

ML, NLP, Data warehouses,
Coarsening algorithms

Table 2.2: Comparing SDN and CDP architectures

2.5.1 Global data lake

At the core of the CDP is a real-time data lake that provides a global view of alerts,

incidents, telemetry, and logs from service teams. We aim for a fine balance between effective

coordination and team sovereignty. In our vision, data is provided and managed by individual

teams. However, to enable one team to easily discover and consume data from others, the data

lake provides mechanisms such as: (1) A queryable global catalog describing data sets and

metadata, (2) a uniform schema, (3) access control policies, (4) automation that continuously

processes real-time telemetry and logs, and (5) policies to retain data.

We can leverage recent advances in building large-scale data lakes [Ama22b, Dat22a] and

instrumentation frameworks such as Open Telemetry [Ope22a] to achieve these goals.

2.5.2 Incident data store

The global view provided by CDP’s data lake can help identifying all data (across teams)

relevant to an incident. This enables CDP to use sophisticated retention policies: e.g., it

can retain all data that are related to incidents for a long period of time and a small sample

of failure-free data. Since the number of major faults is fairly small, the amount of data

38

retained for machine learning is manageable. A more speculative idea is to keep ML models

(presumably smaller than logs) over very long periods to concisely capture how failure patterns

evolve with time.

2.5.3 AIOps engine

CDP’s data lake provides a natural place for developing AIOps1 solutions. For example, one

can build AIOps solutions to (1) denoise telemetry and logs when they are injected into the

data lake, (2) enrich incidents with additional metadata such as similar incidents, potential

root causes, and related fixes learnt from retrospective analysis, (3) learn rules to prioritize

and route incidents, (4) take automatic mitigation steps such as rebooting an unhealthy

micro-service, and so on. Even though there are existing AIOps efforts[CKL20], CDP’s data

lake makes it easier to experiment with new techniques, especially those that involve data

from multiple teams.

2.5.4 Incremental deployment of CDP

CDP is incrementally deployable. First, CDP enhances, rather than replace, existing debug-

ging efforts. Second, many CDP components can be incrementally built; e.g., the global data

lake can be started with data from a small number of teams. Third, some CDP components

can be constructed at a smaller scale. For example, the dependency graph of a service can

be learned from its test deployment. Moreover, many cloud providers offer private clouds

that mimic the architecture of their public clouds and can be deployed in a local cluster

(e.g, Azure Stack[Mic22] or AWS Outposts[Ama22a]). We hypothesize that it is possible to

construct various CDP components for a private cloud first and gradually transfer them to

the public cloud.

1 Artificial Intelligence for IT operations

39

CHAPTER 3

NLP-Powered Debugging Assistance

This chapter provides an overview of a joint work [DNS19b] with professors Karthik Narasimhan,

Anirudh Sivaraman and Ravi Netravali. As discussed in § 1.3, despite the proliferation of

debugging techniques and tools [NSN17, MRF15, KMB17, TAL15, GNU22, VNN13, MF18,

MEH10], diagnosing and fixing bugs in systems remains challenging. Existing debugging

tools ignore diverse types of data (e.g., bug reports, source code, comments, documentation,

and execution traces) that engineers collectively use to make sense of system-wide semantics,

bridging together outputs and features from existing debugging tools to debug production

systems. Intrigued by the variety of abstractions provided by unstructured natural language

data, we paint our vision for a debugging assistant that is powered by NLP techniques.

3.1 Auxiliary Data

The debugging process for developers typically entails reading a bug report, understanding

its context in the system, reproducing the bug, iteratively asking and answering questions to

identify its root cause, and then developing and testing potential fixes. Much of this process is

manual, has many false starts, and requires significant developer familiarity with the system

at hand—an increasingly elusive requirement as systems get more complex.

A key challenge for developers is identifying how to leverage the fine-grained operations

they support (e.g., queries) when presented with a high-level bug or issue. For example, what

debugging tool should the developer use when a service is deemed unreachable? What query

40

should they issue? At the same time, the amount of auxiliary data associated with software

systems has rapidly grown, e.g., monitoring logs, execution traces, bug reports, patches, and

code documentation. These data sources embed helpful debugging information [GMK16],

but existing debugging tools fail to fully leverage them, and instead place the burden of

extracting insights from this data on developers.

There are two reasons why this auxiliary data isn’t fully exploited in today’s debugging

workflows. First, the auxiliary data sources, in contrast to source code, are highly unstructured

and varied, ranging from custom logging formats (e.g., from debugging tools) to natural

language bug reports. Techniques for automatic test generation [CDE08, MSP18] and program

repair [LNF12, PKL09] rely on precise definitions of correctness and cannot fully leverage

such unstructured data.

Second, in large systems, problems occur at the intersection of different system components.

The above approaches, as well as existing monitoring and debugging tools, only instrument

specific subsystems (e.g., network switches [HHJ14, NAR16, NSN17], end-host network stacks

and operating systems [GNU22, MYG16, TAL16, TAL15], or applications [NGM16, VNN13]),

but still place the onus of correlating information across subsystems on developers. Thus,

existing tools have limited utility in debugging issues that arise due to the interaction between

subsystems. For example, they are unable to automatically determine that an application

timeout was the result of a routing black hole, since they fail to link together data from

multiple disparate sources (in this case, network and application-level traces from an entire

cluster).

3.2 NLP Powered System-Wide Debugging Assistant

Our thesis is that natural language processing (NLP) techniques are well-positioned to

analyze the large amount of auxiliary data across multiple subsystems and extract insights

that significantly enhance the current debugging experience. The natural language nature of

41

auxiliary data and the inexact nature of the debugging process require models that go beyond

existing techniques that need exact and structured inputs. NLP can provide these models.

Figure 3.1: Overview of how our proposed debugging assistant improves different steps in a developer’s

end-to-end debugging workflow. Developers begin by submitting system-wide bugs or performance

concerns to the NL debugging assistant. The assistant generates hints (e.g., files to investigate) or actions

(e.g., debugging queries to issue) based on analyzing past bug report data, design documents, tracing

information collected throughout the system, and developer input. The process is iteratively followed

until a bug is resolved.

Prior work has focused on specific sub-problems (e.g., generating Bash scripts from natural

language [LWZ18] or extracting keywords from bug reports [PJN13]). Though promising, we

believe there is a significant untapped opportunity for systems research that integrates these

NLP techniques—and develops new ones—into a system-wide interactive debugging assistant

42

that facilitates and accelerates each step in a developer’s end-to-end debugging process

(Figure 3.1). We identify three features that are crucial to such a system: a) preliminary

diagnosis of incoming bug reports, b) automatic generation of debugging queries (for existing

debugging tools) to monitor different subsystems, and c) taking multiple diagnostic or

corrective decisions towards fixing the bug.

3.2.1 Opportunities for Automation

Developer intuition is invaluable to the debugging process and complementary to the automa-

tion afforded by techniques from NLP. Conceptually, imagine an NLP-powered debugging

assistant running in the background to continuously ingest text from various sources: the bug

report’s text, the bug report’s comments as they come in, the source code of the repository,

and different traces. It then produces recommendations, e.g., assign a particular label to the

bug report, look at this folder to diagnose the bug. These recommendations are shown to the

developer, who can act on them and fix the bug, or provide further input to the debugging

assistant based on their domain knowledge. This assistant can be applied to several different

parts of the workflow:

1. Preliminary diagnosis: At the beginning of the workflow, the assistant can be used

to perform diagnostics on incoming issues such as assigning labels or localizing the relevant

subsystems in the project at various granularities, from top-level directories to individual

lines of code. The assistant can also assign each ticket to the most relevant developer in

order to streamline reviews. These tasks broadly fall into the framework of text classification

and document retrieval. However, our setup presents a unique challenge of learning joint

representations of the data that capture useful information from both unstructured text and

structured source code.

2. Generating debugging queries: Another part of the workflow involves the assistant

generating domain-specific queries to monitor different subsystems (e.g., BPF code for

monitoring the kernel). This falls under the umbrella of language generation which plays a

43

key role in problems like machine translation or text summarization. The added challenge

here lies in learning a model that can effectively use a diverse set of sources like issue text,

system status information, and source code semantics to generate useful and syntactically

correct debugging queries (e.g., queries in BPF [Wik22] or AppDynamics [App21]).

3. Active (interactive) debugging : Finally, the debugging assistant could take multiple

diagnostic or corrective actions, each building upon previous actions and their results. For

this, we will draw upon techniques for sequential decision making like reinforcement learning,

with the goal being to perform the optimal sequence of actions to fix the problem, within

constraints on the latency of performing these actions or the compute resources expended

in the process. In addition, we can keep the developer in the loop to supervise the entire

process, and simultaneously help fine-tune the assistant’s decision making. We imagine that

developer and assistant actions will be interleaved to debug the issue efficiently and with

minimal human effort.

Ultimately, our vision is an assistant that captures the hard-won debugging wisdom of

the expert programmer in different parts of the workflow by exploiting the abundant data

available within source code repositories and their associated issue trackers. Of course, across

all of these use cases, we must provide system support to ensure a developer-assistant interface

that seamlessly handles expressive input options from the developer and provides timely

responses from the assistant. In particular, developers must be able to (but not required

to) input case-specific debugging information (e.g., time limits, expertise levels), and receive

responses in a way that does not add undue latency to any debugging stage.

3.3 Preliminary Experiments

We perform empirical evaluation of our models on real-world data sourced from publicly

available code repositories, specifically 98 repositories hosted on GitHub. We collect text

from closed issues (∼240k) along with associated labels and pull requests containing details

44

on modified folders in the source code. This gives us supervised data for the following

classification problems. Our results highlight the ability of NLP techniques to relate varied

data sources (i.e., by learning a model across repos that are quite different in terms of topic,

code, and structure).

3.3.1 Label Prediction for GitHub Issues

We formulate the label prediction task as a standard text classification problem. As an initial

foray, we use a bag-of-words representation to convert the text in each issue into a suitable

vector. Formally, consider a dataset D = (x, y) containing pairs of issue text (x) and their

corresponding labels (y). Since each issue may have more than one valid label, our task is

a multi-label classification problem [TK07]. Therefore, we consider each y to be a one-hot

vector of size |L|, where L is the set of all possible labels, with each entry in the vector being

1 or 0 depending on whether a particular label applies to the issue or not. Our goal is to

train a model to accurately predict as many labels as possible.

The key challenge lies in learning an appropriate representation for the bug reports

available in textual form. This representation should be able to capture the semantics of the

issue sufficiently to predict accurate labels. There are several techniques and models that have

shown considerable promise in NLP such as word embeddings [MSC13, PSM14] or LSTM

recurrent neural networks [HS97], which convert discrete textual symbols into a real-valued

vector representation. As an initial foray, we use a bag-of-words representation to convert

the text in each issue into a suitable vector: ϕ(x). Each entry in this vector corresponds to

the number of times a particular word appears in the text (most entries will be 0). We train

a linear classifier f to predict probabilities for each label from this representation:

fθ(ϕ(x)) = W · ϕ(x) + b; ŷ = σ(fθ(ϕ(x)))

45

where W is a matrix of weights, b is a bias vector, σ is the ReLU function and ŷ is a vector

of predictions over all labels. We train our model by minimizing the binary cross-entropy

loss (over all the labels) with respect to θ using stochastic gradient descent [Bot10]:

L(θ) = −
∑
i

[yi · log ŷi + (1− yi) · log(1− ŷi)]

3.3.2 Source Code Folder Prediction for GitHub Fixes

Moving down a level of granularity, we also consider the task of predicting files/folders that

might be relevant to a particular issue, and would be useful for a developer to look at. This

is a challenging task to automate since it requires a semantic understanding of both natural

language text as well as the semantics of each folder (and its contents, e.g., source code).

As a first step, we focus on predicting folders that appear in change-lists linked to issues.

This is inherently similar to the problem of information retrieval, where the goal is to return

relevant documents given a natural language query. In our case, the the issue is a query and

our goal is to return a (ranked) list of relevant folders in the project. Our key requirement is

to learn good representations and a similarity metric between issues and folders.

Assume each instance in our dataset is a pair (x, z), where each x is an issue text and

each z is the text corresponding to a single folder (e.g. folder name). Our goal is to learn a

similarity function ψ(ϕ1(x), ϕ2(z); θ) which can be used to predict relevant folders given a new

issue x′. Here, the ϕs are again suitable representations for converting text into a real-valued

vector; we use the same bag of words (BOW) representation as previously described. For the

similarity function ψ, we train a 2-layer neural network that operates on the concatenation

of both BOW vectors [ϕ1(x); ϕ2(z)] to predict the probability of a folder being relevant:

P̂ (y = 1|x, z).

We treat the pairs in the dataset as positive examples of matches, and generate pairs of

negative examples (D′ = (x′, z′)), by randomly matching issues to a folder in the code that is

46

not relevant. With this, we can train our model by minimizing the following loss function

with respect to θ using stochastic gradient descent.

L(θ) = −
[∑
(x,z)∈D

log P̂ (y = 1|x, z) +
∑

(x′,z′)∈D′

log P̂ (y = 0|x′, z′)
]

3.3.3 Debugging Query Generation

We envision our assistant to automatically generate syntactically correct queries for systems

and network debugging tools (e.g., Marple [NSN17], GDB [GNU22]) to aid the human

debugging process. We formulate this as a contextual language generation problem, where

the system takes user-written issue text x as input1 and generates a structured debugging

query q. As an initial foray, we perform template-based generation [RD00], where we train a

classifier (f) to predict the most relevant template T for an issue and then predict values for

the slots in the template to generate q:

T̂ = f(x); q̂ = g(T̂ , x)

The classifiers are trained using ground truth data collected using our setup (described in

greater detail in Chapter 4), using cross entropy as the loss function during training. We

stress that template-based generation is a first step. In the future, we plan to investigate

more sophisticated generation models such as recurrent neural networks [HS97] and trans-

formers [VSP17], which have shown considerable promise in tasks like language modeling and

machine translation.

1 The input could also consist of other signals like system status.

47

3.3.4 Results

We use standard classification metrics of precision, recall and F-1 scores. For the label

prediction task, we also report accuracy, considering a case to be correct if the set of predicted

labels exactly matches the set of true labels. For folder prediction, we also report scores for

mean average precision (MAP), which is an aggregate metric over precision at various levels

of recall. We achieve 77.8% accuracy and 0.77 F-1 on label prediction (Table 3.1), which is

quite promising for a multi-label classification problem over 5 classes.

Task Precision Recall F-1
Label Prediction 0.76 0.78 0.77
Folder Prediction 0.74 0.76 0.75
Query Generation 0.82 0.67 0.76

Table 3.1: Results for label and folder prediction, as well as template-based query generation tasks.

For comparison, a random baseline would achieve 20% on a simpler single-label classifica-

tion problem. On folder prediction, we achieve an F-1 score of 0.75 and a MAP score of 0.72

for predicting relevant folders from more than 160 folders in the entire repository. This is

significantly higher than a random baseline which would get a MAP score of 0.0062.

Figure 3.2 lists qualitative examples of our model predictions. These results highlight the

ability of NLP techniques to relate varied data sources (i.e., by learning a model across repos

that are quite different in terms of topic, code, and structure).

Our results also show early promise for template-based query generation. We achieve a

MAP score of 0.82 and an F-1 score of 0.76 for generating relevant Marple queries (Table 3.1).

Figure 3.3 shows an example query output for a scenario where a system component has

failed. As shown, the model correctly predicts both the appropriate query template to use

and the switch to issue it on.

48

• Issue 1: I want to be able to access a specific resource variable within that resource. For
example : run a provisioner for an instance and supply it with the instance private ip (or id
or anything else).
True Labels: core, enhancement
Predicted Labels: core, enhancement

• Issue 2: The menu panel not being closed when its ‘overlayref ‘ is detached externally using
‘detach‘ for example when using the ‘closescrollstrategy‘. **note:** this is a re-submit of
#8654 due to some sync issues.
True Folder: src/lib/menu Model score: 0.99
False Folder: src/tools/dashboard Model score: 0.0

Figure 3.2: Examples of label & folder predictions for two repos: hashicorp/terraform and angular/mate-

rial2.

• Issue: Took a while and the webpage says ‘You broke reddit’ and ‘Funny 500 page message
3’. Upon refreshing the page it says ‘Funny 500 page messsage 6’. Upon further loads, the
browser is stuck on ‘waiting for 10.0.0.2’

• Actual Fault: mcrouter instance down.
Relevant Query: stream = filter(T, switch==1); result = groupby(stream,

[srcip, dstip, srcport, dstport, proto], count); Model Score: 0.94
Irrelevant Query: stream = filter(T, switch==5); result = groupby(stream,

[srcip, dstip, srcport, dstport, proto], count); Model Score: 0.01

Figure 3.3: Example query predictions for debugging a given issue.

3.4 Related Work

The following related work offers a glimpse into the ability to extract meaning from natural-

language auxiliary data present in software projects. They also illustrate the benefits of

combining information from natural language and source code [Ern17]. However, these tools

fall short of realizing our vision. First, these approaches are limited to ingesting data from

a single subsystem. However, our target distributed systems scenarios require extracting

49

and relating diverse data (e.g., bug reports, source code, code comments, execution traces)

from multiple subsystems (e.g., the network and applications on end hosts). Second, all of

these approaches assume a single-step process, where the NLP system has to perform a single

prediction. In contrast, we focus on the end-to-end system debugging process that is iterative

by nature.

3.4.1 Program analysis and synthesis

NLP techniques have been utilized in multiple aspects of software development [Ern17].

Examples include detecting operations with incompatible variable types [HCE15] and con-

verting natural language comments into assertions [GGE16]. More recently, NLP has also

been used in code generation by allowing developers to specify requirements in high-level

natural language in the forms of regular expressions [LND16], Bash programs [LWZ18], API

sequences [GZZ16], and queries in domain specific languages [DGH16].

3.4.2 Program debugging

NetSieve [PJN13] used NLP to parse network trouble tickets by generating a list of keywords

and using a domain-specific ontology model to extract ticket summaries from those keywords.

While NetSieve automates parsing, significant manual effort is still required in (1) offline

construction of an ontology model and (2) determining what constitutes a keyword. In

contrast, we seek to build models that learn automatically from data, with minimal manual

effort. Net2Text [BDV18] translates English queries into SQL queries, issues those queries,

summarizes the results, and translates them back into natural language for easy interpretation.

We aim to go further and automatically determine which queries to issue based on bug reports,

debugging traces, and source code. Recent bug localization work uses information retrieval

techniques [ZZL12, NPK13, KTK13], but requires manual feature engineering.

50

3.4.3 Big Code

Recent efforts such as the Big Code initiative [WST16] perform statistical program analysis

to take advantage of the large amount of code in existence today, with the goal of extracting

insights to aid code generation, refinement, and debugging. Learning techniques have been

used to identify comments that are largely redundant with source code [LDB18] or generate

natural language summaries of source code [PWY18, YWC18]. We view work in the Big

Code initiative as contributing to some of the individual building blocks of our proposed

debugging assistant. However, significant effort is required to integrate these building blocks.

51

CHAPTER 4

Generating Debugging Queries

This chapter provides an overview of a joint work [DNS22] with Shiv Saini from Adobe

Research and professors Karthik Narasimhan, Anirudh Sivaraman, George Varghese and Ravi

Netravali. As discussed in §1.3, existing root-cause analysis techniques focus on specific types

of issues and only interface with specific types of logs. A major difficulty in debugging lies in

manually determining which of the many available tools to use and how to query its logs.

Engineers use debugging queries to interface with these tools and validate their root-cause

hypotheses. We investigate the problem of automatically suggesting debugging queries that

engineers can use for root-cause analysis.

Specifically, we explore the idea of centralized generation of debugging queries which can

be issued over logs across different subsystems, tools and suggest the underlying root-cause

to a developer who is familiar with the semantics of a component. To do this, we abstract the

symptoms of an incident hierarchically through: incident user reports (service-level symptoms),

ordered log features (subsystem-level symptoms) and ranking (component-level symptoms).

To scale down the complexity of query generation, we factorize the task of debugging query

generation into: (1) Template Prediction (indicates likely root-cause hypothesis) and (2)

Parameter Filling (indicates likely components where root-cause originates). We also conduct

a study at a large service provider to understand the types of root-cause that occur in

production systems. We use insights from the study to motivate our solution and the design

of a realistic testbed to evaluate our technique.

52

4.1 Debugging Queries

Root-causes of incidents or their semantics cannot be expressed structurally across different

systems, due to varying interpretations and data types. However, we observe that engineers

often translate informal reports about problems provided by a user into actionable information

that identifies the root cause of a bug. To do this, engineers execute structured queries over

logs to reason and validate their hypothesis of a root-cause. We call these Debugging Queries

(example query in Figure 4.1) and the results of their execution can sufficiently validate a

developer’s specific root-cause hypothesis, to conclude root-cause analysis.

Figure 4.1: Example of a debugging query in it’s syntax tree representation issued over Marple’s switch

queue depth counters from two switches ‘b1’ and ‘b2’.

The above figure shows the syntax tree representation of the following debugging query over

Marple [NSN17] counters from P4 [BDG14b, BDG14a] programmable switches in a network.

An engineer can issue this debugging query if they hypothesize that traffic originating from a

faulty server is causing high queue depths in switches ‘b1’ and ‘b2’. The result set produced

53

by this query is sufficient for an engineer to mitigate an incident by shutting down the faulty

server or invalidate their hypothesis.

4.2 Overview - Revelio

We propose Revelio, a tool to automatically generate a ranked list of debugging queries

that developers can execute over logs to identify the root-cause of an incident. At a high

level, Revelio takes two inputs: (1) a user report filed by a system user, and (2) the system

logs collected during the user’s interactions with the system. The two sources provide distinct

perspectives into the state of the system when a fault occurs—the former from an external

and the latter from an internal viewpoint. Further, the two data sources differ fundamentally:

system logs are highly structured, accurate, and contextually close to a developer’s debugging

options; user inputs are often noisy, unstructured (e.g., raw text), and abstract with respect

to low-level execution (e.g., a user may report that the system is slow to respond with no

further information). As the output, Revelio generates a ranked list of top-k debugging

queries that are directly executable on the target debugging framework(s) and highlight the

root cause of the fault.

Figure 4.2 shows Coarsening through mapping root causes to debugging queries generated

by Revelio. Element c in the concrete poset indicates all the incidents in the cloud caused

by a network-related root cause (very coarse). c1 indicates all the incidents in the cloud

caused by a packet loss related issue in the network (coarse). c12 indicates all the incidents in

the cloud caused by a packet loss related issue at a specific link in the network (very fine).

4.2.1 Challenges

Revelio must overcome four key challenges to generate debugging queries. First, it has to

combine and relate diverse and seemingly disparate data inputs. Second, the output space of

queries is highly structured, making it harder than standard multi-label classification where

54

Figure 4.2: Revelio as an implementation of Coarsening through Debugging Queries.

each label is independent [BHS07]. This is because all debugging queries for a tool are drawn

from the same language grammar, unlike opaque and independent labels. Third, the space

of potential queries for a given input is large, requiring new techniques to scale to large

distributed systems. Fourth, the model must generalize in a specific sense: if a fault occurs

at one location during training and is debugged with a specific query, then, during testing,

the model must predict the same query with a different parameter if the same fault occurs at

a different location.

4.2.2 Solutions

Challenge 1: Diverse data. We handle diverse data sources by converting each into a vector

and concatenating all vectors to form the system state vector (Figure 4.5). This has two

benefits. First, each data source is normalized for downstream operations in the ML model.

Second, the architecture is extensible: a new data source (e.g., crash reports) can be added

by converting it into a vector (either learned or manually) that is then concatenated with the

existing system state vector.

55

Challenge 2: Predicting queries. To generate queries, which can be represented as

abstract syntax trees (ASTs) in the grammar of a tool’s query language, we employ a Graph

Convolutional Network to convert the AST into a query vector. A vector-based representation

is easier to use with the rest of the ML model relative to richer representations such as trees.

During training, given pairs of query and system vectors, we find model parameters that

maximize the probability that these query vectors were predicted from these system vectors.

During inference, given the ML model’s parameters, we find the query that maximizes the

probability of a query vector given the system vector.

Figure 4.3: Overview of Revelio’s factorized, 2-phase approach to generating debugging queries for

root cause diagnosis.

Challenge 3: Scaling to large systems. Revelio has to search over a large space of queries

to output the best query in response to a given input. This search space scales with the

size of the distributed system. To handle this, we exploit modularity and factorize our ML

model into two cascaded components (Figure 4.3). The first uses user reports and system

logs to generate query templates, which are skeleton queries for a particular subsystem with

all numeric parameters left unspecified (e.g., SELECT _ FROM _). The second component

then predicts the corresponding parameters using only the predicted template and system

logs. This approach is motivated by two ideas. First, production faults typically involve

recurring types (based on our study), and can thus be debugged using a small number of

56

templates (one per fault type). Second, we assume that system logs sufficiently highlight the

set of potential parameter values and the relative importance of each; user reports are often

abstract and rarely list parameter values (e.g., switch IDs). Modularization thus shrinks the

output space of the first model, simplifying training computationally, regardless of system

scale. It also shrinks the input space of the second model, making it less likely to overfit to

spurious inputs, which in turn improves accuracy and generalizability.

Figure 4.4: Example showing how rank-ordering helps to generalize to faults of the same type at different

locations. After ordering (right), despite the fault location being different, the queue depth order statistics

in testing are correlated with those in training. In contrast, without ordering (left), the unseen fault

location results in queue depth values that are dissimilar from training data.

