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INTERSECTING FAULTS AND SANDSTONE STRATIGRAPHY AT THE CERRO PRIETO GEOTHERMAL FIELD

Stephen Vonder Haar and J. H. Howard
lawrence Berkeley laboratory
University of California
Berkeley, California 94720

ABSTRACT

The northwest~southeast trending Cerro Prieto
fault is part of a major regional lineament that
extends into Sonora and has characteristics of
both a wrench fault and an oceanic transform
fault. Tt apparently penetrates deep into the
basement and crustal rocks in the area and serves
as a conduit for both large and rapid heat flow.
Near well M-103, where the Michoacdn fault zone
obliquely intersects a shorter northeast-southwest
trending fault, large circulation losses during
drilling indicate greater permeability and
hence increased natural convective fluid flow.

In the southern portion of the field, there is a
shear fault zone in the vicinity of wells M-48,
M~91, and M-10l. Temperature contour maps suggest
that this shear zone aids in rapidly distributing
geothermal fluid away from the Cerro Prieto fault
zone, thus enhancing recharge.

We have studied the distribution of lithologies
and temperature within the field by comparing data
from well cuttings, cores, well logs, and geochemi-
cal analyses. Across the earliest developed portion
of the field, in particular along a 1.25-km
northeast-southwest section from well M-9 to M~10,
interesting correlations emerge that indicate a
relationship among lithology, microfracturing, and
temperature distribution. In the upper portion of
Reservoir A of this stratigraphic section, between
1200 and 1400 m, the percentage of sandstones
ranges from 20 to 55. Temperatures are 2259 to
275°C based on well logs, calcite isotope maxima,
and Na~K-Ca indices. Our study shows that an iso-
thermal high in this vicinity corresponds to the
lowest total percentage of sandstomes. Scanning
electron microphotographs of well cores and
cuttings from sandstone and shale units reveal
clogging, mineral dissolution, and mineral precipi-
tation along microfractures. Our working
hypothesis is that these sandy shale and siltstone
facies are most amenable to increased micro-
fracturing and, in turn, such microfracturing
allows for higher temperature fluid to rise to
shallower depths in the reservoir.

Ongoing research is aimed at achieving
a coherent geological model that illustrates
reservoir capacity, and at understanding fluid flow
along major faults, lateral distribution through
fault shear zones, and variable movement within
deltaic clastics that have in part been micro-
fractured.

INTRODUCTION

Geological evolution of the Cerro Prieto
region (Fig. 1) has been a complex blend of
rifting, rapid deltaic sedimentation, and large~
scale strike-slip faulting. To understand geother-
mal fields in this region, it is important to be
familiar with the fault intersections and with the
effects of tectonism and water-rock interactions
on initial sandstone porosity and permeability.

In this paper, we first explore analogs for the
pattern of faulting at Cerro Prieto and then focus
on secondary porosity and permeability in the
producing horizoms.

SALTON TROUGH FAULTING

In Figure 2, a detailed compilation of
faulting illustrates a number of fault inter-
sections. These data were compiled from more than
100 published and unpublished articles with many
of the specific key references shown in Figure 3.
The Salton Sea area has a distinct northeast-
southwest series of faults, each approximately
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Figure 1. location map of the regional geology of

the Cerro Prieto geothermal field.




SALTON TROUGH FAULTING
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Figure 2. Salton Trough faults indicating zone of cross faulting and the major northwest—

southeast hybrid transform faults.

Figure 3.