Challenge 4: Generalizing to new fault locations. Given the scale of production systems,

it is infeasible to rely on training data that captures all possible locations of a given fault

category. Thus, our model should generalize to different locations for fault types seen during

training. To aid with such generalization, we convert concrete switch/function ids in the

system logs into abstract ids based on the rank order per feature (e.g., queue depth). This

allows our models to learn the relevance of a given template or the importance of a particular

subsystem based on a stable property like the subsystem’s rank on a feature rather than a

57

volatile property (Figure 4.4), e.g., switch ID. For example, during template prediction, the

model is able to learn about the applicability of a template to the order statistics [Wik21]

of feature values across the system, rather than to the numerical or ordinal values of these

features at specific subsystems. This is important because, if a given fault occurs at two

different locations (both of which warrant the same template), the order statistics of feature

values may be correlated, whereas the specific value assignments definitively will not. Similarly,

for parameter prediction, ordering information is more robust to the addition, deletion, or

restructuring of subsystems.

4.3 Revelio’s ML Model

To enable Revelio’s prediction capabilities, we need to induce a distribution P(Q|R,L) where

Q is a debugging query, R is a user report, and L refers to the system logs (Table 4.1 lists

the model’s variables).

Name Description Example
T Query template SELECT QUEUE_SIZE FROM T WHERE

SWITCH_ID = _
Blanks in template

B {b1, b2, ..., bz} bi = _ in the above example
Query parameters

U {u1, u2, ..., uz} ui = switch ID
R User report “Page is loading slowly”
L System logs OpenTracing and Marple logs

Table 4.1: Variables in Revelio’s ML model. Figure 4.6 lists example input values for each.

Once the parameters of this distribution have been learned by maximum likelihood, the

distribution allows us to predict the query Q that maximizes P(Q|R,L). The required data

is a set of triples ⟨R,L,Q⟩. While the above formulation seems straightforward, it involves

learning a probability distribution over all possible queries and across all tools, which is

58

challenging and requires a substantial amount of data. Thus, we instead split up each query

Q into a query template T (e.g., SELECT _ FROM _) and a set of values U (to fill in the

blanks). This lets us factorize the prior distribution as:

P(Q|R,L) = P(T, U |R,L) = P1(T |R,L)P2(U |T,R, L) (4.1)

To simplify our training further, we make an independence assumption on P2 by assuming

that R is not likely to help predict U (as described in § 4.2.2). Thus, we have:

P2(U |T,R, L) = P2(U |T, L) (4.2)

We can further factorize this into a product of distributions over values ui for each blank

bi in the template T :

P2(U = {u1, u2, ..., uz}|T, L) =
∏

i∈[1,z]

P2(ui|bi, T, L) (4.3)

where z is the total number of blanks in the template.

From an inference standpoint, this means we have a 2-phase query generation process: we

first generate a query template and then fill in the blanks with appropriate values using the

system logs (Figure 4.3). We next detail how we model each of the distributions (P1 and

P2), as well as our learning and inference procedures for each.

4.3.1 Predicting Probabilities for Query Templates

Assume the user report R to be in the form of raw text and L to be a vector obtained by

concatenating ordered vectors for each feature (Figure 4.5) extracted from the system logs

(e.g., time-windowed average, min queueing delay). Recall from §4.2.2 that rank ordering per

feature in L enables our model to learn about the order statistics of feature values across

59

subsystems, rather than about numerical or ordinal values at specific subsystems (Figure 4.4).

From here, a straightforward way of modeling P1(T |R,L) would be to use a multi-label

classifier with each template T being a different label. However, as discussed in § 4.2.2,

query templates are structured and made up of smaller atomic components (e.g., IF, MAX

statements). In other words, the ASTs of many query templates share common subtrees.

Thus, simply treating each template as an independent output label is wasteful in terms of not

sharing statistical strength.

Therefore, we adopt a different approach to modeling the output templates. In order to

preserve the structural aspects in queries, we represent each template T in the form of an

abstract syntax tree (AST). Each node in the tree is an operator (e.g., SELECT) and the

edges represent how the operators are composed together to form larger trees.

We use a Graph Convolutional Network (GCN) [KW16] to construct a vector represen-

tation vT for each query template’s abstract syntax tree. The GCN updates each node’s

vector representation in the AST by pooling information from all its neighbors and per-

forms this process multiple times, allowing it to combine information from all nodes in the

tree. The GCN outputs a vector for each node in the tree – we take the vector of the root

node vT to represent the tree’s information. In parallel, we use a contextual text encoder

(BERT) [DCL18] to convert the issue report R into a vector vR and pass the log L through a

linear neural network layer to get a vector vL. vR and vL are concatenated and fed through a

non-linear layer followed by a linear layer to get a single vector vS representing the system

state from both internal and external viewpoints. Finally, we use both vS and vT to obtain a

measure for how likely the template T is applicable to the debugging scenario ⟨R,L⟩ (i.e.,

the probability of T given R and L). We then search for a set of neural network parameters

that maximize this score (S) or likelihood. The sequence of operations are summarized as:

60

vT = GCN(T)[root]

vR = BERT(R)

vL = Linear(L)

vS = Linear(ReLU([vR; vL; vT]))

S(T,R, L) = Linear(ReLU([vS; vT]))

P1(T |R,L) = Softmax(S(T,R, L)) =
S(T,R, L)∑
T ′ S(T ′, R, L)

where [;] represents a concatenation of two or more vectors and GCN(T)[root] represents

indexing the output of the GCN to get the vector of the root node.

The above operations represent a continuous flow of information through a single DNN

whose parameters θ can be trained through back-propagation and stochastic gradient de-

scent [GBC16]. We use the following maximization objective to learn the parameters:

max
θ

L(θ) =
∑

(T,R,L)∼D

P1(T |R,L) (4.4)

Enumerating all trees T ′ is intractable, so we employ Noise Contrastive Estimation

(NCE) [GH10] and draw m = 2 negative samples to form each T ′ to approximate the

objective.

4.3.2 Predicting Values to Fill Query Templates

Now that we have a method to pick a template T ∗, we must fill in the values for each blank

b in T ∗. Each template implicitly specifies the type of subsystem that is relevant for the

fault at hand. Thus, using the template, we first extract a list of all relevant subsystems

from the system logs L. For each subsystem u in this list, we have a feature vector Lu which

61

summarizes all of its logs (Table 4.5). We also include ranking information ranku for each

feature in Lu (e.g., u’s rank in queue depth across all switches). Note that ranks embed

the same information as ordering from § 4.3.1; ordering is not possible here because each Lu

pertains to only one subsystem. We use these features, along with a vector representation of

the blank in the template (described below), to pick the most likely subsystem for the blank.

We feed the template (AST) T ∗ through the same GCN module as in § 4.3.1 and choose

the vector representation for blank b to be the output vector of its corresponding node in the

tree. This allows us to represent the requirements of b using the properties of its neighboring

nodes in the AST. Our goal is to then pick the most suitable subsystem u for the blank, and

return the corresponding system identifier (e.g., IP address or port number). We use similar

operations to those in § 4.3.1 to pick the most likely u to fill b:

vb = GCN(T)[b]

S(u, b, T, L) = Linear(ReLU(Linear(vb;Lu; ranku)))

P2(u|b, T, L) = Softmax(S(u, b, T, L))

where ranku indicates the rank of subsystem u in its subsystem’s logs L, based on the

feature of interest (e.g., rank of a switch, across all switches, on mean queue depth). We then

use an objective similar to Eq. 4.4 to maximize P2 over ground truth data and learn the

model parameters ϕ.

4.3.3 Choosing the Final Queries

Once each of the two models above have been trained, during inference, we find the combination

of query template and query parameters that maximizes the probability that the resulting

62

query would result from the given system state vector. This probability in turn is the product

of the two probabilities predicted by each of our models P1 and P2.

Q∗ = (T ∗, U∗) = argmax
T,U

P1(T |R,L)P2(U |T, L) (4.5)

We can also pick the top k most relevant queries, rather than just the single most relevant

one, using the ranking produced by the probabilities above. If |T | × |U | proves to be very

large, we can approximate the above by considering only the top few templates according to

P1(T |R,L).

For all FFN layers in our ranking model, we use two linear layers, each with hidden size

300, along with ReLU non-linearity. The GCN also uses a hidden vector size of 300. We use

the Adam optimizer [KB14] with a learning rate of 0.0001.

4.3.4 Diagrams Illustrating Model Operation/Insights

Figure 4.5 shows an example of generating feature vector from system logs (counter logs from

programmable switches) to input to Revelio. In this example, each P4 programmable switch

in the network logs queue depth counters at each interface’s ingress port and periodically

streams these values to a log collection database.

Figure 4.5: Example illustrating the generation of system log vector L; for simplicity, the example

considers only network logs. Values for each feature (across switches) are first rank ordered, and then the

resulting lists are concatenated to form L.

63

We first aggregate these queue depths at each switch by using standard statistical measures

(mean, std. dev., max, quartiles, 90th, 95th, 99th percentiles) to obtain a table as shown in

Figure 4.5. For each of these statistical measures, we append the values to a feature vector

in decreasing order across all switches and note the rank of each switch’s value for that

statistical measure. We then concatenate feature vectors of all statistical measures to form a

feature vector which is used for predicting probabilities of query templates for an incident.

The rankings of each switch for each statistical measure is used later to predict parameters

to fill in the chosen query template. Figure 4.6 shows example values for all variables used in

Revelio.

Figure 4.6: Example inputs for each input variable in Revelio’s model. This example is for a network

(Marple) query. For the query template (T), the entire tree represents the template, while the parameters

to be filled in are shaded in grey.

64

4.4 Study of Production Incident Debugging at Anon1

To understand the operation and limitations of debugging tools and workflows in production

distributed systems, we conducted a study at a major SaaS company (Anon1). Our analysis

involved 7 services at Anon1 that collectively handle 83 million user requests per day. Across

these services, we examined the debugging process through a developer survey and a manual

analysis of completed debugging tickets over a 4-month time period.

4.4.1 Insights from Debugging Workflows

Developers at Anon1 use a variety of state-of-the-art monitoring tools (e.g., Splunk [Spl21],

Datadog [Dat22b], others [Lig21, New22, Pin21, Ici21]) that continuously analyze system

logs, visualize that data with dashboards, and raise alerts when anomalous or potentially

buggy behavior is detected. Alerts are raised on a given time-series based on either manually-

specified heuristics and thresholds, or standard statistical analysis techniques that compare

recent data to historical baselines [Lig21, TL18, XCZ18, Twi15]. As user or internal reports

are filed, the burden of debugging falls largely to developers. For each report, developers

must (1) filter through the raised alerts (across subsystems) to determine which are worth

investigating and pertain to actual bugs and the issue at hand (vs. false positives), and (2) for

bugs, find the root cause by analyzing the system as a whole. Both steps involve iteratively

analyzing low-level system logs, inspecting prior debugging tickets and the current report

(both written in natural language), and issuing debugging queries (using interfaces that run

atop the same logs used to raise alerts [Gra22, NSN17]). Once a root cause is identified,

a summary of the issue, bug, and debugging process (e.g., investigated subsystems, issued

queries) is documented as a completed ticket.

65

4.4.2 Insights from Production Incidents

We manually analyzed all 176 debugging tickets that were created for the aforementioned

services between November 2019 and February 2020. Our analysis involved manually clustering

the tickets according to their root causes (as documented by Anon1 ’s developers). We make

three primary observations from this analysis:

1. A few recurring categories of root causes collectively represent the vast majority (94%)

of bugs.

2. The faults in a given category often manifest at different locations in the distributed

system. For example, numerous “Resource underprovisioning” tickets involve high CPU

loads but pertain to different servers, e.g., gateway vs. storage servers.

3. Identifying the root cause for a fault is time consuming, taking an average of 8.5 hours

(min: 14 min, max: 2.9 days). We found that these lengthy durations are largely

a result of the error-prone nature of root cause analysis: developers at Anon1 must

explore multiple subsystems (5 on avg.) and issue many debugging queries (8 on avg.)

to find the root cause of a problem.

4.4.3 Literature Survey of Incidents

Our analysis and results (as shown in Table 4.2) follow a general taxonomy based on a literature

survey we conducted of publicly reported bugs in production distributed systems. Our survey

includes major outages in large-scale services (e.g., Dropbox [Dro19], Kubernetes [Sal17]),

bugs in cloud services (e.g., Google [SBB10], Facebook [KMB17], Azure [LLM19c]), and

experiences with open source systems (e.g., Cassandra, HDFS [YLZ14a]). Our survey revealed

the following bug categories:

1. System software and configuration faults.

66

Root Cause
Category

of
Tickets

Unique
Locations

Example Root Cause Average
Diagnosis
Time

Resource under-
provisioning

17 11 Load balancer is consuming all
available memory and starving
other co-located services

293

Component fail-
ures

58 29 3 nodes for a service were down,
leading to queued 400 ERRORs

176

Subsystem mis-
configurations

11 7 Incorrect host mapping configu-
ration in Zookeeper caused fail-
ure, and prevented cluster from
servicing any events

276

Network conges-
tion

5 4 A spike in wide-area traffic
caused unusually low data trans-
fer rates between two cities

725

Network-level
misconfigs

18 10 Instances in a region are point-
ing to a NAT instance with
incorrectly configured security
groups, leading to dropped traf-
fic

92

Subsystem/Source-
code bugs

31 22 Service returning 5xx errors due
to a code change that added a
condition on the availability of
a parent asset ID

1607

Incorrect data ex-
change

26 16 4xx errors were being raised be-
cause the noise classifier service
is sending additional data with
each stock request

417

One-off or un-
known

10 8 278 customer accounts were
inadvertently canceled for un-
known reason

464

Table 4.2: Summary of closed debugging tickets at Anon1 over a 4-month period. Examples have been

partially Anon1ymized and summarize the root causes listed in representative tickets. Debugging times

are in minutes.

• Resource underprovisioning [KMB17, Sal17]: In such bugs (e.g., at Face-

book [KMB17]), the containers or VMs running parts of a distributed system are

allocated insufficient CPU, memory, disk, or network bandwidth.

67

• Component failures [FPK07, YLZ14a, DHH18, VM19, Dro19]: Failures

are common at scale, and can result from a faulty physical machine, a bug in the

machine’s hypervisor, or an unduly small amount of memory being allocated to a

particular component.

• Subsystem misconfigurations [YLZ14a, VM19, LLM19c]: Errors in the inter-

nal configuration files for a given subsystem are common, especially given complex

interoperation with other subsystems. Examples include incorrect hostname mappings

that result in improper traffic routing and poorly configured values for timeouts or

maximum connection limits [LLM19c].

2. Network faults.

• Network congestion [KMB17]: Within data centers [KMB17], queues build up at

various network locations (e.g., virtual and physical switches) that connect subsystems,

either due to temporarily increased application traffic (e.g., TCP incast [CGL09]) or

cross traffic.

• Incorrect network configuration [KMB17, YLZ14a, VM19]: Network devices

(e.g., firewalls, NATs, switches) between subsystems that communicate via RPCs

may be incorrectly configured with forward/drop rules. This could cause unintended

forwarding of packets to a destination or incorrect packet dropping.

3. Application logic faults.

• Bugs within subsystems [SBB10, QTS05, LPS08, ABI18, LLQ05, Don17,

Sal17]: Bugs in application logic are prevalent in practice [NM19, AKS18], and

can result in a wide range of system effects. For example, certain bugs arise from

(accidentally) inverted branch conditions that trigger seemingly inconsistent behavior:

an application may traverse an incorrect branch and display incorrect content or

result in a program error. In contrast, certain code changes can trigger performance

degradations, e.g., if unnecessary RPC calls are generated between microservices.

68

• Incorrect data exchange formats and values [LLM19c]: Particularly in mi-

croservice settings as in Azure services [LLM19c], bugs can arise if the RPC formats

of the sender and receiver do not match. For instance, a change in the API exposed

by one microservice could result in a bug if its callers are unaware of this change.

Also included in this category are certificate or credential updates that have only

been partially distributed (resulting in access control errors).

4.5 Distributed Systems Debugging Testbed

Developing and testing Revelio requires access to a distributed systems environment

with debugging data and system logs. Industrial systems satisfy these requirements inter-

nally [Jac21, Ora21] but, to our knowledge, no such environment exists for public use. We

instead opt for an extensible in-house testbed (Figure 4.7) that incorporates state-of-the-art

distributed apps, debugging tools, and fault injection. Our testbed is open-sourced and can

be found at https://github.com/debugging-assistant.

Figure 4.7: A slice (2/14 microservices) of our testbed for Sock Shop [Wea17]. Debugging tools and

fault injection are omitted.

69

https://github.com/debugging-assistant

Our testbed embodies the takeaways from our study of Anon1 ’s production incidents,

debugging workflows and literature survey.

4.5.1 Single-machine Emulation of Distibuted Applications

Our testbed considers three open-source distributed web apps: Reddit [red22] (monolithic),

Sock Shop [Wea17] (microservice-based), and Online Boutique [Goo19] (microservice-based).

For each, we use the publicly available source code that was provided by the corresponding

organization and is intended to capture the technologies and architectures they employ in

production. We focus on distributed web applications because they are typically deployed in

end user-facing scenarios. Consequently, we expect that the Mechanical Turk users in our

data collection phase (§ 4.5.5) will be able to more naturally interact with these applications,

leading to more realistic user reports. § 4.5.2 provides additional details for the composition

of each application.

Our goal is to run each application in a distributed and controlled manner, in order

to scale to large workloads and deployments, consider broad sets of realistic distributed

debugging faults, and ultimately generate complete debugging datasets for Revelio. In

addition, we aim for our testbed to be extensible with respect to new applications and

debugging tools. One approach would be to run each application service on VM instances

in the public cloud. However, public cloud offerings typically hide inter-instance network

components (e.g., switches) from users, precluding the use of in-network debugging tools

(§ 4.7).

Instead, we opt for local emulation whereby we run each subsystem (or service) in

a different container on the same machine, and specify the network infrastructure and

connectivity between them. We use Containernet [PKR16], an extension of Mininet [LHM10]

that can coordinate Docker [Doc19] containers, each running on a dedicated core; we assign

a separate core for network operation (i.e., P4 switch simulation). Testbed throughput can

be scaled up by using more physical machines through distributed emulation [Git21].

70

We note that a single, well-provisioned (4 cores in our setup) machine is sufficient for the

distributed web applications and workloads that we consider in our evaluation, which do not

stress the network significantly. However, our testbed can be scaled to support applications

with higher throughput demands by making use of additional physical machines; added

resources can be incorporated either with distributed emulation platforms [Git21] or through

the use of faster hardware switches instead of Mininet’s software switches.

Figure 4.8: The topology of our distributed systems testbed for Reddit [red22]. Each P4 switch has a

congestion traffic sender/receiver to emulate different network conditions, and the testbed incorporates

four recent debugging tools and a fault injection service. We illustrate the Sock Shop [Wea17] topology

in Figure 4.7, and note that Online Boutique [Goo19] follows the same architectural patterns.

For each application, we configure its subsystem/service containers into a star topology.

This structure is highly amenable to the broad range of faults we aim to inject (§ 4.5.4). At

the center is a router which is responsible for layer 3 faults (e.g., firewall configuration errors).

Each subsystem is connected to this router via two P4 programmable switches [BDG14a].

We set routing rules to ensure that all subsystems are appropriately reachable. Finally, a

NAT connects the central router to the host machine’s Internet-reachable interface.

Once this configuration is established, we alter the internal app configuration files to

point to the appropriate containers for each subsystem. We use two switches to simplify

network congestion-induced faults for a given subsystem: rather than sending fake traffic over

71

the ingress link to the subsystem, we run a dedicated client and server for traffic generation

across the two switches and flood the link one hop away from the subsystem. Figure 4.8

shows the topology of our testbed for Reddit application.

In order to connect our virtualized environment to the outside world, we incorporate a

NAT box which connects the central router to the physical host machine’s Internet-reachable

interface. Finally, to ensure realistic operation, we alter each application’s default data

population script to function in our setting. For example, in the context of Reddit, the

data population script scrapes subreddits, popularity information, and comment chains from

the real Reddit website, and generates fake user account information to mimic that seen in

practice.

Note there are a bunch of options, each with tradeoffs: for instance, could run each app

component on public cloud but this is tricky because we cannot control network between

components. alternatively, we could set up an on-site cluster where each service runs on an

individual machine (or set of machines); this is not portable (we want to release this so others

can use our data but also generate their own data). The public Reddit codebase defaults to

running all subsystems (e.g., application tier, Cassandra, PostgreSQL) on a single machine.

However, in order to scale to larger workloads and deployments, and consider broader sets of

distributed debugging issues and faults, we modified the code base to run in a distributed

manner.

4.5.2 Overview of Applications

Reddit. Reddit [red22] is a popular discussion website whose three-tier backend architecture

is representative of many distributed applications that utilize the monolithic architectural

paradigm. In the front-end tier, HAProxy [hap19] load balances traffic across web servers.

The application tier, implemented using the Pylons framework for Python [pyl19], embeds the

core application program logic and accesses data objects from the storage tier. The storage

72

tier consists of three data stores: PostgreSQL [pos19] is mainly used as a key/value store

for objects such as accounts and comments; Cassandra [cas16] is used as a key/value store

for precomputed objects such as comment trees; and Memcache [Dor15] is used for caching

throughout the system. Reddit also uses the RabbitMQ message broker [rab19] to manage

asynchronous writes to the storage layer.

Sock Shop. Developed by Weaveworks, Sock Shop [Wea17] is an e-commerce application

that employs a microservice-based backend architecture. Sock Shop incorporates 14 differ-

ent microservices, including a user-facing Node.js frontend microservice, a shopping cart

management microservice, a catalog microservice, and so on. Each microservice includes

an application server whose logic is implemented in one of a variety of programming lan-

guages (e.g., Java, Go), and select microservices additionally operate an individually-managed

datastore. For instance, separate MongoDB database instances [Inc19] are used for cart

information, processed order transactions, and user profiles, while catalog information is

stored in a MySQL database [Mys21]. As with Reddit, RabbitMQ manages inter-microservice

communication.

Online Boutique. Online Boutique [Goo19] is another microservice-based e-commerce

platform from Google that includes 10 distinct microservices that are implemented in Python,

Go, C#, Java, and JavaScript. Microservices include a frontend HTTP server (implemented in

Go), a payment microservice, a cart microservice, and an ad microservice. Each microservice

operates its own datastore, e.g., the cart microservice stores a user’s to-be-purchased items

in Redis [Red21]. Microservices communicate using the gRPC framework [Env21].

4.5.3 Overview of Debugging Tools

Marple. Marple [NSN17] is a performance query language for network monitoring that

uses SQL-like constructs (e.g., groupby, filter). To operate, Marple assigns each network

switch and packet a unique ID, and supports queries that track 1) per-packet and per-

73

switch queuing delays, and 2) user-defined aggregation functions across packets. In our

implementation, switches log queue depths that each arriving packet encounters, and the

packet’s 5-tuple (src/dest ip addresses, src/dest ports, and protocol). This is sufficient to

track queueing information and high-level statistics such as packet counts. We write queries

in Marple to capture and track these values, and then use Marple’s compiler to generate P4

programs [BDG14a] that can run directly on our emulated switches. Switches stream query

results to a data collection server running on the same host machine for further analysis.

tcpdump. tcpdump [Tcp22] is an end-host network stack inspector which analyzes all

incoming and outgoing packets across all of the host’s network interfaces. tcpdump’s

command line interface supports querying in the form of packet content filtering (e.g.,

by hostname, packet type, checksum, etc.), which can be applied at runtime or offline. In our

implementation, tcpdump is configured to collect all network packet information in a pcap

file, and filters are applied offline.

Jaeger. Uber’s Jaeger framework [Jae21] is an end-to-end distributed systems tracing system

which, like its predecessors Dapper [SBB10] and Zipkin [Zip22], implements distributed

tracing according to the OpenTracing specification [Ope22b]. With Jaeger, developers embed

tracepoints directly into their system source code (or RPC monitoring proxies [Grp21]) and

specify custom state (e.g., variable values) to log at each one. By aggregating tracepoint

and timing information, Jaeger provides distributed context propagation so developers can

understand how data values and control state flows across time and subsystems. We modified

each application’s source code (application tier for Reddit, and each microservice frontent for

Sock Shop and Online Boutique) to include tracepoints for each function accessed during

HTTP response generation. As per the examples provided by OpenTracing [Ope22b], at

each tracepoint, we log the accessed variables, function execution duration, and any thrown

exceptions. During execution, all tracepoint information is sent to a Jaeger aggregation server

running on the same host machine for subsequent querying.

74

cAdvisor. Google’s cAdvisor framework [Goo21] profiles the resource utilization of individual

containers. To do so, cAdvisor runs in a dedicated container, which coordinates with a Docker

daemon running on the same machine to get a listing of all active containers to profile (and

the process ids that each owns). With this information, caAvisor uses the Linux cgroups

kernel feature to extract resource utilization information for each container. We use cAdvisor’s

default configuration, in which the following values are reported every 1 second: instantaneous

CPU usage, memory usage, and disk read/write throughput, and cumulative number of page

faults. Resource usage information collected by cAdvisor is dynamically sent to a custom

logging server running on the same host machine for subsequent querying.

We integrate the above debugging tools into our testbed the following way:

1. Marple [NSN17] is a performance query language for network monitoring that uses

SQL-like constructs (e.g., groupby, filter) to support queries that track 1) per-packet

and per-switch queuing delays, and 2) user-defined aggregation functions across packets.

2. tcpdump [Tcp22] is an end-host network stack inspector which analyzes all packets

flowing through the host’s network interfaces, and supports querying via packet content

filtering (e.g., by hostname).

3. Uber’s Jaeger [Jae21] is a distributed systems tracer which follows the OpenTracing

specification [Ope22b]. Developers embed tracepoints into system source code to log

custom state, and then aggregate tracepoint and timing information to understand

data/control flows across time and subsystems.

4. Google’s cAdvisor [Goo21] profiles the resource utilization of individual containers,

logging the following per second: instantaneous CPU usage, memory usage, disk

throughput, and total page faults.

Note that these tools represent only part of the state-of-the-art for network and distributed

systems monitoring; our setup is amenable to others [KMB17, FPK07, App21].