XBL 797-7585

Rey reference map to articles on Salton Trough faulting. KEY: (1) Barnard, 1968; (2) USGS,
1972; (3) Henyey and Bischoff, 1973; (4) Gastil et al., 1975; (5) Meidav and Rex, 1970;

(6) Howard et al., 1979; (7) Domnelly, 1974; (8) Ortlieb, 1978; (9) Vonder Haar and Gorsline,
1977; (10) Vonder Haar and Gorsline, 1975; (11) Puente C. and Vonder Haar, 1980; (12) Gastil
and Grummenscher, 1977; (13) Sumner, 1972; (14) Sharp, 1976; Johnson and Hadley, 1976;

(15) Goulty and Golman, 1978; (16) De la Fuente and Sumner, 1974; (17) Sylvester and Smith,
1976; (18) Babcock, 1974; (19) Proctor, 1968; (20) Noble et al., 1977; Razo, 1976; Alonso,
1966; Reed, 1976; Mercado, 1976; Vonder Haar and Puente C., 1979; Prian C., 1979; Corwin et al.,
1978; and Alonso E. et al., 1979; (21) Puente C., and de la Pefia L., 1979; (22) Soto-P.,

1975; (23) Crowe, 1978; (24) Kasameyer, 1976; Rasameyer et al., 1978; (25) Lofgren, 1979;

(26) Meidav et al., 1976; (27) Twehey, 1977; (28) Chan and Tewhey, 1977; (29) Todd and Hoggatt,
1976; (30) Albores et al., 1979.



3 km long between the Banning/Mission Creek strike-

slip fault (part of the San Andreas system) and

the northern end of the Brawley/Imperial strike- ws -r
slip fault (Fig. 4; also Meidav and Howard, 1979).

Similar northeast-southwest trending across
faults at the Cerro Prieto field (Fig. 5) have
been confirmed by recent studies (Vonder Haar and V4
Puente C., 1979; Puente C. and de la Pefia L., 7/
1979). The northwest-southeast trending Cerro
Prieto fault and a parallel fault segment, the
Michoacén fault, are part of a major regional
lineament that reaches into Sonora (Gastil and \ / o
Krummenacher, 1977) and has characteristics of \
both a wrench fault zone and an oceanic transform
fault (see Vonder Haar and Puente C., 1979). This \
major regional lineament is believed to penetrate \ X 50
deep into the crustal and basement rocks, which u-6 °
range from 7 km thick in the northern Gulf of
California (Phillips, 1964) to as great as 20 km
at the Mexican/United States international
boundary (Biehler et al., 1964). This style of
faulting, namely a deep penetrating regional fault
with down-dropped blocks at fault intersections is
important in connection with the occurrence of
geothermal resources because they apparently serve
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Figure 5. Faults in the vicinity of the Cerro
Prieto field showing cross-faults and
the very productive well M-103.

as conduits for high heat flow. The oblique
intersection of the P&tzcuaro fault zone and

the Michoacén fault zone are associated with wells
having greater permeability and are thus areas
presumed to have increased natural convection.

The prolific production of well M-103, large
amounts of lost circulation, and the surface
manifestations of the Laguna Volcano area southwest
of well M-101, support this conclusion. (See the
articles by De Boer, 1980; also Valette and Esquer
P., 1979, for magnetic and geochemical data
related to these fault intersectioms.)

Another facet of fault intersections is their

\: role in aiding distribution of the geothermal
[o] 10 g fluids away from a deep penetrating fault such as
N EL CENTRO \2‘ the Cerro Prieto fault. Such a fault is believed
LEGEND \F to be a linear or perhaps even a discreet point
E source at a given moment in geologic time (see
————  WELL DOCUMENTED \ Delaney and Pollard, 1980). Such a single con-
— —— LESS WELL DOCUMENTED trolling fault should lead to a field that clus~
eecoe UNCERTAIN \ ters within a few hundred meters of it. However,
1 NORMAL : increased permeability, recharge capacity, and
storativity that result from these fault shear
- zones create geothermal fields on the order of
XBL797-2121A 2 to 10 km widths.
Figure 4. Structural map of the Salton Sea region A third area of cross-faulting is (Fig. 2)
tased on combined geophysical data. approximately 100 km southeast of Cerro Prieto,




where the Cerro Prieto Lineament enters the Gulf

of California. These faults have been confirmed

by field studies (Ortlieb, 1978). Although there
is an en echelon style to the Cerro Prieto fault
zone in this area, flooding frequency and duration
data (Vonder Haar and Gorsline, 1979) indicate that
saline surface waters would hamper ground-level
geophysical surveys and drilling of shallow wells
for heat flux data. Presumably a geothermal
resource is present at depth.