75

4.5.4 Fault Injection Service

To create data from realistic debugging scenarios, we created an automatic fault injection

service. We note that our goal is not necessarily to match the system scale at which production

faults were reported, but instead to evoke the user reports, system log patterns, and queries

that correspond to the reported fault categories. Further, while our survey and study at

Anon1 revealed a relatively small set of common fault categories, others can arise; our fault

injection service can be easily extended to incorporate new bugs. Our service is guided by

our literature survey of production faults and our findings at Anon1 (§ 4.4.2). Specifically,

we incorporate faults that cover all of the observed categories, and match the ratios across

categories with the data from Anon1 (Table 4.2). These categories cover the observable

performance (i.e., increased response times) and functionality (i.e., missing or inconsistent

content, crashes) issues for the apps we consider. Table 4.3 lists the faults we inject.

Our fault injector operates differently per fault class. For network or system configuration

faults, we use Mininet and Docker commands to bring down a subsystem, start a congestion

generator, change a service’s provisioned resource values, or inject a firewall/routing rule at

the router. Application logic faults require modified source code. In each container pertaining

to an application’s service logic, we include a script that takes in a fault instruction and

replaces the appropriate source code with a version embedding the fault, and restarts the

application.

4.5.5 Dataset Collection using AWS MTurk

To extract system logs, user reports, and debugging queries from our testbed, we conducted a

large-scale data collection experiment on Amazon Mechanical Turk. For each application, we

set up an EC2 instance per fault that we consider (Table 4.4). Each instance runs the entire

testbed for that application, with the associated fault injected into it. Application data is

collected using scripts included in each application repository. All instances for an app were

76

Fault Type Number
of Faults

Example

Resource underprovi-
sioning

15 Reducting the CPU quota

for the docker container running PostgreSQL
Component failures 15 Take down container for a given microservice
Subsystem misconfigu-
rations

12 Incorrectly configure hostname of a database

Network congestion 13 Generate significant network
cross-traffic between hosts for different mi-
croservice

Network-level miscon-
figurations

16 Incorrect firewall rules at routers to drop

or forward packets on an incorrect interface
Subsystem/Source-
code bugs

16 Negated if condition resulting in different ex-
ecution path

Incorrect data ex-
change

15 Alter function signature within

a microservice, triggering argument violations

Table 4.3: Overview of faults injected into our distributed systems testbed. Numbers listed are for Sock

Shop[Wea17].

populated with the same content, generated using an app-provided script, e.g., content for

Reddit was scraped from the real Reddit website, and includes multiple subreddits, each with

roughly 10 posts and user profiles.

Metric Reddit Sock Shop Online Boutique
of Unique Faults 76 102 80
of Unique Queries 118 320 269

Query Vocabulary Size 60 136 122
Report Vocabulary Size 1040 1327 1258

Table 4.4: Summary of debugging queries and user reports collected through AWS MTurk experiment.

77

Our experiment supported only “master” Turk users, and each was only allowed to

participate once per fault+application pair. Each user was assigned to a specific instance/fault

at random, and was presented with a UI that pointed to the corresponding instance’s frontend

web server. Users were asked to perform multiple tasks within each app, including loading

the homepage, clicking on item pages or user profiles, adding comments, and adding items

to their carts. Prior to the experiment, users were shown example page loads (to ensure

familiarity).

Figure 4.9: User Interface of our MTurk experiment presented to users for data collection.

Figure 4.9 shows the user interface of our MTurk experiment that users interact with.

The left half of the UI has instructions for users on what to do in the experiment and an

image of what a successful webpage load of an application looks like. The right half of the UI

contains the UI for the applications hosted our testbed (e.g., a reddit user page). By using

the left half of the UI as reference, users can decide if the actual application load looks any

different and they report their observations in the textbox provided on top of the UI and also

select some drop-down choices that indicate objective feedback in addition to the natural

language observations.

78

Marple Jaeger cAdvisor
Packet count # of accessed variables CPU utilization
Queue depth Duration of execution Memory utilization

N/A # of exceptions thrown Disk throughput

Table 4.5: Metrics in system logs. Marple, Jaeger, and cAdvisor metrics are recorded per-switch,

per-function, and per-container; tcpdump is omitted for space.

During each experiment, the standard system logs for each testbed tool were collected on

the instance (complete list shown in Table 4.5. We condense and featurize the time-series

data for each metric using standard statistics, e.g., min, max, avg. User reports were paired

with the associated system logs. We allowed up to 5 concurrent users per instance, and

system logs reflect the interactions of all concurrent users. To complete our dataset, for each

fault, we generate a debugging query with the appropriate tool that sufficiently highlights the

root cause. This query is intended to represent the result of a past (successful) debugging

experience. Table 4.4 summarizes our dataset, and Table 4.6 lists examples of user reports.

User report text
there is nothing on the page, it is empty, nothing to click on
‘you broke reddit’ with the cartoon showed up
Page took forever to load. Sat at the gray screen for almost a minute, entirely too
long..
I clicked to expand for comments, and page went away and defaulted to a grey
screen.. No Page
‘Funny 500 Page Message 8’ message below that. Blank otherwise. . Page does not
include any usernames

Table 4.6: Examples of text in user reports collected from Mechanical Turk participants.

79

4.6 Evaluation of Revelio

Methodology. We divided the dataset collected from our MTurk experiment for each

application into: 53% for training revelio’s ML models, 13% for validation to pick the best

performing ML models, and 34% for testing the chosen models. We further divided our

testing data into two test sets, test_generalize and test_repeat. test_generalize evaluates

Revelio’s ability to generalize to new locations for previously seen fault types, and includes

only data for faults that have matching query templates in the training data, but different

parameters. test_repeat evaluates Revelio’s ability to suggest relevant queries for repeat

faults, and includes only data for faults that have matching query templates and parameters

in the training data. All results test the best observed model from the validation set on the

test sets. We evaluate Revelio primarily using two metrics: 1) rank of the correct query

(i.e., the query which most directly highlights the root cause) among the ordered list of the

model’s predicted queries, and 2) top-k accuracy, defined as the presence of the correct query

in the top-k predictions.

4.6.1 Revelio’s Performance on Repeat Faults

For each fault in test_repeat set, we measured the rank of the correct query in Revelio’s

predictions. As shown in Figure 4.10, for 80% of the Reddit test samples, Revelio assigns a

rank of 1 to the correct query. Further, for 96% of the Reddit test cases, the correct query is

in the top 3 predicted queries. Performance is similar for Sock Shop, with the correct query

being in the top 3 100% of the time.

4.6.2 Revelio’s Performance on New Faults

Figure 4.11 shows results for the more challenging scenario of new fault locations for repeat

fault types (i.e., test_generalize). As shown, Revelio consistently predicts the correct query:

80

Figure 4.10: Cumulative distribution (per app) of the rank of the correct query over our test set of

repeat faults.

Revelio’s model assigns a rank of 1 to the correct query 60% and 85% of the time for Reddit

and Sock Shop. For both apps, the correct query was always in the top-5 predictions.

Figure 4.11: Cumulative distribution (per app) of the rank of the correct query over our test set of

previously unseen faults.

4.6.3 Understanding Revelio’s Performance

Importance of user reports.. By default, Revelio’s model accepts both natural language

user reports and quantitative system logs. To understand the importance of considering

user reports in query generation, we evaluated a version of Revelio that excludes user

reports from its input set; note that system logs cannot be excluded as they are required for

parameter prediction. As shown in Table 4.7, Revelio significantly benefits from having

access to both inputs. For example, on test_generalize, the average rank of the correct query

is 1.97 and 2.29 with and without user reports.

81

Scenario test_repeat test_generalize
User report+system logs 1.33 (100%) 1.97 (100%)

Only user report 4.70 (<1%) 75 (<1%)
Only system logs 1.86 (100%) 2.29 (90.2%)

Table 4.7: Impact of different input sources on Revelio’s performance. Results list avg rank (% in

top-5) and are for Reddit.

Model test_repeat test_generalize
Revelio 1.33 (100%) 1.97 (100%)

Revelio _monolithic 17.5 (15.1%) 22.4 (18.5%)
Revelio _no_rank_order 1.29 (100%) N/A

Revelio _classifier 2.41 (88.7%) 2.69 (86.9%)

Table 4.8: Comparison with simpler ML approaches. Results list avg rank (% in top-5) for Reddit.

Simpler ML approaches.. To understand the importance of Revelio’s design (§ 4.3),

we compared it with the following variants: 1) Revelio_monolithic uses a single model to

output a fully-formed query, 2) Revelio_no_rank_order eliminates the rank ordering of

features in Revelio’s models, and 3) Revelio _classifier uses a multi-label classifier to

select query templates rather than employing a GCN to construct a vector representation of

each template’s AST. Table 4.8 lists our results which highlight three points. First, Revelio

outperforms Revelio_monolithic on both test sets, highlighting the importance of factorization

in terms of simplifying (both computationally and statistically) query prediction, particularly

for generalization. Second, by rank ordering feature values, Revelio achieves an average rank

of 1.97 for test_generalize; in contrast, Revelio_no_rank_order is fundamentally unable to

predict templates and parameters (and thus, queries) for repeat fault types in new locations.

Third, Revelio’s improved performance over Revelio _classifier illustrates the importance

of extracting semantic information about query structure (which a classifier cannot).

82

Removed Feature test_repeat test_generalize
Packet count 2.14 (100%) 7.93 (80.4%)

Queueing delay 2.27 (96.1%) 2.51 (92.4%)
Variable count 1.67 (96.1%) 3.54 (71.7%)

Duration of execution 7.29 (88.2%) 4.11 (89.1%)
CPU utilization 1.65 (96.1%) 4.37 (83.7%)

Memory utilization 1.75 (100%) 2.50 (88.0%)

Table 4.9: Revelio’s performance when metrics from system logs are selectively removed. Removed

Marple, Jaeger, and cAdvisor features are shown in blue, red, and grey, respectively. Results list avg rank

(% in top-5) and are for Reddit.

System log analysis. To understand the relative importance of each metric in the system

logs, we evaluated a variety of Revelio models that were trained with each log feature

removed, in turn (Table 4.9). As shown, removing the per-switch packet counts from the

network logs led to the largest accuracy degradation, with a drop in average rank from 1.97

to 7.93 (for test_generalize). Importantly, removing each considered feature led to marginal

degradations in Revelio’s performance, highlighting their utility.

Figure 4.12: Comparing the average rank for single-tool and multi-tool versions of Revelio. Results

are for Reddit.

83

Multi-tool vs. single-tool models. We performed another ablation study where we

compare Revelio when training and testing on logs from each tool together (multi-tool

model), and in isolation (single-tool model). For each isolated tool, we prune the training,

validation, test_repeat, and test_generalize sets to include only faults pertaining to that tool.

Figure 4.12 shows that the per-tool models achieve better average ranks than the combined

(default) model. The reason is that focusing on one tool allows Revelio to predict templates

and parameters from a smaller space. However, Revelio pays only a small cost for operating

across debugging tools: the average rank in the combined model is only 33% higher than the

best per-tool model. This is key to Revelio’s ability to alleviate the burden of determining

which tool to use for a particular scenario.

Figure 4.13: Top-5 query accuracy when training Revelio on random subsets of the data. Results are

for Reddit.

Data and training costs. Training Revelio (using per-sample loss propagation) took 55

minutes in our experiments, roughly evenly split across the template and parameter prediction

models. However, due to computational or security restrictions, organizations may be unable

to train on all of the available debugging data, e.g., Anon1 archives years of the debugging

data that Revelio requires. Figure 4.13 shows that Revelio’s accuracy remains relatively

stable as the training dataset shrinks: with only 60% of training data, top-5 accuracy drops

to 92% and 82% for the test_repeat and (harder) test_generalize test sets, respectively.

84

4.6.4 Developer Study

To evaluate Revelio’s ability to accelerate end-to-end root cause diagnosis, we used our

testbed (§ 4.5) to conduct a developer study. Developers were presented with the testbed’s

tools and logs, both with and without Revelio, and were tasked with diagnosing the root

cause of multiple high-level user reports. In summary, developers with access to Revelio

were able to correctly identify 90% of the root causes (compared to 60% without Revelio),

and did so 72% faster.

Setup and methodology. Our study involved 20 PhD students and postdoctoral researchers

in systems and networking. All participants brought their own laptops, but debugging tasks

were performed inside a provided VM for uniformity. Prior to the study, the authors delivered

a 5-hour tutorial explaining the testbed and Sock Shop UI/code base; the study only involved

Sock Shop to ease the developers’ ability to become intimately familiar with the application

to debug. For each tool (Marple, Jaeger, cAdvisor, tcpdump, Revelio), we described its

logs, query language, and interface. Developers were given 1 hour to experiment with the

testbed and resolve any questions.

During the study, developers were presented with a series of six debugging scenarios: 2

in-network faults for routing errors and congestion (targeting Marple), 2 system configuration

faults for resource underprovisioning and component failures (targeting cAdvisor), and 2

application logic faults for branch condition and RPC errors (targeting Jaeger); we exclude

end-host network faults due to time constraints. For each fault type, developers were randomly

assigned to debug one fault using only the testbed’s tools, and one also using Revelio.

Ordering of the faults and tool assignments was randomized across participants to ensure a

fair comparison.

For each fault, developers were presented with 1) a user report, 2) system logs for all

testbed tools collected during the faulty run, and 3) the faulty testbed code. Developers

were given 30 mins to diagnose each fault and provide a short qualitative description of the

85

Figure 4.14: Summary of time saved in debugging each fault in our developer study. Bars represent

average time spent across all developers who correctly identified the root cause.

root cause. For example, a routing configuration error that disconnected Cassandra could

be successfully reported as “Cassandra could not receive any network packets, leading to

missing page content.” When a developer believed she had found the root cause, she informed

the paper authors who verified its correctness. If incorrect, the developer was told to keep

debugging until a correct diagnosis was generated, or 30 mins elapsed. Developers were

unrestricted in their debugging methodologies, e.g., they were not required to use queries,

though most did. Without Revelio, developers had to generate any query they wished to

issue on their own; with Revelio, developers could generate queries or use the 5 suggested

by Revelio.

Revelio’s impact on root cause diagnosis. The results of our developer study were

promising and suggest that Revelio can be an effective addition to state-of-the-art debugging

frameworks in terms of accelerating root cause diagnosis. Across all of the faults, Revelio

increased the fraction of developers who could correctly diagnose the faults within the given

time frame from 60% to 90%. Further, as shown in Figure 4.14, Revelio sped up the average

root cause diagnosis time by 72% (∼14 minutes) in cases where the developers were able to

report the correct root cause.

86

After the study, we asked each developer qualitative questions about their experience

with Revelio. The most commonly reported benefit of Revelio was in shrinking the set of

tools and queries that a developer had to consider. The primary gripe was with respect to

Revelio’s UI, which is admittedly unpolished. Most importantly, the response to "Would

you prefer to use existing systems and networking debugging tools with Revelio?", was “yes”

for all 20 participants.

4.7 Related Work

4.7.1 Debugging Tools for Distributed Systems

There exist dozens of powerful logging and querying tools for distributed systems [MRF15,

SPB16, SBB10, MF18, FPK07, KMB17], networks [HHJ14, NAR16, NSN17, MYG16, TAL15,

TAL16, Tcp22], and end-host stacks [GNU22, ANC00, NM19, FB88, KM08, LGN08, VNN13,

GBF99, KL88]. However, two limitations exist. First, these tools are not coordinated and lack

context about system-wide debugging. Thus, the cognitive burden of deciding which tools to

use, when, and how falls on developers. Revelio interoperates with these tools and alleviates

this burden by automatically predicting helpful debugging queries. Second, these tools ignore

natural language inputs, despite them containing debugging insights [PJN13, GMK16].

4.7.2 Leveraging Natural Language Data Sources

Program debugging: NetSieve [PJN13] uses NLP to parse network tickets by generating a list

of keywords and using a domain-specific ontology model to extract ticket summaries from

those keywords; summaries highlight potential problems and fixes. While NetSieve automates

parsing, much manual effort is still required in (1) offline construction of an ontology model,

and (2) determining what constitutes a keyword. In contrast, Revelio’s models learn

automatically from data, with minimal manual effort, and generate queries for root cause

87

diagnosis rather than potential fixes from a restricted set of actions. Net2Text [BDV18]

translates English queries into SQL queries, issues those queries, summarizes the results, and

translates them back into natural language for easy interpretation. Revelio, instead, ingests

high-level user issues and system logs; the unstructured and abstract nature of this input

makes Revelio’s problem harder than Net2Text’s.

Program analysis and synthesis: NLP techniques have been utilized in multiple aspects of

software development [Ern17]. Examples include detecting operations with incompatible vari-

able types [HCE15] and converting natural language comments into assertions [GGE16]. More

recently, NLP has also been used in code generation by converting developer-specified require-

ments in natural language to structured output in the forms of regular expressions [LND16],

Bash programs [LWZ18], API sequences [GZZ16], and queries in DSLs [DGH16]. Though

these projects show the potential to extract meaning from natural language debugging data,

they are limited to ingesting a single stream of data from a single subsystem. In contrast,

Revelio combines and extracts meaning from varied input forms to construct structured

queries.

88

CHAPTER 5

Automated Root-Cause Labelling

This chapter provides an overview of a joint work [DBJ23] with Chetan Bansal, Gopinath

Jayagopal, Richie Costleigh, Suman Nath and Xuchao Zhang. As mentioned in § 1.3, existing

practice is to manually label postmortems with a single root-cause based on an ad hoc

taxonomy of root-cause tags. However, the manual process is error-prone and a single

root-cause is inadequate to capture all contributing factors behind an incident, and ad hoc

taxonomies fail to capture the diverse categories of root-causes, wasting rich treasure troves of

debugging insights. We investigate the problem of automatically labelling all the contributing

factors behind incident.

Specifically, we address this problem with a three-pronged approach. First, we conduct

a large scale multi-year analysis of 2000+ incidents from 450+ services in Microsoft Azure

to understand all contributing factors which caused the incidents. Second, based on the

empirical study, we propose a novel hierarchical and comprehensive taxonomy of potential

contributing factors which cause the production incidents. Lastly, we develop a centralized

automated tool that can assist humans in the labelling process to abstract the details of

root-causes into tags that are consumable. To the best of our knowledge, this is the largest

and most comprehensive study of production incident postmortem reports yet.

89

5.1 Incident Postmortem Reports

One effective approach to discover and resolve existing reliability risks [GMK16] is to aggregate

root-causes of past incidents based on their postmortem reports to uncover common problem

areas, trends, patterns, and risks (e.g., identify the most common root-causes in the last

year). Similarly, bucketing past incidents based on their root-causes can enable on-call

engineers (OCEs) to quickly retrieve and learn common mitigation strategies for a given

root-cause category. However, postmortems are commonly written in natural language with

little structure. This makes the tasks of aggregating or bucketing past reports challenging,

especially at a large-scale.

Figure 5.1: Redacted example of an inident postmortem report from a service in Microsoft Azure.

Figure 5.1 shows an example of a redacted postmortem report of a production incident

in one of many Microsoft Azure services. Postmortem reports are treasure troves of rich

debugging insights. They have detailed descriptions of incidents like symptoms, what root

causes were found, steps taken to mitigate the incident, etc. In Microsoft Azure, specifically,

engineers are required to prepare and answer atleast 5 questions that start with a ‘why’

to better understand the incident and it’s debugging workflow. We will use Post Incident

Reports (PIRs) interchangeably with incident postmortem reports from here on.

90

5.2 Overview - Root Cause Labelling

Root cause labelling of incident postmortem reports enables quick and accurate aggregation

of and retrieval from a large collection of postmortems solely based on their root-cause tags.

Figure 5.2 shows postmortems written by engineers from across a cloud’s services, which can

be analyzed by owners/managers with the help of root cause labelling. Such analysis can

help identify top root causes causing high impact incidents, the trends of root causes over

time to identify potential vulnerabilities and to inform strategic investments into improving

the reliability of a cloud.

Figure 5.2: Labelling incident postmortem reports documented by several engineers in a cloud enables

owners to extract insights with meaningful analyses.

Figure 5.3 shows Coarsening through mapping contributing factors of incidents to root

cause labels from ARTS taxonomy assigned by AutoARTS. Element c in the concrete

poset indicates all the incidents in the cloud caused by a authentication-related contributing

factor (very coarse). c1 indicates all the incidents in the cloud caused by a certificate related

authentication issue in the cloud (coarse). c12 indicates all the incidents in the cloud caused

by an expired certificate (very fine).

91

Figure 5.3: AutoARTS as an implementation of Coarsening through root cause labels from ARTS

taxonomy.

5.2.1 Challenges

We analyze a sample of ≈ 1.7M root cause analyses in Microsoft Azure, across all its services,

to understand root cause labelling of PIRs. We found the following challenges:

Existing taxonomies, although designed by domain experts, are not comprehensive

enough. This is due to the lack of a comprehensive study of root causes, many potential

root cause categories are missed or not anticipated when a taxonomy is designed. As an

implication of this, a PIR author may not find a suitable predefined root cause tag to describe

the current incident. In our sample of root cause analyses, ≈ 20% incidents are labelled as

‘Other’ and ≈ 58% are labelled with categories containing ‘Other’ (e.g., ‘Network - Other’),

implying that their root causes are not covered or only partially covered by the existing

taxonomies. Such ‘Other‘ tags are not useful in the aforementioned root cause aggregation

and retrieval tasks.

Existing manual root cause labelling process is expensive and error-prone. Root

cause label of an incident is often determined based on its PIR and incident report. These

92

documents are usually long (4542 words per incident in our sample) and complex (on average,

≈ 9 engineers engaged in discussion exchanging 20 comments). Thoroughly understanding

these long documents to identify all contributing factors behind an incident, and then selecting

from predefined root cause labels that represent the factors, is a nontrivial task.

Even when the root cause is understood, PIR authors may make mistakes in choosing

the correct tag. This can happen due to multiple factors. Existing taxonomies at Microsoft

are flat long lists, making it difficult to navigate through them and to pick the right tags.

Moreover, many individuals are involved in the root cause analysis efforts. For example,

we observe 34K distinct individuals involved in a sample of 600K PIRs in Microsoft. This

large number of individuals are likely to have varying degrees of expertise and different

interpretations of root cause tags. This is further exacerbated by ambiguous or confusing

tags in the taxonomy (e.g., ‘Network’ and ‘Datacenter - Network’). All these factors can

contribute to inconsistent and/or inaccurate labels. We manually examined a small sample

of 1241 PIRs and found that 29% of the assigned tags are incorrect.

Compact, comprehensive, granular taxonomy design. Postmortems need to be labelled

with a well-defined taxonomy of root cause tags; otherwise, the same root-cause may be

tagged differently in different postmortems authored by different teams, hindering aggregation

analysis across different teams. A well-designed taxonomy for a large-scale cloud system such

as Microsoft Azure should achieve a sweet spot between two competing objectives: it should

be comprehensive enough to cover the myriad of potential root-causes, yet compact enough

for the OCEs to navigate and use easily. Moreover, it should be fine-grained enough to be

useful for surfacing actionable insights across many services.

Designing such as taxonomy is non-trivial. Several recent works analyzed production

incidents and proposed taxonomies to capture their root-causes. However, most of these

efforts focus on specific root-cause categories such as software bugs[LLL16, GDQ18, CDJ19,

ZYJ21a, CLP14, LLM19d] and hence their taxonomies are not comprehensive enough (e.g.,

to capture hardware failures). Several other efforts consider multiple types of root-causes,

93

but instead of a large-scale cloud system, they consider specific services or systems such as

big-data systems[YLZ14b], business data processing platform[DKI14] and a specific cloud

service[GSB22, GMK16]. Moreover, existing taxonomies are not fine-grained enough to

represent all root-causes we observe in Azure incidents.

Labelling postmortems at-scale.. The current practice is to do this manually—an

individual (OCE) carefully studies lengthy incident and post-incident reports, identifies the

root-cause, and selects a representative tag from a taxonomy that is usually a long flat list of

tags. Like all manual efforts, the process is error-prone. Moreover, tags can be inconsistent

across incidents—at Microsoft, root-causing is conducted by tens of thousands of OCEs with

varying degrees of expertise and different interpretations of root-cause tags.

5.2.2 Solutions

First, we manually analyze 2000+ high impact production incidents in 468 services in

Microsoft Azure. Unlike previous empirical analysis of production incidents[GDQ18, CDJ19,

ZYJ21a, CLP14, DNS22, LLM19d, DKI14, GMK16, YLZ14b], our analysis aims to identify

not only a single root-cause, but all factors contributing to the incidents. The analysis took

more than four person-years and it has so far identified 346 distinct root-cause categories

spanning all aspects of a production service including hardware and software, infrastructure

and application, software code and configuration, and so on. To the best of our knowledge,

this is the most comprehensive empirical analysis of production incidents in cloud systems, in

terms of the scale of incidents and affected services, the depth of analysis, and the diversity

of root-causes.

Second, we propose a comprehensive taxonomy called Azure Reliability Tagging System

(ARTS), that organizes the root-cause categories identified in the above analysis. For ease-of-

use, the taxonomy is hierarchically organized and each leaf node represents a root-cause tag

describing a factor contributing to an incident. We believe that the root-causes will apply to

94

other cloud services as well and hence we make the taxonomy available for other researchers

and practitioners at https://AutoARTS-rca-taxonomy.github.io/.

Finally, to avoid manual errors and inconsistencies while assigning a tag to a postmortem,

we develop a tool called AutoARTS. At the core of AutoARTS are ML-based algorithms

that can assist a human in the labelling process with two important tasks (Figure 5.4).

First, it uses a multi-label classification technique to automatically analyze an incident’s

postmortem (written in natural language) and to identify multiple contributing factors and

their representative tags from our proposed taxonomy. Second, it can produce a short text

snippet (from the postmortem) that captures important context explaining the factors. The

snippet enables a human to easily review the selected tags without reading lengthy incident

reports or postmortems. We present how we adapt existing ML techniques for this purpose.

Post-Incident Report
Cleaning

Authoring

Code Config

BugChange Latent
Hierarchical Root-Cause Taxonomy

Pegasus

Taxonomy
Graph Encoder

Text Encoder

HiAGM

Root-Cause Tags
Authoring.Code.Bug.Change

Architecture.SPOF.Config

Context
A recent code change in
service X caused …

Label-w
ise

Attention

Context Extraction

Hierarchical Rootcause Classification

Figure 5.4: Overview of our Context Extraction and Hierarchical Root-cause Classification using Post-

Incident reports.

5.3 Analysis of Production Incidents at Microsoft Azure

There exists several empirical studies of production incidents in large-scale cloud sys-

tems [GDQ18, CDJ19, ZYJ21b, DNS22, CLP14, LLM19d, DKI14, GMK16, YLZ14b]. We

have two goals that differentiate our study from them. First, we do not restrict our analysis to

95

https://AutoARTS-rca-taxonomy.github.io/

a limited set of root cause categories (e.g., software bugs [LLL16, GDQ18, CDJ19, ZYJ21b,

CLP14, LLM19d]) or specific services/platforms (e.g., big-data systems [YLZ14b]). Second,

for each incident, we try to identify not a single root cause, but all factors contributing to the

incidents. These two goals enable us to identify a wide-range of contributing factors behind

incidents happening in large number of services/platforms.

5.3.1 Manual Analysis of High-Impact Incidents

We analyze 2051 high-impact incidents in 468 Microsoft Azure services. We carefully analyze

each incident by carefully reading and understanding its incident report and PIR, the

discussion comments, and even the work items (e.g., bug fix, system upgrade) that are created

due to the incident. When something is not clear, we reach out to the incident owners to

clarify. As a part of the analysis, we not only identify the contributing factors causing the

incident but also extract text snippets or context from the incident and PIR which helps

explain and justify the identified root cause tag for future reference and validation. Every

week, we peer review a randomly selected subset of incidents to help us refine our collective

understanding of tag usage, promote learning and improve accuracy.

If we identify a new category of root causes, which is not covered by existing tags, we then

propose new tags which are internally reviewed before getting introduced to the taxonomy.

For any tag in the taxonomy, we also provide it’s description in natural language for future

reference. This data lives in an internal database which can be easily joined with incident

databases and visualization reports are created for easy data analysis based on various pivots

such as contributing factors, services, incident impact, etc. We also meet with the engineering

teams on a weekly basis, and review our data both for accuracy and to share insights that

result in reliability improvements.

The above process needs significant manual effort. Since 2020, we have analyzed 2051

incidents in 468 Azure services with a team of 2-4 members.

96

Category Description Frequency TTM
(Hrs)

Detection Issues related to detecting problems be-
fore they affect production

61% 50

Authoring Issues in authoring artifacts like code, con-
fig, troubleshooting guides, etc.

50% 58

Dependency Issues in a dependency the ser-
vice has, most typically another service
but can also be some things where a bound-
ary between teams is present

37% 16

Architecture Issues in how the service is architected and
likely where any work to fix would require
changes to the architecture of the service

20% 33

Deployment Issues related to deployment of code or config 20% 27
Process Any issue caused by human errors, a flawed

process or the lack of a process
18% 123

Load Any issue caused by the service not being
able to handle changes in load

14% 13

Auth An authentication or authorization related is-
sue

7% 21

Performance An issue that caused excess latency 6% 16
Datacenter Events (hardware, installations, power inter-

ruption, etc.) in the datacenter
4% 70

Table 5.1: High-level root cause categories from ARTS taxonomy with their descriptions, frequency of

occurrence in our analysis and mean Time-To-Mitigate (TTM) for incidents caused by their sub-categories.

5.3.2 Findings from Empirical Analysis of Incidents

Finding 1. Incidents are often caused by multiple contributing factors working together

instead of an isolated root cause.

This is contrary to prior work [GSB22, LLM19d, GHL14, GHS16] that focus on identifying

a single root cause per incident. Consider, for example, a real incident where a service became

unavailable after a single customer continuously pushed a load that was 60x greater than what

the service was scaled to handle. The original PIR author chose the root cause label “Service

97

– Load Threshold.” This itself is not an inaccurate root cause when forced to pick only one

cause. However, there are many more factors involved in this incident: (1) there was an

inrush of load from a single customer, (2) there was a lack of throttling on the customer end

as well as the service end, (3) increased load significantly increased CPU and heap usage and

thread count at the server, which lead to failed requests with exceptions, (4) the exception

handling didn’t release some resources that were allocated by the failed requests, leading

to resource leaks, (5) there were no automated watchdogs to detect early symptoms of the

outage (or resource leaks), and (6) the team was unable to access their own metrics during

the outage since the metrics were collocated with the service. In contrast, our analysis of the

incident identifies all these factors and the corresponding tags in our taxonomy.

1 2 3 4 5 6 7 8 9 10
0

200

400

600 25%

11%
15% 15%

12%
8%

4% 3% 1% 1%

Contributing Factors

In
ci

d
en

ts
C

ou
nt

Figure 5.5: Distribution of incidents across number of distinct contributing factors (shown until 10

factors).

Figure 5.5 shows the distribution of the number of contributing factors behind each

incident. As shown, over 75% of incidents have been caused by more than one contributing

factors. And, more than 50% of the incidents have 4 or more contributing factors. On average,

each incident has ≈ 3.6 factors. This reaffirms the need for holistically analyzing the incidents

to understand all the contributing factors.

The presence of multiple contributing factors per incident has important implications. On

one hand, identifying the possibility of such incidents before deployment to production with

integration and end-to-end tests is challenging since testing needs to be performed in the

98

presence of multiple potential contributing factors (e.g., high load and no throttling and no

monitoring of early symptoms). On the other hand, preventing such an incident does not

always require addressing all the causal factors, but only one (or a small subset) of them. For

example, the aforementioned incident could have been prevented by using proper throttling

mechanism, or by fixing the resource leak bug, or by having monitors that can restart the

service on early symptoms of resource leaks. This insight presents a unique opportunity to

fix the incidents (by addressing the easiest causal factor); but it requires identification of all

the causal factors (as we do) instead of identifying a single root cause.

Finding 2. A wide-variety of factors contribute to production incidents.

Our analysis identified a wide range of factors, including hardware, software, code bugs,

underlying infrastructure to external dependency issues, configuration errors, deployment

issues, and so on. Specifically, we have identified 346 root cause categories (i.e., contributing

factors) for the 2051 incidents we analyzed. Table 5.1 shows the high-level root cause

categories, each of which contains many finer-grained subcategories. The full list of categories

and their respective frequencies observed in our analysis can be found in https://AutoARTS-

rca-taxonomy.github.io. This contrasts our study with prior works that focus on a small

set of root causes such as code bugs [LLL16, GDQ18, CDJ19, ZYJ21b, CLP14, LLM19d].

Feb-21 Jun-21 Oct-21 Feb-22 Jun-22 Sep-22

5
10
15
20

Quarter

In
ci

d
en

ts
u
nt

il
n
ew

ta
g

Figure 5.6: Average number of incidents successfully tagged until a new root cause tag is introduced

across quarters.

Finding 3. New root-cause categories keep appearing over time.

99

https://AutoARTS-rca-taxonomy.github.io
https://AutoARTS-rca-taxonomy.github.io

As software and hardware systems evolve, novel root causes appear to contribute to their

incidents. For example, when a service migrates to a containerized environment, its incidents

may be caused by container-related factors. Similarly, when a service takes a new external

dependency, it may start experiencing incidents caused by factors related to the failures of the

new dependency. We analyze incidents in the same timeline as they appear and we create root

cause categories incrementally—we create a new category only if none of the existing ones

can precisely represent a new root cause. We observe that even though many common root

cause categories (e.g., code bugs) appear in early incidents that we analyze, a few categories

appear only in much later incidents (e.g., those happening two years after the first incident

we analyzed). Figure 5.6 shows how often such new categories appear in our analysis. As

shown, even after 1.5 years, new root cause categories appear, albeit with a smaller rate (i.e.,

we can tag higher number of incidents successfully before we need to introduce a new root

cause category). The fact that novel root cause categories keep appearing implies that root

cause labelling needs to be a continuous process to identify (and take actions on) emerging

root cause categories. This calls for an automated solution.

Finding 4. Lack of monitoring (i.e., observability) is the most common factor behind

incidents.

Table 5.1 shows the distribution of various contributing factors behind the incidents we

analyzed (only high-level factors are shown). As shown, Detection is the most common

contributing factor leading to outages. Detection related issues represent missing observability

signals that prevent us from detecting early symptoms of problems, many of which could

have been avoided, e.g., by rebooting the service, if their early symptoms were detected.

We also analyzed finer-grained contributing factors from ARTS taxonomy. Table 5.2 shows

distributions of the top ten contributing factors (a contributing factor X.Y.Z means factor

Z is a specific case of factor Y, which is a specific case of factor X). As shown, Missing

Alerts, which is a specific case of Monitoring, which is a specific case of Detection, is the most

common contributing factor. Insufficient telemetry captured from services is also a major

100

Contributing Factor Frequency
Detection.Monitoring.MissingAlert 34%

Authoring.Code.Bug.Change 25%
Detection.Monitoring.InsufficientTelemetry 18%
Detection.Validation.MissingTestCoverage 17%
Detection.Monitoring.CodeDeployment.

InsufficientHealthSignal 9%

Authoring.Documentation.
NoOrInsufficientTSG 9%

Architecture.SinglePointOfFailure 8%
Authoring.Code.Bug.Latent 7%

Detection.Monitoring.Synthetic 6%
Deployment.Mitigation.ManualTouch 5%

Table 5.2: Distribution of top 10 most frequent contributing factors in our analysis from the ARTS

taxonomy.

contributing factor which also prevents from deploying automated alerts. An organizational

policy on collecting key telemetry and defining automated watchdogs informed by this

aggregate analysis can mitigate incidents (or severity) in the future.

We also analyze the most frequently co-occurring root causes to identify the pairs that

jointly cause incidents. The two most frequent pairs are “Authoring.Code.Bug.Change" &

“Detection.Monitoring.MissingAlert" (15%) and “Authoring.Code.Bug.Change" & “Detec-

tion.Validation.MissingTestCoverage" (11%). This aligns with our experience that many

production incidents are caused by buggy code changes that are deployed without proper

monitoring and testing.

Finding 5. Incidents caused by deployment and datacenter related issues are the most time

consuming to mitigate.

In incident management, TTM is defined as the time elapsed between the start of the

incident and when its customer impact was completely resolved. The higher the TTM, the

more the customer impact and dissatisfaction. From Table 5.1, we can see that incidents

101

caused by Process and Datacenter related root causes have the highest mean TTM. Process

related incidents have a high TTM because these incidents are caused by human errors and

lack of standard operating procedures which result in non-trivial hard-to-resolve issues (e.g.,

accidental deletion of a database). Datacenter related incidents are caused primarily due to

hardware failures which are quite complex given that there are multiple layers of capacity

buffers all of which need to fail before an incident is caused by hardware issues.

5.4 ARTS Root Cause Taxonomy

We organize the root cause categories identified in our empirical study as a taxonomy of

reliability tags that can be used to label PIRs of incidents.

Design goals. We have the following design goals in designing the taxonomy. First, the

taxonomy should be comprehensive enough to capture not only the primary root causes of

past incidents in Azure, but also other (secondary) contributing factors. Second, in order to

avoid having a taxonomy too large to be easily used in practice, the taxonomy should be

sufficient and it should include only the root causes found in past incidents. This implies

that the taxonomy is continuously and organically grown to include new categories as they

are discovered. Third, the tags should be unambiguous, to enable high-quality annotations.

Finally, the taxonomy is organized hierarchically, for ease of labelling and updates.

We achieve the goals with a novel taxonomy called ARTS (Azure Reliability Tagging

System) taxonomy. This taxonomy is built on top of the root cause categories identified

by our empirical analysis described before. Figure 5.7 shows a portion of the hierarchical

ARTS taxonomy expanded due to space constraints. We open source the taxonomy, with all

tags and their descriptions, at https://AutoARTS-rca-taxonomy.github.io. We believe our

open-source effort will foster future research and allow practitioners use our taxonomy. Even

though the ARTS taxonomy is developed based on incidents in Azure, we believe that its

categories are general enough to be used in any large-scale cloud system.

102

https://AutoARTS-rca-taxonomy.github.io

Figure 5.7: ARTS taxonomy visualized with partially expanded root cause categories. Left end of an

edge indicates the parent root cause category and the right end indicates finer subcategory within the

parent.

We start with a small number of tags representing orthogonal categories of themes (such

as datacenter issues and authentication issues) and grow it horizontally to include new themes

and vertically to include more specific sub-themes as new incidents are analyzed and existing

themes/sub-themes deem inadequate. We have established a continuous feedback loop based

process for building the ARTS taxonomy and tagging of new incidents on an ongoing basis.

For ease-of-use, we organize the ARTS taxonomy hierarchically, by grouping related

sub-themes under one common theme. Currently it consists of four levels and contains 346

root cause categories identified from our empirical analysis. The top level consists of ten

broad themes (shown in Table 5.1), each of which consists of multiple sub-themes. There are

346 leaf nodes, each representing a root cause tag with the name obtained by concatenating

103

the names of the path from the root to the leaf node. For example, the root cause of “a

gap in pre-production detection due to missing integration tests” is represented with the

tag “Detection.IntegrationTest.Missing" in which “Missing” is the most precise leaf-level

tag. The hierarchical taxonomy naturally distinguishes between problem spaces at different

granularities. In this example, if the root cause is that the integration tests existed but were

skipped somehow, that representative tag would have the leaf-level tag “NotRun” instead of

“Missing”.

As mentioned, the taxonomy is grown as new root causes are identified in newly analyzed

incidents. Figure 5.6 shows how the taxonomy has been growing over time, with the y-axis

showing the average number of incidents analyzed until a new tag needed to be introduced

in ARTS. A larger value indicates better stability of the taxonomy: many incidents can be

analyzed with existing tags. As shown, over time, the taxonomy can be seen becoming stable.

Specifically, in the most recent quarter, only one new tag needed to be introduced after

analyzing ≈ 20 incidents (i.e., after using ≈ 70 existing tags) on average. We hope to see

significantly more stability in coming months.

5.5 AutoARTS’s ML Models

We developed an automated tool called AutoARTS that can assist a human in the labelling

process of a PIR with two important tasks. First, AutoARTS uses a multi-label classification

technique to automatically analyze an incident’s PIR (written in natural language) and to

identify all contributing factors and their representative ARTS tags. Second, AutoARTS

can produce a short text snippet (from the PIR) that captures important context explaining

the factors. The snippet enables a human to easily review the selected tags without reading

lengthy incident reports or PIRs. We now describe how AutoARTS uses ML techniques and

the ARTS taxonomy to achieve the above. Figure 5.4 shows the architecture and components

of AutoARTS.

104

5.5.1 Identifying Root Cause Labels from the ARTS Taxonomy

AutoARTS uses multi-label text classification to classify a PIR into a set of ARTS labels.

One key challenge we face is that conventional multi-label text classification algorithms that

treat each class as opaque and independent, require sufficient labelled data for each class to

achieve good accuracy. However, even though we have a collection of labelled data, many of

the fine-grained labels (i.e., ARTS contributing factors) contain very few labelled samples

(i.e., PIRs). Specifically, 68% of the labels from ARTS taxonomy have fewer than 10 labelled

samples from our dataset, which is adversarial to classification accuracy.

To address this, we leverage the hierarchical relationships between root cause labels in the

taxonomy using Graph Convolutional Networks [KW16]. This enables transfer of knowledge

from the categories with adequate labels to categories with few labels (§ 5.6.3). In particular,

we apply a hierarchical text classification model called HiAGM [ZML20]. Contrary to the

conventional multi-label text classification methods that disregard the holistic label structure

for correlational features, we attempt to fully utilize the relationships between the text features

and labels, as well as inter-label dependencies. As an example, the “Authoring.Code.Change"

label only has 13 samples, making training difficult. However, by modeling the root cause

taxonomy as a graph, we can transfer knowledge from the “Authoring.Code.Bug" label, which

has 733 samples, to “Authoring.Code.Change" since they share the features of their same

parent root cause label, “Authoring.Code".

Given a Post-Incident report x = (w1, w2, . . . , wn) with n tokens, the sequence of token

embedding is initially fed into a bidirectional GRU neural network [CGC14] to extract text

contextual features. Following the GRU model, multiple CNN layers are employed to generate

the n-gram features. The top-k max pooling layer is then applied to obtain the overall text

representation S ∈ Rn×dc that highlights the key information, where n is the top-k output

dimension of CNN layers and dc represents the embedding dimension.

105

To model the ARTS taxonomy, we formulate the taxonomic hierarchy as a directed acyclic

graph G = {V,Et, Eb}, where V refers to the set of label nodes. Et and Eb represent the

top-down and bottom-up hierarchy paths respectively. To encode the hierarchy graph, a

GCN-based hierarchy encoder [KW16], Hierarchy-GCN, is used to aggregate data flows

within the top-down, bottom-up and self-loop edges based on the associated neighborhood of

each node. The GCN-based graph encoder adapts the convolution concept from images to

graphs, in which the graph convolutional operator can effectively convolve the multi-order

neighborhood information by forming multiple propagation steps during the forward pass. For

each node, the feature information is aggregated by the node feature from all the neighbors,

including the node itself, to leverage the graph structure of label taxonomy.

Next, we aggregate the features of texts and labels together using a label-wise attention

mechanism [YYD16]. Specifically, the attention αkj, which indicates how informative the

j-th text feature is for the k-th label, is calculated as follows:

αkj =
esjh

T
k∑n

j=1 e
sjhT

k

, (5.1)

where sj is the j-th text feature of the root cause input and hk represents the k-th node in

the label hierarchy. The label-aligned text feature vk =
∑n

i=1 αkisi for the k-th label is then

obtained and fed into a classifier for hierarchical label prediction.

Finally, we flatten the label hierarchy by treating all nodes as leaf nodes for multi-label

classification, regardless of whether a node is a leaf or an internal node. A binary cross-entropy

loss function is employed to train the model using the ground truth and predicted sigmoid

score for each label. In additional, a recursive regularization for the parameters of the final

fully connected layer is used to encourage classes nearby in the hierarchy to share similar

model parameters.

Lr =
∑
i∈C

∑
j∈child(i)

1

2
∥wi − wj∥2, (5.2)

where the node j is the child of node i in the label hierarchy.

106

5.5.2 Extracting Root Cause Context from Postmortems

The objective of context extraction is to extract key text snippets from a given Post-

Incident Report (PIR) for on-call engineers to reason the contributing factors of an incident

without reading the complete lengthy report. Many text summarization techniques exist.

Abstractive summarization, where summaries may contain generated sentences, is not a good

fit for us since our goal is to select and highlight existing texts in the PIR, as is done by

extractive summarization. However, existing language models such as BERT [DCL18] and

XLNet [YDY19] are trained on large corpuses such as Wikipedia articles, etc., where the

syntax and semantics of the language used is quite different from what is observed in PIRs

due to domain-specific usage of words (e.g., ‘Fabric’ in networking terminology vs clothing)

and different vocabulary. Moreover, existing extractive summarization models are trained on

and their traditional usage in summarizing text documents, which is different from context

extraction from PIRs. We therefore finetune an existing model called Pegasus [ZZS20] with

our labelled data (from § 5.3.1).

In Pegasus, important sentences are removed or masked from an input text and are

generated together as one output sequence from the other remaining sentences, similar

to an extractive summary. Hence, Pegasus is amenable for context extraction from PIRs,

because we can mask the key sentences identified in our analysis § 5.3.1 to finetune the

model parameters. Using the standard Transformer encoder-decoder, Pegasus model is

pre-trained on two enormous text corpora: 1) Colossal and Cleaned version of Common

Crawl (C4) [RSR20], which comprises of text from 350 million web pages with a size of 750

gigabytes; 2) HugeNews [ZZS20], a dataset of 1.5 billion news articles gathered from 2013 to

2019. Similar to MLM tasks for predicting masked tokens, a new pre-training task called

Gap Sentences Generation (GSG), is applied to fill the masked sentences. Three different

strategies are applied for selecting m gap sentences without replacement from a document.

The first method is to uniformly select m sentences at random, whereas the second strategy is

to simply select the first m sentences. The aforementioned two strategies are combined with

107

the Principal strategy, in which top-m scored sentences are chosen based on their significance

as measured by rouge score [Lin04] without the selected sentence. Formally, the score si of

the i-th sentence xi can be expressed as follows:

si = rouge
(
xi, D \ {xi}

)
, (5.3)

where the D is the set of all the sentences in the document and rouge function is a

commonly employed metric for evaluating how good an automatically produced summary

against a reference summary.

Even though Pegasus has been pre-trained on massive datasets, it is not trained to

generate context from root cause descriptions in software engineering domain. To completely

comprehend the context extraction task in our domain, we utilize the human-labeled context

to further fine-tune the Pegasus model as a sequence-to-sequence task.

The root cause of this monitor alert was that a lot of subscriptions
could not deploy VMs on indiacentral region.
… … (omit 132 words)
This problem occurred because the traffic that was re routed to
AZSM could not be handled. This problem occurred on
indiacentral prod b and indiacentral prod b. As part of increasing
inventory we have introduced news sets of AMD clusters. The
AZSM services on these clusters still needed some configuration
and build out related processed to be completed. Hence these
clusters stamps could not handled the traffic re routed to them.
The traffic was routed as part of default behavior. We are going to
change this. The Fabricator clusters started taking tenant traffic
even though their corresponding Az SM clusters weren’t ready.
This was done as part of flighting on Broad clusters. India Central
was one of the region for this flighting. We did not anticipate a
case where new build out clusters would not be able to take the
new traffic. This was detected as part of the API failure monitor.
We will be working on adding more robust feature specific
monitoring and more strict rollout to not encounter this failure
again.

Figure 5.8: Context extraction from a redacted PIR. Green sentences are extracted by both our model

and human expert, red are extracted by model only and blue are extracted by human only.

Figure 5.8 illustrates an example of context extraction from a PIR report consisting of 328

words. The human-labeled context is shown in blue and green, whereas the context extracted

108

from Pegasus is shown in the green and red. This example shows that ≈50% tokens can be

filtered, which can considerably enhance the efficiency with which on-call engineers read the

PIR report.

5.6 Evaluation of AutoARTS

To empirically, evaluate the performance of AutoARTS, we use the labelled dataset from

our manual analysis (§ 5.3.1).

5.6.1 Methodology

Dataset. Our dataset consists of 1120 PIRs that are expert-annotated with ARTS root

cause tags and contextual sentences to justify them. We use stratified sampling to divide this

dataset into train(72%) and validation(8%) splits to train and tune the hyperparameters of

different models and test(20%) split to report the results with the trained models.

Data Pre-processing. We found that engineers often included various types of data such

as debugging queries issued on logs, error messages, stack traces, screenshots, etc., in PIRs

(also identified in [SBK21]). These add significant noise to the vocabulary of the language

processed by NLP models, without contributing to performance. We carefully remove such

noise with regular-expression based filters and only select alphabetic text for our evaluation.

For experiments in § 5.6.2, we also use the NLTK [Bir06] library to remove stop-words and

extract stems of words to construct vocabulary.

Evaluation Metrics. For root cause classification, we use micro-F1 score to analyze

performance across different incidents with multiple labels. We also use weighted-F1 score

to analyze performance across different classes since our dataset is imbalanced as shown in

Table 5.1.

109

For context extraction, we use ROUGE (Recall-Oriented Understudy of Gisting Evalu-

ation) [Lin04] and BLEU (Bi-Lingual Evaluation Understudy) [PRW02] scores to evaluate

the similarity of extracted context against the ground truth. Rouge-N score is based on the

percentage (higher the better) of N-grams from the ground truth that are present in the

extracted context. BLEU-N score indicates the percentage of N-grams from the extracted

context that are present in the ground truth. Rouge-L F1-score is based on the longest

common subsequence (not necessarily consecutive) between the extracted context and target

context.

5.6.2 Featurization

Sophisticated DL language models impose constraints on input sequence length (e.g., 512

tokens for BERT [DCL18]). The limit is much smaller than our preprocessed PIRs (avg.

length of ≈ 1900 words) and hence we cannot train DL models with the entire PIRs. However,

a PIR is organized into multiple sections and not all sections are equally important for root

cause classification. We therefore conduct an ablation study by featurizing each section in

the PIR into Bag-of-Words encodings and classify them to top-level root cause categories

using a Random Forest classifier.

Section Micro-F1 Weighted-F1
Whole PIR 0.55 0.40

Title 0.53 0.45
Summary 0.47 0.46
RC-Details 0.52 0.45

5-Whys 0.54 0.40
Discussion 0.53 0.40
Mitigation 0.47 0.40

RC-Details + 5-Whys 0.56 0.42

Table 5.3: Study on the utility of different PIR sections in top-level root cause classification using

Random Forests.

110

Table 5.3 highlights that “root cause details” and “5-Whys” sections achieve better micro-

F1(1.8% higher) and weighted-F1 (5% higher) scores compared to using the whole PIR. These

sections capture information relevant to root cause classification and by only using them, we

minimize sequence length to meet constraints imposed by DL models.

5.6.3 AutoARTS’s Performance on Root Cause Labelling

Table 5.4 compares the level-3 root cause classification performance of our trained HiAGM

model against a flattened version of our hierarchical taxonomy (HiAGM_Flat), where we

remove parent-child relationships between different root causes in the taxonomy and consider

all the root causes tags to be opaque and independent of each other.

Model Micro-F1 Weighted-F1 Precision Recall
HiAGM 83.16 89.63 71.17 100.00

HiAGM_Flat 45.40 68.66 65.61 74.11
BERT_MLC 42.29 46.85 43.63 53.26

Table 5.4: Performance of HiAGM compared to using flattened root cause taxonomy (HiAGM_Flat)

and a finetuned-BERT based multilabel classifier (BERT_MLC).