Still another facet of faulting in the Salton
Trough may pertain to the origin of Cerro Prieto
volcano and the adjacent geothermal field. Both
may be the result of yet another fault intersection,
namely the meeting of the btesin bounding San Felipe
fault zone (Fig. 2) with the Cerro Prieto Lineament.

There are other indications of fault inter-
section in the Salton Trough/Upper Gulf of Califor-
nia area. Magnetic data suggest reactivation of
earlier rifting faults (see de Boer, 1980)
and regional gravity data indicate that the Gila
Lineament extends into the Salton Trough from
Arizona to near the Imperial fault’s southernmost
end.

TECTONIC ANALOGS TO CERRO PRIETO

The Dead Sea rift zone, oil-producing basins
in southern California, and the Afar region in
Africa, among others, provide stimulating compari-
sons to the Cerro Prieto region. However, perhaps
the most useful models for faulting for Salton
Trough geothermal fields come from the detailed
observations by deep diving submersibles along
transform faults and hydrothermal centers in
the FAMOUS area of the mid-Atlantic ridge and in
the Gulf of California.

Underwater exploration of transform fault "A"
in the FAMOUS area 1s summarized in a three-
dimensional block diagram (Fig. 6), on a scale
appropriate to the Cerro Prieto field. As shown
further in Figure 7, cross-faults and normal faults
extend for up to 5 km on both sides of the present
zone of active transform movement, which was located
in a 200-m-wide central zone. Hydrothermal activity
(Fig. 8) was noted in this zone, as were numerous
step faults with as much as 250 m of cumulative
displacement.

DPrilling at the mouth of the Gulf of Califor-
nia by the Deep Sea Drilling Project (DSDP)
(Geotimes, July 1979) resulted in a hypothesis
about the opening of the Gulf that bears on inter-
pretation of the structural geology in the vicinity
of the Cerro Prieto field. The sequence began
approximately 20 m.y. ago with weathered granite
and alluvial outwash gravels. Perhaps by the late
Miocene (5 to 10 m.y. ago) a rifting stage took
place with listric faults (concave upward with a
decrease dip angle at depth) in the basement.
Around 4.5 m.y. ago, subsidence was active and the
opening of the gulf began, with a transform-fault-
related opening of the present gulf around 3.5 m.y.
(see also Terres and Crowell, 1979). To date,
geophysical studies near Cerro Prieto have not
revealed listric faults in the basement. However,
rotational faults related to early rifting may be

-4~
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Figure 6. Interpretive block diagram of a
" portion of the oceanic transform fault

"A" in the FAMOUS area of the Mid-
Atlantic Ridge (after Choukroune et
al., 1978). The intersecting faults
and 200-m-wide active zone of strike-
slip movement within a 4-km-wide trough
suggest the possible complexity of
faulting along the Cerro Prieto fault
and within the production field.

Transform Fault "A"
Famous Area Mid-Atlantic Ridge
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Figure 7. Diagram illustrating the complex
faulting near an oceanic transform
fault; a possible analog to Salton
Trough faults.
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Figure 8. Section across the oceanic transform

fault "A" based on deep-submersible
dives showing active fulating within
a wider fault zone.

confined to areas 50 km or more west and southwest
of the geothermal field (see Gastil et al., 1979;
Dokka and Merriam, 1979). It is important for a
geological model of Cerro Prieto to include older
basement faults that may couple with more recent
strike-slip generated faults. Such coupling would
increase the potential fluid flow network along
fractures thus extending the area of maximum
energy available for production.

Submersible studies in the Guaymas Basin in
the central Gulf of California (Lonsdale and
lawvor, 1980) are also interesting when considering
the geology of the Cerro Prieto field. They show
a transform fault that has a shear zone approxi-
mately 1 km wide. Cross-faults cover an area 1
to 2 km wide, and the seabed has hydrothermal
minerals, which oxygen isotopes indicate precipi-
tated between 220° and 240°C.