We also compare HiAGM against a multi-label classifier (BERT_MLC) with the flattened

version of the taxonomy using finetuned BERT [DCL18] model to encode the PIR text.

We observe that HiAGM performs significantly better (31% higher weighted-F1 measure)

than HiAGM_Flat indicating the utility of GCN to leverage neighboring relationships

between root causes and the need for root cause taxonomies to be hierarchical. HiAGM

performs significantly better (91% higher weighted-F1 measure) than BERT_MLC along

with HiAGM_Flat (47% higher weighted-F1 measure), demonstrating no utility in finetuning

existing language models on PIRs.

111

5.6.4 AutoARTS’s Performance on Context Extraction

Using the train and validation splits of the dataset, we finetune Pegasus for 15 epochs and

T5 (3 Billion parameters) [RSR20] for 7 epochs and report the results on the test set.

Model ROUGE BLEU
Rouge-1 Rouge-2 Rouge-L BLEU BLEU-1 BLEU-2 BLEU-3

Pegasus - (P) 32.55 18.72 24.30 9.61 18.03 10.31 8.93
Pegasus - (F) 45.46 35.65 38.43 24.60 32.19 24.98 23.41

T5 - (P) 34.38 23.31 28.03 10.06 15.68 10.83 9.43
T5 - (F) 41.63 33.86 35.76 23.81 29.81 24.10 22.70

BERT-cased - (P) 40.05 27.03 31.01 18.62 28.43 18.95 16.83
BERT-cased - (F) 40.08 27.35 31.20 18.80 28.32 19.03 16.95

BERT-uncased - (P) 39.52 26.58 30.74 17.63 27.47 17.98 15.89
BERT-uncased - (F) 39.92 27.44 31.57 18.64 28.08 18.91 16.90

Table 5.5: Performance of Pegasus and T5 models. (P) indicates Pre-trained versions and (F) indicates

fine-tuned versions. We also present performance of unsupervised clustering based approach for extractive

summarization using BERT.

Table 5.5 compares the performance of finetuned Pegasus model against baseline ap-

proaches using T5 and clustering-based extractive summarization [Mil19] using BERT. We

can clearly see that our finetuned Pegasus model achieves the highest performance across

various ROUGE and BLEU metrics. We observe a significant (58.15%) improvement in

Rouge-L score as a result of finetuning Pegasus, because pre-trained version of Pegasus is

trained on significantly different domains of language such as news articles, etc., and is

trained to summarize them, which is different from context extraction. We also observe a

7.6% increase in ROUGE-L score compared to the finetuned-T5 model, because Pegasus

extracts sequences of text from the PIR as opposed to T5 which generates new sequences of

words, which might not represent the content present in the PIR which is where engineers

derive their context from. Finetuned-Pegasus performs significantly higher (21.73%) than

unsupervised clustering based summarization approaches using finetuned-BERT, because

summary of the PIR doesn’t represent the context.

112

5.6.5 User Study

To evaluate the utility of AutoARTS, we randomly sampled 10 example incidents and the

tool’s generated contexts, the corresponding root cause categories and presented them to one

of the leads that developed the ARTS taxonomy (by studying PIRs). These were examples

that were tagged by them in the past that are not used for training any of our models. The

goal of this study is to understand, for each example: (Q1) How useful the generated context

is in identifying all the contributing factors that they identified, (Q2) If the generated context

has extra details that are not useful for identifying contributing factors (to evaluate the

succinctness of our generated contexts), (Q3) Whether the generated context can help them

identify any new contributing factor that they have not identified previously (to evaluate

the generalization of the model’s outputs beyond accidental False Negatives in ground-truth)

and (Q4) Whether the tool missed the most important contributing factors (to evaluate the

importance of False Negatives).

Metric Response Description
(Q1) Usefulness of generated context to iden-
tify contributing factors

4.6/5 1 - Not useful at all, 5 -
Very useful

(Q2) # Contexts generated with unnecessary
details

0/10 No unnecessary details in
generated contexts

(Q3) # New Rootcauses from generated con-
texts

2 False negatives identified
by AutoARTS

(Q4) # Examples with a crucial Rootcause
tag missing in classification

7/10 Crucial contributing fac-
tor missing from predic-
tions

Table 5.6: Quantitative user feedback from an expert over the effectiveness of AutoARTS across

context generation and root cause classification tasks over a randomly chosen set of 10 incidents.

Although we quantitatively evaluated the syntactic similarity of generated contexts to

the ground truth, the developer study helps us understand if they are semantically similar

and ultimately usable by a human (OCE). Similarly for Root cause classification task, the

113

relative severity of each individual contributing factor is not identifiable from ground truth

(no ranking). Q4 helps us understand if the predicted contributing factors miss any crucial

tag from the ARTS taxonomy.

We quantify response to Q1 on a Likert scale of 1 to 5, where 1 meant ’not useful at all’

and 5 meant ’Very useful’. Q2-Q4 were answered as a binary Yes/No, by providing clarifying

responses wherever necessary for sanity check. Table 5.6 shows the utility of the tool based

on the subject’s responses to Q1-Q4. We find from the study that the contexts generated by

the tool are extremely useful in identifying all the contributing factors and they are succinct

enough without presenting additional information that is not useful in identifying contributing

factors. In addition to this, we also found that our tool helped the subject find 2 new root

cause tags that should have been assigned to these incidents in the past, highlighting the

difficulty in manually sifting through postmortem reports to identify contributing factors.

At the end of the experiment, the subject was asked to answer on a scale of 1-5 (5 being

very useful, 1 being not useful at all), indicating the overall usefulness of our tool to assist

them in their task based on the 10 examples. The subject rated our tool ‘above 4.5’. In

addition to this, the subject’s verbatim feedback on our tool — ‘This tool is very useful

from context generator perspective for the root cause classification task. From the

Tags perspective, if we had 4th level for just code change related tags this is very

useful for change management standards team. Need to fix the dependency tags

related logic as it’s defaulting to “Data Bricks”. Over all I am very happy with

this tool’ — highlights the utility of our context generation and the lapses in automated

root cause classification. The imbalance in tag distribution over our training set resulted in

misclassifying incidents with tags that do not have sufficient supporting training samples.

Overall, the feedback indicates the promise for deploying the tool for practical use in assisting

engineers by providing enough context from PIRs to assign root cause tags from ARTS

taxonomy.

114

5.7 Related Work

5.7.1 Root-cause analysis of past incidents

Root-cause analysis of incidents and outages and defining taxonomies to capture their

root-causes has been a popular topic of study in the software engineering and systems

community. We find that prior work can be categorized into two major buckets. The

first category of prior work focuses on specific type of production issues such as software

bugs[LLL16, GDQ18, CDJ19, ZYJ21a, CLP14, LLM19d] or network issues [GMK16]. The

other category focuses on specific services or systems such as big-data systems[YLZ14b],

business data processing platform[DKI14] and a specific cloud service[GSB22]. In contrast,

we consider a large-scale cloud system consisting of many hundreds of services and all types

of failures including hardware and software, infrastructure and application, software code and

configuration, and so on. Prior work that propose solutions to simplify the task of identifying

root-cause of a failure [SBN21, DNS22] are orthogonal to our focus.

5.7.2 Text summarization & root-cause classification

Text summarization [SKR21] is the task of rewriting a long document into a condensed

form while retaining its essential meaning. The most revalent paradigms for summarization

are extractive and abstractive based approaches. When generating summaries, abstractive

summarization approaches [XZW22] are typically considered as a sequence-to-sequence

learning problem [NZG16, SLM17, PXS17], whereas extractive summarization methods

[GDR18, ZLC20] extract key sentences as summary directly from the text. In our context

extraction task, we not only to condense the postmortem context, but also to extract essential

descriptions covering different root-cause factors.

Prior work focused on diagnosing different kinds of incidents such as, Rex [MBK20]

diagnoses misconfigurations using syntax trees, DeepAnalyze [SBN21] identifies culprit frame

115

in WER crash stack traces. Orca [BKM18] identifies buggy commits using differential code

analysis and provenance tracking. SoftNER [SBK21] analyzes postmortem reports to extract

entities. To the best of our knowledge we are the first to classify incident postmortems into

an extensive high-granularity taxonomy.

116

CHAPTER 6

Coarse Causal Reasoning in Telemetry

This chapter provides an overview of a joint work with Vikramank Singh, Zhengchun Liu,

Murali Narayanaswamy and Tim Kraska. As mentioned in § 1.3, existing practice is to

manually reason telemetry across different teams to diagnose the root cause of a performance

degradation in large scale distributed systems. However, engineers’ domain expertise over

large-scale services is narrow due to modularity and existing causal discovery techniques

cannot scale to production-scale telemetry due to computational complexity and to the large

and dynamic execution state of distributed systems due to missing confounders.

Specifically, we address this problem by presenting a domain-agnostic featurization

technique that enables leveraging wide range of telemetry. We then use scalable anomaly

detection over the telemetry as a proxy to the execution states of the distributed system

to enable causal discovery across the telemetry to assist engineers in root cause analysis.

Contrary to traditional method of defining a causal model and running causal inference

atop the model, we dynamically discover causal models from anomalous runs due to the

aforementioned challenges. To the best of our knowledge, our approach is able to identify the

largest number of cause-effect relationships from production telemetry.

6.1 Causal Discovery for Root Cause Analysis

One effective approach to reason performance degradations in a distributed system is to

identify cause-effect relationships [ICM22, GLD21] for an engineer to diagnose the root cause

117

of an incident. A causal model is a directed graph, where each edge indicates a cause-effect

relationship between the source and the destination respectively. This can enable on-call

engineers (OCEs) to quickly identify the root cause and take mitigative actions to restore

normal performance in the service. Note that, today engineers have an approximation of

bits and piece of this causal model based on their scope of operation in a large-scale services

distributed as microservices.

6.2 Overview - Reasoning Slow Queries in Anon2

To reason events in a system when an incident is detected, engineers instrument their service

code with logging frameworks. In production services like Anon2 hundreds of metrics capture

different aspects of a query execution during run time. These, when tied together with an

engineer’s hard-won experience can help diagnose the root cause of an incident (e.g., why

a query is slow). When analyzing an incident for it’s root cause, engineers manually sift

through the plethora of logs to identify “suspicious” metrics based on their own narrow and

unstructured domain-expertise over the database service (e.g., CPU usage is typically 30%

but it is 90% during the incident). They hypothesize a possible root cause that led to these

symptoms and validate it. If it is valid, the investigation is concluded, the findings are

reported and any useful mitigation/resolution steps are taken to prevent it from recurring.

On the other hand, if their hypothesis is invalid, they use this information to rule out certain

root causes and iterate this process until they find a valid root cause hypothesis.

6.2.1 Challenges

Limited Domain-Expertise. Engineers are limited by their narrow domain-expertise

over system behavior due to modularity and hence, define simplistic alert rules (e.g.,

Avg5mins(CPU) > 60%) over a small set of telemetry which without additional context

cannot help in root cause diagnosis and result in false alerts which are cognitively burdening

118

to investigate. This also results in stale rules due to high-risk in potentially missing an

incident due to removal of an alert rule by another engineer.

Telemetry Scale and Granularity. Production telemetry captures hundreds of metrics

and the size of outputs from anomaly detection and clustering techniques quickly exceed a

handful to meaningfully assist engineers in root cause analysis. Telemetry is also reported

at various granularity (e.g., Disk usage at machine-level, CPU usage at segment-level, etc.)

whose cardinality varies across queries due to execution of varying number of segments across

varying number of machines.

Dynamic Cause-Effects. Causal inference techniques rely on a graphical model that

capture cause-effect relationships between various telemetry. This graphical model is large

(in width and depth) and existing causal discovery methods are prohibitively expensive to

discover it. Moreover, this graph is highly dynamic due to missing confounders from telemetry

due to control flow branching (results of ’If’ conditions in code), system-level events, etc.

For these reasons, causal discovery methods cannot identify graphical models that capture

cause-effect relationships between telemetry in large-scale production services.

To better understand these woes, consider an example from Anon2. An ML-based

predictor determines whether an incoming query is ‘short’ or ‘long’ for the workload manager

to enqueue the query into an appropriate queue for execution with a set time-out duration.

Due to a mis-prediction from this model, a ‘long’ query can be put into a ‘short’ query

acceleration queue and suffer from queueing delays. The telemetry captures the queueing

time, ML model prediction but whether the prediction is correct/wrong is not captured.

There can be a variety of other reasons that cause high queueing time (e.g., workload size,

long queries). For a causal discovery method to identify that the ML model can cause high

queueing delays only during a misprediction is non-trivial as this information is missing. On

the other hand, telemetry consists of several other instances of query execution where (a)

there is no cause-effect relationship (queueing affected due to other reasons), (b) there is

a positive cause-effect relationship (correct prediction), (c) there is a negative cause-effect

119

relationship (misprediction) and (d) there is a flipped cause-effect relationship between the

two variables (if the ML model relies on current queuing delays for a prediction). This

example also highlights the need to leverage available telemetry as no resource (e.g., CPU,

I/O) is overloaded and even if queuing delay is used in existing tools, it is unclear why the

queuing delay is high for root cause analysis. When a set of engineers manually built a graph

that captures cause-effect relationships between telemetry, the ML prediction is not included

in the graph demonstrating the limitations of a narrow domain-expertise.

6.3 Limitations of Causal Discovery

To understand the resource and time usage of causal discovery methods, we created synthetic

datasets across varying number of normally distributed random variables and samples. For

each random variable in the synthetic datasets, we randomly choose a distinct mean (µ) from

a large range (10x the number of variables) and a standard deviation (σ) to sample values

from a normal distribution with (µ, σ). For each such dataset with V random variables and S

samples, our goal is to measure the execution time of a causal discovery algorithm to identify

all the causal dependencies between the random variables.

We chose PC algorithm with Fisher’s z-test as the conditional independence test imple-

mented in an open-source python library. We use a machine with 32 physical CPU cores

and 64GB RAM running a Linux operating system for the experiment. We set a 24 hour

duration as the time out for experiments. Table 6.1 shows execution times of causal discovery

on datasets with V ranging from [10, 750] and S ranging from [1k, 50M]. Though these

datasets are randomly generated, they can potentially be correlated and the causal discovery

algorithms can discovery correlations or potentially causal dependencies between variables.

As shown in Table 6.1, causal discovery methods cannot scale to the scale of production

telemetry (that is beyond 750 features) from millions of queries.

120

Number of Queries Size of Telemetry

10 50 100 250 500 750
1000 .03s .44s 5.88s 5.85m 1.34hr T/O
10000 .02s .57s 9.77s 37m 4.67hr T/O
100000 .02s .77s 10.82s 2.5hr T/O T/O
1000000 .13s 1.6s 24.01s 15.78hr T/O T/O
10000000 1.26s 7.7s 74.76s T/O T/O T/O
25000000 3.12s 17.32s 60.23s T/O T/O T/O
50000000 6.31s 39.42s T/O T/O T/O T/O

Table 6.1: Time-To-Finish for Causal Discovery on a controlled synthetic dataset using the PC algorithm

on a 32 core machine with a 24hr timeout.

6.4 PerfRCA

We design PerfRCA, as shown in Figure 6.1 to enable causal discovery between telemetry to

assist engineers in root cause analysis of slow queries in Anon2. Our principal hypothesis is

that anomaly detection or clustering based approaches for root cause analysis of performance

degradation in large-scale production systems are cognitively burdening on engineers due to

the volume of telemetry. For example, for an engineer to reason 30 anomalous metrics out of

900 metrics is non-trivial and sometimes prohibitive due to the modular nature of service

development where only a handful engineers can reason a certain metric from components

developed by them. To address this issue and other practical challenges that arise in large-

scale systems, PerfRCA outputs causal relationships between production-scale telemetry

relevant for diagnosing the root cause of a slow query.

To do this, PerfRCA employs offline learning to learn a knowledge base of causal

graphs between various subsets of production telemetry and leverages this knowledge base to

present the engineer with the appropriate causal graph in an online fashion. As discussed in

the challenges, existing causal discovery methods neither scale to the volume of production

121

Figure 6.1: Overview of PerfRCA as dynamic causal discovery over anomalous features from a large

set of telemetry of slow queries.

telemetry nor identify causal relationships between telemetry due to the dynamic relationships

resulting from the complexity of modern large-scale database systems.

6.4.1 Feature Computation

Anon2 captures diverse telemetry across various aspects of query execution and infrastructure

usage on production clusters. Anon2 is a columnar database and to optimize the execution

of a query for it’s latency, each query is compiled by a compiler to generate an execution plan.

A given query can run simultaneously across multiple machines as segments which are further

divided into sequential steps. To optimize for resource utilization in production clusters and

throughput of query workloads, Anon2 uses a workload manager that categorizes queries

into multiple service classes. The workload manager estimates execution times and resource

usages of queries based on recent executions to schedule queries in a given production cluster.

Due to this nature of query execution, telemetry captured in Anon2 is heterogeneous

in their reporting granularity. For example, resource utilization metrics are reported at

machine level, latency is reported at segment and query levels. To add to this problem, each

query can have different number of segments dependent on the tables, query operators, etc.,

122

which means heterogeneity in the number of metrics collected for each query. Further, we

have observed that engineers use several notations to indicate the granularity of a metric

in ad hoc ways. For example, in a telemetry table with columns (‘Query ID’, ‘Segment

ID’, ‘Latency’), each row in the table indicates the latency of a segment within a query’s

execution but when the value of ‘Segment ID’ is -1, the latency value indicates the latency of

the overall query execution. Telemetry captured is also heterogeneous in it’s data types. For

example, some metrics like latency are real valued (ordinal) where as service class identifiers

are symbols (nominal). Given the heterogeneity in telemetry that is the result of diverse

types of metrics captured and the execution. We also found that multiple metrics captured

in different telemetry tables can capture the same metrics denoted by a different metric name

for various reasons. Many existing approaches employ domain-expertise to process telemetry

and cherry pick a limited number of metrics. Often largely composed of generic metrics such

as CPU utilization which are not very meaningful for an engineer without additional context

specific to the query/service.

PerfRCA employs a feature computation technique that can scale to increasing telemetry

sizes and deal with heterogeneity in data types, reporting granularity and sizes of query

execution plans. We separate telemetry tables to: ‘query-level’ tables whose rows have a

query identifier and ‘system-level’ tables whose rows do not have a query identifier indicating

that these tables capture metrics independent of a specific query. To tie metrics captured

across these 2 categories of tables automatically, we leverage timestamps of queries and

automatically detect identifiers for ‘system-level’ tables in ‘query-level’ tables. For example,

‘machine ID’ is an identifier for ‘system-level’ table and a ‘query-level’ table contains mapping

between query ID and the machine ID to attach metrics from that particular machine to the

query’s metrics.

We facilitate engineers to specify through a configuration file: (1) omitting certain metrics

that they know are irrelevant for debugging (such as customer account id, etc.), (2) for precise

data type inference, specify the data type of a column in telemetry as one of (‘nominal’,

123

‘ordinal’ or ‘timestamp’) to process it appropriately, (3) the ‘golden’ metric based on which

we identify a ‘slow’ query and (4) to specify naming conventions in telemetry such as all

timestamps with column name prefix ‘start_’ indicating the start timestamp of an event.

We argue that the above steps are relatively much stable to be only updated when adding

a new metric to the telemetry and therefore a one-time specification, for example the data

type of a metric does not change.

With the resulting metrics for each query (at various granularity), we aggregate metrics in

each column in to a list of values. We automatically identify metrics that are at query-level by

confirming singleton list of values across all queries. For all the other metrics, we compute the

following statistical aggregates for ‘ordinal’ data type metrics per query: (‘mean’, ‘standard

deviation’, ‘max’, ‘min’, ‘q25’, ‘q50’, ‘q75’, ‘q90’, ‘q95’, ‘q99’), such as mean CPU utilization

across all segments of a query. Note that we eliminate any negative values (which are largely

used as symbols) such as -1 when computing these features. These features address the

issue of different queries having different number of segments while simultaneously providing

rich features that can expose and distinguish between spikes, level shifts, jitters accurately.

These features also address the issue of ad hoc conditional values such as value 0 indicates no

timeout duration and non-zero values indicate the timeout duration for a query. For ‘nominal’

data type metrics, we compute the frequency of each symbol such as the number of segments

with service class ’high’.

For ‘ordinal’ metric features, we remove duplicate features by computing cosine similarity

between 2 features across all queries and with a high threshold (0.99). This addresses the

issue of same metric being reported with two different names in different tables. This also the

issue of heterogeneous granularity where certain metrics are only reported twice for example

per query where it is redundant to maintain multiple statistical features such as quartiles,

etc.

124

6.4.2 Anomaly Extraction

It is hard to determine if a high response time of a query is expected or not because of

the complexity of Anon2 service and the diversity in the query workloads. For example,

cache misses, increase in number of rows in a table due to recent data ingestion, insufficient

resources, etc., in isolation or in various combinations are service-level causes for high response

times of a query. Query-level differences such as queries with JOINs can implicitly demand

more compute resources and therefore higher response times as compared to those of queries

with COUNTs which can be optimized.

To identify slow queries, we isolate query-level differences by clustering query telemetry

across ‘same’ queries i.e., queries that have the exact same compiled execution plan over the

same set of tables. From the resulting cluster of queries, we sort them by their response

times and identify the slowest 10% of queries as ‘anomalous’ queries and the fastest 80% of

the queries as the ‘baseline’ set of queries. For each of the features computed over query

telemetry, we compute the mean and standard deviation of observed values over the baseline

set. For each of the queries in the anomalous set, we identify the subset of features whose

z-score is atleast 3 as the relevant features to reason the performance degradation.

For each of the resulting subsets of relevant features, We identify their corresponding

values across slow queries from all query clusters with the same relevant feature subsets.

6.4.3 Causal Discovery

We hypothesize that the set of slow queries with the same relevant feature set share a common

cause of performance degradation, which is a common assumption in other related works

such as DBSherlock [YNM16] and iSQUAD [MYZ20]. The number of relevant features

identified from anomaly extraction in a production-scale telemetry makes root cause analysis

a cognitively burdening task on engineers. Through anomaly extraction, we only identified

relevant features correlated with the increase in response times of slow queries. To further

125

assist engineers in root cause analysis of slow queries, we learn cause-effect relationships

between relevant features as a causal graph using causal discovery algorithms.

6.5 Preliminary Results

To evaluate PerfRCA, we considered 668 production clusters from two zones of Anon2

within the US. Over 70 million queries were ran over one week and of these queries we try to

identify 2M queries that are significantly slow compared to their baseline. PerfRCA was

able to identify 1000s of edges in causal models across these queries within a few minutes,

where otherwise we would not be able to.

6.5.1 Case Studies

We present 2 case studies to showcase the effectiveness of PerfRCA through a user study.

In the first example, WLM (Workload Manager) misclassifies query as ‘short’ query and

assigns timeout value. Hence, it enqueues the query into a Short Query Acceleration queue

and the query execution exceeds timeout duration. WLM then has to move the query to

another queue causing behind other queries resulting high queueing time. Figure 6.2 shows

PerfRCA’s output which clearly indicates that when the total queue time is high for these

slow queries, the ‘is_short_query’ value was also high (0 indicates long query, real value

indicates short query) clearly indicating a misclassification from WLM. It further shows that

the actual execution time of the query was also high in those cases. We confirmed from

engineers that this is indeed a major root cause of slow queries and the causal graph is an

accurate representation.

In the second example, missing data on disk (due to large number of queries working

on different data) causes high number of prefetches from AWS S3. These prefetches cause

an increase in memory and disk usage. Leads to high RA (Read-Ahead) points, which is

Anon2 ’s way of tracking resource usage in clusters. This ultimately causes high queueing

126

Figure 6.2: Output of PerfRCA for a WLM misclassification.

delays due to time taken to fetch data from S3. Figure 6.3 shows PerfRCA’s output which

clearly indicates that high number of prefetches cause RA points and high queueing delays

(of individual segments) ultimately leading to high queueing delays (of the entire query). We

confirmed from engineers that this is accurate and it was interesting to find that even senior

engineers could not interpret the meaning of RA points without bringing in an expert who

develops code around RA points, showing the limitations of domain expertise of engineers

over large scale systems.

Figure 6.3: Output of PerfRCA for a overload in system due to high number of prefetches from S3.

127

CHAPTER 7

Conclusion

Cloud computing services have become mission-critical to many aspects of our life from

health-care to travel to governance and so on. Keeping these services reliable is non-trivial

and is no longer viable to be maintained by human resources at their pace of growth. In

this thesis, I propose ML and NLP based techniques combined with rich debugging insights

from my experience working with planetary-scale cloud services to leverage the vast amounts

of available historical debugging data to help engineers in debugging production incidents.

Further, I propose a ‘Coarsening’ framework that enables cloud providers to take scalable

centralized debugging initiatives to get rid of the problems caused by inefficient, redundant

and time-consuming distributed debugging workflows.

I discuss tools that I built as a part of this framework motivated by the learnings from

real debugging workflows at major cloud providers. Revelio produces debugging queries for

engineers whose results can aid in validating a root cause hypothesis. Revelio leverages

ML models to deal with heterogeneity in data (e.g., unstructured user reports, quantitative

system logs) and uses stable rank ordering based features to generalize to new and unseen

fault locations better than other approaches. I developed a distributed systems debugging

testbed for evaluating Revelio and the fault injector in the testbed is motivated from

a study of incidents and debugging workflows at Anon1. AutoARTS labels an incident

postmortem report with all contributing factors from a hierarchical and comprehensive ARTS

root cause taxonomy. AutoARTS also extracts key context for each contributing factor

from a lengthy postmortem report to assist engineers in reasoning the choices for a root

128

cause label. The manual and empirical analyses conducted at Microsoft Azure resulted in

many interesting findings about production incidents. PerfRCA enables causal discovery

at-scale between telemetry in large-scale distributed systems to assist engineers in reasoning

the cause of performance degradations. My work on coarse log summarization over real

events captured in log from the datacenter operating system of a large cloud Anon achieved

promising preliminary results to identify the chains of events that explain the root cause of

an incident.

I envision that today’s clouds will be ever more reliable by adopting a centralized cloud-

scale debugging plane that enables: transfer of rich debugging insights across teams in a

cloud, standardization of logging, tracing and telemetry collection frameworks across services

to ease reasoning of and correlating logs, devise strategic retention plans over logs to build

useful ML tools and make learning more tractable with the ‘Coarsening’ framework as a

bootstrapping strategy. In this thesis, I presented evaluations conducted over real production

incidents to show the preliminary proof-of-concept in using the ‘Coarsening’ framework and

the presented ML, NLP techniques used in building tools. Realizing this vision at-scale takes

a long time and support from cloud administrations to facilitate cross-team efforts. But, it is

absolutely crucial to maintaining the reliability and availability targets of tomorrow’s clouds.

7.1 Future Work and Open Problems

I am excited by the recent advancements in the field of Large Language Models (LLMs)

that can increasingly make sense of unstructured natural language data, code scripts and

synthesize both unstructured (e.g., hold conversations [TAB24, WHL23]) and structured

outputs (e.g., code suggestions [WHL23, NN22]). There are however open problems that

still need solutions as I mention below to enable functional training/finetuning of these

models which can only be enabled by a cloud-scale centralized debugging effort. Significant

129

cross-team efforts are needed to bootstrap this transition to deploy debugging tools that can

function at-scale.

7.1.1 Evaluation on Production Systems

My experience with data-driven debugging in the three largest clouds has been very frustrating.

We found that incident routing was mostly done manually with long meetings between teams,

root cause analysis was ad hoc, and retrospective analysis was primitive. When we attempted

data driven debugging, we found data was retained for only a few months (or weeks for

different types of data) and the true positives were small (high sparsity). Further data across

teams was unavailable (e.g., different retention policies, gaps in tracing correlation IDs),

making it hard to debug incidents that spanned teams. Which is what led us to a Centralized

Debugging Plane that balances modularity needed for rapid development with the holistic

view needed for debugging via ‘Coarsening’. While we have proposed ‘Coarsening’ as a

framework and have preliminary results, a large-scale evaluation of these approaches on real

systems is a mammoth-undertaking.

It requires coordination between teams to get access to necessary data, process data and

potentially waiting for months to collect sufficient amount of data in the format that is needed.

While the techniques proposed in this thesis generalize well to different debugging tools and

systems, implementing them to work with different services is non-trivial and hence a major

roadblock to deploying and evaluating the performance of debugging tools across clouds and

services. We hope that a CDP lens can enable cloud providers to design consumable, general

APIs that are designed with cloud-scale debugging as a key consumer can help ease this

process. Such initiatives can enable engineers to identify alerting techniques, identify key

vulnerabilities across the cloud and experiment with different logging and tracing frameworks.

Simply put, a centralized cloud-scale lens to debugging is necessary to get rid of blind spots

due to distributed debugging workflows and scalably improve reliability.

130

7.1.2 Impact of LLMs on Debugging

Designing a good developer-assistant interface that seamlessly handles expressive input

options from the developer and provides timely responses is crucial to debugging assistance.

Keeping the developer in the loop is critical because the developer represents years of domain

expertise that is complementary to the data-driven NLP approach. However, determining the

right interface is challenging as developer time and inputs are scarce resources. Repeatedly

asking the developer for inputs negates automation benefits, but judicious developer inputs

(e.g., a hint that the bug might reside in a particular subsystem) could significantly improve

the assistant’s output. It is also important to determine what developer inputs to request.

Further, since developer time is precious, the developer should be able to smoothly trade-off

prediction accuracy or granularity for lower prediction time.

All these issues present an opportunity for using LLMs based on recent advances in the

ML and NLP domains. LLMs like ChatGPT [WHL23] from OpenAI, Gemini [TAB24] from

Google are capable of human-like interaction with users. A major challenge in this thesis was

to deal with heterogeneity and unstructured data sources in providing debugging assistance.

We took the approach of designing data structures and frameworks that can enable and

leverage ML and NLP techniques, but it’s not always trivial to deploy such techniques in

production systems because of lack of the exact type of data needed for a specific tool. LLMs

on the other hand are easy to deploy because of lack of constraints on the structure of the

data they can ingest. The principal drawback of using LLMs, however, is that the data

sources they are trained on might not be very amenable to be used on debugging related

information, atleast not with a high quality. We attempted this at Microsoft Azure and

found that it is difficult to finetune LLMs to a functional-level beyond simple tasks such

as summarization, search, etc. Cloud providers can invest resources into finetuning LLMs

on debugging related tasks to better leverage their historical debugging data and improve

interactive debugging experience with developers.

131

REFERENCES

[ABI18] Nipun Arora, Jonathan Bell, Franjo Ivančiundefined, Gail Kaiser, and Baishakhi
Ray. “Replay without Recording of Production Bugs for Service Oriented Ap-
plications.” In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, p. 452–463, New York, NY, USA,
2018. Association for Computing Machinery.

[ADS91] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. “Dynamic Slicing
in the Presence of Unconstrained Pointers.” In Proceedings of the Symposium on
Testing, Analysis, and Verification, TAV4. ACM, 1991.

[AKS18] Firas Abuzaid, Peter Kraft, Sahaana Suri, Edward Gan, Eric Xu, Atul Shenoy,
Asvin Ananthanarayan, John Sheu, Erik Meijer, Xi Wu, and et al. “DIFF: A
Relational Interface for Large-Scale Data Explanation.” Proc. VLDB Endow.,
12(4):419–432, December 2018.

[Ama22a] Amazon.com. “AWS Outposts Family.” https://aws.amazon.com/outposts/,
2022.

[Ama22b] Amazon.com. “What is a datalake?” https://aws.amazon.com/big-data/
datalakes-and-analytics/what-is-a-data-lake/, 2022.

[ANC00] Bowen Alpern, Ton Ngo, Jong-Deok Choi, and Manu Sridharan. “DejaVu: De-
terministic Java Replay Debugger for JalapeÑO Java Virtual Machine.” In
Proceedings of OOPSLA. ACM, 2000.

[App21] Appdynamics.com. “ADQL Reference.” https://learn.appdynamics.com/
courses/appdynamics-query-language-aly310, 2021.

[AWS23] AWS. “Application and Infrastructure Monitoring - AWS CloudWatch.” https:
//aws.amazon.com/cloudwatch/, 2023.

[BDG14a] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
“P4: Programming protocol-independent packet processors.” ACM SIGCOMM
Computer Communication Review, 44(3):87–95, 2014.

[BDG14b] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. “P4: Programming Protocol-Independent Packet Processors.”
SIGCOMM CCR, July 2014.

[BDV18] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin T. Vechev.
“Net2Text: Query-Guided Summarization of Network Forwarding Behaviors.” In

132

https://aws.amazon.com/outposts/
https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
https://learn.appdynamics.com/courses/appdynamics-query-language-aly310
https://learn.appdynamics.com/courses/appdynamics-query-language-aly310
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/

15th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2018, Renton, WA, USA, April 9-11, 2018, pp. 609–623, 2018.

[BHS07] Gökhan BakIr, Thomas Hofmann, Bernhard Schölkopf, Alexander J Smola, and
Ben Taskar. Predicting structured data. MIT press, 2007.

[Bir06] Steven Bird. “NLTK: The Natural Language Toolkit.” In Proceedings of the
COLING/ACL on Interactive Presentation Sessions, COLING-ACL ’06, p. 69–72,
USA, 2006. Association for Computational Linguistics.

[BKM18] Ranjita Bhagwan, Rahul Kumar, Chandra Maddila, and Adithya Abraham Philip.
“Orca: Differential Bug Localization in Large-Scale Services.” In 13th USENIX
Symposium on Operating Systems Design and Implementation. USENIX, October
2018. Won the Jay Lepreau Best Paper Award.

[Bot10] Léon Bottou. “Large-scale machine learning with stochastic gradient descent.” In
Proceedings of COMPSTAT’2010, pp. 177–186. Springer, 2010.

[BRA20] Chetan Bansal, Sundararajan Renganathan, Ashima Asudani, Olivier Midy, and
Mathru Janakiraman. “DeCaf: Diagnosing and Triaging Performance Issues in
Large-Scale Cloud Services.” In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Practice, ICSE-
SEIP ’20, p. 201–210, New York, NY, USA, 2020. Association for Computing
Machinery.

[Bri21] University of British Columbia. “Cloud computing support accelerates COVID-19
vaccine improvements.” https://www.asbmb.org/asbmb-today/science/051521/
cloud-computing-support-accelerates-covid-19-vacci, 2021.

[cas16] “Apache Cassandra.” http://cassandra.apache.org/, 2016.

[CC20] Charisma Chan and Beth Cooper. “Debugging Incidents in Google’s Distributed
Systems.” Commun. ACM, 63(10):40–46, sep 2020.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.”
In Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation, OSDI’08, pp. 209–224, Berkeley, CA, USA, 2008. USENIX
Association.

[CDJ19] Haicheng Chen, Wensheng Dou, Yanyan Jiang, and Feng Qin. “Understanding
exception-related bugs in large-scale cloud systems.” In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 339–351.
IEEE, 2019.

133

https://www.asbmb.org/asbmb-today/science/051521/cloud-computing-support-accelerates-covid-19-vacci
https://www.asbmb.org/asbmb-today/science/051521/cloud-computing-support-accelerates-covid-19-vacci
http://cassandra.apache.org/

[CGC14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. “Empir-
ical evaluation of gated recurrent neural networks on sequence modeling.” arXiv
preprint arXiv:1412.3555, 2014.

[CGL09] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D. Joseph.
“Understanding TCP Incast Throughput Collapse in Datacenter Networks.” In
Proceedings of the 1st ACM Workshop on Research on Enterprise Networking,
WREN ’09, pp. 73–82. ACM, 2009.

[CK12] Peter Cowhey and Michael Kleeman. Unlocking the Benefits of Cloud Computing
for Emerging Economies: A Policy Overview. University of California San Diego,
2012.

[CKL20] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan
Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu, et al. “Towards intelligent incident
management: why we need it and how we make it.” In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 1487–1497, 2020.

[CLP14] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. “Failure analysis of jobs in
compute clouds: A google cluster case study.” In 2014 IEEE 25th International
Symposium on Software Reliability Engineering, pp. 167–177. IEEE, 2014.

[CMF14] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F. Wenisch.
“The Mystery Machine: End-to-End Performance Analysis of Large-Scale Internet
Services.” In Proceedings of the 11th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’14, p. 217–231, USA, 2014. USENIX
Association.

[Cou05] Patrick Cousot. “MIT Couse 16.399: Abstract Interpretation.” https://
web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/, 2005.

[Dat22a] Databricks.com. “Introduction to Datalakes.” https://databricks.com/
discover/data-lakes/introduction, 2022.

[Dat22b] Datadoghq.com. “Cloud Monitoring as a Service | Datadog.” https://
www.datadoghq.com/, 2022.

[DBJ23] Pradeep Dogga, Chetan Bansal, Gopinath Jayagopal, Richie Costleigh, Suman
Nath, and Xuchao Zhang. “AutoARTS: Insights and Tools for Rootcausing
Incidents in Microsoft Azure.” In submission for review at USENIX ATC’23,
2023.

[DCL18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.”,
2018.

134

https://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
https://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
https://databricks.com/discover/data-lakes/introduction
https://databricks.com/discover/data-lakes/introduction
https://www.datadoghq.com/
https://www.datadoghq.com/

[Dcr22] Neil Dcruz. “How Cloud Computing helped accelerate the COVID-19 vac-
cination.” https://www.mygreatlearning.com/blog/how-cloud-computing-
helped-accelerate-the-covid-19-vaccination/, 2022.

[DGH16] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare,
Mark Marron, Sailesh R, and Subhajit Roy. “Program Synthesis Using Natural
Language.” In Proceedings of the 38th International Conference on Software
Engineering, ICSE. ACM, 2016.

[DHH18] DHH. “Postmortem on the read-only outage of Basecamp on November 9th, 2018.”
https://bit.ly/2S9pq0t, 2018.

[DKI14] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Geetika Goel,
Santonu Sarkar, and Rajeshwari Ganesan. “Characterization of operational failures
from a business data processing saas platform.” In Companion Proceedings of the
36th International Conference on Software Engineering, pp. 195–204, 2014.

[DNS19a] Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman, and Ravi Netravali. “A
System-Wide Debugging Assistant Powered by Natural Language Processing.” In
Proceedings of the ACM Symposium on Cloud Computing, SoCC ’19, p. 171–177,
New York, NY, USA, 2019. Association for Computing Machinery.

[DNS19b] Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman, and Ravi Netravali.
“A system-wide debugging assistant powered by natural language processing.” In
Proceedings of the ACM Symposium on Cloud Computing, pp. 171–177, 2019.

[DNS22] Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman, Shiv Saini, George
Varghese, and Ravi Netravali. “Revelio: ML-Generated Debugging Queries for
Finding Root Causes in Distributed Systems.” Proceedings of Machine Learning
and Systems, 4:601–622, 2022.

[Doc19] Docker.com. “Enterprise Container Platform | Docker.” https://docker.com/,
2019.

[Don17] Brian Donohue. “Instapaper Outage Cause & Recovery.” https://medium.com/
making-instapaper/instapaper-outage-cause-recovery-3c32a7e9cc5f,
2017.

[Dor15] Dormando. “Memcached-a distributed memory object caching system.” https:
//memcached.org/, 2015.

[Dro19] Dropbox. “Kelsey Fix shares the story behind Dropbox’s largest outage ever.”
https://bit.ly/2S6p8az, 2019.

[Env21] Envoyproxy.io. “envoy: an open source edge and service proxy, designed for
cloud-native applications.” https://www.envoyproxy.io/, 2021.

135

https://www.mygreatlearning.com/blog/how-cloud-computing-helped-accelerate-the-covid-19-vaccination/
https://www.mygreatlearning.com/blog/how-cloud-computing-helped-accelerate-the-covid-19-vaccination/
https://bit.ly/2S9pq0t
https://docker.com/
https://medium.com/making-instapaper/instapaper-outage-cause-recovery-3c32a7e9cc5f
https://medium.com/making-instapaper/instapaper-outage-cause-recovery-3c32a7e9cc5f
https://memcached.org/
https://memcached.org/
https://bit.ly/2S6p8az
https://www.envoyproxy.io/

[Ern17] Michael D. Ernst. “Natural Language is a Programming Language: Applying
Natural Language Processing to Software Development.” In 2nd Summit on
Advances in Programming Languages, SNAPL 2017, May 7-10, 2017, Asilomar,
CA, USA, pp. 4:1–4:14, 2017.

[Far12] Christina Farr. “The Cloud is Robin Hood: it is bridging the gap between rich
and poor.” https://venturebeat.com/business/the-cloud-is-robin-hood-
it-is-bridging-the-gap-between-rich-and-poor/, 2012.

[FB88] Stuart I. Feldman and Channing B. Brown. “IGOR: A System for Program
Debugging via Reversible Execution.” In Proceedings of the 1988 ACM SIGPLAN
and SIGOPS Workshop on Parallel and Distributed Debugging, PADD. ACM,
1988.

[FLM20] Chongrong Fang, Haoyu Liu, Mao Miao, Jie Ye, Lei Wang, Wansheng Zhang,
Daxiang Kang, Biao Lyv, Peng Cheng, and Jiming Chen. “VTrace: Automatic
Diagnostic System for Persistent Packet Loss in Cloud-Scale Overlay Network.” In
Proceedings of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’20, p. 31–43, New York, NY, USA,
2020. Association for Computing Machinery.

[FPK07] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica.
“X-trace: A Pervasive Network Tracing Framework.” In Proceedings of the 4th
USENIX Conference on Networked Systems Design & Implementation, NSDI.
USENIX Association, 2007.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[GBF99] Tibor Gyimóthy, Árpád Beszédes, and Istán Forgács. “An Efficient Relevant
Slicing Method for Debugging.” In Proceedings of the 7th European Software
Engineering Conference Held Jointly with the 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ESEC/FSE-7, London, UK,
UK, 1999. Springer-Verlag.

[GDQ18] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui
Huang, Li Zhou, and Yongming Wu. “An empirical study on crash recovery bugs
in large-scale distributed systems.” In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 539–550, 2018.

[GDR18] Sebastian Gehrmann, Yuntian Deng, and Alexander M Rush. “Bottom-up ab-
stractive summarization.” arXiv preprint arXiv:1808.10792, 2018.

136

https://venturebeat.com/business/the-cloud-is-robin-hood-it-is-bridging-the-gap-between-rich-and-poor/
https://venturebeat.com/business/the-cloud-is-robin-hood-it-is-bridging-the-gap-between-rich-and-poor/

[GGE16] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. “Automatic
Generation of Oracles for Exceptional Behaviors.” In Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016. ACM,
2016.

[GH10] Michael Gutmann and Aapo Hyvärinen. “Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models.” In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, pp.
297–304, 2010.

[GHL14] Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-
anake, Thanh Do, Jeffry Adityatama, Kurnia J Eliazar, Agung Laksono, Jeffrey F
Lukman, Vincentius Martin, et al. “What bugs live in the cloud? a study of
3000+ issues in cloud systems.” In Proceedings of the ACM symposium on cloud
computing, pp. 1–14, 2014.

[GHS16] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto, Agung Laksono, Anang D
Satria, Jeffry Adityatama, and Kurnia J Eliazar. “Why does the cloud stop
computing? lessons from hundreds of service outages.” In Proceedings of the
Seventh ACM Symposium on Cloud Computing, pp. 1–16, 2016.

[Git21] Github.io. “MaxiNet: Distributed Emulation of Software-Defined Networks.”
https://maxinet.github.io/, 2021.

[GLD21] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. “Sage:
Practical and Scalable ML-Driven Performance Debugging in Microservices.” In
Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’21, p. 135–151,
New York, NY, USA, 2021. Association for Computing Machinery.

[GMK16] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin
Vahdat. “Evolve or Die: High-Availability Design Principles Drawn from Googles
Network Infrastructure.” In Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM. ACM, 2016.

[GNU22] GNU.org. “GDB: The GNU Project Debugger.” https://www.gnu.org/software/
gdb/, 2022.

[Goo19] Google. “Online Boutique: Sample cloud-native application with 10 microservices
showcasing Kubernetes, Istio, gRPC and OpenCensus.” https://github.com/
GoogleCloudPlatform/microservices-demo, 2019.

[Goo21] Google. “cAdvisor.” https://github.com/google/cadvisor, 2021.

[Goo23] Google. “Google Cloud Service Health.” https://status.cloud.google.com/
summary, 2023.

137

https://maxinet.github.io/
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/google/cadvisor
https://status.cloud.google.com/summary
https://status.cloud.google.com/summary

[Gra22] Grafana.com. “Grafana Features | Grafana Labs.” https://grafana.com/
grafana/, 2022.

[Grp21] Grpc.io. “gRPC: A high performance, open-source universal RPC framework.”
https://grpc.io/, 2021.

[GSB22] Supriyo GHOSH, Manish Shetty, Chetan Bansal, and Suman Nath. “How to Fight
Production Incidents? An Empirical Study on a Large-scale Cloud Service.” In
SoCC 2022. ACM, November 2022.

[GYM20] Jiaqi Gao, Nofel Yaseen, Robert MacDavid, Felipe Vieira Frujeri, Vincent Liu,
Ricardo Bianchini, Ramaswamy Aditya, Xiaohang Wang, Henry Lee , Dave
Maltz, Minlan Yu , and Behnaz Arzani. “Scouts: Improving the Diagnosis
Process Through Domain-customized Incident Routing.” In SIGCOMM. ACM,
August 2020.

[GZZ16] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. “Deep API
learning.” In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pp. 631–642. ACM, 2016.

[hap19] “HAProxy: The Reliable, High Performance TCP/HTTP Load Balancer.” http:
//www.haproxy.org/, 2019.

[HCE15] Irfan Ul Haq, Juan Caballero, and Michael D. Ernst. “Ayudante: Identifying Un-
desired Variable Interactions.” In Proceedings of the 13th International Workshop
on Dynamic Analysis, WODA 2015. ACM, 2015.

[HHJ14] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and
Nick McKeown. “I Know What Your Packet Did Last Hop: Using Packet Histories
to Troubleshoot Networks.” In Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, NSDI. USENIX Association,
2014.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” Neural
computation, 9(8):1735–1780, 1997.

[Ici21] Icinga.com. “Inspect your Entire Infrastructure.” https://icinga.com/, 2021.

[ICM22] Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi,
and Murat Kocaoglu. “Root Cause Analysis of Failures in Microservices through
Causal Discovery.” In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35,
pp. 31158–31170. Curran Associates, Inc., 2022.

[Inc19] MongoDB Inc. “mongoDB: The database for modern applications.” https:
//www.mongodb.com/, 2019.

138

https://grafana.com/grafana/
https://grafana.com/grafana/
https://grpc.io/
http://www.haproxy.org/
http://www.haproxy.org/
https://icinga.com/
https://www.mongodb.com/
https://www.mongodb.com/

[Jac21] Joab Jackson. “Debugging Microservices: Lessons from Google, Facebook, Lyft.”
https://bit.ly/2tBS9By, 2021.

[Jae21] Jaegertracing.io. “Jaeger.” https://www.jaegertracing.io/docs/1.26/, 2021.

[JLC20] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu
Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei
Zhang. How to Mitigate the Incident? An Effective Troubleshooting Guide
Recommendation Technique for Online Service Systems, p. 1410–1420. Association
for Computing Machinery, New York, NY, USA, 2020.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization.”
arXiv preprint arXiv:1412.6980, 2014.

[KL88] Bogdan Korel and Janusz Laski. “Dynamic program slicing.” Information process-
ing letters, 29(3):155–163, 1988.

[KM08] Andrew J. Ko and Brad A. Myers. “Debugging Reinvented: Asking and Answering
Why and Why Not Questions About Program Behavior.” In Proceedings of the
30th International Conference on Software Engineering, ICSE. ACM, 2008.

[KMB17] Jonathan Kaldor, Jonathan Mace, Michal Bejda, Edison Gao, Wiktor Kuropatwa,
Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod
Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. “Canopy: An End-
to-End Performance Tracing And Analysis System.” In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP. ACM, 2017.

[KTK13] Dongsun Kim, Yida Tao, Sunghun Kim, and Andreas Zeller. “Where should we fix
this bug? a two-phase recommendation model.” IEEE transactions on software
Engineering, 39(11):1597–1610, 2013.

[KW16] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph
convolutional networks.” arXiv preprint arXiv:1609.02907, 2016.

[Lan21] Heather Landi. “Google Cloud launches vaccine management tools as tech giants
jump into distribution efforts.” https://www.fiercehealthcare.com/tech/
google-cloud-rolls-out-tools-for-vaccine-logistics-as-tech-giants-
jump-into-distribution, 2021.

[LCL21] Guangpu Li, Dongjie Chen, Shan Lu, Madanlal Musuvathi, and Suman Nath.
“SherLock: Unsupervised Synchronization-Operation Inference.” In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2021, p. 314–328, New York, NY,
USA, 2021. Association for Computing Machinery.

139

https://bit.ly/2tBS9By
https://www.jaegertracing.io/docs/1.26/
https://www.fiercehealthcare.com/tech/google-cloud-rolls-out-tools-for-vaccine-logistics-as-tech-giants-jump-into-distribution
https://www.fiercehealthcare.com/tech/google-cloud-rolls-out-tools-for-vaccine-logistics-as-tech-giants-jump-into-distribution
https://www.fiercehealthcare.com/tech/google-cloud-rolls-out-tools-for-vaccine-logistics-as-tech-giants-jump-into-distribution

[LDB18] Annie Louis, Santanu Kumar Dash, Earl T. Barr, and Charles A. Sutton. “Deep
Learning to Detect Redundant Method Comments.” CoRR, abs/1806.04616,
2018.

[LGN08] Adrian Lienhard, Tudor Gîrba, and Oscar Nierstrasz. “Practical Object-Oriented
Back-in-Time Debugging.” In Proceedings of the 22Nd European Conference on
Object-Oriented Programming, ECOOP, Berlin, Heidelberg, 2008.

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. “A Network in a Laptop: Rapid
Prototyping for Software-defined Networks.” In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX. ACM, 2010.

[Lig21] Lightstep.com. “Simple Observability for Deep Systems.” https://
lightstep.com/, 2021.

[Lig22] Lighthouse. “Lighthouse | Tools for Web Developers | Google Developers.” https:
//developers.google.com/web/tools/lighthouse, 2022.

[Lin04] Chin-Yew Lin. “Rouge: A package for automatic evaluation of summaries.” In
Text summarization branches out, pp. 74–81, 2004.

[LLL16] Tanakorn Leesatapornwongsa, Jeffrey F Lukman, Shan Lu, and Haryadi S Gu-
nawi. “TaxDC: A taxonomy of non-deterministic concurrency bugs in datacenter
distributed systems.” In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems, pp.
517–530, 2016.

[LLM19a] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan Padhye.
“Efficient Scalable Thread-Safety-Violation Detection: Finding Thousands of
Concurrency Bugs during Testing.” In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, p. 162–180, New York, NY, USA,
2019. Association for Computing Machinery.

[LLM19b] H. Liu, S. Lu, M. Musuvathi, and S. Nath. “What bugs cause production cloud
incidents?” In Proceedings of the Workshop on Hot Topics in Operating Systems,
May 2019.

[LLM19c] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. “What Bugs
Cause Production Cloud Incidents?” In Proceedings of the Workshop on Hot
Topics in Operating Systems, HotOS ’19, pp. 155–162, New York, NY, USA, 2019.
Association for Computing Machinery.

[LLM19d] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. “What bugs cause
production cloud incidents?” In Workshop on Hot Topics in Operating Systems
(HotOS), May 2019.

140

https://lightstep.com/
https://lightstep.com/
https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/tools/lighthouse

[LLQ05] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou.
“Bugbench: Benchmarks for evaluating bug detection tools.” In In Workshop on
the Evaluation of Software Defect Detection Tools, 2005.