Earlier investigations in the Gulf of
California by Sharman (1976) provide yet another
important possible model (Fig. 9) for the zone
between the Imperial and Cerro Prieto faults. As
drilling progresses at Cerro Prieto reservoir
modelers should consider that multiple basins
separated by upraised blocks were formed sequen-
tially. Perhaps such an arrangement of basins
represents episodic shifts of the heat source on
a scale of 5 to 20 km.

Another aspect of faulting related to
spreading centers is indicated in Figure 10. The
intersection angle between main fault and cross
fault need not be 90°. Thu& the ‘geometry of
the tasins east of the present Cerro Prieto field
can have margins as much as +20° from normal or
parallel to the major regional fault.

Figure 11 represents one of many possible
modes of evolution of oceanic transform faults and
spreading centers. These "cartoons" are intriguing
for they suggest patterns that may fit regional
geophysics data. For example, the Tule Check geo-
thermal area 15 km northwest of Cerro Prieto could
be an abandoned fracture zone, as seen in Figure
11 (D) with a remnant heat anomaly that is now cut
off from the main Cerro Prieto and Imperial pull-
apart system.

0.7 million years

Present

3 BASINS

ofter SHARMAN | (976

ABL 798-11489

Interpretation of the evolution of the
Carmen Basin in the Gulf of California;

a possible analog to pull-apart basins

in the Salton Trough. Note the assymetry
and multiple~basin formation between

two transform faults.

Figure 9.

EARTHQUAKE DATA

A map of epicenters and magnitudes for the
Salton Trough (Fig. 12) indicates a high degree
of tectonic activity. A story is shown by a
regional plot of microseismic events (Fig. 13).
Our interpretation of these events, most of 1 to 3
Richter magnitude, is that they are predominantly
a series of northeast-southwest cross-faults that
link the Imperial and San Andreas faults. Over
800 events are plotted in Figure 14 with major
concentrations at 4 to 6 km depth. The error on
these depths could be as much as +2 km, (G. Fuis,
1978, personal communication; see also Fuis et al.,
1977a,b,c, 1978a,b,c).

The fact that depths of occurrence are shallow
is important evidence of repeated activity that
maintains fracturing and allows fluid flow through
fractures at geothermal production depths in the
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Figure 10. Confirmation of the concept that trans-
form type faults need not be at 90° to
spreading centers (after Sharmanm, 1976).
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Figure 11l. A cartoon of the possible evolution of
the San Andreas, Imperial, and Cerro
Prieto faults illustrating where
fracture zones should exist if these
faults are pure transform types.
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Figure 12. Farthquake epicenters and recorded magnitudes in the Salton Trough for events of Richter

magnitude 2 5.
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Figure 13. Central Salton Trough epicenters
showing the connecting activity
between the Imperial and San Andreas
faults (data from Johnson, 1979).
Epicenter location error less than
2.5 km. Mp, refers to local Richter
magnitude.
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Salton Trough. More refined data on depths of
earthquakes are needed for the Cerroc Prieto area
(Fig. 15) in order to document whether these events
are in the production zone or at the interface of
the deltaic sediment and the basement of granodior-
ite, volcanics, and metasedimentary rocks.
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Figure 15. Earthquake epicenters in the vicinity
of the Cerro Prieto and Imperial faults;
data from Albores et al., 1979.
Tectonic interpretations of recent
movement between major en echelon
faults are supported by these data and
similar data along the north-trending
zone between the Imperial and San
Andreas faults.,

Figure 14. Earthquake depths in the Salton Trough
north of the Mexican-U.S. border,
although difficult to quantify in the
Salton Trough, show a concentration
near geothermal fields in a zone from 2
to 6 km. (Richter magnitudes, local).