[LND16] Nicholas Locascio, Karthik Narasimhan, Eduardo DeLeon, Nate Kushman, and
Regina Barzilay. “Neural Generation of Regular Expressions from Natural Lan-
guage with Minimal Domain Knowledge.” In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, 2016.

[LNF12] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
“GenProg: A Generic Method for Automatic Software Repair.” IEEE Trans.
Softw. Eng., 38(1):54–72, January 2012.

[LPS08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. “Learning from Mis-
takes: A Comprehensive Study on Real World Concurrency Bug Characteristics.”
SIGOPS Oper. Syst. Rev., 42(2):329–339, March 2008.

[LWZ18] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D. Ernst.
“NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to the
Linux Operating System.” In Proceedings of the Eleventh International Conference
on Language Resources and Evaluation, LREC 2018, Miyazaki, Japan, May 7-12,
2018., 2018.

[Mac22] Duncan MacRae. “81% of companies had a cloud security incident in the
last year.” https://www.cloudcomputing-news.net/news/2022/oct/03/81-of-
companies-had-a-cloud-security-incident-in-the-last-year/, 2022.

[MBK20] Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal, Chandra Maddila,
B. Ashok, Sumit Asthana, Christian Bird, and Aditya Kumar. “Rex: Preventing
Bugs and Misconfiguration in Large Services Using Correlated Change Analysis.”
In 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), pp. 435–448, Santa Clara, CA, February 2020. USENIX Association.

[MEH10] James Mickens, Jeremy Elson, and Jon Howell. “Mugshot: Deterministic Capture
and Replay for Javascript Applications.” In Proceedings of NSDI, 2010.

[MF18] Jonathan Mace and Rodrigo Fonseca. “Universal Context Propagation for Dis-
tributed System Instrumentation.” In Proceedings of the Thirteenth EuroSys
Conference, EuroSys. ACM, 2018.

[Mic22] Microsoft.com. “Azure Stack.” https://azure.microsoft.com/en-us/overview/
azure-stack/, 2022.

[Mil19] Derek Miller. “Leveraging BERT for Extractive Text Summarization on Lectures.”
CoRR, abs/1906.04165, 2019.

141

https://www.cloudcomputing-news.net/news/2022/oct/03/81-of-companies-had-a-cloud-security-incident-in-the-last-year/
https://www.cloudcomputing-news.net/news/2022/oct/03/81-of-companies-had-a-cloud-security-incident-in-the-last-year/
https://azure.microsoft.com/en-us/overview/azure-stack/
https://azure.microsoft.com/en-us/overview/azure-stack/

[MRF15] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. “Pivot Tracing: Dynamic
Causal Monitoring for Distributed Systems.” In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP. ACM, 2015.

[MSC13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. “Dis-
tributed representations of words and phrases and their compositionality.” In
Advances in neural information processing systems, pp. 3111–3119, 2013.

[MSP18] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. “Pre-
dictive Test Selection.” CoRR, abs/1810.05286, 2018.

[MYG16] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. “Trumpet:
Timely and Precise Triggers in Data Centers.” In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, p. 129–143, New York, NY, USA, 2016.
Association for Computing Machinery.

[Mys21] Mysql.com. “MySQL.” https://www.mysql.com/, 2021.

[MYZ20] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang, Christopher Zheng, Xinhao
Jiang, Hanwen Hu, Cheng Luo, Yilin Li, Nengjun Qiu, Feifei Li, Changcheng
Chen, and Dan Pei. “Diagnosing root causes of intermittent slow queries in cloud
databases.” Proc. VLDB Endow., 13(8):1176–1189, apr 2020.

[NAR16] Srinivas Narayana, Mina Tashmasbi Arashloo, Jennifer Rexford, and David Walker.
“Compiling Path Queries.” In Proceedings of the 13th Usenix Conference on
Networked Systems Design and Implementation, NSDI. USENIX Association,
2016.

[New22] Newrelic.com. “New Relic | Deliver more perfect software.” https://
newrelic.com/, 2022.

[NGM16] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. “Polaris:
Faster Page Loads Using Fine-grained Dependency Tracking.” In Proceedings of
the 13th Usenix Conference on Networked Systems Design and Implementation,
NSDI. USENIX Association, 2016.

[NM19] Ravi Netravali and James Mickens. “Reverb: Speculative Debugging for Web
Applications.” In Proceedings of the ACM Symposium on Cloud Computing, SoCC
’19. ACM, 2019.

[NN22] Nhan Nguyen and Sarah Nadi. “An empirical evaluation of GitHub copilot’s
code suggestions.” In Proceedings of the 19th International Conference on Mining
Software Repositories, MSR ’22, p. 1–5, New York, NY, USA, 2022. Association
for Computing Machinery.

142

https://www.mysql.com/
https://newrelic.com/
https://newrelic.com/

[NPK13] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. “Transfer defect learning.” In
2013 35th International Conference on Software Engineering (ICSE), pp. 382–391.
IEEE, 2013.

[NSN17] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim.
“Language-Directed Hardware Design for Network Performance Monitoring.” In
Proceedings of the Conference of the ACM Special Interest Group on Data Com-
munication, SIGCOMM. ACM, 2017.

[NZG16] Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. “Abstractive
text summarization using sequence-to-sequence rnns and beyond.” arXiv preprint
arXiv:1602.06023, 2016.

[Ope22a] Opentelemetry.io. “Automatic Instrumentation | OpenTelemetry.” https://
opentelemetry.io/docs/instrumentation/java/automatic/, 2022.

[Ope22b] Opentracing.io. “The OpenTracing project.” https://opentracing.io/, 2022.

[Ora21] Orate. “Ticketmaster Traces 100 Million Transactions per Day with Jaeger.”
https://bit.ly/39rTn1N, 2021.

[Pin21] Pingdom.com. “Website Performance and Availability Monitoring | Pingdom.”
https://www.pingdom.com/, 2021.

[PJN13] Rahul Potharaju, Navendu Jain, and Cristina Nita-Rotaru. “Juggling the Jig-
saw: Towards Automated Problem Inference from Network Trouble Tickets.” In
Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation, NSDI. USENIX Association, 2013.

[PKL09] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard.
“Automatically Patching Errors in Deployed Software.” In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP. ACM, 2009.

[PKR16] M. Peuster, H. Karl, and S. van Rossem. “MeDICINE: Rapid prototyping of
production-ready network services in multi-PoP environments.” In 2016 IEEE
Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN), pp. 148–153, Nov 2016.

[pos19] “PostgreSQL.” https://www.postgresql.org/, 2019.

[PRW02] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. “Bleu: a Method
for Automatic Evaluation of Machine Translation.” In Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, pp. 311–318,

143

https://opentelemetry.io/docs/instrumentation/java/automatic/
https://opentelemetry.io/docs/instrumentation/java/automatic/
https://opentracing.io/
https://bit.ly/39rTn1N
https://www.pingdom.com/
https://www.postgresql.org/

Philadelphia, Pennsylvania, USA, July 2002. Association for Computational
Linguistics.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global
vectors for word representation.” In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp. 1532–1543, 2014.

[PWY18] Jayavardhan Peddamail, Zhen Wang, Ziyu Yao, and Huan Sun. “A Comprehensive
Study of StaQC for Deep Code Summarization.” In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
Lond, UK, August 2018, 2018.

[PXS17] Romain Paulus, Caiming Xiong, and Richard Socher. “A deep reinforced model
for abstractive summarization.” arXiv preprint arXiv:1705.04304, 2017.

[pyl19] “Pylons.” http://www.pylonsproject.org/, 2019.

[QTS05] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. “Rx:
Treating Bugs as Allergies—a Safe Method to Survive Software Failures.” In
Proceedings of the Twentieth ACM Symposium on Operating Systems Principles,
SOSP ’05, pp. 235–248, New York, NY, USA, 2005. Association for Computing
Machinery.

[rab19] “Messaging that just works – RabbitMQ.” https://www.rabbitmq.com/, 2019.

[RD00] Ehud Reiter and Robert Dale. Building natural language generation systems.
Cambridge university press, 2000.

[Red21] Redis.io. “Redis.” https://redis.io/, 2021.

[red22] reddit.com. “reddit: the front page of the internet.” https://reddit.com/, 2022.

[RSR20] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. “Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer.” Journal of Machine
Learning Research, 21(140):1–67, 2020.

[Sal17] Saltside Engineering. “Our First Kubernetes Outage | Saltside Engineer-
ing.” https://engineering.saltside.se/our-first-kubernetes-outage-
c6b9249cfd3a, 2017.

[SBB10] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. “Dapper, a large-
scale distributed systems tracing infrastructure.” Technical report, Technical
report, Google, 2010.

144

http://www.pylonsproject.org/
https://www.rabbitmq.com/
https://redis.io/
https://reddit.com/
https://engineering.saltside.se/our-first-kubernetes-outage-c6b9249cfd3a
https://engineering.saltside.se/our-first-kubernetes-outage-c6b9249cfd3a

[SBK21] Manish Shetty, Chetan Bansal, Sumit Kumar, Nikitha Rao, Nachiappan Na-
gappan, and Thomas Zimmermann. “Neural knowledge extraction from cloud
service incidents.” In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 218–227. IEEE,
2021.

[SBN21] Manish Shetty, Chetan Bansal, Suman Nath, Sean Bowles, Henry Wang, Ozgur
Arman, and Siamak Ahari. “Large-scale Crash Localization using Multi-Task
Learning.” arXiv preprint arXiv:2109.14326, 2021.

[Sec22] SecurityShelf. “Cloud Misconfig Exposes 3TB of Sensitive Airport Data in
Amazon S3 Bucket: ‘Lives at Stake’.” https://securityshelf.com/2022/07/06/
cloud-misconfig-exposes-3tb-of-sensitive-airport-data-in-amazon-
s3-bucket-lives-at-stake/, 2022.

[SH22] Amrita Saha and Steven CH Hoi. “Mining Root Cause Knowledge from Cloud
Service Incident Investigations for AIOps.” arXiv preprint arXiv:2204.11598,
2022.

[SKR21] Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, and Chandan K Reddy. “Neu-
ral abstractive text summarization with sequence-to-sequence models.” ACM
Transactions on Data Science, 2(1):1–37, 2021.

[SLM17] Abigail See, Peter J Liu, and Christopher D Manning. “Get to the point: Sum-
marization with pointer-generator networks.” arXiv preprint arXiv:1704.04368,
2017.

[SPB16] Colin Scott, Aurojit Panda, Vjekoslav Brajkovic, George Necula, Arvind Kr-
ishnamurthy, and Scott Shenker. “Minimizing Faulty Executions of Distributed
Systems.” In Proceedings of the 13th Usenix Conference on Networked Systems
Design and Implementation, NSDI. USENIX Association, 2016.

[Spl21] Splunk.com. “SIEM, AIOps, Application Management, Log Management, Machine
Learning, and Compliance | Splunk.” https://www.splunk.com/, 2021.

[Sym14] Symantec. “Tracking Cookie.” https://www.symantec.com/security_response/
writeup.jsp?docid=2006-080217-3524-99, July 22, 2014.

[TAB24] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican,
David Silver, Melvin Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia
Glaese, Jilin Chen, Emily Pitler, Timothy Lillicrap, Angeliki Lazaridou, Orhan
Firat, James Molloy, Michael Isard, Paul R. Barham, Tom Hennigan, Benjamin
Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, Ryan Doherty, Eli Collins,
Clemens Meyer, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha Goel,

145

https://securityshelf.com/2022/07/06/cloud-misconfig-exposes-3tb-of-sensitive-airport-data-in-amazon-s3-bucket-lives-at-stake/
https://securityshelf.com/2022/07/06/cloud-misconfig-exposes-3tb-of-sensitive-airport-data-in-amazon-s3-bucket-lives-at-stake/
https://securityshelf.com/2022/07/06/cloud-misconfig-exposes-3tb-of-sensitive-airport-data-in-amazon-s3-bucket-lives-at-stake/
https://www.splunk.com/
https://www.symantec.com/security_response/writeup.jsp?docid=2006-080217-3524-99
https://www.symantec.com/security_response/writeup.jsp?docid=2006-080217-3524-99

Jack Krawczyk, Cosmo Du, Ed Chi, Heng-Tze Cheng, Eric Ni, Purvi Shah, Patrick
Kane, Betty Chan, Manaal Faruqui, Aliaksei Severyn, Hanzhao Lin, YaGuang Li,
Yong Cheng, Abe Ittycheriah, Mahdis Mahdieh, Mia Chen, Pei Sun, Dustin Tran,
Sumit Bagri, Balaji Lakshminarayanan, Jeremiah Liu, Andras Orban, Fabian
Güra, Hao Zhou, Xinying Song, Aurelien Boffy, Harish Ganapathy, Steven Zheng,
HyunJeong Choe, Ágoston Weisz, Tao Zhu, Yifeng Lu, Siddharth Gopal, Jarrod
Kahn, Maciej Kula, Jeff Pitman, Rushin Shah, Emanuel Taropa, Majd Al Merey,
Martin Baeuml, Zhifeng Chen, Laurent El Shafey, Yujing Zhang, Olcan Sercinoglu,
George Tucker, Enrique Piqueras, Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo
Danihelka, Becca Roelofs, Anaïs White, Anders Andreassen, Tamara von Glehn,
Lakshman Yagati, Mehran Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Syg-
nowski, Alexandre Frechette, Charlotte Smith, Laura Culp, Lev Proleev, Yi Luan,
Xi Chen, James Lottes, Nathan Schucher, Federico Lebron, Alban Rrustemi, Na-
talie Clay, Phil Crone, Tomas Kocisky, Jeffrey Zhao, Bartek Perz, Dian Yu, Heidi
Howard, Adam Bloniarz, Jack W. Rae, Han Lu, Laurent Sifre, Marcello Maggioni,
Fred Alcober, Dan Garrette, Megan Barnes, Shantanu Thakoor, Jacob Austin,
Gabriel Barth-Maron, William Wong, Rishabh Joshi, Rahma Chaabouni, Deeni
Fatiha, Arun Ahuja, Gaurav Singh Tomar, Evan Senter, Martin Chadwick, Ilya
Kornakov, Nithya Attaluri, Iñaki Iturrate, Ruibo Liu, Yunxuan Li, Sarah Cogan,
Jeremy Chen, Chao Jia, Chenjie Gu, Qiao Zhang, Jordan Grimstad, Ale Jakse
Hartman, Xavier Garcia, Thanumalayan Sankaranarayana Pillai, Jacob Devlin,
Michael Laskin, Diego de Las Casas, Dasha Valter, Connie Tao, Lorenzo Blanco,
Adrià Puigdomènech Badia, David Reitter, Mianna Chen, Jenny Brennan, Clara
Rivera, Sergey Brin, Shariq Iqbal, Gabriela Surita, Jane Labanowski, Abhi Rao,
Stephanie Winkler, Emilio Parisotto, Yiming Gu, Kate Olszewska, Ravi Addanki,
Antoine Miech, Annie Louis, Denis Teplyashin, Geoff Brown, Elliot Catt, Jan
Balaguer, Jackie Xiang, Pidong Wang, Zoe Ashwood, Anton Briukhov, Albert
Webson, Sanjay Ganapathy, Smit Sanghavi, Ajay Kannan, Ming-Wei Chang,
Axel Stjerngren, Josip Djolonga, Yuting Sun, Ankur Bapna, Matthew Aitchison,
Pedram Pejman, Henryk Michalewski, Tianhe Yu, Cindy Wang, Juliette Love,
Junwhan Ahn, Dawn Bloxwich, Kehang Han, Peter Humphreys, Thibault Sellam,
James Bradbury, Varun Godbole, Sina Samangooei, Bogdan Damoc, Alex Kaska-
soli, Sébastien M. R. Arnold, Vijay Vasudevan, Shubham Agrawal, Jason Riesa,
Dmitry Lepikhin, Richard Tanburn, Srivatsan Srinivasan, Hyeontaek Lim, Sarah
Hodkinson, Pranav Shyam, Johan Ferret, Steven Hand, Ankush Garg, Tom Le
Paine, Jian Li, Yujia Li, Minh Giang, Alexander Neitz, Zaheer Abbas, Sarah York,
Machel Reid, Elizabeth Cole, Aakanksha Chowdhery, Dipanjan Das, Dominika
Rogozińska, Vitaliy Nikolaev, Pablo Sprechmann, Zachary Nado, Lukas Zilka,
Flavien Prost, Luheng He, Marianne Monteiro, Gaurav Mishra, Chris Welty, Josh
Newlan, Dawei Jia, Miltiadis Allamanis, Clara Huiyi Hu, Raoul de Liedekerke,
Justin Gilmer, Carl Saroufim, Shruti Rijhwani, Shaobo Hou, Disha Shrivastava,
Anirudh Baddepudi, Alex Goldin, Adnan Ozturel, Albin Cassirer, Yunhan Xu,

146

Daniel Sohn, Devendra Sachan, Reinald Kim Amplayo, Craig Swanson, Dessie
Petrova, Shashi Narayan, Arthur Guez, Siddhartha Brahma, Jessica Landon,
Miteyan Patel, Ruizhe Zhao, Kevin Villela, Luyu Wang, Wenhao Jia, Matthew
Rahtz, Mai Giménez, Legg Yeung, James Keeling, Petko Georgiev, Diana Mincu,
Boxi Wu, Salem Haykal, Rachel Saputro, Kiran Vodrahalli, James Qin, Zeynep
Cankara, Abhanshu Sharma, Nick Fernando, Will Hawkins, Behnam Neyshabur,
Solomon Kim, Adrian Hutter, Priyanka Agrawal, Alex Castro-Ros, George van den
Driessche, Tao Wang, Fan Yang, Shuo yiin Chang, Paul Komarek, Ross McIlroy,
Mario Lučić, Guodong Zhang, Wael Farhan, Michael Sharman, Paul Natsev,
Paul Michel, Yamini Bansal, Siyuan Qiao, Kris Cao, Siamak Shakeri, Christina
Butterfield, Justin Chung, Paul Kishan Rubenstein, Shivani Agrawal, Arthur
Mensch, Kedar Soparkar, Karel Lenc, Timothy Chung, Aedan Pope, Loren Mag-
giore, Jackie Kay, Priya Jhakra, Shibo Wang, Joshua Maynez, Mary Phuong,
Taylor Tobin, Andrea Tacchetti, Maja Trebacz, Kevin Robinson, Yash Katariya,
Sebastian Riedel, Paige Bailey, Kefan Xiao, Nimesh Ghelani, Lora Aroyo, Am-
brose Slone, Neil Houlsby, Xuehan Xiong, Zhen Yang, Elena Gribovskaya, Jonas
Adler, Mateo Wirth, Lisa Lee, Music Li, Thais Kagohara, Jay Pavagadhi, Sophie
Bridgers, Anna Bortsova, Sanjay Ghemawat, Zafarali Ahmed, Tianqi Liu, Richard
Powell, Vijay Bolina, Mariko Iinuma, Polina Zablotskaia, James Besley, Da-Woon
Chung, Timothy Dozat, Ramona Comanescu, Xiance Si, Jeremy Greer, Guolong
Su, Martin Polacek, Raphaël Lopez Kaufman, Simon Tokumine, Hexiang Hu,
Elena Buchatskaya, Yingjie Miao, Mohamed Elhawaty, Aditya Siddhant, Nenad
Tomasev, Jinwei Xing, Christina Greer, Helen Miller, Shereen Ashraf, Aurko Roy,
Zizhao Zhang, Ada Ma, Angelos Filos, Milos Besta, Rory Blevins, Ted Klimenko,
Chih-Kuan Yeh, Soravit Changpinyo, Jiaqi Mu, Oscar Chang, Mantas Pajarskas,
Carrie Muir, Vered Cohen, Charline Le Lan, Krishna Haridasan, Amit Marathe,
Steven Hansen, Sholto Douglas, Rajkumar Samuel, Mingqiu Wang, Sophia Austin,
Chang Lan, Jiepu Jiang, Justin Chiu, Jaime Alonso Lorenzo, Lars Lowe Sjö-
sund, Sébastien Cevey, Zach Gleicher, Thi Avrahami, Anudhyan Boral, Hansa
Srinivasan, Vittorio Selo, Rhys May, Konstantinos Aisopos, Léonard Hussenot,
Livio Baldini Soares, Kate Baumli, Michael B. Chang, Adrià Recasens, Ben Caine,
Alexander Pritzel, Filip Pavetic, Fabio Pardo, Anita Gergely, Justin Frye, Vinay
Ramasesh, Dan Horgan, Kartikeya Badola, Nora Kassner, Subhrajit Roy, Ethan
Dyer, Víctor Campos Campos, Alex Tomala, Yunhao Tang, Dalia El Badawy, El-
speth White, Basil Mustafa, Oran Lang, Abhishek Jindal, Sharad Vikram, Zhitao
Gong, Sergi Caelles, Ross Hemsley, Gregory Thornton, Fangxiaoyu Feng, Wojciech
Stokowiec, Ce Zheng, Phoebe Thacker, Çağlar Ünlü, Zhishuai Zhang, Mohammad
Saleh, James Svensson, Max Bileschi, Piyush Patil, Ankesh Anand, Roman Ring,
Katerina Tsihlas, Arpi Vezer, Marco Selvi, Toby Shevlane, Mikel Rodriguez, Tom
Kwiatkowski, Samira Daruki, Keran Rong, Allan Dafoe, Nicholas FitzGerald,
Keren Gu-Lemberg, Mina Khan, Lisa Anne Hendricks, Marie Pellat, Vladimir
Feinberg, James Cobon-Kerr, Tara Sainath, Maribeth Rauh, Sayed Hadi Hashemi,

147

Richard Ives, Yana Hasson, Eric Noland, Yuan Cao, Nathan Byrd, Le Hou, Qingze
Wang, Thibault Sottiaux, Michela Paganini, Jean-Baptiste Lespiau, Alexandre
Moufarek, Samer Hassan, Kaushik Shivakumar, Joost van Amersfoort, Amol
Mandhane, Pratik Joshi, Anirudh Goyal, Matthew Tung, Andrew Brock, Hannah
Sheahan, Vedant Misra, Cheng Li, Nemanja Rakićević, Mostafa Dehghani, Fangyu
Liu, Sid Mittal, Junhyuk Oh, Seb Noury, Eren Sezener, Fantine Huot, Matthew
Lamm, Nicola De Cao, Charlie Chen, Sidharth Mudgal, Romina Stella, Kevin
Brooks, Gautam Vasudevan, Chenxi Liu, Mainak Chain, Nivedita Melinkeri,
Aaron Cohen, Venus Wang, Kristie Seymore, Sergey Zubkov, Rahul Goel, Sum-
mer Yue, Sai Krishnakumaran, Brian Albert, Nate Hurley, Motoki Sano, Anhad
Mohananey, Jonah Joughin, Egor Filonov, Tomasz Kępa, Yomna Eldawy, Jiawern
Lim, Rahul Rishi, Shirin Badiezadegan, Taylor Bos, Jerry Chang, Sanil Jain,
Sri Gayatri Sundara Padmanabhan, Subha Puttagunta, Kalpesh Krishna, Leslie
Baker, Norbert Kalb, Vamsi Bedapudi, Adam Kurzrok, Shuntong Lei, Anthony
Yu, Oren Litvin, Xiang Zhou, Zhichun Wu, Sam Sobell, Andrea Siciliano, Alan
Papir, Robby Neale, Jonas Bragagnolo, Tej Toor, Tina Chen, Valentin Anklin,
Feiran Wang, Richie Feng, Milad Gholami, Kevin Ling, Lijuan Liu, Jules Walter,
Hamid Moghaddam, Arun Kishore, Jakub Adamek, Tyler Mercado, Jonathan
Mallinson, Siddhinita Wandekar, Stephen Cagle, Eran Ofek, Guillermo Garrido,
Clemens Lombriser, Maksim Mukha, Botu Sun, Hafeezul Rahman Mohammad,
Josip Matak, Yadi Qian, Vikas Peswani, Pawel Janus, Quan Yuan, Leif Schelin,
Oana David, Ankur Garg, Yifan He, Oleksii Duzhyi, Anton Älgmyr, Timothée
Lottaz, Qi Li, Vikas Yadav, Luyao Xu, Alex Chinien, Rakesh Shivanna, Aleksandr
Chuklin, Josie Li, Carrie Spadine, Travis Wolfe, Kareem Mohamed, Subhabrata
Das, Zihang Dai, Kyle He, Daniel von Dincklage, Shyam Upadhyay, Akanksha
Maurya, Luyan Chi, Sebastian Krause, Khalid Salama, Pam G Rabinovitch, Pavan
Kumar Reddy M, Aarush Selvan, Mikhail Dektiarev, Golnaz Ghiasi, Erdem Guven,
Himanshu Gupta, Boyi Liu, Deepak Sharma, Idan Heimlich Shtacher, Shachi Paul,
Oscar Akerlund, François-Xavier Aubet, Terry Huang, Chen Zhu, Eric Zhu, Elico
Teixeira, Matthew Fritze, Francesco Bertolini, Liana-Eleonora Marinescu, Martin
Bölle, Dominik Paulus, Khyatti Gupta, Tejasi Latkar, Max Chang, Jason Sanders,
Roopa Wilson, Xuewei Wu, Yi-Xuan Tan, Lam Nguyen Thiet, Tulsee Doshi, Sid
Lall, Swaroop Mishra, Wanming Chen, Thang Luong, Seth Benjamin, Jasmine Lee,
Ewa Andrejczuk, Dominik Rabiej, Vipul Ranjan, Krzysztof Styrc, Pengcheng Yin,
Jon Simon, Malcolm Rose Harriott, Mudit Bansal, Alexei Robsky, Geoff Bacon,
David Greene, Daniil Mirylenka, Chen Zhou, Obaid Sarvana, Abhimanyu Goyal,
Samuel Andermatt, Patrick Siegler, Ben Horn, Assaf Israel, Francesco Pongetti,
Chih-Wei "Louis" Chen, Marco Selvatici, Pedro Silva, Kathie Wang, Jackson
Tolins, Kelvin Guu, Roey Yogev, Xiaochen Cai, Alessandro Agostini, Maulik Shah,
Hung Nguyen, Noah Ó Donnaile, Sébastien Pereira, Linda Friso, Adam Stambler,
Adam Kurzrok, Chenkai Kuang, Yan Romanikhin, Mark Geller, ZJ Yan, Kane
Jang, Cheng-Chun Lee, Wojciech Fica, Eric Malmi, Qijun Tan, Dan Banica, Daniel

148

Balle, Ryan Pham, Yanping Huang, Diana Avram, Hongzhi Shi, Jasjot Singh, Chris
Hidey, Niharika Ahuja, Pranab Saxena, Dan Dooley, Srividya Pranavi Potharaju,
Eileen O’Neill, Anand Gokulchandran, Ryan Foley, Kai Zhao, Mike Dusenberry,
Yuan Liu, Pulkit Mehta, Ragha Kotikalapudi, Chalence Safranek-Shrader, Andrew
Goodman, Joshua Kessinger, Eran Globen, Prateek Kolhar, Chris Gorgolewski, Ali
Ibrahim, Yang Song, Ali Eichenbaum, Thomas Brovelli, Sahitya Potluri, Preethi
Lahoti, Cip Baetu, Ali Ghorbani, Charles Chen, Andy Crawford, Shalini Pal,
Mukund Sridhar, Petru Gurita, Asier Mujika, Igor Petrovski, Pierre-Louis Cedoz,
Chenmei Li, Shiyuan Chen, Niccolò Dal Santo, Siddharth Goyal, Jitesh Punjabi,
Karthik Kappaganthu, Chester Kwak, Pallavi LV, Sarmishta Velury, Himadri
Choudhury, Jamie Hall, Premal Shah, Ricardo Figueira, Matt Thomas, Minjie
Lu, Ting Zhou, Chintu Kumar, Thomas Jurdi, Sharat Chikkerur, Yenai Ma,
Adams Yu, Soo Kwak, Victor Ähdel, Sujeevan Rajayogam, Travis Choma, Fei Liu,
Aditya Barua, Colin Ji, Ji Ho Park, Vincent Hellendoorn, Alex Bailey, Taylan
Bilal, Huanjie Zhou, Mehrdad Khatir, Charles Sutton, Wojciech Rzadkowski,
Fiona Macintosh, Konstantin Shagin, Paul Medina, Chen Liang, Jinjing Zhou,
Pararth Shah, Yingying Bi, Attila Dankovics, Shipra Banga, Sabine Lehmann,
Marissa Bredesen, Zifan Lin, John Eric Hoffmann, Jonathan Lai, Raynald Chung,
Kai Yang, Nihal Balani, Arthur Bražinskas, Andrei Sozanschi, Matthew Hayes,
Héctor Fernández Alcalde, Peter Makarov, Will Chen, Antonio Stella, Liselotte
Snijders, Michael Mandl, Ante Kärrman, Paweł Nowak, Xinyi Wu, Alex Dyck,
Krishnan Vaidyanathan, Raghavender R, Jessica Mallet, Mitch Rudominer, Eric
Johnston, Sushil Mittal, Akhil Udathu, Janara Christensen, Vishal Verma, Zach
Irving, Andreas Santucci, Gamaleldin Elsayed, Elnaz Davoodi, Marin Georgiev,
Ian Tenney, Nan Hua, Geoffrey Cideron, Edouard Leurent, Mahmoud Alnahlawi,
Ionut Georgescu, Nan Wei, Ivy Zheng, Dylan Scandinaro, Heinrich Jiang, Jasper
Snoek, Mukund Sundararajan, Xuezhi Wang, Zack Ontiveros, Itay Karo, Jeremy
Cole, Vinu Rajashekhar, Lara Tumeh, Eyal Ben-David, Rishub Jain, Jonathan
Uesato, Romina Datta, Oskar Bunyan, Shimu Wu, John Zhang, Piotr Stanczyk,
Ye Zhang, David Steiner, Subhajit Naskar, Michael Azzam, Matthew Johnson,
Adam Paszke, Chung-Cheng Chiu, Jaume Sanchez Elias, Afroz Mohiuddin, Faizan
Muhammad, Jin Miao, Andrew Lee, Nino Vieillard, Jane Park, Jiageng Zhang, Jeff
Stanway, Drew Garmon, Abhijit Karmarkar, Zhe Dong, Jong Lee, Aviral Kumar,
Luowei Zhou, Jonathan Evens, William Isaac, Geoffrey Irving, Edward Loper,
Michael Fink, Isha Arkatkar, Nanxin Chen, Izhak Shafran, Ivan Petrychenko, Zhe
Chen, Johnson Jia, Anselm Levskaya, Zhenkai Zhu, Peter Grabowski, Yu Mao,
Alberto Magni, Kaisheng Yao, Javier Snaider, Norman Casagrande, Evan Palmer,
Paul Suganthan, Alfonso Castaño, Irene Giannoumis, Wooyeol Kim, Mikołaj Ry-
biński, Ashwin Sreevatsa, Jennifer Prendki, David Soergel, Adrian Goedeckemeyer,
Willi Gierke, Mohsen Jafari, Meenu Gaba, Jeremy Wiesner, Diana Gage Wright,
Yawen Wei, Harsha Vashisht, Yana Kulizhskaya, Jay Hoover, Maigo Le, Lu Li,
Chimezie Iwuanyanwu, Lu Liu, Kevin Ramirez, Andrey Khorlin, Albert Cui, Tian

149

LIN, Marcus Wu, Ricardo Aguilar, Keith Pallo, Abhishek Chakladar, Ginger
Perng, Elena Allica Abellan, Mingyang Zhang, Ishita Dasgupta, Nate Kushman,
Ivo Penchev, Alena Repina, Xihui Wu, Tom van der Weide, Priya Ponnapalli,
Caroline Kaplan, Jiri Simsa, Shuangfeng Li, Olivier Dousse, Fan Yang, Jeff Piper,
Nathan Ie, Rama Pasumarthi, Nathan Lintz, Anitha Vijayakumar, Daniel Andor,
Pedro Valenzuela, Minnie Lui, Cosmin Paduraru, Daiyi Peng, Katherine Lee,
Shuyuan Zhang, Somer Greene, Duc Dung Nguyen, Paula Kurylowicz, Cassidy
Hardin, Lucas Dixon, Lili Janzer, Kiam Choo, Ziqiang Feng, Biao Zhang, Achintya
Singhal, Dayou Du, Dan McKinnon, Natasha Antropova, Tolga Bolukbasi, Orgad
Keller, David Reid, Daniel Finchelstein, Maria Abi Raad, Remi Crocker, Peter
Hawkins, Robert Dadashi, Colin Gaffney, Ken Franko, Anna Bulanova, Rémi
Leblond, Shirley Chung, Harry Askham, Luis C. Cobo, Kelvin Xu, Felix Fis-
cher, Jun Xu, Christina Sorokin, Chris Alberti, Chu-Cheng Lin, Colin Evans,
Alek Dimitriev, Hannah Forbes, Dylan Banarse, Zora Tung, Mark Omernick,
Colton Bishop, Rachel Sterneck, Rohan Jain, Jiawei Xia, Ehsan Amid, Francesco
Piccinno, Xingyu Wang, Praseem Banzal, Daniel J. Mankowitz, Alex Polozov,
Victoria Krakovna, Sasha Brown, MohammadHossein Bateni, Dennis Duan, Vlad
Firoiu, Meghana Thotakuri, Tom Natan, Matthieu Geist, Ser tan Girgin, Hui
Li, Jiayu Ye, Ofir Roval, Reiko Tojo, Michael Kwong, James Lee-Thorp, Christo-
pher Yew, Danila Sinopalnikov, Sabela Ramos, John Mellor, Abhishek Sharma,
Kathy Wu, David Miller, Nicolas Sonnerat, Denis Vnukov, Rory Greig, Jennifer
Beattie, Emily Caveness, Libin Bai, Julian Eisenschlos, Alex Korchemniy, Tomy
Tsai, Mimi Jasarevic, Weize Kong, Phuong Dao, Zeyu Zheng, Frederick Liu, Fan
Yang, Rui Zhu, Tian Huey Teh, Jason Sanmiya, Evgeny Gladchenko, Nejc Trdin,
Daniel Toyama, Evan Rosen, Sasan Tavakkol, Linting Xue, Chen Elkind, Oliver
Woodman, John Carpenter, George Papamakarios, Rupert Kemp, Sushant Kafle,
Tanya Grunina, Rishika Sinha, Alice Talbert, Diane Wu, Denese Owusu-Afriyie,
Cosmo Du, Chloe Thornton, Jordi Pont-Tuset, Pradyumna Narayana, Jing Li,
Saaber Fatehi, John Wieting, Omar Ajmeri, Benigno Uria, Yeongil Ko, Laura
Knight, Amélie Héliou, Ning Niu, Shane Gu, Chenxi Pang, Yeqing Li, Nir Levine,
Ariel Stolovich, Rebeca Santamaria-Fernandez, Sonam Goenka, Wenny Yustalim,
Robin Strudel, Ali Elqursh, Charlie Deck, Hyo Lee, Zonglin Li, Kyle Levin,
Raphael Hoffmann, Dan Holtmann-Rice, Olivier Bachem, Sho Arora, Christy
Koh, Soheil Hassas Yeganeh, Siim Põder, Mukarram Tariq, Yanhua Sun, Lucian
Ionita, Mojtaba Seyedhosseini, Pouya Tafti, Zhiyu Liu, Anmol Gulati, Jasmine
Liu, Xinyu Ye, Bart Chrzaszcz, Lily Wang, Nikhil Sethi, Tianrun Li, Ben Brown,
Shreya Singh, Wei Fan, Aaron Parisi, Joe Stanton, Vinod Koverkathu, Christo-
pher A. Choquette-Choo, Yunjie Li, TJ Lu, Abe Ittycheriah, Prakash Shroff,
Mani Varadarajan, Sanaz Bahargam, Rob Willoughby, David Gaddy, Guillaume
Desjardins, Marco Cornero, Brona Robenek, Bhavishya Mittal, Ben Albrecht,
Ashish Shenoy, Fedor Moiseev, Henrik Jacobsson, Alireza Ghaffarkhah, Morgane
Rivière, Alanna Walton, Clément Crepy, Alicia Parrish, Zongwei Zhou, Clement

150

Farabet, Carey Radebaugh, Praveen Srinivasan, Claudia van der Salm, Andreas
Fidjeland, Salvatore Scellato, Eri Latorre-Chimoto, Hanna Klimczak-Plucińska,
David Bridson, Dario de Cesare, Tom Hudson, Piermaria Mendolicchio, Lexi
Walker, Alex Morris, Matthew Mauger, Alexey Guseynov, Alison Reid, Seth
Odoom, Lucia Loher, Victor Cotruta, Madhavi Yenugula, Dominik Grewe, Anas-
tasia Petrushkina, Tom Duerig, Antonio Sanchez, Steve Yadlowsky, Amy Shen,
Amir Globerson, Lynette Webb, Sahil Dua, Dong Li, Surya Bhupatiraju, Dan
Hurt, Haroon Qureshi, Ananth Agarwal, Tomer Shani, Matan Eyal, Anuj Khare,
Shreyas Rammohan Belle, Lei Wang, Chetan Tekur, Mihir Sanjay Kale, Jinliang
Wei, Ruoxin Sang, Brennan Saeta, Tyler Liechty, Yi Sun, Yao Zhao, Stephan Lee,
Pandu Nayak, Doug Fritz, Manish Reddy Vuyyuru, John Aslanides, Nidhi Vyas,
Martin Wicke, Xiao Ma, Evgenii Eltyshev, Nina Martin, Hardie Cate, James
Manyika, Keyvan Amiri, Yelin Kim, Xi Xiong, Kai Kang, Florian Luisier, Nilesh
Tripuraneni, David Madras, Mandy Guo, Austin Waters, Oliver Wang, Joshua
Ainslie, Jason Baldridge, Han Zhang, Garima Pruthi, Jakob Bauer, Feng Yang,
Riham Mansour, Jason Gelman, Yang Xu, George Polovets, Ji Liu, Honglong Cai,
Warren Chen, XiangHai Sheng, Emily Xue, Sherjil Ozair, Christof Angermueller,
Xiaowei Li, Anoop Sinha, Weiren Wang, Julia Wiesinger, Emmanouil Koukoumidis,
Yuan Tian, Anand Iyer, Madhu Gurumurthy, Mark Goldenson, Parashar Shah,
MK Blake, Hongkun Yu, Anthony Urbanowicz, Jennimaria Palomaki, Chrisantha
Fernando, Ken Durden, Harsh Mehta, Nikola Momchev, Elahe Rahimtoroghi,
Maria Georgaki, Amit Raul, Sebastian Ruder, Morgan Redshaw, Jinhyuk Lee,
Denny Zhou, Komal Jalan, Dinghua Li, Blake Hechtman, Parker Schuh, Milad
Nasr, Kieran Milan, Vladimir Mikulik, Juliana Franco, Tim Green, Nam Nguyen,
Joe Kelley, Aroma Mahendru, Andrea Hu, Joshua Howland, Ben Vargas, Jeffrey
Hui, Kshitij Bansal, Vikram Rao, Rakesh Ghiya, Emma Wang, Ke Ye, Jean Michel
Sarr, Melanie Moranski Preston, Madeleine Elish, Steve Li, Aakash Kaku, Jigar
Gupta, Ice Pasupat, Da-Cheng Juan, Milan Someswar, Tejvi M., Xinyun Chen,
Aida Amini, Alex Fabrikant, Eric Chu, Xuanyi Dong, Amruta Muthal, Senaka
Buthpitiya, Sarthak Jauhari, Nan Hua, Urvashi Khandelwal, Ayal Hitron, Jie Ren,
Larissa Rinaldi, Shahar Drath, Avigail Dabush, Nan-Jiang Jiang, Harshal Godhia,
Uli Sachs, Anthony Chen, Yicheng Fan, Hagai Taitelbaum, Hila Noga, Zhuyun
Dai, James Wang, Chen Liang, Jenny Hamer, Chun-Sung Ferng, Chenel Elkind,
Aviel Atias, Paulina Lee, Vít Listík, Mathias Carlen, Jan van de Kerkhof, Marcin
Pikus, Krunoslav Zaher, Paul Müller, Sasha Zykova, Richard Stefanec, Vitaly
Gatsko, Christoph Hirnschall, Ashwin Sethi, Xingyu Federico Xu, Chetan Ahuja,
Beth Tsai, Anca Stefanoiu, Bo Feng, Keshav Dhandhania, Manish Katyal, Akshay
Gupta, Atharva Parulekar, Divya Pitta, Jing Zhao, Vivaan Bhatia, Yashodha
Bhavnani, Omar Alhadlaq, Xiaolin Li, Peter Danenberg, Dennis Tu, Alex Pine,
Vera Filippova, Abhipso Ghosh, Ben Limonchik, Bhargava Urala, Chaitanya Kr-
ishna Lanka, Derik Clive, Yi Sun, Edward Li, Hao Wu, Kevin Hongtongsak, Ianna
Li, Kalind Thakkar, Kuanysh Omarov, Kushal Majmundar, Michael Alverson,

151

Michael Kucharski, Mohak Patel, Mudit Jain, Maksim Zabelin, Paolo Pelagatti,
Rohan Kohli, Saurabh Kumar, Joseph Kim, Swetha Sankar, Vineet Shah, Lakshmi
Ramachandruni, Xiangkai Zeng, Ben Bariach, Laura Weidinger, Tu Vu, Amar
Subramanya, Sissie Hsiao, Demis Hassabis, Koray Kavukcuoglu, Adam Sadovsky,
Quoc Le, Trevor Strohman, Yonghui Wu, Slav Petrov, Jeffrey Dean, and Oriol
Vinyals. “Gemini: A Family of Highly Capable Multimodal Models.”, 2024.

[TAL15] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. “CherryPick: Tracing
Packet Trajectory in Software-defined Datacenter Networks.” In Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking Research,
SOSR. ACM, 2015.

[TAL16] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. “Simplifying Datacen-
ter Network Debugging with Pathdump.” In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, OSDI. USENIX
Association, 2016.

[Tcp22] Tcpdump.org. “TCPDUMP/LIBPCAP public repository.” https://
www.tcpdump.org/, 2022.

[TK07] Grigorios Tsoumakas and Ioannis Katakis. “Multi-label classification: An overview.”
International Journal of Data Warehousing and Mining (IJDWM), 3(3):1–13, 2007.

[TL18] Sean J Taylor and Benjamin Letham. “Forecasting at scale.” The American
Statistician, 72(1):37–45, 2018.

[Tor22] Adam Tornhill. “Microservice Dependencies - Visualization.” https:
//codescene.com/blog/visualize-microservice-dependencies-in-team-
context/, 2022.

[Twi15] Twitter Engineering. “Introducing practical and robust anomaly detection in a
time series.” https://bit.ly/3oS2Ry9, 2015.

[VM19] Kurt Vagner and Rani Molla. “After almost 24 hours of technical difficulties,
Facebook is back - Vox.” https://www.vox.com/2019/3/14/18265793/facebook-
app-down-outage-resolved-fixed, 2019.

[VNN13] Nicolas Viennot, Siddharth Nair, and Jason Nieh. “Transparent Mutable Replay
for Multicore Debugging and Patch Validation.” In Proceedings of ASPLOS, 2013.

[VSP17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need.”
In Advances in Neural Information Processing Systems, pp. 5998–6008, 2017.

152

https://www.tcpdump.org/
https://www.tcpdump.org/
https://codescene.com/blog/visualize-microservice-dependencies-in-team-context/
https://codescene.com/blog/visualize-microservice-dependencies-in-team-context/
https://codescene.com/blog/visualize-microservice-dependencies-in-team-context/
https://bit.ly/3oS2Ry9

[Wal21] Sina Walleit. “Cloud Computing Environmental Benefits: Be Part of
The Solution.” https://www.parallels.com/blogs/ras/cloud-computing-
environmental-benefits/, 2021.

[Wea17] Weaveworks. “Sock Shop: A Microservices Demo Application.” https://
microservices-demo.github.io/, 2017.

[WHL23] Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han, and
Yang Tang. “A Brief Overview of ChatGPT: The History, Status Quo and Potential
Future Development.” IEEE/CAA Journal of Automatica Sinica, 10(5):1122–1136,
2023.

[Wik21] Wikipedia.org. “Order Statistic - Wikipedia.” https://en.wikipedia.org/wiki/
Order_statistic, 2021.

[Wik22] Wikipedia.org. “Berkeley Packet Filter - Wikipedia.” https://en.wikipedia.org/
wiki/Berkeley_Packet_Filter, 2022.

[WST16] William W. Cohen, Charles Sutton, and Martin T. Vechev. “Programming with
"Big Code" (Dagstuhl Seminar 15472).” 01 2016.

[XCZ18] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying
Liu, Youjian Zhao, Dan Pei, Yang Feng, et al. “Unsupervised anomaly detection
via variational auto-encoder for seasonal kpis in web applications.” In Proceedings
of the 2018 World Wide Web Conference, pp. 187–196, 2018.

[XZW22] Shusheng Xu, Xingxing Zhang, Yi Wu, and Furu Wei. “Sequence level contrastive
learning for text summarization.” In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 11556–11565, 2022.

[YDY19] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. “XLNet: Generalized Autoregressive Pretraining for Language
Understanding.” CoRR, abs/1906.08237, 2019.

[YLZ14a] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U. Jain, and Michael Stumm. “Simple Testing Can Prevent
Most Critical Failures: An Analysis of Production Failures in Distributed Data-
Intensive Systems.” In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14, pp. 249–265, USA, 2014. USENIX
Association.

[YLZ14b] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U Jain, and Michael Stumm. “Simple Testing Can Prevent
Most Critical Failures: An Analysis of Production Failures in Distributed {Data-
Intensive} Systems.” In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pp. 249–265, 2014.

153

https://www.parallels.com/blogs/ras/cloud-computing-environmental-benefits/
https://www.parallels.com/blogs/ras/cloud-computing-environmental-benefits/
https://microservices-demo.github.io/
https://microservices-demo.github.io/
https://en.wikipedia.org/wiki/Order_statistic
https://en.wikipedia.org/wiki/Order_statistic
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter

[YNM16] Dong Young Yoon, Ning Niu, and Barzan Mozafari. “DBSherlock: A Performance
Diagnostic Tool for Transactional Databases.” In Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD ’16, p. 1599–1614, New
York, NY, USA, 2016. Association for Computing Machinery.

[YWC18] Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan Sun. “StaQC: A Systemati-
cally Mined Question-Code Dataset from Stack Overflow.” In Proceedings of the
2018 World Wide Web Conference, WWW ’18, 2018.

[YYD16] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
“Hierarchical attention networks for document classification.” In Proceedings of the
2016 conference of the North American chapter of the association for computational
linguistics: human language technologies, pp. 1480–1489, 2016.

[Zip22] Zipkin.io. “OpenZipkin A distributed tracing system.” https://zipkin.io/, 2022.

[ZLC20] Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang, Xipeng Qiu, and Xu-
anjing Huang. “Extractive summarization as text matching.” arXiv preprint
arXiv:2004.08795, 2020.

[ZML20] Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu, Ning Ding, Haoyu Zhang,
Pengjun Xie, and Gongshen Liu. “Hierarchy-aware global model for hierarchical
text classification.” In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 1106–1117, 2020.

[ZYJ21a] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Kirk Rodrigues, Shan Lu,
and Ding Yuan. “Understanding and Detecting Software Upgrade Failures in
Distributed Systems.” In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, p. 116–131, New York, NY, USA, 2021.
Association for Computing Machinery.

[ZYJ21b] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Kirk Rodrigues, Shan
Lu, and Ding Yuan. “Understanding and detecting software upgrade failures in
distributed systems.” In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pp. 116–131, 2021.

[ZZL12] Jian Zhou, Hongyu Zhang, and David Lo. “Where should the bugs be fixed? more
accurate information retrieval-based bug localization based on bug reports.” In
2012 34th International Conference on Software Engineering (ICSE), pp. 14–24.
IEEE, 2012.

[ZZS20] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. “Pegasus: Pre-
training with extracted gap-sentences for abstractive summarization.” In Interna-
tional Conference on Machine Learning, pp. 11328–11339. PMLR, 2020.

154

https://zipkin.io/

	Introduction
	Thesis: Enabling Cloud-Scale Centralized Debugging via Coarsening
	Debugging Lifecycle
	Limitations of Team Level Debugging
	Thesis Contributions

	Towards Cloud-Scale Debugging via Coarsening
	Coarsening
	Coarsening Formulation - Incident Alarms
	Coarsening Formulation - Alarms Team
	Coarsening Formulation - Team Query
	Coarsening Formulation - Query Events
	Coarsening Formulation - Document Label(s)

	Retrospective Analysis
	Quick Fixes
	Consistent Root-Cause Labelling

	Diagnosability
	Coarse Dependency Graphs
	Incident Routing
	Root-Cause Analysis
	Preliminary Evaluation - Incident Routing
	Preliminary Evaluation - Root Cause Analysis
	Coarse Log Summarization using Chains
	Preliminary Evaluation - Log Summarization

	Observability
	Monitoring
	Data Retention

	Centralized Debugging Plane
	Global data lake
	Incident data store
	AIOps engine
	Incremental deployment of CDP

	NLP-Powered Debugging Assistance
	Auxiliary Data
	NLP Powered System-Wide Debugging Assistant
	Opportunities for Automation

	Preliminary Experiments
	Label Prediction for GitHub Issues
	Source Code Folder Prediction for GitHub Fixes
	Debugging Query Generation
	Results

	Related Work
	Program analysis and synthesis
	Program debugging
	Big Code

	Generating Debugging Queries
	Debugging Queries
	Overview - Revelio
	Challenges
	Solutions

	Revelio's ML Model
	Predicting Probabilities for Query Templates
	Predicting Values to Fill Query Templates
	Choosing the Final Queries
	Diagrams Illustrating Model Operation/Insights

	Study of Production Incident Debugging at Anon1
	Insights from Debugging Workflows
	Insights from Production Incidents
	Literature Survey of Incidents

	Distributed Systems Debugging Testbed
	Single-machine Emulation of Distibuted Applications
	Overview of Applications
	Overview of Debugging Tools
	Fault Injection Service
	Dataset Collection using AWS MTurk

	Evaluation of Revelio
	Revelio's Performance on Repeat Faults
	Revelio's Performance on New Faults
	Understanding Revelio's Performance
	Developer Study

	Related Work
	Debugging Tools for Distributed Systems
	Leveraging Natural Language Data Sources

	Automated Root-Cause Labelling
	Incident Postmortem Reports
	Overview - Root Cause Labelling
	Challenges
	Solutions

	Analysis of Production Incidents at Microsoft Azure
	Manual Analysis of High-Impact Incidents
	Findings from Empirical Analysis of Incidents

	ARTS Root Cause Taxonomy
	AutoARTS's ML Models
	Identifying Root Cause Labels from the ARTS Taxonomy
	Extracting Root Cause Context from Postmortems

	Evaluation of AutoARTS
	Methodology
	Featurization
	AutoARTS's Performance on Root Cause Labelling
	AutoARTS's Performance on Context Extraction
	User Study

	Related Work
	Root-cause analysis of past incidents
	Text summarization & root-cause classification

	Coarse Causal Reasoning in Telemetry
	Causal Discovery for Root Cause Analysis
	Overview - Reasoning Slow Queries in Anon2
	Challenges

	Limitations of Causal Discovery
	PerfRCA
	Feature Computation
	Anomaly Extraction
	Causal Discovery

	Preliminary Results
	Case Studies

	Conclusion
	Future Work and Open Problems
	Evaluation on Production Systems
	Impact of LLMs on Debugging

	References