SANDSTONE POROSITY Scanning electron microphotographs of well

i cuttings and cores reveal mineral dissolution
Figure 16 represents the basis of a working and mineral precipitation, clogging of pore

hypothesis, namely that zones of lower total throats, and apparent phases of overgrowth.

sandstone percentage, approximately 20% to 50%, Selected photographs present an idea of these

are better for geothermal production than zones features. A laminated siltstone in well NL-1
of, say, 80%Z total sandstone. This hypothesis has at 1888 m (Fig. 17) shows little porosity and
two corollaries: (1) secondary porosity caused by little densification, while deeper samples in

geothermal fluids is spotty throughout a field, NL-1 at 2720 m in the production region (Figures
and (2) fracture porosity is relatively greater in 18, 19, 20) illustrate clogging and precipitation.
siltstones, shales, and sandstones that have been Figures 21 and 22 at 3209 m in the same well
densified. Detafiled comparison of sandstone
percentage, lithofacies types, mineral data, with reduced secondary porosity. Well M-38

and resistivity are in progress but available samples at 1215 to 1372 m show clay and framework
information support the hypothesis (Elders, 1980, minerals (Figs. 23 and 24) and M-3 at 2203 m (Fig.
personal communication; Wilt, 1980, personal 25) 1s a spectacular example of silica mineral pre-
communication). cipitation adjacent to clay minerals.

document a dramatic change to a metamorphosed zone

SANDSTONE STRATIGRAPHY
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Figure '16. Sandstone units defined by relatively continuous major shale zones. Within the production

reservoir the sandstone percentage, as in unit 3, varies from 20% to 50% with a minimum near
well M-14 (see Fig. 5 for well locations).



Figure 17.

Figure 18.

XBB 799-12528
Low-porosity laminated deltaic siltstone
from well NL-1 at 1888 m depth; field
of view across the SEM photograph is
0.2 mm.

XBB 799-12516

Sandstone showing mixed secondary
porosity and newly precipitated hydro-
thermal minerals from production zone
of well NL-1 at 2720 m depth. Field
of view across the SEM photograph is
0.2 mm.

Figure 19.

Figure 20.

AN 5

XBB 799-12511

Sandstone; closeup of the same sample

as Figure 18. ©Note the long hairlike
crystals (illite?) and wafer-shaped clay
or zeolite minerals partially filling a
pore throat between sand grains. Sample
taken at 2720 m depth from well NL-1.
Field of view across the photograph is
0.2 mm. This is an example of altered
secondary permeability effects.

XBB 799-12518
Sandstone; closeup view of a portion of
Figure 18. During sample preparation a
grain was plucked leaving behind the
hydrothermally precipitated clay cement.
Sample from 2720 m depth in well NL-1.
Field of view across the SEM photograph
is 0.2 mm.




XBB 799-12524

Figure 21. Metamorphosed very dense sandstone from
well NL-1 at 3209 m depth. Field of
view 1s 1.0 mm. This is an example of
a super-mature secondary porosity zone
susceptible to microfracturing.

XBB 799-12527

Figure 22. Closeup of Figure 21 showing reduced
porosity due to precipitation of
framework minerals. Note how grains
were broken durng sample preparation
compared with Figure 18. Sample from
well NL-1 at 3209 m depth. Field of
view across the SEM photograph is 0.5 mm.

-10~

Figure 23.

Figure 24.

XBB 797-9450
Clay and framework minerals, or mineral
overgrowth in a pore space. Sample
taken from well M-38, at depths from
1215 to 1372 m; field of view across
the SEM photograph is 0.1 mm.

XBB 797-9451

Leaching of a crystal face and a massive
clay mineral agregate. Samples taken
from well M-38 at 1215 m depth. Field
of view in the SFM image is 1.0 mm.



XBB 797-9459

Figure 25. Nearly pure silicate minerals (EDAX
scan shows only Si) adjacent to honey-
comb clays (Fe, Mg, Al rich) overgrowths.
Both features greatly reduce permeabil-
ity. Sample from well M-3, at 2203 m
depth. Field of view across the SEM
photograph is 0.05 mm.
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